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A Census of Small Transitive Groups and Vertex-Transitive Graphs
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Abstract

We describe two similar but independently-coded computations used to construct a
complete catalogue of the transitive groups of degree less than 48, thereby verifying,
unifying and extending the catalogues previously available. From this list, we construct
all the vertex-transitive graphs of order less than 48. We then present a variety of
summary data regarding the transitive groups and vertex-transitive graphs, focussing on
properties that seem to occur most frequently in the study of groups acting on graphs.
We illustrate how such catalogues can be used, first by finding a complete list of the
elusive groups of order at most 47 and then by completely determining which groups of
order at most 47 are CI groups.

1. Introduction

In the study of finite permutation groups and the study of groups acting on graphs,
transitive groups play a fundamental role. For well over 100 years, researchers have
used catalogues of transitive groups of (necessarily) small degree to provide examples
and counterexamples, or simply to identify promising lines of enquiry. G. A. Miller was
one of the most prolific of these early cataloguers with many of the 400+ papers in his
Collected Works [10] listing small groups with particular properties (transitive, primitive,
etc). The difficulty of the task is determined by the prime factorisation of the degree,
with the most difficult degrees being those with several small prime factors. The first
“difficult degree” is 12 and although Miller [9] published a supposedly complete list of
the transitive permutation groups of degree 12 as early as 1896, it was later discovered
to contain a handful of mistakes (Royle [11]). Miller notwithstanding, constructing
catalogues of combinatorial objects is a difficult and error-prone task by hand, yet one
particularly amenable to computation. As computers became more widespread and more
powerful, the catalogues of transitive groups were extended to larger and larger degrees
until by 1996 the lists were complete up to degree 31 (see [7] for an overview including
references to the various authors who contributed to these extensions).
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When the degree is a power of a small prime, then we expect the computation to be the
most difficult and to yield the largest collections of transitive groups, and so 32 is the
next difficult case. This case was resolved by Cannon & Holt [2] who determined that
there are 2801324 transitive groups of degree 32, which is two orders of magnitude more
than the total number of all transitive groups of degree less than 32. (Throughout this
paper, when we talk about classifying transitive permutation groups of a given degree
n, then we always mean classifying them up to conjugacy in Sym(n), and when we
say, for example, that there are 2801324 transitive groups of degree 32, we really mean
that there are 2801324 conjugacy classes of such subgroups in Sym(n). It would not be
difficult to count the sizes of each of these classes and thereby count the total number
of groups.)

In this paper we extend the catalogues of transitive groups up to degree 47, i.e. just
short of the next really difficult degree, namely 48. For “end-users” of a catalogue of
combinatorial objects, the primary concern is the extent to which the user has confidence
that the catalogue is correct and complete. Increasingly, computational papers in com-
binatorics are addressing these concerns through redundancy — two or more researchers
writing programs that are independent (as far as possible) and then cross-checking the
results. Along these lines, we present two computations that were conducted totally
independently, and yielded the same output when first compared. (More precisely, we
checked that the lists of groups output by the two computations had the same lengths,
and that each group on one of the lists was conjugate in Sym(n) to exactly one group
on the other list.) Both computations were done in MAGMA [1] and so both rely on
basic functions such as calculating the maximal subgroups of a finite group and checking
whether two groups are conjugate in the symmetric group. As these functions have by
now received decades of user-testing, we feel confident that the chance of an error from
this source is negligible.

The first author has been in the process of computing the transitive groups of degree 48
(in a leisurely fashion, using otherwise-idle computer time) for the last few years. This
computation recently completed with about 195.8 million transitive groups of which
all but about 3.4 million have minimal block size 2. (These numbers have not been
double-checked.)

2. First Computation

The first computation was based around recursive use of the MaximalSubgroups com-
mand of MAGMA [1], together with partitioning the computation into a large number of
disjoint parts that can be run independently (for example, on multiple computers or just
multiple cores on a single computer.) It uses only elementary permutation group theory,
instead seeking to be as simple and robust as possible. The majority of the effort in
this approach involves implementing computational techniques to partition the search,
to eliminate as much duplication as possible, and to manage and collate the resulting
large data sets; it involves more “data bookkeeping” than mathematics.



The primitive permutation groups are known up to degree 4095 (see [3]) and are incor-
porated into the databases of both MAGMA and GAP, and so we need only consider the
imprimitive groups. By definition if a group G acting transitively on the set €2 of size n
is not primitive, then there is at least one partition of 2 into a block system B such that
G permutes the blocks of B. If we let GB denote the action of G on the blocks (“the top
group”) and if B has n/k blocks of size k, then GB is a transitive permutation group of
degree n/k. Thus we can associate to each group G a set of pairs of the form

{(k,GP®) : B is a minimal block system for G with blocks of size k}.

If this set contains more than one pair (imprimitive groups may of course have more than
one minimal block system), then we wish to distinguish just one of them. Thus we define
the signature of an imprimitive permutation group to be the lexicographically least pair
(k, GB) associated with G, where the second component is indexed according to its order
in the list of transitive groups of degree n/k already in MAGMA. But note that it can
happen that two different minimal block systems of G define the same signature.

Our aim will be to separate the computation into parts, with each part constructing only
the groups with a particular signature. Given an integer k such that 1 < k < n, and a
transitive group H of degree n/k, the wreath product Sym(k)!H contains (a conjugate of)
every transitive group of degree n with signature (k, H). Therefore, at least in principle,
these groups can all be found by exploring the subgroup lattice of Sym(k) ! H. To do
this, we repeatedly use the MaximalSubgroups command of MAGMA thereby traversing
the subgroup lattice downwards and in a breadth-first fashion, pruning each branch of
the search as soon as it produces groups with signature differing from H, while using
conjugacy tests to avoid duplication as far as possible.

More precisely, the program maintains a list of active transitive subgroups of Sym (k) H
in descending group order. This list is initialised with the single group Sym(k)!H which
by default is constructed with the “canonical block system” with blocks {1,2,...,k},
{k+1,k+2,...,2k}, and so on. At each step, the program removes an active subgroup
of largest order, say G, from the list for processing. The processing stage computes the
transitive maximal subgroups of G, and tests each of these maximal subgroups M to
determine if it should be retained or not, using the following rules:

1. If M has a minimal block system with blocks of size smaller than k, then reject,

2. If the action of M on the canonical block system is not equal to H, then reject,

3. If M is conjugate (in Sym(k)!Sym(n/k)) to a group on the list of active subgroups,
then reject.

If M passes all these tests, it is then added to the list of active subgroups in the appro-
priate position (depending on its order).

The rationale behind the first two tests is that if M fails either of them, then a conjugate
of M will be found during another part of the search, either the search for all transitive



groups preserving a block system with strictly smaller blocks, or during the search for
transitive groups with a different “top group”. The third test ensures that the groups
in each part are pairwise non-conjugate.

Every group that is processed is a transitive group with a minimal block system with
blocks of size k, no block systems with blocks with fewer than k elements, and with top-
group isomorphic to H. Conversely, every transitive group with these three properties
will at some stage enter the list of active subgroups and then be processed. Therefore
by adding an output step as the point that a group enters (or leaves) the list of active
subgroups, we can compute all transitive groups associated with a particular (k, H)
pair. By running over all possibilities for k and letting H range over all the transitive
groups of degree n/k, every transitive group of degree n is constructed. As indicated
previously, we need to eliminate conjugate groups that occur in more than one part of
the computation, which results from groups having multiple minimal block systems. If a
group has two minimal block systems that define different signatures, then we only keep
it if its canonical block system has minimal signature. But if there is more than one
minimal block system with the same minimal signature as the canonical block system,
then a final conjugacy check is required to eliminate possible duplicates.

3. Second Computation

For many of the calculations, we used essentially the same methods as in the first compu-
tation, although these calculations were carried out completely independently. In fact,
for all degrees except for 36 and 40, we were able to complete the calculation in a sin-
gle run, without any need for filtering by size of blocks, by repeated application of the
MAGMA commands MaximalSubgroups and IsConjugate, starting with Sym(n). But
for some degrees, such as 42 and 44, it was quicker to use the alternative techniques that
we shall now describe for the smaller block sizes.

In the following descriptions, we use ATLAS notation for group structures. In particular,
an integer k in a structure description denotes a cyclic group of order k. For calculations
with n even and minimal block size 2, we used a method similar to the one described in
detail in [2, Section 2.2], which was applied to the enumeration of the transitive groups of
degree 32 with minimal block size 2. Suppose that the transitive group G preserves the
block system B with blocks of size 2. So G < W := 21 Sym(n/2). Then H := G¥ is one
of the groups in the known list of transitive groups of degree n/2, and G < H := 2 H.
As in the first computation, we calculate those groups with signature (2, H) for each

individual group H.

Let K 2 2"/2 be the kernel of the action of W on B. Then we can regard K as a module
for H over the field Fy of order 2, and M := G N K is an Fy H-submodule. We can use
the MAGMA commands GModule and Submodules to find all such submodules. In fact,
since we are looking for representatives of the conjugacy classes of transitive subgroups
of W, we only want one representative of the conjugation action of N := 2! Ngy 5 /2) (H)



on the set all Fo H-submodules M of K, and we use the MAGMA command IsConjugate
to find such representatives.

Now, for each such pair (H,M), the transitive groups G with H = G® and M =
GNK correspond to complements of K/M in H/M, and the H-conjugacy classes of such
complements correspond to elements of the cohomology group H'(H, K /M), which can
be computed in MAGMA.

We also need to test these groups G for conjugacy under the action of the normaliser
Nu (M), which can be done in straightforward fashion using MAGMA’s IsConjugate
function or (with a little more programming but usually faster in terms of computation)
using an induced action on the cohomology group. Finally, for each G that we find, we
need to find all blocks systems with block size 2 preserved by GG, so that we can eliminate
occurrences of groups that are conjugate in Sym(n) but arise either for distinct pairs
(H, M) or more than once for the same pair. We refer the reader to [2, Section 2.2] for
further details.

In the case n = 36, we used a similar method for blocks systems with blocks of size 3. In
this case, we have G < Sym(3) ! Sym(12) = 312 : (27 Sym(12)). Let H be the projection
of G onto the quotient group 2 Sym(12). Then H < Sym(24) and H preserves a block
system with blocks of size 2 and projects onto a transitive subgroup of degree 12. We can
find the possible groups H using the method just described for blocks of size 2 (although
there is a minor complication, because H is not necessarily transitive), and then find
the possible groups G using the same method, but working with modules over Fg rather
than FQ.

In the cases n = 36 and n = 40 with minimal block size 4, we did a corresponding 3-step
calculation using G' < Sym(4) ! Sym(n/4) = 2/2 : 30/4 . 27/% : Sym(n/4).

Finally, for n = 40 with minimal block size 5, the induced action of the stabilizer of
a block on that block is transitive of degree 5, and its structure is one of 5, 5:2, 5:4,
Alt(5), or Sym(5). We enumerated those groups in the final two of these cases separately
using the methods of the first computation. For the first three cases we used a 3-step
calculation using G < 58 : 28 .28 : Sym(n/5).

These computations were originally carried out in 2014 on a number of different comput-
ers with different specifications, so it is difficult to provide a meaningful estimate of the
total cpu-time involved, but this was of the order of 150 hours in total. Perhaps supris-
ingly, the most time consuming individual computation was of the case n = 36 with
block size 9, which took about 47 hours. The calculation requiring the most memory
was the case n = 40 with block size 2, which used about 27GB.

4. Transitive Groups

The numbers of transitive groups of each degree (up to conjugacy in Sym(n)) are shown
in Table 1. As expected, the number of transitive groups is primarily dependent on the



n gn)| n gn)|n gn|n gn) | n g(n)
11 821 164 |31 12 | 41 10
2 112 301 |22 59 | 32 2801324 | 42 9491
3 2|13 9 | 23 7|33 162 | 43 10
4 5014 63 )24 25000 | 34 115 | 44 2113
5 5015 104 |25 21135 407 | 45 10923
6 16 |16 1954 | 26 96 | 36 121279 | 46 56
7 7117 10|27 2392 | 37 11 | 47 6
8 50|18 983 |28 1854 | 38 76
9 34|19 8 | 29 8 | 39 306
10 45|20 111730 5712 |40 315842

Table 1: Numbers g(n) of transitive groups of degree n

number of repeated prime factors in the degree. The single degree n = 32 provides well
over 90% of the transitive groups in the entire catalogue.

For many applications that involve considering all possible transitive actions of a certain
degree, it is sufficient to consider only the minimal transitive groups i.e., transitive groups
with no proper transitive subgroups. (One example of this can be found in the next
section, where all vertex-transitive graphs are constructed.) Testing if a transitive graph
is minimal can be done by finding all its maximal subgroups and verifying that none are
transitive. As most of the groups are not minimal transitive, it proves useful in practice
to first construct some random subgroups in an attempt to find a transitive proper
subgroup, only undertaking the more expensive step of finding all maximal subgroups if
this fails.

The numbers of minimal transitive groups of each order are given in Table 2, which
shows that the numbers of minimal transitive groups vary in much the same way as the
numbers of all transitive groups.

5. Vertex-transitive Graphs

If G is a group acting transitively on a set €2, then it is straightforward to construct all
the G-invariant graphs or digraphs with vertex set 2. The orbits of G on 2 x Q are
called the orbitals of G and it is immediate that the arc set of a G-invariant digraph
is a union of these orbitals. If O is an orbital containing a pair (a,b) with a # b, then
we denote by O the orbital containing (b,a). It is possible that O is equal to O, in
which case O is called self-paired, and otherwise @ and O’ are paired. Any subset of the



11 1] 21 5| 31 1|41 1
2 1|12 17 | 22 6|32 12033 | 42 84
3 1113 1123 1] 33 3|43 1
4 2|14 6 | 24 213 | 34 7|44 148
) 1115 4125 2135 4145 41
6 4116 75 | 26 71 36 436 | 46 4
7 1|17 11|27 20 | 37 1|47 1
8 5 |18 23 | 28 30 | 38 )
9 2119 1129 1139 4
10 6 | 20 47 | 30 79 | 40 1963

Table 2: Numbers m(n) of minimal transitive groups of degree n

orbitals determines a G-invariant digraph, and any subset of the orbitals closed under
taking pairs determines a G-invariant graph. (We view a graph simply as a digraph
that happens to have the property that if (a,b) is an arc, then so is (b,a), and thus
“digraphs” includes “graphs”.) The set of G-invariant digraphs arising in this way will
usually contain isomorphic digraphs, but for the small sizes that we are considering, it
is easy to filter these out, thus yielding a complete list of the pairwise non-isomorphic
G-invariant digraphs.

The complete list of vertex-transitive digraphs can be computed by repeating this com-
putation for each of the transitive groups of degree n, combining the resulting lists, and
then performing one final filtering process to remove all but one copy of each digraph.
To construct only graphs, the process is modified slightly to ensure that the orbitals are
included/excluded in pairs in the arc-set of the digraph under construction.

Using software such as Piperno & McKay’s nauty/Traces [8], it is very easy to find the
canonically labelled isomorphs of these small graphs. Isomorphic graphs have identi-
calcanonically labelled isomorphs and so the task reduces to removing duplicates from a
list. We note that checking conjugacy for groups is far harder and at the time of writing
there are no effective algorithms to find a canonical conjugate of a group.

If H, G are transitive groups such that H < G, then the orbitals of G are unions of
the orbitals of H and so the set of H-invariant digraphs contains the set of G-invariant
digraphs. Thus it is sufficient to perform the construction only for the minimal transitive
groups. The regular groups of degree n (i.e., those with degree equal to order) are
necessarily minimal transitive, and the digraphs arising from these groups are exactly the
Cayley digraphs of that order. Any non-Cayley digraphs can only be created when the



larger groups are processed, though these groups will usually produce Cayley digraphs
as well.

The numbers of transitive (resp. Cayley) graphs peak at degree 44, even though there are
far fewer groups of degree 44 than of several other degrees (in particular degree 32). We
can give a heuristic explanation for this as follows. For this range of degrees, the majority
of the vertex-transitive graphs are Cayley graphs, and so groups that contribute large
numbers of Cayley graphs dominate the enumeration. If a group G has a involutions
and b non-involutions, then a first approximation to the number of distinct Cayley sets
(i.e. inverse-closed subsets of G pairwise inequivalent under Aut(G)) is given by

2a+b/2
[Aut(G)]°
For a fixed degree, this will be large when a is large and |Aut(G)| is small. For even
degrees between 34 and 46, it is the dihedral groups (which have relatively large a and
small b) that maximise this value. The order of the automorphism group of Dy, is np(n)
and so although the numerator of the estimate given above is larger for Dyg than for
Dy, the denominator is larger by an even greater factor. As a consequence Dyg has
fewer Cayley graphs than Dyg4.

Every non-identity element of the elementary abelian group Z% is an involution, and
so the numerator of the estimate is as large as it can possibly be; moreover, it grows
very rapidly as n increases. However the automorphism group of Z4 is GL(n,2), which
is also quite large, but which grows much more slowly with n. For lower values of n,
the large denominator ensures that there are relatively few elementary abelian Cayley
graphs; in fact there are just 1372 Cayley graphs of Z3. However this is a small case
phenomenon only, and as n increases the growth rate of the large numerator ensures
that the elementary abelian 2-group of order 2" will eventually dominate.

6. Two Applications

One of the major reasons to construct catalogues of combinatorial objects is to gather
evidence relating to conjectures or other open questions. Even if a newly-constructed
catalogue does not directly contain a counterexample to a conjecture (thereby immedi-
ately resolving it), it can be useful in refining a researcher’s intuition regarding both the
typical and extremal behaviour of the objects in the catalogue.

In the remainder of this section, we consider two areas in which computational evidence
has played a role, and augment that evidence with information derived from the list of
transitive groups described in this paper.

6.1. Elusive Groups

A permutation group G is called elusive if it contains no fized-point-free elements (i.e.,
derangements) of prime order. Elusive groups are interesting because of their connec-



n tn) cn)|n ttn) c(n) [ n t(n) c(n)

16 286 278 | 32 677402 659232

17 36 36 | 33 6768 6768
2 2 2118 380 376 | 34 132580 131660
3 2 2119 60 60 | 35 11150 11144
4 4 4120 1214 1132 | 36 1963202 1959040
) 3 3121 240 240 | 37 14602 14602
6 8 8 | 22 816 816 | 38 814216 814216
7 4 4|23 188 188 | 39 48462 48462
8 14 14 | 24 15506 15394 | 40 13104170 13055904
9 9 9|25 464 464 | 41 52488 52488
10 22 20 | 26 4236 4104 | 42 9462226 9461984
11 8 8|27 1434 1434 | 43 99880 99880
12 74 74 | 28 25850 25784 | 44 39134640 39134544
13 14 14129 1182 1182 | 45 399420 399126
14 56 56 | 30 46308 45184 | 46 34333800 34333800
15 48 44 | 31 2192 2192 | 47 364724 364724

Table 3: Numbers t(n), c(n) of transitive and Cayley graphs of order n




tion to Marusi¢’s Polycirculant Conjecture which asserts that the automorphism group
of a vertex-transitive digraph is never elusive. In principle, a positive resolution of the
polycirculant conjecture may simplify the construction and analysis of vertex-transitive
graphs and digraphs, as it would then be possible to assume the presence of an automor-
phism with n/p cycles of length p for some prime p. Early catalogues of vertex-transitive
graphs relied on ad hoc arguments to exhibit the existence of such an element for the
degrees under consideration.

A permutation group G is called 2-closed if there is no group properly containing G
with the same orbitals as G. The automorphism group of a vertex-transitive digraph is
necessarily 2-closed, because it is already the maximal group (by inclusion) that fixes
the set of arcs of the digraph, which is a union of some of the orbitals. The conjecture
can thus be strengthened to the assertion that there are no elusive 2-closed transitive
groups, yielding a conjecture that was first proposed by Klin.

One might hope that there are simply no elusive groups at all, in which case both
conjectures would hold vacuously, but in fact there are a number of sporadic examples
of elusive groups and a handful of infinite families. All the known elusive groups are not
2-closed, so do not provide counterexamples for either conjecture.

It is relatively easy to test the groups for the property of being elusive by checking to
see if any of the conjugacy class representatives are derangements of prime order. For
the larger groups, it is often faster to first generate some number of randomly selected
elements inside each of the Sylow subgroups in the hope of stumbling on a suitable
derangement without the cost of computing all the conjugacy classes.

Proposition 6.1. A transitive permutation group G of degree n < 48 is elusive if and
only if one of the following holds:

1. G has degree 12 and is either the group My, (acting on 12 points), or one of its
four proper transitive subgroups,

2. G has degree 24 and is one of the 19 groups described by Giudici [5],

3. G has degree 36 and is either a particular group of shape (Cg : C3) : QD14, or one
of its five proper transitive subgroups, as shown in Figure 1. (Here QD4 stands
for the quasidihedral group of order 16.)

In Figure 1 the description of each group is just the output of the GAP command
StructureDescription.

The complete list of elusive groups for n < 30 was previously known (Giudici [5]), and
while some of the examples for degree 36 were known, the list was not complete. Prior to
this work, the smallest degree for which the existence of an elusive group was undecided
was n = 40, which has now been ruled out.

The following is a complete list of the elusive groups of degree up to 47, with each group
listed by its index in the list of transitive groups in MAGMA.
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(092 . 03) . QD16

(092 . 03) . 08 Cg . QD16 (092 . 03) . QS
Cg : Cg Cg 1 Qs

Figure 1: The elusive groups of degree 36

e Degree 12: 46, 47, 84, 181, 272

e Degree 24: 2937, 2043, 2946, 5293, 5295, 5299, 7774, 7775, 7778, 10157, 10161,
10163, 12266, 12269, 12601, 12602, 12604, 14207, 20414

e Degree 36: 1215, 1219, 2290, 2990, 2996, 4959

6.2. CI groups

Recall that a Cayley digraph for the group G with connection set C' C G is the graph
Cay(G, C) with vertex set G, and where (z,zc) is an arc of G for all z € G and ¢ € C.
Clearly G acts regularly on Cay(G, C') by left-multiplication, and any digraph admitting
a regular automorphism group G is a Cayley digraph for G. A Cayley digraph is loopless
if and only if idg € C and undirected if and only if C = C~!. If ¢ is an automorphism
of the group G, then it is immediate that Cay(G, C) is isomorphic to Cay(G,C?). The
group G is called a DCI-group if whenever Cay(G, C) is isomorphic to Cay(G, D), then
there exists an element o € Aut(G) such that D = C?. It is called a Cl-group if the
same property holds for all pairs of inverse-closed subsets C, D. (The acronym CI stands
for “Cayley Isomorphic”, and D for “directed”—previously the terminology G-CI group
was used for the undirected case, but this seems to have fallen out of style.) See [6] for
additional background information regarding Cayley graphs.

One method of identifying the transitive graphs that are not Cayley graphs would be to
separately process each graph by computing its automorphism group and searching for
regular subgroups. However it is considerably easier to precompute the entire collection
of Cayley graphs for each of the groups of order less than 48. Then the non-Cayley
graphs are simply those that appear in the list of transitive graphs but not in the list of
Cayley graphs.

As a side-effect, this process also allowed us to determine the entire collection of CI-
groups of order up to 47 in the following fashion. For each group G, we computed its

11



Order No. Structure Order No. Structure
8 2 Cy x Cy 16 8 QD4
16 9 Q16 18 3 Cs x Ss3
20 3 Cs:Cy 24 3 SL(2,3)
24 10 C3 x Dg 24 12 Sy
24 13 Cy x Ay 27 2 Cy x (3
27 3 (C3x(Cs):Cs 27 4 Co: C3
36 9 (C3xCs):Cy 36 11 C3 x Ay
40 10 05 X Dg 42 1 (C7 : 03) : CQ

Table 4: Minimal non-CI groups with |G| < 48 (not cyclic or dihedral).

automorphism group A = Aut(G) and then, because we were primarily interested in the
undirected case, determined the action of A on the set

S={{g.97'}:9€G, g#idg}. (1)

We used a straightforward orderly algorithm [12] to calculate one representative from
each orbit of A on the power set P(S), thereby finding all the connection sets that are
both inverse-closed and pairwise inequivalent under A. Finally, we constructed all the
Cayley graphs with these pairwise-inequivalent connection sets and checked the lists for
isomorphic pairs of graphs. The group G is a Cl-group if and only if this final step finds
no isomorphic pairs of graphs. (If we were to repeat this for DCI-graphs, then S would
need to be the set containing all the non-identity elements of GG, and the final step would
construct all the Cayley digraphs.)

The result of this is a long list of CI and non-CI groups. However this can be presented
in a more compact format by noting that a subgroup of a Cl-group is a Cl-group and a
quotient of a Cl-group is a Cl-group (Dobson and Morris [4]). Define a group to be a
minimal non-Cl-group if it is not CI, but all of its proper subgroups and quotients are
CI. In principle, a complete list of minimal non-CI groups provides a “forbidden minor”
characterisation of CI groups as exactly those groups with no subgroup or quotient in
the list. Of course it may be infeasible to fully determine the list of minimal non-CI
groups, but the following is at least complete up to order 47.

1. The cyclic groups Cig, Co4, Ca5, Ca7, Csg, Cao, Cys.
2. The dihedral groups D12, D16, D20, D28, D44.
3. One of 16 groups listed individually in Table 4.

The column labelled “Structure” is simply the output of GAP’s StructureDescription
command. As this is not unique, we also include (in the column labelled “No.”) the

12



number of the group in the list of small groups of that particular order. These lists of
small groups are found in both MAGMA and GAP and, at least for the orders we are
considering here, the numbering is consistent between the two programs. The regular
representations of these small groups are transitive groups of course, and so they appear
in the lists of transitive groups of each degree. However the ordering of the regular
transitive groups is not the same as the ordering of the small groups. Therefore
SmallGroup(deg,k) and TransitiveGroup(deg,k) are usually not isomorphic.
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