
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/119269                            
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/119269
mailto:wrap@warwick.ac.uk


For Peer Review

2D Surface Waves in Magnetohydrodynamics

Journal: Journal of Plasma Physics

Manuscript ID PLA-2019-0004.R4

Special Collection: Not part of a collection

Date Submitted by the 
Author: 20-Jun-2019

Complete List of Authors: Hunt, Matthew; University of Warwick, Warwick Manufacturing Group; 
University of Warwick,  Mathematics

Keywords: Plasma Waves, Astrophysical Plasmas, Plasma Flows

 

Cambridge University Press

Journal of Plasma Physics



For Peer Review

Under consideration for publication in J. Plasma Phys. 1

2D Surface Waves in Magnetohydrodynamics

Matthew Hunt1†
1Warwick Manufacturing Group, University of Warwick, Coventry CV4 7AL & Warwick
Mathematics Institute, Zeeman Building, University of Warwick, Coventry, CV4 7AL

(Received xx; revised xx; accepted xx)

The study of nonlinear waves in water has a long history beginning with the seminal paper
by Korteweg & de Vries (1895) and more recently for magnetohydrodynamics Danov &
Ruderman (1983). The appearance of a Hilbert transform in the nonlinear equation for
MHD distinguishes it from the water wave model description. In this paper, we are
interested in examining weakly nonlinear interfacial waves in 2 + 1 dimensions. First,
we determine the wave solution in the linear case. Next, we derive the corresponding
generalisation for the Kadomtsev-Petviasvilli (KP) equation with the inclusion of an
equilibrium magnetic field. The derived governing equation is a generalisation of the
Benjamin-Ono(BO) equation called the Benjamin equation first derived in Benjamin
(1992) and in the higher dimensional context in Kim & Akylas (2006).

1. Introduction
The study of waves in magnetohydrodynamic approximation (MHD) applicable to

highly collisional magnetised plasmas has a long history (Roberts (1985), Danov &
Ruderman (1983)). There have been many interfacial flows of interest over the years
in MHD which have taken up much of the literature on the subject with applications
to astrophysics (Edwin & Roberts (1986)), geophysics (Barcilon & Fitzjerald (1985))
and to magnetic industrial liquids (Gerbeau et al. (2006)). Unlike the plasma considered
in this paper, Roberts considered waves in a compressible plasma. The types of waves
which we are interested in this paper are surface waves in three dimensions along a
contact discontinuity. The study of surface waves in hydrodynamics began with the
seminal paper by Korteweg & de Vries (1895) where they employed the approximations
of long wavelength and small amplitude. Since this ground-breaking paper, a further
fundamental study by Benjamin (1967) where a stratified fluid was considered leading
to the celebrated Benjamin-Ono equation. The equation governing the wave propagation
includes the Hilbert transform of the second derivative. Since then, there have been
many instances where these two fundamentally important equations, i.e. KdV or BO,
have appeared.

Benjamin further extended his analysis by expanding the dispersion equation and
including weak nonlinearity, later extended for three dimensions by Kim & Akylas (2006).
A new direction of development is the implementation of external fields (e.g. electric or
magnetic). There has been an extensive amount of work in fluid systems with external
fields (electric and magnetic) both in two and three dimensions, see e.g. Hunt (2013) for
studies with electric fields, and Roberts (1985) with magnetised plasmas which deal in
the case of compressible fluids.
As an introduction, let us recall briefly the paper Danov & Ruderman (1983). This work
is essentially an extension of the original paper on the subject introduced by Korteweg &
de Vries (1895) in fluids to include a magnetic field. A schematic view of their problem
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Figure 1: Set Up

set-up is given in Figure (1). The fluid (in region 1) defined by −h 6 z 6 η(t, x, ) is
perfectly conducting and the region above the fluid (region 2) is perfectly insulating. We
assume that fluid 2’s density is small so it does not contribute to the dynamics. The
magnetic field in region 2 is current free and as z → ∞, the magnetic field tends to
a constant. In region 2, there is no flow and the magnetic field satisfies the following
conditions:

∇ ·B2 = 0, ∇×B2 = 0, (1.1)

which means that there is a scalar potential, B2 = ∇ψ2 which satisfies the Laplace
equation:

∂2ψ2

∂x2
+
∂2ψ2

∂z2
= 0 (1.2)

In region 1, the usual equations of MHD hold:

Du

Dt
= −1

ρ
∇
(
p+
|B1|2

2µ0

)
− gez +

1

ρµ0
(B1 · ∇)B1, (1.3)

DB1

Dt
= (B1 · ∇)u. (1.4)

In region 1, it is convenient to use stream functions from which the velocity and magnetic
field can be derived:

u = −∂ϕ
∂z

ex +
∂ϕ

∂x
ez, B = −∂ψ

∂z
ex +

∂ψ

∂x
ez. (1.5)

Use of stream functions reduces the problems of finding the velocity and magnetic field
components to just two scalar functions. The interface between the plasma and magnetic
field is a tangential discontinuity. On z = η(t, x):

B · n̂ = 0, n̂ =
−∂xηex + ez√

1 + (∂xη)2
, (1.6)
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the continuity of total pressure across the interface:[
p+
|B|2

2µ0

]2
1

= 0, (1.7)

and finally the free surface equation:

∂η

∂t
+ u

∂η

∂x
= w. (1.8)

At the lower boundary, z = −h, we can state:

w = 0, Bz = 0. (1.9)

The weakly nonlinear analysis is carried out and the magnetic fields are perturbed from
the base state, B0. The co-ordinates are then transformed as:

X = ε(x− c0t), T = ε2t, (1.10)

where c0 is the gravity wave speed c0 =
√
gh. Giving the equation for the free surface as:

∂η1
∂T

+ bη1
∂η1
∂X

+ βH

(
∂2η1
∂X2

)
= 0, (1.11)

where

b =
3gh+ v2A cos2 α

2c0h
, β =

v2Ah cosα

2c0
, (1.12)

where vA = B0/
√
µ0ρ0. The operator H (·) is known as the Hilbert transform and is

defined as:

H (f(x)) =
1

π
PV

∫ ∞
−∞

f(y)

x− y
dy (1.13)

Equation 1.11 derived is known as the Benjamin-Ono equation Ono (1975) and is known
to have analytical solutions which decay algebraically.

2. 3-Dimensional Consideration
The problem of interest is that of an incompressible perfectly conducting fluid in a co-

ordinate system (x, y, z) (see Figure 1) with z pointing upwards and with basis vectors
ex, ey, ez. The velocity vector in this co-ordinate system is u = uex + vey +wez. Unlike
the authors in Danov & Ruderman (1983) we do not assume that the magnetic field B
can be expressed in terms of a stream function. The equations for incompressible MHD
in the co-ordinate system are:

∇ · u = 0 (2.1)
Du

Dt
= − 1

ρ0
∇
(
p+
|B|2

2µ0

)
− gez +

1

ρ0µ0
(B · ∇)B (2.2)

DB

Dt
= (B · ∇)u (2.3)

∇ ·B = 0 (2.4)

As we are going to be looking at the shallow water approximation, it is appropriate
to take the density as constant. It should be noted that the current J 6= 0 in the bulk
of the fluid which is different to the assumptions of Melcher (1963), where he takes zero
current in the bulk of the fluid.
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The boundary conditions for the fluid and magnetic fields are

w(t, x, y,−h) = 0, (2.5)

representing impermeability at the bottom (z = −h). There is no magnetic field below
z = −h or above z = η(t, x, y), and therefore

B · n̂ = 0 on z = −h and z = η(t, x, y). (2.6)

On the free surface there is the continuity of total pressure:[
p+
|B|2

2µ0

]1
2

= 0 on z = η(t, x, y). (2.7)

The free surface equation is also used:

∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
= w on z = η(t, x, y) (2.8)

3. Linear Theory
The linear theory is perturbed from magnetostatic equilibrium:

u = 0, B = B0ex, η = 0. (3.1)

The lower boundary condition in region 1 is B · n̂ = Bz(t, x, y,−h) = 0. The pressure in
the equilibrium state is given by:

− 1

ρ0

∂p

∂z
− g = 0. (3.2)

Integrating this equation, one obtains p = −ρ0gz+C. To find C, one uses the continuity
of total pressure:

p(0) +
B2

0

2µ0
= pa ⇒ C = pa −

B2
0

2µ0
, (3.3)

where pa is atmospheric pressure. So, the equilibrium pressure is:

p = pa −
B2

0

2µ0
− ρ0gz. (3.4)

The pressure may be written as Johnson (1997), i.e. as perturbation from the magneto-
static pressure. The non-dimensional perturbed pressure p̂ is defined by:

p = pa −
B2

0

2µ0
− ρ0gz − ρ0ghp̂. (3.5)

The linear case is scaled in the following way:

x = hx̂, y = hŷ, z = hẑ, η = hη̂, t =
h√
gh
t̂, (3.6)

u =
√
ghû, B = B0B̂. (3.7)

For the weakly nonlinear regime weak magnetic fields are required for consistency and
we scale the magnetic field accordingly (see 4.4). For the linear theory however, this isn’t
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necessary. The scaled equations are:

Dû

Dt̂
= −∇̂

(
p̂+

M |B̂|2

2

)
+M(B̂ · ∇̂)B̂ (3.8)

DB̂

Dt̂
= (B̂ · ∇̂)û (3.9)

∇̂ · û = 0 (3.10)
∇̂ · B̂ = 0 (3.11)

∂η̂

∂t̂
+ û

∂η̂

∂x̂
+ v

∂η̂

∂ŷ
= ŵ on ẑ = η̂(t̂, x̂, ŷ) (3.12)[

p̂− η̂ − M

2
+
M |B̂|2

2

]2
1

= 0 on ẑ = η̂(t̂, x̂, ŷ) (3.13)

B̂ · n̂ = 0 on η̂(t̂, x̂, ŷ) (3.14)
B̂z = 0 on ẑ = −1 (3.15)
ŵ = 0 on ẑ = −1. (3.16)

Here, M = v2A/gh, vA = B0/
√
µ0ρ0, ∇̂ = (∂x̂, ∂ŷ, ∂ẑ) and

D

Dt̂
=

∂

∂t̂
+ û · ∇̂. (3.17)

It should be noted that the quantityM is the square of the Froude number for the Alvén
velocity. From now on, hats on variable will be dropped for the sake of simplicity. Let us
expand, using the following perturbation:

u = εu1 + o(ε), B = ex + εB1 + o(ε), p = εp1 + o(ε), η = εη1 + o(ε).

The linearised equations are then:

∂u1

∂t
= −∇ (p1 +MB1x) +M

∂B1

∂x
, (3.18)

∂B1

∂t
=
∂u1

∂x
, (3.19)

∇ · u1 = 0, (3.20)
∇ ·B1 = 0, (3.21)

p1 − η1 +MB1x = 0 on z = 0, (3.22)
∂η1
∂t

= w1 on z = 0, (3.23)

B1z =
∂η

∂x
on z = 0 (3.24)

B1z = 0 on z = −1, (3.25)
w1 = 0 on z = −1. (3.26)

It is common practice to express the perturbations as Fourier transforms:

f(t, x, y) =
1

(2π)2

∫
R2

f̂(ω, k, l)ei(kx+ly−ωt)dkdl. (3.27)

In order to derive now the dispersion relation that will give information about the waves
to be allowed to propagate. The way to obtain a linear equation for the free surface it is
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necessary to first derive an equation for the component Bz component of the magnetic
field:

∂2B̂z

∂z2
− |k|2B̂z = 0. (3.28)

From here, using the appropriate boundary conditions, it is now simple to obtain the
required dispersion relation:

ω2 = Mk2 + |k| tanh |k|, k = kex + ley. (3.29)

The dispersion relation can be expanded for long waves |k| � 1 to obtain:

ωk = k2 +
M

2
k2 − k4

6
+
l2

2
, (3.30)

which gives rise to a linear PDE using ω 7→ −i∂t, k 7→ i∂x, l 7→ i∂y:

∂

∂x

[
∂η

∂t
+

(
1 +

M

2

)
∂η

∂x
+

1

6

∂3η

∂x3

]
+

1

2

∂2η

∂y2
= 0. (3.31)

This explains why the k4 term was kept. The dispersion relation gives rise to the linear
part of the final weakly nonlinear equation, had it been dropped, a mismatch of the final
weakly nonlinear would have occurred. On the other hand, for short wavelength waves,
the approximation tanh |k| = 1 is applicable, and the dispersion relation becomes:

ω2 = Mk2 +
√
k2 + l2. (3.32)

This dispersion relation gives rise to the following PDE:

∂2η

∂t2
= M

∂2η

∂x2
−P(η) (3.33)

Where:
P̂(η̂) =

√
k2 + l2. (3.34)

Both the obtained governing equations (3.31 & 3.33) are the linear part of the weakly
nonlinear equations to be determined in later sections. In Benjamin (1992), the weakly
nonlinear equation was obtained by noting that the linear equation (Equation 3.31) is a
limiting case of the weakly nonlinear version. This paper will derive the equations from
a formal perspective.
It can be seen, here or in Figures 2-3 for a graphical solution, that the short waves are
only weakly dispersive as ω ∼

√
Mk + o(k) and the

√
k2 + l2 gives the weak dispersion

whereas for the long linear MHD surface waves, there is no dispersion depending on the
wave vector for a large part of the domain.

4. Magnetic KP Equation
The linear free surface profile, η1(x, y) arising from a moving pressure distribution

moving with speed U say can be computed using the techniques of section 3. One can
plot η1(x, 0) against U/Umin and see a singularity appear at U/Umin = 1, see (Hunt
(2013), section 2.3.2). Therefore, it is necessary to move to weakly nonlinear theory. The
derivation will follow the method laid out by Johnson (1997). Starting with the equations
(2.1)-(2.8), introduce the following scaling

x = Lx̂, y = Lŷ, z = hẑ, t =
L√
gh
t̂, u =

√
ghû, (4.1)
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Figure 2: Long Waves Figure 3: Short Waves

v =
√
ghv̂, w =

h
√
gh

L
ŵ, B = B0B̂, η = aη̂. (4.2)

As the perturbations in the free surface are going to be small it follows that there can
really be no large quantities. To this end the pressure is scaled p 7→ εp in order to obtain
a consistent system of equations. The process of choosing the scaling which yields the
most terms is often referred to as the principle of least degeneration. In the process of
non-dimensionalsation, there are two parameters which appear:

α =
a

h
, β =

h2

L2
. (4.3)

In order to balance the nonlinearity and the dispersion take α = β = ε and make the
following change of variables, as suggested by Johnson (1997):

X = x̂− t̂, T = εt̂, y =
√
εY, v =

√
εV, M = εM̄. (4.4)

Implicitly, M � 1, which implies that B2
0/µρ� gh which means that the magnetic field

must be small. The equations (2.1)-(2.8) now become:

∂u

∂X
+ ε

∂V

∂Y
+
∂w

∂z
= 0, (4.5)

ε
∂u

∂T
− ε ∂u

∂X
+ ε2

(
u
∂u

∂X
+ εV

∂u

∂Y
+ w

∂u

∂z

)
= − ∂

∂X

(
εp+

εM̄ |B|2

2

)
+

+ εM̄

(
Bx

∂Bx

∂X
+
√
εBy

∂Bx

∂Y
+Bz

∂Bx

∂z

)
, (4.6)

ε
5
2
∂v

∂T
− ε 3

2
∂V

∂X
+ ε

5
2

(
u
∂V

∂X
+ εV

∂V

∂Y
+ w

∂V

∂z

)
= −
√
ε
∂

∂Y

(
εp+

εM̄ |B|2

2

)
+

+ εM̄

(
Bx

∂By

∂X
+
√
εBy

∂By

∂Y
+Bz

∂By

∂z

)
, (4.7)
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ε3
∂w

∂T
− ε2 ∂w

∂X

(
u
∂w

∂X
+
√
εV

∂w

∂Y
+ w

∂w

∂z

)
= − ∂

∂z

(
εp+

εM̄ |B|2

2

)
+

+ εM̄

(
Bx

∂Bz

∂X
+ εBz

∂By

∂Y
+Bz

∂Bz

∂z

)
, (4.8)

ε
∂Bx

∂T
− ∂Bx

∂X
= ε

3
2
∂

∂Y
(uBy −

√
εV Bx)−

√
ε
∂

∂z
(
√
εwBx − uBz), (4.9)

ε
∂By

∂T
− ∂By

∂X
= ε

∂

∂z
(V Bz − wBy)− ε ∂

∂X
(uBy −

√
εV Bx), (4.10)

ε
∂Bz

∂T
− ∂Bz

∂X
= ε

∂

∂z
(
√
εwBx − uBz)− ε2 ∂

∂Y
(V Bz − wBy), (4.11)

∂Bx

∂X
+
√
ε
∂By

∂Y
+

1√
ε

∂Bz

∂z
= 0, (4.12)

εp− εη − εM̄

2
+
εM̄ |B|2

2
= 0, z = εη(T,X, Y ), (4.13)

and

ε
∂η

∂T
− ∂η

∂X
+ εu

∂η

∂X
+ ε2

∂η

∂Y
= w, z = εη(T,X, Y ). (4.14)

The nonlinear governing equations are perturbed as:

p, u, V, w, η = p0, u0, V0, w0, η0 + εp1, εu1, εV1, εw1, εη1 + o(ε), (4.15)
Bx = 1 + εB1x + ε2B2x + o(ε2), (4.16)

By, Bz = ε
3
2B1y, ε

3
2B1z + o(ε

3
2 ). (4.17)

Considering the lowest order O(ε) of equations (2.1)-(2.8) equations, we obtain:

∂u0
∂X

+
∂w0

∂Z
= 0,

∂u0
∂X

=
∂p0
∂X

,
∂p0
∂z

= 0,
∂B1x

∂X
=
∂w0

∂z
, (4.18)

∂V0
∂X

=
∂p0
∂Y

,
∂B1y

∂X
=
∂V0
∂X

,
∂B1z

∂X
=
∂w0

∂X
. (4.19)

The boundary conditions read as:

p0 = η0, w0 = −∂η0
∂X

, on z = 0. (4.20)

The solutions of these equations in dimensionless form are:

p0 = u0 = −B1x = η0, w0 = −(1 + z)
∂η0
∂X

,
∂V0
∂X

=
∂η0
∂Y

. (4.21)

The next order equations are straightforward:

∂u1
∂X

+
∂V0
∂Y

+
∂w1

∂z
= 0, (4.22)

∂η0
∂T
− ∂u1
∂X

+ η0
∂η0
∂X

= −∂p1
∂X

, (4.23)

−(z + 1)
∂2η0
∂X2

=
∂p1
∂z

. (4.24)
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Along with the boundary conditions:

p1 + M̄B1x = η1,
∂η0
∂T
− ∂η1
∂X

+ 2η0
∂η0
∂X

= w1. (4.25)

Integrating equation (4.24) and using the first equation of (4.25) shows that:

p1 =
1

2

[
1− (1 + z)2

] ∂2η0
∂X2

+ η1 + M̄η0. (4.26)

To find w1, insert (4.26) into (4.23), substitute ∂Xu1 into (4.22), and, integrate it w.r.t.
z to have:

w1 = −1

3

∂3η0
∂X3

− ∂η1
∂X

+ η0
∂η0
∂X
− M̄ ∂η0

∂X
− ∂η0
∂T
− ∂V0
∂Y

. (4.27)

The appearance of the ∂3Xη0 term shows why the k4 term must be kept in the dispersion
relation. Inserting (4.27) into the second equation of (4.25) and differentiating w.r.t. X
gives:

∂

∂X

[
∂η0
∂T

+
3

2
η0
∂η0
∂X

+
M̄

2

∂η0
∂X

+
1

6

∂3η0
∂X3

]
+

1

2

∂2η0
∂Y 2

= 0. (4.28)

It may be noted that a co-ordinate transformation may remove the term M̄∂Xη0/2. This
term may be regarded as setting the correct wave speed. After applying the co-ordinate
transformation (4.28) reduces to the well-known Kadomtsev-Petviashvilli(KP) equation.
This is done by moving back into the scaled co-ordinates defined by:

X = x̂− t̂, T = εt̂, Y =
ŷ√
ε

(4.29)

KP is known to be integrable and has analytical solutions (Johnson (1997)). From these
solutions of the KP equation one can now obtain solutions to (4.28) via co-ordinate
transformation.

5. Magnetic Fields in Both Regions
Consider now the problem described in Sec. 1 with a magnetic field in both regions.

Region 1 is defined by {(x, y, z)|z > η(t, x, y, z)}, and, region 2 is defined by {(x, y, z)| −
h 6 z 6 η(t, x, y, z)}. There is no current in region 2, and so ∇×B2 = 0, i.e. it can be
stated that B2 = ∇Φ. The two boundary conditions which must be obeyed are:

B2 → B2,0 as z →∞ (5.1)

B2 · n̂ = 0 z = η(t, x, y) (5.2)
The magnetic field in region 2 can be written in the following manner:

B2 = B2,0 +∇Φ (5.3)

to yield the equation:
∇2Φ = 0 (5.4)

One of the boundary conditions which links the magnetic field in region 1 to the magnetic
field of region 2 is: [

p+
|B|2

2µ

]2
1

= 0. (5.5)

The boundary condition B · n̂ = 0 reduces to the following:

B1,0 · ex∂xη = B1,0 · ez, (5.6)
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yielding a lower boundary condition.

5.1. Linear Theory
5.1.1. Derivation of Dispersion Relation

A dispersion relation is sought to gain insight into how waves will propagate in a
magnetised fluid system. The derivation is very similar to the previous case with the
magnetic field confined to the fluid. The equilibrium condition for the magnetic field in
region 1 is given by B = B1ex. The scaling for the linear case is the same as in the
previous case in section 3. The magnetic field in region 1 is scaled as B = B1B̂. The
equilibrium pressure, in this case, is determined as before. The general kinetic pressure
is p = −ρ0gz + C. The continuity of total pressure now reads:

p(0) +
B2

1,0

2µ1
= pa +

B2
2,0

2µ2
. (5.7)

The scaled equations are then:

Dû

Dt̂
= −∇̂

(
p̂+

M2|B̂2|2

2

)
+M2(B̂2 · ∇̂)B̂2 − 1 6 ẑ 6 η̂(t̂, x̂, ŷ),

DB̂2

Dt̂
= (B̂2 · ∇̂)û − 1 6 ẑ 6 η̂(t̂, x̂, ŷ),

∇̂ · û = 0 − 1 6 ẑ 6 η̂(t̂, x̂, ŷ),

∇̂ · B̂2 = 0 − 1 6 ẑ 6 η̂(t̂, x̂, ŷ),

∇2Φ̂ = 0 η̂(t̂, x̂, ŷ) < ẑ <∞,
∂η̂

∂t̂
+ û

∂η̂

∂x̂
+ v

∂η̂

∂ŷ
= ŵ on ẑ = η̂(t̂, x̂, ŷ),[

p̂− η̂ +
M |B̂|2

2

]2
1

= 0 on ẑ = η̂(t̂, x̂, ŷ).

B̂z = 0 on ẑ = −1,

ŵ = 0 on ẑ = −1,

∂x̂η√
1 + (∂x̂η̂)2

= B̂1z on ẑ = η̂(t̂, x̂, ŷ).

The notation used here is:

M1 =
B2

1

ghµ1ρ2
, M2 =

B2
2

ghµ2ρ2
(5.8)

Note that in region 2 the magnetic field scales as the following:

B̂2 = 1 + ε∇Φ̂, (5.9)

where the variation from the constant field should not be large. The linearisation is now
analogous to the previous case in Section 3. The no flux condition reduces to:

B̂1z = ∂xη = B̂2z (5.10)

which is equivalent to:
B1z = B2z on ẑ = η̂(t̂, x̂, ŷ). (5.11)

Again, it is assumed the perturbations can be expanded as Fourier transforms and an
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Figure 4: Dispersion Relation for Infinite β

equation for B1z is found which is mathematically similar to that found previously
(equation 3.28). Finally, the corresponding dispersion relation is then:

ω2 = M2k
2 + |k| tanh |k|+M1k

2 tanh |k|. (5.12)

The long wave approximation of the dispersion relation is:

ωk =

(
1 +

M2

2

)
k2 +

l2

2
− k4

6
+M1k

2|k|. (5.13)

Note that this dispersion relation is only valid when M1 � 1, as otherwise it can be
ignored. The requirement that M2 � 1 was required for mathematical consistency. To
obtain a result where M1,M2 6� 1 would require different techniques employed in this
paper. The approach taken here for the small magnetic field is analagous is the assumption
of small surface tension in Benjamin (1992). This dispersion relation has appeared several
times in the literature before. The first was in Kim & Akylas (2006) and the second was
in Hunt (2013). The form of the equations is exactly the same but the coefficients are
different reflecting the application. Upon using the substitutions ω 7→ −i∂t, k 7→ i∂x, l 7→
i∂y as before, the following linear PDE is obtained governing long-wavelength linear
MHD waves propagating along a contact discontinuity in magnetised plasma:

∂

∂x

[
∂η

∂t
+

(
1 +

M2

2

)
∂η

∂x
+

1

6

∂3η

∂x3
+M1H

(
∂2η

∂x2

)]
+

1

2

∂2η

∂y2
= 0. (5.14)

This equation represents the linear part to the weakly nonlinear equation in the small
amplitude and long wavelength. The nonlinear part of the equation is derived in section
4.

Page 11 of 15

Cambridge University Press

Journal of Plasma Physics



For Peer Review

12 M. J. Hunt

5.1.2. Wave Profiles from a Moving Pressure Distribution
This section demonstrates a linear 2D wave with a moving pressure distribution to

give an idea of some of the linear wave profiles. It is possible to obtain wave profiles for
steady linear waves by the use of a moving pressure distribution, P (x, y) on the surface
of the plasma. In order to do this move to a frame where the plasma is moving uniformly
with a velocity u = Uex. The scaling for the linear theory is just the same as in Section
3 given by (3.6-3.7) and as a result the scaled velocity is perturbed from F = U/

√
gh.

The linearised governing equations become:

F
∂u1

∂x
= −∇(p1 +M2B2x) +M2

∂B2

∂x
,

F
∂B2

∂x
=
∂u2

∂x
,

∇ ·B2 = 0,

∇ · u2 = 0,

F
∂η1
∂x

= u1z on z = 0,

p1 − η1 +M2B2x = P̂ +M1B1x on z = 0,

B2z = 0 on z = −1,

w1 = 0 on z = −1,

B1z = B2z on z = 0.

Following the previous linear calculations given in section 3, an equation is now derived
for the z-component of the magnetic field equation (3.28). From the solution of equation
(3.28) all other variables can be easily obtained. Finally, in terms of the moving pressure
on the surface, the Fourier transform for the free surface is:

η̂ =
|k|P̂

(F 2k2 −M2k2) coth(|k|) + |k|(M1k2 − 1))
(5.15)

There is an interesting feature of figure 5 in the number of ripples in the wave, which is
suggestive the the decay is algebraic. It can be shown that increasing the Froude number
to the minimum of the dispersion relation, the amplitude becomes unbounded which is
why the need for weakly nonlinear theory.

5.2. Weakly Nonlinear Theory
Consider weakly nonlinear theory of MHD surface wave propagation in the equilibrium

defined by (figure 1) Scale the magnetic fields in the following way, following Johnson
(1997): B1 = B10B̂1 and B2 = B20B̂2. Expand the pressure in region 1 as

p = pa − ρ0gz −
B2

10

2µ1
+
B2

20

2µ2
+ ρ0ghp̂. (5.16)

The total pressure becomes:

p+ C − εη̂ +
M1

ˆ|B1|2

2
=
M2|B̂2|2

2
, (5.17)

where M1,2 = v2A1,2/gh. Here vA1,2 = B2
1,20/2ρµ1,2. The transformation p 7→ εp is used.

For brevity, drop again the hats and set M1,2 = εM̄1,2 resulting in
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Figure 5: Travelling Linear Wave, F = 1,M2 = 1,M1 = 2

εp− εη +
εM̄1|B1|2

2
=
εM̄2|B2|2

2
. (5.18)

The governing equation for the magnetic field in region 1 becomes:

∂2Φ

∂X2
+ ε

∂2Φ

∂Y 2
+
∂2Φ

∂z2
= 0 (5.19)

This reduces the equation into a 2D Laplace equation, differentiating w.r.t. z yields a
Laplace equation for B1z, with lower boundary condition B1z(z = 0) = ∂xη. The solution
for this problem is:

B1z =
1

π

∫
R

z∂Xη

(X −X ′)2 + z2
dX ′ (5.20)

To find B1X , one integrates w.r.t. z and then differentiates w.r.t. X and set z = 0 to
obtain:

B1X(z = 0) = −H (∂Xη) (5.21)

Differentiating the above w.r.t. X and inserting it in eq. (4.19), followed by setting z = 0
shows that:

∂B1X

∂X
= H

(
∂2η0
∂X2

)
. (5.22)

Just as in Section 4, perturbation of the constant magnetic field in the ex-direction are
introduced. Expand as

p = p0 + εp1 + o(ε), (5.23)
η = η0 + εη1 + o(ε), (5.24)

B1x,2x = 1 + εB1x1,2x1 + o(ε). (5.25)
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Gathering the expanded terms results in

ε(p0 + εp1)− ε(η0 + εη1) +
εM̄1

2
(1 + 2εB1x1) =

εM̄2

2
(1 + 2εB2x1). (5.26)

The part of this equation with O(ε) is:

p0 − η0 = 0. (5.27)

The next order, O(ε2), is:

p1 − η1 + M̄1B1x1 = M̄2x1. (5.28)

From this point onwards a mathematically analogous analysis can be carried out as in
the one-field case (see section 4). The final governing equation is:

∂

∂X

[
∂η0
∂T

+
M̄1

2

∂η0
∂X

+
3

2
η0
∂η0
∂X

+
1

2

∂3η0
∂X3

+
M̄2

2
H

(
∂2η0
∂X2

)]
+

1

2

∂2η0
∂Y 2

= 0. (5.29)

The one-dimensional version of this equation, known as the Benjamin equation, was
derived in Benjamin (1992) using a different method than the one used here. The 2D
Benjamin equation has appeared in several instances, in interfacial flows examined in
Kim & Akylas (2006) and in electrohydrodynamics, Hunt (2017).

6. Discussions and Conclusions
The new result presented in this paper is the derivation of an equation that describes
the derivation of an equation that describes the weakly nonlinear wave propagation in
2+1 dimensions. The equation has been investigated elsewhere in different circumstances.
Nevertheless, some important results have been found by other authors. In Zaiter (2009),
the author proves existence of solutions of (5.29) as well as the algebraic decay of
solutions. In (Kim & Akylas (2006)), they study bifurcation of steady lump solutions
and also prove instability results concerning transverse stability. As of writing, there are
no known analytical solutions to the 1D Benjamin equation.

A numerical solution of the Benjamin equation would provide valuable insight but that
is not within the scope of the present paper.
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