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Summary

Maintaining the performance of large scientific codes is a difficult task. To aid in this task,

a number of mini-applications have been developed that are more tractable to analyze than

large-scale production codes while retaining the performance characteristics of them. These

‘‘mini-apps’’ also enable faster hardware evaluation and, for sensitive commercial codes, allow

evaluation of code and system changes outside of access approval processes. In this paper,

we develop MG-CFD, a mini-application that represents a geometric multigrid, unstructured

computational fluid dynamics (CFD) code, designed to exhibit similar performance characteristics

without sharing commercially sensitive code. We detail our experiences of developing this

application using guidelines detailed in existing research and contributing further to these. Our

application is validated against the inviscid flux routine of HYDRA, a CFD code developed

by Rolls-Royce plc for turbomachinery design. This paper (1) documents the development of

MG-CFD, (2) introduces an associated performance model with which it is possible to assess the

performance of HYDRA on new HPC architectures, and (3) demonstrates that it is possible to

use MG-CFD and the performance models to predict the performance of HYDRA with a mean

error of 9.2% for strong-scaling studies.
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1 INTRODUCTION

The rapid development of new hardware and software in High Performance Computing (HPC) is greatly benefiting scientific discovery; with each

new development comes new opportunities for improving the performance of scientific applications. Evaluating the potential improvements

offered by these developments is often a time consuming process due to the complexity of the applications involved, and the learning curve for

new machines, architectures, and toolchains.

In recognition of these challenges, many HPC centers are turning in supporting tools and methodologies (eg, predictive performance modeling1-4

and hardware simulation5,6) to evaluate new systems ahead of procurement. Additionally, mini-applications have been shown to facilitate rapid

evaluation of new hardware and programming techniques; these applications capture the key performance characteristics of a parent code in a

much more concise form; making them easier to work with than full production codes but equally useful in performance engineering activities.

The use of mini-applications has been well documented7-10 and has spawned several suites of such applications11,12 for industry and research

community to examine. Recent use of mini-apps includes the recently established ASiMoV strategic partnership between Rolls-Royce plc and

five leading UK universities, whose aim is to achieve the first high-fidelity simulation of a complete and operating gas-turbine engine.13 This will

require several breakthroughs including achieving exascale performance of a CFD simulation code.
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This paper extends previous work on the development and early validation of a geometric multigrid, unstructured grid Computational Fluid

Dynamics (CFD) mini-application.14 In this paper, we refine and conclude this development and show, through new research, how it can be

used for performance prediction. In so doing, we address a limitation of our previous work, where the mini-application had a greater arithmetic

intensity than the target kernel. This presented two significant issues that this paper seeks to address: (1) computational speed-ups identified with

the mini-app such as vectorization may not transfer to the target code, and (2) the mini-app may not identify optimizations of, or improvements

to, memory bandwidth that would benefit the target code.

Specifically, this paper makes the following contributions:

• This paper reports the development, refinement, and testing of MG-CFD, the only multigrid unstructured finite-volume CFD mini-application.

• The MG-CFD has been developed as part of a long-standing university/industry collaboration and, as a result, is the representative of the

production code HYDRA, which is the primary CFD code used by Rolls-Royce plc for turbomachinery design.

• This paper presents a new performance projection model for HYDRA, with which it is possible to project from MG-CFD to HYDRA performance

on a range of existing and emerging HPC architectures. This is highly significant for Rolls-Royce plc as they increase their use of virtual

certification and simulation-based engine design.

• This paper demonstrates that it is possible to use a mini-application and performance modeling to predict the performance of a production

‘‘target’’ code, with a mean error of 9.2% for strong-scaling studies.

This paper is structured as follows. In Section 2, we discuss related work. In Section 3, we summarize the functionality of HYDRA, which

we aim to capture within the mini-application. In Section 4, we describe our experiences constructing MG-CFD. In Section 5, we validate the

performance characteristics of MG-CFD when compared to the target kernel. In Section 6, we describe the proposed analytical model, and

validate it on several HPC systems. Finally, Section 7 concludes this paper.

2 RELATED WORK

There are numerous benchmarks and mini-applications representing the performance of different classes of HPC applications, some of which have

been released as component parts of projects such as the Mantevo Project,11 the ECP Proxy Apps Suite,15 and the UK Mini-App Consortium.12

Mini-applications from these repositories have been used in a variety of contexts.

One such example is miniMD, which has been used to explore the performance of molecular dynamics codes on the Intel Xeon Phi Knights

Corner architecture.7 Using a combination of AVX intrinsics and algorithmic optimizations, eg, overlapping PCIe transfers with computation, the

authors demonstrate a 5× speed-up for the gather-scatter bottleneck typically present in MD codes.

Mallinson et al compare the performance of two PGAS programming models (OpenSHMEM and Co-Array Fortran) against MPI using CloverLeaf,

a Lagrangian-Eulerian hydrodynamics mini-application.10 The authors demonstrate that OpenSHMEM is able to outperform an equivalent MPI

implementation by 7.78 iterations/seconds, at 4096 sockets, when using proprietary nonblocking operations from Cray and 4 MB memory pages.

LULESH, a hydrodynamics mini-application representative of ALE3D, is used to assess the suitability of emerging parallel programming models

(eg, Liszt and Loci) along with more established models such as OpenMP,16 in terms of programmer productivity, runtime performance, and ease

of optimization. The reduced size of LULESH when compared with ALE3D allowed the authors to examine eight parallel programming models.

Their conclusion highlights that while the emerging models such as Chapel and Loci enable a high level of productivity, they cannot match the

performance of more established models such as MPI and OpenMP.

Similarly, Reguly et al examine the performance of OP2, a domain specific framework for unstructured grid codes using the AIRFOIL CFD

mini-application.9 The authors demonstrate that they are able to achieve performance within 6% of a hand-coded implementation.

The CFD code included in the Rodinia benchmark suite has been used to examine the performance of a Graphics Processing Unit (GPU)

when running unstructured grid applications.17 From the results, Corrigan et al conclude that GPUs show promise for this class of code given an

increase in double precision performance in the future.

The research in this paper similarly develops and makes use of a mini-application; however, our application additionally contains a geometric

multigrid solver and supports mesh structures with variable node degree. The HPGMG-FV and LULESH mini-applications are most similar to our

mini-application; however, the former operates on a structured mesh18 and the latter does not have a multigrid solver.

Another body of work that is similar to our own and that we build upon deals with the validation of a mini-application's performance in

relation to that of the parent code. The technique employed by Tramm et al involves comparing the correlation of parallel efficiency loss to

performance counters for both the mini-application and the target code.8 Previously, this technique has been applied to mini-applications of a

neutron transport code8; we employ and validate this technique on a different class of application. Messer et al develop three mini-applications

and use a comparison between the scalability of the mini-application and the original code as evidence of their similarity.19 However, the authors

focus on distributed memory scalability, in this research, we focus on intra-node shared memory scalability.

Finally, in this paper, we explore how to project from mini-application performance to predict that of the target code. Sharkawi et al propose a

technique of identifying surrogate codes that are quantifiably similar to the target code according to 25 performance metrics.20 These surrogates

are executed, a genetic algorithm selects a weighting, and their weighted average is used as a performance prediction, achieving a mean error of
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7.2% on a IBM Power6 and 10.5% on a Intel Core. Hoste et al apply a similar technique but to microarchitecture-independent metrics, predicting

the ranking of machine performance with 0.89 mean rank correlation.21 In contrast, we show that an analytical model of the performance

difference between a mini-application and its target code can provide projections of similar accuracy, with a mean error of 9.2% for strong-scaling

studies.

3 BACKGROUND

3.1 HYDRA

The manufacturing industry is increasingly making use of CFD simulation codes to aid in the design and testing process of new products. One

such code is HYDRA,22 a suite of nonlinear, linear, and adjoint solvers developed by Rolls-Royce plc in collaboration with a number of UK

universities. These solvers target airflow within turbomachinery, where the flow must be modeled as compressible, viscous, and turbulent. As

such, they solve the Reynolds-Averaged form of the compressible Navier-Stokes equations, which embody conservations of mass, momentum,

and energy. Turbulence modeling is enhanced with the Spalart-Allmaras one-equation model.23 Equations are discretized using a MUSCL-based

flux-differencing scheme, then block Jacobi preconditioned.24 An explicit five-stage Runge-Kutta scheme is applied to improve stability in high

viscosity regions and convergence of the multigrid method.25 For more information on the background and numerical implementation of HYDRA,

we refer the reader to the work of Lapworth.22

In this paper, we focus on HYDRA's nonlinear solver, which is summarized in Listing 1. A breakdown of HYDRA runtime by loop is given in

Table 1, which shows that the two flux routines (vflux and iflux) account for almost half of the runtime on a single Xeon Broadwell node.

Thus, we direct the development of the mini-application toward the goal of understanding and improving the performance of these routines. The

two routines are computationally very similar, performing an integration of cell volume surface fluxes, but the iflux kernel is much smaller and

so easier to detach from HYDRA. Mini-application development time can therefore be reduced by initially targeting the iflux routine.

3.2 Multigrid

The HYDRA employs multigrid methods, which are designed to increase the rate of convergence for iterative solvers, and possess a useful

computational property; the amount of computational work required is linear in the number of unknowns.26 Multigrid applications operate on a

Listing 1 HYDRA solver pseudo-code, with V-cycle geometric
multigrid

Loop Function Runtime %

JACOB Jacobi preconditioner matrices 6.8

GRAD Gradient 16.8

VFLUX Viscous fluxes 35.8

IFLUX Inviscid fluxes 10.7

SRCSA Spalart-Allmaras source term 14.6

UPDATE Update flow 7.3

— Other routines 8.0

TABLE 1 HYDRA runtime breakdown on single node Xeon Broadwell with 28 MPI
processes



4 of 14 OWENSON ET AL.

FIGURE 1 Representation of a finite-volume decomposition mapped
to an unstructured grid over two multigrid levels
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hierarchy of grid levels; in this paper, we are concerned with geometric multigrid, wherein each grid level has its own explicit mesh geometry, and

the coarse levels of the hierarchy are derived from the geometry of the finest level.

Starting at the finest level, multigrid applications use an iterative smoothing subroutine to reduce high frequency errors. Low frequency errors

are then transferred to the next coarsest level (restriction), where they appear as high frequency errors and can thus be more rapidly smoothed

by the same subroutine. Error corrections from the smoothing of coarse levels are then transferred back to finer levels (prolongation). The order

in which prolongations and restrictions are applied is know as a cycle, of which this paper considers a single type; the so-called V-cycle.

There are several performance implications of using a geometric multigrid solver. First, there is the increased memory requirement of explicitly

representing the geometries of all levels of the multigrid. Second, there are the additional irregular memory accesses from prolonging and

restricting corrections between levels of the multigrid. Third, the coarsened meshes have reduced spatial locality.

3.3 Unstructured grid

The HYDRA represents its aerospace models using an unstructured grid; with reference to Figure 1, an unstructured grid is a collection of nodes

and edges, with the nodes being at an arbitrary position in space. For a cell-centered finite-volume decomposition, each node represents a cell

and each edge represents a surface between two adjacent cells. Since HYDRA operates on multigrid datasets, there are also edges between

related nodes of adjacent grid levels. The flexibility of the unstructured grid allows complex geometries to be represented and regions of interest

to be denoted by increasing the density of nodes (cells) in these areas.

The neighbors of a node in an unstructured grid are not implicitly defined, as is the case for a structured mesh code where the neighbors can

be determined using offsets to the array indices. This means that an explicit list of neighbors must be maintained so that when computation over

nodes is performed (eg, the accumulation of fluxes), data can be read from the required locations. This of course has implications for the memory

access pattern as there is no guarantee that a node's neighbors directly and regularly succeed it in memory.

4 MINI-APPLICATION DEVELOPMENT

Although the benefits of mini-applications are increasingly documented (see Section 2), their development is not a well-defined process as it

depends largely on their intended purpose.19 This makes their development challenging as the purpose may differ on a project-by-project basis,

limiting the reuse of technique and effort. However, considerations and guidelines are aggregated by Messer et al and summarized here as a set

of questions for reference.19

1. Where does the application spend most of its execution time?

2. What performance characteristics will the mini-application capture?

3. Can any part of the development process be automated?

4. How can the build system be made as simple as possible?

The aim of these questions is to focus attention on (1) which aspects of the target code the mini-application should include, and (2) the

components of the supporting configuration (eg, tools and datasets). We apply these guidelines to the development of MG-CFD and because

the development of each mini-application is essentially unique, we consider it a valuable exercise to document the findings of this approach.

Additionally, we add our own considerations to this list, which come from our own experiences of developing this and other mini-apps.

We address the first question in Section 3, the most time consuming regions of code are contained within the two flux routines (vflux and

iflux), and it is these routines that we therefore focus on capturing within our mini-application. These kernels have the same computational

structure, a single loop over edges, accumulating fluxes. In this work, we focus on iflux as it captures the memory access behavior of the

unstructured grid while containing less code than vflux.

The second question is addressed by considering the purpose of our mini-app; to evaluate the potential impact of code optimizations, new

parallel programming models and new hardware features on the computational performance of HYDRA. This use case suggests constructing
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a mini-application that ignores I/O and inter-node communication costs and focuses only on computation, encouraging us to focus on more

specific regions of the code.

Next, we propose our own consideration: which aspects of the target (eg, unstructured grid, finite volume, multigrid) contribute to the compute

behavior within the most expensive regions of the code? This decomposition by simulation feature provides us with a route for including

performance characteristics within the mini-application. Drawing upon other's experiences with HYDRA along with our own, we know that it is

the irregular memory accesses that contribute greatly to the difficulty of running on different compute architectures. These irregular memory

accesses come from two main sources: the edge updates over the unstructured grid and the restriction and prolongation of corrections between

the multigrid levels (see Section 3.2).

4.1 Implementation

With these features in mind, we base our mini-app on an existing code as (1) it is open source, so it will not be restricted in terms of where it

can be run and (2) it shares simulation features with HYDRA.17 We base our code on the CFD application by Corrigan et al, now included in the

Rodinia benchmark suite.27 We extend this code with the addition of multigrid, hence we name our mini-app MG-CFD. The existing code, written

in C++, implements a three-dimensional finite-volume discretization of the Euler equations for inviscid, compressible flow over an unstructured

grid. It performs a sweep over edges to accumulate fluxes, implemented as a loop over cell volumes with an inner loop over the edges between

each cell and its neighbors. The iflux also performs a sweep over edges, but implements this as a single loop over all edges in the grid. Although

these two loop schemes implement the same numerical method, the different loop structures can lead to different performance characteristics,

particularly regarding parallelization. To increase similarity to iflux, we replace the existing nested loop with a single loop over all edges.

The resulting kernel differs from iflux only in the exact arithmetic operations performed; it is not possible for MG-CFD to perform the

same arithmetic as iflux as this would mean subjecting MG-CFD to the same commercial portability restrictions as HYDRA itself. We further

extend our mini-app with additional simulation features present in HYDRA. It should be noted that we do not focus on verifying the correctness

of the simulation against a standard problem in this paper, as we are primarily interested in performance characteristics that we validate in

Section 5.

Support for the computational behaviors of multigrid was implemented by augmenting the construction of the Euler solver presented by

Corrigan et al with crude operators to transfer the state of the simulation between the levels of the multigrid. These operators are defined by

Equations (1) and (2), which serve as restriction (fine to coarse grid) and prolongation (coarse to fine grid) operators, respectively,28 where ul
j

represents simulation property u of node j at level l, and Nl
j

is the set of node indices that are linked to node j at level l from l − 1 of the grid.

ul
j =

∑
i∈Nl

j
ul−1

i

|Nl
j
| (1)

ul−1
i∈Nl

j

= ul
j. (2)

The restriction operator (Equation (1)) primes the simulation properties with an average across nodes from the finer grid level, this mapping

between levels is defined as part of the input deck. The prolongation operator (Equation (2)) reverses restriction by injecting the values from the

coarse grid to the fine grid as dictated by the mapping.

The final code change is made to allow an arbitrary number of neighbors rather than the fixed four in the flux summation. The summation is

already weighted by the surface area of the interface between nodes in the mesh, so no correction to the underlying mathematics is necessary

to support this change.

4.1.1 Supporting tools

Part of what makes a mini-application a useful tool is its simplicity. This, however, is not only restricted to the application itself and must also

apply to the processes surrounding the mini-application and target application (eg, building, job submission).

We opt to simplify the building process by removing all reliance on third-party libraries such as the Hierarchical Data Format 5 (HDF5)

library and the communications library. These can both be safely removed as the purpose of this mini-application is not to investigate I/O

performance, inter-node communication performance, nor the overheads introduced by library abstractions. Removing these dependencies allows

the application to be built swiftly with minor adjustment of compiler and its flags in the Makefile. Another challenge to consistent benchmarking

is the need to create job submissions scripts, so we include examples of these for several common schedulers: SLURM, LSF, and Moab.

Utilities have been included to validate the final state of the simulation after changes to the configuration (eg, compiler flags, code optimizations,

porting to accelerators) of the code. Additionally, we include tools to extract the geometries from the datasets used to prime HYDRA and

transform them into a form, which is understood by the mini-application. We do this to reduce the number of factors, which could cause

differences in runtime behavior between HYDRA and its mini-application.
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5 VALIDATION

In this section, we present a validation of our mini-application against the target code's behavior on a dual-socket 28-core Xeon Skylake node.

Full hardware details are provided in Table 2.

The unstructured grid used for validation is derived from the geometry of Whittle Laboratory's low pressure axial flow turbine rotor cascade, a

mesh of 105 K nodes, and 305 K edges representing a single rotor root section (blade and hub connection).29 To aid visualization, a rotor section

of NASA's SSME 2-stage fuel turbine is shown in Figure 2, consisting of multiple root sections with similar structure to the mesh we use.30

The mesh is duplicated in memory by a factor of 120, producing a set of 120 disconnected meshes. Each kernel will then process each of the

120 meshes in turn. This ensures that the workload does not fit in the cache and enables multi-threaded execution at particular process counts

such that no two threads work on the same mesh. The nodes have been renumbered by the Cuthill-McKee (CM) algorithm, and then the edges

reordered by the new values of their endpoints. This ensures consistency with other performance analyses of unstructured mesh compute.

In this paper, MG-CFD is validated using two existing methods. First, we compare the OpenMP parallel efficiency of both iflux and MG-CFD

for each level of the multigrid (MG).19 Figure 3 presents the scaling performance of both codes on the finest MG mesh, showing that both

codes suffer similar parallel efficiency loss up to 12 threads, after which iflux suffers loss at a greater rate than MG-CFD (scaling of the

other MG levels is similar so these are not shown). This is a result of iflux having a significantly lower arithmetic intensity than MG-CFD,

becoming memory-bound at a lower thread count. This emphasizes the importance of considering and accounting for differences between a

mini-application and its target code when interpreting performance data. Similarity between scaling behavior does not imply that the underlying

causes of the observed behavior are the same, and so we strengthen the comparison using a second approach. This involves comparing the

correlation of parallel efficiency loss to performance counters for both the mini-application and the target code.8

It should be noted that we compare MG-CFD against a direct Fortran-to-C port of iflux, rather than the original Fortran implementation. We

do this to ease and remove the effects of language from the comparison process; arguably this moves us further away from the true performance

characteristics of the target code, but it still allows the examination of language independent features, such as memory access patterns and

arithmetic intensity.

The PAPI library is used to collect performance counter data, which provides easy access to available performance counters and additionally

defines a set of 108 ‘‘preset’’ counters that include performance counters typically found in many processors.31 Figure 4 shows the correlation

between each PAPI preset performance counter and parallel inefficiency. To account for variance of performance counters between runs, the

mean of three measurements is used. For most of these events, the difference in correlation between MG-CFD and iflux is less than 0.1,

indicating that both codes share many performance characteristics, but there are several differences in correlations that we address here. The

correlations for the events PAPI_SR_INS, PAPI_LST_INS and PAPI_LD_INS differ by 0.2, with the correlation being stronger for iflux. These

events count store and load micro-ops, so iflux being more sensitive to these is in agreement with it having the lower arithmetic intensity.

A similar difference between correlations can be seen in the branching related events (PAPI_BR_∗), but neither code performs branching

operations within the loop body so these are considered to be false positive. The only large difference is with events relating to L1 cache misses

(PAPI_L1_DCM, PAPI_L1_TCM, PAPI_L2_DCW, and PAPI_L2_TCW), for which a strong correlation is only present with MG-CFD. This is likely

a consequence of the register spilling that occurs with MG-CFD but not iflux, effectively reserving some of the L1 cache for register values,

which leaves less for reuse of mesh data.

TABLE 2 Hardware/software configurations Hardware

Broadwell Skylake Knights Landing

Model Intel Xeon E5-2660 v4 Intel Xeon Silver 4116 Intel Xeon Phi 7210

All-core turbo (GHz) 2.4 2.4 1.3

Cores 14×2 12×2 64

Host ISA AVX-2 AVX-512 AVX-512

Memory (GB) 128 96 16 HBM + 96 DDR

Software

Operating System Debian 8, Linux 4.9.0

Compiler Intel 19.0.2

FIGURE 2 Visualization of a rotor section from NASA's SSME
two-stage fuel turbine. Blade geometry is similar to the mesh we use
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FIGURE 3 Parallel efficiency of MG-CFD and iflux on Xeon Skylake
with AVX-512 auto-vectorization

(A) (B)

FIGURE 4 Comparison between MG-CFD and iflux of their correlation between PAPI preset performance counters and parallel inefficiency

This indicates that the corresponding hardware activity that triggers the counter has a strong influence on scaling performance, where the

correlation between a performance counter and parallel efficiency loss is greater than 0.8. The three events PAPI_L1_STM, PAPI_L2_STM, and

PAPI_CA_CLN measure Read For Ownership (RFO) events for cache levels 1, 2, and 3, respectively, for which the correlations are strong. In the

context of unstructured compute, this is an indication that the memory hierarchy is less able to adequately prefetch the destination arrays in

advance of the indirect writes at higher thread counts. This in turn is an indication of contention in the memory hierarchy that is present with

both codes. Other notable events are PAPI_SR_INS, PAPI_LST_INS, and PAPI_LD_INS, which count store and load micro-operations and so is

another indication of pressure on the memory hierarchy.

6 PERFORMANCE PREDICTION MODEL

The intended use case for MG-CFD is to assess the impact of new architectures and optimizations to HYDRA without necessarily executing

HYDRA on these. As HYDRA is a sensitive code subject to commercial distribution restrictions, MG-CFD can assist in benchmarking, hardware

evaluation, and procurement decisions. A focus on individual HYDRA kernels is maintained, as accurate kernel performance predictions can be

passed into the HYDRA performance model, which then predicts total walltime based on the predicted execution time of each kernel.3
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6.1 Model development

To achieve accurate assessment of hardware and optimizations requires a model of the performance difference between MG-CFD and iflux.

This model considers performance in terms of clock cycle consumption, termed Cmini for MG-CFD and Ciflux for iflux. To assist in the prediction

of scaling performance, the model will focus on predicting the cycle consumption of a single loop iteration of iflux, termed Cl,iflux for iflux,

from the empirical measurement of Cl,mini of MG-CFD. Assuming that Cl,iflux has been estimated, then runtime prediction of a single call to iflux

at a thread count T is formulated as

runtime =
maxT

t=1
[Cl,iflux · iterst]

Hz
. (3)

The number of loop iterations performed by each thread, iterst , is considered independent of hardware and is therefore based on prior

knowledge. Processor frequency Hz is calculated from MG-CFD's measurements of cycle consumption and runtime.

A simple approach for predicting Cl,iflux is to assume that the ratio of Cl,iflux to Cl,mini, defined as Rc , is constant across architectures and ISAs

(ignoring bounds imposed by memory performance). Then, Cl,iflux is predicted as

Cl,iflux = RcCl,mini. (4)

It will be shown that the assumption of constant Rc does not always hold true. Thus, a working model must focus on the change in instruction

content, and how this causes the observed change in cycle consumption. An additional approach is to assume that cycle consumption is directly

proportional to the number of instructions executed, the latter termed Iiflux for iflux and Imini for MG-CFD. This is equivalent to assuming that

iflux executes at the same overall instructions-per-cycle (IPC) rate as MG-CFD. This provides the following formulation for Cl,iflux:

Cl,iflux = Cl,mini
Iiflux

Imini
. (5)

6.1.1 Superscalar extension

Analysis of the compiler-generated assembly files of MG-CFD and iflux identifies that they differ in the proportion of particular categories

of instructions. We define four categories by throughput and type: low-throughput floating-point (division and square root), high-throughput

floating-point, integer, and memory data stores. Different proportions of high and low throughput floating-point operations are likely to result

in the two codes having different overall IPC rates. Thus, it is sensible to assume that iflux and MG-CFD execute at different IPC rates. Our

instruction categorization is applied to MG-CFD to produce Imini, a vector of length 4 where Ii,mini is the number of instructions in the ith category.

It is also applied to iflux to produce Iiflux. Then, the difference in instruction content between the two codes, termed the vector ΔI, is the

element-wise difference of Imini and Iiflux.

To predict the resulting change in cycle consumption of ΔI requires a model of superscalar execution to reflect the complexity in modern

architectures. A simple model is initially adopted in that each instruction category is scheduled to a single dedicated execution port, and

each category is executed in parallel with, and independently of, other categories. The change in instruction content is assumed to be large

enough such that when added to a kernel, the compiler is able to optimize the placement of individual instructions to maintain instruction level

parallelism (ILP), and so we ignore inter-instruction dependencies. Throughput information is encoded in the vector c of length 4, where ci is

the cycles-per-instruction (CPI) estimate for category i (later, we detail how this estimation is calculated). The predicted change in total cycle

consumption between MG-CFD and iflux is the maximum of cycle consumption of each category, formulated as

ΔC =
4

max
i=1

[(ΔIi)ci]. (6)

Then, Cl,iflux is given by

Cl,iflux =
Cmini − ΔC

iters
. (7)

6.2 Contention extension

We extend the model further by considering hardware contention between different instruction categories. Figure 5 shows the portion of

the Skylake microarchitecture pipeline related to instruction scheduling. It shows five ports: four of these receive integer or floating-point

instructions, and the fifth receives memory data store instructions. Technically, these ports receive micro-ops, but for simplicity, we refer to

these as instructions. There are additional ports excluded from the diagram as they are not relevant to the performance difference between

MG-CFD and iflux. On each clock cycle, the scheduler can assign at most one instruction to each port, then on the next clock cycle, these

move onto appropriate execution units. Ports 0 and 1 can receive both integer and floating-point instructions, revoking the prior assumption that
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FIGURE 5 Instruction scheduling in Xeon Skylake

FIGURE 6 Ideal model of Xeon Skylake instruction scheduling

each instruction category is scheduled to a dedicated port. Thus, there is the possibility of contention between different instruction categories.

Accordingly, we extend the model to capture this contention while retaining a high degree of flexibility.

To implement this task, modeling makes two assumptions. The first is that, while an execution unit is occupied, then so is its resident port,

blocking all other execution units on it. The second assumption is of an ideal instruction scheduler that can schedule in bulk all instructions,

scheduling first those instructions with the fewest compatible ports and minimizing the maximum clock cycle consumption across the ports. This

process is visualized in Figure 6. The previous ‘‘integer’’ instruction category is separated into three, ALU, Vec ALU, and Vec Shuf, to ensure that

member instructions are scheduled to the same ports as well as having similar throughput.

As with the previous model, this model seeks to predict the change in performance that results from the change in instructions from MG-CFD

to match iflux. The first stage is to predict how those modified instructions were scheduled to ports, using the previously stated assumptions.

This produces an allocation matrix A with the following structure:

DIV VecShuf STD FP Vec ALU ALU

A =

⎡
⎢⎢⎢⎢⎢⎣

d − − f2 a3 i4

− − − f1 a2 i3

− − − − a1 i2

− v − − − i1

− − s − − −

⎤
⎥⎥⎥⎥⎥⎦

P0
P1
P5
P6
P4

.

Our ideal instruction scheduler fills this matrix from left to right, prioritizing those instruction categories with the fewest available ports, seeking

to equalize cycle consumption across the ports. Port cycle consumption is calculated by performing a matrix-vector multiply between A and the

CPI vector c (now extended to accommodate the two extra integer instruction categories). This produces the vector p, where pi is the clock cycle

consumption of port i

p = Ac. (8)

Then, the overall change in clock cycle consumption is taken as the maximum port cycle consumption, where Np is the number of ports

ΔC =
Np

max
i=1

pi. (9)

6.3 CPI estimation

The CPI values are treated as unknowns, as may be the case when evaluating novel architectures. To estimate these, we use eleven distinct

variants of MG-CFD's inviscid routine that result from the combinatorial enabling of four arithmetic optimizations missed by the Intel compiler.

These variants contain different quantities of division, square-root, all other floating-point operations, integer operations, and register spills while

producing the same numerical result. The difference between the most and least expensive variant is equivalent to a difference of 43 AVX2

instructions per loop iteration. To extend this range, we create an additional kernel, derived from the inviscid routine but with ≈ 50% arithmetic

instructions removed. This resulting kernel does not correctly implement the inviscid flux accumulation, requiring another correct variant to

be executed to maintain solver convergence; however, it enables the range to be extended to 122 instructions. We find that this greater
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FIGURE 7 Prediction error of described models of iflux cycle
consumption. A, Xeon Broadwell; B, Xeon Skylake; C, Xeon KNL

(A)

(B)

(C)

TABLE 3 Single-thread iflux runtime prediction errors of the four described projection
models

Model Mean (%) SD (%) Worst (%)

Constant Rc 15.6 20.4 55.8

Equal IPC 31.0 25.4 74.7

+ superscalar 34.4 21.3 69.6

+ contention 10.2 6.2 17.8

range produces better CPI estimates that greatly reduce prediction error of Cl,iflux. To estimate CPI values, we apply basin-hopping optimization,

constrained to minimum bounds of 1.0, fitting Equations (9) and (6) to the performance data of these MG-CFD variants.

6.4 Models comparison

We evaluate each model by its ability to accurately predict single-threaded cycle consumption of iflux. We assess across Xeon Skylake,

Broadwell and KNL, and across the ISAs AVX512, AVX2, and SSE42. Rc is measured for Broadwell AVX2 and then assumed to be constant for all

other combinations of systems and ISAs.

Figure 7 presents accuracies of each model, with accompanying statistics listed in Table 3. The constant Rc model has very high accuracy on

most system configurations, averaging 15.6%, but there are two significant exceptions. After enabling AVX-512 vectorization on Skylake, the

prediction error increases from 5.2% to 55.8%, caused by the addition of a large quantity of instructions to both kernels that skews Rc toward 1.0.

Prediction error for AVX2 on Knights Landing (KNL) is 49.4%, whereas for the same instruction set architecture (ISA) on Skylake and Broadwell,

it is near zero. Although this model often generates predictions with error below 16%, occasionally the error is significantly greater, which

undermines model reliability. The equal IPC model has a high mean error of 31.0% and the highest worst-case error of 74.7%, clear evidence

that MG-CFD and iflux can and often execute at different overall IPC rates. The superscalar model has a similarly high error, demonstrating

that the assumption that each instruction category executes entirely in parallel is incorrect. The final model that incorporates both superscalar

execution and instruction scheduling generates predictions with the least mean error of 10.2% with SD 6.2%, and the lowest worst-case error of

17.8%. Overall, our technique of port scheduling delivers reliable results across architecture types.

6.5 Predicting strong scaling

A necessary component for predicting scaling performance of any kernel in a single node is accounting for limits imposed by the memory

hierarchy. This is measured empirically by a new data throughput (DT) kernel, which performs the same data movement as iflux but with

minimal arithmetic (the least possible without the compiler optimizing away the data accesses). This kernel is executed at the target thread count
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(A)

(B)

(C)
FIGURE 8 Model prediction errors of iflux strong scaling. A, Xeon
Broadwell; B, Xeon Skylake; C, Xeon KNL DDR

to produce its cycle consumption Cdt,t . As this performs minimal computation, it may run at a different turbo clock frequency than MG-CFD, so

scaling of Cdt,t is necessary to produce a lower bound for Ciflux,t . This is formulated in Equation (10) to produce the lower bound Cmin,t .

Cmin,t = Cdt,t
GHzmini,t

GHzdt,t
. (10)

Figure 8 presents predictions of iflux strong scaling on a Skylake node with 1-way SMT, a Broadwell node with 1-way SMT, and a KNL

with 2-way SMT, summing runtime across the four MG levels. Prediction error is lowest on the Broadwell node, never exceeding 10% with mean

errors of 3.7% for SSE4.2 and 4.4% for AVX2. Prediction error is lower on the Skylake for the AVX-2 and AVX-512 instruction sets, averaging

2.5%, but for SSE4.2, the model error of predicting compute-bound performance increases to ≈ 10%. Prediction error on KNL is low at low

thread counts but increases gradually to a peak at 80 threads of 16.1% for SSE4.2 and 12.2% for AVX2. This indicates that, as iflux scales up

to near the thread count at which it becomes fully bandwidth-bound, it is partially and increasingly limited by memory performance rather than

the bound acting in a binary manner as the model assumes. Once iflux exceeds 80 threads, it becomes fully memory-bound under AVX2 and

AVX-512 with error falling to near-zero, and under SSE4.2 iflux, it is very close to this limit as evidenced by the error falling by half to 8%. This

discrepancy is explained by newer instruction sets having more sophisticated instructions that perform more operations simultaneously, such as

fused multiply-accumulate (FMA) and gather/scatter instructions, that allow a compiler to reduce arithmetic intensity of loops.

6.6 Predicting performance of HYDRA

Having validated the predictive ability of the MG-CFD and performance model, we now direct attention to the most significant HYDRA kernel,

vflux. This is the single most expensive loop in HYDRA; for 28 MPI processes on Xeon Broadwell, it accounts for 35.8% of the walltime.

Accordingly, its arithmetic intensity is several times that of MG-CFD, posing a significant challenge to our projection model. In contrast, its data

access pattern is very similar to that of iflux, performing the same single loop over edges, and only differing significantly in the quantity of data

associated with each node (cell) (a reflection of the increased complexity of equations needed for viscous and turbulent flow).

For this prediction task, we use a different dataset that is typical for a HYDRA workload, the NASA Rotor 37 mesh of an axial compressor

rotor.32 This contains ≈ 8.1 M nodes and ≈ 24 M edges, with an additional three MG meshes that result in a total count of ≈15.7 M nodes and ≈
53 M edges. Thus, this is a significant size for assessing single-node performance.

As performed for the iflux predictions, we extract the assembly code of the vflux loop from the compiler-generated object file and

categorize its constituent instructions. The set of MG-CFD variants are executed on each target system, providing empirical data for estimation of

CPI rates. The projection model is applied to provide an estimate of Cl,vflux, the cycle consumption of a single vflux loop iteration. The MG-CFD

also measures clock speed, allowing Cl,vflux to be converted into grind time, the runtime of a single loop iteration. The grind time is passed into
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FIGURE 9 Prediction error of HYDRA vflux() compute strong scaling

TABLE 4 Model prediction errors of vflux compute strong scaling System Mean (%) SD (%) Worst (%)

Broadwell AVX2 10.6 4.8 16.3

Broadwell SSE4.2 5.0 4.1 9.8

Skylake AVX2 12.2 3.1 17.1

a pre-existing performance model of HYDRA, which combines it with knowledge of mesh partitioning and a function call trace to produce a

prediction of total compute runtime for each HYDRA kernel.3

Predictions are made of MPI strong scaling of vflux compute on a Xeon Broadwell node and a Xeon Skylake node, using AVX-2 and SSE4.2

instructions sets, presented in Figure 9, with accompanying statistics listed in Table 4. Prediction error for Broadwell and SSE4.2 is the least,

achieving mean prediction error of 5.0% and not exceeding 10%. At full node utilization, the error falls to 1.3%. Switching to AVX2 on Broadwell,

the prediction error increases to ≈ 16% for low process counts, but reduces steadily as process count increases to a minimum of 2.6% at 20

processes. At full node utilization, the prediction error is 7.1%. On Skylake with AVX2, prediction error is similar as on Broadwell AVX2 for low

process counts, and initially shows the same trend of decreasing with increasing process count, but at 12 processes and above the error stabilizes

at ≈ 10.5%.

We conclude by focusing on prediction error at the maximum process count on each system. System procurement decision-making typically

considers performance in terms of fully-utilized nodes, so achieving accurate predictions of these is particularly important. Our model predicts

fully-utilized Broadwell node performance with error 7.1% for AVX2 and 1.3% for SSE4.2, and fully-utilized Skylake node performance with error

10.7%, thus our model has the capability to meaningfully inform procurement decisions with high accuracy.

7 CONCLUSIONS

This paper reports the development of MG-CFD, the only multigrid unstructured finite-volume CFD mini-application. The MG-CFD has been

developed as part of a long-standing university/industry collaboration and, as a result, is the representative of the Rolls-Royce plc production

code HYDRA, their primary CFD code used for turbomachinery design.

We applied two mini-application validation techniques, demonstrating that MG-CFD is similar to HYDRA's iflux routine. Further analysis

highlighted that the scaling behavior achieved was similar, and that the hardware was being stressed in a similar way by both iflux and MG-CFD

according to hardware counters.

In addition, we construct an analytical performance projection model, targeted toward predicting the performance difference between

MG-CFD and HYDRA. This enables projection from MG-CFD to HYDRA performance on a range of existing and emerging HPC architectures.

This is highly significant for Rolls-Royce plc as they increase their use of virtual certification and simulation-based engine design.13 We also

demonstrate that it is possible to use a mini-application and performance modeling to predict the performance of a production ‘‘target’’ code,

with a mean error of 9.2% for strong-scaling studies.

In future research, we plan to add MPI functionality to MG-CFD through integration of the OP2 library. After validating that multi-node strong

scaling performance is similar to HYDRA, we intend to use MG-CFD to explore alternative communication patterns such as partitioning-aware

rank placement.

The source code for MG-CFD and scripts for assembly analysis and projection modeling, are available as open-source software on Github.* †‡
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