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SPACE-TIME RANDOM WALK LOOP MEASURES

STEFAN ADAMS AND QUIRIN VOGEL

Abstract. In this work, we introduce and investigate two novel classes of loop measures, space-

time Markovian loop measures and Bosonic loop measures, respectively. We consider loop soups with

intensity µ ≤ 0 (chemical potential in physics terms), and secondly, we study Markovian loop measures

on graphs with an additional “time” dimension leading to so-called space-time random walks and their

loop measures and Poisson point loop processes. Interesting phenomena appear when the additional

coordinate of the space-time process is on a discrete torus with non-symmetric jump rates. The

projection of these space-time random walk loop measures onto the space dimensions are loop measures

on the spatial graph, and in the scaling limit of the discrete torus, these loop measures converge to

the so-called Bosonic loop measures. This provides a natural probabilistic definition of Bosonic loop

measures. These novel loop measures have similarities with the standard Markovian loop measures

only that they give weights to loops of certain lengths, namely any length which is multiple of a given

length β > 0 which serves as an additional parameter. We complement our study with generalised

versions of Dynkin’s isomorphism theorem (including a version for the whole complex field) as well as

Symanzik’s moment formulae for complex Gaussian measures. Due to the lacking symmetry of our

space-time random walks, the distributions of the occupation time fields are given in terms of complex

Gaussian measures over complex-valued random fields ([B92, BIS09]). Our space-time setting allows

obtaining quantum correlation functions as torus limits of space-time correlation functions.

1. Introduction

Recently Markovian Loop measures have become an active field in probability theory with its origin

going back to Symanzik [Sym69]. Our focus in this work is Markovian loop measures on graphs with

an additional “time” dimension leading to so-called space-time random walks and their loop measures

and Poisson point loop processes. This work will show that interesting new phenomena appear when

the added coordinate of the space-time process is on a discrete torus with non-symmetric jump rates.

The projection of these space-time random walk loop measures onto the space dimensions are loop

measures on the spatial graph, and in the scaling limit of the discrete torus, these loop measures

converge to the Bosonic loop measures which are a new class of loop measures. These have different

properties than the Markovian loop measures some of which we study in this work. The Bosonic

loop measures not only have the probabilistic derivation as torus limits of space-time Markovian loop

measures, a second major interest in these objects stems from the fact that the total weight of the

Bosonic loop measure for a finite graph is exactly the logarithm of the grand-canonical partition

function of non-interacting Bose gas on a finite graph in thermodynamic equilibrium at an inverse

temperature β > 0 and chemical potential µ ≤ 0. The study of Markovian loop measures has been

outlined in the lecture notes [LJ11] and [Szn] with more recent developments in [FR14].

1.1. Notation and set up. We begin with the definition of loop measures for processes with discrete

state space. Let G be a finite set. We will later specify our choice of G (usually endowed with a graph
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2 STEFAN ADAMS AND QUIRIN VOGEL

structure). LetW = (w(x, y))x,y∈G be an irreducible matrix (not necessarily symmetric here) with non-

negative entries indexed by G. We say that x, y ∈ G are connected (denoted by x ∼ y) if w(x, y) > 0,

and we set w(x, x) = 0. Let κ = (κ(x))x∈G be a vector with non-negative entries. We often refer to κ

as killing if κ(x) > 0 for some x ∈ G. Denote the normalising constant λ(x) = κ(x) +
∑

y∼xw(x, y).

Clearly P = (p(x, y))x,y∈G defined by p(x, y) = w(x,y)
λ(x) induces (sub-) Markovian transition probabilities

on G via the generator matrix Q = (q(x, y))x,y∈G given by Q = λ(P − I). Here, λ = diag(λ) is the

matrix with (λ(x))x∈G on the diagonal and all other entries set to zero. For t ≥ 0 transition densities

are given by

pt(x, y) = etQ(x, y) x, y ∈ G. (1.1)

The transition densities define a continuous time Markov process on the Skorohod space of càdlàg

paths from [0,∞) → G when adding a cemetery state (necessary if κ 6= 0). For x ∈ G, Px denotes

the distribution of that (sub-)Markov process with initial condition x, i.e., Px(X0 = x) = 1. We call

X = (Xt)t≥0 the random walk process on the graph G with killing κ. When G is a finite connected

subset of Zd we write G = Λ b Zd, and we will sometimes consider killing upon reaching the boundary,

i.e., κ(x) =
∑

y∈Zd\Λ 1l{x ∼ y}, x ∈ Λ in the case of unit weights, which corresponds to Dirichlet

boundary conditions.

The random walk process defines different measures on the space of loops. Following [Szn], for any

t > 0 let Γt be the space of càdlàg functions ω : [0, t]→ G with the same value at 0 and t. We denote

by Xs, 0 ≤ s ≤ t, the canonical coordinates, and we extend them to be equal to a ”graveyard” state

for s > t, so that Xs(ω) is well-defined for any s ∈ R. Note that the spaces Γt are pairwise disjoint,

as t varies over (0,∞), and define

Γ :=
⋃
t>0

Γt . (1.2)

For each ω ∈ Γ we denote the time horizon or the length of the loop ω by `(ω) being the unique t > 0

such that ω ∈ Γt. The σ-algebra G is obtained from the bijection Γ1 × (0,∞)→ Γ defined as

Γ1 × (0,∞) 3 (ω, t) 7→ ω(·) = ω
( ·
t

)
∈ Γ,

where we endow Γ1 × (0,∞) with the canonical product σ-algebra (and Γ1 is endowed with the σ-

algebra generated by Xt, 0 ≤ t ≤ 1). The σ-algebraG on Γ is the image of the σ-algebra on Γ1×(0,∞).

We define for x, y ∈ G, t > 0, the measure P(t)
x,y as the image of 1l{Xt = y}Px under the map (Xs)0≤s≤t

from DG ∩ {Xt = y} into itself; if x = y we identify it as a measure on Γt. Here DG is the Skorohod

space over G with time horizon [0,∞). We study the following new loop measures which are related to

the well-known Markovian loop measures (see e.g. [LJ11] for an overview on Markovian loop measures

and [CS16] for introducing a chemical potential).

Definition 1.1 (Loop measures). Let C ⊂ Γ be measurable, µ ≤ 0, and β > 0. The Markovian

loop measure MG,µ on G with chemical potential µ is defined as

MG,µ[C] =
∑
x∈G

∫ ∞
0

etµ

t
P(t)
x,x (C) dt =

∑
x∈G

∫ ∞
0

etβµ

t
P(βt)
x,x (C) dt. (1.3)

The Bosonic loop measure MB
G,µ,β on G with chemical potential µ and time horizon β is defined as

MB
G,µ,β[C] =

∑
x∈G

∞∑
j=1

eβjµ

j
P(jβ)
x,x (C) . (1.4)

Note that both measures are sigma-finite since the mass of
(⋃r

t=1/r Γt
)

is finite for any r ∈ N under

both measures.
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The Markovian loop measure MG,µ with chemical potential µ ≤ 0 puts lower weight on loops with

larger time horizons. The main novelty are the Bosonic loop measures whose probabilistic meaning is

revealed in Section 2 as limits of space-time random walk loop measures (Theorem 2.5). The major

significances of these loop measures are explained in Section 3.1, in particular one can show that the

logarithm of the mass of the Bosonic loop measure is just the so-called pressure of some system of

Bosons, see (3.5).

1.2. Overview. The main focus in this work is the Bosonic loop measure MB
G,µ,β which is defined

in similar way to the Markovian loop measure ([LJ11]) but differs in having support only on loops

with time horizons being a multiple of the given parameter β. The Bosonic loop measures for simple

random walks are linked to equilibrium quantum statistical mechanics, see Section 3 for details. The

main idea and novelty of our study is to view these measures as natural Markovian loop measures in

a space-time structure where we add an additional “time” torus to the given graph. After providing

technical tools and different classes of space-time random walks in Section 2.1, we prove the first

main result about the torus limit approximation of the Bosonic loop measure in Theorem 2.5. In

Theorem 2.7 we deliver the corresponding torus limit for the distribution of the occupation time field

of the underlying Poisson loop processes, where we in particular distinguish between real torus jumps

and solely spatial jumps. We finish Section 2.1 with various examples for our three different classes of

space-time random walks, and we finally show in Theorem 2.10 that certain space-time random walk

loop measures have support which equal the ones of the Bosonic loop measures.

Our main results concern isomorphism theorems (Theorem 2.15) for the square of the complex field

as well as the complex field and generalised Symnazik’s type formulae for moments of the occupation

time fields, see Proposition 2.17 and Theorem 2.19. Taking the so-called torus limit, Theorem 2.19

allows to represent quantum correlation functions as space-time Green functions of the corresponding

complex Gaussian measure. Thus we deliver a purely probabilistic derivation of Bosonic loop measures

and quantum correlation functions. We propose to analyse these complex measures in greater detail in

the future to study Bose-Einstein condensation phenomena and their possible connection to random

interlacements ([Szn]) and to general permanental processes ([FR14]). In Section 3.1 we give a review

about Boson systems and prove Poisson loop process representations of the partition function and the

quantum correlation functions. The Bosonic loop measure and its Poisson loop process is a natural

extension of random walk loop soups ([LP15, LF07]), and it seems feasible to define Bosonic loop

measures and soups also over the continuum space Rd, e.g., see [LW04]. In Section 2.3 we briefly

outline which of our results hold in the so-called thermodynamic limit Λ ↑ Zd when G = Λ b Zd.

2. Results

We state properties of our loop measures in a finite graph setting in Section 2.1 and then show that

the space-time Markovian loop measures converge to the Bosonic ones in the torus limit. In Section 2.2,

we study so-called isomorphism theorems for finite graphs and extend them to non-symmetric settings

which arise naturally for our space-time loop measures. This allows us to obtain moments formulae

for perturbed complex Gaussian measures as well as space-time loop representations of quantum

correlation functions. In Section 2.3 we briefly discuss taking limits towards countable infinite graphs.

2.1. Markovian and Bosonic loop measures. We collect some basic results about the Markovian

loop measures and the Bosonic loop measure.

Proposition 2.1 (Properties). Let µ ≤ 0 and β > 0. For the Bosonic loop measure the finite-

dimensional distributions for 0 < t1 < t2 < · · · < tk < ∞, k ∈ N, and A ⊂ (0,∞) measurable with
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inf{A} > tk are

MB
G,µ,β [Xt1 = x1, . . . , Xtk = xk, ` ∈ A] =

∞∑
j=1

pt2−t1(x1, x2) · · · ptk−tk−1
(xk−1, xk)pβj−tk+t1(xk, x1)

eβµj

j
1A(βj) when k > 1,

(2.1)

and

MB
G,µ,β [Xt1 = x1, ` ∈ A] =

∞∑
j=1

pβj(x1, x1)
eβµj

j
1A(βj) when k = 1. (2.2)

The finite-dimensional distributions for the Markovian loop measures are similar by just replacing the

sum in equation (2.1) and (2.2) by the integral such that the support of the Markovian loop measure

is Γ instead of the union
⋃∞
j=1 Γjβ,

MG,µ [Xt1 = x1, . . . , Xtk = xk, ` ∈ A] =∫
A
pt2−t1(x1, x2) · · · ptk−tk−1

(xk−1, xk)pt−tk+t1(xk, x1)
eµt

t
dt.

(2.3)

Assume that κ(x) − µ > 0 for at least one x ∈ G. The mass of the event there is at least one jump,

{∃ t > 0: Xt 6= X0}, reads as

MB
G,µ,β[{ there is at least one jump }] = log

(
det(I − eβ(D+µI))

det(I − eβ(Q+µI))

)
(2.4)

for the Bosonic loop measure and as

MG,µ[{ there is at least one jump }] = log

(
det(D + µI)

det(Q+ µI)

)
(2.5)

for the Markovian one. Here, D is the diagonal part of the generator matrix Q. The total mass of the

Bosonic loop measure is given by

MB
G,µ,β[Γ] = − log(det(I − eβ(Q+µI))) , (2.6)

whereas for the Markovian loop measure we have MG,µ[Γ] = ∞ independent of the value of µ or the

killing vector κ. For vanishing killing κ ≡ 0 and µ = 0 both measures have infinite mass.

Remark 2.2 (Temperature limit of the Bosonic loop measure). We consider the infinite

temperature limit of the Bosonic loop measure with µ ≤ 0 and β > 0, that is, we replace the inverse

temperature β by βN = 1
N . By the definition of the Riemann integral, it follows that

lim
N→∞

MB
G,βN ,µ[G] = MG,µ[G] (2.7)

for any G ⊂ Γ measurable such that the function t 7→ P(t)
x,x(G) is Riemann-integrable. This allows us

to interpret the Bosonic loop measure as a finite temperature version of the Markovian one. �

We now fix G to be either a finite connected subset of the integer lattice, G = Λ b Zd, or be a finite

connected subset Λ b Zd times the discrete, one-dimensional torus TN = Z/NZ of length N , denoted

by Λ×TN . The torus TN may be represented by the lattice set {0, 1, . . . , N − 1} of size N , once it is

equipped with the metric ρ(x, y) = inf{|x− y|∞ : k ∈ NZ} where |·|∞ denotes the maximum norm in

R. In the latter case, we will refer to all objects as space-time, e.g., MΛ×TN ,µ is called the space-time

Markovian loop measure with chemical potential µ.
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Definition 2.3 (Independent space-time random walk). Let Λ b Zd be finite, µ ≤ 0, β > 0, fix

a set of weights (w(x, y))x,y∈Λ and killing (κ(x))x∈Λ , or, equivalently, a generator Q. We will refer

to the space-time random walk on Λ× TN with generator QN = Q⊕Nβ−1(Σ− I) as the independent
case. Here ⊕ refers to the Kronecker plus 1 and Σ is the right-shift by one on the torus, i.e.,

Σ(τ, σ) =


1 if σ = τ + 1 and τ = 0, 1, . . . , N − 2,

1 if τ = N − 1, σ = 0,

0 otherwise.

Equivalently, the weights of QN are defined as

wN (x, τ ; y, σ) =


β−1NΣ(τ, σ) if x = y , τ 6= σ,

w(x, y) if τ = σ , x 6= y,

0 otherwise.

(2.8)

In Figure 1 we sketch the independent space-time random walk. In Example 2.9 we consider the

space-time random walk with symmetrised weights along the time torus.

Figure 1: The graphical representation of an independent space-time random walk; horizontal arrows

refer to the random walk on the spatial graph Λ whereas the vertical arrows indicate the walk along

the “time”-torus upwards with both walks being independent of each other.

Remark 2.4. Note that the space-time random walk defined above winds around the torus in the

”positive” direction. Equivalently, one can use Σ−1 instead of Σ in the above definition, reversing the

direction on the torus. In Example 2.9 below we introduce space-time random walks with symmetric

jump rates along the torus to which our results do not apply.

For the following results we need to discriminate between different classes of space-time random

walks which all include the independent space-time random walk.

Strongly asymptotically independent space-time random walks.

Let GN = QN + EN be the generator of a space-time random walk on Λ × TN with QN being

the generator of the independent space-time random walk (as defined above) and where the positive

perturbation EN satisfies

‖EN (x, y)‖1 = o(e−αN
2
) for some α > β−1 max

x∈Λ
λ(x) uniformly for any x, y ∈ Λ, as N →∞ , (2.9)

1For A ∈ Cn×n and B ∈ Cm×m, define A⊕B = A⊗ ICm + ICn ⊗B
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with ‖EN (x, y)‖1 being the matrix norm given by the sum of the absolute values of all matrix entries

of the TN × TN matrix obtained from EN when the spatial variables x and y are fixed. A space-

time random walk with generator GN satisfying (2.9) is called strongly asymptotically independent

space-time random walk.

In the second class the decay of the perturbation is relaxed.

Weakly asymptotically independent space-time random walks.

Let GN = QN + EN be the generator of a space-time random walk on Λ × TN with QN being the

generator of the independent space-time random walk. Suppose the positive perturbation EN satisfies

‖EN‖1 = o
(
N−2N |Λ|

)
as N →∞, (2.10)

where the norm is the sum of the absolute values of the matrix entries of EN as a matrix with rows

and columns indexed by Λ× TN . We call the space-time random walk with generator GN satisfying

(2.10) weakly asymptotically independent space-time random walk.

We will later define a more general class of space-time random walks, see Theorem 2.10.

For any path

X : [0,∞)→ Λ× TN , t 7→ Xt = (X(1)

t , X(2)

t )

we define the projection onto the spatial lattice component of the trajectory as

πΛ(X) : [0,∞)→ Λ, X 7→ πΛ(X)

πΛ(X)t := X(1)

t .

We now prove the convergence of the projected space-time Markovian loop measure

MN := [MΛ×TN ,µ] ◦ π−1
Λ

to MB
Λ,µ,β in the torus limit N → ∞. The measure MN depends on the parameter β of the loop

measure MΛ×TN ,µ of the space-time random walk. Denote Γ the space of space-time loops, then

πΛ : Γ→ Γ, and for a measurable set G ⊂ Γ we thus have

MN [G] =
N−1∑
τ=0

∑
x∈Λ

∫ ∞
0

eµt

t
P(t)

(x,τ),(x,τ)({X = (Xs)s∈[0,t] : πΛ(X) ∈ G})dt . (2.11)

Theorem 2.5. Let µ ≤ 0 and β > 0. Assume that MN is induced by a strongly asymptotically

independent space-time random walk with κ(x) − µ > 0 for at least one x ∈ Λ. For k ∈ N, let

x1, . . . , xk ∈ Λ and 0 < t1 < · · · < tk < ∞ and A ⊂ (tk,∞) measurable with βj ∩ ∂A = ∅ for all

j ∈ N. We write p(k) :=
∏k−1
j=1 ptj+1−tj (xj , xj+1) for the jump probabilities. Then

MN [Xt1 = x1, . . . , Xtk = xk, ` ∈ A] −→
N→∞

β

∞∑
j=1

p(k)
1A(jβ)pjβ−tk+t1(xk, x1)

eµjβ

jβ

= MB
Λ,µ,β [Xt1 = x1, . . . , Xtk = xk, ` ∈ A] .

(2.12)

Moreover, the sequence of measures is tight and we have that MN converges weakly to MB
Λ,µ,β on all

loops whose lengths are bounded away from zero.

Remark 2.6. The condition that βj ∩ ∂A = ∅ for all j ∈ N can be seen as an analogue to the

condition in Portmanteau’s theorem: Given we know νN → ν as N →∞ weakly, one needs ν(∂A) = 0

to conclude that νN (A) → ν(A) as N → ∞ for a given set A. The requirement that A is bounded
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away from 0 stems from the fact that a loop of zero length induces a singularity in the Markovian loop

measure that makes it impossible to define finite dimensional distributions. �

The following theorem is an extension of Theorem 2.5 by considering now the distribution of the

local time and of the occupation field. In addition we consider Poisson gases of loops defined by our

Markovian and Bosonic loop measures. The local time of a given loop ω at a point z ∈ Λ is given by

Lz(ω) =

∫ `(ω)

0
1{Xs(ω) = z}ds . (2.13)

The local time over the space-time graph Λ× TN is denoted by L = L(ω) with L : Λ× TN → [0,∞)

where L(x,τ) =
∫ `(ω)

0 1l{Xs(ω) = (x, τ)}ds, ω ∈ Γ. Given the local time vector L on Λ × TN , we

obtain the local time vector L = (Lx)x∈Λ on Λ by projection, that is, L = πΛ(L) with

Lx =

N−1∑
τ=0

L(x,τ), x ∈ Λ.

We introduce the set-up for Poisson point measures on the set Γ of (rooted) loops with σ-algebra G.

A pure point measure η on (Γ,G) is a σ-finite measure of the form η =
∑

i∈I δωi , where (ωi)i∈I is an

at most countable collection of loops such that η(A) <∞ for all A = {ω ∈ Γ: a ≤ `(ω) ≤ b}, 0 < a <

b <∞, where

η(A) = #{i ∈ I : ωi ∈ A}, A ∈ G.

We let Ω be the set of pure point measures on (Γ,G), and endow Ω with the the σ-algebra A generated

by all evaluation maps η ∈ Ω→ η(A) ∈ N∪{∞} (for details see [Szn, LJ11]). Any σ-finite measure on

(Γ,G) defines a probability measure on (Ω,A), called the Poisson point measure, e.g., we denote by

PG,µ,PN and PBG,µ,β respectively the Poisson point measures with intensity MG,µ,MN , and MB
G,µ,β, and

we write EG,µ,EN and EBG,µ,β for their expectations. Finally, for η ∈ Ω, x ∈ G, we define the occupation

field of η at x via:

Lx(η) = 〈η, Lx〉 ∈ [0,∞],

=
∑
i∈I

Lx(ωi), if η =
∑
i∈I

δωi ∈ Ω. (2.14)

We write L = (Lx)x∈Λ for the field associated to L, respectively for the space-time version we write L.

The following theorem characterises the local time under the torus limit (N → ∞) of the projected

space-time loop measure.

Theorem 2.7 (Convergence of local time distributions). Let µ ≤ 0 and β > 0. Assume that

the Markovian loop measure MΛ×TN ,µ on Λ × TN is induced by a weakly asymptotically independent

space-time random walk.

(a) Let F : [0,∞)Λ → R be continuous and bounded such that F (0) = 0 and the (right) derivative

∂xF at 0 exists for all x ∈ Λ. Then

MN [F (L)] = MΛ×TN ,µ[F (πΛ(L))] −→
N→∞

β
∑
x∈Λ

∂xF (0) +MB
Λ,µ,β[F (L)] , (2.15)

where the first equality is the definition of MN , see (2.11) above.

(b) We can split the local time,

L = LΛ,TN +LΛ
TN +LTN

Λ +LΛ,TN and L = LΛ + LΛ,
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where the subscript means a jump on this space and the superscript implies no jump, i.e.

LΛ,TN = L1l{∃ t1 : X(1)

t1
6= X(1)

0 and ∃ t2 : X(2)

t2
6= X(2)

0 } ,

LΛ
TN = L1l{∀ t1 ≤ `(ω) : X(1)

t1
= X(1)

0 and ∃ t2 : X(2)

t2
6= X(2)

0 } ,

LTN
Λ = L1l{∃ t1 : X(1)

t1
6= X(1)

0 and ∀ ≤ `(ω) t2 : X(2)

t2
= X(2)

0 } ,

LΛ,TN = L1l{∀ t1 ≤ `(ω) : X(1)

t1
= X(1)

0 and ∀ t2 ≤ `(ω) : X(2)

t2
= X(2)

0 } ,

(2.16)

and similarly for LΛ and LΛ, respectively. If the Markovian loop measure is induced by the

independent space-time random walk, then as N →∞,

MΛ×TN [F (πΛ(LΛ,TN ))] −→MB
Λ,µ,β[F (LΛ)] ,

MΛ×TN [F (πΛ(LΛ
TN ))] −→MB

Λ,µ,β[F (LΛ)] ,

MΛ×TN [F (πΛ(LTN
Λ ))] −→ 0 ,

MΛ×TN [F (πΛ(LΛ,TN ))] −→ β
∑
x∈Λ

∂xF (0) ,

(2.17)

with the same assumptions on F as in (a).

(c) Denote EN the expectation with respect to the Poisson Point Process associated with MN .

Then, for every bounded and continuous function F : [0,∞)Λ → R we have that

EN [F (L)] −→ EBΛ,µ,β[F (L + β)] as N →∞ , (2.18)

with the results from (2.17) carrying over to the occupation field. Here, the constant occupation

field β represents the mean time it takes for a space-time random walk to wind around the torus

once.

We return to the setting of a general set G endowed with the graph structure inherited by the

weights. The splitting of the local times can be analysed in this setting as well. We call loops with no

jumps (loops are not leaving their origin) on G point loops and denote their corresponding local time

vector by LG and their occupation field by LG whereas LG and LG are the corresponding functionals for

genuine loops, i.e., loops which are not point loops, (the role of the sub- and superscripts corresponds

to the one defined above).

Proposition 2.8 (Local times). Let β > 0, µ ≤ 0, and denote (d(x))x∈G the diagonal elements of

Q + µI. The occupation field can be written as a sum of two parts, L = LG + LG, the point and the

genuine loops, with the following properties:

(a) The splitting is independent, i.e., LG⊥ LG.

(b) Under the Poisson measure PΛ,µ the occupation field of point loops LG factorises into Gamma

distributed random variables with parameters (1, d(x))x∈G. Under the Bosonic Poisson measure

PG,µ,β, the occupation field of point loops LG is distributed like a product of random variables

with Laplace transform(
E[e−v(x)LGx ]

)
x∈G

=
(

1−
eβ(d(x)+µ)

(
e−βv(x) − 1

)
1− eβ(d(x)+µ)

)
x∈G

with v(x) ∈ R+, x ∈ G .

The following example shows that symmetric random walk on the torus does not generate Bosonic

loops by spatial projection.
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Figure 2: The graphical representation of a space-time random walk for which the above convergence

results are no longer valid

Example 2.9. We consider the“symmetrisation” of the torus walk of the space-time random walk

described above (see Figure 2). We go up or down on the tours independently with rate β−1N and

obtain the space-time rates

w̃G(x, τ ; y, σ) =


β−1N(Σ(τ, σ) + Σ(σ, τ)) if x = y,

w(x, y) if σ = τ,

0 otherwise

(2.19)

on G = Λ× TN . This space-time random walk has a symmetric generator but Theorems 2.5 and 2.7

fail to hold. The proof is given in the Section 4. ♣

Figure 3: A space-time random walk where torus and lattice jumps are correlated

Finally, the third class is related to Bosonic loops and is not defined via perturbations of the

independent space-time random walk.

Bosonic Random Walk.

Let (GN )N∈N be a family of generators on Λ × TN with weights (wN (v, u))v,u∈Λ×TN and κN (u) − µ
uniformly (in N) bounded away from 0 for at least one u ∈ Λ×TN . Let z = (z1, . . . , zn) ∈ (Λ×TN )n

be a path. The coordinate projections for zi = (zΛ
i , z

TN
i ) are zΛ

i ∈ Λ and zTNi ∈ TN respectively. For

any such path z, denote wind(z) = #{i > 1: zTNi = zTN1 } the torus winding number for the given

path. If z1 = (x, τ) and zn = (y, σ) write z : (x, τ)→ (y, σ).
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For such a path z denote

P (z) =

n−1∏
i=1

p(zi, zi+1) , (2.20)

the product of the jump probabilities, and denoteW (z) the random waiting time which is distributed as

the sum
∑n

i=1Xi of independent exponentially distributed random variables Xi ∼ Exp((−GN (zi, zi)).

Assume that for all x, y ∈ Λ there exists dx,y ∈ (0, 1] such that

lim
N→∞

1

N

N−1∑
τ=0

∑
z : (x,τ)→(y,τ)

wind(z)=1

P (z) = dx,y , (2.21)

and

lim
N→∞

1

N

N−1∑
τ=0

∑
z : (x,τ)→(y,τ),

wind(z)=1

P (z)
[(
β −W (z)

)2]
= 0 . (2.22)

Finally, assume that τ ∈ TN , we have −GN (u, u) = Nβ−1 + o(N) for any u = (x, τ) ∈ Λ× TN .

If all the above conditions are satisfied we say that the space-time random walk with generator GN is

a Bosonic random walk. Note that (2.22) ensures that in the torus limit the turnaround time for the

torus is precisely β.

We will show that the length of any loop of the Bosonic random walk converges to a multiple of β in

a suitable way, that is, the spatial projections of their loop measures have restricted support, namely

they are supported on the Bosonic time horizons.

Theorem 2.10. Convergence of the support. For any N ∈ N let GN , be the generator of a Bosonic

random walk, and denote MN the spatial projection of the loop measure onto Λ. Let A ⊂ (0,∞) be

measurable, bounded away from zero and bounded from above. Then

lim
N→∞

MN [` ∈ A] > 0 if ∃k ∈ N : kβ ∈ A◦ , (2.23)

and

lim
N→∞

MN [` ∈ A] = 0 if ∀k ∈ N : kβ ∈ (R \A)◦ . (2.24)

Furthermore, all weakly and strongly asymptotically independent space-time random walks with spatial

killing such that κ(x)− µ > 0 for at least for one x ∈ Λ, are Bosonic random walks.

The following example of a Bosonic walk shows an interesting phenomenon when we mix the spatial

component with the torus component of the space-time random walk, see Figure 3.

Example 2.11. LetGN be the space-time random walk on G = ΛM×TN with ΛM = {−M, . . . ,M}d b
Zd for some M > 0 equipped with periodic boundary conditions, i.e., the rates are

w
per
N (x, τ, y, σ) =

{
Nβ−1/2d if σ = τ + 1 mod (N), x ∼ y ,
0 otherwise.

Here, by x ∼ y we mean that xi − yi = 0 for all but one i ∈ {1, . . . , d}, and for this specific one, say

i0, we have xi0 − yi0 = 1 mod (2M + 1). For k ∈ N, let xi ∈ Λ for i = 1, . . . , k, be given and let

0 < t1 < t2 < · · · < tk. Let A ⊂ R+ be measurable with A ⊂ (tk,∞) and βn ∩ ∂A = ∅ for all n ∈ N.

Denote π the product
∏k
i=1 π(xi) where π is the stationary distribution associated to the jump-chain



BOSONIC LOOP MEASURES 11

on ΛM with weight w(x, y) = 1l{x ∼ y}. Then, the finite dimensional distributions from Theorem 2.5

converge as follows.

MN

[
Xt1 = x1, . . . , Xtk = xk, ` ∈ A

]
−→
N→∞

π
∞∑
j=1

1A(jβ)
eµjβ

j
, (2.25)

which can be interpreted as Bosonic loop measure in stationary distribution. This notion is not

rigorous, as the dependence on t1, . . . , tk is lost due to the mixing. For a sketch of the proof, see

Section 4.1. ♣

2.2. Isomorphism Theorems and space-time correlation functions. Before we study our new

isomorphism theorems and moment formulae in Section 2.2.2, we give some succinct background in

Section 2.2.1. In Section 2.2.3 we return to our previous space-time setting and demonstrate that tori

limit of moments lead to probabilistic representations of quantum correlation functions.

2.2.1. Background Isomorphism theorems and complex Gaussian measures. The Markovian loop soup

owes its conception to the physics community, where it arises via a functional integral description of

a lattice model. In [Sym69], Symanzik provided a heuristic description of φ4-quantum field theory

in terms of a gas of interacting Brownian loops. On considering lattice field theories in place of

Symanzik’s continuum model, Brydges, Fröhlich and Spencer [BFS82] were able to make rigorous the

connection between the two models. A version of this connection can easily be seen in the random

walk representation of the two-point correlation function for Gaussian fields over the integer lattice

given by the Green function of the simple random walk on Zd. Inspired by the work of Symanzik

and Brydges et al., Dynkin [Dyn84] provided an extension to continuous time processes. Dynkin’s

isomorphism theorem relates the local times distribution to the distribution of squares of the Gaussian

field ([Szn]). Loop measures have been derived in [B92] via weights for discrete time random walks,

and if one wishes to consider directed walks (edges) in the underlying graph, Brydges shows in [B92]

that we need to consider complex-valued random fields instead of only real-valued ones. We consider

standard complex integration in |G| variables denoted by
∏
x∈G dφx =

∏
x∈G d<(φx)d=(φx), where

<(φx) is the real and =(φx) is the imaginary part of φx.

For the convenience of the reader we cite the following theorem in [BIS09].

Theorem 2.12 (Complex Gaussian, [BIS09]). Let C ∈ CG×G be a matrix with positive definite

Hermitian part, i.e., 〈φ, (C + C∗)φ̄〉 =
∑

x,y φx(C(x, y) + C(y, x))φ̄y > 0 for all nonzero φ ∈ CG, and

inverse A = C−1. Then we define the complex Gaussian measure µA on CG with covariance C, namely

dµA(φ) =
1

ZA
e−〈φ,Aφ̄〉

∏
x∈G

dφx,

and normalisation

ZA =

∫
e−〈φ,Aφ〉

∏
x∈G

dφx =
(π)|G|

detA
. (2.26)

We write EA for the expectation with respect to the measure µA in the following.

Theorem 2.13 (Dynkin’s Isomorphism, [Dyn84], [B92]). For any bounded measurable F : RG → R

E0,1
x,y ⊗ EA

[
F
(
L+ |φ|2

)]
= EA

[
φxφyF

(
|φ|2

)]
,

where E0,1
x,y denotes integration with respect to P0,1

xy :=
∫∞

0 P(t)
xy dt and |φ|2 = (φxφx)x∈G.
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As observed by Le Jan [LJ11], there is a relation between the field of occupation times for the

Poisson loop process with Poisson measure PG,µ≡0 and intensity measure MG,µ≡0 and the Gaussian

measure.

Theorem 2.14 (Le Jan’s Isomorphism, [LJ11]). Let the generator Q on the finite graph G be

symmetric and A = −Q, and denote µA the unique Gaussian measure whose covariance is the corre-

sponding Green function and whose Dirichlet form is given as 〈φ,Aφ〉. Then

(Lx)x∈G under PG,µ≡0 , has the same law as (φ2
x)x∈G under µA.

2.2.2. Isomorphism theorems. We shall study not only the square of the field, but also the full field

in its generality. This is an important extension, but we need another input, namely to consider

non-symmetric generator matrices ([LJ07]) as the generators of our space-time random walks are

non-symmetric. We are interested in deriving corresponding isomorphism theorems, first for our

Markov loop measures having chemical potential µ ≤ 0, and then secondly for the Bosonic loop

measures with β > 0, µ ≤ 0. The distribution of the occupation field for Bosonic loop measures is not

given by a Gaussian measure - in fact they are related to Permanental processes (cf. [FR14]).

The next theorem is a natural extension of Le Jan’s loop soup version of Dynkin’s Isomorphism

theorem (see [LJ07],[B92]).

Theorem 2.15 (Isomorphism theorems). Let A = −(Q + µ1l), where Q is the generator

on the finite graph G such that κ(x)− µ > 0 for at least one x ∈ G for µ ≤ 0. Denote µA the

complex Gaussian measure defined in Section 2.2.1. We write EG,µ for the expectation with

respect to the Poisson process with intensity measure being the Markovian loop measure MG,µ.

Then the following holds.

(a) The measure µA evaluated on the squares |φ|2 = (φxφx)x∈G of the random field is a probability

measure. Furthermore, for every bounded and continuous function F : RG+ → C,

EA[F (|φ|2)] = EG,µ[F (L)] . (2.27)

(b) Denote ẼG,µ the expectation with respect to the Poisson process with intensity measure being the

Markovian loop measure for the random walk with the symmetrised generator Q̃ := 1
2(Q+QT ).

Then, for every F : CG → C bounded and continuous,

EA[F (φ)] = ẼG,µ

[ 1

ZS
∫

e−〈
√
Lθ,Ã

√
Lθ̄〉dSG(θ)

∫
F (θ
√
L)e−〈

√
Lθ,A

√
Lθ̄〉dSG(θ)

]
, (2.28)

where ZS = det(Ã)
det(A) with Ã = −(Q̃ + µ1l) being the Hermitian part of A. The measure dSG is

defined as the product of the uniform measure on {z ∈ C : |z| = 1} over all x ∈ G.

(c) For every F : CG → C bounded and continuous,

EA[F (φ)] = EG,µ

[ 1∫
e−〈θ

√
L,A
√
Lθ̄〉dSG(θ)

∫
F (θ
√
L)e−〈θ

√
L,A
√
Lθ̄〉dSG(θ)

]
. (2.29)

Remark 2.16. The first identity, which appeared in [LJ07], is more surprising than it may seem.

Since A may not be a symmetric matrix, it is a priori not clear that the complex-valued distribution

of φxφx does in fact only takes positive values. This has been remarked by [LJ07], however in the

context of an isomorphism theorem of the local time vector. In [LJ11] a similar identity to part (a) is

mentioned in the context of symmetric processes. The second statement is motivated by recent studies

in [Cam15] on symmetric generators. The last identity is new, to the best of our knowledge. �
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We now state and prove a generalised version of Symanzik’s moment representation formula. It

expresses the moments of certain interacting fields in terms of a Poisson gas of loops and a collection

of paths interacting with the loops. In Section 2.2.3 below we apply that representation to our space-

time random walk stetting. In what follows µA denotes the Gaussian measure with A = −(Q + µI)

defined in Section 2.2.1. We define a class of perturbed Gaussian measures. Let J : [0,∞)G → R be

bounded and continuous function of |φ|2 = (φxφx)x∈G such that∫
e−〈φ,Aφ〉J(|φ|2)

∏
x∈G

dφx ∈ (0,∞) (2.30)

holds. The perturbed Gaussian measure µA,J is defined as

dµA,J
dµβA

(φ) =
ZβA
ZA,J

J(β|φ|2) with ZA,J =

∫
e−〈φ,βA,φ〉J(β|φ|2)

∏
x∈G

dφx. (2.31)

Expectation with respect to µA,J is denoted EA,J . Furthermore, for any β > 0 and µ ≤ 0, define

Pµ,βxy [G] :=

∫ ∞
0

etβµ P(tβ)
xy [G] dt, for G ⊂ DG measurable . (2.32)

The following is a generalisation of Symanzik’s formula (see [Szn] for the standard version for real-

valued Gaussian Free Fields).

Proposition 2.17 (Moments of perturbed Gaussian). Let J be bounded and continuous satisfying

(2.30), and β > 0 and µ ≤ 0, and assume that κ(x)− µ > 0 for at least one x ∈ G. Then

EA,J
[
φ̄xφy

]
=

Eµ,βxy ⊗ EG,µ [J(L + L)]

EG,µ [J(L)]
. (2.33)

Here L ∼ Pµ,βxy and L ∼ PG,µ. Higher even moments can be obtained analoguously, see [Szn].

Remark 2.18. This is a generalisation of Symanzik’s formula in [Szn] where J is chosen to be of the

form

J(u) =
∏
x∈G

∫ ∞
0

e−uxwν(dw) , with ν ∈M1([0,∞)) , u = (ux)x∈G ∈ [0,∞)G . (2.34)

Of interest are certainly φ4-perturbations which we are going to study in the future.

2.2.3. Moments for space-time random walks. We return to the space-time setting with G = Λ× TN
and the non-symmetric generator GN of some weakly asymptotically independent space-time random

walk. Let AN = −(GN + µI) and A = −(Q + µI). We aim to apply formula (2.33) with the non-

symmetric matrix AN and to perform the torus-limit N →∞ for spatial projections. It will turn out

that the right hand side of (2.33) for spatial projections converges to the one -particle reduced density

matrix (quantum correlation function) represented in Theorem 3.1). We define spatial projections

of perturbed complex Gaussian measures µAN ,J ∈ M1(CΛ×TN ) and interaction functionals suitable

for Boson particle systems (see Section 3). Suppose that V : [0,∞)Λ×TN → R is continuous such that

J := e−V is bounded, continuous and satisfies condition (2.30) to ensure that the measure µAN ,J is well-

defined, and in addition we assume that the spatial projections, denoted V and J , satisfy equivalent

conditions. That is, let

pΛ : CΛ×TN → CΛ,φ 7→ pΛ(φ) =
(N−1∑
τ=0

φx,τ
)
x∈Λ
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be the spatial projection, then V = V ◦ p−1
Λ and J = J ◦ p−1

Λ = e−V ensure that µA,J := µAN ,J ◦
p−1

Λ is well-defined as well. The choice of our interaction functional V is due to our occupation

field distribution in Theorem 2.17 and comprises many mean-field models for systems of Bosons, see

Section 3 and (2.39). In Theorem 3.1 we demonstrate that on the Poisson process level one can

incorporate typical particle interaction functionals studied in physics (e.g. (3.4)). Having set the

stage for space-time versions of the right hand side of (2.33) in Theorem 2.17, we only need to address

the spatial projection of the path measure (see (2.32)),

Pµ,β(x,τ),(y,σ) =

∫ ∞
0

etβµ P(βt)

(x,τ),(y,σ) dt x, y ∈ Λ, τ, σ ∈ TN , (2.35)

which is given for any event G of the spatial path x −→ y as

Pµ,βx,y,N (G) =

N−1∑
τ=0

Pµ,β(x,τ),(x,τ)(X
(1) ∈ G), (2.36)

and Eµ,βx,y,N denotes expectation with respect to Pµ,βx,y,N . In what follows only the spatial path x −→ y

appears in the spatial projection which amounts to summing over all τ and σ. However, as we aim to

obtain the quantum correlation function in the torus limit, we consider only the case that τ = σ. This

is due to the standard loop representation of quantum correlation functions (see [BR97]), where the

open spatial path x −→ y originates from breaking any possible loop. Therefore, the condition τ = σ

ensures that the spatial path x −→ y comes from a cycle in the space-time setting. We aim to study

the other case in the future. To summarise, we shall take the torus limit of the spatial projections of

EAN ,J
[
φ(x,τ)φ(y,τ)

]
=

1

EΛ×TN ,µ[J(L)]
Eµ,β(x,τ),(y,τ) ⊗ EΛ×TN ,µ

[
J(L + L)

]
, x, y ∈ Λ, τ ∈ TN . (2.37)

If V is linear, i.e., there exists v ∈ [0,∞)Λ×TN such that V(·) = 〈v, ·〉, the measure µAN ,J is still a

Gaussian measure and the left hand side in (2.37) is the second Gaussian moment which equals the

Green function GN (x, τ ; y, τ). In what follows we consider Λ b Zd and the simple random walk on Zd,
i.e., the generator Q is the discrete Laplacian in Λ with Dirichlet boundary conditions. The following

results are also true in more general cases but our choice is adapted to our results in Section 3. The

crucial step is that the projected path measure (2.36) converges to the Bosonic path measure,

Pµ,βx,y,B(G) =
∞∑
j=1

eβµjPx[G ∩ {Xβj = y}] , G ⊂ DΛ measurable. (2.38)

In the following, let v : [0,∞)Λ → R be a functional such that

V : Ω→ R, η 7→ V (η) := v(L(η)), (2.39)

with Lx(η) =
∑

i∈I L(ω(i)) for η =
∑

i∈I δω(i) .

Theorem 2.19 (Space-time loop-representation of the correlation function). Suppose β > 0

and µ ≤ 0. Let AN = −(GN+µI) with GN = QN+EN being the generator of the weakly asymptotically

independent space-time random walk.

(a) (i) For any continuous bounded F : [0,∞)Λ,

Eµ,βx,y,N
[
F (L)

]
−→ Eµ,βx,y,B

[
F (L)

]
as N →∞.
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(ii) Suppose that J = e−V is bounded and continuous and satisfies (2.30), and let J = J ◦ p−1
Λ .

Let Vβ(·) := V (·+ β) with V being defined above. Then, for x 6= y ∈ Λ,

Eµ,βx,y,N ⊗ EN
[
J(L+ L)

]
EN [J(L)]

−→
N→∞

Eµ,βx,y,B ⊗ EBΛ,µ,β
[
J(L+ L + β)

]
EBΛ,µ,β[J(L + β)]

=: ρ(1)

Λ,Vβ
(x, y) ,

(2.40)

where ρ(1)

Λ,Vβ
will be later defined in Section 3 as the one-particle reduced density matrix

(correlation function) for a system of Bosons in Λ with interaction Vβ in thermodynamic

equilibrium at inverse temperature β and chemical potential µ (see Theorem (3.1)).

(b) Suppose v ∈ [0,∞)Λ×TN and that V(·) = 〈v, ·〉. Then V (η) = 〈v,L〉 with v = v◦p−1
Λ ∈ [0,∞)Λ.

The torus limit of the sum of space-time Green functions is

N−1∑
τ=0

G(x, τ ; y, τ) =

N−1∑
τ=0

EAN ,J
[
φ(x,τ)φ(y,τ)

]
−→
N→∞

ρ(1)

Λ,V (x, y), x 6= y ∈ Λ. (2.41)

Remark 2.20. (i) The constant background field β in (2.40) is due to the torus point loops, and

thus they are an artefact of our method. We can obtain the limit without the constant field by

restricting to genuine torus loops.

(ii) One can consider true (or genuine) path interaction where each point of one path interacts

with any point of the other path (double time integration) instead of the particle interaction

defined in (3.4) below, namely,

V (ω(1), . . . , ω(N)) =
1

2

∑
1≤i,j≤N

∫ `(ω(i))

0

∫ `(ω(j))

0
v(|ω(i)(t)− ω(j)(s)|) dtds, (2.42)

where `(ω(i)) is the length of loop ω(i). If we restrict our loop measure to loops whose lengths are

bounded away from zero and if we consider this path interaction, we obtain limits like in (2.40)

but without the constant background field β. On the other hand, genuine path interactions

(e.g., Polaron type interactions in [DV83, ABK06a, ABK06b]) are not derived from quantum

systems via the Feynman-Kac formula (see Section 3).

(iii) Item (b) in Theorem 2.19 demonstrates that quantum correlation functions can be obtained as

limits of space-time Gaussian moments as long as the interaction functional is linear. More

general interactions would require computing non-Gaussian moments followed by taking the

torus limit. If one puts v ≡ 0, then one can consider the so-called thermodynamic limit

Λ ↑ Zd to obtain the one-particle reduced density matrix (correlation function) in (3.9), see

Section 3.2. �

2.3. The infinite volume Limit. We now extend our study to countable graphs, and for ease of

notation we consider the integer lattice Zd and the simple random walk for ease of notation. We

are interested which of our previous results carry over taking limits Λ ↑ Zd. An application driven

motivation is to study the Bosonic loop measure in the so-called thermodynamic limit Λ ↑ Zd , see

Section 3.1. We list some aspects of taking the limit to Zd and leave a thorough study for future work.

Many of our results involve Laplace transforms and thus determinants of finite-dimensional matrices,

which in the thermodynamic limit pose technical challenges as e.g. the generator Q of the simple

random walk on Zd fails to be trace-class. On the other hand, we can expect that some of the results

continue to hold. We summarise which of our previous results continue to hold in thermodynamic

limit.
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Theorem 2.21. The following results hold in the thermodynamic limit Λ ↑ Zd.

(a) Proposition 2.1: The formulae for the finite dimensional distributions carry over in the limit

with the corresponding Zd-versions of the Markovian and the Bosonic loop measure. The total

mass of all loop measures is infinite.

(b) Theorem 2.5: The convergence of the finite-dimensional distributions continues to hold for the

independent space-time random walk either for d ≥ 3 and µ ≤ 0, or for d ≥ 1 and µ < 0.

(c) Theorem 2.7: The results hold for the independent space-time random walk either for d ≥ 3

and µ ≤ 0, or for d ≥ 1 and µ < 0 when F : [0,∞)Z
d → R is bounded and continuous with

compact support (supp(F ) b Zd).

(d) Proposition 2.8: All statements continue to hold for the independent space-time random walk

in the thermodynamic limit.

(e) Theorem 2.15: The statements continue to hold in the thermodynamic limit when either d ≥ 1

and µ < 0, or when d ≥ 3 and µ ≤ 0.

3. The physical background of the Bosonic loop measure

We outline the physical background of the Bosonic loop measure. We fix our graph G = Λ b Zd to

be a connected finite subset of Zd and consider the simple random walk in Λ with Dirichlet boundary

conditions, that is, with killing upon hitting the boundary of Λ, see Section 1. In Section 3.1 we

outline the connection between the Bosonic loop measure and the grand canonical partition function

for systems of Bosons at thermodynamic equilibrium, whereas in Section 3.2 we discuss the onset of

Bose-Einstein condensation as a quantum phase transition.

3.1. Systems of Bosons in thermodynamic equilibrium. In quantum mechanics particles can

either be Bosons or Fermions. We will now describe the distinguishing feature of Bosons. We consider

a system of interacting Bosons on the lattice Λ. That is, the one-particle Hilbert space is HΛ = `2(Λ),

and the N -particle Hilbert space is just the tensor product. The energy is given by the Hamilton

operator for N particles

HN = −
N∑
i=1

∆(Λ)

i +
∑

1≤i<i≤N
v(|x(i) − x(j)|) ,

where ∆(Λ)

i is the discrete Laplacian operator in Λ with Dirichlet boundary conditions giving the

kinetic energy for particle i, and the interaction potential function v : R→ R depends on the mutual

lattice distance of particle i at x(i) ∈ Λ and particle j at x(j) ∈ Λ. If the particle number is not

known exactly, the thermodynamic equilibrium is described by the grand canonical ensemble where

the Hilbert space is the direct sum

F =
∞⊕
N=0

H⊗NΛ ,

called Fock space. States of identical and indistinguishable Bosons are given by symmetric wave

functions, that is, for any number N of Bosons possible states are given by all symmetric wave

functions in the tensor product H⊗NΛ . This symmetry is the unique distinguishing feature of Bosons

contrary to Fermions whose states are given by anti-symmetric wave functions. We write F+ for the

Fock space of all symmetric wave functions. The thermodynamic equilibrium of Bosons at inverse
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temperature β and chemical potential µ is given by the grand canonical partition function which is

the trace over the symmetrised Fock space,

ZΛ,v(β, µ) = TrF+(e−β(H−µN)), (3.1)

where H is the Hamilton operator having projection HN on the sector H⊗NΛ and where N is the number

operator in Λ taking the value N on the sector H⊗NΛ . It is the trace operation on the right hand side

of (3.1) which turns the problem of calculating the partition function into a classical probability

question. Using the Feynman-Kac formula for traces, we derive the following representation of the

grand canonical partition function,

ZΛ,v(β, µ) =
∞∑
N=0

eβµN

N !

∑
x1∈Λ

· · ·
∑
xN∈Λ

∑
σ∈SN

N⊗
i=1

P(β)
xi,xσ(i)

[
e
∑

1≤i,j≤N
∫ β
0 v(|X(i)

t −X
(j)
t |) dt], (3.2)

where SN is the set of all permutations of N elements, and the right hand side can be interpreted as a

system of N random walks (X(i)

t )t≥0, i = 1, . . . , N , under symmetrised initial and terminal conditions

(see [AD08] for details). Following [Gin71, BR97] and [ACK11] we employ a cycle-expansion using

the definition of the Bosonic loop measure to obtain

ZΛ,v(β, µ) =
∞∑
N=0

1

N !

N⊗
i=1

MB
Λ,µ,β(dω(i))

[
e−V (ω(1),...,ω(N))

]
, (3.3)

where the interaction energy of N loops is the functional

V (ω(1), . . . , ω(N)) =

1

2

∑
1≤i,j≤N

[`(ω(i))−1]/β∑
k=0

[`(ω(j))−1]/β∑
m=0

1l{(i, k) 6= (j,m)}
∫ β

0
v(|ω(i)(kβ + t)− ω(j)(mβ + t)|) dt,

(3.4)

and where we write `(ω(i)) for the length of the i-th loop. The interaction functional (3.4) comprises

the interactions of all loop legs (a loop ω of length kβ consists of k legs, each of which is a path

(ω(jβ + t))t∈[0,β] for 0 ≤ j < k) with time horizon [0, β] in all Bosonic loops. For v ≡ 0, using (1.4)

the expression reduces to the following formula

ZΛ(β, µ) = exp

(∑
x∈Λ

∞∑
j=1

eβµj

j
P(jβ)
x,x (Γ)

)
= exp(MB

Λ,µ,β(Γ)) . (3.5)

This shows that the total mass of the Bosonic loop measure equals the logarithm of the grand canonical

partition function for a system of non-interacting identical Bosons at thermodynamic equilibrium.

The connection goes further as we can represent (quantum) correlation functions as well. Quantum

correlations are given as reduced traces of the equilibrium state. We focus solely on the first correlation

function, called the one-particle reduced density matrix ρ(1)

Λ,Φ, which is given by the partial trace after

integrating out all but one of the particles,

ρ(1)

Λ,v =
1

ZΛ(β, µ)

∞∑
n=0

Tr
H
⊗(n−1)
Λ,+

(
e−β(Hn−µn)

)
. (3.6)

With (3.3) and [BR97] we obtain a representation for the kernel of the trace class operator ρ(1)

Λ,v,

ρ(1)

Λ,v(x, y) =
1

ZΛ,v(β, µ)

∞∑
j=1

∞∑
N=0

eβµj

N !
P(jβ)
x,y ⊗

(
MB

Λ,µ,β

)⊗N(
e−V (ω,ω(1),...,ω(N))

)
, x, y ∈ Λ. (3.7)
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The term under the sum over N is an expectation with respect to N independent loops ω(1), . . . , ω(N)

chosen according to the Bosonic loop measure MB
Λ,β,µ (1.4), whilst the expectation is with respect to

a single random walk path from x to y, whose length (time horizon) is determined according to the

weighted sum
∑

j≥1 eβµjP(jβ)
x,y . The sum over N ≥ 0 is none other than the Poisson point process with

intensity measure MB
Λ,µ,β. Henceforth, we obtain a representation via an expectation of the Poisson

loop process with intensity measure MB
Λ,µ,β. Recall that for any counting measure η ∈ Ω we write the

interaction functional as

V (η) = V (ω(1), . . . , ω(N)) for η =
N∑
i=1

δω(i) .

Theorem 3.1. The grand-canonical partition function and the kernel of the one-particle reduced

density matrix are given by the following functionals of the Bosonic loop process PBΛ,µ,β

ZΛ,v(β, µ) = eM
B
Λ,µ,β(Γ)EBΛ,µ,β

[
e−V (η)

]
= ZΛ(β, µ)EBΛ,µ,β

[
e−V (η)

]
,

ρ(1)

Λ,v(x, y) =
Eµ,βx,y,B ⊗ EBΛ,µ,β

[
e−V (X,η)

]
EBΛ,µ,β

[
e−V (η)

] x, y ∈ Λ,

(3.8)

where Eµ,βx,y,B is the expectation with respect to the measure in (2.38).

Proof. The proof follows easily from (3.3), (3.5) and (3.7) by noting that

EΛ,µ,β

[
e−V (η)

]
=

∞∑
N=0

e−M
B
Λ,µ,β(Γ) 1

N !

(
MB

Λ,µ,β

)⊗N(
e−V (ω(1),...,ω(N))

)
.

�

In the next lemma we show that the spatial mean of the occupation time in Λ is in fact the partial

derivative of the partition function with respect to the chemical potential, and thus, it is the expected

particle density which we denote by ρΛ(β, µ).

Lemma 3.2.

EBΛ,µ,β
[ 1

|Λ|
∑
x∈Λ

Lx
]

=
1

β
∂µ logZΛ(β, µ).

Proof. Recall that EBΛ,µ,β is the expectation with respect to the Bosonic Poisson process. Then,

EBΛ,µ,β
[ 1

|Λ|
∑
x∈Λ

Lx
]

=
1

|Λ|
∑
x∈Λ

∫ ∫ `(ω)

0
1l{Xs(ω) = x} dsMΛ,β,µ(dω) =

β

|Λ|

∞∑
j=1

jMΛ,β,µ[Γjβ]

=
1

|Λ|
∂µMΛ,β,µ[Γ] =

1

β
∂µ logZΛ(β, µ) =: ρΛ(β, µ),

where ρΛ(β, µ) is the expected particle density in Λ. �

3.2. Bose-Einstein condensation - relevance and discussion. We outline the original calcula-

tions by Bose and Einstein 1925 in our occupation field setting. Detailed proofs of all the statements

below can be found in one [BR97] or [LSSY05]. Sűtő [Sűt02] has derived a criterion for the onset

of Bose-Einstein condensation in terms of losing probability mass on the distribution of loops of any
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finite lengths. We are not repeating his arguments here but consider the following approach. The first

observation concerns the thermodynamic limit

lim
Λ↑Zd

ρΛ(β, µ) = ρ(β, µ) ∈ (0,∞),

which holds in the ideal Bose gas ([Sűt02, BR97, LSSY05]) for β > 0 and µ < 0. For given β > 0 we

look for solutions such that the following holds.

β > 0: for ρ > 0 find µ∗ = µ∗(ρ) with ρ(β, µ∗) = ρ.

It turns out that a solution exists only for

ρ < ρc(β) := lim
µ↗0

ρ(β, µ) =

{
∞ , if d = 1, 2,

<∞ , for d ≥ 3.

For dimensions d ≥ 3 and any particle density ρ > ρc(β), the excess particle mass density ρ− ρc(β) is

interpreted as the density of the Bose-Einstein condensate. One of the most prominent open problems

in mathematical physics is the understanding of Bose-Einstein condensation (BEC) for interacting

Bosons. This phase transition is characterised by the fact that a macroscopic part of the system

condenses to a state which is highly correlated. Only partial successes in proving BEC have been

achieved, like the description of the free energy of the non-interacting, system (already contained in

Bose’s and Einstein’s seminal paper in 1925) or the analysis of mean-field models (e.g. [AD18]) or the

analysis of dilute systems at vanishing temperature [LSSY05] or the proof of BEC in lattice systems

with half-filling [LSSY05]. In [ACK11] the authors provide a formula for the limiting free energy in

the so-called canonical ensemble where the particle density is fixed. It turns out that the formula

is difficult to analyse, and it is one of the main aims of the current work to provide an alternative

approach in terms of space-time Green functions.

A definition for BEC for interacting gases was first provided by Onsager and Penrose [OP56], who

studied quantum correlations given by the 1-particle reduced density matrix. The phase transition

is signalled by the occurrence of off-diagonal long range order, meaning that the kernel ρ(1)

V (x, y) =

limΛ↑Zd ρ
(1)

Λ,V (x, y) of the one-particle reduced density matrix in the thermodynamic limit Λ ↑ Zd has

non-vanishing off-diagonal entries

ρ(1)
v (x, y)→ c > 0 as |x− y| → ∞.

This has been proved for the ideal Bose gas (v ≡ 0). The representation of the one-particle reduced

density kernel in Theorem 3.1 for v ≡ 0 allows to perform the thermodynamic limit (cf. [BR97]),

ρ(1)(x, y) = lim
Λ↑Zd

ρ(1)

Λ (x, y) =
∞∑
j=1

eβµjP(jβ)
x,y (D). (3.9)

The probabilistic loop expansion of ρ(1)(x, y) allows a justification of the off-diagonal long range

order only with an additional assumption. Namely, for non-interacting systems one has to add the

information that for large particle densities the excess particle mass is carried in cycles of “infinite”

length. In the future we aim to identify these “infinitely” long cycles in our space-time setting, either as

unbounded winding numbers around the “time” torus, or as Bosonic interlacements. Recent progress

has been made in [AD18] on various mean-field type model.
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4. Proofs

This section contains all remaining proofs. In Subsection 4.1 we collect all proofs for Section 2.1 on all

properties of our loop measures and their space time versions and torus limits, whereas Subsection 4.2

provides all proofs for the isomorphism theorems and moment formulae.

4.1. Loop measure properties. Proof of Proposition 2.1. For any k ∈ N, let 0 ≤ t1 < t2 <

· · · < tk and let A ⊂ (0,∞) be measurable such that inf(A) > tk. We need inf(A) > tk because we

cannot specify distributions at times which are not defined (larger than the lengths of each loop with

` ∈ A). Thus

MB
G,µ,β[Xt1 = x1, . . . , Xtk = xk, ` ∈ A] =

∑
x∈G

∑
βj∈A

eβµj

j
Px (Xt1 = x1, . . . , Xtk = xk, Xβj = x)

=
∑
βj∈A

∑
x∈G

eβµj

j
pt1(x, x1)pt2−t1(x1, x2) · · · pβj−tk(xk, x)

=
∑
βj∈A

eβµj

j
pt2−t1(x1, x2) · · · pβj−tk+t1(xk, x1).

(4.1)

We have used the definition of the loop measure in the first, the Markov property in the second and

the Chapman-Kolmogrov equations in the last step. The proof of the result for the Markovian loop

measure follows similarly, see details in [LJ11]. This finishes the proof of (2.1) and (2.2), and thus

(2.3).

To calculate the mass of all loops with at least one jump, i.e., to prove (2.5), we note that

MG,µ[{ there is at least one jump }] =
∑
x∈G

∫ ∞
0

eµt

t

(
etQ − etD

)
(x, x)dt

=
∑
λ∈G∗

∫ ∞
0

eµt

t

(
etq(λ) − etd(λ)

)
dt =

∑
λ∈G∗

log
(d(λ) + µ

q(λ) + µ

)
= log

(det(D + µI)

det(Q+ µI)

)
,

(4.2)

where we used

log
(a
b

)
=

∫ ∞
0

dt

t

(
e−tb − e−at

)
, a > b > 0. (4.3)

Furthermore, we used the fact that the set of generalised eigenvalues with multiplicity has the same

cardinality as G, and thus we take the sum over λ ∈ G∗ with #G = #G∗. In the following we denote

q(x) the x-th generalised eigenvalue of the generator Q and d(x) the x-th eigenvalue of the diagonal

part D of the matrix Q. This notation is short but slightly imprecise: There is no natural ordering or

labelling of the (extended) eigenvalues of non-diagonal matrices. The sum is thus to be understood

as choosing an arbitrary ordering of the eigenvalues first.

We are left to show (2.4) and (2.6) for the Bosonic loop measure. For this Bosonic case we proceed

similarly as done above for the Markovian loop measure,

MB
G,µ,β[{ there is at least one jump }] =

∑
x∈G

∑
j≥1

eµβj

j

(
eβjQ − eβjD

)
(x, x)

=
∑
x∈G

∑
j≥1

eµβj

j

(
eβjq(x) − eβjd(x)

)
=
∑
x∈G

log
(1− eβ(d(x)+µ)

1− eβ(q(x)+µ)

)
= log

(det(I − eβ(D+µI))

det(I − eβ(Q+µI))

)
.

(4.4)
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This concludes the proof of (2.4). Calculating the mass is easier. We expand

MB
G,µ,β[Γ] =

∑
x∈G

∑
j≥1

eµβj

j
eβjQ(x, x) = −Tr log

(
I − eβ(Q+µI)

)
= − log

(
det
(
I − eβ(Q+µI)

))
. (4.5)

We need κ(x)−µ > 0 for at least one x ∈ G as otherwise 0 is an element of the spectrum of (Q+µ) and

the associated sums are infinite. We have shown that both sides of the equation are equal and thus

verified equation (2.6). The claim for the mass of the Markovian loop measure is proved in [LJ11],

page 21. �

Proof of Theorem 2.5. The proof is organised in three steps. In the first step we show the con-

vergence (2.12) for finite dimensional distributions. In the second step we show the weak convergence,

and in the third step we justify tightness which is need in step 2.

Step 1:

We first prove the convergence (2.12) for the independent space-time random walk. Let us first examine

the case with k = 1 as it is different from the cases with k > 1 and helps to develop intuition. By

using the independence of the space and the time coordinates, the Markov property, the formula for

the finite dimensional distributions in Proposition 2.1 and the translation invariance on the torus TN ,

we can rewrite the left hand side of (2.12) as

MN [Xt1 = x1, ` ∈ A] =
N−1∑
τ1=0

MΛ×TN ,µ
[
(X(1)

t1
, X(2)

t1
) = (x1, τ1), ` ∈ A

]

=
N−1∑
τ1=0

N−1∑
τ=0

∑
x∈Λ

∫ ∞
0

eµt

t
P(t)

(x,τ),(x,τ)

(
(X(1)

t1
, X(2)

t1
) = (x1, τ1), t ∈ A

)
dt,

=

∫
A
pt(x1, x1)e−tNβ

−1
N
( ∞∑
j=0

(tNβ−1)jN

(jN)!

)etµ

t
dt

= β

∞∑
j=0

∫
A
pt(x1, x1)tjNe−tNβ

−1 (Nβ−1)jN+1

Γ(jN + 1)

etµ

t
dt

= β
∞∑
j=0

EjN+1,Nβ−1

[
1lA(X)pX(x1, x1)

eXµ

X

]
,

(4.6)

since the independence of torus and spatial component implies P(x1,τ)(Xt = (x1, τ)) = pt(x1, x1)P(t)

N,τ,τ ,

where P(t)

N,τ,τ is the random walk bridge measure for the torus component X(2)

t . The expectation

EjN+1,Nβ−1 is with respect to a Gamma distributed random variable X with shape parameter (jN+1)

and rate Nβ−1. For the exchange of the limit and the sum, see equation (4.7). The distribution of

the torus component is invariant under torus translations, implying

N−1∑
τ=0

P(t)

N,τ,τ = NP(t)

N,0,0 = Ne−tNβ
−1
∞∑
j=0

(tNβ−1)jN

(jN)!
.

Since κ(x) − µ > 0 for at least one x ∈ Λ, note that pt(x, y)etµ decays exponentially in t (in case

µ = 0 the decay comes from the killing term, see [Szn]). We use that inf(A) > t1 > 0 to bound the
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denominator with some C > 0, and for some α > 0 small enough,

EjN+1,Nβ−1

[
1lA(X)pX(x1, x1)

eXµ

X

]
≤ CEjN+1,Nβ−1

[
e−αX

]
= C

(
1 +

αβ

N

)−Nj+1

≤ C
(

e−βα

2

)j
,

(4.7)

and, as the bound is independent of N and decays exponentially in j, the series converges absolutely

uniformly in N . Thus we can approximate the series with a finite sum in (4.6), or, equivalently, can

commute the summation with differentiating the expectation value for every j ∈ N. For any j ∈ N,

one then expands the integrand around jN+1
Nβ−1 = EjN+1,Nβ−1 [X], i.e., for g(t) = 1lA(t)pt(x1, x1) etµ

t ,

which is differentiable infinitely often (for N large as inf(A) > 0), one gets

EjN+1,Nβ−1

[
1A(X)pX(x1, x1)

eXµ

X

]
= g
(jN + 1

Nβ−1

)
+ g′

(jN + 1

Nβ−1

)
EjN+1,Nβ−1

[(
X − jN + 1

Nβ−1

)]
+

jN + 1

(Nβ−1)2
O(1) .

(4.8)

The variance is jN+1
(Nβ−1)2 and goes to zero for N → ∞. Higher moments of the Gamma distribution

are of the order 1
NO(1). Since the first moment vanishes and the point of expansion converges to jβ

uniformly for all j ∈ N as N →∞, we get (the j = 0 term vanishes as inf(A) ≥ t1 > 0)

lim
N→∞

MN [Xt1 = x1, ` ∈ A] = β
∞∑
j=1

pβj(x1, x1)1A(βj)
eβjµ

βj
=
∞∑
j=1

pβj(x1, x1)
eβµj

j
1lA(βj) . (4.9)

Note that the requirement βN ∩ ∂A = ∅ was necessary for us to expand around jN+1
Nβ−1 (for N large

enough) as otherwise the function g(t) has a jump at jβ, j ∈ N, and thus would not be differentiable.

We turn to the case k ≥ 2 and introduce some notation. Denote p(k) the product of the jump

probabilities,

p(k) =

k−1∏
j=1

ptj+1−tj (xj , xj+1) . (4.10)

Write the left hand side of (2.12) using Chapman Kolmogorov again as

MN [Xt1 = x1, . . . , Xtk = xk] =

N−1∑
τ=0

∑
x∈Λ

∫ ∞
0

eµt

t
P(t)

(x,τ),(x,τ)

(
πΛ(X)t1 = x1, . . . , πΛ(X)tk = xk

)

= p(k)
∑

τ1,...,τk
∈{0,...,N−1}

( k−1∏
m=1

P(tm+1−tm)

N,τm+1,τm

)
×
∫
A

(
pt−tk+t1(xk, x1)P(t1+t−tk)

N,τk,τ1

etµ

t

)
dt

= p(k)

∫
A

(
pt−tk+t1(xk, x1)NP(t)

N,0,0

etµ

t

)
dt

(4.11)

As in the case k = 1 we obtain absolute uniform convergence of the series. Similar to the case k = 1

we now perform a second order Taylor expansion of g(t) around t = jN+1
Nβ−1 . We obtain that the left

hand side of (2.12) converges, as N →∞, to

p(k)β

∞∑
j=0

1A(nβ)pjβ−tk+t1(xk, x1)
eµjβ

jβ
. (4.12)
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This finishes the proof of (2.12) in Theorem 2.5 for independent space-time random walks who are

strongly asymptotically independent space-time random walks.

We now turn to proof of statement (2.12) for general strongly asymptotically independent space-

time random walks with generator GN = QN +EN and probability P̃(x,τ). Denote M̃N the projected

space-time loop measure induced by GN . We shall estimate the difference between M̃N and MN ,

where MN is the projected loop measure for the independent space-time random walk with generator

QN . Similar to the previous part of the proof, we can find for any ε > 0 a parameter M > 0 such

that, independent of N , we obtain

MN [` > M ] + M̃N [` > M ] < ε.

Abbreviate for m = 1, . . . , k − 1, xm, xm+1 ∈ Λ, τm, τm+1 ∈ TN and tm < tm+1,

p(m) := e(tm+1−tm)QN (xm, τm, xm+1, τm+1) and

g(m) : = e(tm+1−tm)GN (xm, τm, xm+1, τm+1) .
(4.13)

For m = k define

p(k) :=

∫
A

etµ

t
e(t−tk+t1)QN (xk, τk, x1, τ1)dt (4.14)

and g(k) analogously. We estimate, setting τk+1 := τ1,

|M̃N [Xt1 = x1, . . . , Xtk = xk, ` ∈ A]−MN [Xt1 = x1, . . . , Xtk = xk, ` ∈ A] |

=
∣∣∣ ∑

τ1,...,τk
∈{0,...,N−1}

( k∏
j=1

p(j)−
k∏
j=1

g(j)
)∣∣∣

=
∣∣∣ ∑

τ1,...,τk
∈{0,...,N−1}

k∑
m=1

(m−1∏
j=1

p(j)
)

(g(m)− p(m))
( k∏
j=m+1

g(j)
)∣∣∣

=
k∑

m=1

N−1∑
τm,τm+1=1

∣∣g(m)− p(m)
∣∣ ∑
τ1,...,τk\{τm,τm+1}
∈{0,...,N−1}

(m−1∏
j=1

p(j)
)( k∏

j=m+1

p(j)
)

≤
k−1∑
m=1

N−1∑
τm,τm+1=1

∣∣(p(m)− g(m))
∣∣N−1∑
τ=0

P(x1,τ)(Xtm = (xm, τm))
{

∫
A∩(0,M ]

dt
(etµ

t
P̃(xm+1,τm+1)(Xt−tm+t1 = (x1, τ))

)}
+Rk

≤ C
k−1∑
m=1

‖e(tm+1−tm)QN (xm, xm+1)− e(tm+1−tm)GN (xm, xm+1)‖1×

× max
τ=0,...,N−1

P(x1,τ)(Xtm = (xm, τm)) +Rk ,

(4.15)
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where the integral has been absorbed in the constant C, and where, by the Chapman-Kolmogrov

equations the error term Rk is given by

Rk =

∫
A∩(0,M ]

etµ

t
‖e(t−tk+t1)QN (xk, x1)− e(t−tk+t1)GN (xk, x1)‖1dt . (4.16)

Here, P̃x1,τ is the distribution of the strongly asymptotically independent space-time random walk with

initial state (x1, τ). We have also used the notation etQ(x, y) for the TN ×TN matrix etQ(x, y)(τ, σ) =

etQ(x, τ, y, σ) for τ, σ ∈ TN . To bound the difference of the two matrix exponentials in (4.15) and

(4.16), we use the basic inequality

‖eX − eX+Y ‖1 ≤ ‖Y ‖1e‖X‖1e‖Y ‖1 , (4.17)

for two matrices X and Y . In fact, this inequality holds for every sub-multiplicative matrix norm. A

bound for norm of the TN × TN matrix QN (x, y) is given by

‖QN (x, y)‖1 ≤ λxN(Nβ−1) , x, y ∈ Λ. (4.18)

Combining the above bounds with equation (4.15) and (2.9) we conclude with the statement (2.12)

for strongly asymptotically independent space-time random walks. This finishes Step 1 of our proof.

Step 2:

We turn to the proof of the weak convergence of the projected loop measure towards the Bosonic loop

measure in the limit N → ∞. The strategy here is to consider loops whose length is bounded away

from zero such that the loop measure becomes a finite measure (see [Szn]) as our graph is finite and

the integral is bounded as well, e.g., for γ > 0,

MN [` > γ] ≤
∑
x∈Λ

∫ ∞
γ

Ptx,x(Γ)NP(t)

N,0,0 dt −→
N→∞

∑
j≥1: jβ>γ

eβjµ

j
Pβjx,x(Γ) <∞.

We conclude with the weak convergence once we combine Step 1, the above reasoning and the tightness

to shown below in Step 3.

Step 3:

We are left to show tightness for the sequences MN and M̃N . To start with MN , fix a sequence

(rm)m∈N of positive numbers with rm ↑ +∞ as m → ∞ with rm 6= βn for all n ∈ N. According to

[Bl68] it suffices to show that for all ε > 0 and all m ∈ N we have

lim
δ↓0

lim sup
N→∞

MN

[
d′ω(m, δ) ≥ ε

]
= 0 , (4.19)

where

d′ω(m, δ) = inf
{ti}

max
1≤i≤ν

sup
t,s∈[ti,ti−1)

|ω(t)− ω(s)| , (4.20)

and where {ti} =
{

0 = t0 < · · · < tν = rm; |ti − ti−1| > δ > 0; ν ∈ N
}

is the collection of all ordered

finite subsets of (0,∞). The spatial jump rates λx are finite, bounded from below and above, and

thus (4.19) holds for the projected loop measure MN of the independent space-time random walk as

the jumps on the torus are disregarded because of the projection. For M̃N we note that there are

three types of jumps on the space-time graph: jumps (x, τ) → (x, τ + 1) with rate Nβ−1 + o(e−N
2
),

jumps (x, τ) → (y, τ) with rate O(1) + o(e−N
2
) and all other jumps with rate o(e−N

2
). The first

type of jumps can be neglected for our purpose as they cannot be detected under the projection. For

all the remaining possible jumps, we can estimate their jump rates by |Λ|O(1) + |Λ|(N + 1)o(e−N
2
).

Therefore, all rates remain bounded for M̃N as well, and thus the tightness continues to hold in that

case. �
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Proof of Theorem 2.7. As in the previous proof, we begin by showing our statements (a)–(c)

for the independent space-time random walk first. Using the independence of the spatial coordinate

X(1)

t and the torus coordinate X(2)

t , it is straightforward to verify that

MN [F (L)] =
∑
x∈Λ

N−1∑
τ=0

∫ ∞
0

etµ

t
E(t)

(x,τ)

[
F
((N−1∑

σ=0

Lx,σ
)
x∈Λ

)
1{(X(1)

t , X(2)

t ) = (x, τ)}
]
dt

=
∑
x∈Λ

∞∑
j=0

∫ ∞
0

etµ

t
NE(t)

(x,0)

[
F
((N−1∑

σ=0

Lx,σ
)
x∈Λ

)
1{(X(1)

t , X(2)

t ) = (x, 0),wind = j}
]
dt

=
∑
x∈Λ

∞∑
j=0

∫ ∞
0

etµ

t
NE(t)

x,x

[
F
((
Lx
)
x∈Λ

)]
P(t)

N,0(X(2)

t = 0,wind = j)dt ,

(4.21)

where the random variable wind is the winding number of the torus coordinate X(2)

t , i.e., the number

of times that X(2)

t surrounds the torus, and where P(t)

N,0 is the probability with respect to the torus

coordinate X(2)

t with start at 0 ∈ TN . The right hand side of (4.21) can be split into the term with

j = 0, which means that there is no torus jump, and the term with the sum over all j ≥ 1. We

first show that the latter term converges to the Bosonic loop measure. This can be seen as follows.

The NP(t)

N,0(X(2)

t = 0,wind = j) = NP(t)

N,0,0(wind = j) can be rewritten as the density of a Gamma

distributed random variable X with mean jN+1
Nβ−1 , analogous to the proof of Theorem 2.5. Hence, for

each x ∈ Λ and every j ∈ N0, we write the integral with respect to t as

βEjN+1,Nβ−1

[eµX

X
E(X)
x,x

[
F
((
Lx
)
x∈Λ

)]]
.

Since the variance of X converges to zero, we have that X → βj as N → ∞ in L2, which in turn

implies that the Gamma distribution converges (in distribution) to the delta measure δjβ. Using our

arguments for the convergence of the series in the proof of Theorem 2.5 above, we conclude for loops

with lengths βj, j ∈ N, with the statement (a) without the second term on the right hand side of

(2.15). We shall now incorporate the missing term on the right hand side of (2.15).

For the term with j = 0, for each x ∈ Λ denote tx = tδx, i.e., the vector with t on the x-th position.

Also, recall that (dx)x∈Λ are the diagonal elements of the spatial generator matrix Q. Then, for each

x ∈ Λ, we have (using the assumptions on F ),∫ ∞
0

etµ

t
NE(t)

x,x

[
F
((
Lx
)
x∈Λ

)]
P(t)

N,0(X(2)

t = 0,wind = 0) dt

= β

∫ ∞
0

etµ

t
(β−1N)e−tβ

−1N
(
F (tx)etdx + (1− etdx)E(t)

x,x

[
F (Lx)x∈Λ 1{at least one jump}

])
dt

= β

∫ ∞
0

etµ(β−1N)e−tβ
−1N

(
(∂xF )(0)etdx + o(t)

)
dt

−→
N→∞

β(∂xF )(0) .

(4.22)

For the last step we use the fact that (β−1N)e−tβ
−1N is the density of an exponentially distributed

random variable XN with expectation β/N . As its variance is (β/N)2 is converging to zero for N →∞,

we get that XN → δ0 as N → ∞. We conclude with statement (a) for the independent space-time

random walk. We show (a) for the other cases below after showing (b) and (c) for the independent

space-time random walk.
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(b) For the independent space-time random walk we can insert indicators in (4.21) and (4.22) to obtain

the limits (2.17) for the splitting of the local times. In (4.21), for the part with wind ≥ 1, we insert

an indicator for the spatial component to be genuine loop or point loop. As wind ≥ 1, we only have

genuine torus jumps as to get around the torus once requires N jumps. In (4.22) it follows easily that

no torus jump but a jump on Λ has no local time, in the limit. The derivative term appears for the

remaining case as shown above.

(c) We prove the convergence of the occupation field in law by comparing Laplace transforms and

using the previous result. We have by Campbell’s formula

EN [e−〈v,L〉] = exp
{
−
∫

Γ

(
1− e−〈v,L〉

)
dMN

}
, v ∈ [0,∞)Λ, (4.23)

and using (a) with F (L) := 1− e〈v,L〉,

lim
N→∞

exp
{
−
∫

Γ

(
1− e−〈v,L〉

)
dMN

}
= exp

{
− β〈v, 1〉 −

∫
Γ

(
1− e−〈v,L〉

)
dMB

Λ,µ,β

}
= EBΛ,µ,β[e−〈v,L+β〉] ,

(4.24)

we conclude with (c) for the independent space-time random walk.

We now prove that all statements (a)–(c) hold for general weakly asymptotically independent space-

time random walks with generators GN = QN + EN . We begin with the occupation field L to prove

(c) first and compute Laplace transforms. We then rewrite for v ∈ [0,∞)Λ (denoting ẼN the Poisson

process with intensity measure M̃N given by the space-time random walk with generator GN ),

ẼN [e−〈v,L〉] = exp
{
−MN [1− e−〈v,L〉]−

(
M̃N [1− e−〈v,L〉]−MN [1− e−〈v,L〉]

)}
, (4.25)

Let vN ∈ [0,∞)Λ×TN be defined by vN (x, τ) = v(x), x ∈ Λ such that 〈v, πΛ(L)〉 = 〈vN ,L〉. Hence,

exp
{
− M̃N [1− e−〈v,L〉]

}
= exp

{
− M̃Λ×TN [1− e−〈vN ,L〉]

}
= exp

{
−
∑
x∈Λ

N−1∑
τ=0

∫ ∞
0

etµ

t

(
etgN (x,τ) − etg

v
N (x,τ)

)
dt
}

=
det(GN + VN + µI)

det(GN + µI)
,

(4.26)

where gvN (x, τ) (respectively gN (x, τ)) is the eigenvalue indexed by (x, τ) of the matrix GN + VN
(respectively, GN ) with VN being the matrix with vN on the diagonal. The last step in the equation

above follows analogously to the proof of the second half of Proposition 2.1. We shall use the following

well known perturbative bound ([IR08] ) for matrices A,E ∈ Rm×m

| det(A+ E)− det(A)| ≤
m∑
i=1

sm−i‖E‖i2 , (4.27)

where for σ1 ≥ . . . ≥ σm ≥ 0 being the singular values of the matrix A we define

sk =
∑

1≤i1<...<ik≤m
σi1 · · ·σik , (4.28)

and s0 = 1. We used ‖E‖2 to denote the largest singular value of E or equivalently the largest

eigenvalue of
√
EE∗.
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One can now bound, setting m = |Λ|N ,

|det(QN + µI + EN )− det(QN + µI)| ≤
m∑
i=1

sm−i‖EN‖i2 , (4.29)

Using the Gershgorin circle theorem [Ger31], we can estimate

sk ≤
(
m

k

)
2k(λ+Nβ−1 − µ)k , k = 0, 1, . . . ,m− 1, (4.30)

where λ := maxx∈Λ λx. Thus, by the Binomial theorem and ‖EN‖2 small

2−m| det(QN + µ+ EN )− det(QN + µ)| ≤
(
λ+Nβ−1 − µ+ ‖EN‖2

)m
− (λ+Nβ−1 − µ)m

≤ O(m)(λ+Nβ−1 − µ)m−1‖EN‖2

(4.31)

We thus conclude that if the norm ‖EN‖2 satisfies the following estimate for all α > 0,

‖EN‖2 = o
((
α+ 2β−1N

)−N |Λ|)
, (4.32)

the difference between the determinants converges to zero. By the bound (4.32) for all weakly asymp-

totically independent space-time random walks with (2.10), using the Gershgorin circle theorem, we

obtain that

|det(QN + µI + VN + EN )− det(QN + µI + VN )| −→ 0 as N →∞. (4.33)

Note that we used the bound ‖E‖2 ≤ ‖E‖1. The convergence of the determinants implies the con-

vergence of the Laplace transforms of the space-time Poisson processes to the Poisson process with

intensity measure MB
Λ,µ,β. This shows (c) for the weakly asymptotically independent space-time ran-

dom walk.

We are now proving part (a) and (b) for the weakly asymptotically independent case. Using the con-

vergence of the Laplace transforms of the Poisson process, the convergence of the local distributions

under M̃N can be seen as follows. As the intensity measure M̃N is not finite it is difficult to relate

the occupation field and the local time vector, i.e., to benefit from the convergence in (c). Our strat-

egy here is to distinguish between genuine and point loops respectively, followed by an extension to

complex-valued functions taking advantage of analyticity properties. Let J be the number of jumps

within a loop, i.e.,

J(X) := #{t : Xt 6= lim
s↑t

Xs} .

The loop measure for at least one jump is

MΛ×TN ,µ[J > 0] =
∑
x∈Λ

N−1∑
τ=0

∫ ∞
0

etµ

t
Pt(x,τ),(x,τ) ({ at least one jump until time t }) dt . (4.34)

Let us thus first consider the distribution of
∑N−1

τ=0 L(x,τ) under the finite measure

M̃>0,N := MΛ×TN ,µ
(
· 1l{J > 0}

)
◦ π−1

Λ . (4.35)

Similar to the above, we can show again with (4.32) that the distribution of the occupation field∑N−1
τ=0 L(x,τ) under the Poisson process P̃Λ×TN , µ with intensity measure M̃>0,N converges,

P̃Λ×TN ,µ ◦ π
−1
Λ ◦ L→ PBΛ,µ,β ◦ L as N →∞. (4.36)
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If we want to deduce from the convergence of the occupation field the convergence of the local time,

we need to use a trick. For z ∈ C consider now the “complexified” measure Poisson point process with

expectation ẼzΛ×TN defined as

ẼzΛ×TN

[
F
((N−1∑

τ=0

L(x,τ)

)
x∈Λ

)
1l{J > 0}

]

:= e−zM̃>0,N [Γ]
∞∑
n=0

zn

n!

(
M̃>0,N

)⊗n[
F
(( n∑

i=1

N−1∑
τ=0

L(x,τ)(ωi)
)
x∈Λ

)
1l{J > 0}

]
,

(4.37)

where ωi is a space-time loop. For all z ∈ C ∩ (0,∞) the convergence of ẼzΛ×TN to EB,zΛ,β has been

established in equation (4.36). For fixed F (bounded and continuous) the above representation is

analytic in z and, by the triangle inequality, bounded uniformly in N on compact subsets of C. Thus,

as we have convergence of the sum in (4.37), the individual coefficients converge as well,

lim
N→∞

(
M̃>0,N

)⊗n[
F
(( n∑

i=1

N−1∑
τ=0

L(x,τ)(ωi)
)
x∈Λ

)
1l{J > 0}

]

=
(
MB

Λ,β

)⊗n[
F
(( n∑

i=1

Lx(ωi)
)
x∈Λ

)]
.

(4.38)

Now what remains is to show that for the measure

M̃0,N := MΛ×TN ,µ
(
· 1l{J = 0}

)
◦ π−1

Λ , (4.39)

we have that for every F differentiable at 0 and F (0) = 0,

lim
N→∞

M̃0,N [F ] = β
∑
x∈Λ

∂

∂x
F (0) . (4.40)

This can be shown as follows. Denote d̃(x, τ) the diagonal elements of the generator GN . We compute

M̃0,N [F ] =
∑
x∈Λ

N−1∑
τ=0

∫ ∞
0

etµ

t
etd̃(x,τ))F (tx)dt =

∑
x∈Λ

∫ ∞
0

etµ

t
F (tx)Ne−tNβ

−1
e−o(1)tdt . (4.41)

We obtain the statement by the similar reasoning as in equation (4.22) for the independent space-time

random walk. �

Proof of Proposition 2.8. We only sketch the proof of the Markovian case, the Bosonic one

follows analogously. The independence follows from Campbell’s formula: Since the Laplace transform

of the sum of the two Poisson point processes is the exponential of the sum of two integrals with

respect to the intensity measures, the result can be factorised. To calculate the distribution of the

point loops one makes the observation∑
x∈G

∫ ∞
0

(
1− e−〈v,L〉

) eµt

t
P(t)
x,x({ no jump up to time t})dt =

∑
x∈G

∫ ∞
0

(
1− e−v(x)t

) e−t(−d(x)−µ)

t
dt .

(4.42)

From then on, one can proceed as in the proof of Proposition 2.1. �

Proof of Example 2.9. We show that our convergence results in the torus limit N → ∞ fail

to hold (Theorem 2.5 and Theorem 2.7) when the space-time random walk has equal rates for going

up or down along the “time” torus TN . An easy computation shows that symmetric rates along the
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torus imply that in the equation after (4.6) the factor P(t)

N,0,0 is replaced by its square
(
P(t)

N,0,0

)2
, as we

can circle around the torus in two different directions. It follows from the previous proofs that for all

t > 0 the convergence of P(t)

N,0,0 → 0 is uniform in t at least of order square-root in N . Actually, for

finite t the term vanishes exponentially in N . Therefore all finite dimensional distributions vanish in

the torus limit and thus the limiting procedure does not establish a loop measure for the projected

space-time process. �

Proof of Theorem 2.10. The spatial projection of the given Bosonic walk is denoted MN . We

abbreviate f(t) = 1lA(t). In the definition of the projected loop measure MN , we replace eµt/t by

f(t) (and we can later employ an approximation scheme) as that factor does not change the support

property of the loop measure in the torus limit. We only need to consider paths which wind around

the torus once as all other paths can be written as a concatenation of such paths. Thus we shall

estimate the probability that such loops have length in the given set A. We will then use that result

to prove the theorem. Denote d̃(x, τ) the diagonal elements of the the generator GN . We calculate

the weight of all space-time paths from (x, τ) to (y, τ) winding around the torus only once:

N−1∑
τ=0

∫ ∞
0

f(t)P(x,τ)(Xt = (y, τ),wind(X[0,t]) = 1)dt

=
1

N

N−1∑
τ=0

∑
z : (x,τ)→(y,τ),

wind(z)=1

∫ ∞
0

f(t)

∫ t

0
e(t−s)d̃(y,τ)NP (z)dP(W (z) = s)dsdt

=
1

N

N−1∑
τ=0

∑
z : (x,τ)→(y,τ),

wind(z)=1

P (z)Ez
[
N

∫ ∞
X

f(t)e(t−X)d̃(y,τ)dt
]

=
1

N

N−1∑
τ=0

∑
z : (x,τ)→(y,τ),

wind(z)=1

P (z)

∫ ∞
0

Netd̃(y,τ)Ez
[
f(t+X)

]
dt

=
1

N

N−1∑
τ=0

∑
z : (x,τ)→(y,τ),

wind(z)=1

P (z)Exp−d̃(y,τ)

[ N

−d̃(y, τ)
Ez
[
f(C +X)

]]
,

(4.43)

where Ez denotes the expectation for the random waiting time W (z) of the given path = z. Exp−d̃(x,τ)

denotes the expectation with respect to an exponential distribution with parameter d̃(x, τ) for the

random time C. Firstly, assume that β ∈ (R \A)◦. Then, for some ε > 0 it holds that

Pz(W ∈ A) ≤ Pz(|W − β| > ε) ≤ ε−2Ez
[
(W − β)2

]
. (4.44)

Expanding the square and calculating the expectations, and writing

dz =
1

N

N−1∑
τ=0

∑
z : (x,τ)→(y,τ),

wind(z)=1

P (z),

using the assumptions from Theorem 2.10 and equations (4.43) together with (4.44), one sees that

lim
N→∞

∫
dzPz(W ∈ A) = 0 , (4.45)
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which was the claim. If β ∈ A◦, we simply use∫
dzPz(W ∈ A) =

∫
dz −

∫
dzPz(W ∈ R \A) , (4.46)

and the apply the same reasoning as above to obtain

lim
N→∞

∫
dzPz(W ∈ A) = dx,y > 0 . (4.47)

One can now approximate eµt/t by step functions to conclude the argument.

We now prove the last statement, namely that all weakly and strongly asymptotically independent

space-time random walks are Bosonic random walks. Note, all strongly asymptotically independent

space-time random walks are also weakly asymptotically independent. The difficulty to establish that

weakly asymptotically independent random walks belong to the Bosonic loop walk class comes from

the fact that the jump rates on Λ are not uniform. We first show (2.21) and (2.22) for the independent

space-time random walk with uniform jump rates. To establish (2.21) we can use the independence

to obtain from equation (2.20),

P (z) =
(

1− λβ

N + βλ

)N( λ

λ+Nβ−1

)k
p(x, x1) · · · p(xk−1, y) . (4.48)

Thus, we write

1

N

N−1∑
τ=0

∑
z : (x,τ)→(y,τ)

wind(z)=1

P (z) =
(

1− λβ

N + βλ

)N ∞∑
k=0

(
N + k

k

)([ λ

λ+Nβ−1

]
P
)k

(x, y) , (4.49)

which obviously has a well defined limit

lim
N→∞

1

N

N−1∑
τ=0

∑
z : (x,τ)→(y,τ)

wind(z)=1

P (z) ∈ (0, 1].

To check the second condition (2.22), we rewrite it as

∞∑
k=0

(
N + k

k

)([ λ

λ+Nβ−1

]
P
)k

(x, y)
[(
β
(

1− N

N + β

)
− k

Nβ−1 + λ

)2
+

N + k

(Nβ−1 + λ)2

]
, (4.50)

which converges to zero since P k(x, y) decays exponentially in k. If the jump rates are not uniform

consider a path as above. Then

∑
z

P (z) =p(x, x1)
λx

Nβ−1 + λx
· · · p(xk−1, y)

λxk−1

Nβ−1 + λxk−1

∑
j0,...jk

j0+...+jk=N

k∏
i=0

( Nβ−1

Nβ−1 + λxi

)ji
, (4.51)
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where the sum is over all paths on the space-time graph which have jumps x = x0 → x1 → . . . xk−1 →
xk = y on the lattice. As we now sum over all the different x1, . . . , xk, we get∑

z,x1,...,xk

P (z)

=
∑

x1,...,xk

p(x, x1)
λx

Nβ−1 + λx
· · · p(xk−1, y)

λxk−1

Nβ−1 + λxk−1

∑
j0,...jk

j0+···+jk=N

k∏
i=0

( Nβ−1

Nβ−1 + λxi

)ji

=
∑

x1,...,xk

p(x, x1)
λx

Nβ−1 + λx
· · · p(xk−1, y)

λxk−1

Nβ−1 + λxk−1

k∑
i=0

(
1− βλxi

N+λxiβ

)k+N−1

∏k
l=0
l 6=i

[
βλxl

N+λxlβ
− βλxi

N+λxiβ

]
→

∑
x1,...,xk

p(x, x1)λxβ · · · p(xk−1, y)βλxk−1

k∑
i=0

e−βλxi∏k
l=0
l 6=i

[
βλxl − βλxi

] as N →∞ ,

(4.52)

where we have used Theorem 3.2 from [C11] (or simply using partial fraction decomposition). If not

all λxi ’s are distinct, the above formulae hold in their canonical extension. Similarly, we show that

the second condition is satisfied, i.e., the analogue of equation (4.50) converges to zero. To conclude

the proof, we show that every path generated by weights which are zero for the independent case but

that do not vanish for the perturbed case have exponentially small contributions. Fix some ε > 0. In

the expression (2.21) paths can, a priori, have a length of N + k with k ≥ −N . As we assume that

κ(x)− µ > 0 for at least one x ∈ Λ, we can choose some M ∈ N such that paths with length greater

than N+M have weight less than ε. We thus restrict ourselves to paths of length smaller than N+M .

Given a path of length A + B ≤ N + M , we can decompose it into A jumps along edges (zi, zi+1)

for which QN (zi, zi+1) > 0 and B jumps for which the QN entries are zero. Fixing the A part of the

path, there are less than (|Λ|N)AB ≤ (|Λ|N)NB+MB paths with B jumps. Each of these paths has

a weight dominated by N−2N |Λ|B. Summing over all B, we can see that the contribution from all

perturbed paths vanishes. Similarly, given a path for which B = 0, we write the weight of each jump

as QN +O(N−2|Λ|N ). Expanding the product, we again see that the contributions are negligible. As

ε was arbitrary, the result follows. �

Proof of Example 2.11. The probability density of the space-time random walk with periodic

boundary conditions is

p
per
t (x, 0, y, τ) = e−tβ

−1N
∞∑
k=0

(tβ−1N)Nk+τ

(τ +Nk)!
PNk+τ (x, y) = E[PSN+τ (x, y)1{SN = τ mod N}] ,

(4.53)

x, y ∈ ΛM , τ ∈ TN , where SN is Poisson distributed with parameter β−1N . Furthermore,

E[PSN+τ (x, y)1l{SN = τ mod N}] = π(y)E[1l{SN = τ mod N}]

+ E[(PSN+τ (x, y)− π(y))1l{SN = τ mod N}] .

The assumptions for the spatial component ensure that there is a c > 0 such that for all x, y and N

large enough,

|PN (x, y)− π(y)| ≤ e−Nc . (4.54)

Therefore,

p
per
t (x, 0, y, τ) = π(y)P(t)

N,0,τ +O(e−cN ) (4.55)
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as

E[(PSN+τ (x, y)− π(y))1l{SN = τ mod N}] ≤ E[|PSN (x, y)− π(y)|] ≤ E[e−cSN ] ≤ e−cN ,

From then on, the result follows repeating the steps in the proof of Theorem 2.5. �

4.2. Isomorphism theorems. The key identity to the proof of Theorem 2.15 is stated as a separate

lemma due to its importance.

Lemma 4.1. Assume that κ(x)− µ > 0 for at least one x ∈ Λ. Let v ∈ [0,∞)G. Then

EG,µ[e−〈v,L〉] =
det(Q+ µI)

det(Q+ µI − V )
, (4.56)

where V = diag (v) denotes the diagonal matrix with v on the diagonal.

Proof of Lemma 4.1. We use Campbell’s formula to rewrite the left-hand side of (4.56) as

EG,µ

[
e−〈v,L〉

]
= exp

{
−
∫

Γ

(
1− e−〈v,L〉

)
dMG,µ

}
. (4.57)

With the help of the Feynman-Kac formula one can now write∫
Γ

(
1− e−〈v,L〉

)
dMG,µ =

∑
x∈G

∫ ∞
0

etµ

t

(
etQ(x, x)− et(Q−V )(x, x)

)
dt

=

∫ ∞
0

etµ

t

(
Tr[etQ]− Tr[et(Q−V )]

)
dt.

(4.58)

One then uses

etµTr[etQ] =
∑
x∈G

et(q(x)+µ) , (4.59)

where q(x) is the x’th eigenvector of Q, analogously qv(x) for Q − V . Hence, using again a version

(4.3),

−
∫

Γ

(
1− e−〈v,L〉

)
dMG,µ =

∑
x∈G

log
( q(x) + µ

qv(x) + µ

)
= log

( det(Q+ µI)

det(Q+ µI − V )

)
. (4.60)

�

The Laplace transform of the Bosonic Loop measure is computed as follows.

Lemma 4.2. For v ∈ [0,∞)G we have that

EBG,µ,β

[
e−〈v,L〉

]
=

det
(
I − eβ(Q+µI)

)
det
(
I − eβ(Q+µI−V )

) . (4.61)

Proof. One expands the expectation analogously to the Markovian case and uses the Campbells

formula again to calculate the expectation. Using the Feynman-Kac formula one calculates the ex-

pectation of the local time and then uses the reasoning from the proof of Proposition 2.1. �

We now turn to the proof of the Isomorphism theorems.

Proof of Theorem 2.15. (a) Our assumptions ensure that C = A−1 and thus A has a positive

Hermitian part, henceforth µA is the complex Gaussian measure on CG . We shall compute Laplace
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transforms separately on both sides of equation (2.27) , that is, for the measure µA and for the Poisson

measure PG,µ. For that, let

v0 ∈ RG := inf
v∈RG

{
EA
[
e−〈φ,V φ〉

]
<∞

}
,

where V = diag (v) denotes the diagonal matrix with entries v and where we order the fields

component-wise. Gaussian calculus thus ensures that the Laplace transform for the measure µA
is given

EA[e−〈φ,V φ〉] =
ZA+V

ZA
=

det(Q+ µI)

det(Q+ µI − V )
for all V ≥ V0.

In fact, we can set v0 ≡ 0 here as the occupation field assumes only positive values. The Laplace-

transform for the Poisson measure PG,µ has been calculated in Lemma 4.1,

EG,µ[e−〈v,L〉] =
det(Q+ µI)

det(Q+ µI − V )
. (4.62)

Hence, the Laplace transforms for both measures agree. The family of functions t 7→ e−〈v,t〉 for

v ∈ [0,∞)Λ is a point separating family. Having shown that for such functions, the expectation of the

the square of the field equals the expectation of the occupation field, the two measures agree. As the

Poisson point measure is a probability measure, the square of the complex Gaussian field is governed

by a probability measure as well.

(b) We now prove the second identity of Theorem 2.15. Define the complex “density” fC (Radon-

Nikodym derivative) by

fC(φ) =
1

ZS
e−〈φ,A

S φ̄〉 , (4.63)

where AS is the skew Hermitian part of A and ZS = det(Ã)
det(A) . Then, for any bounded measurable

function F : CG → C,

EA[F (φ)] = E
Ã

[fC(φ)F (φ)] .

Note that as Ã is Hermitian, the resulting measure µ
Ã

on CG is a probability measure. This allows,

for any sub-σ algebra F on CG to define the “conditional expectation”

EA[F (φ)|F ](φ̃) = E
Ã

[fC(φ)F (φ)|F ](φ̃) . (4.64)

Note that this implies the tower property for the conditional expectation.

Using that conditional expectation is integration with respect to the regular conditional probability,

we can apply this to the sigma algebra F| generated by φ 7→ |φ| to get

EA[F (φ)|F|](φ̃) =

∫
fC(φ)F (φ)µ

Ã
[φ ∈ dφ|F|](φ̃) =

∫
fC(φ)F (φ)µ

Ã
[φ ∈ dφ||φ| = φ̃] ,

φ̃ ∈ [0,∞)G , where µ
Ã

[φ ∈ dφ||φ| = φ̃] denotes the regular conditional probability kernel associated

to F|. We can compute µ
Ã

[φ ∈ dφ||φ| = φ̃], since, by parametrising CG using polar coordinates, the

joint density of (θ, |φ|) is given by

µ
Ã

(
{(θ, |φ|) ∈ A}

)
=

1

ZH

∫
SG×[0,∞)G

1A(θ, |φ|)e−〈|φ|θ,Ã|φ|θ̄〉
[∏
x∈G

dωx(θ)
]

︸ ︷︷ ︸
:=dSG

[∏
x∈G

d|φ(x)|
]
, (4.65)
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for some event A, where d|φ(x)| is integration with respect to the Lebesgue measure on [0,∞) and ωx
is the surface measure on the unit sphere S = {z ∈ C : |z| = 1}. By Bayes Theorem, the density of

the conditional probability is

µ
Ã

[φ ∈ dφ||φ| = φ̃] =
e−〈φ̃θ,Ãφ̃θ̄〉∫

e−〈φ̃θ,Ãφ̃θ̄〉dSG(θ)
,

where we have implicitly identified φ = θφ̃. We now apply (a) to the square φ̃2 = (

√
φ̃
x

√
φ̃
x
)x∈G , and

obtain
EA[F (φ)] = EA

[
EA
[
F (φ)

∣∣F|]] = E
Ã

[
E
Ã

[
fC(φ)F (φ)|F|

]]
= E

Ã

[ ∫
fC(θ
√
L)F (θ

√
L)e−〈

√
Lθ,Ã

√
Lθ̄〉dSG(θ)

]
.

= E
Ã

[ 1

ZS
∫

e−〈
√
Lθ,Ã

√
Lθ̄〉dSG(θ)

∫
F (θ
√
L)e−〈

√
Lθ,A

√
Lθ̄〉dSG(θ)

]
.

(c) To prove the identity for non-symmetric matrices A, we follow [BIS09]. Let us split A into its

symmetric (or Hermitian) Ã and skew-symmetric (skew Hermitian) part AS , namely define

A(z) = µ1l + Ã+ zAS , z ∈ C. (4.66)

Our goal is to show that the identity (4.66) holds for z = 1 as this gives us back A. From the previous

computation we know (4.66) holds for z = 0. We shall show the identity (4.66) for purely imaginary

z = ri with 0 < r < ε for some ε > 0 sufficiently small. However, for such z’s the generator would be

Hermitian but also complex valued. We thus need to examine whether the previous results carry over

to the complex case. We use the same notation as in the non-complex case.

One can define the complex valued measure Px and its associated semigroup S(t) through its transition

density

pt(x, y) = e−tA(z)(x, y) , (4.67)

and expanding this to all cylinder sets on the Skorohod space DG and using this density to obtain a

measure on the full space DG . Note that this is no longer a Markov-semigroup (as positivity preser-

vation is lost) but for ε sufficiently small it still establishes an uniformly continuous C0 semigroup. In

particular ∂tS(t) = −A(z)S(t) = −S(t)A(z).

To show that the distribution of (φ̄xφx)x∈G agrees with the one of (Lx)x∈G we only used two proba-

bilistic tools: Campbell’s formula and the Feynman-Kac formula. As the proof of Campbell’s formula

does not use the fact that the intensity measure is positive, one can transfer it to the complex setting.

For v ∈ CG with ‖v‖ (V = diag (v) denotes the diagonal matrix with entries v) sufficiently small, the

Feynman-Kac formula allows to define the Feynman-Kac semi-group FKV (t) as

FKV (t)f(x) = Ex
[
f(Xt)e

−
∫ t
0 V (XS)ds

]
, (4.68)

has derivative ∂tFKV (t) = (−A(z) + V )FKV (t) and thus

FKV (t)f(x) = et(−A(z)+V )f(x) . (4.69)

The finiteness of MΛ,µ

[
1 − e−〈v,L〉

]
is still given as A(z) remains to have positive eigenvalues. The

span of the family

{e−〈v,|φ|2〉 : vx ≥ 0 ∀x ∈ G} , (4.70)
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is a point separating family (over [0,∞)G), and by the Stone Weierstrass Theorem it suffices to compare

measures on this class. By the previous result for ε > 0 sufficiently small

EA(z)[e
−〈v,|φ|2〉] = EA(z),G [e−〈v,L〉] =

det(A(z)− µI)

det(A(z)− µI + V )
. (4.71)

Using that both sides are meromorphic in z (this is due to the definition of the determinants, see

[BIS09]), one can extend the result to the whole complex plane and in particular to the desired case

z = 1.

Note that for z imaginary and small, both sides are probability measures, despite the matrix A(z)

being complex, this is due to the fact that A(z) is Hermitian. For probability measures one can uses

the standard theory of conditional expectations to verify the isomorphism equation in (b) above. Then

one chooses a point separating family over CG to show analyticity in z. Here, the polynomials P (φ) =

(
∏
i φ(xi))

(∏
j φ(yi)

)
are suitable, and their analyticity follows from the calculations performed in

[BIS09]. Via the given density we extend the result to all F measurable and bounded, i.e.,

EA[F (φ)] = EG,µ

[ 1∫
e−〈θ

√
L,A
√
Lθ̄〉dSG(θ)

∫
F (θ
√
L)e−〈θ

√
L,A
√
Lθ̄〉dSG(θ)

]
. (4.72)

As a by-product of this proof, we get that the previous identities hold for complex weighted loops in

the above fashion.

�

Proof of Proposition 2.17. We set β = 1, as the other values of β can be handled by change

of variables, and let µ ≤ 0. Note that by combining Dynkin’s Isomorphism theorem and Le Jan’s

Isomorphism (Theorem 2.15) we have the new isomorphism theorem

Eµ,1xy ⊗ EG,µ[J(L + L)] = EA[φxφyJ(|φ|2)] , for any bounded and continuous J : [0,∞)G → R. (4.73)

We can now equate

EA,J [φxφy] =
1

ZA,J

[
ZAEA

[
φxφyJ(|φ|2)

]]
=

ZA
ZA,J

Eµ,1xy ⊗ EG,µ[J(L + L)] .

(4.74)

The denominator is computed analogously. For higher moments, one notes that Dynkin’s Isomorphism

theorem holds not only for two point correlations but can be extended to arbitrary k-point correlations.

�

Proof of Theorem 2.19. (a) (i) This can actually be done similarly to the proof of Theorem 2.7,

that is, first by proving the statements for the independent space-time random walk with generator

GN = QN (see Definition 2.3), and in a second step to extend all statements to generators GN of

weakly asymptotically independent space-time random walks. However, there is one difference: we

cease to have the factor 1
t in the definition of the bridge measure which causes a divergence at zero.

We obtain as in (4.21),

Eµ,βx,y,B[F (L)] =
∑
x∈Λ

∞∑
j=0

∫ ∞
0

eβµtNE(βt)
x,y

[
F ((Lx)x∈Λ)

]
P(βt)

N,0(X(2)

t = 0,wind = j) dt,

and it is straightforward to see that the part with winding numbers wind ≥ 1 does converge to the

Bosonic path measure (in fact due to the missing singularity the proof here is easier than the one in
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Theorem 2.7). The term with wind = 0 follows as∫ ∞
0

eβµtNe−tN
(
F (tx)etdxδ(x, y) + (1− etdx)E(βt)

x,y

[
F (L)1l{at least one jump}

])
= ẼN

[
eβX

(
F (X)eXdxδ(x, y) + (1− eXdx)E(βX)

x,y

[
F (L)1l{at least one jump}

])]
−→ F (0)δ(x, y) as N →∞,

where ẼN is expectation with respect to an exponentially distributed random variable with expectation

1/N .

(ii) Clearly, Theorem 2.7 implies that

lim
N→∞

EN [J(L)] = EBΛ,µ,β[J(L + β)].

This implies (2.40) using Theorem 3.1. To see that this stems from Symanzik’s formula (Proposi-

tion 2.17) in the space-time setting, we sum equation (2.37) over all possible torus points and note

that J(L+ L) = J(pΛ(L + L)), i.e.,

N−1∑
τ=0

EAN ,J
[
φ(x,τ)φ(y,τ)

]
=

N−1∑
τ=0

1

EΛ×TN ,µ[J(L)]
Eµ,β(x,τ),(y,τ) ⊗ EΛ×TN ,µ

[
J(L + L)

]

=
Eµ,βx,y,N ⊗ EN [F (L+ L)]

EN [F (L)]
.

(b) This follows easily from (a). The constant background field β drops out due to the linearity of the

interaction. �

Proof of Theorem 2.21. (a) The statements in Proposition 2.1 carry over as the finiteness of

the graph is not used in the proof. (b) and (c) follow by taking advantage of the convergence in the

transient regime for d ≥ 3 and µ ≤ 0 or d ≥ 1 and µ < 0. For (c) we require the support of the

functional F to be compact to ensure finiteness when passing to the thermodynamic limit. (d) In

Theorem 2.7 we only consider point loops. For any finite v ∈ [0,∞)Z
d

with v(x) = 0 outside some

finite set Λ, their distribution is identical with the distribution of the point loops under the loop

measure MΛ,µ or the Bosonic loop measure MB
Λ,µ,β, as these point loops don’t leave the set Λ. As the

Poisson process of loops forms a consistent family of measure in the sense of Kolmogoroff’s extension

theorem (see [Szn]), the class of such v is sufficient. With (4.42) we conclude with the statement.

(e) We sketch the proof for extension to Zd of the statement in (a) of Theorem 2.15. Statement

(b) is included in (a) as the generators are symmetric, and (c) can be obtained using characteristic

functions instead of Laplace transforms. We are using Laplace transforms for all distributions of

|φ|2 = (φxφx)x∈Λ in (a). We denote c0(Zd) the set of all vectors v in RZd such that all but finitely

many coordinates are zero. Define the set

{fv(x) = e−〈v,x〉 : v ∈ c0(Zd) and 0 ≤ v(x) <∞ for all x ∈ Zd} , (4.75)

of functions on Zd. This set is a point-separating family stable under multiplication and including the

constant function for continuous and bounded functions from [0,∞)Z
d

to R. We apply the one point

compactification to enlarge the space to [0,∞]Z
d

which is compact by Tychonoff’s theorem. We set

for g : [0,∞)→ R,

g(∞) = lim
t→∞

g(t) , (4.76)
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and continue this component wise to functions from [0,∞)Z
d
, requiring that the limit is well defined.

By the Stone-Weierstrass theorem, it suffices to check that all Laplace transforms, i.e. expectations

of (fv) for any v ∈ c0(Zd), of two measures agree to conclude that they coincide. We compute (recall

that AΛ = −QΛ with QΛ − µ1lΛ being the generator of the random walk on Λ and that V is the

diagonal matrix with entries v(x))

EAΛ

[
e−〈φ,V φ〉

]
=

det(AΛ)

det(AΛ + V )
= det(1lΛ +A−1

Λ V )−1 = det(1lΛ +GµΛV )−1, (4.77)

where the Green function is defined as

GµΛ(x, y) =

∫ ∞
0

eµt pt(x, y) dt , x, y ∈ Λ. (4.78)

For d ≥ 1 and µ < 0, or for d ≥ 3 and µ ≤ 0, the Green function is finite (transient). Therefore the

limit of the determinants exists as a Fredholm determinant, and using (4.1) implies

lim
Λ↑Zd

EAΛ

[
e−〈φ,V φ〉

]
= det(1lZd +GµZdV )−1 = EZd,µ

[
e−〈v,L〉

]
= lim

Λ↑Zd
EΛ,µ

[
e−〈v,L〉

]
, (4.79)

and thus both distributions agree. We are using that the distribution PΛ,µ ◦ L−1 converges to the

distribution PZd,µ ◦ L−1 with respect to the topology of local convergence, which can be obtain from

the convergence of the intensity measure MΛ,µ. Note that we did not introduce a different notation

for the infinite vector v when restricted to a finite Λ. �
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[BFS82] D. Brydges, J. Fröhlich, and T. Spencer, The random walk representation of classical spin systems and

correlations inequalities, Comm. Math. Phys. 83, 123–190 (1982).

[BIS09] D. Brydges, J. Imbrie and G. Slade, Functional integral representations for self-avoiding walk, Probability

Surveys Vol. 6, 34-61 (2009).



38 STEFAN ADAMS AND QUIRIN VOGEL

[Cam15] F. Camia, Brownian Loops and Conformal Fields, preprint, arxiv 1501.04861v2 (2015).

[CS16] Y. Chang and A. Sapozhnikov, Phase transition in loop percolation, Probab. Theory Relat. Fields 164:

979–1025, (2016).

[C11] E. Cornelius, Jr, Identities for Complete Homogeneous Symmetric Polynomials, JP Journal of Algebra,

Number Theory and Applications, 21, 109-116 (2011).

[DV83] M.D. Donsker and S.R.S. Varadhan, Asymptotics for the polaron, Comm. Pure Appl. Math. 36:4, 505–

528 (1983).

[Dyn84] E.B. Dynkin, Local Times and Quantum Fields, in Progress in Probability and Statistics, Seminar on

Stochastic processes, 1983, 69–83, Birkhäuser (1984).
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[Sűt02] A. Sűtő, Percolation transition in the Bose gas: II, J. Phys. A: Math. Gen. Vol. 35, 6995-7002, (2002).

[Sym69] K. Symanzik, Euclidean quantum field theory, in Scuola internazionale di Fisica ’Enrico Fermi’, XLV Coso,

Academic Press, 152–223 (1969).

Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

E-mail address: S.Adams@warwick.ac.uk, Q.Vogel@warwick.ac.uk


