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Abstract 

  

The growth of industries and other human activities have led to ever 

increasing amounts of pollutants in both outdoor and indoor spaces. 

These pollutants have hazardous effects on humans and the wider 

ecology. Hence, air quality monitoring (AQM) is essential and 

involves the robust monitoring of various toxic gases and volatile 

organic compounds (VOCs) - in case the concentration of any 

pollutant exceeds the safe limit in a given location. This paper 

describes the different sources of indoor and outdoor pollutants, 

reviews the current status of gas sensors, and discusses the role of 

new two-dimensional (2D) materials in detecting these hazardous 

gases at low power, i.e. close to ambient temperature. Here we review 

different synthesis techniques of 2D materials and discuss the sensing 

performances of pristine and functionalized nanomaterials for some 

of the important pollutants like NOx, NH3, SOx, CO, formaldehyde 

and toluene. The review concludes with some proposed methods to 

help reduce air pollution today. 

Keywords: Air quality monitoring, Resistive gas sensors, 2D 

nanomaterials, Near room temperature sensing 

1. Introduction 

There has been increasing interest to develop new low cost, low 

power gas sensors for various application-specific areas. This 

includes air pollution monitoring of both indoor and outdoor spaces, 

detection of toxic gases in and near industrial premises and also 

sensors for biomedical applications [1]. There has been a rapid rise 

in levels of toxic gases and volatile organic compounds (VOCs) in 

air in recent years; particularly in urban spaces. This is mostly true 

for many cities in under-developed or developing countries. For 

example, a recent report (2018) from World Health Organization 

(WHO) shows that fifteen Indian cities and twenty-one Chinese cities 

are amongst the fifty most polluted cities in the world [2]. In 2019, 

air pollution is considered WHO as the greatest environmental risk 

to health [3]. The major sources of polluted air are fuelwood and 

biomass burning, burning of agricultural wastes (large scale crop 

residue burning takes place during winter), fuel adulteration, 

uncontrolled emission from vehicles and factories, traffic congestion 

and rapid construction [4]. These cause smog and hence increase 

airborne particulate matter (e.g. PM10, PM2.5), NOx, NH3, SOx, CO 

and other VOCs in the air. All these pollutants are well in excess of 

human permissible limit in capital cities like Delhi (capital of India, 

6th in WHO list), Kampala (capital of Uganda, 16th in WHO list), 

Doha (capital of Qatar, 21st in WHO list), Kabul (capital of 

Afghanistan, 28th in WHO list) and so on [2]. The situation is much 

better in developed countries because of better awareness and stricter 

regulations. Quality of indoor air is of equal importance as that of 

outdoor air, because we spend most of our time in indoor areas and it 

can have many times the level of outside pollution! Smart buildings 

(e.g. houses, hospitals, schools at smart cities in developed countries) 

are such places where different hazardous gases and VOCs like CO2, 

CO, formaldehyde, benzene, toluene, ethylbenzene and xylene 

(popularly known as BTEX) along with humidity are monitored and 

restricted to permissible limit through proper detection and 

ventilation [5]. However, there is a lack of awareness and a detailed 

understanding about the long-term acute effect of these air pollutants 

among populations. Excessive exposure of air pollutants leads to 

increasing respiratory and cardiovascular diseases, such as acute 

lower respiratory infections (ALRI), chronic obstructive pulmonary 

disease (COPD), lung cancer, ischemic heart disease (IHD), 

pneumonia, and strokes [6, 7]. Thus, air pollution is the reason behind 

many diseases that often prove to be lethal. Almost 7 million deaths 

were caused globally by household and outdoor pollution in 2016 [2], 

the fourth-highest cause of deaths worldwide. Thus, the effect of air 

pollution is alarmingly high and much worse than many of us 

anticipate. This makes air quality monitoring (AQM) urgent and 

essential. 

There have been many review papers published on metal oxide based 

resistive sensors for detecting toxic gases over the years [8-10]. There 

are also many reports on air pollution [4, 11]. Recently, several 

review papers highlighted two-dimensional (2D) layered material 

based resistive sensors [12-15]. However, the authors believe it is 

necessary and of utmost important to review: sources of air pollution; 

resistive sensors available in the market for detecting toxic gases; 

highlighting the necessity to develop near room temperature resistive 

sensors (which will reduce the power consumption drastically and 

fetch the way for ‘things’ in the Internet); and possible approaches to 

tackle with air pollution.  

2. Sources of Air Pollutants: 

The rapid industrialization across various parts of Asia (particularly 

in India and China) in recent years has been an economic boon. 

Unfortunately, industrialization and rising the standard of living are 

coupled with poor implementation of governmental rules and 

regulations, which result in increased concentration of air pollutants. 

Fig. 1 shows the different indoor and outdoor pollutants that are 

generally present in the air because of different human activities. The 

pollutants shown in Fig. 1 are harmful to living beings and the 

environment if exposed beyond permissible exposure limits (PEL) as 

published by occupational safety and health administration (OSHA), 

United States [16, 17].  The Environmental Protection Agency 

(EPA), United States has also set National Ambient Air Quality 

Standards (NAAQS) for particulate matters PM2.5 and PM10 [18]. 

Public agencies with similar spirit and purpose exist across the globe 

and set similar standards for the air pollutants. In order to devise a 

mechanism to monitor and check air pollution, it is necessary to 
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develop gas sensors that can detect these gases/VOCs. Current trends 

in gas sensors are presented in the next section.   

 

Fig. 1 Different indoor and outdoor pollutants with their safe-limits 

and sources 

3. Current Gas Sensors, motivations for near room temperature 

sensors: 

Any device that exhibits change in one of its fundamental properties 

like mass, capacitance, resistance etc. when placed in the proximity 

of a gas species can be classified as a gas sensor. Depending on the 

transduction methods, they can be categorized into electrochemical 

sensors, optical sensors, SAW based gas sensors, calorimetric 

sensors, chemoresistive sensors etc. Current commercial gas sensors 

are mostly based on electrochemical transduction. Such sensors are 

usually fabricated in a semi-automated batch process and it is not 

possible to integrate these with established micro-electronics 

technology, hence they are expensive [19]. A typical electrochemical 

sensor costs around $20, with evaluation board a total sensor system 

might cost well over $100 [20]. Other popular gas sensors, e.g. 

infrared gas sensor, is selective but much more expensive (>$1000). 

Most of the Indoor Air Quality (IAQ) systems sold in the market do 

not have provision to show the concentrations of individual VOCs, 

rather they measure total VOC content (TVOC) [21]. Also, they are 

very expensive, because most of the units are a combination of 

discrete sensors with printed circuit board (PCB) level electronics for 

integration along with data-analytics for pattern recognition. The cost 

of HERACLES Neo Electronic Nose which is manufactured and sold 

by renowned electronic nose manufacturer (Alpha MOS) is more 

than 100,000 euro [3]. The device, in its present form, also requires 

a skilled person to operating it.  

Micro-resistive sensors have a clear edge over other sensors 

(electrochemical, IR, photoionization detector etc.), because the 

former is easier to integrate with conventional microelectronics 

technology. This makes the sensor devices more reliable (automated 

fabrication process) and much lower cost (for volume production) 

[22]. The heart of such a gas sensor is the sensing layer. Metal oxides 

(e.g. n-type SnO2, ZnO, WO3 and p-type NiO) are the gold standard 

materials that are commonly used as sensing layers for such resistive 

sensors [23]. Metal oxides are semiconducting in nature and interact 

with chemical analytes at elevated temperatures (150–400°C). At 

such high temperatures, oxygen is adsorbed at the surface of the 

metal oxide clusters by trapping electrons from the bulk. This 

increases (n-type material) or decreases (p-type material) the 

resistance of the sensing layer. The oxygen species (O−, O2− etc.)  

interact with the chemical analytes and release back electrons to the 

sensing layer.  This change the resistance of the sensing layer, which 

is proportional to the concentration of the targeted chemical analytes. 

Fig. 2 is a schematic representation of the sensing mechanism of the 

metal oxides. 

 

Fig. 2 Schematic representation of sensing mechanism of metal oxide 

nanoclusters with depletion/accumulation layers 

Although metal oxides are highly sensitive, they are not selective. 

Also, they consume considerable power ( 100-500 mW) for sensing 

target gases because of high temperature requirements [24]. This is 

not ideal for battery operated devices. Moreover, high sensing 

temperatures can affect circuit performance if the sensor is integrated 

on the same silicon die. In this respect, considerable breakthrough 

has been made by implementing sensors in innovative micro-

hotplates (CMOS-MEMS integration), where heat will be confined 

in the membrane region (make the sensor/circuit integration 

possible), and also power consumption can be reduced because of 

low thermal mass and air insulation [25-28]. The micro-hotplates can 

be realized by front etching (suspended membrane) or back etching 

(closed membrane) techniques [20, 29-31]. A typical micro-hotplate 

contains a micro-heater (to heat up the sensing layer), interdigitated 

electrodes (to measure the resistance of sensing layer) under a nano-

material based sensing layer (as shown in Fig. 3). The sensing layer 

is realized using post CMOS process, which is very challenging 

because in-situ synthesis of nano-material often requires harsh 

chemicals and high temperature, which might damage the on-chip 

circuitry and also the membrane. In this respect processes like local 

growth [32], localized hydrothermal technique [26], inkjet printing 

[33], printing using dip pen nano lithography [30, 31] etc. were 

developed. 

 

Fig. 3 Optical image of an interdigitated electrode integrated with 

micro-heater on micro-hotplate (adapted from [31])  
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Such resistive sensors are power efficient, for example, a temperature 

of 300°C can be achieved with few 10s of mW.  However, the holy 

grail of resistive sensors can be achieved if the sensor operates at 

room temperature without deteriorating its performance. This will 

not only reduce power consumption almost completely, but also 

reduce the complexity associated with device fabrication.  Thus, there 

is a need to develop high-quality, low-cost, ultra-low power sensors 

for many applications including air quality monitoring. Recent 

researches show that two dimensional (2D) layered materials 

especially carbon nanomaterials and transition metal dichalcogenides 

(TMDs) have potential to sense gases at near room temperature, 

however response from such materials are often poorer than the 

conventional metal oxides [34, 35]. So, in the following sections we 

will concentrate on synthesis techniques of carbon nanomaterials and 

TMDs, study their sensing capabilities reported in the literature so far 

and ways to improve their sensitivity so that their performance even 

at room temperature can match with that of metal oxides which 

usually operate at higher temperatures. 

4. Synthesis Techniques of pristine 2D layered nanomaterials 

The synthesis techniques of a nanomaterial can be broadly classified 

into two categories: top-down approach and bottom-up approach. 

Different methods in each category have been explored over the years 

to customize the synthesis of 2D layered materials for different 

applications. For example, fabrication of transistors requires highly 

pure nanomaterials whereas for gas sensing, nanomaterials with 

inherent defects and functional groups are preferable. This review 

focuses on discussing some of the widely explored techniques which 

are frequently employed for the synthesis of these nanomaterials. 

4.1 Mechanical exfoliation – This is the simplest and most economic 

technique for synthesis of nanomaterials. It is a top-down method 

which is employed to reduce mechanically one or more dimensions 

of bulk materials to nanoscale. In 2004, Novoselov et al. produced 

highly pure graphene flakes by isolating monolayer carbon sheets of 

highly oriented pyrolytic graphite (HOPG) using this method [36]. 

The method is renowned as the “Scotch-tape method”. Later on, this 

technique was extended to obtain other layered materials [37-

40].Though there are reports on fabricating gas sensors using layered 

materials synthesized by mechanical exfoliation [41], this method is 

not generally preferable because of lack of repeatability, poor 

scalability, and difficulty to introduce functional groups to sensing 

layer. 

4.2 Chemical vapour deposition (CVD) – This bottom-up 

technique of nanomaterials synthesis is based on the chemical 

reactions that occur between the precursors and substrate thereby 

producing high quality 2D material thin films of large area. The 

molecules of the gas precursors are fed into a reactor and passed 

through a hot zone (700–1200°C) where the reactants dissociate and 

deposit onto the substrate, which is placed at a relatively lower 

temperature in the reactor [42]. There are different parameters which 

guide the dynamics of this growth process. For graphene, usually a 

mixture of any hydrocarbon and H2 are used as precursors and 

transition metals, mostly Cu or Ni is used as the catalytic substrate 

[43]. For TMDs, it is a two-zone process. Zone-1 consists of 

precursors (MoO2/MoO3 for MoS2 and WO3 for WS2) in powder 

form, which is heated to a temperature of 700–900°C; and Zone-2 

consists of sulphur powder, which is heated to a temperature of 

250°C. Then both the zones are cooled down after a certain time 

leading to the formation of triangular WS2 or MoS2 sheets [44-46]. 

The commonly preferred substrate for CVD growth of TMDs is SiO2 

coated Si [47]. However, efficient methods of transferring the CVD 

grown thin films from the metal or Si/SiO2 surfaces to substrates like 

polymers have already been developed and are extensively used [48]. 

This had enabled development of flexible sensors that are rugged, 

wearable and tailorable. CVD is one of the widely used methods for 

fabricating defect-free layered materials to realize electronic devices, 

however its application in sensing is limited simply because of lack 

of defects. Also, CVD is one of the more expensive and sophisticated 

methods for production of large-area 2D materials. 

4.3 Epitaxial Growth – This is another sophisticated method of 

synthesis of nanomaterials. For epitaxial growth of any nanomaterial 

it is necessary to have a substrate with specific crystallographic 

orientation so that the atoms of the substrate can coalesce into a 

uniform, single-crystal layer of that particular nanomaterial with a 

reduced number of grain boundaries [49]. One of the potential ways 

for producing large area graphene layers is epitaxial growth of 

graphene on SiC substrates [50]. In this technique, SiC substrate is 

heated to high temperature of around 1200°C under high vacuum 

(~10−6 Torr). Under such conditions, the silicon atoms evaporate 

from the substrate and the carbon atoms rearrange themselves to form 

graphene layers. Epitaxial growth of TMDs is mostly intertwined 

with CVD process and is still developing [51]. For WS2, Polyakov et 

al.  reported epitaxial growth of WS2 (0001) layers on ZnO/ WO3 

core shell structure [52]. Again, epitaxially grown material is usually 

pure and not very useful for gas sensing, so the readers interested in 

this growth technique are advised to refer to the cited works for more 

details. 

4.4 Liquid exfoliation – This is a low-cost technique for 

nanomaterial synthesis in which the bulk precursor is exfoliated 

using suitable chemical reagents. The method of isolating different 

nanosheets using liquid exfoliation is schematically represented in 

Fig. 4.  

 

Fig. 4 Schematic (not to scale) demonstrating the steps of liquid 

exfoliation of different layered nanomaterials 

The chemical agents intercalate between the layers of the bulk 

materials and isolate monolayers or few layers of nanosheets. In the 

process, some of chemical species get attached to edges or basal 

planes of the nanosheets and hence the purity of nanomaterials 

synthesized using this technique is not very high. Also, liquid 

exfoliation can cause defects, e.g. by creating sulphur vacancies in 

MoS2 or WS2 [53]. But for sensing applications this is an added 

advantage as the chemical species and defect sites act as 
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attaching/interacting sites for the gas molecules and this is why liquid 

exfoliation method is widely used to synthesize nanomaterials for gas 

sensing applications. Different methods and recipes have been 

explored to produce reduced graphene oxide (RGO), which is a 

derivative of graphene, using chemical routes. The first step of almost 

all methods is to synthesize graphene oxide (GO). This is done by 

rigorous chemical treatment of graphite powder that can be 

accomplished using the Hummers [54], Brodie [55] or Staudenmaier 

[56] method. Among the three ways to synthesize GO, Hummers 

method is the one that is most widely used. GO is insulating in nature 

and hence in order to get back its conductivity, GO has to be reduced. 

GO can be reduced chemically [57], thermally [57], 

electrochemically [58] or by photocatalytic reduction [59]. The 

extent of reduction of GO to RGO can be quantitatively determined 

by finding out their C/O ratios using X-ray photoelectron 

spectroscopy (XPS) as is shown in Fig. 5 (a-b). Although none of 

reduction method is efficient enough to produce reduce graphene 

oxide (RGO) nanosheets having properties exactly same as those of 

pristine graphene, but development of this wet chemical method 

enabled researchers to produce graphene (with controlled amounts of 

functional groups) in bulk at a very cost-effective level.  For TMDs, 

wet synthesis does not require oxidizing the bulk material. Different 

chemical reagents that are being used for exfoliation, intercalate 

between the layers of the TMDs and thus isolate each layer. These 

intercalated species can then be filtered out by using centrifuge. But 

as the bonds between the TMD sheets are already broken by then, so 

the nanosheets remain isolated even after the purification is carried 

out. For example, Pagona et al. reported exfoliation of 2H-MoS2 and 

2H-WS2 using chlorosulfonic acid [60]. There are several other 

reports on liquid/chemical exfoliation of TMDs [53, 61, 62]. Since 

the monolayer isolation in case of TMDs do not involve rigorous 

chemical procedure, so, it is possible to produce 2D layers of these 

materials without compromising their purity. XPS is also employed 

to assess the purity of single/few layered TMDs synthesized using 

liquid exfoliation as is shown in Fig. 5 (c-f). 

Fig. 5 XPS results of (a-b) GO and RGO with respective C/O ratio 

[63] (c-d) 2H-MoS2 (e-f) [64, 65] 2H-WS2 [66] 

Apart from XPS, Raman spectroscopy, Fourier transform infrared 

spectroscopy (FTIR), UV-Vis spectroscopy and X-ray diffraction 

(XRD) are also used to study the presence of different bonds and the 

crystal structures of these sensing materials. Sophisticated techniques 

like atomic force microscopy (AFM), transmission electron 

microscopy (TEM), scanning electron microscopy (SEM) are 

employed for the morphological characterizations of these 

nanomaterials. The AFM image of GO synthesized using Hummers 

method is shown in Fig. 6 (a). Fig. 6 (b) shows TEM image of 

triangular MoS2 nanoflakes. 

 

Fig. 6 (a) AFM image of GO produced using Hummers method 

(Reprinted with the permission from [67] Copyright©2013 

American Chemical Society) (b) SEM image of MoS2 nanoflakes 

[68] and (c) WS2 layer deposited on PVDF (flexible) substrate [69] 

In addition to the aforementioned advantages offered by 

liquid/chemical exfoliation techniques of synthesis of nanomaterials, 

these also allow the sensing materials to be deposited over any 

substrate including flexible platforms using drop casting, spin 

coating, dip coating or vacuum filtration method. Fig. 6 (c) shows 

WS2 coated on flexible PVDF substrate. Once it is ensured that the 

2D materials have been synthesized properly by the aids of different 

characterization techniques, these are used to fabricate the sensors 

and the devices thereafter are extensively tested for their sensing 

capabilities. The next section discusses the sensing performances 

exhibited by different 2D materials near room temperature.  

5. Gas sensing by pristine 2D layered nanomaterials 

Monitoring the presence of the pollutants requires development of 

efficient devices for the continuous detection of these gases and 

VOCs. 2D materials, owing to their outstanding properties can sense 

different analytes. This review however, would limit its focus on 

humidity and some of the important indoor and outdoor pollutants 

namely NOx, NH3, SOx, CO, toluene and formaldehyde.  

 

Fig. 7 Schematic representation of working of a resistive gas sensor 

Fig. 7 schematically represents the working of a generic 

chemoresistive gas sensor, here sensor resistance changes when gas 

molecules get adsorbed on its surface. The response of sensor is 

calculated as  
𝑅𝑔𝑎𝑠 − 𝑅𝑎𝑖𝑟

𝑅𝑎𝑖𝑟
 × 100% =

∆𝑅

𝑅𝑎𝑖𝑟
× 100% 
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As the surface-to-volume ratio of the 2D nanomaterials is very high 

they offer high sensitivity towards the species in their proximity. The 

next section reviews the sensing performance of the intrinsic 2D 

materials.  

5.1 Graphene based gas sensors: Graphene has outstanding 

electrical (conductivity and carrier mobilities) and mechanical 

properties which are desired for gas sensing [70]. Pristine graphene 

is primarily known for sensing NH3 [71], NOx [72], H2O [73] and 

some VOCs [74]. The first article on graphene-based gas detectors 

was reported in 2007 by Schedin et al. in which they demonstrated 

that mechanically exfoliated graphene sheets have the potential to 

detect single molecules of gases [75]. Rivera et al. reported NH3, NO2 

and ethanol sensing by graphene synthesized using CVD [76]. 

Studies on determining the sensing mechanism of graphene were also 

performed by different research groups and it was found that the gas 

molecules are physisorbed at the surface of the graphene. Chen et al. 

demonstrated the possible adsorption sites on a graphene sheet (Fig. 

8(a)) [77]. The gas molecules coming in the proximity of graphene, 

occupy either of the sites as shown in Fig. 8(a) thereby changing the 

electrical conductivity of the sensor. This change in conductivity of 

the graphene layer is attributed to the change in the local carrier 

concentration induced by the surface adsorbates which act as either 

electron donors or acceptors. 

 

Fig. 8(a) Schematic showing three adsorption sites available in 

pristine graphene (reproduced from [77]), and (b) Response of RGO 

produced after chemically reducing GO for three different time 

durations towards three different concentrations of NH3 (Reprinted 

with the permission from [67] Copyright©2013 American Chemical 

Society) 

5.2 Intrinsic GO/RGO based gas sensors 

Soon after the discovery of graphene, GO/RGO based gas sensor 

research also started. Robinson et al.  demonstrated molecular gas 

sensors fabricated using RGO. They first synthesized GO and then 

reduced it chemically using hydrazine to get RGO which was used 

for sensing acetone and dinitrotoluene (DNT). It was demonstrated 

that RGO owing to its inherent defects and impurities is ultrasensitive 

towards gases and can sense gas species of concentration as low as 

0.5 ppb [78]. Similarly, Lu et al. reported NO2 sensing by thermally 

derived RGO [79]. GO contains many functional groups (epoxy, 

carbonyl, hydroxyl etc.). It was subsequently realized that these 

functional groups play major role in gas sensing, that is why GO 

performed better compared to pristine graphene as gas sensor. In fact, 

gas sensing properties of RGO are highly dependent on the extent of 

reduction of GO as shown in Fig. 8 (b) [67]. The report revealed that 

not only the response but response and recovery times of sensors are 

significantly dependent upon the reduction time of GO. The 

functional groups also render the sensing layer electrically insulating. 

Reducing GO helps in regaining the conductivity of the sensing layer 

but it also decreases the number of functional groups in it. So, there 

has to be a trade-off between the conductivity and sensitivity of RGO 

that can be achieved by optimizing the GO reduction time. The gas 

sensing mechanism of RGO is the same as that of graphene. But since 

RGO consists of functional groups which act as added attachment 

sites for the gas molecules so, in addition to physisorption, 

phenomenon namely chemisorption also occurs in RGO sensors. 

This theory has been computationally proven in the literature [80].  

Our group demonstrated the above concept experimentally [67]. 

Chemisorbed gas molecules require more energy and time to desorb. 

So, the recovery of RGO is slightly slower than that of graphene. The 

recovery time of graphene is order of hundreds of seconds whereas 

the recovery time of RGO is usually tens of minutes. In recent years, 

GO has also been explored as sensor for detecting humidity. As the 

resistance of GO is very high so, the current across the sensors were 

observed in absence and then in presence of humidity. GO, owing to 

the presence of abundant functional groups, helps in high proton 

conductivity through attached humidity layers on its surface [63]. 

5.3 TMDs based gas sensors: 

2D, layered, and semiconducting TMDs are also offering promise as 

potential alternatives of near room temperature gas sensing materials. 

Of different TMDs like WS2, MoS2, SnS2, TaS2, and TiS2; MoS2 

based gas sensors have been explored the most so far [81]. All the 

other TMDs are still in embryonic stage but are expected to 

demonstrate excellent sensing results in the near future because of 

their outstanding properties. Ou et al.  reported excellent NO2 sensing 

by SnS2 flakes. The sensors exhibited rapid response and recovery as 

the sensing was occurring due to physisorption of the gas molecules 

but the sensors were operated at high temperature (160°C) [82]. 

TMDs synthesized by liquid/chemical exfoliation have defects at 

their edges and also have sulphur (s)-vacancies. These sites offer to 

be the adsorption sites for the gas molecules. The adsorbing gas 

species donates/accepts electrons from the sensing layer which 

changes the conductance of the latter and hence the presence of gases 

are detected by these semiconducting 2D materials [53]. Table 1 

enlists some of the recent works on intrinsic 2D layered materials-

based gas sensing. 

6. Drawbacks of pure 2D layered nanomaterials-based gas 

sensors  

In general, 2D materials-based sensors suffer from a few fundamental 

limitations – first being their poor responses to gases. Although it has 

been shown in different reports that 2D materials are capable of 

sensing individual molecules but mostly such works were carried out 

under stringent lab conditions which differ a lot from the real-life 

circumstances. For example, in many cases the sensors were tested 

in presence of dry nitrogen and also long term reliability and 

reproducibility were not shown [75]. In real-life scenario, the sensors 

deployed to detect air pollutants are exposed to the environment that 

includes presence of several other gases along with humidity. 

Another drawback of such pure sensors are their slow response and 

recovery times [83]. The response and recovery times of efficient 

sensors should be not more than a few seconds. But most of the 

articles on intrinsic graphene, RGO, MoS2, WS2 or SnS2 based 

sensors report response times and recovery times in order of few 

minutes or sometimes tens of minutes [67, 84]. Also, these gas 

sensors have other limitations like unstable response [85] and drifting 
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of the sensor resistance from its baseline value [86]. The next section 

of this review presents ways to overcome these problems. 

Table 1: Key sensing parameters of intrinsic 2D layered materials based sensors reported recently 

Sensing Material Target 

gas(es) 

Sensing 

temperature 

Conc. Range  Response Response time/ 

recovery time 

Ref. 

 

Epitaxial Graphene 

 

NO2 

 

RT 

 

1–50 ppb 

 

1–17% 

 

10–3000 s/Not 

reported 

 

[87] 

Crumpled RGO NO2 RT 1–10 ppm Rair/RNO2 =1.5–3.8 8/53 mins [83] 

GO NH3 RT 2–100 ppm 6–30%  30 s/100 s [88] 

Multistep reduced 

GO 

SO2 27°C 5–50 ppm 5.93–47.44% 122/145 s [89] 

CVD MoS2 NH3, 

NO2 

RT  NH3 (5–50 ppm) 

NO2 (1.5–50 ppm) 

NH3<5% (50 ppm) 

NO2 ~10 to 120% 

Not reported [13] 

MoS2 (UV 

activated) 

NO2 RT 5–100 ppm ~15–30% 29 s/Not reported [84] 

MoS2 NH3 75–150°C 50–480 ppm 10–70%(125°C) 650–700 s/750–

1400 s 

[53] 

Chemically 

Exfoliated SnS2 

NH3 RT 50–800 ppm 2.04–6.5 times Not reported [90] 

WS2 NH3 RT 5–60 ppm 4.5–12 times 252 s/648 s (for 

10 ppm) 

[91] 

7. Remedies to the drawbacks: Functionalization of 2D 

nanomaterials 

One of the ways to overcome the limitations of nanomaterials 

described in section 6 is by functionalizing the nanomaterials using 

different species. This can be done in multiple ways as has been 

discussed below: 

7.1 Functionalization with metal oxides 

Metal oxides are well-known in gas sensing domain because of their 

ultra-sensitivity but have their own limitations as have been 

discussed already.  2D nanomaterials are capable of sensing gases at 

or near room temperature but they suffer from poor sensitivity. So, 

an obvious choice to confront the demerits of both these materials 

and to get the advantages offered by both the materials, is to form 

composites using these two sensing materials and to test its sensing 

capabilities. A good number of researches have been done in this 

direction and the concept has been experimentally proven. Our group 

demonstrated better sensing performance at room temperature by 

RGO–SnO2 composite film for NH3 as compared to the performance 

of the individual materials, as shown in Fig. 9 [92]. This is because 

metal oxides like SnO2 are n-type semiconductors and RGO is a p-

type material. So, when the composite is synthesized using RGO and 

SnO2, it leads to the formation of hetero p-n junction. This junction 

offers an additional adsorption region for the gases that is not 

available with the individual materials; thus, a better sensing 

performance at room temperature is observed in the composites. 

Also, it is believed that RGO layer increases overall conductivity and 

hence measurable resistance is achieved even at room temperature. 

Various metal oxides including SnO2 [93], ZnO [94], WO3 [95], TiO2 

[96], CuO [97] etc. have been used to functionalize graphene/RGO 

and their sensing performance for different gases has been tested. 

Srivastava et al. presented a detailed investigation on RGO–WO3 

based NO2 sensors. Although the developed sensors demonstrated 

optimum sensing performance at 250°C along with fast recovery and 

response times but the sensors exhibited decent sensing performance 

even at room temperature [98]. Recently, Zhang et al. reported CuO 

nanoflower/RGO based CO sensors. The composites were efficient 

enough to sense 0.25 ppm of CO at room temperature [99]. Lot of 

research on employing graphene/metal oxide composite for gas 

sensing is still going on. Few of such recently reported works are 

enlisted in Table 2. 

 

Fig. 9 Response of RGO-SnO2 sensing layer to different 

concentrations of ammonia (reproduced from [92] with permission 

of Royal Society of Chemistry) 

Just like graphene and RGO, functionalization of TMDs using metal 

oxides have also been done and their performances as gas sensors 

have been investigated. Zhang et al. synthesized MoS2-SnO2 

composite layer for ultrasensitive humidity sensing [100]. Similarly, 

our group reported enhanced gas sensing properties by WS2–WO3 

composite layer [101]. 

7.2 Functionalization with metal nanoparticles 

Along with other sensing materials, including metal oxides and 2D 

materials, sensing capabilities of some of the metals have also been 

explored over the years. Two of such metals are palladium (Pd) and 

platinum (Pt) because hydrogen molecules are dissociated on the 
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surface of both these noble metals thereby resulting in a shift in their 

Fermi levels, which changes their conductivities [102]. One of the 

demerits of metal nanoparticle based gas sensors is the cost. Usually, 

the sensors are fabricated by sputtering the metals over the substrates 

which increases the cost of the sensor because the sputter targets of 

these metals are very expensive. The cheaper solution is by reducing 

salts of metal (e.g. for Pt: H2PtCl6.xH2O, for Au: HAuCl4.xH2O can 

be used) in-situ while synthesizing the layered material [103, 104]. 

Such metal salts are comparatively less expensive than the highly 

pure sputter targets.  In metal functionalized sensing layer, the gas 

molecules get three different types of adsorbing sites – functional 

groups or defects present in layered materials, surface of metal 

nanoparticles and the heterojunction formed between 2D materials 

and metals. Thus, improved gas sensing is exhibited at or near room 

temperature by these composites [105]. Conventionally, composites 

of 2D materials with Pt and Pd were explored the most because of the 

known reactivity of these metals with H2. One such work has been 

reported by our group recently in which detailed investigation of the 

H2 sensing performance of RGO-Pt based composite was carried out 

[103]. More recently research on functionalizing 2D layered 

materials with other metals like silver [106], iron [107], and nickel 

[108] are reported and their sensitivity towards different gases are 

being tested. For example, Huang et al. functionalized sulfonated 

RGO using silver nanoparticles and employed the composite for NO2 

sensing at room temperature. The Ag-S-RGO based sensors 

exhibited rapid response and recovery (each being few tens of 

seconds) [106]. The composites of TMDs and metal nanoparticles 

have also been synthesized and tested for different gases. For 

example, Baek et al. reported Pd functionalized MoS2 based H2 

sensors(35.3% for 1% H2 [105]), Burman et al reported Pt 

functionalized MoS2 based humidity sensor (4000 times at 85% RH) 

[109]. A list of recent works based on metal functionalized 2D 

layered materials based gas sensors is given in Table 2. 

 

Table 2: Key sensing parameters of functionalized 2D layered materials-based sensors reported recently 

Sensing Material Target 

gas(es) 

Sensing 

temperature 

Conc. Range 

(ppm) 

Response Response time/ 

recovery time 

Ref. 

 

RGO–

MWCNTs–WO3 

 

NO2 

 

RT 

 

1–5 

 

9–17% 

 

7/15 mins 

 

[110] 

ZnO–RGO NO2 RT 1–10 119–400% 75/132 s [111] 

RGO–CNT–TiO2 Toluene RT 50–500  42.9% (500ppm) 9/11 s (500ppm) [112] 

RGO– SnO2 NH3 RT 100–2000 Rair/RNH3 =1.014–

11.79 

8/13 s [113] 

RGO–TiO2 NH3 RT–100°C 1–50 1–4.9% (RT) Not reported [114] 

CuO–RGO CO RT 0.25–1000 1.06–6.61% 70–76 s/147–232 

s 

[99] 

RGO–ZnO Chloroform, 

water, ethanol, 

acetone, 

formaldehyde 

RT Chloroform (20–

80) 

Water (50–250) 

Ethanol (20–100) 

Acetone (20–100) 

Formaldehyde 

(25) 

1.8–3.8% 

 

2–6.1% 

 

1.25–3.75% 

1.25–3.75% 

1.25% 

<10 s [115] 

MoS2–Co3O4 NH3 RT 0.1–5 10–60% 105/136 s [116] 

Graphene–Ag NH3 RT 1000–12500 26–77.8% 120/72 s [117] 

Li–GO 

B–GO  

Humidity RT 11–97% RH Li–GO (17.13–

3038.16%) 

B–GO (6.95–

631.1% 

4/25 s 

 

 

 

40/50 s 

[118] 

Graphene–Pd H2 RT 10000 30% 40/490 s 2017 

SNB 

Graphene–

Polythiopene 

NO2 RT 1–10 ~2.5–22.36% Not reported [119] 

S-RGOH NO2 RT 0.2–2 6.1–22.5% 11/12 s [120] 

Graphene–

Polyelectrolyte 

Humidity RT 10–90% RH 300–1000% 21 s/78 s [121] 

GO–ZnO–PANI NH3 RT 100 38.31% 30 s/Not reported [122] 

RGO–MoS2 Formaldehyde RT 2.5–15 ppm 1.5–6.5% Not reported [123] 

Pd–TiO2–MoS2 Toluene RT 100 ppb–100 ppm   [124] 

MoS2–GO Humidity RT 35–85%RH 3–1600 times 90 s/110 s (for 

71.8%RH) 

[125] 

WS2 – WSe2 Humidity RT 40–80%RH 15.4–57 times 45 s/65 s (for 

60%RH) 

[126] 

SnS2–SnO2 NO2 80°C 1–8 ppm 1.5–5.3 times 159 s/297 s (for 8 

ppm) 

[127] 
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7.3 Functionalization with Polymers 

Another way to enhance the sensitivity of the 2D layered materials is 

to functionalize them using polymers. Polymers are organic 

molecules which consist of inherent functional groups and defect 

sites. So, in addition to the defect sites and functional groups present 

in the layered materials these added sites facilitate adsorption of more 

gas molecules on the sensor surface and thus perform better as gas 

sensors [128]. Development of polymer functionalized 

graphene/RGO based sensors has been well reported. Though most 

of the developed sensors are capacitive in nature [129], some research 

of polymer functionalized RGO based resistive sensors have also 

been reported. For example, Wu et al. in 2013 demonstrated 

enhanced NH3 sensing by graphene/polyaniline nanocomposites at 

room temperature, which was attributed to the porous structure of the 

sensing material. They tested the sensors for a wide range of 

concentrations of NH3 (1–6400 ppm) [130].  Lin et al.  reported 

graphene/polypyrrole based humidity sensors which exhibited 

response times and recovery times in order of tens of seconds [131]. 

Humidity causes a lot of interference in sensors’ performance. The 

authors of this review article found that if RGO is functionalized 

using Rose Bengal, which is an organic dye that finds wide utility in 

molecular electronics, then the sensitivity of the hybrid material 

enhances for NH3 and that towards humidity reduces significantly 

[132]. Although the lifetime of polymers is often an issue as well as 

baseline drift, research into polymer functionalized layered materials 

is still being pursued because the composites can be synthesized 

using cost effective chemical routes and these composites have 

enormous potential as gas sensors. In 2016, Xie et al. reported MoS2-

P3HT based ammonia sensors that were highly sensitive to low 

concentrations of ammonia. They tested the sensors for 4 – 20 ppm 

of ammonia and reported short recovery time [133]. Table 2 includes 

some of the recently reported works on polymer functionalized 2D 

layered materials-based gas sensors.  

7.4 Mixed 2D layered materials-based sensors 

Two different 2D materials having different sensing capabilities are 

expected to show improved performance. This is because the 

individual materials have their own defects and functional groups and 

when they are mixed, the advantages of the sensing capabilities of 

each material could be utilized. Also, the composites that have been 

so far been investigated are made of graphene and TMDs. 

Graphene/RGO is inherently p-type and TMDs are n-type materials. 

So, when graphene/RGO–TMDs are mixed, it results into formation 

of p-n junction. This heterojunction junction behaves as an additional 

site of attachment for the gas species thereby demonstrating a 

synergistic effect towards sensing applications [125]. In 2015, Cho et 

al. developed graphene/MoS2 composite based sensors and 

demonstrated their NH3 and NO2 sensing capabilities at different 

operating temperatures including at room temperature. The sensors 

exhibited good responses towards the gases and could efficiently 

sense NH3 and NO2 down to 1.2 ppm concentration [134]. Our group 

also demonstrated enhanced humidity sensing by RGO/MoS2 and 

WS2/GO composite layers. The sensors exhibited better sensing 

compared to the individual materials. Also, the response times and 

recovery times of the hybrid materials were found to be very fast [66, 

125]. The sensing performance of the WS2/GO hybrid layer towards 

humidity is shown in Fig. 10 (a). The enhanced performance of the 

mixed 2D sensing layer is attributed to two phenomena occurring 

simultaneously in the sensing layer – (1) electron conduction through 

the sensing layer because of adsorption of water molecules and (2) 

proton conduction in which H+ hops through the continuous water 

layer [125]. The humidity sensing mechanism by the mixed 2D 

material is shown in Fig 10 (b). Although not much research has been 

reported with the mixed 2D materials based resistive gas sensing, but 

this method has a lot of potential and more researches are expected 

to be carried out in the recent future. 

 

Fig. 10 (a) Response of WS2/GO (1:3) hybrid layer for humidity [66] 

(b) Schematic representing proton conductivity as humidity sensing 

phenomenon in hybrid 2D material (reproduced from [125] with 

permission of Royal Society of Chemistry) 

8. Pattern Recognition 

One of the important parameters of sensors is selectivity. One way to 

improve this is by functionalizing the pristine 2D materials, but it is 

very difficult to achieve high selectivity in individual resistive 

sensors. This prompted the necessity to explore alternate ways of 

improving the selectivity of gas sensors. One such way is fabricating 

array of sensors, receiving signals from all of them simultaneously 

and then developing pattern recognition algorithms based on the 

sensors’ response to accurately determine the gases present in the 

proximity and their respective concentrations [135]. This e-nose 

based approach has been widely reported [136]. This approach has 

now been widely reported and adopted for environmental monitoring 

(see 9.1). 

9. Applications 

There are enormous applications of gas sensors that range from 

environmental monitoring to process engineering and even the 

biomedical realm. Our review focusses on discussing the role of gas 

sensors for air quality monitoring which is required both at outdoors 

and indoors. 

9.1 Environmental monitoring 

Rapid industrialization, increased usage of automobiles and other 

human activities have escalated the emission of toxic gases like CO, 

NOx, NH3, ozone, SOx and other greenhouse gases to hazardous 

levels. These gases have adverse effects on our health and wellbeing 

as mentioned in the introduction. Gas sensors can play a vital role in 

detection of these gases and in continuous monitoring. As achieving 

absolute selectivity in resistive gas sensors is not possible so, recent 

researches are more focused on development of array of gas sensors 

which are capable of recognizing multiple gases [128]. This led to 
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the evolution of new and advanced monitoring technologies like e-

nose and e-tongues where e-nose is essentially an array of gas sensors 

employed to detect different obnoxious gases accurately and 

efficiently [137]. The major challenges in developing efficient air 

quality monitoring system for outdoor spaces are presence of 

humidity and wide range of deviation in the ambient temperature. 

These factors affect the sensor performance significantly. Research 

have been reported showing that 2D materials perform well at 

different temperatures and in presence of humidity [114]. Although 

there still remain rooms for improvement yet 2D layered materials 

like graphene, RGO and TMDs can be considered as the potential 

candidates to be employed for the development of efficient low 

power environmental monitoring systems. 

9.2 Indoor air quality monitoring 

Indoor air quality (IAQ) monitoring has become necessary today 

because most of us are required to sit inside an office and work for 

long durations (sometimes > 8 hours per day). In such circumstances 

if the indoor air quality is poor, then in many cases it leads to sick 

building syndrome (SBS) and might cause health hazards like 

headaches, dizziness and psychological disorders [138, 139]. IAQ 

deteriorates due to presence of gases like CO2, VOCs like benzene, 

formaldehyde etc., microbial contaminants and particulate matters. 

The sources of these species are over-crowded confined spaces, 

inadequate ventilation, materials like permanent markers, cleaning 

supplies, glues, adhesives etc., and sometimes the building materials 

and furnishings. 2D layered nanomaterials-based array of sensors can 

be used to design alarm systems which would continuously monitor 

the quality of air inside the building and give signals when 

concentration of toxic gases exceeds safe limits.  

10. Approach to reduce air pollution: 

To detect air pollution efficiently, it is utmost important to develop 

low power low cost sensors (as is described above) that can be 

deployed in numerous sensor nodes. However, we feel the following 

points also need to be strictly adopted to give a chance for our future 

generation and perhaps a right to breath:  

• As discussed above burning fuelwood for cooking contributes 

significantly to air pollution so, evolving with clean household 

fuel and making to accessible to common people would help 

improving the situation. 

• Pollutants from automobiles can be controlled by enforcing 

tighter law and also by modernizing road infrastructure to 

reduce traffic congestion. 

• Exploring renewable sources of energy and discovering the 

technologies to deploy the same efficiently would bring down 

the power plant emissions significantly. 

• Precision agriculture which includes early detection of disease 

infestation and then precise and limited spraying of pesticides 

would help in reducing the pollution caused by agro-chemicals. 

• Campaigns similar to BreatheLife (led by WHO, UN 

Environmental and the Climate and Clean Air Coalition) can be 

initiated by governments to spread social awareness about the 

effect on health due to air pollution and climate change. 

• Concepts like smart cities and smart buildings with efficient 

monitoring systems and waste management should be designed 

and executed. Special care should be taken to preserve the 

natural assets like forests, rivers etc. while design the cities. 

• Along with mass awareness, there should be several sensor 

nodes in smart cities (instead of only few fixed monitoring 

stations), internet of sensors, whose data will be accessible to 

general people (may be through mobile app) so that individual 

can make their travel plan to avoid pollution. 

Conclusions 

Our review discussed the different synthesis techniques of new 2D 

layered materials for gas sensor applications. We have reviewed the 

research that has been carried out so far on gas sensors based on 

intrinsic 2D materials, and explained the limitations of such 2D gas 

sensors. The advantages of functionalization of carbon nanomaterials 

and TMDs are also presented. Different ways of functionalizing these 

sensing layers are described and the performances of different 

composite sensors reported so far have been presented. The different 

components of a typical sensor device have been discussed. The final 

section of this review discussed some of the possible ways to 

minimize air pollution. It is believed that more focused research in 

developing gas sensors based on these new 2D materials could lead 

to the development of much more efficient AQM systems, which can 

reduce the 7 million deaths per year associated with very poor air as 

well as improve well-being for less polluted spaces. 
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