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47 Abstract

48 Objective: Stem cell therapy is a promising treatment option for neurodegenerative diseases 

49 that mostly affect geriatric patients who often suffer from comorbidities requiring multiple 

50 medications. However, not much is known about the interactions between stem cells and 

51 drugs. Here, we focus on the potential interactions between drugs used to treat the 

52 comorbidities or sequelae of neurodegenerative diseases and neuronal stem cells, to reveal 

53 potential effects on drug safety and efficacy.

54 Methods: To determine the potential effects of drugs frequently used in geriatric patients 

55 (analgesic, antibiotic, antidepressant, antidiabetic, antihyperlipidemic, and antihypertensive 

56 drugs) on neuronal stem cell differentiation and proliferation, we systematically searched 

57 PUBMED to identify non-review articles published in English in peer-reviewed journals 

58 between January 1, 1991 and June 7, 2018.

59 Results: We identified 5,954 publications, of which 214 were included. Only 62 publications 

60 provided complete datasets required for meta-analysis. We found that antidepressants 

61 stimulated neuronal stem cell proliferation but not differentiation under physiologic conditions 

62 and increased the proliferation of stem cells in the context of stress. Several other potential 

63 interactions were identified, but the limited number of available datasets precludes robust 

64 conclusions.

65 Conclusions: Although available data were in most cases insufficient to perform robust meta-

66 analysis, a clear interaction between antidepressants and neuronal stem cells was identified. 

67 We reveal potential other interactions requiring further experimental investigation. We 

68 recommend that future research addresses such interactions and investigates the best 

69 combination of pharmacological interventions and neuronal stem cell treatments for more 

70 efficient and safer patient care.
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71 Significance Statement

72 Since drugs frequently used in geriatric patients can influence the behavior of neuronal 

73 stem cells, which are a promising therapeutic option for the treatment of neurodegenerative 

74 diseases, our study aimed to identify potential interactions between neuronal stem cells and 

75 drugs described in the literature. Although only surprisingly few studies reported data on such 

76 effects, meta-analysis revealed a clear interaction between antidepressants and the proliferation 

77 capacity of neuronal stem cells. Therefore, both future cell therapeutic approaches and 

78 pharmacological interventions need to be coordinated thoroughly to create more efficient, 

79 safer, and ultimately successful therapeutic strategies.

80
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81 Introduction

82 Aging is the main risk factor for neurodegenerative diseases.1 More than 20 percent of 

83 adults at the age of 60+ years suffer from mental or neurological disorders. This number is 

84 expected to double in individuals of over 70 years.2, 3 In addition, there has been a tremendous 

85 rise in the number of geriatric patients suffering from mental or neurological disorders during 

86 the last decade, which is even expected to increase as our population ages.4 Unfortunately, 

87 conventional pharmaceutical interventions for neurodegenerative diseases are often limited in 

88 efficacy.5-9 This has encouraged the search for alternative therapeutic approaches, with 

89 neuronal stem cell therapies being among the most promising options.10 Although clinical 

90 translation has not yet been achieved, numerous preclinical studies using neuronal stem cells 

91 provided encouraging results.10-13

92 Geriatric patients are the primary patient population to benefit from prospective stem 

93 cell-based approaches to counter neurodegenerative diseases. As older people often suffer from 

94 several chronic diseases, including hypertension, diabetes, chronic pain, or depression,14 it is 

95 relevant to consider the prevalence of polypharmacy in the target patient population.15 The 

96 primary challenge of the inevitable combination of neuronal stem cells and drugs in clinical 

97 practice is to yield beneficial, potentially synergistic effects while avoiding detrimental ones. 

98 Therefore, a deeper understanding of the functional mechanisms of each drug and their 

99 interactions with neuronal stem cells is an important prerequisite for successful combination 

100 therapies.16 While this aspect has not been systematically investigated for neuronal stem cells, 

101 research in the cardiac field indicates the existence of such interactions and their considerable 

102 complexity.17

103 In this study, we hypothesized that there are interactions between neuronal stem cells 

104 and drugs frequently used in geriatric patients. We intentionally choose the term “neuronal 

105 stem cells” to distinguish it from “neural stem cells”, which can differentiate into neuron and 

106 glia, since neurons are the primary focus of stem cell therapy in the brain. We performed a 

Page 5 of 95



6

107 systematic review to identify (i) the effects of drugs on neuronal stem cell proliferation and 

108 differentiation, (ii) potential differences in exerting those interactions according to drug 

109 classes, subclasses or particular drugs, and (iii) the mechanisms underlying drug-stem cell 

110 interactions.

111

112 Methods

113 We conducted a systematic review according to the guidelines for Preferred Reporting 

114 Items for Systematic Reviews and Meta-Analyses (PRISMA).18

115

116 Search Strategy and Selection Criteria

117 We searched for publications listed in PUBMED describing the effect of drugs 

118 frequently used in geriatric patients on neuronal stem cells. A detailed search query is provided 

119 in the Supplemental Data. Publications made between January 1, 1991 and June 7, 2018 were 

120 included. We chose the start date based on when stem cells started to become widely explored 

121 as potential therapeutics. Data from pathological cells (e.g., tumor cell lines) and non-

122 mammalian species were excluded. We included in vitro and in vivo studies as well as clinical 

123 trials of the peripheral and central nervous system (including the retina). Only publications in 

124 peer-reviewed journals containing primary data were used for analysis. Review articles, 

125 articles without full text accessibility, and non-English articles were excluded.

126

127 Selection of Publications and Data Extraction 

128 One author (M.I.) screened the abstracts and all authors subsequently reviewed the full-

129 text versions of the potentially eligible publications. In case of doubt, publications were 

130 discussed in consensus meetings with two other authors (M.Z. and J.B.). After screening, a 

131 quality synthesis was performed. It included all aspects referring to the internal validity of the 

132 publications, such as reporting of outliers, technical or biological replicates, and blind 
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133 assessment of outcome. The distribution of drugs, samples, and the effect of the drugs on the 

134 outcome parameters were determined. Where data were stated in the text, numerical values 

135 were extracted. When a study reported several experiments, each experiment was considered 

136 as an independent experiment. Only the concentration of the drug exerting the largest effect on 

137 the stem cells and the final time point of the experiment were included in the dataset. 

138 We discriminated three distinct conditions under which the data were gathered: 1) 

139 “physiologic”, in which the physiological state of neuronal stem cells was investigated, 

140 without any modification of the cells or animals during the experiment, 2) “injury” (including 

141 mental disorders), where the sample a) mimicked a phenotype of disease (as disease models) or 

142 b) received a psychological challenge such as depression or a harmful or negative physical 

143 stimulus (e.g., pain), and 3) “modified”, in which the animals were either genetically modified 

144 (transgenic), were housed in an enriched environment, or exposed to a combination of drugs. 

145 We identified proliferation by bromodeoxyuridine (BrdU), Ki67, 3H-Thymidine, 5-Iodo-2-

146 deoxyuridine (IdU) staining and differentiation by detection of doublecortin (DCX), neuronal 

147 nuclei (NeuN), neuron-specific class III beta-tubulin (TUJ-1), ionized calcium-binding adaptor 

148 molecule 1 (Iba-1), nestin, glial fibrillary acidic protein (GFAP), microtubule-associated 

149 protein 2 (MAP2), or beta-III tubulin.

150 For meta-analysis, two authors (M.I. and A.P.) independently extracted the relevant 

151 data from the included publications. We collected data on sample size, mean, standard 

152 deviation, p-value, statistical analysis, and the reported mechanism underlying the action of the 

153 drugs on neuronal stem cells. We contacted the authors of the publications that did not provide 

154 the complete dataset to collect the missing information. In case the data were only available as 

155 graphs, we performed graphical measurement using ImageJ (version 1.51S, 

156 RRID:SCR_003070) as previously described to calculate the mean and standard deviation.19

157

158 Statistical Analysis
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159 To compare data from the different publications, we used the standardized mean 

160 difference (SMD) since the measurement units of proliferation and differentiation were very 

161 diverse among the publications. Hedge’s g SMD with correction factor was chosen due to the 

162 small sample size (below 20 samples for each study). We applied partitioning of heterogeneity 

163 to determine the significance of reported study quality explaining differences in observed 

164 efficacy. We calculated an estimate of the effect size based on the visual assessment of the 

165 forest plot and I2 value by the DerSimonian and Laird random effect model meta-analysis. A 

166 confidence interval of 95% was applied. We generated the analyses using Cochrane’s Review 

167 Manager Software for meta-analysis (RevMan Version 5.3, RRID:SCR_003581) as well as 

168 manually in Excel as previously reported.20 An exemplary calculation can be found in the 

169 Supplemental Data and the complete Excel calculation sheet in the Supplemental xls. A 

170 probability value of p<0.05 was considered statistically significant, except for the subgroup 

171 analysis where the obtained p-values were compared to the Holm-Bonferroni cutoff p-value to 

172 correct for multiplicity.21 The Holm-Bonferroni cutoff p-value is calculated as follows: (target 

173 α (=0.05)) / (k – rank number of pair (by degree of significance) + 1), where k is the number of 

174 tests. 

175

176 Results

177 After the screening of 5,954 publications, we identified 214 eligible publications, of 

178 which 115 were records in the physiologic, 69 records in the injury, and 32 records in the 

179 modified condition (Figure 1, Supplemental Table 1). The distribution of drug classes, 

180 subclasses and individual drugs among all conditions produced some predominant clusters 

181 especially for antidepressants and analgesics (83 and 40 number of records, respectively; 

182 Table 1 and 2). The records in the injury (including mental disorders) and modified conditions 

183 were very heterogeneous (Supplemental Table 2). Among all conditions, we found that more 

184 than two thirds of the publications (148 of 214 publications, 69.2%) used hippocampal stem 

Page 8 of 95



9

185 cells, but no record reported that neuronal stem cells were transplanted into an animal model or 

186 patient while assessing the effect of drugs used in geriatric patients on neuronal stem cells 

187 (Supplemental Table 3). 

188

189 Drug Effects on Neuronal Stem Cells

190 Table 3 shows the number of publications reporting stimulating, neutral, and inhibiting 

191 effects on proliferation and differentiation of neuronal stem cells for each drug class 

192 summarizing all conditions. Supplemental Table 4 presents equivalent information only 

193 under physiologic conditions. Antidepressants had a predominantly stimulating effect on 

194 neuronal stem cell proliferation and differentiation while analgesics showed the opposite effect 

195 in all conditions. Similar findings were obtained when looking at the physiologic condition 

196 alone. For the other drug classes, no predominant effect was observed (Table 3, Supplemental 

197 Table 4).

198 We further divided the drug classes into different subclasses and individual drugs to 

199 identify differences within a drug class. However, neither specific drugs nor subclasses 

200 mediate different effects compared to the main drug classes (compare Table 3 with 

201 Supplemental Table 5).

202

203 Meta-Analysis

204 Statistical data such as sample size, mean, and standard deviation are required to 

205 perform meta-analysis. Overall, we identified 61 datasets reporting complete information. First, 

206 we extracted 42 complete datasets from the publications. Second, we obtained 19 additional 

207 datasets after contacting the authors of the publications that do not contain all of the 

208 aforementioned data (we only contacted the authors when 5 or more records were available per 

209 condition and drug class, our predefined threshold to perform meta-analysis). Third, we 

210 measured the mean and standard deviation directly from the respective graphs of 24 additional 
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211 publications. Those only stated the sample size and their authors did not respond to inquiries. 

212 With all other datasets, at least one parameter was missing to calculate the effect size.

213 Only the data of the antidepressant drug class were sufficient for meta-analysis, of 

214 which 21 records described the effect on proliferation and 7 on differentiation in the 

215 physiologic condition, while 6 records were on proliferation in the depression condition 

216 (Supplemental Table 6-8). Meta-analysis confirmed that antidepressants significantly 

217 stimulated neuronal stem cell proliferation in the physiologic condition (Hedges’ g SMD, 0.66; 

218 95% CI, 0.20 to 1.12; p=0.005, Figure 2A). The most frequently studied antidepressant 

219 subclass, selective serotonin reuptake inhibitors (SSRIs, Table 2), also significantly induced 

220 proliferation of neuronal stem cells (Hedges’ g SMD, 0.72; 95% CI, 0.17 to 1.27; p=0.01 

221 <0.017 (Holm-Bonferroni cutoff p-value), Figure 2A). We also performed meta-analysis on 

222 the effect of antidepressants on neuronal stem cell differentiation, which was not significantly 

223 changed (Hedges’ g SMD, 0.23; 95% CI, -0.68 to 1.13; p=0.63, Figure 2B). Furthermore, 

224 there was no statistically significant evidence that antidepressants stimulate stem cell 

225 proliferation in models of depression (Hedges’ g SMD, 1.14; 95% CI, -0.03 to 2.32; p=0.06, 

226 Figure 3).

227

228 Potential Effect of Drugs on Neuronal Stem Cells in the Context of Brain Injury

229 Some publications offer insights into the potential effect of drugs on neuronal stem 

230 cells in the context of brain injury that may be informative for future research. We found 20 

231 records investigating drug-stem cell interactions in in vivo and in vitro models of brain 

232 ischemia and hypoxia. For instance, the phosphodiesterase type-5 inhibitor sildenafil 

233 stimulated proliferation of neuronal stem cells (5 records). We cannot exclude that the injury 

234 condition itself influences drug-stem cell interactions, but in the case of sildenafil, the 

235 stimulating effect on neuronal stem cell proliferation was also found under physiologic 

236 conditions. However, the overall number of publications with complete datasets and the 
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237 heterogeneous effects were too low to perform robust meta-analysis in the brain injury 

238 subgroup.

239

240 Discussion

241 Our systematic review revealed that the effects of drugs used in geriatric patients on 

242 neuronal stem cells have not been studied in much detail so far. In fact, the identified 

243 publications reported such interactions as an auxiliary finding. Relatively few publications 

244 exist on a limited number of drugs, and their heterogeneity was high with respect to the type of 

245 experiment (in vivo or in vitro), condition under which the drugs were assessed (physiologic, 

246 injury or modified) and the investigated drugs (Table 1 and 2, Supplemental Table 2 and 3). 

247 We intentionally chose to investigate neuronal stem cells in their various types and 

248 applications because we wanted to provide a comprehensive overview about the interactions of 

249 neuronal stem cells and drugs in vitro, in vivo, and in clinical trials. We found that, although 

250 there are numerous studies using in vitro and in vivo models, there is no clinical trial 

251 investigating drug-stem cell interactions. In addition, we only found studies in cultured 

252 neuronal stem cells or endogenous stem cell populations in vivo (Supplemental Table 3). In 

253 those studies that investigated transplanted cells, only mesenchymal stem cells, but not 

254 neuronal stem cells were used.22

255 Nevertheless, we were able to show a clear interaction between antidepressants and 

256 neuronal stem cells in the physiologic condition and in models of depression (Figure 2 and 3). 

257 The results obtained by studies using well-suited animal models may be relevant for clinical 

258 treatment. Antidepressants may serve as an example: In case their class effects on proliferation 

259 and differentiation of neuronal stem cells was proven for particular antidepressants, those may 

260 be considered as the treatment of choice for post-stroke depression even in case alternative 

261 drugs may provide better primary anti-depressant effects, but less regenerative stimuli. 

262 However, the situation may be far more complex in human patients. It is important to 
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263 understand that proliferation and differentiation were chosen as the pre-set criteria for stem cell 

264 function in our analysis. Although important for stem cell function, these parameters are 

265 neither the only ones indicating improved functional recovery after stroke, nor the most 

266 important ones. This is underlined by the recently published, neutral results of the Fluoxetine 

267 Or Control Under Supervision (FOCUS) trial study.39 While fluoxetine was effective in 

268 preventing post-stroke depression, there were no obvious effects of functional recovery, but a 

269 higher rate of bone fractures as an adverse event.23

270 Further investigations regarding the modes of action of the drugs revealed functional 

271 hypotheses for pathways underlying their effects on neuronal stem cell differentiation and 

272 proliferation (Figure 4). Verifying those and elucidating the underlying mechanisms is an 

273 important step to develop more effective and specific drug-stem cell combination treatments 

274 and to minimize potential adverse effects.

275

276 Potential Mechanisms Affecting Proliferation and Differentiation

277 In order to understand the drug effects on neuronal stem cells, we also assessed the 

278 underlying mechanisms investigated in the included publications. Among all records in the 

279 physiologic condition, the six most frequently utilized drugs (fluoxetine, imipramine, 

280 morphine, rosiglitazone, rapamycin, and insulin, Table 2) have been tested for their 

281 mechanism of action. However, the identified pathways were only described in a single 

282 publication each (Figure 4) and therefore still need to be verified:

283 Fluoxetine, imipramine, and morphine affect the mitogen-activated protein 

284 kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway.24-26 This is one of the key 

285 signaling pathways modulating neuronal stem cell proliferation and differentiation.27 MAPK 

286 signaling contributes to synaptic plasticity and long-term memory formation.28 It is also 

287 supposed to be neuroprotective.29
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288 The antidepressant fluoxetine increased proliferation of neuronal stem cells. This is 

289 likely mediated by activation of serotonin-1-agonist receptor (SHT1Ar, Figure 4).30, 31 

290 SHT1Ar activates phosphatidylinositol-4,5-biphosphate 3-kinase (PI3K), followed by an 

291 increase of Akt1 that in turn increases neuronal stem cell proliferation.32 Moreover, SHT1Ar 

292 triggers the MAPK/ERK cascade which increases neurogenesis by stimulating cyclin D1.30 

293 Hui and colleagues reported that SHT1Ar induces ser9, which inhibits glycogen synthase 

294 kinase 3β (GSK3ß) followed by activation of β-catenin.31 Another potential mechanism is that 

295 SHT1Ar stimulates the cAMP response element-binding (CREB) protein by activating 

296 MAPK/ERK.24 In a study unrelated to SHT1Ar, fluoxetine stimulated cyclin-dependent kinase 

297 (CDK) inhibitor protein 1 (P21/CIP1) leading to increased neurogenesis.33

298 Rapamycin and insulin affect the mammalian target of rapamycin (mTOR) signaling 

299 pathway in different ways. Insulin stimulates mTOR and rapamycin inhibits it.34, 35 mTOR is a 

300 receptor tyrosine kinase that is pivotal in regulating cell proliferation and differentiation.36 

301 Inhibition of mTOR blocks p70 ribosomal S6 Kinase (S6K) which then leads to the inhibition 

302 of stem cell differentiation via telomerase activity reduction.35, 37 S6K has been well-known in 

303 regulating the cell cycle, growth, and survival.38

304 An antidiabetic drug from the subclass of thiazolidinediones, rosiglitazone, stimulates 

305 the neurotrophic factor α1 (NF-α1) which then upregulates the fibroblast growth factor-2 

306 (FGF-2). FGF-2 induces neurogenesis in the hippocampus.39 Another study demonstrated that 

307 FGF-2 needs cystatin C to induce its mitogenic activity.40 Unfortunately, this was not 

308 confirmed by the identified publications.

309 Altogether, the pathways described to be influenced by the drugs in the identified 

310 publications fit to the results of other publications on neuronal stem cell proliferation and 

311 differentiation. However, although they are potential therapeutic targets, these pathways also 

312 control many very fundamental cell processes. Modulating these pathways may therefore cause 

313 interference with important basic cellular functions. Hence, it would be necessary to find more 
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314 specific targets avoiding adverse side effects and/or supporting positive effects. In addition, 

315 prospective research should validate each pathway in the particular cell type and source of 

316 interest.

317

318 Unmet Research Needs

319 A systematic screening of drugs applied in geriatric clinical routine on neuronal stem 

320 cell proliferation and differentiation is warranted. As a first step, this should be investigated 

321 under physiologic conditions to comprehend the basic interactions of drugs with neuronal stem 

322 cells. Subsequently, these mechanisms should be assessed in injury conditions, e.g., animal 

323 models of neurodegenerative diseases. This is of particular relevance since a number of 

324 specialized animal models exist. This includes transgenic and immunosuppressed animals in 

325 which the brain microenvironment during degeneration or after injury can be significantly 

326 different from the wild type. Moreover, drug metabolism (pharmacokinetics and dynamics) 

327 obviously differs between mice and men. Hence, it is rationale to assume that these differences 

328 may also effect any potential interactions between drugs and neuronal stem cells. However, 

329 studies investigating drug-stem cell interactions in vivo are scarce, which is why we have 

330 combined all such studies in the “injury condition” category. Hence, future research should 

331 address this question systematically in relevant disease models and shall focus on the impact of 

332 animal species and strain used.

333 Hence, we need to ensure that the knowledge generated from animal studies is indeed 

334 translatable to the human situation. Potential approaches involve sophisticated models 

335 mimicking a human organism, such as interconnected organs-on-a-chip. Moreover, such 

336 studies should primarily focus on combinations of stem cells with clinically applied drugs and 

337 less on purely experimental substances, and shall include comprehensive safety readout 

338 protocols.

339
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340 Limitations of the Systematic Review and Meta-Analysis

341 Our analysis has several limitations:

342 i) We did not specify an ex ante protocol prior to the meta-analysis of the available 

343 data, including the specification of the primary outcome measure. We here performed meta-

344 analyses on the effect of drugs used in the elderly and both the proliferation and differentiation 

345 of neuronal stem cells.

346 ii) We did not focus on drug effects on other stem cell functions such as migration and 

347 survival. The exclusion was made because migration is difficult to measure in vivo and it has 

348 different effects based on species differences.41 On the other hand, survival, explicitly defined, 

349 is not a function of stem cells. On the contrary, integration is another function of stem cells and 

350 only shown in differentiated cells, therefore it was included in our study.

351 iii) The meta-analysis is currently quite limited due to the understudied effects of drugs 

352 on neuronal stem cells. However, despite the small sample size, our meta-analysis identified an 

353 interaction, which may indicate a strong effect, making these findings even more relevant. 

354 Nevertheless, more studies and particular analyses focusing on the therapeutically more 

355 frequently applied populations such as MSC are warranted.

356 iv) We found only publications using neuronal stem cell cultures or investigating 

357 endogenous neuronal stem cells. Further studies investigating the effect of drugs on 

358 transplanted neuronal stem cells are necessary.

359 v) The heterogeneity of the samples (Table 1) limits general conclusions.

360 vi) Some drugs were studied more frequently than others (Table 2) which can 

361 potentially over represent a single drug from a particular class or subclass leading to result 

362 bias. For example, fluoxetine dominated among the antidepressants, accounting for more than 

363 half (53.01%) of the publications in this drug class, followed by imipramine (21.69%). 

364 However, when comparing the effect of the main drug classes with their subclasses, we did not 
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365 reveal any differences (see Table 3 and Supplemental Table 5). In addition, the number of 

366 publications on newer antidepressant drugs was low, e.g., on sertraline (n=1) and mirtazapine 

367 (n=0). These drugs show better efficacy than fluoxetine,42 but may have different effects on 

368 neuronal stem cell proliferation and differentiation and should therefore be investigated as 

369 well. 

370 vii) Overall quality of the publications was relatively poor. We rarely found 

371 information on reporting of outliers (2 publications, 0.9%). Experimental evidence for the 

372 proposed underlying mechanism was provided more frequently, but still only by one third of 

373 all publications (41 records out of 115 records in the physiologic condition, 35.7%). In 

374 addition, basic statistical data such as mean and standard deviation were sometimes difficult to 

375 extract. We have tried to minimize this weakness by contacting the authors of the respective 

376 studies to obtain mean and standard deviation and where not possible measured them 

377 graphically. 

378 The lack of clinical trials on drug-neuronal stem cell interactions, despite an increasing 

379 number of stem cell trials (only 5 trials using neuronal stem cells from a total of 120 stem cell 

380 trials in neurological disorders since January 1991, www.clinicaltrials.gov), reveals that this 

381 issue imperatively deserves more attention. Biomarkers and imaging techniques indicating 

382 neuronal stem cell proliferation and differentiation are needed to assess these processes as 

383 secondary endpoints in clinical trials.

384

385 Conclusion

386 The interactions between neuronal stem cells and drugs frequently used in geriatric 

387 patients are currently understudied. Despite limited data, we were able to perform a meta-

388 analysis for the effect of antidepressants on proliferation and revealed a clear interaction. This 

389 suggests that there may be further effects of drugs that warrant further investigation under 

390 physiologic and injury conditions. This will unravel how pharmacological interventions and 
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391 neuronal stem cells can be combined in more efficient, safer, and ultimately successful 

392 therapeutic strategies.

393

394 Acknowledgements

395 M.I. was supported by a scholarship from the Indonesia Endowment Fund for 

396 Education from Indonesia’s Ministry of Finance (Award number: S-2257/LPDP.3/2016). The 

397 funding source had no role in the design and conduct of the study, collection, management, 

398 analysis, and interpretation of the data, preparation, review, or approval of the manuscript, and 

399 decision to submit the manuscript for publication.

400 We would like to thank Andrea Maria Herrmann for her advice on the systematic 

401 review and meta-analysis, as well as Dr. Larisa Bulavina for designing Figure 4.

402

403 Conflict of Interest

404 The authors declare that they have no conflict of interest.

405

406 Data Availability

407 All data that support the findings of this study are available in the manuscript and 

408 supplemental data.

409

410 References

411 1. Niccoli T, Partridge L. Ageing as a Risk Factor for Disease. Curr Biol. 2012;22:R741-

412 R752.

413 2. world health organization. mental health of older adults. Available at: 

414 http://www.who.int/mediacentre/factsheets/fs381/en/. Accessed 30 november, 2017.

Page 17 of 95

http://www.who.int/mediacentre/factsheets/fs381/en/


18

415 3. Pringsheim T, Fiest K, Jette N. The international incidence and prevalence of 

416 neurologic conditions: how common are they? Neurology. 2014;83:1661-1664.

417 4. Mackenbach JP, Karanikolos M, Looman CW. The rise of mortality from mental and 

418 neurological diseases in Europe, 1979-2009: observational study. BMC public health. 

419 2014;14:840.

420 5. Amor S, Peferoen LA, Vogel DY, et al. Inflammation in neurodegenerative diseases--

421 an update. Immunology. 2014;142:151-166.

422 6. Finberg JP. Update on the pharmacology of selective inhibitors of MAO-A and MAO-

423 B: focus on modulation of CNS monoamine neurotransmitter release. Pharmacol Ther. 

424 2014;143:133-152.

425 7. Vijverman AC, Fox SH. New treatments for the motor symptoms of Parkinson's 

426 disease. Expert Rev Clin Pharmacol. 2014;7:761-777.

427 8. Brichta L, Greengard P, Flajolet M. Advances in the pharmacological treatment of 

428 Parkinson's disease: targeting neurotransmitter systems. Trends Neurosci. 2013;36:543-

429 554.

430 9. Rafii MS, Aisen PS. Advances in Alzheimer's disease drug development. BMC Med. 

431 2015;13:62.

432 10. Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human 

433 neurodegenerative disorders - how to make it work. Nat Med. 2004;10:S42-S50.

434 11. Kokaia Z, Tornero D, Lindvall O. Transplantation of reprogrammed neurons for 

435 improved recovery after stroke. Progress in brain research. 2017;231:245-263.

436 12. Zhu Y, Uezono N, Yasui T, et al. Neural stem cell therapy aiming at better functional 

437 recovery after spinal cord injury. Developmental dynamics : an official publication of 

438 the American Association of Anatomists. 2018;247:75-84.

439 13. Grade S, Gotz M. Neuronal replacement therapy: previous achievements and 

440 challenges ahead. NPJ Regenerative medicine. 2017;2:29.

Page 18 of 95



19

441 14. Diederichs C, Berger K, Bartels DB. The measurement of multiple chronic diseases--a 

442 systematic review on existing multimorbidity indices. J Gerontol A Biol Sci Med Sci. 

443 2011;66:301-311.

444 15. Lauretani F, Ceda GP, Pelliccioni P, et al. Approaching Neurological Diseases to 

445 Reduce Mobility Limitations in Older Persons. Curr Pharm Design. 2014;20:3149-

446 3164.

447 16. Sommer CJ, Schabitz WR. Fostering Poststroke Recovery: Towards Combination 

448 Treatments. Stroke. 2017;48:1112-1119.

449 17. Finan A, Richard S. Stimulating endogenous cardiac repair. Front Cell Dev Biol. 

450 2015;3:57.

451 18. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews 

452 and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.

453 19. National institutes of health. Available at: 

454 https://imagej.nih.gov/ij/docs/pdfs/ImageJ.pdf. Accessed 14 august 2017.

455 20. Neyeloff JL, Fuchs SC, Moreira LB. Meta-analyses and Forest plots using a microsoft 

456 excel spreadsheet: step-by-step guide focusing on descriptive data analysis. BMC Res 

457 Notes. 2012;5:52.

458 21. Holm S. A Simple Sequentially Rejective Multiple Test Procedure. Scand J Stat. 

459 1979;6:65-70.

460 22. Kota DJ, Prabhakara KS, van Brummen AJ, et al. Propranolol and Mesenchymal 

461 Stromal Cells Combine to Treat Traumatic Brain Injury. Stem Cells Transl Med. 

462 2016;5:33-44.

463 23. Effects of fluoxetine on functional outcomes after acute stroke (FOCUS): a pragmatic, 

464 double-blind, randomised, controlled trial. Lancet. 2019;393:265-274.

Page 19 of 95



20

465 24. Wang YX, Zhang XR, Zhang ZJ, et al. Protein kinase Mzeta is involved in the 

466 modulatory effect of fluoxetine on hippocampal neurogenesis in vitro. Int J 

467 Neuropsychopharmacol. 2014;17:1429-1441.

468 25. Xu C, Zheng H, Loh HH, et al. Morphine Promotes Astrocyte-Preferential 

469 Differentiation of Mouse Hippocampal Progenitor Cells via PKCepsilon-Dependent 

470 ERK Activation and TRBP Phosphorylation. Stem Cells. 2015;33:2762-2772.

471 26. Peng CH, Chiou SH, Chen SJ, et al. Neuroprotection by Imipramine against 

472 lipopolysaccharide-induced apoptosis in hippocampus-derived neural stem cells 

473 mediated by activation of BDNF and the MAPK pathway. Eur Neuropsychopharmacol. 

474 2008;18:128-140.

475 27. Jiang P, Zhu T, Xia Z, et al. Inhibition of MAPK/ERK signaling blocks hippocampal 

476 neurogenesis and impairs cognitive performance in prenatally infected neonatal rats. 

477 European archives of psychiatry and clinical neuroscience. 2015;265:497-509.

478 28. Impey S, Obrietan K, Storm DR. Making new connections: role of ERK/MAP kinase 

479 signaling in neuronal plasticity. Neuron. 1999;23:11-14.

480 29. Davis S, Vanhoutte P, Pages C, et al. The MAPK/ERK cascade targets both Elk-1 and 

481 cAMP response element-binding protein to control long-term potentiation-dependent 

482 gene expression in the dentate gyrus in vivo. J Neurosci. 2000;20:4563-4572.

483 30. Zusso M, Debetto P, Guidolin D, et al. Fluoxetine-induced proliferation and 

484 differentiation of neural progenitor cells isolated from rat postnatal cerebellum. 

485 Biochem Pharmacol. 2008;76:391-403.

486 31. Hui J, Zhang J, Kim H, et al. Fluoxetine regulates neurogenesis in vitro through 

487 modulation of GSK-3beta/beta-catenin signaling. Int J Neuropsychopharmacol. 

488 2014;18.

Page 20 of 95



21

489 32. Rahmani A, Kheradmand D, Keyhanvar P, et al. Neurogenesis and Increase in 

490 Differentiated Neural Cell Survival via Phosphorylation of Akt1 after Fluoxetine 

491 Treatment of Stem Cells. Biomed Res Int. 2013.

492 33. Pechnick RN, Zonis S, Wawrowsky K, et al. Antidepressants Stimulate Hippocampal 

493 Neurogenesis by Inhibiting p21 Expression in the Subgranular Zone of the 

494 Hipppocampus. Plos One. 2011;6.

495 34. Lee JE, Lim MS, Park JH, et al. PTEN Promotes Dopaminergic Neuronal 

496 Differentiation Through Regulation of ERK-Dependent Inhibition of S6K Signaling in 

497 Human Neural Stem Cells. Stem Cells Transl Med. 2016;5:1319-1329.

498 35. Lee JE, Lim MS, Park JH, et al. S6K Promotes Dopaminergic Neuronal Differentiation 

499 Through PI3K/Akt/mTOR-Dependent Signaling Pathways in Human Neural Stem 

500 Cells. Mol Neurobiol. 2016;53:3771-3782.

501 36. Yu JS, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR 

502 signalling in pluripotency and cell fate determination. Development. 2016;143:3050-

503 3060.

504 37. Dogan F, Biray Avci C. Correlation between telomerase and mTOR pathway in cancer 

505 stem cells. Gene. 2018;641:235-239.

506 38. Bahrami BF, Ataie-Kachoie P, Pourgholami MH, et al. p70 Ribosomal protein S6 

507 kinase (Rps6kb1): an update. Journal of clinical pathology. 2014;67:1019-1025.

508 39. Cheng Y, Rodriguiz RM, Murthy SR, et al. Neurotrophic factor-alpha1 prevents stress-

509 induced depression through enhancement of neurogenesis and is activated by 

510 rosiglitazone. Mol Psychiatry. 2015;20:744-754.

511 40. Taupin P, Ray J, Fischer WH, et al. FGF-2-responsive neural stem cell proliferation 

512 requires CCg, a novel autocrine/paracrine cofactor. Neuron. 2000;28:385-397.

Page 21 of 95



22

513 41. Srivastava RK, Bulte JWM, Walczak P, et al. Migratory potential of transplanted glial 

514 progenitors as critical factor for successful translation of glia replacement therapy: The 

515 gap between mice and men. Glia. 2018;66:907-919.

516 42. Magni LR, Purgato M, Gastaldon C, et al. Fluoxetine versus other types of 

517 pharmacotherapy for depression. Cochrane Database Syst Rev. 2013:CD004185.

518

519

520 Figure legends

521 Figure 1. PRISMA Flow Diagram of the Systematic Search. Of note, the number of 

522 “records” does not equal the number of publications due to experimental designs including 

523 multiple experiments, such as physiologic versus injury or physiologic versus modified 

524 conditions, representing different “records”.

525

526 Figure 2. Forest Plot of the Effect of Antidepressants under Physiologic Conditions. We 

527 found that antidepressants stimulated neuronal stem cell proliferation (A, Hedges’ g SMD, 

528 0.66; 95% CI, 0.20 to 1.12; p=0.005) but not differentiation (B, Hedges’ g SMD, 0.23; 95% 

529 CI, -0.68 to 1.13; p=0.63) under physiologic conditions. In A, the weights are given for both 

530 subgroup and overall analysis. The obtained p-values in the subgroup analysis were compared 

531 to the cutoff p-value calculated by the Holm-Bonferroni method that is a sequential method of 

532 testing p-values (from smallest to largest) to correct for multiplicity. * indicates publications 

533 from which standard deviations and means were derived by manual graphical measurement 

534 using ImageJ.

535

Page 22 of 95



23

536 Figure 3. Forest Plot of the Effect of Antidepressants in Models of Depression. We 

537 identified that antidepressants increased the proliferation of stem cells in the context of stress; 

538 however the effect was not statistically significant (Hedges’ g SMD, 1.14; 95% CI, -0.03 to 

539 2.32; p=0.06). * indicates publications from which standard deviations and means were 

540 derived by manual graphical measurement using ImageJ.

541

542 Figure 4. Recorded Pathways from the Selected Publications. The mechanisms of the drugs 

543 (A) imipramine, fluoxetine, morphine, and (B) rosiglitazone, rapamycin, and insulin have been 

544 reported in a single publication each. Arrows indicate stimulation and T-shapes indicate 

545 inhibition of the subsequent substance. Positive signs indicate stimulation and negative signs 

546 indicate inhibition of the end effects (proliferation or differentiation). The straight lines 

547 indicate proven mechanism and the dotted lines indicate assumed mechanism. bcl-2: B-cell 

548 lymphoma-2; BDNF: brain-derived neurotrophic factor; BMP4: bone morphogenetic protein 4; 

549 cAMP: cyclic adenosine monophosphate; CIP1: cyclin-dependent kinase (CDK) inhibitor 

550 protein 1; CREB: cAMP response element-binding protein; FGF2: fibroblast growth factor-2; 

551 GABA: gamma-aminobutyric acid; GAD: glutamic acid decarboxylase; GDNF: glial cell-

552 derived neurotrophic factor; GSK3ß: glycogen synthase kinase 3ß; HES-1: hairy and enhancer 

553 of split-1; IRS-1: insulin receptor substrate-1; MAPK: mitogen-activated protein kinase; NF-

554 alpha-1: nuclear factor-alpha-1; pERK/ERK: phosphorylated extracellular signal-regulated 

555 kinases; PI3K: phosphatidylinositol-4,5-biphosphate 3-kinase; PKM: protein kinase M;  

556 SHT1Ar: serotonin-1-agonist receptor.

557

558 Table 1. Distribution of the Records of Drug Classes and Subclasses.

559
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560 Table 2. The Six Most Frequently Used Drugs Identified by the Systematic Search.

561

562 Table 3. Distribution of the Drug Classes Based on the Effect on Neuronal Stem Cells. 

563 The number of publications reporting a stimulating, inhibiting or neutral effect on neuronal 

564 stem cell proliferation or differentiation is given. Relative percentages per drug class are 

565 indicated in brackets.
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Figure 3. Forest Plot of the Effect of Antidepressants in Models of Depression. We identified that 
antidepressants increased the proliferation of stem cells in the context of stress; however the effect was not 
statistically significant (Hedges’ g SMD, 1.14; 95% CI, -0.03 to 2.32; p=0.06). * indicates publications from 

which standard deviations and means were derived by manual graphical measurement using ImageJ. 
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Figure 4. Recorded Pathways from the Selected Publications. The mechanisms of the drugs (A) imipramine, 
fluoxetine, morphine, and (B) rosiglitazone, rapamycin, and insulin have been reported in a single 

publication each. Arrows indicate stimulation and T-shapes indicate inhibition of the subsequent substance. 
Positive signs indicate stimulation and negative signs indicate inhibition of the end effects (proliferation or 

differentiation). The straight lines indicate proven mechanism and the dotted lines indicate assumed 
mechanism. bcl-2: B-cell lymphoma-2; BDNF: brain-derived neurotrophic factor; BMP4: bone 

morphogenetic protein 4; cAMP: cyclic adenosine monophosphate; CIP1: cyclin-dependent kinase (CDK) 
inhibitor protein 1; CREB: cAMP response element-binding protein; FGF2: fibroblast growth factor-2; GABA: 
gamma-aminobutyric acid; GAD: glutamic acid decarboxylase; GDNF: glial cell-derived neurotrophic factor; 

GSK3ß: glycogen synthase kinase 3ß; HES-1: hairy and enhancer of split-1; IRS-1: insulin receptor 
substrate-1; MAPK: mitogen-activated protein kinase; NF-alpha-1: nuclear factor-alpha-1; pERK/ERK: 

phosphorylated extracellular signal-regulated kinases; PI3K: phosphatidylinositol-4,5-biphosphate 3-kinase; 
PKM: protein kinase M;  SHT1Ar: serotonin-1-agonist receptor. 
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Table 1. Distribution of the Records of Drug Classes and Subclasses.

Drug class Drug subclass Number of records 

Opioid 25

Cyclooxygenase-2 inhibitor 8

Nonsteroidal anti-inflammatory drug 7

Analgesic

Total 40

Aminoglycoside 9

Macrolide 9

Quinolone 6

Tetracycline 4

Cephalosporin 2

Nitroimidazol 1

Antibiotic

Total 31

Selective serotonin reuptake inhibitor 54

Tricyclic antidepressant 22

Monoamine oxidases inhibitor 5

Atypical antidepressant 1

Selective serotonin-norephinephrine 

reuptake inhibitor

1

Antidepressant

Total 83

Insulin 9

Thiazolidinedione 9

Incretin mimetic 3

Non-sulfonylurea 1

Antidiabetic

Total 22

Statin 6Antihyperlipidemic

Total 6
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Loop diuretic 4

Aldosterone receptor inhibitor 3

Alpha 2 adrenergic agonist 3

Beta blocker 3

Calcium channel antagonist 3

Ace inhibitor 2

Angiotensin II receptor inhibitor 1

Antihypertensive

Total 19

Phosphodiesterase type-5 6

Corticosteroid 4

Other drugs

 

Hormonal therapy 2

Rho-Kinase inhibitor 2

Supplement 2

Antihelminthic 1

Atypical antipsychotic 1

Cytosine arabinoside 1

Triazole derivative 1

Total 20
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Table 2. The Six Most Frequently Used Drugs Identified by the Systematic Search.

Drug class Drug subclass Drug Number of record

Antidepressant Selective serotonin reuptake inhibitor Fluoxetine 44

Analgesic Opioid Morphine 19

Antidepressant Atypical antidepressant Imipramine 18

Antidiabetic Insulin Insulin 12

Antibiotic Macrolide Rapamycin 8

Antidiabetic Thiazolidinedione Rosiglitazone 6
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Table 3. Distribution of the Drug Classes Based on the Effect on Neuronal Stem Cells. The 

number of publications reporting a stimulating, inhibiting or neutral effect on neuronal stem 

cell proliferation or differentiation is given. Relative percentages per drug class are indicated in 

brackets.

Proliferation Differentiation
Drug classes

Stimulating Neutral Inhibiting Stimulating Neutral Inhibiting

Analgesic 6 (19.3%) 5 (16.1%) 20 (64.5%) 6 (28.6%) 2 (9.5%) 13 (61.9%)

Antibiotic 8 (34.8%) 5 (21.7%) 10 (43.5%) 6 (24%) 7 (28%) 12 (48%)

Antidepressant 39 (65%) 15 (25%) 6 (10%) 30 (56.6%) 13 (24.5%) 10 (18.9%)

Antidiabetic 3 (37.5%) 3 (37.5%) 2 (25%) 9 (47.4%) 4 (21%) 6 (31.6%)

Antihypertensive 7 (58.3%) 3 (25%) 2 (16.7%) 7 (63.6%) 2 (18.2%) 2 (18.2%)
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Search Strategies

Search terms:

1. Neurogenesis [All Fields] 
2. Neuronal cell therapy [All Fields]
3. Neuronal precursor cell [All Fields] OR Neuronal progenitor cell [All Fields]
4. Neuronal cell proliferation [All Fields]
5. Neuronal cell differentiation [All Fields]
6. #1 OR #2 OR  #3 OR #4 OR #5
7. Statin [All Fields]
8. PCSK9 Inhibitor [All Fields]
9. Bile acid sequestrant [All Fields]
10. Alpha 2 adrenergic receptor agonist [All Fields]
11. Beta adrenergic receptor antagonist [All Fields]
12. Beta blocker [All Fields]
13. Angiotensin II Receptor Inhibitor [All Fields] OR  ARB [All Fields]
14. Alpha glucosidase inhibitor [All Fields]
15. Amylin analogs [All Fields]
16. Dipeptyl peptidase 4 inhibitor [All Fields]
17. SGLT 2 Inhibitor [All Fields]
18. Incretin mimetics [All Fields]
19. Insulin [All Fields]
20. Meglitinides [All Fields]
21. Sulfonylurea [All Fields]
22. Non sulfonylurea [All Fields]
23. Loop diuretics [All Fields]
24. Calcium channel antagonist [All Fields]
25. Thiazolidinediones [All Fields]
26. Norephinephrine and dopamine receptor Inhibitor [All Fields] OR NDRI [All Fields]
27. Selective serotonin reuptake inhibitor [All Fields] OR SSRI[All Fields]
28. Serotonin and Norephinephrine Reuptake Inhibitor [All Fields] OR SNRI[All Fields]
29. Atypical Antidepressant [All Fields]
30. Potassium diuretics [All Fields]
31. Aldosterone receptor antagonist [All Fields]
32. Tricyclic antidepressant [All Fields]
33. Monoamine oxidase Inhibitor [All Fields] OR MAOI [All Fields]
34. Acetaminophen [All Fields] OR paracetamol [All Fields]
35. Nonsteroidal anti-inflammatory drug [All Fields]  OR NSAID [All Fields]
36. Thiazide diuretics [All Fields]
37. Carbapenem [All Fields]
38. Penicillin [All Fields]
39. Tetracyclin [All Fields]
40. Cephalosporin [All Fields]
41. Quinolone [All Fields]
42. Lincomycin [All Fields]
43. Macrolide [All Fields]
44. Sulfonamide [All Fields]
45. Glycopeptide [All Fields]
46. Aminoglycoside [All Fields]
47. Opioid [All Fields]
48. COX-2 Inhibitor [All Fields]
49. #7 OR #8 OR #9 OR #10 OR#11 OR #12 OR#13 OR#14 OR #15 OR #16 OR #17 OR #18 OR 

#19 OR #20 OR #21 OR #22 OR #23 OR #24 OR #25 OR #26 OR #27 OR #28 OR#29 OR #30 
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OR #31 OR #32 OR #33 OR #34 OR #35 OR #36 OR #37 OR #38 OR #39 OR #40 OR #41 
OR #42 OR #43 OR #44 OR #45 OR #46 OR #47 OR #48

50. #6 AND #49
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Supplemental Table 1. Excluded Publications, With the Reasons for Their Exclusion.

 No Author, Year

  PM
ID

  R
eview

  N
on-English publication

  U
se other cell line

  N
on-m

am
m

alian anim
al

  N
on-available drug in the m

arket

  N
o adequate m

ethod

  N
o interaction betw

een drug and the stem
 cell

 N
on-Proliferation or N

on D
ifferentiation m

arker

  D
rug only used as procedure

  W
ithdraw

n article

1. Abdelkader et al., 2017 28178754 *

2. Abdipranoto-Cowley et al., 2009 19489097 *

3.
Aldkogius et al., 2009

19544468
*

4. Allani et al., 2018 29788733 *

5. Altinay et al., 2017 27593816 *

6. Aoki et al., 1993 16350568 *

7. Ashjian et al., 2003 14556988 *

8. Ayuob, 2017 27444866 *

9. Bae et al., 2017 29165354 *

10. Baka et al., 2004 15290185 *

11. Banks, 2012 22612379 *

12. Baravalle et al., 2017 27616271 *

13. Bassani et al., 2017 28801114 *

14. Bassani et al., 2018 28623617 *

15. Bateman & McNeill, 2006 16786222 *

16. Beech et al., 2004 15176089 *

17. Belovicova et al., 2017 28456144 *

18. Bernstein et al., 2014 24817634 *

19. Bianchi et al., 2017 29149058 *

20. Biggio et al., 2009 19309534 *

21. Boldrini et al., 2012 22652019 *

22. Borg et al., 2014 24898143 *

23. Bottcher et al., 2000 10837202 *

24. Bottcher et al., 2004 15584921 *

25. Boucher et al., 1998 9579401 *
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 No Author, Year

  PM
ID

  R
eview

  N
on-English publication

  U
se other cell line

  N
on-m

am
m

alian anim
al

  N
on-available drug in the m

arket

  N
o adequate m

ethod

  N
o interaction betw

een drug and the stem
 cell

 N
on-Proliferation or N

on D
ifferentiation m

arker

  D
rug only used as procedure

  W
ithdraw

n article

26. Brenza et al., 2017 27771430 *

27. Brooker et al., 2000 10679768 *

28. Brownjohn et al., 2017 28285880 *

29. Brustein et al., 2012 22888055 *

30. Burgdorf et al., 2017 28158790 *

31. Buzanska et al., 2009 19609937 *

32. Cabras et al., 2010 20356437 *

33.
Calabria et al., 2008

18039545
*

34. Calderari et al., 2017 28911974 *

35. Campos et al., 2017 28588483 *

36. Cao et al., 2018 29736175 *

37. Carlson et al., 2018 29455576 *

38. Carson et al., 2012 3225598 *

39. Castilho et al., 2000 10877919 *

40. Cebolla et al., 2008 18579744 *

41. Cerri et al., 2015 26198165 *

42. Chalicem et al., 2017 28747063 *

43. Chao et al., 2013 23691054 *

44. Chen et al., 2005 15895831 *

45. Chen et al., 2012 23317920 *

46. Chesnokova & Pechnick, 2008 18682686 *

47. Chiba et al., 2010 19925560 *

48. Chilmonczyk et al., 2017 28324844 *

49. Choi et al., 2017 28045430 *

50. Cocchiarella, 2012 22256833 *

51. Cominski et al., 2012 22280973 *
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 No Author, Year

  PM
ID

  R
eview

  N
on-English publication

  U
se other cell line

  N
on-m

am
m

alian anim
al

  N
on-available drug in the m

arket

  N
o adequate m

ethod

  N
o interaction betw

een drug and the stem
 cell

 N
on-Proliferation or N

on D
ifferentiation m

arker

  D
rug only used as procedure

  W
ithdraw

n article

52. Cominski et al., 2014 25086317 *

53. Compagnucci et al., 2015 27160703 *

54. Conner et al., 2012 22595793 *

55. Coplan et al., 2014 25506432 *

56. Corso et al., 1998 9514310 *

57. Culberson et al., 2017 28253982 *

58. Czeh et al., 2001 11675510 *

59. De la Rosa et al., 1994 7535629 *

60. De Pablo et al., 1996 9087719 *

61. Diaz et al., 1999 10215915 *

62. Diaz et al., 2000 10725240 *

63. Dikmen, 2017 28338387 *

64. Dobarro et al., 2013 22824191 *

65. Doze et al., 2011 21791575 *

66. Einoch et al., 2017 28410959 *

67. Eisch & Mandyam, 2004 14992964 *

68. Ekström et al., 1993 8215035 *

69. Ericksson et al., 1992 1382177 *

70. Ericksson et al., 2008 18293414 *

71. Faijerson et al., 2009 19425175 *

72. Faivre et al., 2011 21273318 *

73. Faivre et al., 2012 22115896 *

74. Farrar et al., 2005 16304629 *

75. Ferrucci et al., 2017 28418837 *

76. Fesharaki et al., 2018 29633593 *

77. Fischer et al., 2002a 12435364 *

78. Fischer et al., 2002b 12417664 *
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 No Author, Year
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ID
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eview

  N
on-English publication

  U
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o interaction betw
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ifferentiation m
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  D
rug only used as procedure

  W
ithdraw

n article

79. Fischer et al., 2002c 12176172 *

80. Fischer et al., 2003 12871698 *

81. Fishwick et al., 2010 20004186 *

82. Foerster et al., 2017 27993979 *

83. Furuya et al., 2009 19651108 *

84. Garcia-de lacoba et al.,1999 9886830 *

85. Garcia-Perez et al., 2017 26742526 *

86. Geng et al., 2017 28782906 *

87. Goto et al., 2011 22025691 *

88. Goudarzi et al., 2018 29870058 *

89. Gu et al., 2017 28916193 *

90. Guo et al., 2010 20466036 *

91. Guo et al., 2017 28382978 *

92. Guo et al., 2017 28865290 *

93. Hafizi et al., 2012 23054438 *

94. Hahn et al., 2010 19895666 *

95. Hansel et al., 2001 11598996 *

96. Hao et al., 2017 27743319 *

97. Harburg et al., 2007 17055658 *

98. Hartman et al., 2013 24139800 *

99. Hauser et al., 1993 8244536 *

100. Hayashi et al., 2012 22293695 *

101. Hays et al., 2012 22061798 *

102. Hay-Schmidt et al., 2017 28559473 *

103. Heanue et al., 2011 21280162 *

104. Heidenreich et al., 1996 8626622 *

105. Hernandez-Sanchez et al., 1995 7568228 *
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 cell
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rug only used as procedure

  W
ithdraw

n article

106. Hicks et al., 2000 11090640 *

107. Hidaka et al., 2013 23673084 *

108. Hiramoto et al., 2008 18446092 *

109. Hitchcock et al., 2001 11481281 *

110. Hori et al., 2005 15839736 *

111. Hoshimaru et al., 1996 8643664 *

112. Huang et al., 2017 28026149 *

113. Huong et al., 2011 22130242 *

114. Inta et al., 2016. 27352782 *

115. Isaev et al., 2018 29684395 *

116. Ishizuka et al., 2014 25058791 *

117. Ito & Araki, 2010 20048438 *

118. Jimenez-Gonzalez et al., 2017 29111275 *

119. Jin et al., 2017 27324897 *

120. Jukic et al., 2017 27895323 *

121. Katz et al., 2016 26772642 *

122. Kazma et al., 2010 19746435 *

123. Khurshid et al., 2010 20495180 *

124. King et al., 2017 28076682 *

125. Kisoh et al., 2017 27866373 *

126. Kitani et al., 1991 1917779 *

127. Klawitter et al., 2015 25912929 *

128. Koch et al., 2012 22510327 *

129. Kolarova et al., 2003 13129439 *

130. Kolodziej et al., 2008 18331339 *

131. Kompisch et al., 2010 20945072 *

132. Kozlova & Jansson, 2009 19421078 *
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 No Author, Year

  PM
ID

  R
eview

  N
on-English publication

  U
se other cell line

  N
on-m

am
m

alian anim
al

  N
on-available drug in the m

arket

  N
o adequate m

ethod

  N
o interaction betw

een drug and the stem
 cell

 N
on-Proliferation or N

on D
ifferentiation m

arker

  D
rug only used as procedure

  W
ithdraw

n article

133. Kuhmonen et al., 1997 9286902 *

134. Kwon et al., 1998 23392671 *

135. Lafourcade et al., 2013 23392671 *

136. Lai et al., 2011 21933448 *

137. Landry et al., 2011 21762764 *

138. Lang et al., 2009 19596361 *

139. Lecomte et al., 2017 28396216 *

140. Lee et al., 2007 17707770 *

141. Lehmann et al., 2013 23407954 *

142. Lennox et al., 2013 23138973 *

143. Leslie et al., 1998 9729266 *

144. Li et al., 2000 10956432 *

145. Li et al., 2012 22752192 *

146. Li et al., 2017 27590141 *

147. Liu et al., 2007 17663584 *

148. Liu et al., 2017 28339691 *

149. Lixing et al., 2017 29129800 *

150. Lu et al., 1996 8816274 *

151. Lucassen et al., 2004 15050859 *

152. Ma et al., 2017 28430602 *

153. Ma  EY et al., 2008 18305259 *

154. Malaterre et al., 2003 12918022 *

155. Manev et al., 2001 11462800 *

156. Mao et al., 2005 16221970 *

157. Martone et al., 2014 24689961 *

158. Marxreiter et al., 2009 19291219 *

159. Masuda et al., 2012 21914456 *
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 No Author, Year

  PM
ID

  R
eview

  N
on-English publication

  U
se other cell line

  N
on-m

am
m

alian anim
al

  N
on-available drug in the m

arket

  N
o adequate m

ethod

  N
o interaction betw

een drug and the stem
 cell

 N
on-Proliferation or N

on D
ifferentiation m

arker

  D
rug only used as procedure

  W
ithdraw

n article

160. Matrisciano et al., 2008 18082849 *

161. Mazur-Kolecka et al., 2006 17112488 *

162. Mazur-Kolecka et al., 2012 16105709 *

163. McCreedy et al., 2014 25346848 *

164. McEwen & Chattarji, 2004 15550348 *

165. McGovern et al., 2012 22867941 *

166. McNeill et al., 2008 18505882 *

167. Mehta et al., 2017 28939429 *

168. Mendez-David et al., 2015 25916883 *

169. Menendez & Vazquez-Martin, 2012 22935702 *

170. Mertens et al., 2013 24371804 *

171. Min et al., 2011 21471976 *

172. Min et al., 2017 28601633 *

173. Mir et al., 2017 28607354 *

174. Miyamoto et al., 2011 21626864 *

175. Mogi et al., 2012 22868412 *

176. Moon et al., 2013 23224631 *

177. Morel et al., 2017 28405590 *

178. Mostany et al., 2008 18511088 *

179. Motaghinejad et al., 2017 28082019 *

180. Mrkusich et al., 2004 14766199 *

181. Na et al., 2017 28966575 *

182. Naoi et al., 2018 28293733 *

183. Narita et al., 2006 16696856 *

184. Nataf & Monier, 1992 1358479 *

185. Nava et al., 2017 26523035 *

186. Newton & Duman, 2007 17696572 *
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 No Author, Year

  PM
ID

  R
eview

  N
on-English publication

  U
se other cell line

  N
on-m

am
m

alian anim
al

  N
on-available drug in the m

arket

  N
o adequate m

ethod

  N
o interaction betw

een drug and the stem
 cell

 N
on-Proliferation or N

on D
ifferentiation m

arker

  D
rug only used as procedure

  W
ithdraw

n article

187. Nieto et al., 2017 28794445 *

188. Niu et al., 2017 28179206 *

189. Noor et al., 2017 29147492 *

190. Norambuena et al., 2017 27693185 *

191. Novozhilova et al., 2015 25514049 *

192. Ohmasa & Saito, 2004 15140564 *

193. Olianas et al., 2017 28815598 *

194. Olivius et al., 2003 12850564 *

195. Omar et al., 2017 28801265 *

196. Ostapcuk et al., 2018 29795351 *

197. Otsuki et al., 2018 29622651 *

198. Palazuelos et al., 2012 22102284 *

199. Pan et al., 2016 26873855 *

200. Park et al., 2017 29299155 *

201. Park et al., 2002 12213294 *

202. Parmar et al., 2017 28164768 *

203. Parng et al., 2007 16769228 *

204. Parween et al., 2017 29311838 *

205. Patnaik et al., 2016 7807796 *

206. Pfisterer et al., 2016 27917895 *

207. Pixley et al., 1998 9929614 *

208. Popova et al., 2018 28887184 *

209. Powell et al., 2017 28394502 *

210. Pradillo et al., 2017 27856349 *

211. Procaccini et al., 2011 21073553 *

212. Qiu et al., 2018 29165691 *
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 No Author, Year

  PM
ID

  R
eview

  N
on-English publication

  U
se other cell line

  N
on-m

am
m

alian anim
al

  N
on-available drug in the m

arket

  N
o adequate m

ethod

  N
o interaction betw

een drug and the stem
 cell

 N
on-Proliferation or N

on D
ifferentiation m

arker

  D
rug only used as procedure

  W
ithdraw

n article

213. Quartier et al 2018 29428674 *

214. Quinta et al., 2010 20796173 *

215. Quinte et al., 2012 22091865 *

216. Rachmani et al., 2013 24024202 *

217. Ramalingayya et al., 2017 28408800 *

218. Ramkumar et al., 2017 28420370 *

219. Ramos-Rodriguez et al., 2014 24586614 *

220. Ray et al., 1999 10473288 *

221. Raymon et al., 1999 10377351 *

222. Revsin et al., 2005 15748869 *

223. Ridet et al., 1999 10022551 *

224. Riederer et al., 2017 27998194 *

225. Robinson et al., 1994 7988444 *

226. Rossi et al., 2018 29531474 *

227. Safford et al., 2002 12051722 *

228. Sagir et al., 2017 28461249 *

229. Sairanen et al., 2007 17049169 *

230. Sajan et al., 2017 29032894 *

231. Saliba et al., 2017 28143498 *

232. Salzberg et al., 2017 28114319 *

233. Sanchez Simon et al., 2012 22062135 *

234. Santa-Olalla et al., 1995 8568917 *

235. Santos et al., 2017 27871898 *

236. Sargeant et al., 2007 17888889 *

237. Sarkar & Das, 2003 14511111 *

238. Sarlak et al., 2013 23985544 *

239. Scheller et al., 2017 28274821 *
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 No Author, Year

  PM
ID

  R
eview

  N
on-English publication

  U
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  N
on-m
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m

alian anim
al

  N
on-available drug in the m

arket

  N
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  N
o interaction betw

een drug and the stem
 cell

 N
on-Proliferation or N

on D
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arker

  D
rug only used as procedure

  W
ithdraw

n article

240. Schmidt et al., 1999 10631639 *

241. Schmidt et al., 2015 25470346 *

242. Schmitz et al., 2018 29324300 *

243. Selden et al., 2013 23581634 *

244. Sevc et al., 2013 23748136 *

245. Sheng et al., 2007 17538007 *

246. Shin et al., 2004 14999075 *

247. Singer et al., 2009 19363795 *

248. Singh et al., 1997 9163577 *

249. Smith-Arica et al., 2000 11124058 *

250. Solbrig et al., 2006 16399805 *

251. Stranahan et al., 2008 18278039 *

252. Suh et al., 2005 15677508 *

253. Tai et al., 2018 29050859 *

254. Tan et al., 2018 29635048 *

255. Tian et al., 2017 28663724 *

256. Tondreau et al., 2008 18405367 *

257. Tong et al., 1997 9192297 *

258. Tramutola et al., 2017 27715341 *

259. Tripathi et al., 2008 18455254 *

260. Trivedi et al., 2016 27611101 *

261. Tzeng et al., 2018 29463001 *

262. Umschweif et al., 2014 24957202 *

263. Uyanigkgil et al., 2004 14963685 *

264. Val-Laillet et al., 2017 29242276 *

265. Van Gorp et al., 2013 23710605 *

266. Varghese, eta l., 2017 29147115 *
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eview
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  D
rug only used as procedure

  W
ithdraw

n article

267. Vicario-Abejon et al., 2003 12574418 *

268. Vilchez et al., 2013 23551888 *

269. Waetzig, et al., 2017 28479141 *

270. Wang  et al., 2016 25567530 *

271. Wang et al., 2003 12801891 *

272. Wang et al., 2017 28780644 *

273. Wang G et al., 2017 28780644 *

274. Wong chitrat et al., 2016 27620814 *

275. Wu et al., 2013 23357262 *

276. Xiong et al., 2009 18726712 *

277. Yamashita et al., 1995 7724532 *

278. Yanagisawa et al., 2009 19598243 *

279. Yanai et al., 2016 27229654 *

280. Yang et al., 2006 16955841 *

281. Yilmaz et al., 2014 24831366 *

282. Ying et al., 2002 11932748 *

283. Ying et al., 2012 22569742 *

284. Yoles et al., 1999 9888428 *

285. Yoon et al., 2013 24095011 *

286. Yu et al., 2005 15789426 *

287. Zackenfels et al., 1995 7718236 *

288. Zang et al., 2017 28456716 *

289. Zhang et al., 2004 15026250 *

290. Zhang et al., 2008 17854417 *

291. Zhang et al., 2017 28842345 *

292. Zhao et al., 2007 17980966 *

293. Zheng & Chen, 2007 17687392 *
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Supplemental Table 2. Distribution of the Records in the Injury and Modified Subgroup. PDE5: 
Phosphodiesterase type-5; SSRI: Selective serotonin reuptake inhibitor; NSAID: Nonsteroidal anti-
inflammatory drug; COX 2: Cyclooxygenase-2; ROCK: Rho-associated protein kinase.

Condition Type of experiment Number of records

Ischemia/hypoxia

Sildenafil (PDE5) 5

Fluoxetine (SSRI) 3

Aripriprazole (Quinolone) 2

Atorvastatin (Statin) 2

Bumetanide (Loop diuretic) 2

Indomethacin (NSAID) 2

Celecoxib (COX2 inhibitor) 1

Citalopram (SSRI) 1

Fasudil (ROCK inhibitor) 1

Glibenclamid (Non-sulfonylurea) 1

20

Depression 17

Fluoxetine (SSRI) 8

Amitriptiline (Tricyclic antidepressant) 1

Aripriprazole (Quinolone) 1

Clozapine (Atypical antipsychotic) 1

Gaboxadol (SSRI) 1

Imipramine (Tricyclic antidepressant) 1

Morphine (Opioid) 1

Nortriptyline (Tricyclic antidepressant) 1

Tianeptine (Tricyclic antidepressant) 1

Combination of different SSRIs 1

Febril seizures/epilepsy 5

Metabolic disorder 5

Injury including 

mental disorders

Parkinson’s disease 4
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Alzheimer’s disease 3

Traumatic brain injury 3

Lipopolysaccharide treatment 3

Inflammation 2

Spinal cord injury 2

Alcoholic animal 1

Avoidance test (electricity) 1

Bulbectomy 1

Huntington’s disease 1

Intracerebral hemorrhagic 1

Whole brain irradiation 1

Transgenic 12

Drug combination 7

Conditioned environment/modification 5

Corticosteroid treatment 4

Conditioned diet 2

Modified

Heroin extinction 1
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Supplemental Table 3. Distribution of the Records According to the Sample Source.

Type of experiment Source of cells Location of the cells

No Condition Author, Year
In vitro In vivo In utero Ex 

vivo Rat Mouse Human

Other 
mammals (e.g., 
Guinea pigs or 
Mongolian 
Gerbils)

Hippocampus
/Subgranular 
zone/Dentate 
gyrus

Subventricular
/ 
periventricular 
zone

Other regions 
(e.g., Striato-
pallidum 
complex, 
mesenchepalon, 
spinal cord, 
hypothalamus)

1 4 Alvarez et al., 2009, * *

2 Alves et al.,2017 * * *

3 Amellem et al., 2017 * * *
4 3

6 Arguello et al., 2008 * * *

5 3
7 Arguello et al., 2009 * * *

6 1
9 Arsenijevic et al., 1998 * * *

7 6
1 Asokan et al., 2014 * * *

8 Bath et al., 2017 * * *
9 6

2 Beauquis et al., 2006 * * *

10 Brooker et al., 2017 * * *

11 2 Chang et al., 2008, * * *
12 5

8 Chen et al., 2013 * * *

13 Chen et al., 2018 * * *

14 Chen et al., 2018 * * *

15 5 Christie et al., 2012, * * *
16 6

3 Cowen et al., 2008 * * *

17 1
3 Deng et al., 2015 * * *

18 2
0 Desai et al., 2011 * * *

19 2
1 Desai et al., 2011 * * *

20 3
8 Dholakiya et al., 2016 * * *

21 3
9 Eisch et al., 2000 * * *

22 2
2 Fex Svenningsen et al., 1996 * * *

23 4
0

Physiologic

Fischer et al., 2008 * * *
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Type of experiment Source of cells Location of the cells

No Condition Author, Year
In vitro In vivo In utero Ex 

vivo Rat Mouse Human

Other 
mammals (e.g., 
Guinea pigs or 
Mongolian 
Gerbils)

Hippocampus
/Subgranular 
zone/Dentate 
gyrus

Subventricular
/ 
periventricular 
zone

Other regions 
(e.g., Striato-
pallidum 
complex, 
mesenchepalon, 
spinal cord, 
hypothalamus)

24 Gatt et al., 2017 * * *

25 Gemmel et al., 2017 * * *

26 Gemmel et al., 2018 * * *
27 8

3 Ghoochani et al., 2011 * * *

28 7
9 Gomez-pinedo et al., 2010 * * *

29 3 Gupta et al., 2009 * * *
30 2

3 Han et al., 2008 * * *

31 8
6 Han et al., 2011 * * *

32 6
4 Hanson et al., 2011 * * *

33 4
1 Hauser et al., 2000 * * *

34 6
5 Holick et al., 2008 * * *

35 8
7 Huang et al., 2007 * * *

36 6
6 Hui et al., 2014 * * *

37 1
8 Hunter et al., 2012 * * *

38 6 Jackson-guilford et al., 2000 * * *

39 1 Jenrow et al., 2010 * * *
40 1

1 Jhaveri et al., 2010 * * *

41 4
2 Kahn et al., 2005 * * *

42 8
4 Kanakasabai et al., 2012 * * *

43 Kang et al., 2017 * * *
44 6

7 Kawahara et al., 2012 * * *

45 1
1
2 Keilhoff et al., 2006

* * * *

46 5
9 Kelland et al., 2014 * * *
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Type of experiment Source of cells Location of the cells

No Condition Author, Year
In vitro In vivo In utero Ex 

vivo Rat Mouse Human

Other 
mammals (e.g., 
Guinea pigs or 
Mongolian 
Gerbils)

Hippocampus
/Subgranular 
zone/Dentate 
gyrus

Subventricular
/ 
periventricular 
zone

Other regions 
(e.g., Striato-
pallidum 
complex, 
mesenchepalon, 
spinal cord, 
hypothalamus)

47 5
5 Kim et al., 2006 * * *

48 7 Kitamura et al., 2015 * * *

49 Kitamura et al., 2017 * * *
50 6

8 Kodama et al., 2004 * * * *

51 6
9 Kohl et al., 2012 * * *

52 1
2 Kota et al., 2015 * * * *

53 3
3 Kudo et al., 2003 * * *

54 3
4 Kumihashi et al., 2001 * * *

55 7
0 Kusakawa et al., 2010 * * *

56 8
8 Lee et al., 2009 * * *

57 8
5 Lee et al., 2010 * * *

58 2
5 Lee et al., 2016 * * *

59 2
6 Li et al., 2014 * * *

60 Li et al., 2017 * * *

61 Liu et al., 2017 * * *
62 7

1 Marlatt et al., 2010 * * *

63 4
3 Meneghini et al., 2014 * * *

64 Meyer et al., 2017 * * * *

65 Mishra et al., 2017 * * *
66 5

6 Misumi et al., 2008 * * *

67 3
5 Monje et al., 2003 * * *

68 Nackenoff et al., 2017 * * *
69 1

6 Nam et al., 2015 * * *

70 7
2 Nasrallah et al., 2010 * * *
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Type of experiment Source of cells Location of the cells

No Condition Author, Year
In vitro In vivo In utero Ex 

vivo Rat Mouse Human

Other 
mammals (e.g., 
Guinea pigs or 
Mongolian 
Gerbils)

Hippocampus
/Subgranular 
zone/Dentate 
gyrus

Subventricular
/ 
periventricular 
zone

Other regions 
(e.g., Striato-
pallidum 
complex, 
mesenchepalon, 
spinal cord, 
hypothalamus)

71 7
3 Ohira et al., 2011 * * *

72 Olesen et al., 2017 * * *
73 4

4 Opanashuk et al., 1998 * * *

74 2
7 Paliouras et al., 2012 * * * *

75 2
8 Park et al., 2013 * * *

76 9
4 Patnaik et al., 2016 * * *

77 8
9 Pechnick et al., 2008 * * *

78 9
1 Pechnick et al., 2011 * * *

79 9
0 Peng et al., 2008 * * *

80 2
9 Pereira et al.,2013 * * *

81 4
5 Persson et al., 2003 * * *

82 3
1 Petit et al., 2013 * * *

83 4
6 Pettit et al., 2012 * * *

84 1
4 Piacentini et al., 2008 * * *

85 9 Ping et al., 2013 * * *
86 7

4 Rayen et al., 2011 * * *

87 8
0 Sah et al., 1997 * * *

88 4
7 Sankararaman et al., 2012 * * *

89 7
5 Santarelli et al., 2003 * * *

90 9
2 Schiavon et al., 2016 * * *

91 3
0 Skardelly et al., 2013 * * *

92 8
1 Sugimoto et al., 2008 * * *

93 8
2 Sultan et al., 2013 * * *
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Type of experiment Source of cells Location of the cells

No Condition Author, Year
In vitro In vivo In utero Ex 

vivo Rat Mouse Human

Other 
mammals (e.g., 
Guinea pigs or 
Mongolian 
Gerbils)

Hippocampus
/Subgranular 
zone/Dentate 
gyrus

Subventricular
/ 
periventricular 
zone

Other regions 
(e.g., Striato-
pallidum 
complex, 
mesenchepalon, 
spinal cord, 
hypothalamus)

94 3
2 Sun et al., 2010 * * *

95 5
7 Sun et al., 2013 * * *

96 8 Sun et al., 2015 * * *

97 Sun et al., 2018 * * *
98 1

5 Teh et al., 2014 * * *

99 2
4 Toran-allerand et al., 1991 * * *

100 4
8 Traudt et al., 2012 * * *

101 4
9 Tsai et al., 2010 * * *

102 1
7 Uchida et al., 2002 * * *

103 1
1
3 Wang et al., 2011

* * *

104 7
7 Wang et al., 2014 * * *

105 Wang et al., 2017 * * *
106 5

0 Willner et al., 2014 * * *

107 5
1 Wu et al., 2014 * * *

108 1
0 Xu et al., 2006 * * *

109 5
2 Xu et al., 2014 * * *

110 5
3 Xu et al., 2015 * * *

111 Xu et al., 2017 * * *
112 6

0 Yoneyama et al., 2014 * * *

113 Yu et al., 2017 * * *
114 5

4 Zheng et al., 2013 * * *

115 7
8 Zusso et al., 2008 * * *

116 Injury (incl. Alboni et al., 2017 * * *
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Type of experiment Source of cells Location of the cells

No Condition Author, Year
In vitro In vivo In utero Ex 

vivo Rat Mouse Human

Other 
mammals (e.g., 
Guinea pigs or 
Mongolian 
Gerbils)

Hippocampus
/Subgranular 
zone/Dentate 
gyrus

Subventricular
/ 
periventricular 
zone

Other regions 
(e.g., Striato-
pallidum 
complex, 
mesenchepalon, 
spinal cord, 
hypothalamus)

117 Bastos et al., 2008 * * *

118 Biscaro et al., 2012 * * *

119 Boldrini et al., 2009 * * *

120 Chadwick et al., 2011 * * *

121 Chang et al., 2006 * * *

122 Chen et al., 2003 * * *

123 Chen et al., 2008 * * *

124 Chiu et al., 2014 * * *

125 Christensen et al., 2012 * * *

126 Ding et al., 2010 * * *

127 Duan et al., 2008 * * * *

128 Engels et al., 2016 * * *

129 Espinera et al., 2013 * * *

130 Gault e tal., 2015 * * *

131 Gobinath et al., 2017 * * *

132 Gobinath et al., 2018 * * *

133 Goldshmit et al., 2015 * * *

134 Goncalves et al., 2010 * * *

135 Guan et al., 2015 * * *

136 Hays et al., 2013 * * *

137 He et al., 2008 * * *

138 Hoehn et al., 2005, * * *

139 Hsieh et al., 2017 * * *

140 Hu, et al., 2017 * * *

141 Hwang et al., 2010 * * *

142 Jaako et al., 2009 * * *

143

mental 
disorders)

Jaako-movits et al., 2006 * * *
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Type of experiment Source of cells Location of the cells

No Condition Author, Year
In vitro In vivo In utero Ex 

vivo Rat Mouse Human

Other 
mammals (e.g., 
Guinea pigs or 
Mongolian 
Gerbils)

Hippocampus
/Subgranular 
zone/Dentate 
gyrus

Subventricular
/ 
periventricular 
zone

Other regions 
(e.g., Striato-
pallidum 
complex, 
mesenchepalon, 
spinal cord, 
hypothalamus)

144 Jayakumar et al., 2017 * * *

145 Jenrow et al., 2011 * * *

146 Jung et al., 2006 * * * * * *

147 Khodanovich et al., 2017 * * *

148 Kim et al., 2015 * * *

149 Kim et al., 2017 * * *

150 Kuipers et al., 2013 * * *

151 Li et al., 2009 * * *

152 Lu et al., 2007 * * *

153 Lu et al., 2014 * * *

154 Ma et al., 2015 * * *

155 Malberg et al., 2003 * * *

156 Marissal-Arvy et al., 2018 * * *

157 Matsuda et al., 2017 * * *

158 McClean et al., 2013 * * *

159 Meng et al., 2011 * * *

160 Morais et al., 2014 * * *

161 Morais et al., 2017 * * *

162 Ortega et al., 2013 * * *

163 Ou-Yang et al., 2016 * * *

164 Petersen et al., 2009 * * *

165 Ramos-Rodriguez et al., 2017 * * *

166 Sasaki et al., 2003 * * *

167 Seyfried et al., 2008 * * *

168 Stevenson et al., 2009 * * *

169 Su et al., 2005 * * *

170 Suri et al., 2013 * * *
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Type of experiment Source of cells Location of the cells

No Condition Author, Year
In vitro In vivo In utero Ex 

vivo Rat Mouse Human

Other 
mammals (e.g., 
Guinea pigs or 
Mongolian 
Gerbils)

Hippocampus
/Subgranular 
zone/Dentate 
gyrus

Subventricular
/ 
periventricular 
zone

Other regions 
(e.g., Striato-
pallidum 
complex, 
mesenchepalon, 
spinal cord, 
hypothalamus)

171 Thau-Zuchman et al., 2012 * * *

172 Van bokhoven et al., 2011 * * *

173 Vitale et al., 2017 * * *

174 Wang et al., 2005 * * *

175 Wang et al., 2013 * * *

176 Wu et al., 2008 * * *

177 Xie et al., 2015 * * *

178 Xu et al., 2017 * * *

179 Xu et al., 2018 * * *

180 Zhang et al., 2006 * * *

181 Zhang et al., 2012 * * *

182 Zhang et al.. 2002 * * *

183 Zheng et al., 2009 * * *

184 Zhu et al. 2017 * * *

185 Anacker et al., 2013 * * *

186 Borsini et al., 2017 * * *

187 Cheng et al., 2015 * * *

188 Clark et al., 2006 * * *

189 Conti et al., 2017 * * *

190 Ding, et al. 2009 * * *

191 Diniz et al., 2013 * * *

192 Encinas et al., 2006 * * *

193 Esmaili et al., 2016 * * *

194 Fenton et al., 2015 * * *

195 Hicks et al., 2012 * * *

196 Ishizuka et al., 2012 * * *

197

Modified

Kanemura et al., 2005 * * *
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Type of experiment Source of cells Location of the cells

No Condition Author, Year
In vitro In vivo In utero Ex 

vivo Rat Mouse Human

Other 
mammals (e.g., 
Guinea pigs or 
Mongolian 
Gerbils)

Hippocampus
/Subgranular 
zone/Dentate 
gyrus

Subventricular
/ 
periventricular 
zone

Other regions 
(e.g., Striato-
pallidum 
complex, 
mesenchepalon, 
spinal cord, 
hypothalamus)

198 Kitamura et al., 2011 * * *

199 Lee et al., 2016 * * *

200 Liu et al., 2018 * * *

201 Nautiyal et al., 2012 * * *

202 Rainer et al., 2012 * * *

203 Raman et al., 2013 * * *

204 Sargeant et al., 2008 * * *

205 Sawada et al., 2018 * * *

206 Siopi et al., 2016 * * *

207 Surget et al., 2016 * * *

208 Tikhinova et al., 2017 * * *

209 Wong et al., 2005 * * *

210 Yanpallewar et al., 2010 * * *

211 Yoo et al., 2014 * * *

212 Zhang et al., 2014 * * *

213 Zhang et al., 2016 * * *

214 Zhao et al., 2015 * * *

215 Zhou et al., 2016 * * *
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Supplemental Table 4. Distribution of the Drug Classes Based on the Effect on Neuronal Stem Cells under 
Physiologic Conditions. The number of publications reporting a stimulating, inhibiting or neutral effect on 
neuronal stem cell proliferation or differentiation is given. Relative percentages per drug class are indicated in 
brackets.

Proliferation Differentiation
Drug classes

Stimulating Neutral Inhibiting Stimulating Neutral Inhibiting

Analgesic 2 (14.3%) 2 (14.3%) 10 (71.4%) 5 (26.3%) 2 (10.5%) 12 (63.2%)

Antibiotic 5 (35.7%) 3 (21.4%) 6 (42.9%) 3 (20%) 6 (40%) 6 (40%)

Antidepressant 21 (56.7%) 11 (29.8%) 5 (13.5%) 16 (51.6%) 11 (35.5%) 4 (12.9%)

Antidiabetic 2 (50%) 1 (25%) 1 (25%) 4 (50%) 2 (25%) 2 (25%)

Antihypertensive 4 (57.1%) 3 (42.9%) 0 5 (45.5%) 2 (18.2%) 4(36.3%)
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Supplemental Table 5. Distribution of the Drug Subclasses Based on the Effect on Neuronal Stem Cells. 
The number of publications reporting stimulating, inhibiting or neutral effects on stem cell proliferation or 
differentiation is given. COX2: cyclooxygenase-2; NSAID: nonsteroidal anti-inflammatory drug; MAO: 
monoamine oxidase; SNRI: serotonin-norepinephrine reuptake inhibitor; SSRI: selective serotonin reuptake 
inhibitor.

Proliferation Differentiation

Drug classes Drug subclasses Stimula

ting
Neutral Inhibiting

Stimul

ating
Neutral Inhibiting

COX2 Inhibitor 3 2 5 0 0 1

NSAID 3 0 3 0 1 2Analgesic

Opioid 0 3 12 6 1 10

Aminoglycoside 0 2 6 0 2 6

Macrolide 2 2 3 2 2 4

Quinolone 4 0 0 2 1 0

Antibiotic

Tetracycline 2 1 1 2 2 2

MAO Inhibitor 0 1 2 1 2 3

SNRI 0 0 0 1 0 1

SSRI 27 11 4 16 10 5

Antidepressant

Tricyclic 

Antidepressant
12 3 0 12 1 1

Incretin mimetic 1 0 0 2 0 0

Insulin 2 2 1 4 2 2

Antidiabetic Non sulfonylurea 0 0 0 1 0 0
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Thiazolidinediones 0 1 1 2 2 4

Aldosterone receptor 

inhibitor
1 1 1 1 0 0

Alpha blocker 3 0 0 1 0 0

Antihypertensive Beta bloker 1 0 0 1 1 0

Calcium channel 

blocker
0 1 0 2 1 2

Loop diuretic 2 1 0 2 0 0
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Supplemental Table 6. Characteristics of the Publications Included in the Meta-Analysis on Proliferation under Physiologic Conditions. BrdU: 
bromodeoxyuridine; SSRI: selective serotonin reuptake inhibitor; ICR: Institute of cancer research (origin of the mouse strain); NeuN: neuronal nuclei; 
MAO: monoamine oxidase

Author Year PMID Journal Impact 
factor

Type 
of 
experi
ment

Source of the 
sample

Result Sub-
class of 
drugs

Drug Statistical 
analysis

P 
value

Mech
anism 

Control 
group 

Blind 
exper
iment 

Outl
ier

Technical 
(TR)/ 
biological 
replicate 
(BR)

Alves et 
al.

2017 28291258 Translationa
l Psychiatry

4.691 In 
vivo

Dorsal 
dentate gyrus 
of male 
Wistar Han 
rats

Positive 
(BrdU): 
Fluoxeti
ne

Neutral 
(BrdU): 
Imipram
ine

SSRI 
and 
tricyclic 
antidepr
essant

Fluoxetine 
and 
Imipramine

Student t 
test

P<0.0
5

Propo
sed

Yes No NA BR

Brooker 
et al.

2017 27698430 Neuropharm
acology

4.249 In 
vivo

Dentate gyrus 
of C57BL/6 
male and 
female mice

Positive 
(BrdU)

SSRI Fluoxetine Unpaired 
t test

P<0.0
5

Prove
n

Yes Yes NA BR

Cowen et 
al.

2008 18616933 Brain 
Research

2.494 In 
vivo

Dentate gyrus 
of male 
Sprague 
Dawley rats

Neutral 
(Ki67 
and 
BrdU)

SSRI Fluoxetine Two way 
ANOVA

p<0.0
5

NA Yes Yes NA BR

Hanson 
et al.

2011 21220416 Journal of 
pharmacolo
gy and 
experimenta
l 
therapeutics

3.828 In 
vivo

Dentate gyrus 
of adult male 
Sprague 
Dawley rats

Neutral 
(BrdU)

SSRI Fluoxetine Two way 
ANOVA

p<0.0
001

Propo
sed

Yes Yes NA BR

Holick et 
al.

2008 17429410 Neuropsych
opharmacol
ogy

3.661 In 
vivo

Dentate gyrus 
of BALB7cJ 
male mice

Neutral 
(BrdU)

SSRI Fluoxetine ANOVA 
with 
Newman-
Keuls

p<0.0
5

Propo
sed

Yes No NA BR

Hui et al. 2014 25522429 International 
Journal of 
Neuropsyco
pharmacolo
gy

4.009 In 
vitro

Hippocampal 
neural 
progenitor 
cells of fetal 
Sprague 
Dawley rats

Positive 
(BrdU)

SSRI Fluoxetine ANOVA p<0.0
1

Prove
n

Yes No NA TR
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Author Year PMID Journal Impact 
factor

Type 
of 
experi
ment

Source of the 
sample

Result Sub-
class of 
drugs

Drug Statistical 
analysis

P 
value

Mech
anism 

Control 
group 

Blind 
exper
iment 

Outl
ier

Technical 
(TR)/ 
biological 
replicate 
(BR)

Kodama 
et al.

2004 15476686 Biological 
Psychiatry

6.159 In 
vivo

Hippocampal, 
prelimbic. 
striatum of 
male Sprague 
Dawley rats

Positive 
(BrdU)

SSRI Fluoxetine ANOVA P<0.0
5

Propo
sed

Yes Yes NA BR

Kohl et 
al.

2012 22211740 European 
Journal of 
Neuroscienc
e

3.753 In 
vivo

Hippocampus 
of male and 
female 
C57/BL6 
mice

Positive 
(BrdU)

SSRI Fluoxetine Two way 
ANOVA 
with 
Bonferron
i posthoc

p<0.0
5

Prove
n

Yes Yes NA BR

Lee et al. 2009 19819298 Neuroscienc
e Letter

1.925 In 
vivo

Hippocampus 
of male ICR 
mice

Positive 
(BrdU)

Tricycli
c 
antidepr
essant

Imipramine ANOVA 
with 
Student-
Newman -
Keuls 
posthoc

p<0.0
5

Propo
sed

Yes No NA BR

Marlatt 
et al.

2010 20381469 Brain 
Research

2.623 In 
vivo

Dentate gyrus 
of female 
C57BL6 mice

Positive 
(BrdU/
NeuN)

SSRI Fluoxetine One way 
ANOVA

p<0.0
03

Propo
sed

Yes No NA BR

Meyer et 
al.

2017 27569185 Behavioural 
Brain 
Research

3.173 In 
vivo

Subgranular 
zone and 
subventricular 
zone of male 
Babl/C mice

Positive 
(BrdU)

Tricycli
c 
antidepr
essant

Imipramine One way 
ANOVA

p<0.0
01

Propo
sed

Yes Yes NA BR

Nackeno
ff et al.

2017 28272863 ACS 
Chemical 
Neuroscienc
e

4.211 In 
vivo

Hippocampus 
of male 
C57BL/6 
mice

Positive 
(BrdU)

SSRI Vortioxetin
e & 
Paroxetine

ANOVA 
and horn 
sidak post 
hoc

p<0.0
5

Propo
sed

Yes Yes NA BR

Nasrallah 
et al.

2010 20682307 Brain 
Research

2.623 In 
vivo

Dentate gyrus 
and 
subventricular 
zone of  male 
Sprague 
Dawley rats

Positive 
(BrdU): 
Paliperi
done

Neutral 
(BrdU): 
Fluoxeti
ne and 
Risperid
one

SSRI Paliperidon
e Fluoxetine

Risperidone

One way 
ANOVA

p<0.0
5

NA Yes Yes NA BR
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Author Year PMID Journal Impact 
factor

Type 
of 
experi
ment

Source of the 
sample

Result Sub-
class of 
drugs

Drug Statistical 
analysis

P 
value

Mech
anism 

Control 
group 

Blind 
exper
iment 

Outl
ier

Technical 
(TR)/ 
biological 
replicate 
(BR)

Ohira et 
al.

2011 21385396 Molecular 
Brain

NA In 
vivo

Dentate gyrus  
of male 
C57BL6 mice

Positive 
(BrdU 
and 
Ki67) 

SSRI Fluoxetine One way 
ANOVA 
with 
Scheffe 
posthoc

p<0.0
1

Propo
sed

Yes No NA BR

Pechnick 
et al.

2011 22076148 PLoS One 4.092 In 
vivo

Subgranular 
zone of  male 
C57BL6 mice

Positive 
(BrdU)

Tricycli
c 
Antidep
ressant

Imipramine Two way 
ANOVA 
with 
Newman-
Keuls 
posthoc

p<0.0
5

Prove
n

Yes Yes NA BR

Petit et 
al.

2013 23573275 PLoS One 3.534 In 
vivo

Granule cells 
of the 
olfactory bulb 
of male and 
female 
C56/BL7 
mice

Neutral 
(BrdU)

MAO 
Inhibito
r

Rasagiline One way 
ANOVA

NA NA Yes Yes NA BR

Rayen et 
al.

2011 21912658 PLoS One 4.092 In 
utero 

Dentate gyrus 
of Sprague 
Dawley rat 
pups

Negativ
e (Ki67)

SSRI Fluoxetine ANOVA p<0.0
5

Propo
sed

Yes No NA BR

Santarelli 
et al.

2003 12907793 Science 29.162 In 
vivo

Hippocampus 
of female and 
male 129/sv 
mice

Positive 
(BrdU)

SSRI Fluoxetine ANOVA 
with 
Fischer 
posthoc

p<0.0
1

Prove
n

Yes No NA BR

Schiavon 
et al.

2016 26187374 Progress in 
neuro-
psychophar
macology & 
biological 
psychiatry

4.187 In 
vivo

Subventricula
r zone and 
subgranular 
zone of male 
Swiss Albino 
mice

Positive 
(BrdU)

Tricycli
c 
Antidep
ressant

Imipramine One way 
ANOVA

p<0.0
001

Propo
sed

Yes No NA BR

Sun et al. 2010 20123967 Molecular 
and Cellular 
Biology

6.188 In 
vitro

Neural stem 
cells from 
(unspecified 
strain and 

Negativ
e 
(BrdU)

MAO 
Inhibito
r

Pargyline *

Tranylcypro
mine**

Student-t-
test

*p<0.
001

**p<0
.01

Prove
n

Yes No NA TR

Page 64 of 95



32

Author Year PMID Journal Impact 
factor

Type 
of 
experi
ment

Source of the 
sample

Result Sub-
class of 
drugs

Drug Statistical 
analysis

P 
value

Mech
anism 

Control 
group 

Blind 
exper
iment 

Outl
ier

Technical 
(TR)/ 
biological 
replicate 
(BR)

sex) mouse 
brain

Yu et al. 2017 28045461 Translationa
l Psychiatry

4.691 In 
vivo

Subgranular 
zone of male 
Wistar dams 
rats

Neutral 
(Ki67)

SSRI Fluoxetine Two way 
ANOVA

p<0.0
5

Propo
sed

Yes Yes NA BR
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Supplemental Table 7. Characteristics of the Publications Included in the Meta-Analysis on Differentiation under Physiologic Conditions. SNRI: 
serotonin-norepinephrine reuptake inhibitor; SSRI: selective serotonin reuptake inhibitor; DCX: doublecortin.

Author Year PMID Journal Impact 
Factor

Type 
of 
experi
ment

Source of the 
sample

Result Sub-class 
of drugs

Drug Statistical 
analysis

P value Mecha
nism 

Control 
group 

Blind 
experi
ment 

Outli
er

Technnic
al (TR)/ 
biologica
l 
replicate 
(BR)

Asokan et 
al. 2014

248962
46

PLoS One 3.234 In vivo
Dentate gyrus 
of male Long 
Evans rats

Negative 
(DCX) SNRI Desvenlafaxi

ne

One way 
ANOVA 
with 
Duncan 
post hoc

p<0.05 Propos
ed Yes No NA BR

Gemmel et 
al. 2017

287352
26 Psychoneuroe

ndocrinology 4.731 In vivo
Granule cells of 
female Spraque 
Dawleys rats

Neutral 
(DCX) SSRI Fluoxetine ANOVA p<0.05 Propos

ed Yes Yes NA BR

Gemmel et 
al. 2018

292033
33 Behavioural 

Brain 
Research

3.173 In vivo

Dorsal 
hippocampus of 
female Spraque 
Dawleys rats

Positive 
(DCX) SSRI Fluoxetine ANOVA p<0.05 Propos

ed Yes No NA BR

Holick et 
al. 2008

174294
10 Neuropsychop

harmacology 6.835 In vivo
Dentate gyrus 
of male Balb/cJ 
mice

Neutral 
(DCX) SSRI Fluoxetine

ANOVA 
with 
Neuman-
Keuls Post 
hoc

p<0.05 Propos
ed Yes No NA BR

Meyer et 
al.

2017 275691
85

Behavioural 
Brain 
Research

3.173 In vivo Subgranular 
zone and 
subventricular 
zone of male 
Babl/C mice

Positive 
(DCX)

Tricyclic 
antidepre
ssant

Imipramine One way 
ANOVA

p<0.00
1

Propos
ed

Yes Yes NA BR

Olesen et 
al. 2017

284612
49 Neurobiology 

of Disease 5.227 In vivo
Granule cells of  
male  B6C3 
hybrid rats

Neutral 
(DCX) SSRI Paroxetine

ANOVA 
with Tukey 
post hoc

p<0.05 Propos
ed Yes No NA BR

Pechnick 
et al. 2011

220761
48

PLoS One 4.092 In vivo
Subgranular 
zone of male 
C57BL6 mice

Positive 
(DCX)

Tricyclic 
Antidepr
essant

Imipramine

Two way 
ANOVA 
with 
Neuman-
Keuls Post 
hoc

p<0.05 Proven Yes Yes NA BR

Rayen et 
al.

2011 219126
58

PLoS One 4.092 In 
utero 

Dentate gyrus 
of Sprague 
Dawley rat pups

Nutral 
(DCX))

SSRI Fluoxetine ANOVA p<0.05 Propos
ed

Yes No NA BR
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Supplemental Table 8. Characteristics of the Publications Included in the Meta-Analysis on Proliferation in the Depression Condition. SSRI: 
selective serotonin reuptake inhibitor; BrdU: bromodeoxyuridine

Author Year PMID Journal Impact 
Factor

Type 
of 
experi
ment

Source of the 
sample

Result Sub-class 
of drugs

Drug Statistical 
analysis

P value Mecha
nism 

Control 
group 

Blind 
experi
ment 

Outli
er

Technnic
al (TR)/ 
biologica
l 
replicate 
(BR)

Alboni et 
al.

2017 266456
31

Molecular 
Psychiatry

11.64 In vivo Hippocampus 
of C57BL/6 
mice

Negative 
(Ki67)

SSRI Fluoxetine One way 
ANOVA

p<0.05 Proven Yes No NA BR

Christense
n et al.

2012 224062
39

European 
Neuropsychop
harmacology

4.595 In vivo Dentate gyrus 
of rats

Neutral 
(BrdU)

SSRI Gaboxadol Student t 
test

p<0.05 Propos
ed

Yes No NA BR

Jayakumar 
et al.

2017 287641
45

Journal of 
Clinical and 
Diagnostic 
Research

NA In vivo Hippocampus 
of male Wistar 
albino rats

Positive 
(BrdU)

SSRI Fluoxetine ANOVA 
with Tukey 
Post hoc

p<0.05 Propos
ed

Yes No NA BR

Kuipers et 
al.

2013 239947
57

Neuropharma
cology

4.819 In vivo Hippocampus 
of male and 
female Wistar 
rats

Positive 
(BrdU)

Tricyclic 
antidepre
ssant

Tianeptine ANOVA p<0.05 Propos
ed

Yes Yes NA BR

Petersen et 
al.

2009 191351
30

Neuroscience 
letters

1.925 In vivo Hippocampus 
of female 
Flinders 
sensistive Line 
rats

Neutral 
(BrdU)

Tricyclic 
antidepre
ssant

Nortryptiline Student t 
test

P<0.05 propos
ed

Yes No NA BR

Vitale et 
al. 

2017 284176
59

Psychopharm
acology

3.222 In vivo Hippocampus 
of male Wistar 
rats

Positive 
(BrdU)

SSRI Fluoxetine ANOVA 
with 
student-
Newman-
Keuls post 
hoc

p<0.05 Propos
ed

Yes Yes NA BR
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Hedge’s g = (mean treat-mean control/SDpooled)*(1-(3/(4*N-9))
SE(g) = Sqr((N/(ntreat*ncontrol)+(SMD(Hedge’s g)/2(N-3.94)))
Where N is the sum of ntreat and ncontrol.
Variance(g) = SE(g)^2
LL for 95% CI = Hedge's g - (1.96*SE(g))
UL for 95% CI = Hedge's g + (1.96*SE(g))

RawDiff = Mean treatment – Mean control
SDpooled = Sqr((((N1 - 1) * SD1 ^ 2 + (N2 - 1) * SD2 ^ 2) / (N1 + N2 - 2)))
** Option for pooled variance **
RawDiffSE = Sqr(SD1^2 / N1 + SD2^2 / N2)

Weight = W = 1/SE(g)^2 = 1/Var(g)

Example for the manual calculation for meta-analysis. Data used for calculation from Sun et al., 2010 
(Subgroup MAO Inhibitor, Figure 2). The Excel sheet for all calculations is provided in Supplemental xls.

1. Data needed are the mean, SD, and N in each group:
n treat n control SD treat SD control mean treat mean control

4 4 2.12 5.14 13.92 47.11

2. RawDiff and pooled standard deviation:

RawDiff = 13,92 - 47,11= - 33.19
SDpooled = Sqr((((4 - 1) * 2.12 ^ 2 + (4 - 1) * 5,14 ^ 2) / (4 + 4 - 2))) = 3.932
** Option for pooled variance **
RawDiffSE = Sqr((2.12)^2 / 4 + (5,14)^2 / 4) = 2.78

3. Standardized mean difference:

StdDiff = -33,19 / 3.931= -8.442
StdDiffSE = Sqr(1 / 4 + 1 / 4 + 1,014 ^ 2 / (2 * (4 + 4))) = 2.226

4. Hedge’s g, SE(g), Variance(g), lower and upper 95%CI:

Hedge’s g = (13.92-47.11/ 3.931)*(1-(3/(4*8-9)) = -7.341
SE(g) = Sqr ((8/(4.4)+( - 7.340858)/2(8-3.94)))= 2.671
Variance(g) = 2.671^2 = 7.136
LL for 95% CI = -7.341 - (1.96*2.671) = -12.577
UL for 95% CI = -7.341 + (1.96*2.671) = -2.105

5. Weight, g*W, g^2*W, W^2

W = 1/2.671^2 = 1/7.136 = 0.140
g*W = -7.341*0.140 = -1.209

StdDiff = RawDiff / SDpooled
StdDiffSE = Sqr(1 / N1 + 1 / N2 + StdDiff ^ 2 / (2 * (N1 + N2)))

Page 68 of 95



36

Chi^2 = Sum(g^2*W) – ((Sum(g*W)^2)/(Sum(W))
p = CHIVERT(Chi^2;df)
C = Sum(W)-(Sum(W^2)/Sum(W))
Tau^2 = (Chi^2 – df)/C
I^2 = (Chi^2 – df)/Chi^2 *100
With df as the number of studies minus 1.

Wran = 1/(SE(g)^2+Tau^2) = 1/(Var(g) + Tau^2)

Random-effect overall ES = Sum(g*Wran)/Sum(Wran)
Variance(overall ES) = 1/Sum(Wran)
SE(overall ES) = Sqr(1/Sum(Wran))
LL for 95% CI = overall ES - (1.96*SE(overall ES))
UL for 95% CI = overall ES + (1.96*SE(overall ES))
Z = overall ES/SE(overall ES)
p(Z, 2-tailed) = 2 * NORMSDIST(Z) or check Z-table

g^2*W = -7.341^2 *0.140 = 7.551
W^2 = 0.140^2 = 0.020

6. Chi^2, C, Tau^2, I^2

Chi^2 = 98.990 – (30.337^2/67.821) = 85.420
p = CHIVERT(85.420;26) = 2.989*10E-8
C = 67.821 – 245.196/67.821 = 64.205
Tau^2 = (85.420 – 26)/64.205 = 0.925
I^2 = (85.420 – 26)/85.420 = 69.562

7. Weight adjusted for random effects, %Wran, g*Wran, g^2*Wran, Wran^2

Wran = 1/(2.671^2+0.925) = 1/(7.136 +0.925) = 0.124
%Wran = 0.124/18.047 * 100% = 0.7%
g*Wran = -7.341*0.124 = -0.911
g^2*Wran = -7.341^2*0.124 = 6.684
Wran^2 = 0.124^2 = 0.015

8. Random-effect overall effect size (ES), overall ES variance and SE, LL and UL for 95% CI

Overall ES = 11.958/18.047 = 0.663
Variance(overall ES) = 0.055
SE(overall ES) = 0.235
LL for 95% CI = 0.201
UL for 95% CI = 1.124
Z = 0.663/0.235 = 2.815
p = 0.005
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PRISMA Checklist

Section/topic # Checklist item Reported on 
page # 

TITLE 
Title 1 Identify the report as a systematic review, meta-analysis, or both. 1

ABSTRACT 
Structured summary 2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility 

criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions 
and implications of key findings; systematic review registration number. 

3

INTRODUCTION 
Rationale 3 Describe the rationale for the review in the context of what is already known. 5

Objectives 4 Provide an explicit statement of questions being addressed with reference to participants, interventions, 
comparisons, outcomes, and study design (PICOS). 

5-6

METHODS 
Protocol and registration 5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, 

provide registration information including registration number. 
6

Eligibility criteria 6 Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years 
considered, language, publication status) used as criteria for eligibility, giving rationale. 

6

Information sources 7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify 
additional studies) in the search and date last searched. 

6

Search 8 Present full electronic search strategy for at least one database, including any limits used, such that it could be 
repeated. 

Supplemental Data

Study selection 9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if 
applicable, included in the meta-analysis). 

6-7

Data collection process 10 Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any 
processes for obtaining and confirming data from investigators. 

6-7

Data items 11 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions 
and simplifications made. 

6-7

Risk of bias in individual 
studies 

12 Describe methods used for assessing risk of bias of individual studies (including specification of whether this 
was done at the study or outcome level), and how this information is to be used in any data synthesis. 

6-7

Summary measures 13 State the principal summary measures (e.g., risk ratio, difference in means). 8

Synthesis of results 14 Describe the methods of handling data and combining results of studies, if done, including measures of 
consistency (e.g., I2) for each meta-analysis. 

8
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Page 1 of 2 

Section/topic # Checklist item Reported on 
page # 

Risk of bias across 
studies 

15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective 
reporting within studies). 

13-14

Additional analyses 16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, 
indicating which were pre-specified. 

8

RESULTS 
Study selection 17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for 

exclusions at each stage, ideally with a flow diagram. 
8, Figure 1, 
Supplemental Table 
1

Study characteristics 18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) 
and provide the citations. 

8-10, Table 1-2, 
Supplemental 
Tables 2-5

Risk of bias within 
studies 

19 Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12). 12-13

Results of individual 
studies 

20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each 
intervention group (b) effect estimates and confidence intervals, ideally with a forest plot. 

Figure 2-3, Table 1-
2, Supplemental 
Tables 2, 3, 6-8

Synthesis of results 21 Present results of each meta-analysis done, including confidence intervals and measures of consistency. 9-10

Risk of bias across 
studies 

22 Present results of any assessment of risk of bias across studies (see Item 15). 10, 13-14

Additional analysis 23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 
16]). 

10

DISCUSSION 
Summary of evidence 24 Summarize the main findings including the strength of evidence for each main outcome; consider their 

relevance to key groups (e.g., healthcare providers, users, and policy makers). 
10-11

Limitations 25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval 
of identified research, reporting bias). 

13-14

Conclusions 26 Provide a general interpretation of the results in the context of other evidence, and implications for future 
research. 

14

FUNDING 
Funding 27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders 

for the systematic review. 
15

From:  Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. 
doi:10.1371/journal.pmed1000097 For more information, visit: www.prisma-statement.org.
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Supporting Figure 2. Forest Plot of the Effect of Antidepressants under Physiologic Conditions
Proliferation - Overall effect

n treat n control SD treat
SSRI Alves et al., 2017 4 4 14.73

Brooker et al., 2017 4 4 2568
Cowen et al., 2008 8 8 1470.78
Hanson et al., 2011 12 12 602.75
Holick et al., 2008 5 6 498.01
Hui et al., 2014 5 5 17
Kodama et al., 2004 10 11 1001.6
Kohl et al., 2012 9 9 954
Marlatt et al., 2010 6 6 249.84
Nackennoff et al., 2017 4 4 102.01
Nackennoff et al., 2017 4 4 141.2
Nasrallah et al., 2010 7 7 4246
Ohira et al., 2011 8 8 3.88
Olesen et al., 2017 15 17 1.08
Pechnick et al., 2011 5 5 303.89
Rayen et al., 2011 5 5 1470.23
Santarelli et al., 2003 7 7 1254.22
Yu et al., 2017 8 8 39.3

Tricyclic antidepressants Alves et al., 2017 4 4 5.86
Kuipers et al., 2013 6 6 174.57
Lee et al., 2009 4 4 12.81
Meyer et al., 2017 6 6 2.5
Pechnick et al., 2011 5 5 50.51
Pechnick et al., 2011 5 5 143.7
Schiavon et al., 2016 8 9 15.36

MAO inhibitor Petit et al., 2013 4 6 2950.8
Sun et al., 2010 4 4 2.12

Sums

Proliferation - Subgroup analyses
n treat n control SD treat

SSRI Alves et al., 2017 4 4 14.73
Brooker et al., 2017 4 4 2568
Cowen et al., 2008 8 8 1470.78
Hanson et al., 2011 12 12 602.75
Holick et al., 2008 5 6 498.01
Hui et al., 2014 5 5 17
Kodama et al., 2004 10 11 1001.6
Kohl et al., 2012 9 9 954
Marlatt et al., 2010 6 6 249.84
Nackennoff et al., 2017 4 4 102.01
Nackennoff et al., 2017 4 4 141.2
Nasrallah et al., 2010 7 7 4246
Ohira et al., 2011 8 8 3.88
Olesen et al., 2017 15 17 1.08
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Pechnick et al., 2011 5 5 303.89
Rayen et al., 2011 5 5 1470.23
Santarelli et al., 2003 7 7 1254.22
Yu et al., 2017 8 8 39.3

Sums

Tricyclic antidepressants Alves et al., 2017 4 4 5.86
Kuipers et al., 2013 6 6 174.57
Lee et al., 2009 4 4 12.81
Meyer et al., 2017 6 6 2.5
Pechnick et al., 2011 5 5 50.51
Pechnick et al., 2011 5 5 143.7
Schiavon et al., 2016 8 9 15.36

Sums

MAOI Petit et al., 2013 4 6 2950.8
Sun et al., 2010 4 4 2.12

Sums

Differentiation - Overall effect
n treat n control SD treat

Asokan et al., 2014 5 5 11.18
Gemmel et al., 2017 12 12 167.19
Gemmel et al., 2018 9 10 660.1
Holick et al., 2008 5 6 398.09
Meyer et al., 2017 7 7 11.07
Olesen et al., 2017 15 17 928.79
Pechnick et al., 2011 5 5 76.45
Rayen et al., 2011 5 5 22101.12

Sums

Supporting Figure 3. Forest Plot of the Effect of Antidepressants in Models of Depression
Proliferation - Overall effect

n treat n control SD treat
Alboni et al., 2017 11 10 12.78
Christensen et al., 2012 8 16 306.01
Jayakumar et al., 2017 6 6 19.84
Kuipers et al., 2013 6 6 311.19
Petersen et al., 2009 12 12 218.99
Vitale et al., 2017 8 8 65.38

Sums
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SD control mean treat mean control N Raw difference SD pooled
16.46 55.97 40.14 8 15.83 15.619
2598 11472 6948 8 4524 2583.044

1745.13 13103 13401 16 -298 1613.796
599.28 1967 1983 24 -16 601.018
324.03 762.38 952.92 11 -190.54 410.560

3.21 70.4 56.4 10 14 12.233
948.48 8340 6910 21 1430 974.003

108 1787 879 18 908 678.889
170.75 985 902 12 83 213.981

45.76 1741.71 976.82 8 764.89 79.057
45.76 2145 976.82 8 1168.18 104.956
5320 19443 17403 14 2040 4813.051

1.9 15.24 8.24 16 7 3.055
2.18 1.74 2.81 32 -1.07 1.755

127.78 1328.57 657.14 10 671.43 233.106
2329.32 7320 9487.2 10 -2167.2 1947.730

561.05 3375 1312.5 14 2062.5 971.557
30.59 90.32 100 16 -9.68 35.215

16.46 36.95 40.14 8 -3.19 12.355
99.5 2699.02 2798.5 12 -99.48 142.083

14.96 213.52 167.08 8 46.44 13.927
4.09 10.91 11.2 12 -0.29 3.390

127.78 875.14 657.14 10 218 97.157
127.78 842.88 657.14 10 185.74 135.973

7.34 45.98 25.15 17 20.83 11.783

4818.64 29509.97 29508.97 10 1 4216.309
5.14 13.92 47.11 8 -33.19 3.932

11342.2 19929.530

SD control mean treat mean control N mean difference SD pooled
16.46 55.97 40.14 8 15.83 15.619
2598 11472 6948 8 4524 2583.044

1745.13 13103 13401 16 -298 1613.796
599.28 1967 1983 24 -16 601.018
324.03 762.38 952.92 11 -190.54 410.560

3.21 70.4 56.4 10 14 12.233
948.48 8340 6910 21 1430 974.003

108 1787 879 18 908 678.889
170.75 985 902 12 83 213.981

45.76 1741.71 976.82 8 764.89 79.057
45.76 2145 976.82 8 1168.18 104.956
5320 19443 17403 14 2040 4813.051

1.9 15.24 8.24 16 7 3.055
2.18 1.74 2.81 32 -1.07 1.755
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127.78 1328.57 657.14 10 671.43 233.106
2329.32 7320 9487.2 10 -2167.2 1947.730

561.05 3375 1312.5 14 2062.5 971.557
30.59 90.32 100 16 -9.68 35.215

11006.34 15292.623

16.46 36.95 40.14 8 -3.19 12.355
99.5 2699.02 2798.5 12 -99.48 142.083

14.96 213.52 167.08 8 46.44 13.927
4.09 10.91 11.2 12 -0.29 3.390

127.78 875.14 657.14 10 218 97.157
127.78 842.88 657.14 10 185.74 135.973

7.34 45.98 25.15 17 20.83 11.783
368.05 416.666

4818.64 29509.97 29508.97 10 1 4216.309
5.14 13.92 47.11 8 -33.19 3.932

-32.19 4220.241

SD control mean treat mean control N mean difference SD pooled
4.47 15.5 62.8 10 -47.3 8.514

119.99 299.38 293.19 24 6.19 145.516
522.12 2528.81 1719.89 19 808.92 591.078
264.98 5233.48 5719.62 11 -486.14 330.820

7.41 109.34 87.84 14 21.5 9.419
2111.16 427.82 2.81 32 425.01 1667.224

43.26 393.16 252.13 10 141.03 62.113
3287.54 54386.4 59200.8 10 -4814.4 15799.801

-3945.19 18614.485

SD control mean treat mean control N mean difference SD pooled
11.52 88.14 100 21 -11.86 12.199

613.21 5814.21 5469.94 24 344.27 534.955
19.84 143.1 78.4 12 64.7 19.840
87.06 3059.69 2450.24 12 609.45 228.494

232.19 570.02 566.75 24 3.27 225.687
154.09 662.36 326.88 16 335.48 118.360

1345.31 1139.535
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Raw diff SE StdDiff d SE(d) Hedge's g SE(g) Variance(g)
11.044 1.014 0.751 0.881 0.772 0.596

1826.488 1.751 0.832 1.523 0.886 0.786
806.898 -0.185 0.501 -0.175 0.501 0.251
245.364 -0.027 0.408 -0.026 0.408 0.167
259.041 -0.464 0.614 -0.424 0.616 0.379

7.737 1.144 0.682 1.034 0.699 0.488
426.736 1.468 0.492 1.409 0.499 0.249
320.031 1.337 0.521 1.274 0.529 0.280
123.542 0.388 0.583 0.358 0.584 0.341

55.902 9.675 2.520 8.413 3.036 9.217
74.215 11.130 2.871 9.678 3.469 12.036

2572.684 0.424 0.540 0.397 0.542 0.294
1.527 2.291 0.643 2.166 0.667 0.445
0.598 -0.610 0.362 -0.594 0.363 0.132

147.429 2.880 0.903 2.602 0.979 0.958
1231.853 -1.113 0.680 -1.005 0.695 0.483

519.319 2.123 0.668 1.987 0.694 0.482
17.608 -0.275 0.502 -0.260 0.503 0.253

8.736 -0.258 0.710 -0.225 0.711 0.506
82.031 -0.700 0.595 -0.646 0.599 0.359

9.848 3.335 1.093 2.900 1.239 1.535
1.957 -0.086 0.578 -0.079 0.578 0.334

61.448 2.244 0.807 2.027 0.860 0.739
85.997 1.366 0.702 1.234 0.725 0.526

5.956 1.768 0.573 1.678 0.586 0.344

2459.001 0.000 0.645 0.000 0.645 0.417
2.780 -8.442 2.226 -7.341 2.671 7.136

11365.769 32.181 23.004 28.787 25.058 39.733

Raw diff SE d Variance(d) Hedge g SE(g) Variance(g)
11.044 1.014 0.751 0.881 0.772 0.596

1826.488 1.751 0.832 1.523 0.886 0.786
806.898 -0.185 0.501 -0.175 0.501 0.251
245.364 -0.027 0.408 -0.026 0.408 0.167
259.041 -0.464 0.614 -0.424 0.616 0.379

7.737 1.144 0.682 1.034 0.699 0.488
426.736 1.468 0.492 1.409 0.499 0.249
320.031 1.337 0.521 1.274 0.529 0.280
123.542 0.388 0.583 0.358 0.584 0.341

55.902 9.675 2.520 8.413 3.036 9.217
74.215 11.130 2.871 9.678 3.469 12.036

2572.684 0.424 0.540 0.397 0.542 0.294
1.527 2.291 0.643 2.166 0.667 0.445
0.598 -0.610 0.362 -0.594 0.363 0.132
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147.429 2.880 0.903 2.602 0.979 0.958
1231.853 -1.113 0.680 -1.005 0.695 0.483

519.319 2.123 0.668 1.987 0.694 0.482
17.608 -0.275 0.502 -0.260 0.503 0.253

8648.015 32.954 15.075 29.239 16.443 27.837

8.736 -0.258 0.710 -0.225 0.711 0.506
82.031 -0.700 0.595 -0.646 0.599 0.359

9.848 3.335 1.093 2.900 1.239 1.535
1.957 -0.086 0.578 -0.079 0.578 0.334

61.448 2.244 0.807 2.027 0.860 0.739
85.997 1.366 0.702 1.234 0.725 0.526

5.956 1.768 0.573 1.678 0.586 0.344
255.973 7.668 5.058 6.888 5.299 4.343

2459.001 0.000 0.645 0.000 0.645 0.417
2.780 -8.442 2.226 -7.341 2.671 7.136

2461.781 -8.442 2.871 -7.341 3.317 7.553

Raw diff SE d Variance(d) Hedge g SE(g) Variance(g)
5.385 -5.556 1.394 -5.018 1.574 2.478

59.407 0.043 0.408 0.041 0.408 0.167
275.092 1.369 0.510 1.307 0.518 0.268
208.321 -1.470 0.682 -1.344 0.703 0.495

5.035 2.283 0.687 2.137 0.716 0.513
565.408 0.255 0.356 0.248 0.356 0.127

39.284 2.271 0.811 2.051 0.864 0.747
9992.672 -0.305 0.636 -0.275 0.637 0.406

11150.602 -1.111 5.484 -0.852 5.777 5.199

Raw diff SE d Variance(d) Hedge g SE(g) Variance(g)
5.303 -0.972 0.462 -0.933 0.465 0.216

187.635 0.644 0.443 0.621 0.444 0.197
11.455 3.261 0.881 3.010 0.946 0.895

131.921 2.667 0.794 2.462 0.842 0.709
92.136 0.014 0.408 0.014 0.408 0.167
59.180 2.834 0.708 2.680 0.740 0.548

487.630 8.449 3.696 7.854 3.846 2.733
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LL for 95% CI UL for 95% CI Weight W g*W g^2*W W^2 Wran %Wran
-0.631 2.394 1.679 1.480 1.304 2.818 0.657 3.6
-0.214 3.260 1.273 1.938 2.952 1.620 0.584 3.2
-1.157 0.808 3.980 -0.695 0.121 15.839 0.850 4.7
-0.826 0.775 5.999 -0.154 0.004 35.993 0.916 5.1
-1.632 0.783 2.636 -1.118 0.475 6.946 0.766 4.2
-0.336 2.403 2.049 2.117 2.189 4.196 0.707 3.9
0.431 2.388 4.014 5.657 7.974 16.112 0.851 4.7
0.237 2.311 3.572 4.551 5.796 12.762 0.830 4.6

-0.787 1.503 2.930 1.049 0.376 8.585 0.789 4.4
2.463 14.364 0.108 0.913 7.680 0.012 0.099 0.5
2.879 16.478 0.083 0.804 7.783 0.007 0.077 0.4

-0.665 1.459 3.407 1.352 0.536 11.606 0.820 4.5
0.860 3.473 2.249 4.873 10.557 5.059 0.730 4.0

-1.306 0.117 7.588 -4.510 2.681 57.578 0.946 5.2
0.683 4.520 1.043 2.714 7.062 1.089 0.531 2.9

-2.368 0.358 2.069 -2.079 2.090 4.281 0.710 3.9
0.627 3.348 2.075 4.123 8.194 4.304 0.710 3.9

-1.245 0.726 3.956 -1.028 0.267 15.648 0.849 4.7

-1.619 1.170 1.975 -0.444 0.100 3.902 0.698 3.9
-1.821 0.528 2.784 -1.799 1.163 7.749 0.778 4.3
0.471 5.328 0.651 1.888 5.476 0.424 0.406 2.3

-1.211 1.053 2.997 -0.237 0.019 8.979 0.794 4.4
0.342 3.711 1.353 2.743 5.559 1.832 0.601 3.3

-0.187 2.655 1.903 2.347 2.896 3.620 0.689 3.8
0.529 2.827 2.908 4.879 8.187 8.455 0.788 4.4

-1.265 1.265 2.400 0.001 0.000 5.760 0.745 4.1
-12.577 -2.105 0.140 -1.029 7.551 0.020 0.124 0.7

67.821 30.337 98.990 245.196 18.047

LL for 95% CI UL for 95% CI Weight (W) g*W g^2*W W^2 Wv %Wv
-0.631 2.394 1.679 1.480 1.304 2.818 0.673 5.3
-0.214 3.260 1.273 1.938 2.952 1.620 0.597 4.7
-1.157 0.808 3.980 -0.695 0.121 15.839 0.877 6.9
-0.826 0.775 5.999 -0.154 0.004 35.993 0.947 7.4
-1.632 0.783 2.636 -1.118 0.475 6.946 0.788 6.2
-0.336 2.403 2.049 2.117 2.189 4.196 0.726 5.7
0.431 2.388 4.014 5.657 7.974 16.112 0.878 6.9
0.237 2.311 3.572 4.551 5.796 12.762 0.855 6.7

-0.787 1.503 2.930 1.049 0.376 8.585 0.813 6.4
2.463 14.364 0.108 0.913 7.680 0.012 0.099 0.8
2.879 16.478 0.083 0.804 7.783 0.007 0.077 0.6

-0.665 1.459 3.407 1.352 0.536 11.606 0.845 6.6
0.860 3.473 2.249 4.873 10.557 5.059 0.750 5.9

-1.306 0.117 7.588 -4.510 2.681 57.578 0.979 7.7
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0.683 4.520 1.043 2.714 7.062 1.089 0.541 4.2
-2.368 0.358 2.069 -2.079 2.090 4.281 0.729 5.7
0.627 3.348 2.075 4.123 8.194 4.304 0.729 5.7

-1.245 0.726 3.956 -1.028 0.267 15.648 0.876 6.9
50.710 21.986 68.040 204.456 12.781 100.000

-1.619 1.170 1.975 -0.444 0.100 3.902 0.695 14.7
-1.821 0.528 2.784 -1.799 1.163 7.749 0.774 16.4
0.471 5.328 0.651 1.888 5.476 0.424 0.405 8.6

-1.211 1.053 2.997 -0.237 0.019 8.979 0.789 16.7
0.342 3.711 1.353 2.743 5.559 1.832 0.598 12.6

-0.187 2.655 1.903 2.347 2.896 3.620 0.685 14.5
0.529 2.827 2.908 4.879 8.187 8.455 0.783 16.6

14.571 9.379 23.399 34.961 4.728 100.000

-1.265 1.265 2.400 0.001 0.000 5.760 0.042 56.2
-12.577 -2.105 0.140 -1.029 7.551 0.020 0.033 43.8

2.540 -1.028 7.551 5.780 0.075 100.000

LL for 95% CI UL for 95% CI Weight (W) g*W g^2*W W^2 Wv %Wv
-8.103 -1.933 0.404 -2.025 10.163 0.163 0.270 5.8
-0.759 0.841 5.998 0.246 0.010 35.982 0.718 15.4
0.293 2.322 3.733 4.881 6.380 13.939 0.669 14.3

-2.722 0.035 2.022 -2.717 3.650 4.089 0.581 12.4
0.733 3.540 1.951 4.168 8.907 3.805 0.575 12.3

-0.449 0.946 7.899 1.963 0.488 62.402 0.739 15.8
0.357 3.745 1.339 2.745 5.630 1.792 0.507 10.8

-1.524 0.974 2.462 -0.677 0.186 6.059 0.612 13.1
25.808 8.584 35.415 128.231 4.671 100.000

LL for 95% CI UL for 95% CI Weight (W) g*W g^2*W W^2 Wv %Wv
-1.845 -0.021 4.620 -4.312 4.024 21.347 0.511 18.4
-0.249 1.492 5.073 3.152 1.959 25.735 0.516 18.6
1.156 4.865 1.117 3.362 10.119 1.247 0.379 13.7
0.811 4.113 1.410 3.471 8.545 1.987 0.408 14.7

-0.786 0.814 6.000 0.084 0.001 35.998 0.524 18.9
1.229 4.130 1.826 4.893 13.111 3.333 0.437 15.7

20.045 10.649 37.760 89.647 2.776 100.000
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g*Wran g^2*Wran Wran^2 Formulas
0.579 0.511 0.432
0.890 1.356 0.342 RawDiff = Mean treatment – Mean control

-0.148 0.026 0.722 SDpooled = Sqr((((N1 - 1) * SD1 ^ 2 + (N2 - 1) * SD2 ^ 2) / (N1 + N2 - 2)))
-0.024 0.001 0.838 RawDiffSE = Sqr(SD1^2 / N1 + SD2^2 / N2) 
-0.325 0.138 0.587 StdDiff d = RawDiff / SDpooled
0.731 0.756 0.500 StdDiffSE = SE(d) = Sqr(1 / N1 + 1 / N2 + StdDiff ^ 2 / (2 * (N1 + N2)))
1.200 1.691 0.725 Hedge’s g = (mean treat-mean control/SDpooled)*(1-(3/(4*N-9)) 
1.057 1.346 0.688 SE(g) = Sqr((N/(ntreat*ncontrol)+(SMD(Hedge’s g)/2(N-3.94)))
0.283 0.101 0.623 Variance(g) = SE(g)^2
0.830 6.979 0.010 LL for 95% CI Hedge's g - (1.96*SE(g))
0.747 7.227 0.006 UL for 95% CI Hedge's g + (1.96*SE(g))
0.326 0.129 0.673 Weight W = 1/SE(g)^2 = 1/Var(g)
1.581 3.426 0.533 Weight adjusted for random effects = Wran = 1/(SE(g)^2+Tau^2) = 1/(Var(g) + Tau^2)

-0.562 0.334 0.895
1.381 3.593 0.282

-0.713 0.717 0.504
1.412 2.806 0.505

-0.221 0.057 0.720

-0.157 0.035 0.488
-0.503 0.325 0.606
1.178 3.417 0.165

-0.063 0.005 0.631
1.218 2.468 0.361
0.850 1.049 0.475 Tau^2 = (Chi^2-df)/C= 0.925
1.322 2.218 0.621 Chi^2 = Sum(g^2*W) – ((Sum(g*W)^2)/(Sum(W)) = 85.420

df = number of studies minus 1 = 26
0.000 0.000 0.555 C = Sum(W)-(Sum(W^2)/Sum(W)) = 64.205

-0.911 6.684 0.015
11.958 47.394 13.502 I^2 = (Chi^2-df)/Chi^2 *100 = 69.562

g*Wv g^2*Wv Wv^2
0.594 0.523 0.454
0.909 1.385 0.356

-0.153 0.027 0.769
-0.024 0.001 0.897
-0.334 0.142 0.621
0.750 0.776 0.527
1.238 1.745 0.772
1.090 1.388 0.732
0.291 0.104 0.660
0.832 7.004 0.010
0.749 7.247 0.006
0.335 0.133 0.715
1.624 3.519 0.562

-0.582 0.346 0.959 Tau^2 = (Chi^2-df)/C= 0.889
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1.408 3.663 0.293 Chi^2 = Sum(g^2*W) – ((Sum(g*W)^2)/(Sum(W)) = 58.507
-0.732 0.736 0.531 df = number of studies minus 1 = 17
1.449 2.880 0.532 C = Sum(W)-(Sum(W^2)/Sum(W)) = 46.678

-0.228 0.059 0.767
9.216 31.678 10.162 I^2 = (Chi^2-df)/Chi^2 *100 = 70.944

-0.156 0.035 0.482
-0.500 0.323 0.598
1.174 3.405 0.164 Tau^2 = (Chi^2-df)/C= 0.934

-0.062 0.005 0.623 Chi^2 = Sum(g^2*W) – ((Sum(g*W)^2)/(Sum(W)) = 17.362
1.212 2.456 0.358 df = number of studies minus 1 = 6
0.846 1.043 0.470 C = Sum(W)-(Sum(W^2)/Sum(W)) = 12.171
1.314 2.204 0.613
3.827 9.472 3.308 I^2 = (Chi^2-df)/Chi^2 *100 = 65.442

0.000 0.000 0.002 Tau^2 = (Chi^2-df)/C= 23.169
-0.242 1.778 0.001 Chi^2 = Sum(g^2*W) – ((Sum(g*W)^2)/(Sum(W)) = 7.135
-0.242 1.778 0.003 df = number of studies minus 1 = 1

C = Sum(W)-(Sum(W^2)/Sum(W)) = 0.265

I^2 = (Chi^2-df)/Chi^2 *100 = 85.984
g*Wv g^2*Wv Wv^2

-1.355 6.798 0.073
0.029 0.001 0.515
0.875 1.144 0.448

-0.781 1.049 0.338 Tau^2 = (Chi^2-df)/C= 1.227
1.229 2.625 0.331 Chi^2 = Sum(g^2*W) – ((Sum(g*W)^2)/(Sum(W)) = 32.560
0.184 0.046 0.546 df = number of studies minus 1 = 7
1.039 2.131 0.257 C = Sum(W)-(Sum(W^2)/Sum(W)) = 20.839

-0.169 0.046 0.375
1.052 13.840 2.882 I^2 = (Chi^2-df)/Chi^2 *100 = 78.501

g*Wv g^2*Wv Wv^2
-0.477 0.445 0.261
0.321 0.199 0.266 Tau^2 = (Chi^2-df)/C= 1.740
1.142 3.438 0.144 Chi^2 = Sum(g^2*W) – ((Sum(g*W)^2)/(Sum(W)) = 32.103
1.005 2.474 0.167 df = number of studies minus 1 = 5
0.007 0.000 0.275 C = Sum(W)-(Sum(W^2)/Sum(W)) = 15.573
1.171 3.139 0.191
3.169 9.695 1.304 I^2 = (Chi^2-df)/Chi^2 *100 = 84.425

Page 90 of 95



Random-effects overall ES = Sum(g*Wran)/Sum(Wran) = 
p = CHIVERT(Chi^2;df) = 2.98888E-08 Variance(overall ES) = 1/Sum(Wran) =

SE (overall ES) = Sqr(1/Sum(Wran)) =
LL for 95% CI = overall ES - (1.96*SE(overall ES)) = 
UL for 95% CI = overall ES + (1.96*SE(overall ES)) =
Z = overall ES/SE(overall ES) =
p = 2*normsdist(Z) =

Random-effects overall ES = Sum(g*Wran)/Sum(Wran) = 

Mean treatment – Mean control
Sqr((((N1 - 1) * SD1 ^ 2 + (N2 - 1) * SD2 ^ 2) / (N1 + N2 - 2)))
Sqr(SD1^2 / N1 + SD2^2 / N2) 
RawDiff / SDpooled
Sqr(1 / N1 + 1 / N2 + StdDiff ^ 2 / (2 * (N1 + N2)))
(mean treat-mean control/SDpooled)*(1-(3/(4*N-9)) 
Sqr((N/(ntreat*ncontrol)+(SMD(Hedge’s g)/2(N-3.94)))

Hedge's g - (1.96*SE(g))
Hedge's g + (1.96*SE(g))
1/SE(g)^2 = 1/Var(g)
1/(SE(g)^2+Tau^2) = 1/(Var(g) + Tau^2)
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p = CHIVERT(Chi^2;df) = 1.8492E-06 Variance(overall ES) = 1/Sum(Wran) =
SE (overall ES) = Sqr(1/Sum(Wran)) =
LL for 95% CI = overall ES - (1.96*SE(overall ES)) = 
UL for 95% CI = overall ES + (1.96*SE(overall ES)) =
Z = overall ES/SE(overall ES) =
p = 2*normsdist(Z) =

Random-effects overall ES = Sum(g*Wran)/Sum(Wran) = 
p = CHIVERT(Chi^2;df) = 0.008040438 Variance(overall ES) = 1/Sum(Wran) =

SE (overall ES) = Sqr(1/Sum(Wran)) =
LL for 95% CI = overall ES - (1.96*SE(overall ES)) = 
UL for 95% CI = overall ES + (1.96*SE(overall ES)) =
Z = overall ES/SE(overall ES) =
p = 2*normsdist(Z) =

Random-effects overall ES = Sum(g*Wran)/Sum(Wran) = 
p = CHIVERT(Chi^2;df) = 0.007559555 Variance(overall ES) = 1/Sum(Wran) =

SE (overall ES) = Sqr(1/Sum(Wran)) =
LL for 95% CI = overall ES - (1.96*SE(overall ES)) = 
UL for 95% CI = overall ES + (1.96*SE(overall ES)) =
Z = overall ES/SE(overall ES) =
p = 2*normsdist(Z) =

Random-effects overall ES = Sum(g*Wran)/Sum(Wran) = 
p = CHIVERT(Chi^2;df) = 3.19685E-05 Variance(overall ES) = 1/Sum(Wran) =

SE (overall ES) = Sqr(1/Sum(Wran)) =
LL for 95% CI = overall ES - (1.96*SE(overall ES)) = 
UL for 95% CI = overall ES + (1.96*SE(overall ES)) =
Z = overall ES/SE(overall ES) =
p = 2*normsdist(Z) =

Random-effects overall ES = Sum(g*Wran)/Sum(Wran) = 
p = CHIVERT(Chi^2;df) = 5.66968E-06 Variance(overall ES) = 1/Sum(Wran) =

SE (overall ES) = Sqr(1/Sum(Wran)) =
LL for 95% CI = overall ES - (1.96*SE(overall ES)) = 
UL for 95% CI = overall ES + (1.96*SE(overall ES)) =
Z = overall ES/SE(overall ES) =
p = 2*normsdist(Z) =
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0.663
0.055
0.235
0.201
1.124
2.815

#NAME? or check Z-table

0.721
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0.078
0.280
0.173
1.269
2.578

#NAME? or check Z-table

0.809
0.211
0.460

-0.092
1.711
1.760

#NAME? or check Z-table

-3.213
13.263

3.642
-10.351

3.925
0.882

#NAME? or check Z-table

0.225
0.214
0.463

-0.682
1.132
0.487

#NAME? or check Z-table

1.142
0.360
0.600

-0.035
2.318
1.902

#NAME? or check Z-table
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Our systematic review and meta-analysis revealed that antidepressants and potentially other drugs 
frequently used in the elderly influence the behavior of neuronal stem cells which may affect the efficacy and 

safety of stem cell transplantation. We recommend that future research addresses such interactions and 
investigates the best combination of pharmacological interventions and neuronal stem cell treatments. 
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