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ABSTRACT

Interspecies differences, anatomical and physiological aspects, as wells as simplified study
designs contribute to an overestimation of treatment effects and limit the transferability of
experimental results into clinical applications. Confounders of cell therapies for cerebrovascular
disorders (CVD) include common CVD comorbidities, frequent medications potentially affecting
endogenous and transplanted stem cells, as well as age- and immune-system–related effects.
All those can contribute to a substantial modeling bias, ultimately limiting the prospective qual-
ity of preclinical research programs regarding the clinical value of a particular cell therapy. In
this review, we discuss the nature and impact of most relevant confounders. We provide sug-
gestions on how they can be considered to enhance the validity of CVD models in stem cell
research. Acknowledging substantial and sometimes surprising effects of housing conditions,
chronobiology, and intersex differences will further augment the translational value of animal
models. We finally discuss options for the implementation of high-quality functional and imag-
ing readout protocols. Altogether, this might help to gain a more holistic picture about the ther-
apeutic impact of a particular cell therapy for CVD, but also on potential side and off-site
effects of the intervention. STEM CELLS 2017;35:1141–1153

SIGNIFICANCE STATEMENT

This review summarizes most important aspects that may affect stem cell and cell therapy
impact in cerebrovascular disease research. We discuss relevant mechanisms potentially impact-
ing stem cell efficacy, safety, as well as relevant options to increase the predictive value of
translational research programs. Importantly, the review also covers so far underrepresented
areas such as chronobiology, comorbidities, polypharmacology (effects of drugs on stem cell
efficacy and behavior), as well as potential species–specific aspects of stem cell performance.

INTRODUCTION

The rising prevalence of risk factors along with
a demographic change toward ageing societies
steadily increases cerebrovascular diseases
(CVD) incidence. In contrast, therapeutic
options available can, at best, only mitigate
acute CVD sequelae or decelerate chronic dis-
ease progress [1, 2]. Cell-based therapies are
believed to be among the most promising
options to fundamentally advance CVD treat-
ment. Cell therapies exert numerous therapeu-
tic mechanisms ranging from potential tissue
replacement to complex paracrine or systemic
effects [3]. Animal models of cerebrovascular
diseases are indispensable for the understand-
ing of these mechanisms and their translation
into clinical treatments. An increasing

awareness for the necessity of bias prevention
and quality increase in preclinical CVD research
and result reporting [4, 5] benefits the transla-
tional process.

Nevertheless, therapeutic outcome in
emerging early stage clinical investigations so
far stays behind the clear and encouraging
results reported from preceding animal studies
[6]. Indeed, a plethora of confounding factors
still impedes the execution, interpretation,
and, not least, the reproducibility of preclinical
work. As a consequence, too much trust and
resources were spent on invalid animal studies
[7]. Although great improvements have been
made over the last years, a number of rele-
vant confounders remain. Species-specific dif-
ferences in the central nervous system (CNS)
anatomy, in basic physiology or existing co-
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morbidities influence the effectiveness of cell-based therapies
along with using different breeds and keeping conditions.
Endpoint and quality assurance check point selection can also
affect study results. Next to preclinical meta-analyses [8] and
multicenter preclinical trials [9], knowledge and consideration
of major confounding factors is a simple and economical way
to increase the predictive value of preclinical research.

The aim of this concise review is therefore an itemization
and valuation of factors affecting as well as improving validity
and predictability of CVD models with a focus on cell-based ther-
apies. It also discusses the most important pathophysiological
factors influencing cell therapies in CVD, including the reflection
of those factors in advanced animal models and readout assays
to optimize predictive value of preclinical investigations.

MODELING BIAS

Laboratory animals and particularly rodents are crucial to
study the complex processes that occur during disease and

therapy. Transgenic rodent species enable the investigation of
specific disease aspects and mechanisms, while a broad spec-
trum of functional tests, imaging technologies, and ex vivo
analytical methods are available for endpoint assessment.
However, animal models represent only simplified copies of
the reality presenting striking and significant differences
between CVD modeling species and patients.

Basic Anatomical and Physiological Aspects

The rodent brain is lissencephalic and obviously much smaller
than the gyrencephalic human cerebrum. Most large animal
brains are gyrencephalic, but their volumes do not reach that
of the human brain (Fig. 1A). Importantly, the brain volume
and the evolutionary development level might have an impact
on endogenous stem cell functionality. For example, the prolif-
eration and migration capacities of human glial progenitor
cells (hGPCs) are significantly higher than those of their
rodent counterparts [10]. This might be related to ontogenetic
differences in brain volume growth as well as the functional

Figure 1. (A): Magnetic resonance imaging (MRI) images for a direct comparison of brain anatomy in different cerebrovascular disorder
(CVD) model species. Larger animal species exhibit a much higher complexity of the brain architecture than rodents, to some extent
approximating the human situation. Scale bar5 1 cm each. Please also note different proportions of gray and white matter, which are
exemplified in (B). White matter structures provide guidance for cell migration in healthy and lesioned brains. There is also a close meta-
bolic exchange between gray and white matter cells, making them important for the preservation and regeneration of brain circuits.
This might favor cell-based regeneration in rodents, in which white matter is less, but not as strictly separated from gray matter areas
as in higher mammals. Rodents also exhibit a completely different circadian rhythm than humans and most large animals (C). Schematic
illustration of the circadian rhythm of vascular adhesion molecule (AM) expression, circulating blood leukocyte count and relative stroke
frequency in humans (the dashed line marks the daily average value; modified from [37]). An increase in vascular AMs during the activi-
ty phase is responsible for a successive extravasation of circulating leukocytes (reviewed in [40]) and may contribute to stroke incidence
and severity by thromboinflammatory mechanisms. However, circadian rhythms are phase-delayed in nocturnal mice and diurnal
humans whereas both animal experiments and clinical routine were typically performed during the office hours, implying the resting
stage for rodents, but the active stage for humans. Considering these factors, though mostly neglected so far, is therefore important in
preclinical CVD modeling. MRI images in (A) are derived from online open sources (please see Acknowledgments section).
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complexity of glial cells, both steeply increasing from infrapri-
mate to primate species including humans [11]. hGPCs have a
clear benefit when repopulating the smaller rodent brain and
exhibit enormous therapeutic capacities in rodent models of
demyelination [12]. This might be due to the fact that GPCs
from species with larger brains have to travel longer distances
and have to replace larger volumes of white matter during
physiological remyelination, which is surprisingly effective in
the healthy mammalian brain [13]. On the other hand, this
likely causes an overestimation of the therapeutic impact on
human patients. Hence, hypothetical inter-species differences
or brain-size-related aspects in neural and neuronal stem cells
behavior should be investigated in detail before clinical trans-
lation. This might be realized by testing a stem cell therapy
not only in the rodent CNS but also in larger gyrencephalic
brains. Brain size may not only impact cell replacement thera-
pies but also the efficacy of cell-exerted neuroprotective and
neuromodulatory effects [14]. The respective species and
model should best reflect the addressed question and trans-
plantations experiments might require tailored and species-
specific immunosuppression regimens to ensure long-term
survival and engraftment of xenografts [15].

Differences in gray matter (GM) and white matter (WM)
volumes and architecture should also be considered. For
example, cortical GM and WM volumes significantly differ
among species. It is postulated that the WM content
increases with brain size [16] to accommodate the increased
signaling traffic. The WM fraction in the mouse and rat corti-
ces is only 10 and 12%, respectively. In contrast, cortical WM
content increases to 30% in sheep, being comparable with
32% observed in Rhesus macaques. WM in the human cortex
ranges between 40% and 45% (Fig. 1B) [16, 17]. These strik-
ingly different WM contents may have a direct translational
relevance for acute CVD (e.g., stroke), often affecting GM and
WM areas in humans, as well as for chronic CVD such as vas-
cular dementia, featuring subcortical WM damage. Given the
higher signaling traffic in larger brains including the human
one, WM affections may also have a more severe functional
impact than comparable lesions in smaller brains.

Another important difference is found in cerebral vascular-
ization. Many rodents show an impressive sufficiency of cere-
bral collateralization which significantly mitigates the impact
of distal cortical middle cerebral artery occlusion [18]. To
some extent, this striking contrast to the human situation was
also reported for larger gyrencephalic species such as rumi-
nants [19]. A relative uniformity has been observed regarding
endogenous reactions to a cerebral insult, including the mobi-
lization but mostly imperfect migration and unsuccessful inte-
gration of endogenous progenitor cell populations in rodents
and humans [20].

Large animal species might be a valuable tool to thor-
oughly confirm the impact of a particular CVD cell therapy as
they seem to approximate the human anatomy closer than
rodents, but are not suitable for exploratory research due to
much higher costs and required infrastructure.

Sex and Genetic Heterogeneity

The majority of preclinical animal studies feature a single-sex
design with a proven male-bias particularly in neuro- and car-
diovascular research [21, 22]. Cycling female sex hormones
that could unpredictably influence preclinical experiments are

an important reason for this sex preference. In fact, hormone-
dependent and -independent mechanisms could not only
affect CVD course but also the efficacy of cell therapies [23].
The NIH consequently pursues a “sex as a biological variable”
policy [24], not least since one likely obstacle for double-sex
experiments is the doubling of costs. A related subject is the
use of inbred animal strains or monogenetic disease models
for preclinical efficacy trials. Human diseases exhibit the great-
est possible heterogeneity based not only on the genetic het-
erogeneity of patients and varying environmental factors but
also on different stages of the disease and anatomical areas
being affected. By contrast, it is rather attempted to maximize
homogeneity in animal studies given that every increase in
heterogeneity implies a growth of variance and, consequently,
a loss of statistical power [25]. In fact, triggered acute CVD
models are frequently executed in inbred mouse strains such
as SV129, C57BL/6 or BALB/c [26]. However, experiments with
inbred strains may obtain results applying specifically for this
genotype [25] or being biased by strain-specific characteristics
such as Th1 or Th2 dominance in C57BL/6 or BALB/c mice,
respectively [27]. The decision to use inbred or outbred labo-
ratory animals finally also affects cell therapies by influencing
the occurrence, degree and variability of MHC mismatch
which could determine therapeutic effects [28].

Standardization of Housing Conditions

Another classical way to foster the reproducibility of preclini-
cal experiments is a standardization of animal housing condi-
tions including light-dark rhythms, enrichment, cage changing,
alimentation, and group housing—all of which can significant-
ly affect neurological endpoints [29]. However, this instrument
should be used with caution since increasing standardization
can also raise the probability to detect spurious results being
idiosyncratic for the specific test condition [30]. A planned
heterogeneity has been suggested to solve the problem of
standardization fallacy [31]. In fact, many hitherto unknown
influencing factors that were disabled by standardization later
turned out to be tremendously important for a possible trans-
lational process. A fascinating example is that one single com-
mensal gut microbe, the segmented filamentous bacterium
(SFB) could significantly influence the maturation and function
of the immune system and thus of nearly every disease model
[32]. Intriguingly, SFB are present in the microbiome of
C57BL/6 mice from one vendor (Taconic Farms), but not from
the other (Jackson Laboratory) which perfectly explained their
different susceptibility to autoimmune diseases [33]. Who can
now judge which condition is the right one and which should
be subdued for standardization? A possible back door for this
dilemma could be the application of factorial experimental
designs [34] combining, for example, different inbred strains
and different housing conditions [35].

Chronobiological Aspects

Circadian rhythms and related clock gene families orchestrate
many major biological functions that are highly relevant for
the risk and progression of CVD. The daily variation of blood
pressure with the nadir at the end of the resting period is
only one example which could, however, already explain the
noticeable cumulation of stroke incidence in the time
between 6 a.m. and noon [36, 37]. On the other hand, the
susceptibility to pharmacological interventions is also a
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function of the time of day, a fact that is being investigated
in the emerging field of chronotherapy [38]. For example, in a
mouse model of pressure overload cardiac hypertrophy,
angiotensin-converting enzyme (ACE) inhibitors were only
effective when administered during the resting phase [39].
Thus, the time of day is not only important for disease onset
and initiation of therapy but also for the timing of preclinical
and clinical studies. This is especially unfortunate for preclini-
cal research since nearly all classical laboratory animals are
nocturnal. Rodent experiments that typically take place during
office hours thus inversely model the circadian situation of
human patients (Fig. 1) which is relevant for a plethora of
pathophysiological contexts.

During the activity phase, the probability for traumata or
infections generally increases. It is therefore plausible that cir-
culating white blood cell counts decrease during that phase
as leukocytes are recruited to tissues to participate in defense
and repair [41]. The time of day thus plays a pivotal role for
the course of immune reactions during diseases [40, 42].
After myocardial infarction, not only the number of neutro-
phils but also of attracting cytokines and local endothelial
adhesion molecules peak during the activity phase which
explains the worse outcome compared with the resting phase
[42]. A comparable relationship is most likely also evident in
CVD and would consequently be important for the preclinical
development of novel immunmodulatory approaches such as
Natalizumab for acute stroke [43].

Importantly, cell therapies for CVD are particularly regulat-
ed by circadian influences. Next to the aforementioned chro-
nobiological characteristics of the disease and
chronotherapeutic aspects, one has to consider that the living
cell product itself is controlled by a genome containing
approximately 30% clock-related genes [44]. The time of cell
sampling from bone marrow (BM) or adipose tissue thus
directly determines quality and composition of the cell grafts
in a therapeutically relevant manner [45, 46]. Moreover, cellu-
lar products differ in apoptosis resistance, migration, homing,
and differentiation capacities as a function of time [47–49].
Finally, the risk of cell graft rejection also depends on circadi-
an zeitgeber as both T cell function and T cell susceptibility
for immunosuppressant drugs are subjected to daily variations
[50]. In summary, the understanding of chronobiological
aspects is crucial to both avoid modeling bias and to optimize
experimental treatment regimens.

IMMUNE SYSTEM MATTERS

Immune responses are crucial for the initiation, maintenance,
and recovery of nearly every known disease including stroke
and vascular dementia [51, 52]. Important risk factors for
stroke such as arterial hypertension or hyperlipidemia cause a
chronic activation of the innate and adaptive arm of the
immune system. These changes successively disrupt vascular
function leading to cerebral small vessel disease and athero-
sclerosis [53, 54]. Moreover, a pre-activated immune system
aggravates stroke severity and outcome [55]. Together, this
data underpin how important the immune system of laborato-
ry animals is for designing and interpretation of preclinical
CVD research. Several important differences between the
murine and human immune systems have been demonstrated

[56]. A poor correlation between the genomic response to
inflammatory stressors in mouse models and human condi-
tions has been described [57], what started an intense discus-
sion about the general predictability of mouse models.
Presumably, we have to accept that the perfect animal model
to simulate human immune responses does yet not exist.
Nevertheless, an understanding and consideration of the limi-
tations could preserve their use for translational research
[58].

Unfortunately, the situation even gains complexity with
the presence of transplanted cells. Unpredictable immuno-
modulatory effects are not only probable for allogenically or
xenogenically transplanted cells but also for cells being manu-
factured to induce special genes or a pluripotent state [59].
Even freshly isolated autologous cells such as BM-derived
mononuclear cells (BM MNC) or adipose tissue-derived cells
were influenced by centrifugation and exposition to media
that cumulatively alter their phenotype and could induce
immunologically relevant apoptosis [60, 61]. Aforementioned
factors, leading to an undetermined extend of immunomodu-
lation, cannot be simply categorized into beneficial or
adverse. Indeed, growing evidence suggests that immunomo-
dulation is one unifying mechanism for the efficacy of cell
therapies [62–64]. On the other hand, factors including graft-
versus-host disease, graft rejection, loss of function, immuno-
suppression, and pro-coagulative properties may be harmful
and contribute to translational failure. The uncertainty con-
cerning the validity of immune responses in CVD animal mod-
els is thus further bedeviled by the administration of
therapeutic cells. Depending on the origin, passage and pre-
processing, transplanted cells may interact with the host
immune system in a desired or harmful way. Only the knowl-
edge and consideration of the abovementioned factors
together with rigid quality testing of cell products could help
to selectively track assumed effects and exclude model spe-
cific ones.

Another fundamental unsolved but problem of preclinical
testing of cell therapies is the paradox to test either the con-
cept (e.g., syngeneic BM cells in a mouse stroke model) or
the product that is developed for later clinical use (e.g., a
human neural stem cell line in a mouse stroke model). The
testing of concepts allows experiments complying with the
immunological barriers, however, assessments of human cell
products always imply a xenogeneic approach with the need
for immunosuppressive treatment and/or the risk of GvHD,
graft failure, and rejection. A solution for this dilemma could
be the use of humanized mouse models such as the NOD/
SCID/IL2r gamma (null) mouse chimerized with human CD341

hematopoietic stem cells [65]. These mice develop human
hematopoiesis ultimately allowing for the quasi-allogeneic or
-autologous testing of human cell products in animal cardio-
vascular disease models (Fig. 2).

AGE AND FREQUENT COMORBIDITIES AFFECT CELL-BASED CVD

THERAPIES

It is well known that age as well as numerous highly preva-
lent comorbidities represent relevant CVD risk factors and
facilitate both unfavorable CVD course and outcome. Consid-
eration of such conditions is therefore strongly recommended
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in preclinical research. Importantly, recent research suggests
that such conditions can also influence the impact of stem
cell therapies for CVD.

Cell Donor and Recipient Age

CVD predominantly occur in the elderly. First clinical investiga-
tions on cell therapy for CVD investigated autologous trans-
plantation paradigms [66, 67] to ensure immunological
compatibility. In contrast, a potential future and widespread
implementation of stem cell therapies for frequent conditions
including CVD likely has to rely on allogeneic approaches of
HLA-matched and/or immunomodulatory stem cells to meet
the demand of cell products. Somatic stem cell populations
might still be derived from volunteer donors. There is some
preliminary evidence that cell donor age influences therapeu-
tic efficacy. A study on BM MNC revealed that cells derived
from younger (246 1 years), but not from older donors
(686 1 years) induce neuroprotection in an organotypic in
vitro ischemia model [68]. Aged BM cells are further believed
to exert less neovascularization [69] what might be critical if
used for CVD treatment. Another study showed that age- and
sex-matched syngeneic transplantation of BM cells resulted in
decreased, but not absent efficacy of BM cell transplantation
after stroke with increasing age in otherwise healthy Wistar
rats [70]. Of note, the treatment was still effective in animals
close to the maximum life span with an age of up to 17
months. Consequently, cells from aged donors might not be
generally impaired but other factors such as donor comorbid-
ities or technical preparation might potentially limit the over-
all therapeutic efficacy of the cells.

Another translationally important aspect is the recipient’s
age. The aforementioned study [68] also revealed that neuro-
protective BM MNC effects, previously confirmed in young
and middle-aged individuals [71], cannot be observed in aged
hypertensive rodents with stroke. The therapeutic refractive-
ness was independent from cell donor age. Indeed, the

regenerative capacity of the aging rodent brain does not
match that observed in young-adult animals [72] what paral-
lels the human situation. Spontaneously hypertensive rodents,
exhibiting progressing cerebral small vessel disease [73] and
spontaneous acute CVD frequency increasing with age [74]
might help to reflect senescence-related aspects in transla-
tional CVD research. Moreover, the aged rodent brain limits
endogenous stem cell-mediated regenerative effects or is at
least less susceptible to those [75]. It is currently unclear
whether this also accounts for the human brain or for exoge-
nously administered cells.

Diabetes Mellitus

Diabetes mellitus (DM) is a common CVD comorbidity. DM
sequelae can be devastating and often affect the cerebral vas-
culature. Moreover, DM can severely interfere with cell treat-
ments in CVD. Mesenchymal stem cells (MSC) were shown
beneficial following stroke in numerous independent experi-
ments [3]. However, MSC exert detrimental effects in type 1
(T1) DM rodents. In one study, lesion volume and functional
outcome remained unaffected, while mortality in the MSC
treatment group increased [76]. Postulated reasons comprise
angiogenin-mediated microvascular pathologies as well as
blood brain barrier leakage increasing cerebral hemorrhage
incidence. On the other hand, umbilical cord blood cells
(HUCBC) and BM MSC improved functional outcome by
decreasing hemorrhage frequency, by attenuating innate post-
stroke inflammatory processes, and by promoting vascular
and white matter remodeling in T2DM rats after stroke [77,
78]. BM MSC also mitigated long-term cognitive impairment
in a T1DM rat model [79]. Hence, the interplay between DM
and cell therapies may depend on the diabetes type what
could be explained by the fundamental differences in T1 and
T2 pathogenesis. This makes the impact of cell therapies in
diabetes hardly predictable and requires careful, case- and
DM type-specific investigation.

Figure 2. Humanized NOD scid gamma (huNSG) mice lacking murine lymphocytes and natural killer cells provide the possibility to
study human cell products in animal models of cerebrovascular diseases in a quasi-allogeneic or -autologous setting. NSG mice were
irradiated and treated with human CD341 cells at postpartal day 1. (A): At the age of 16 weeks, NSG mice exhibit a high degree of
hematolymphoid chimerism and could be subjected to experimental stroke and stereotactic transplantation of neural stem cells labeled
with fluorescent quantum dots (QD). (B): Stroke caused a significant infiltration of both human (1) and murine (3) CD45 highly positive
leukocytes into the ischemic ipsilateral brain hemisphere. Microglia was not affected by chimerism and thus 100% murine (2). (C): Few
QD1 transplanted cells could be identified among the CD452 cells within the ischemic hemisphere. However, numerous murine micro-
glial cells from the ipsilateral, but not from the contralateral hemisphere were also positive for QD indicating that the transplanted cells
were phagocytosed by indigenous microglia. Even though this animal model allows for mimicking human adaptive immune response to
stroke and allogeneic cell transplantation, it is also biased by tissue resident murine immune cells. Abbreviations: huNSG, humanized
NOD scid gamma; QD, quantum dots; SSC, sidewards scatter.
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Hypertension

Hypertension is the most prominent single risk factor, at least
contributing to all forms of chronic and acute CVD. Despite
this clear relationship, not much is known on the impact of
hypertension on cell-based therapeutic intervention for CVD.
However, some side effects of signaling pathways mediating
hypertension on stem cells have been reported in cardiovas-
cular research. Catecholamines promote proliferation of
endogenous cardiac stem cells via b2-receptors, while b1-
mediated signaling induces apoptosis. The chronic presence of
angiotensin II accelerates proliferation of hematopoietic stem
cells, but induces their pre-mature differentiation and impairs
homing as well as BM reconstitution abilities [80].

Hypertension aggravates the post-stroke innate immune
response in the context of acute CVD [55], what might poten-
tially influence the stem cell-mediated therapeutic effects or
cell survival. Hypertension further damages the capillary sys-
tem and leads to small vessel rarefication in the brain, poten-
tially impeding homing of systemically administered cells to
the desired target areas. Interestingly, there is some evidence
that hypertension can be induced by BM transplantation from
hyper- to normotensive animals, what is mediated by a
peripheral and central (microglia-mediated) pro-inflammatory
bias [81]. This suggests an involvement of BM stem cells in
the genesis of hypertension, what underpins the importance
of not only considering recipient but also donor conditions in
the context of cell therapies.

Interaction between Pharmacological Treatments and
Cell Therapies

Pharmacotherapy as a baseline treatment is conducted in
almost every CVD patient and will therefore be most likely a
cotreatment in a clinical stem cell therapy scenario. It is
therefore surprising that not much research has been per-
formed so far to decipher the clinically relevant nature of
drug-stem cell interactions in CVD. Indeed, some general
knowledge has been collected in the related field of

cardiovascular disorders [82] for drugs also being of relevance
for CVD (Table 1).

One of the rare studies in CVD reports a therapeutic syn-
ergy between simvastatin, a frequently applied statin, and
HUCBC treatment in a rat model of stroke leading to
increased endogenous neurogenesis, neuroblast migration, as
well as enhanced axiogenesis and neurite outgrowth [91].
Simvastatin also facilitated HUCBC engraftment. This translat-
ed into reduced lesion volumes and improved functional out-
come. The effect is believed to rely on a stimulation of the
BNDF/TrkB pathway, but proangiogeneic and vascular remod-
eling effects were also reported [92]. On the other hand,
unfortunate timing of systemic BM MNC [61] or MSC infusion
in an attempt to support a G-CSF pharmacotherapy for stroke
abolished the drug’s therapeutic effect, potentially due to an
interference with the peripheral immune response. This illus-
trates the translational need of investigating the impact of a
cell therapy on CVD in the context of pharmacotherapies
addressing that disease, its comorbidities or risk factors. Thor-
oughly investigating these interactions and precisely predicting
any potential beneficial or detrimental impact in future clini-
cal trials may require new models and assessment systems,
particularly featuring species in which drug effects but also
pharmacodynamics and -kinetics are comparable with the
human situation. Gaining more knowledge on these issues
will also help to improve patient recruitment to clinical stud-
ies by considering their individual medication profiles.

IMPROVING IN VIVO ENDPOINT MEASURES

Advancing Functional Readouts

Functional recuperation is the most important therapeutic
effect of a particular CVD therapy. Hence, efficacy endpoints
in preclinical CVD studies preferably target improvements of
cognitive or sensorimotor functions. Previous meta-analyses
of experiments using stem cells and other therapeutics for

Table 1. Known effects of common pharmaceuticals on stem and progenitor cells

Drug class Substance/substances Affected cell type Effect References

Non-steroidal
anti-inflammatory
drugs

Aspirin EPC Decreased proliferation and migration [83, 84]
MSC Decreased inhibition, increased apoptosis [85]

COX-2-inhibitors ESC Increased differentiation
(into cardiomyocytes)

[86]

Beta blockers Propranolol (b1 and
b2 antagonist)

Cardiac progenitors Increased proliferation [87]

Nebivolol (b1 antagonist) EPC Increased proliferation [88]
Catecholamines Norepiphrine

(b3 stimulation)
Neural progenitor
cells

Increased proliferation and
neuronal differentiation

[89]

Aldosterone
antagonists

Epleronone EPC Increased proliferation [90]

Statins Simvastatin HUCBC Enhanced intracerebral engraftment [91]
EPC Increased proliferation, migration

and differentiation
[91]

Angioblasts Increased proliferation and differentiation [92]
Atorvastatin EPC Increased proliferation [93]

MSC Increased migration and survival [94]
Rosuvastatin EPC Increased proliferation [95]

MSC Increased survival [96]
Antilipemics Nicotinic acid GPC Increased oligodendrocyte progenitor

proliferation and differentiation
[97]

Abbreviations: EPC, endothelial progenitor cells; GPC, glial progenitor cells; HUCBC, human umbilical cord blood cells; MSC, mesenchymal stem
cells.
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acute CVD have repeatedly revealed suboptimal study design
and endpoint selection [98]. Even in studies perfectly imple-
menting generally acknowledged quality assurance methods
such as blinded model induction, randomized treatment group
allocation, and blinded data recording, three major factors
often limit the predictive value of functional results.

The first limitation is the structural simplicity of commonly
applied functional tests. These economic assays focus on basic
functions and often rely on simple score point classifications.
They do not require sophisticated equipment and are opti-
mized for time-efficient data ascertainment and analysis. On
the other hand, such tests are susceptible for biases or tend
to report results not correlating well with lesion extent. More-
over, it is well known that rodents have much better abilities
to compensate functional deficits than humans [99]. Basic
functional tests cannot discriminate between both and might
therefore reflect a combination of recovery and compensation
[100], overestimating or masking true treatment effects [101].

The second limitation is the preferred assessment of gross
motor functions. Spontaneous gross motor function recovery
is much faster in rodents as compared to humans. This may
lead to treatment impact overestimations and impedes the
detection of minor functional improvement in the long run
[102] due to ceiling effects. On the other hand, fine motor
skill impairments are a predominant disability burden for
human patients. Those functions show excellent homologies
among species both in health [103] and CNS disease [104].
Long-term improvement of fine motor impairments should
therefore be investigated more thoroughly, particularly as this
would be a desirable therapeutic effect of stem cell therapies
being applied in chronic CVD stages. However, this requires
application of highly specialized and more laborious functional
assessment strategies such as the skilled pellet reaching tasks
or the ladder rung test. Higher efforts required for their
implementation into a particular research program are never-
theless believed to be outweighed by sensitivity and specific-
ity benefits. These tests can also discriminate compensation
from recovery as well as lesion-prone deficits from age-
related impairments [105].

The third limitation is that CVD impact is considerably
divergent between preclinical and clinical trials. Preclinical
studies benefit from uniform lesions and comparable function-
al impairments. This allows to minimize sample sizes, and to
accommodate research budget constraints. This is in sharp
contrast to clinical reality, where lesion sizes, functional
impairments, as well as speed and extent of recovery signifi-
cantly vary among patients [106]. This variability can explain
the alleged efficacy decline of experimental therapies during
the translational phase. On the other hand, implementing
model-inherent randomized variability in preclinical studies is
challenging. As in clinical trials, this requires a tremendous
increase in group sizes to detect statistically significant differ-
ences, which might be smaller and partially masked by high
inter-individual variations. Variability may be best modeled by
confirmative multicenter clinical trials, for example, by includ-
ing different CVD models [107]. Therapeutic effects reported
from such trials are indeed much less prominent than those
revealed in single-center studies, but paucity of reliable fund-
ing sources for such studies [108] currently impedes their
widespread implementation.

Imaging-Based Stem Cell Safety and Efficacy
Surveillance

Although requiring an expensive and dedicated infrastructure,
imaging technologies offer numerous significant advantages
when assessing the therapeutic potential of cell therapies for
CVD (Fig. 3). The size of an ischemic lesion correlates very well
with functional deficits [109]. It is therefore eligible to serve as a
reliable surrogate parameter for functional improvements, espe-
cially in longitudinal studies. Imaging modalities assessing brain
anatomy and structure such as computed tomography (CT) or
magnetic resonance imaging (MRI) can precisely assess lesion
size and augment functional readout systems. Particularly MRI
allows the detailed observation of secondary acute ischemic
lesion effects such as focal edema or degeneration of fiber tracts
and remote brain areas. Loss of gray and white matter and
increasing volumes of CSF-containing compartments are hall-
marks of chronic CVD and well suitable to investigate therapeu-
tic cell therapy effects reversing those. Positron emission
tomography allows the precise assessment of metabolic function
and blood flow [110] and can detect pathological changes
before clinical signs of neurodegenerative diseases appear [111].

A particular value of imaging technologies for the evaluation
of CVD stem cell treatments is the option to track transplanted
cells both systemically and in the brain, as well as to monitor cell
engraftment (Table 2). Cell tracking methods have been estab-
lished for MRI [123], single photon emission computed tomogra-
phy (SPECT) [124], and PET [125], providing feasible tools for cell
therapy safety and efficacy surveillance. Higher structural resolu-
tion of MRI allows higher sensitivity and precision of cell detec-
tion whereas some PET tracers can reveal information regarding
the functional state of a cell transplant. SPECT imaging is particu-
larly feasible to detect off-site cell effects or presence. However,
all techniques require cell labeling, for example, by magnetic
nanoparticles or radioactive tracers, which might affect viability
and efficacy of the cells, as well as clinical applicability.

TARGETED MODELING OF PRACTICAL CELL THERAPY UTILIZATION

While numerous stem cell types were shown to exert pro-
found therapeutic impact in many fundamental CVD models,
the development of clinically deliverable therapies seems to
be slow and challenging. A translationally relevant aspect of
modeling cell therapies is therefore to simulate strategies and
scenarios which are likely to be applied in the clinics.

The amount and time course of damage caused by CVD
defines what stem cell population might be best feasible for a
potential treatment. Stem cell populations with a potential
neurorestorative capacity (e.g., neural stem/progenitor cells
or induced pluripotent stem cells) might be the primary
choice in cases of locally restricted and/or slowly emerging
damage such as in vascular dementia. The targeted local deliv-
ery by stereotaxic surgery or super-selective catheter-based
delivery to cerebral arteries [126] should be considered to
maximize their therapeutic impact. On the other hand, these
cells might be of limited efficacy after massive or swiftly
evolving structural brain damage as, for example, in stroke
because cytoarchitectonic cues and guidance structures
required for targeted cell migration and differentiation are
likely destroyed [3]. In such scenarios, adult stem cell popula-
tions with limited restorative, but profound modulatory
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capabilities such as HUCBC or BM-derived populations might
be advantageous. These cells also exhibit interesting systemic
treatment effects such as immunomodulatory activities in the
spleen [127]. Importantly, the effects could be fully utilized by
systemic administration.

Other relevant aspects are potential complications and safe-
ty concerns arising from the chosen cell type and transplanta-
tion route. Hence, both must be weighed against the optimized
therapeutic effect and overall clinical applicability. For example,
systemic administration might be clinically feasible, but can
cause filtering of applied cells in the lung after intravenous
[128] and even in the brain after intraarterial injections [129].
The resulting risk of secondary embolism could even outweigh
the benefits of systemic administration. A detailed overview on

potential concerns arising from particular cell populations and
administration strategies can be found elsewhere [130]. It must
be recognized that carefully looking for potential complications
and the impact of manufacturing or administration procedures
rather than for optimized efficacy only, as well as to simulate
potential strategies to circumvent such risks is pivotal for high-
quality and valid modeling of cell therapies for CVD.

CONCLUSIONS AND IMPLICATIONS FOR CVD CELL TREATMENT

RESEARCH

The prospective value of animal models for the investigation
and translation of cell therapies for CVD is limited by a

Figure 3. (A): Combined PET-MR imaging can benefit acute CVD studies. In the given example, the tissue at risk (penumbra) after mid-
dle cerebral artery occlusion in sheep is shown. These hybrid imaging techniques allow the parallel assessment of structural and meta-
bolic information in acute and subacute stages, for example, allowing to pursue individually cell transplantation strategies tailored to
the individual case. (B): The image gives an example of mesenchymal stem cell (MSC) detectability in the ovine brain (susceptibility
weighted imaging). Large animal models allow to access cell traceability in the gyrencephalic brain using clinical scanning equipment.
Here, three MSC depots were placed stereotactically (left panel): 23 1,000 MSCs were injected into right subcortical white matter areas
whereas 13 100,000 cells were placed at the contralateral site (white arrow heads). The larger depot in the left hemisphere could be
identified even macroscopically after brain preparation (right panel, black arrow head). (C): The image gives an example for cell tracking
using single photon emission computed tomography in the rat. 111In-oxinate-labeled mesenchymal stem cells were injected into the
right external carotid artery of rats after transient (2 hours) middle cerebral artery occlusion. The image shows regular homing of the
cells to the ischemic hemisphere, whereas the image (D) provides an example for off-target location of cells in the facial musculature
(white arrow heads). Both images were taken 1 hour after transplantation. (E): Presence of cells in the murine brain was confirmed his-
tologically for cases shown in (C). All images were derived from in-house experiments. Scale bar5 100 mm. Abbreviations: MRI, magnet-
ic resonance imaging; MSC, mesenchymal stem cell.
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number of confounding factors. Anatomical differences also
need to be considered. Large animal models exhibiting higher
similarities with human patients are available, but are labori-
ous and require complex infrastructures. These models should
therefore be limited to confirmative research or studies that
cannot be performed in small animal CVD models. On the
other hand, many confounding factors can be modeled in
rodent species although this requires intelligent and slightly
more complex study designs. Since it will be impossible to
model all confounding factors, a careful discussion regarding
which ones will be of highest impact for a particular cell
treatment is warranted before initiating an experiment. So far
under-recognized influences such as chronobiology and inter-
action with pharmacotherapies are expected to be of increas-
ing importance over the next years. Readout parameters
should be carefully chosen and go beyond simple and eco-
nomic, but potentially biased functional readout assays. Final-
ly, late-stage preclinical research should investigate optimal
practical implementation of the cell treatment. This includes
potentially limiting factors and side effects, while the optimal
route of cell administration should be tailored to the targeted
disease scenario and stage.
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