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Abstract

Amihud’s (2002) stock (il)liquidity measure averages daily ratios of absolute close-
to-close return to dollar volume, including overnight returns. Our modified measure
uses open-to-close returns, matching return and trading volume measurement win-
dows. It is more strongly correlated with trading-cost measures (by 8–37%); more-
over, it better explains cross-sections of returns, doubling estimated liquidity premia.
Using non-synchronous trading near close, we show overnight returns are primarily
information-driven: including them in Amihud’s proxy for price impacts of trading
magnifies measurement error, understating liquidity premia. Our modification helps
wherever Amihud’s measure is required. Our measures are publicly available for 1964-
2019, and can be updated.
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1 Introduction

The stock (il)liquidity measure proposed by Amihud (2002) is the most widely-used such mea-

sure in empirical financial economics.1 Its key advantage stems from the fact that its simple

construction only requires daily return and dollar volume data that are available for many

markets and countries over long periods of time. Use of liquidity measures like Amihud’s

is inevitable for applications where intraday trade and quote data are simply unavailable.

Amihud’s measure has consistently produced evidence of priced idiosyncratic liquidity and

liquidity risk,2 and it has been found to be a reasonable proxy of institutional trading costs.3

Both market microstructure experts and other scholars use this measure regularly.4

Our paper identifies a simple and intuitive improvement to Amihud’s liquidity measure,

and documents its striking consequences. The original measure uses the ratio of absolute

daily close-to-close return to dollar volume as a proxy for price impacts of trading, i.e., the

amount a given trading volume moves market prices. Data and institutional details indicate

that while there is nearly no trading volume outside regular trading hours, the corresponding

overnight price movements make up a large share of close-to-close absolute returns. The lit-

erature has established that overnight (after-hours) price movements are typically driven by

information arrival that is unrelated to the daily trading volume used in the denominator.5

1Amihud’s (2002) article has 2,487 citations by peer-reviewed published articles, including 297 in the top-
three finance journals and 57 in the top-three accounting journals (Web of Science, accessed August 18, 2020).

2Kingsley et al. (2017) find Amihud’s (2002) measure to be unsurpassed as a “cost-per-dollar-volume”
proxy for global research. Goyenko et al. (2009) show that it is a good proxy for the price impacts of trading.

3See Chordia et al. (2000), Pástor and Stambaugh (2003), Acharya and Pedersen (2005), Sadka (2006),
Asparouhova et al. (2013), Drienko et al. (2017), Harris and Amato (2019), among others. Goyenko et al.
(2009) show that Amihud’s measure remains priced post-decimalization. Anand et al. (2013) and Barardehi
et al. (2019) provide evidence of strong time-series and cross-sectional correlations between Amihud’s
liquidity measure and actual and estimated institutional trading costs. Studies such as Lipson and Mortal
(2004) relate equity liquidity, captured by Amihud’s measure, and corporate finance decisions.

4For example, in corporate finance and accounting research where use of intraday data is rare, Amhihud’s
measure is also widely-used as an easy-to-construct proxy for liquidity.

5Boudoukh et al. (2019) find that 50% of overnight idiosyncratic volatility is due to public news, as
opposed to revelation of private information through trading; this compares to only 12% during trading
hours. Santosh (2016) finds that 71% of stock value shocks driven by after-hour earnings surprises are
reflected in opening prices the following trading day. See also Stole and Whaley 1990, Cao et al. 2000, and
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This means that including overnight returns in a proxy of price impacts creates a fundamen-

tal time mismatch between inputs: the denominator reflects trading volume during trading

hours, while the numerator reflects the absolute return between the close of the previous day

and the current day, including overnight price movements. This leads us to modify Amihud’s

(2002) measure by using absolute daily open-to-close return in the numerator of the price

impact proxy, thereby restoring the time match between numerator and denominator.

Our modified Amihud (2002) measure produces 50-120% larger estimates of liquidity

premia in the cross-section of returns. Importantly, unlike the original Amihud measure,

the modified measure is priced post 2001, even after adjusting for upward biases due to

microstructure noise (Asparouhova et al. 2010); this finding is more pronounced for small-

/mid-cap stocks. Our modification significantly increases the correlation coe�cients between

the Amihud measure and standard benchmarks of trading costs constructed at both high

frequencies (e.g., e↵ective/quoted spreads, estimated Kyle’s �) and low frequencies (e.g., ef-

fective costs estimates of Hasbrouck 2009). These increased correlations of 5�15 percentage

points present themselves in significantly changed cross-sectional rankings of stocks according

to the Amihud measure that translate into sharp improvements in our ability to explain the

cross-section of returns. Exploiting non-synchronous trading before close as an instrument,

we establish that the overnight returns excluded by our modification are largely information-

driven and divorced from price impacts of trading. In sum, our modification eliminates liq-

uidity measurement error that would otherwise bias estimated liquidity premia downward.

We motivate our open-to-close Amihud measure, OCAM , as a substitute for the original

close-to-close Amihud measure, CCAM , based on multiple observations. Reported trading

volumes on CRSP almost entirely reflect trade during regular trading hours.6 As Figure 1

Barclay and Hendershott (2003) for the impact of information revelation at open.
6Overnight trading did not exist until 1991, and post 1991, CRSP measures of daily volume only

include a tiny fraction of after-hours volume. According to CRSP’s Data Description Guide avail-
able on WRDS, it includes a fraction of after-hours automated executions on NASDAQ and ECNs.
Pre-decimalization, over all hours, ECNs account for less than 3% of total trading volume (see, e.g.,
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illustrates, this creates a time mismatch between the measures entering the numerator and

denominator of CCAM . This mismatch is economically important. Overnight price move-

ments are comparable with those in regular hours, but overnight trading volume comprises

less than 2% of daily volume, even post decimalization (see Appendix A.1). Including large

overnight price movements that are unrelated to trading volume and trading costs adds sub-

stantial noise to CCAM .7 Indeed, there would still be time mismatch even if CRSP perfectly

 

Closet-1 Closet Opent 

0 to very little volume 
Not reported by CRSP 

 

Almost all volume (V) 
Reported by CRSP 

Open-to-close 
return (OCR) 

Close-to-close return (R) 

Figure 1: Time mismatch between daily measures of trading volume and return. This
figure illustrates CRSP’s sampling of daily return and trading volume for a typical trading day.
These measures are used to construct Amihud’s (2002) daily proxy of price impacts.

measured after-hours trading volume. Daily returns reflect closing prices, but daily volumes

are measured over calendar days, misaligning after-hours volume and the associated return

by one trading day. Our modification addresses this mismatch by removing overnight returns.

We establish that overnight price movements represent a major source of the observed

cross-sectional and time-series variations in CCAM . Figure 2 plots over time the ratio of

OCAM to CCAM for the median stock in each tercile of the ratio. Were there negligible

di↵erences between the two Amihud measures, this ratio would be close to one. In fact, the

ratio is far less than one for the bottom tercile of stocks in the first forty years of the sample

(ranging from below 0.2 to about 0.6 before rising to 0.8 and above by the mid-2000s), a

pattern that cannot be explained by cross-stock variation in after-hours trading.8 We find

https://www.sec.gov/news/studies/ecnafter.htm#exec).
7This logic is also why measures like spreads or estimates of Kyle’s � only use data from regular hours.
8After-hours trading was introduced in 1992, but it remained so limited that it motivated research to

3

https://www.sec.gov/news/studies/ecnafter.htm%23%23exec


.2
.4

.6
.8

1

R
a
ti
o
 o

f 
O

C
A

M
 t
o
 C

C
A

M

1964 1970 1976 1982 1988 1994 2000 2006 2012 2018

Year

1
st
 tercile 2

nd
 tercile 3

rd
 tercile

Figure 2: Evolution of the ratio of OCAM to CCAM . The figure plots the temporal changes in
the cross-stock distribution of the OCAM -to-CCAM for NYSE- and AMEX-listed common shares
in the 1964-2019 period. For each stock i in year y, the ratio ROCiy = OCAMi,y�1/CCAMi,y�1

is calculated. Stocks are sorted into terciles of ROCiy each year, and the year-specific medians in
respective terciles of this ratio are plotted against time. See Section 2.2 for variable construction.

other key patterns regarding this new measure: (i) cross-stock variation tends to decline

over time; (ii) while the ratio of OCAM to CCAM displays a generally positive trend, there

are several episodes of sharp systematic decline such as that during the 2008 financial crisis,

highlighting the economic relevance of OCAM even in modern financial markets; (iii) the

ratio is less than one for almost 95% of stock-years; and (iv) reflecting the temporal stability

of the ratio, the two measures display a strong time-series co-movement, suggesting that

OCAM picks up temporal variation in price impacts similarly to CCAM .

To construct OCAM , we use the Global Financial Data (GFD) commercial database that

reports historical open prices. Adopting Amihud’s (2002) specification for the cross-section

of expected returns, we show that liquidity premia based on OCAM are roughly double those

obtained using Amihud’s traditional CCAM measure, both for the entire 1964-2019 sample

period, and in di↵erent sub-periods. Liquidity premia decline over time, consistent with find-

explain this anomaly (see, e.g., Belcourt (1996)). Moreover, years before after-hours trading on ECNs was
introduced, di↵erences between the two measures had already fallen sharply (close to current levels).
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ings of Asparouhova et al. (2010), Ben-Rephael et al. (2013), and Harris and Amato (2019).

Qualitatively identical outcomes obtain when we only use CRSP data to constructOCAM .

CRSP only begins to report open prices in 1992, which limits its historical reach. Nonethe-

less, using a CRSP-based 1993–2019 sample, we find that OCAM produces statistically

significant liquidity premia of 3.4–4.9 bps per month for NYSE- and AMEX-listed stocks.

In contrast, CCAM is not associated with statistically significant liquidity premia once we

adjust for microstructure noise. We document qualitatively identical findings when we use

GFD data to construct OCAM over the same period (see Appendix A.2).

Our findings are robust to other measurement, sample and specification choices. First,

standardizing the measures to have zero mean and unit variance, we show that di↵erences

in the cross-sectional dispersions of the two versions of the Amihud measure do not underlie

the di↵erences in the magnitudes of liquidity premia. Second, excluding windows around

earnings announcements reveals that trading around earnings release does not drive the dif-

ferences. Third, qualitatively identical findings obtain for NASDAQ-listed common shares.

Fourth, to maximize the cross-sectional coverage of our sample, we construct a hybrid sample

that maximizes the number of stock-year observations, using open prices from GFD whenever

CRSP open prices are unavailable. We document qualitatively identical results for this hybrid

sample. Fifth, panel regression estimates that control for stock and time fixed e↵ects also

yield liquidity premia based on OCAM that are roughly double those for CCAM (see the on-

line Appendix A.6). Hence, neither unknown fixed stock characteristics nor temporal changes

in the composition of listed stocks explain the di↵erence between CCAM and OCAM .9

Importantly, we establish that OCAM outperforms CCAM in capturing stock liquidity.

We fist show that OCAM is a more accurate proxy of trading costs. To do this, we compare

9In Appendix A.5, we also find that excluding the first five or ten minutes after open to eliminate
impacts of open auctions eliminates noise in the construction of the liquidity measure, raises the correlation
between the numerator and denominator of the Amihud measure, and results in greater estimated liquidity
premia. However, this measure can only be constructed once TAQ data become available.
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the cross-sectional correlations of OCAM and CCAM vis à vis standard trading cost proxies,

such as e↵ective/quoted spreads, estimates of Kyle’s �, or e↵ective trading costs estimates of

Hasbrouck (2009). For each benchmark, we reject the null of OCAM and CCAM being sim-

ilarly correlated in favor of OCAM being more strongly correlated with that benchmark. Re-

flecting these findings, OCAM outperforms CCAM in explaining the cross-section of returns.

To evaluate the incremental information content of each measure, we decompose each version

of Amihud’s (2002) measure into linearly orthogonal components with respect to the alterna-

tive. The residuals from regressing OCAM on CCAM significantly explain the cross-section

of expected returns, even when we control for CCAM . In contrast, the converse is not true.

Our paper also informs a recent debate on the pricing of Amihud’s (2002) measure. Lou

and Shu (2017, LS) argue that its pricing is driven by variation in the dollar volumes en-

tering its denominator, and that the absolute returns entering the numerator are irrelevant.

Amihud and Noh (2020, AN) show that LS’s decomposition of the Amihud measure omits

the covariance between daily absolute return and the inverse of daily dollar volume, which

is priced.10 The core premise of microstructure models is that trading drives price impacts,

so the association between the numerator and denominator of the price impact proxy is key.

Our modification greatly magnifies the correlation between absolute returns and the inverse

of dollar volumes, i.e., between the numerator and the denominator of the Amihud measure.

Removing overnight returns from the numerator filters out noise that would otherwise lead

to underestimated correlations. In fact, the primary source of the di↵erence between OCAM

and CCAM reflects this: OCAM and CCAM di↵er by more when our modification a↵ects

the link between the numerator and denominator by more. We reinforce AN’s basic findings

using OCAM , showing that the covariance between OCAM ’s numerator and denominator

inputs is priced distinctly more strongly in the cross-section than that of CCAM .

Our final contribution is to uncover what drives the cross-sectional and temporal variation

10AN observe that the log-linearization used by LS to decompose Amihud’s (2002) measure into the sum
of the log of mean absolute return and the log of the average of one over dollar volume is incorrect.
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in the deviations of the OCAM/CCAM ratio from 1. In particular, we explain the ratio’s

rise and convergence toward unity post decimalization, establishing that the improvements

OCAM makes over CCAM reflect that its construction excludes (overnight) information-

driven price movements that do not enter trading costs. To show this, we construct a proxy

for overnight information arrival using the extent of non-synchronous trading near close.

This proxy exploits the variation in the time distance between the last transaction of the

day and 4:00pm EST. If a stock experiences a longer period of non-trading before close then

it should see more accumulated information after the final trade, but before close. That

accumulated information is impounded into price at open on the next trading day, leading

to greater overnight price movement. As such, our design uses di↵erential information arrival

before close to proxy for total information arrival in the overnight hours.11

The cross-sectional variation in the extent of non-trading across stocks before close ex-

plains about 77% of the cross-sectional variation in the ratio of OCAM to CCAM post-1993.

Indeed, after removing the variation associated with this proxy of overnight information ar-

rival, the cross-sectional distribution of the OCAM/CCAM residual becomes stable over

time—the temporal variation in the distribution of the ratio is almost entirely explained by

that in the distribution of non-trading. After controlling for stock characteristics, including

liquidity, along with stock and time fixed e↵ects, an additional ten minutes of non-trading

prior to close is associated with a 5-percentage-point decline in the OCAM/CCAM ratio.

Thus, large di↵erences in non-trading near close imply large di↵erences in the two measures.

This analysis ties the extent of greater measurement error in CCAM vis à vis OCAM to

information-driven price movements that are unrelated to price impacts of trading, explain-

ing why the association between the numerator and the denominator of the price impact

proxy strengthens when overnight returns are excluded.

Our paper contributes to a literature that distinguishes price movements during trading

11The literature has previously identified the information content of non-synchronous trading at close (see
Atchison et al. 1987) and its importance for driving large auto-correlations in the returns of stock indexes.
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hours from those when markets are closed (e.g., Cli↵ et al. 2008; Barclay and Hendershott

2008; Hendershott et al. 2018; Boudoukh et al. 2019; see also French and Roll 1986). Our

findings highlight that price movements that are unassociated with trading are likely irrele-

vant for liquidity measurement. In addition, our paper weighs in on the debate about why

the Amihud measure is priced. Finally, our analysis suggests that overnight price move-

ments largely reflect information arrival, extending insights of Jones et al. (1994), who find

that price movements in non-trading episodes during regular trading hours are primarily

information driven. These findings also indicate a broader reach of our analysis.

Post-decimalization, empirical analyses of expected returns in U.S. markets show that

they have become more liquid. Moreover, high frequency liquidity measures are now avail-

able. Nonetheless, Amihud’s (2002) liquidity measure remains vital for measuring liquidity

in international markets.12 Our modification can be employed quite broadly, as data on open

prices are available for many countries over long periods of time. For example, Data Stream

reports daily open prices from exchanges in nearly 100 countries. For 35 of these countries, re-

porting of open prices begins well before CRSP’s coverage of daily open commences. The fact

that our correction matters for the pricing of liquidity in the U.S. —the world’s leading finan-

cial market—strongly suggests that it would matter more in less liquid international markets.

In unreported results, we find that the median OCAM/CCAM ratio in the Brazilian stock

market is roughly half its NYSE counterpart in the 2008–2018 period, indicating the height-

ened and continuing economic importance of our correction for many international markets.

12Amihud’s (2002) measure is heavily used in studies of markets outside North America. Amihud et
al. (2015) document positive liquidity premia across 45 countries in the 1990�2011 period. Lee (2011)
documents priced liquidity risk in international markets. Hung et al. (2014) find weaker post-earnings
announcement drifts in international markets that are more liquid according to Amihud’s measure. Boehmer
et al. (2015) show that increased algorithmic trading across 42 international markets impacts Amihud’s
measure. Chen et al. (2017) document evidence in developing markets that the initial enforcement of insider
trading laws is more e↵ective for firms whose stocks witness improvements in their Amihud (2002) liquidity
measures. Lang et al. (2015) find that the Amihud (2002) measure is highly correlated with textual lengths
of financial reports for firms in the 42 countries studied.
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2 Data and variables

2.1 Amihud illiquidity and modified Amihud

The traditional Amihud (2002) stock liquidity measure, dubbed CCAM (for close-to-close

Amihud measure), calculates the average of the daily absolute return per dollar traded over

a given time period spanning D consecutive trading days, where daily returns reflect close-

to-close returns, incorporating overnight price adjustments and dividend distributions. As

in Amihud (2002), CCAMiy uses Diy daily observations of stock i in year y,

CCAMiy =
1

Diy

DiyX

d=1

|Ridy|
DV OLidy

, (1)

where Ridy and DV OLidy, respectively, are stock i’s return and dollar trading volume on day

d in year y; and Diy is the number of days for which trading volume for stock i in year y

is non-zero.13 In our rolling regression analyses, we use an alternative construction that up-

dates measures monthly. Thus, instead of using annual averages that we indexed by y in (1),

we average the daily absolute return per dollar traded over the 12 months ending in month t:

CCAMit =
1

Dt�12
it

D
t�12
itX

d=1

|Rt�12
idt

|
DV OLt�12

idt

. (2)

As such, the measure in month t uses stock i’s Dt�12
it

daily observations, for days with non-

zero trading volume, in the previous 12 months rather than from the previous calendar year.

Our open-to-close version, OCAM , instead uses the open-to-close absolute return to

construct daily absolute returns per dollar traded. Stock i’s open-to-close return on day d is

OCRid =
P c

id

P o

id

� 1, (3)

13Thin trading may bias OCAM toward zero, attenuating estimates of liquidity premia. On a trading
day when a stock trades only at the open auction, but nowhere else in the trading day, trading volume
will be non-zero but open-to-close return will be zero. OCAM takes a value of zero on such stock-days,
classifying the stock as being perfectly liquid, while thin trading likely indicates an illiquid stock. However,
such events are quite rare.
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where P o

id
and P c

id
are the open and close prices, respectively. As such, the analogues to the

traditional Amihud’s measures defined in equations (1) and (2) are

OCAMiy =
1

Diy

DiyX

d=1

|OCRidy|
DV OLidy

(4)

and

OCAMit =
1

Dt�12
it

D
t�12
itX

d=1

|OCRt�12
idt

|
DV OLt�12

idt

. (5)

2.2 Data and variable definitions

Our main sample runs from January 1, 1963 to December 31, 2019, and contains trade and

price information, focusing on all NYSE- and AMEX-listed stocks. In robustness analy-

ses, we extend the sample to include NASDAQ-listed stocks. We obtain daily closing prices,

trading volumes, and dividend distributions from Daily CRSP.14 We match these daily obser-

vations with open prices obtained from Global Financial Data (GFD).15 For stock-days with

open price observations in GFD, we match daily observations across CRSP and GFD using

unique combinations of security identifiers PERMNO, PERMCO, and CIK. As a result, out

of 29,225,292 unique daily observations in CRSP, we successfully match 25,468,167 observa-

tions with GFD.16 This matching accounts for over 91% of stock-year sets of CRSP observa-

tions with GFD.17 We obtain monthly returns, prices, dividend distributions, and number of

14We follow the procedure proposed by Gao and Ritter (2010) to adjust daily trading volumes that are
overstated due to the Nasdaq trade recording routines.

15Open prices reported by GFD reflect transaction prices when there is a transaction at open; the
mid-point of best bid and ask at open is reported when a transaction price is not available. As a robustness
check of GFD opening prices, we also estimate our asset pricing model for 1993�2019 using opening price
data from CRSP. Findings are una↵ected by the data source.

16To control for potential data errors in CRSP or GFD, we use similarity in closing prices reported by
CRSP and GFD, dropping a matched stock-day observation if its CRSP closing price deviates from that in
GFD by more than 0.1%. For example, a stock day with a CRSP closing price of $20.03 and a GFD closing
price of $20 is dropped. This filter binds for less than 3% of matched daily observations.

17The attributes of the matched GFD-CRSP set of stocks correspond very closely to those of the entire
population of stocks covered by CRSP, indicating that the matched subsample is representative. The
ratio of means for the GFD-CRSP sample to the CRSP population are all very close to one for key stock
characteristics at the beginning of each year: 1.009 for market capitalization, 1.046 for share price, and
1.002 for volatility.
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shares outstanding from Monthly CRSP. We match these monthly data with 1-month T-bill

rates. We exclude a stock-year set of observations if that stock’s daily closing price is below

$1 on any day in the preceding calendar year.18 We follow Amihud (2002) by excluding

stock-month observations that are among the 1% least liquid in each month, according to

Amihud’s measure. To address the convention of reporting the same price for high, low, open

and close when data from historical records cannot be retrieved, we exclude a stock from

the sample if its daily open and close prices are equal on all trading days of any given year.

We construct cross-sections of stock characteristics and merge them with cross-sections of

monthly returns in two ways. First, following Amihud (2002), we calculate market betas of

size portfolios (deciles of market capitalizations at the end of the previous year), �mkt

py
, using

daily stock and equally-weighted market returns every year—we use �mkt

py
for �mkt

iy
if stock i

is in portfolio p in year y. We then compile the following stock-specific measures at annual

frequencies: Dividend yield, DYDiy, is defined as the ratio of total dividend distributions in

a year divided by the closing price at the end of the year. Annual measures of momentum

are the returns over the last 100 days of the year, R100iy, and the realized return over the

earlier remaining days of the year, R100Y Riy. Annual return volatility is captured by the

annual standard deviation of daily returns per year, SDRETiy. Market capitalization, Miy,

is the product of shares outstanding and the closing price at the end of the year. We match

these annual measures with each of the monthly return observations of the relevant stock

over the following year, to construct an unbalanced monthly panel.

Our second approach addresses the possibility that using the same annual measures of

stock characteristics to explain returns in each of the 12 monthly cross-sections in the fol-

lowing year adds noise to later month observations in a year—the previous year’s measure

grows less germane. Hence, we follow Amihud and Noh (2020), and use a rolling regres-

sion approach, constructing stock characteristics at monthly frequencies, and then matching

18Our findings are robust to replacing the “penny-stock” filter with one that excludes stocks with
end-of-previous-year’s closing prices below $5, as in Amihud (2002).
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them with monthly returns in the following months.19 Momentum measures RETi,t�1 and

RET t�12
i,t�2 , respectively, capture compound returns over the preceding month and the 11

months before that. Market capitalization, Mi,t�2, is the product of shares outstanding and

the closing price two months earlier. We use Compustat to construct book value measures as

the sum of stockholders’ equity and deferred taxes at the end of each fiscal year. The book-

to-market ratio, BMi,t�1, is created by dividing the most recently reported book value by the

market-capitalization at the end of month t� 1.20 Relevant liquidity measures, OCAMi,t�2

and OCAMi,t�2 are constructed using daily observations from the 12-month period ending

in month t� 2—see equations(2) and (5).

We use monthly TAQ data to collect time stamps of the last transaction on each trading

day during regular trading hours (9:30am�4:00pm EST), for all NYSE- and AMEX-listed

stocks in the 1993�2013 period.21 We use the temporal distance between these time stamps

and 4:00pm EST, in hours, to construct a measure of the extent of non-trading by stock-

year. For a given year, we match these observations with our main sample, described above,

using NCUSIP from CRSP and CUSIP from TAQ. For observations without such links, we

match SYMBOL from TAQ with TSYMBOL from CRSP. From Daily Indicators by WRDS,

we obtain daily measures of time-weighted average percentage quoted and trade-weighted

average percentage e↵ective spreads. We construct each transaction’s e↵ective spread in two

ways, one based on the mid-point of prevailing quotes at the same second, and one based on

the mid-point from the previous second. Daily estimates of Kyle’s � are constructed based

on both suppressed and unconstrained price impact intercepts using price change and net

order flow estimates from 5-minute intervals.
19See also Barardehi et al. (2019) or Lu and Shu (2017) for similar approaches.
20We use the “linktable” provided by Wharton Research Data Service to match stocks across CRSP,

Compustat, and GFD. As such, a stock with no such links is excluded from the sample used in this analysis.
21The TAQ database is available for 1993 and after.
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3 Liquidity, overnight returns, and stock attributes

Figure 2 on page 3, which plots the temporal evolution in the distribution of the ratio of

open-to-close and close-to-close Amihud (2002), ROCiy =
OCAMiy

CCAMiy

, by tercile, reveals that

overnight price movements play a major role in driving both cross-sectional and tempo-

ral variation in the traditional Amihud (2002) measure, CCAM . Including overnight price

movements also inflates the measure for most stocks. Importantly, as the evolution of the

tercile-specific medians of this ratio indicate, the contamination driven by overnight price

movements is time-varying and declining, but it does not disappear. Table 1 presents me-

dians of several stock characteristics across six ROC quintiles, after sorting the sample on

ROC on a year-by-year basis. Save for market capitalization and share price, stocks in dif-

ferent such categories do not seem to possess materially di↵erent characteristics, indicating

that the cross-stock variability in the mismeasurement of liquidity is driven at least in part

by factors other than these basic stock characteristics.

One might wonder whether the patterns documented in Figure 2 could reflect temporal

variation in the composition of common stocks over our long sample period. One could posit

that the disparity between OCAM and CCAM might be due to some unknown stock char-

acteristics, and that the presence of stocks with small ROCiy =
OCAMiy

CCAMiy

in the cross-section

has varied over time. In fact, the number of publicly listed firms varies significantly over the

past few decades (Kahle and Stulz 2017).22 To preclude the possibility that results are driven

by changes in sample composition, we show that the temporal variation in the cross-section

of ROC is robust to sample composition. Figure 3 focuses on the sample featuring the 700

stocks with the largest market-capitalizations at the end of the previous year. The figure

reveals patterns in the year-specific cross-stock terciles of ROCiy that are qualitatively iden-

tical to those in Figure 2; there is a moderate upward shift in early decades in the bottom

quartile and median, with minimal shifts for the top quartile (less than 2 percentage points).

22The median number of stocks per year in our main sample is 1285 across all years.
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This finding is consistent with the result in Table 1 that ROC is largely unrelated to several

key stock characteristics. As one might expect, in the sample of large-/mid-cap stocks, the

cross-sectional variation shrinks a few years earlier than the full sample displayed in Figure 2.

Because our focus is on the measurement of liquidity, the patterns in Figure 2 are espe-

cially relevant for smaller and more thinly-traded stocks, which are generally perceived as

relatively less liquid. We document evidence of this by examining how the ratio of OCAMiy

to CCAMiy, ROCiy, varies with measures of size and turnover and other stock character-

istics. We measure stock i’s size in year y by the natural log of its market capitalization

at the end of year y � 1. Our turnover measure for stock i is the natural log of its average

daily turnover23 in year y � 1, i.e., ln(TRi,y�1). We fit a panel of annual ROC measures

against these stock characteristics for the time period 1964�2019, clustering standard errors

at both stock and year levels to account for the possibility of inflated t-statistics driven by

auto-correlated error terms (see Petersen 2009). We model the cross-sectional variation in

ROCiy using the specification

ROCiy = �0 +�1Xi,y�1 + fixed e↵ects + ✏iy, (6)

which includes both stock and year fixed e↵ects. � is the vector of coe�cients, and vector X

contains natural logs of market-cap and turnover, market beta, dividend yield, volatility, and

share price. Because OCAM is closer to CCAM when ROCiy is larger, a positive coe�cient

in � means that the two measures di↵er by less when the respective characteristic is larger.

Table 2 shows large, positive and robust significant relationships between ROC and mar-

ket beta, stock size, and turnover. This finding indicates that potential “contamination” by

overnight price movements is more pronounced for smaller and more-thinly traded stocks

that tend to feature greater market exposure. Variation in stock characteristics explain over

33% of the variation in ROC. These associations remain after controlling for both stock and

23Daily turnover is defined as the ratio of the number of shares traded daily to the corresponding number
of shares outstanding.
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year fixed e↵ects.

The fact that the impact of overnight price movements on measures of liquidity is greater

for less liquid stocks suggests that OCAM may be priced di↵erently than CCAM in the

cross-section of stock returns. As preliminary evidence of this possibility, we show that the

di↵erences between CCAM and OCAM reflect quite di↵erent cross-sectional rankings of

stocks based on the two liquidity measures. In particular, the di↵erences do not represent a

simple scaling e↵ect: rank correlation statistics between CCAM and OCAM are well below

one, especially for less liquid stocks and in earlier years of the sample. To quantify this,

we sort stocks each year into top 30%, middle 40%, and bottom 30% liquidity according to

CCAM . We then calculate Kendall’s ⌧ statistics every year within each liquidity group, and

calculate the average statistic across di↵erent years in the entire sample period or sub-period.

OCAM and CCAM order stocks in the cross-section very di↵erently. Table 3 shows that

rank correlations of OCAM and CCAM over the entire sample period are far below one.

These correlations are much smaller for less liquid stocks, going from 72% for the least liquid

stocks to 94.9% for the most liquid ones. Consistent with the patterns in Figure 2, rank

correlation statistics across all liquidity groups rise substantially over time.24 These findings

underscore that CCAM and OCAM measure cross-sectional di↵erences in stock liquidity

di↵erently, and hint at potentially di↵erent pricing of the two measures in the cross-section.

4 Modified Amihud measure and liquidity premia

Our asset pricing analysis largely adopts the specification used by Amihud (2002). This

lets us demonstrate the merits of our proposed correction to Amihud’s liquidity measure

in the context where it was introduced. Using both Amihud’s classic close-to-close price

impact measure, CCAM , and our open-to-close modification, OCAM , we reproduce the

basic cross-sectional results in Amihud (2002)—in particular, the sixth, eighth, and ninth

24Unreported analyses verify qualitatively similar patterns based on Pearson and Spearman correlations.
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columns of Table 1 (p. 41)—in our setting.25 We then contrast findings based on CCAM

with those obtained using OCAM to highlight the value of our modification. We model the

cross-section of returns in month t of year y, Rity as in Amihud (2002), by estimating

Rity = k0
ty
+

JX

j=1

kj

tyX
j

i,y�1 + ✏ity (7)

using the Fama-MacBeth approach. Here, Xj

i,y�1 is stock i’s jth characteristic, measured

using data from year y � 1; kj

ty is the jth characteristic’s loading; and ✏ity is an error term.

We correct for potential upward biases due to microstructure noise by employing weighted

least squared (WLS) estimates. We follow Asparouhova et al. (2010) in weighting monthly

observations using gross returns (1 + Ri) from the previous month.26 We first follow the

approach in Amihud (2002) of dividing each CCAMiy and OCAMiy observation by its re-

spective sample mean across stocks in year y. This centers each liquidity measure to have

a mean of one. Thus, the coe�cients on liquidity measures reflect liquidity premia: the

additional return investors require for holding the stock with average liquidity, compared to

the idealized, fully-liquid stock. Centering in this way ensures that any di↵erences in liquid-

ity premia are not mechanically driven by the fact that OCAM is on average smaller than

CCAM . We reinforce these findings by showing that qualitatively identical results obtain

when we estimate liquidity premia using standardized liquidity measures, i.e., when we esti-

mate the premia associated with a one standard deviation increase in each liquidity measure.

Table 4 shows that our findings regarding the relationship between expected returns and

stock characteristics align with those in Amihud (2002). In particular, we find positive and

significant coe�cients on stock (il)liquidity and measures of momentum, but negative and

significant coe�cients on stock size and return volatility measures. Crucially, substituting

25This is not a replication. First, our sample focuses on NYSE- and AMEX-listed common shares, while
Amihud (2002) studies all NYSE-listed stocks. Second, we can match GFD and CRSP for a little about
91% of stock years. Third, the sample period in our study is far longer.

26This correction is more necessary in the pre-decimalization era where the tick size was one-eighth, but
it is likely very conservative in recent years with the penny tick and tiny bid-ask bounce.
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OCAM for CCAM leads to liquidity premia that are nearly double those obtained using

CCAM , but it leaves the coe�cients on other stock characteristics essentially unchanged.

Importantly, the larger coe�cient on OCAM is not o↵set by an increase in standard errors.

As a result, OCAM significantly explains the cross-section of returns even post 2001, while

CCAM is not priced in recent years. The last two columns in Table 4 estimate the model

using a subsample that excludes the largest 400 stocks based on previous year’s market-cap

measures, reinforcing that liquidity premia based on Amihud measure still exist post 2001.27

Because we center each liquidity measure on its cross-sectional mean, the di↵erences in

estimated liquidity premia cannot be due to CCAM being, on average, larger than OCAM .28

We reinforce this finding by estimating equation (7) using standardized liquidity measures

CCAM std and OCAM std that are normalized to have 0 mean and unit standard deviation

in each cross-section. The corresponding coe�cients on the measures represent the liquidity

premia associated with one standard deviation increases in OCAM and CCAM . This nor-

malization accounts for the possibility that the di↵erences in estimated liquidity premia in

Table 4 may reflect di↵erences in the cross-stock dispersion of the two measures. In particu-

lar, because CCAM includes overnight price movements, it picks up the close-to-close return

volatility in its numerator; whereas OCAM only picks up volatility from regular hours. As

a result, CCAM is slightly more dispersed than OCAM in the cross-section. Table 5 shows

that even after adjusting for di↵erences in the means and standard deviations of the two mea-

sures, liquidity premia based on OCAM std still exceed those based on CCAM std by 50-75%.

One might also wonder whether di↵erences in the liquidity premia obtained using CCAM

and OCAM are a↵ected by cross-sectional variation in the timing of earnings announcement

27One reason to exclude large stocks is that Amihud’s measure over-aggregates o↵setting buy and sell
volume (see Barardehi and Bernhardt 2019 and Barardehi et al. 2019) for an analysis of the consequences of
such over-aggregation for a host of phenomena at higher frequencies), a feature that has been exacerbated
post-decimalization by the far higher trading volumes. Over-aggregation tends to be far more acute for
larger stocks, introducing significant noise in the liquidity measures and biasing estimates toward zero.

28Centering is important because ROC is less than one for the vast majority of stock-years.
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releases. Historically, some firms announced earnings during regular hours, whose impacts

would a↵ect both CCAM and OCAM , while other firms released earnings after hours, which

would only impact CCAM . The number of firms releasing earnings during regular hours fell

sharply in later years—by 2011, less than 2% of firms released earnings during regular hours

(deHaan et al. 2015). To account for this, we exclude daily observations from the three-day

windows around earnings announcement dates reported by Compustat before constructing

“earnings-adjusted” illiquidity measures, CCAM ea and OCAM ea. Table 6 shows that the

findings are essentially unchanged when we exclude earnings announcement windows: liq-

uidity coe�cients increase very slightly from those in Table 4.

Our results are related to the literature that examines temporal changes in liquidity pre-

mia. Our qualitative findings accord with diminishing liquidity premia among common stocks

(e.g., Ben-Rephael et al. 2013). However, this literature typically finds that premia disappear

completely in recent years, especially when one accounts for possible microstructure noise

(e.g., Asparouhova et al. 2010). We find that the improvements embedded in OCAM mean

that it significantly explains the cross-section of expected returns even in recent years.29 We

reinforce this point in Appendix A.2 where we rely solely on CRSP data from the 1992–2019

period. We find that while liquidity premia based on CCAM cease to exist after one adjusts

for microstructure noise, premia based on OCAM remain statistically significant. We next

show that, OCAM is, indeed, a superior (less noisy) measure of liquidity than CCAM .

5 Is OCAM a better liquidity measure than CCAM ?

We establish that OCAM is more strongly associated with a wide array of benchmark mea-

sures of trading costs than OCAM . We select two sets of trading costs benchmarks, a set of

“standard” high-frequency measures of trading costs, and a set that is publicly available for

29This finding becomes even more pronounced when one focuses on the set of smaller cap stocks, which
are both less liquid, and have less turnover, resulting in reduced over-aggregation.
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long histories that overlap with much of our sample period. The high-frequency measures

include two versions of relative e↵ective spreads, relative quoted spreads, and two versions

of estimates of Kyle’s �, all constructed annually for the 1993–2013 period. The long-history

group contains measures of e↵ective trading costs developed by Hasbrouck (2009), namely,

two versions of moments estimates of costs plus Gibbs estimates of costs that are available

at annual frequencies for the 1964–2013 period.30

For each benchmark, we test the null that CCAM and OCAM are similarly correlated

with the benchmark. Every year, we calculate the correlation coe�cients of CCAM and

OCAM vis à vis a given benchmark. We then run di↵erence-in-average correlation tests

using correlation coe�cient pairs obtained from the years falling in the respective sample

period. Table 7 shows that the average correlations between OCAM and trading costs

benchmarks are economically and statistically larger than the analogues for CCAM , with

di↵erences in correlations ranging from 5.6 to 14.4 percentage points. The di↵erences in

correlations are notably higher using Hasbrouck’s measures reflecting that CCAM deviates

more significantly from OCAM in earlier years.

We next show that OCAM ’s ability to better capture trading costs manifests itself in

its stronger ability to explain the cross-section of stock returns; something that does not

directly follow from the larger liquidity premia associated with OCAM . Due to the high

correlation between CCAM and OCAM , using them both in the same regression leads to

a multi-collinearity problem. Additionally, we are interested in the incremental explanatory

power of one measure, with respect the other, for the cross-section of returns. we decompose

each version of the Amihud measure into two linearly orthogonal components with respect

to the other version.31 We estimate

CCAMity = �0
ty
+ �1

ty
OCAMity + Zity (8)

30Annual data for this time period are available for download at Professor Joel Hasbrouck’s website:
http://people.stern.nyu.edu/jhasbrou/Research/GibbsEstimates2005/.

31Lou and Shu (2017) and Barardehi et al. (2019) adopt similar approaches.
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and

OCAMity = �0
ty
+ �1

ty
CCAMity + Z̃ity (9)

every month, and store the corresponding residuals Zity and Z̃ity. We then estimate Equa-

tion (7) using the Fama-MacBeth approach, augmenting the set of independent variables by

either Z̃ or Z to infer the incremental explanatory power of the alternative measure with

respect to the baseline. When CCAM is used as the baseline liquidity measure, we add Z̃ to

the set of independent variables. Because CCAM and Z̃ are, by construction, orthogonal,

the coe�cient on Z̃ captures the change in liquidity premia as one augments the incremental

information content in OCAM that is not included the baseline measure CCAM , i.e, the

residuals from Equation (9). In the same fashion, when the baseline measure is OCAM , we

add Z to the set of independent variables in Equation (7).

Table 8 shows that when we remove all information contained in CCAM related to

variation in OCAM , the residual possesses no incremental information in addition to that

contained in OCAM . In contrast, the residual from regressing OCAM on CCAM , i.e., Z̃,

is priced over the entire sample period, as well as in the four last decades of the previous

millennium when CCAM serves as the baseline liquidity measure. In essence, little relevant

information is lost when we take out the information contained in the classical CCAM Ami-

hud measure. Phrased di↵erently, including the noise in the form of close-to-open returns

appears to add measurement error that attenuates estimates of liquidity premia.32

6 Amihud and Noh (2020) vs. Lou and Shu (2017)

Despite the widespread use of Amihud’s (2002) liquidity measure as a proxy of stock liquidity,

the literature has paid little attention until recently to why it is priced in the cross-section of

stock returns. Lou and Shu (2017, LS) initiated the debate by arguing that the sole source of

32In unreported robustness, we find qualitatively identical results when Z or Z̃ is employed as the sole
liquidity measure, i.e., when CCAM or OCAM are not included.
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pricing of Amihud’s (2002) measure is the cross-sectional variation in average dollar-volume,

dismissing the relevance of the liquidity measure for price impacts of trading. Amihud and

Noh (2020, AN) identified an error in how LS decompose the Amihud liquidity measure into

its components. They show that much of the pricing is due to a component LS missed:

the correlation between the numerator, daily absolute price changes, and the denominator,

dollar volumes. In this section, we first discuss the components of the Amihud liquidity

measure, explaining the conditioning under which this measure may be able to capture price

impacts of trading. We then highlight the e↵ects of our proposed modification to the Ami-

hud measure on its components, reinforcing AN’s argument and uncovering why OCAM

outperforms CCAM in explaining the cross-sections of stock returns.

Amihud’s (2002) liquidity measure approximates the price impacts of trading at daily

frequencies using the ratio of absolute daily return to daily dollar volume,
|R|

DV OL
, defining

the liquidity measure as E


|R|

DV OL

�
. This approximation relies on several assumptions.

First, trading moves prices—consistent with classical asymmetric information models (e.g.,

Kyle 1985) or inventory models (e.g., Demsetz 1968) of microstructure. Hence, daily price

changes, on average, correctly reflect order flow imbalances; i.e., the daily return is positive

with positive net order flow, and negative with negative net order flow. This assumption is

consistent with established regularities, including the positive association between volatility

and trading volume, and the positive estimates of Kyle’s �. Second, one can proxy for the

variation in absolute net order flow using the variation in dollar volume. To approximate

the price impact per-dollar traded, Amihud’s measure divides daily price change by the total

dollar volume, rather than the (unobserved) net order flow. This assumption understates the

price change per unit net order flow because total dollar volume always exceeds absolute net

order flow. Third, daily aggregation provides a reasonable sampling frequency. This approx-

imation is reasonable in times of modest trading activity; but it leads to over-aggregation

issues once daily trading volumes explode post decimalization (see Barardehi et al. 2019),
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which, in turn, biases estimates of liquidity premia downward toward zero.

A statistical decomposition of Amihud’s liquidity measure, as defined above, implies that

CCAM = E


|R|

DV OL

�
= E[|R|]E


1

DV OL

�
+ Cov

✓
|R|, 1

DV OL

◆
. (10)

LS e↵ectively assume that Cov

✓
|R|, 1

DV OL

◆
= 0 when they decompose the natural log of

Amihud measure as

ln

✓
E


|R|

DV OL

�◆
= ln(E[|R|]) + ln

✓
E


1

DV OL

�◆
. (11)

However, assuming that there is no association between absolute return and trading volume

is completely at odds with the central premise that trading has price impacts. That is,

prices should rise when net order flow is positive, and they should fall when net order flow is

negative. Amihud’s measure translates this positive correlation between net order flows and

returns into a positive correlation between absolute return and trading volume that cannot

be ignored. Pointing this out, AN show that the nonlinear approximation of the correlation

between daily absolute returns and dollar volumes,33

DIFCCAM = ln

✓
E


|R|

DV OL

�◆
� ln(E[|R|])� ln

✓
E


1

DV OL

�◆
, (12)

is priced in the cross-section of stock returns even when ln(E[|R|]) and ln
⇣
E
h 1

DV OL

i⌘
are

present as controls.

We next provide insights into why replacing the close-to-close absolute return, R, by

the open-to-close absolute return, OCR, improves the pricing ability of the Amihud mea-

sure and strengthens its associations with benchmark trading cost measures. A statistical

decomposition of OCAM yields

OCAM = E


|OCR|
DV OL

�
= E[|OCR|]E


1

DV OL

�
+ Cov

✓
|OCR|, 1

DV OL

◆
. (13)

33See AN’s Appendix analysis A1.
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Because the inverse of dollar volume is common in Equations (10) and (13), any disparity

between OCAM and CCAM must reside in the di↵erences in the two covariance terms and

the two absolute return terms. As such, we relate the patterns documented in Figure 2 to

potential disparities between the above terms. This leads us to define the ratios

ROC |ret| =
E[|OCR|]
E[|R|] , (14)

ROCCov ⌘ CovOCAM

CovCCAM
=

Cov
⇣
|OCR|, 1

DV OL

⌘

Cov
⇣
|R|, 1

DV OL

⌘ ; (15)

where the empirical inputs in each ratio are estimated using daily observations annually.

Figure 4 plots medians of the ratios in equations (14) and (15) by terciles of ROCiy (see

equation 6) over time. Figures 2 and 4 Panel A have the same scale, revealing that the

variation in average absolute returns, ROC |ret|, is a small fraction of that in ROC. Panel

B reveals that using open prices in the construction of Amihud’s measure sharply a↵ects

the association between its numerator and the denominator inputs.34 The variation across

terciles and over time in ROCCov is sizably larger than that of ROC |ret|. This indicates that

excluding overnight price movements from the construction of Amihud’s measure does far

more than simply shrink the volatility included in the measure that, in turn, scales down

the measure. We next highlight this by documenting how Cov
⇣
|OCR|, 1

DV OL

⌘
is priced.

AN decompose ln(CCAM) into three components: ln(|R|), ln(IDV OL) ⌘ ln

✓
1

DV OL

◆
,

and DIFCCAM . They also consider LS’s version of CCAM measure that implicitly as-

sumes Cov(|R|, 1

DV OL
) = 0; we dub this measure ln(LSCCAM) ⌘ ln

⇣
|R| ⇥ 1

DV OL

⌘
.

We consider the analogues of these measures in the context of OCAM . That is, we pro-

duce ln(OCAM), ln(IDV OL), ln(LSOCAM) ⌘ ln
⇣
|OCR| ⇥ 1

DV OL

⌘
, and DIFOCAM ⌘

34Co-variances are a↵ected by the levels of the constituent variables; in Appendix A.4, we establish that
the ratio of the analogous correlation coe�cients, which are free of scale e↵ects, exceeds one for the vast
majority of stock-years. That is, the correlation between Amihud measure’s numerator and denominator
inputs rises when open-to-close returns, rather than close-to-close returns, are used in the numerator of the
price impact proxy.
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ln(OCAM) � ln(LSOCAM). We follow AN as closely as possible to obtain estimates that

are the analogues of columns 1�3 in AN’s Table 1. We find qualitatively similar results.35

Table 9 shows that for both versions of the Amihud measure, each of their sub-components

explains the cross-section of expected returns. Most importantly, in the full, unrestricted

specification (column (3)) in Panels A and B of Table 9, the nonlinear approximation of the

correlation between daily absolute returns and dollar volumes, i.e., DIF , is more strongly

priced based on OCAM than CCAM . In particular, the increase in excess return associated

with a one standard deviation increase in DIFOCAM is 15.9 bps; whereas that for DIFCCAM

is only 8.3 bps. This suggests that the tighter link between the numerator and denominator

of the OCAM measure largely underlies why liquidity premia based on OCAM exceed those

based on CCAM .

We next reinforce this argument by showing that overnight price movements are, indeed,

primarily information-driven, not trade-driven.

7 Information-driven overnight returns

We conclude our analysis by documenting the information-driven role of overnight price

movements in distorting CCAM from capturing liquidity properly. To do this, we construct

a proxy for overnight information arrival using the extent of non-synchronous trading near

close that exploits the variation in the time distance between the last transaction of the day

and the o�cial close (4:00pm EST) of the trading day. We then show that the cross-stock

variation in our proxy—the mean extent of non-trading before close—explains the vast bulk

of the cross-stock variation in the di↵erences between OCAM and CCAM post-1993.

The economics underlying our non-synchronous trading proxy is that if a stock experi-

35The slight quantitative di↵erences likely reflect that (i) our sample period is 1964–2019 while AN
analyze data from 1955–2016; and (ii) our cross-section of NYSE- and AMEX-listed firms is limited to those
whose book-values are reported by Compustat, while AN obtain book values from Compustat and Moody’s
databases so they have slightly larger cross-sections in the 1950s and 1960s.
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ences longer periods of non-trading before close and expected information flows per unit time

are similar across stocks, then it should see more accumulated information after the final

trade, but before close. That information is impounded into price at open on the next trading

day, leading to greater overnight price movement.36 As such, our design exploits di↵erential

information arrival before close to proxy for total information arrival during overnight hours.

Cross-stock variation in non-trading, which may reflect a lack of liquidity and other

market microstructure frictions, introduces heterogeneity in the mean stock of accumulated

“overnight” information flow. Figure 5 illustrates the mapping between the extent of non-

trading prior to close on a given trading day and the amount of accumulated information

that is expected to be impounded in price the following trading day.

Using intraday transaction data from the TAQ database between 1993�2013, we mea-

sure the time distance, in hours, between the last transaction and close each trading day.

We then average these distances every year for each stock to construct HTCiy (hours to

close), which measures the average extent of non-trading before close in a given year. We

average over an entire year to mitigate the measurement error in the time distance measure.

This measurement error can arise due to random variation in the time distance, or the fact

that closing prices are determined in a special call auction that “is strongly associated with

ETF ownership and institutional rebalancing” (Bogousslavsky and Muravyev 2019). Such

rebalancing adds noise to the information content of closing prices, which could only weaken

the ability of HTCiy to proxy overnight information arrival.

Figure 6 shows that, pre-decimalization, non-trading exhibits remarkable cross-stock vari-

ation. For instance, in 1993, the first and third quartiles of the mean time distance between

36When there is no closing price available, i.e., when there is not a “closing cross” that corresponds to
the final transaction at close, both CRSP and GFD report the midpoint of the best bid and ask prices at
4:00pm as the “close price.” Importantly, this type of closing price, which is not associated with trading,
may di↵er from the price associated with the last transaction the same trading day. If anything, when such
di↵erences are meaningfully large, they introduce noise in our proxy of overnight information accumulation,
i.e., the time distance between the last transaction of the day and 4:00pm, attenuating our results.
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the last trade and close are roughly 8 and 50 minutes, respectively—the last transaction was

well before close for most stocks. This variation begins to vanish as decimalization is imple-

mented from 1997 to 2001, disappearing after 2007, once automated trading fully dominates

markets. These patterns mirror those for the cross-sectional distribution of ROC in Figure 2,

suggesting that variation in non-trading is related to variation in ROC (the extent of dispar-

ity between CCAM and OCAM). Figure 7 plots ROCiy against HTCiy. In particular, the

figure reveals a strong association between the extent of non-trading and di↵erences between

CCAM and OCAM : ROC declines with HTC with a slope of �1/3. Figures 6 and 7 reveal

qualitatively similar results after controlling for changes in sample composition by focusing

on the 700 largest stocks according to market-capitalizations at the end of the previous year.

To quantify the ability of HTC to explain variation in the disparity between CCAM and

OCAM , we add HTCiy to a regression of ROCiy on stock characteristics. The panel regres-

sion includes stock fixed e↵ects to account for time-invariant stock characteristics that may

drive ROC. We also use year fixed e↵ects to account for systematic temporal variation (e.g.,

varying sample composition) in ROC. Additionally, we control for either CCAM or OCAM

to preclude the possibility that findings are influenced by the level of stock liquidity. Finally,

we substitute HTCiy by the lag of non-trading before close, HTCi,y�1. Table 10 shows that

HTC strongly explains the variation in the disparity between CCAM and OCAM even

after controlling for stock characteristics and fixed e↵ects. Variation in HTC explains 77%

of the variation in ROC. In fact, adding other stock characteristics as well as stock and year

fixed e↵ects lead to a relatively modest increase in adjusted-R2, raising it from 0.77 to 0.85.

The negative coe�cient on HTC indicates that longer periods of non-trading before close

are associated with greater disparities between CCAM and OCAM . Concretely, a one-hour

increase in the average duration of non-trading before close is associated with roughly a 0.3

(30 percentage point) decline in ROC—i.e., a 5 percentage point decline in ROC for each

additional 10 minutes of non-trading before close. The estimated slope coe�cient is very
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close to the visually discerned slope of �1/3 from Figure 7.

To provide additional evidence of the co-variation between ROC and HTC, we docu-

ment the temporal evolution of the cross-sectional variation in ROC after accounting for

the variation explained by HTC. To do this, for each year, we obtain the residuals from

cross-sectional regressions of ROCiy on HTCiy, and then investigate the temporal evolution

of the cross-sectional distribution of these residuals. These cross-sectional regressions fea-

ture an average R2 of 74.5%, further underscoring the relevance of information-driven price

movements for our results. Figure 8 highlights the ability of HTC to explain variation in

ROC. In contrast to the large cross-sectional and temporal variations in ROC highlighted

in Figure 6, the residuals of ROC on HTC are concentrated around zero (over half of the

observations always fall between �0.05 and 0.05) and are remarkably stable over time, indi-

cating that much of ROC’s variation is explained by variation in the extent of non-trading

near close, especially pre-decimalization and before automation of equity markets.37

The fact that accounting for overnight information arrival via our proxy removes essen-

tially all temporal variation in the ratio of OCAM to CCAM indicates that HTC is a good

proxy—that we average su�ciently to remove noise in the time-to-close measure—and that

di↵erences in the two measures are largely due to overnight information arrival. In turn,

this means that the superior ability of OCAM to explain returns and the higher associated

estimated liquidity premia indicate that including the overnight information-driven return

in CCAM serves to add noise to the measure that biases liquidity premia toward zero.

Our findings also have implications for the interpretations of Bogousslavsky and Mu-

ravyev (2019). They highlight that closing prices are strongly influenced by non-informationally-

based trades of institutional investors, reducing their information content. This means that

overnight price movements will be a↵ected, in part, by this noise. This e↵ect only serves to

attenuate the relationship between our proxy of overnight information arrival and the dif-

37Such stability of residuals does not obtain when one regresses ROC on year fixed e↵ects only.
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ferences between CCAM and OCAM . The fact that we find strong co-variation highlights

the merits of our methodology and of our proposed correction to Amihud’s measure.

8 Conclusion

Amihud’s (2002) liquidity measure (CCAM) has been widely used by researchers to study the

importance of (or control for) stock liquidity in many financial economics settings. Its usage,

in part, reflects the measure’s simple construction using data that can be obtained for long

histories and across di↵erent markets. The many insights based on it make its precise mea-

surement crucial. Our paper develops and implements simple improvements to this measure.

Our OCAM modification uses open-to-close returns, rather than close-to-close returns,

to address a time mismatch in the construction of CCAM . Our modified measure bet-

ter explains the cross-section of returns, revealing that liquidity premia are substantially

larger than previously believed. OCAM is also more strongly correlated with low- and high-

frequency measures of trading costs than CCAM . Reflecting this, OCAM better explains

the cross-section of expected returns. Liquidity premia based on OCAM are 50-120% larger

than those based on CCAM .

Including overnight returns in the Amihud measure adds measurement error that sharply

attenuates estimates of liquidity premia. This is evident by the finding that the association

between the numerator and denominator inputs of the Amihud measure sharply strengthen

once we exclude overnight returns. Amihud and Noh (2020) show that this association drives

the pricing of CCAM in the cross-section. We show both that much of the di↵erences be-

twee OCAM and CCAM are due to how the relationship between the denominator and

numerator is a↵ected by our modification, and that the covariance between the denominator

and numerator is notably more strongly priced for OCAM than CCAM .

Finally, we exploit cross-stock and temporal variation in the extent of non-trading be-
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fore close as a proxy for variation in information-driven price movements to understand the

sources of di↵erences between CCAM and OCAM . We find that this proxy explains most of

the cross-stock variation in these di↵erences. Overall, our paper highlights the importance of

excluding information-driven price movements when constructing measures of stock liquidity.
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Tables and Figures

Table 1: Stock characteristics by levels of ROC. This table presents medians of stock char-
acteristics by year-specific quintiles of ROC = OCAM/CCAM . Medians of stock characteristics,
based on observations from the previous year, are calculated by these quintiles. �mkt is market
beta, M is market capitalization in millions of dollars, DYD is dividend yield (%), SDRET is
daily return volatility (%), and PRC is the end-of-year closing price.

Quintile of ROC
1 2 3 4 5

ROC 0.36 0.65 0.82 0.88 0.94

�mkt 0.94 1.03 1.05 1.05 1.04

M 28.4 97.2 238.1 459.5 431.4

DYD 1.40 1.31 1.48 1.74 1.74

SDRET 2.35 2.38 2.34 2.25 2.32

PRC 11.38 17.50 21.50 24.43 20.75
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Table 2: Association between OCAM-to-CCAM ratio and stock characteristics. This
table presents panel regression estimates when the ratio of open-to-close and close-to-close
Amihud (2002) measures, ROCiy, is regressed on stock characteristics, the natural logs of market-
capitalization, ln(Mi,y�1), and mean daily turnover, ln(TRi,y�1); dividend yield, DYDi,y�1; daily
return volatility, SDRETi,y�1; and share price (scaled by 1/100), PRCi,y�1, as in equation (6),
in the 1964�2019 sample. Specifications di↵er in the set of fixed e↵ects introduced. Numbers in
parentheses reflect standard errors of estimates, clustered at both stock and year levels. Symbols
⇤, ⇤⇤, and ⇤⇤⇤ reflect statistical significance at 10%, 5%, and 1% type one error, respectively.

1964�2019 1964�1980 1981�2000 2001�2019

�mkt 0.095⇤⇤⇤ 0.089⇤⇤⇤ 0.070⇤⇤ 0.077⇤⇤⇤ 0.235⇤⇤⇤ 0.024 0.108⇤⇤⇤

(0.033) (0.021) (0.034) (0.021) (0.038) (0.054) (0.019)

ln(M) 0.061⇤⇤⇤ 0.040⇤⇤⇤ 0.069⇤⇤⇤ 0.047⇤⇤⇤ 0.068⇤⇤⇤ 0.057⇤⇤⇤ 0.001
(0.004) (0.003) (0.006) (0.005) (0.007) (0.007) (0.003)

ln(TR) 0.071⇤⇤⇤ 0.073⇤⇤⇤ 0.080⇤⇤⇤ 0.077⇤⇤⇤ 0.111⇤⇤⇤ 0.098⇤⇤⇤ 0.024⇤⇤⇤

(0.005) (0.006) (0.006) (0.005) (0.006) (0.003) (0.005)

DYD 0.006 �0.004 0.011⇤⇤ 0.003 0.018 �0.005 0.000
(0.005) (0.004) (0.005) (0.003) (0.011) (0.006) (0.003)

SDRET 0.072⇤⇤⇤ 0.022 0.097⇤⇤⇤ 0.044⇤⇤⇤ 0.022 0.017 0.013
(0.016) (0.014) (0.017) (0.012) (0.021) (0.016) (0.014)

PRC �0.019 �0.007 �0.025 �0.015 �0.097⇤ �0.088⇤⇤⇤ 0.002⇤⇤

(0.013) (0.009) (0.017) (0.014) (0.052) (0.030) (0.001)

Stock FEs No Yes No Yes Yes Yes Yes

Year FEs No No Yes Yes Yes Yes Yes

R2 0.33 0.51 0.35 0.52 0.38 0.70 0.76

69,474 24,424 26,935 18,115

Table 3: Rank correlation statistics between OCAM and CCAM . This table presents
Kendall’s ⌧ statistics across CCAM and OCAM over time periods, 1964�2019, 1946�1980,
1981�2000, and 2001�2019. Each year, stocks are sorted into top 30%, middle 40%, and bottom
30% liquidity according to CCAM . Kendall’s ⌧ statistic is calculated every year within each liquid-
ity group, and then averaged across di↵erent years in the entire sample period or in a sub-period.

Liquidity group 1964�2019 1964�1980 1981�2000 2001�2019

Top 30% liquid 94.9% 91.5% 96.2% 96.5%

Middle 40% liquid 84.4% 69.7% 85.3% 96.7%

Bottom 30% liquid 72.4% 63.0% 64.4% 89.1%

34



Table 4: Fama-MacBeth estimates of monthly returns on stock characteristics,

NYSE- and AMEX-listed common shares, 1964�2019. This table presents Fama-MacBeth
estimates of Equation (7) for NYSE and AMEX-listed common shares in time periods 1964�2017,
1964�1980, 1981�2000, and 2011�2019. The last two columns present estimates after removing
the largest 400 stocks in the 2011�2019 period. The dependent variable is the monthly stock return
in percentage points. CCAM is the traditional Amihud (2002) liquidity measure, and OCAM is
the Amihud (2002) measure after removing overnight price movements. We divide each CCAMiy

and OCAMiy observation by its respective sample mean across stocks in year y, thereby centering
each measure to have a mean of one, making coe�cients across the two measures comparable. �mkt

is market beta estimated across ten size portfolios using daily observations from the last calendar
year. R100 is the compound return on a stock in the last 100 days of the previous calendar year,
and R100Y R is the compound return over the remaining trading days in the last calendar year.
ln(M) is the natural log of market capitalization at the end of the previous calendar year. SDRET
is the standard deviation of daily returns over the previous calendar year. DYD is the ratio of
total cash dividend distribution over the previous calendar year to the closing price at the end of
that year, or dividend yield. Estimates are carried out using weighted least squares, with lagged
monthly gross (one plus) return used as weights, to correct for biases identified by Asparouhova
et al. (2010). Newey-West standard errors using two lags are reported in parentheses. Symbols ⇤,
⇤⇤, and ⇤⇤⇤ reflect statistical significance at 10%, 5%, and 1% type one error, respectively.

1964�2019 1964�1980 1981�2000 2001�2019 2001�2019
mid-/small-cap

CCAM 0.064⇤⇤⇤ 0.105⇤⇤⇤ 0.068⇤⇤⇤ 0.022 0.028
(0.016) (0.041) (0.022) (0.018) (0.017)

OCAM 0.126⇤⇤⇤ 0.205⇤⇤⇤ 0.137⇤⇤⇤ 0.043⇤ 0.053⇤⇤

(0.025) (0.065) (0.034) (0.024) (0.025)

�mkt 0.412 0.656⇤⇤ 0.466 0.796 0.134 0.387 0.658⇤ 0.813⇤⇤ 0.441 0.430
(0.289) (0.286) (0.482) (0.511) (0.618) (0.592) (0.348) (0.353) (0.584) (0.593)

R100 0.519⇤⇤ 0.505⇤⇤ 0.668⇤⇤ 0.676⇤⇤ 1.015⇤⇤⇤ 0.997⇤⇤⇤ �0.138 �0.167 �0.066 �0.154
(0.209) (0.207) (0.329) (0.329) (0.259) (0.256) (0.454) (0.449) (0.506) (0.493)

R100Y R 0.226⇤⇤⇤ 0.226⇤⇤⇤ 0.363⇤⇤ 0.374⇤⇤ 0.409⇤⇤⇤ 0.410⇤⇤⇤ �0.090 �0.100 �0.246 �0.274
(0.082) (0.083) (0.149) (0.152) (0.128) (0.127) (0.147) (0.147) (0.192) (0.191)

ln(M) �0.095⇤⇤⇤ �0.081⇤⇤⇤ �0.165⇤⇤⇤ �0.148⇤⇤⇤ �0.038 �0.024 �0.092⇤⇤ �0.080⇤⇤ �0.072 �0.011
(0.029) (0.028) (0.058) (0.054) (0.049) (0.047) (0.040) (0.041) (0.096) (0.105)

SDRET �1.54⇤⇤⇤ �1.76⇤⇤⇤ �0.68 �1.04 �2.42⇤⇤⇤ �2.68⇤⇤⇤ �1.38⇤⇤ �1.43⇤⇤ �1.24⇤⇤ �1.29⇤⇤

(0.326) (0.336) (0.615) (0.643) (0.476) (0.498) (0.601) (0.607) (0.583) (0.590)

DYD 0.268 0.175 1.343 1.038 0.367 0.330 �0.794 �0.757 �0.663 �0.549
(0.718) (0.701) (2.254) (2.195) (0.346) (0.348) (0.545) (0.548) (0.808) (0.822)
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Table 5: Fama-MacBeth estimates of liquidity premia using standardized liquidity

measures, 1964�2019. This table presents Fama-MacBeth estimates of liquidity premia using
Equation (7) for NYSE and AMEX-listed common shares in time periods 1964�2017, 1964�1980,
1981�2000, and 2011�2019. The last two columns present estimates after removing the largest 400
stocks in the 2011�2019 period. The dependent variable is the monthly stock return in percentage
points. CCAM std is the standardized traditional Amihud (2002) liquidity measure, and OCAM std

is the standardized Amihud (2002) measure after removing overnight price movements. The set
of controls is identical to that in Table 4. Estimates are carried out using weighted least squares,
with lagged monthly gross (one plus) return used as weights, to correct for biases identified by
Asparouhova et al. (2010). Newey-West standard errors using two lags are reported in parentheses.
Symbols ⇤, ⇤⇤, and ⇤⇤⇤ reflect statistical significance at 10%, 5%, and 1% type one error, respectively.

1964�2019 1964�1980 1981�2000 2001�2019 2001�2019
mid-/small-cap

CCAM std 0.137⇤⇤⇤ 0.180⇤⇤ 0.157⇤⇤⇤ 0.078 0.137
(0.035) (0.072) (0.052) (0.060) (0.084)

OCAM std 0.218⇤⇤⇤ 0.288⇤⇤⇤ 0.239⇤⇤⇤ 0.135⇤ 0.237⇤⇤

(0.044) (0.092) (0.061) (0.074) (0.109)

Table 6: Fama-MacBeth estimates of liquidity premia, 1964�2019: adjusted for

earnings announcements. This table presents Fama-MacBeth estimates of Equation (7) for
NYSE and AMEX-listed common shares in time periods 1964�2017, 1964�1980, 1981�2000,
and 2011�2019. The last two columns present estimates after removing the largest 400 stocks
in the 2011�2019 period. The dependent variable is the monthly stock return in percentage
points. CCAM is the traditional Amihud (2002) liquidity measure, and OCAM is the Amihud
(2002) measure after removing overnight price movements. Both measures are constructed after
removing 3-day windows around earnings announcements. We divide each CCAMiy and OCAMiy

observation by its respective sample mean across stocks in year y, thereby centering each measure
to have a mean of one, making coe�cients across the two measures comparable. The set of controls
is identical to that in Table 4. Estimates are carried out using weighted least squares, with lagged
monthly gross (one plus) return used as weights, to correct for biases identified by Asparouhova
et al. (2010). Newey-West standard errors using two lags are reported in parentheses. Symbols ⇤,
⇤⇤, and ⇤⇤⇤ reflect statistical significance at 10%, 5%, and 1% type one error, respectively.

1964�2019 1964�1980 1981�2000 2001�2019 2001�2019
mid-/small-cap

CCAM ea 0.066⇤⇤⇤ 0.104⇤⇤ 0.073⇤⇤⇤ 0.025 0.032⇤

(0.016) (0.041) (0.022) (0.017) (0.017)

OCAM ea 0.126⇤⇤⇤ 0.202⇤⇤⇤ 0.139⇤⇤⇤ 0.045⇤ 0.054⇤⇤

(0.025) (0.065) (0.034) (0.023) (0.024)
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Table 7: CCAM and OCAM vs. standard measures of trading costs. This table presents
average cross-sectional correlations between each CCAM and OCAM vis à vis other high-
frequency measures of stock liquidity. Panel A presents correlations against annually-constructed
high-frequency measures of trading costs. EFSP0 and EFSP1 are averages of percentage e↵ective
spreads constructed with respect to mid-point price at, respectively, the same and the previous
second of the corresponding transaction. QSP is the time-weighted average of percentage bid-ask
spread, constructed annually. �0 and �1 are annual averages of estimates of Kyle’s �, estimated
using five-minute observations at the daily level, with and without a no-intercept restriction,
respectively. Every year, correlations between each measure with CCAM or OCAM are calculated
in the 1993�2013 period, averages across years and di↵erences are reported. Panel B presents
correlations against annual measures of e↵ective costs calculated by Hasbrouck (2009). cMdmLog
and cMdmLogz are two version of Roll’s measure of daily return auto-correlations, respectively,
reflecting whether missing daily return observations are dropped or replace by zero. cLogMean
reflects Gibbs estimates using a market-factor model applied to CRSP closing prices and dividends.
Every year, correlations between each measure with CCAM or OCAM are calculated in the
1964�2003 period, averages across years and di↵erences are reported. Symbols ⇤, ⇤⇤, and ⇤⇤⇤

reflect statistical significance at 10%, 5%, and 1% type one error, respectively.

Panel A: High-freq. measures: 1993�2013 Panel B : E↵ective costs measures: 1964�2003
OCAM CCAM Di↵erence† OCAM CCAM Di↵erence††

EFSP0 0.827 0.751 0.076⇤⇤⇤ cMdmLog 0.546 0.399 0.148⇤⇤⇤

(0.009) (0.014) (0.009) (0.020) (0.017) (0.007)

EFSP1 0.829 0.752 0.077⇤⇤⇤ cMdmLogz 0.505 0.390 0.115⇤⇤⇤

(0.007) (0.011) (0.008) (0.023) (0.019) (0.006)

QSP 0.845 0.773 0.072⇤⇤⇤ cLogMean 0.732 0.615 0.116⇤⇤⇤

(0.006) (0.010) (0.010) (0.017) (0.014) (0.006)

�0 0.816 0.757 0.059⇤⇤⇤ ††Degrees of freedom is 40.

(0.030) (0.028) (0.009)

�1 0.778 0.722 0.056⇤⇤⇤

(0.040) (0.037) (0.009)

†Degrees of freedom is 20.
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Table 8: Fama-MacBeth estimates for pricings of orthogonally-decomposed measures,

NYSE-listed common shares, 1964�2019. This table presents Fama-MacBeth estimates of
Equation (7) for NYSE- and AMEX-listed common shares in time periods 1964�2019, 1964�1980,
1981�2000, and 2011�2019. The last two columns present estimates after removing the largest
400 stocks in the 2011�2019 period. The dependent variable is monthly stock return in percentage
points. Independent variables include those in Table 4 plus the linearly orthogonal component
of the alternative liquidity measure with respect to the baseline measure. When CCAM is the
baseline, Z̃ is the additional independent variable; when OCAM is the baseline Z is added. Z and
Z̃ reflect the residuals from Equations (8) and (9), respectively. Estimates are carried out using
weighted least squares, with lagged monthly gross (one plus) return used as weights, to correct
for biases identified by Asparouhova et al. (2010). Newey-West standard errors using two lags are
reported in the parentheses. Symbols ⇤, ⇤⇤, and ⇤⇤⇤ reflect statistical significance at 10%, 5%, and
1% type one error, respectively.

1964�2019 1964�1980 1981�2000 2001�2019 2001�2019
mid-/small-cap

CCAM 0.085⇤⇤⇤ 0.144⇤⇤⇤ 0.088⇤⇤⇤ 0.031 0.037⇤

(0.018) (0.048) (0.024) (0.019) (0.019)

Z̃ 0.147⇤⇤⇤ 0.255⇤⇤⇤ 0.130⇤⇤⇤ 0.068⇤ 0.067⇤

(0.034) (0.081) (0.050) (0.041) (0.041)

OCAM 0.126⇤⇤⇤ 0.209⇤⇤⇤ 0.135⇤⇤⇤ 0.043⇤ 0.052⇤⇤

(0.025) (0.065) (0.034) (0.024) (0.025)

Z �0.018 �0.040 0.006 �0.023 �0.014
(0.019) (0.039) (0.032) (0.030) (0.029)
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Table 9: Pricing of the components of CCAM and OCAM : 1964–2019. The table
presents Fama-MAcBeth cross-sectional estimates of the pricing of the di↵erent components of
CCAM and OCAM . Equation (1) in Amihud and Noh (2020) is estimated using data for NYSE-
and AMEX-listed stocks in the 1964–2019 period, producing analogues results to those in Table 1
from Amihud and Noh (2020). The dependent variable is monthly stock return in excess of monthly
T-Bill rate. Independent variables include various components of CCAM or OCAM (desribed in
Section 6; natural log of market-capitalization from the end of two months earlier, ln(Mi,t�2); the
most recent book-to-market value, BMi,t�1; previous month’s return, Ri,t�1; and the compound
return from the 11 months before that, Rt�12

i,t�2. Stock-month observations are included only if their
average closing price over the preceding 12 months falls between $5 and $1,000. The remaining
filters are identical to those from the earlier analyses. To closely follow Amihud and Noh (2020),
Newey-West standard errors using six lags are reported in parentheses. Symbols ⇤, ⇤⇤, and ⇤⇤⇤

reflect statistical significance at 10%, 5%, and 1% type one error, respectively.

Panel A: Pricing of CCAM components Panel A: Pricing of OCAM components
(1) (2) (3) (1) (2) (3)

ln(CCAM) 0.095⇤⇤ ln(OCAM) 0.082⇤

(0.048) (0.047)

ln(LSCCAM) 0.109⇤⇤ ln(LSOCAM) 0.107⇤⇤

(0.048) (0.045)

ln(|R|) �0.390⇤⇤ ln(|OCR|) �0.385⇤⇤

(0.191) (0.159)

ln(IDV OL) 0.079⇤⇤ ln(IDV OL) 0.106⇤⇤

(0.039) (0.046)

DIFCCAM 0.714⇤⇤⇤ 0.530⇤⇤ DIFOCAM 0.231⇤ 0.466⇤⇤⇤

(0.234) (0.234) (0.139) (0.142)

�Y/�(DIF )† 0.083 �Y/�(DIF )† 0.159

†Measures the change in excess returns in response to one standard deviation increase in DIF .
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Table 10: Association between OCAM-to-CCAM ratio and non-trading before close.

This table presents panel regression estimates when ROCiy is regressed on HCT using alternative
specifications. Specifications di↵er in (i) the sets of fixed e↵ects introduced; (ii) controlling for
stock characteristics including the natural logs of market-capitalization, ln(Mi,y�1), and mean
daily turnover, ln(TRi,y�1); dividend yield, DYDi,y�1; daily return volatility, SDRETi,y�1; and
share price, PRCi,y�1; (iii) controlling for CCAMi,y�1 and OCAMi,y�1; and (iv) using lagged
non-trading before close, HTCi,y�1. Numbers in parentheses reflect standard errors of estimates,
clustered at both stock and year levels. Symbols ⇤, ⇤⇤, and ⇤⇤⇤ reflect statistical significance at
10%, 5%, and 1% type one error, respectively.

Dep. Var. = ROC

HTC �0.274⇤⇤⇤ �0.259⇤⇤⇤ �0.283⇤⇤⇤ �0.286⇤⇤⇤ �0.305⇤⇤⇤ �0.284⇤⇤⇤ �0.305⇤⇤⇤

(0.005) (0.007) (0.004) (0.006) (0.007) (0.007) (0.007)

HTCy�1 �0.187⇤⇤⇤

(0.009)

Stock FE No Yes No Yes Yes Yes Yes Yes

Year FE No No Yes Yes Yes Yes Yes Yes

Characteristics No No No No Yes Yes Yes Yes

CCAMy�1 No No No No No Yes No No

OCAMy�1 No No No No No No Yes No

Adj-R2 0.77 0.83 0.80 0.85 0.85 0.85 0.85 0.76

Observations 24,855 21,152
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Figure 3: Evolution of the ratio of OCAM to CCAM (700 largest firms). The figure
plots the temporal changes in the cross-stock distribution of the OCAM -to-CCAM among the
700 NYSE- and AMEX-listed common shares with largest market-capitalizations in the 1964-2019
period. Each year, stocks are sorted by market-capitalization to obtain the 700 firms featuring the
largest market values. For each stock i in year y, the ratio ROCiy = OCAMi,y�1/CCAMi,y�1 is
calculated. Stocks are sorted into terciles of ROCiy each year, and the year-specific medians in
respective terciles of this ratio are plotted against time
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Panel A: Ratio of |OCR| to |R|
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Panel B : Ratio of CovOCAM to CovCCAM
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Figure 4: Evolution of the ratio of OCAM to CCAM . The figure plots the temporal changes in
the cross-stock distribution of the OCAM -to-CCAM for NYSE- and AMEX-listed common shares
in the 1964-2019 period. For each stock i in year y, the ratios ROCiy = OCAMi,y�1/CCAMi,y�1,

ROCCov
iy

= CovOCAM
i,y�1 /CovCCAM

i,y�1 , and ROC |ret|
i,y

= |OCR|
i,y�1/|R|

i,y�1 are calculated. Stocks are

sorted into terciles of ROCiy each year, and the year-specific medians of ROC |ret| and ROCCov in
the respective terciles of ROC are plotted against time
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Figure 5: Illustration of non-synchronous trading and the extent of overnight infor-

mation accumulation. The figure illustrates the relationship between the extent of non-trading
before close on date t� 1 and the amount of information contained in overnight returns.
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Panel A: All stocks
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Panel B: 800 largest stocks
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Figure 6: Evolution of the the extent of non-trading. This figure plots temporal changes
in the cross-stock distribution of HTC in the 1993-2013 period. For each stock i in year y, HTCiy

measures the average time distance, in hours, of the last transaction and close per trading day.
The year-specific quartiles of HTC are plotted against time. Panel A presents statistics in the
sample of all stocks, and Panel B presents the patterns for the sample of largest 700 stocks based
on market-capitalizations at the end of the preceding year.
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Panel A: All stocks Panel B: 700 largest stocks
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Figure 7: Association between ROC and HTC. The figure presents a scatter plot of ROCiy

against HTCiy in the 1993-2013 period. For each stock i in year y, ROCiy is the ratio of open-to-
close Amihud measure, OCAM , to the traditional Amihud measure, CCAM ; and HTCiy measures
the average time distance, in hours, of the last transaction and close (4:00pm EST) per trading day.
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Figure 8: Evolution of the OCAM-to-CCAM ratio after controlling for non-trading.

The figure plots the temporal changes in the cross-stock distribution of the residuals from annual
cross-sections of ROCiy on HTCiy in the 1993-2013 period. For each stock i in year y, ROCiy is
the ratio of open-to-close Amihud measure, OCAM , to the traditional Amihud measure, CCAM ;
and HTCiy measures the average time distance, in hours, of the last transaction and close (4:00pm
EST) per trading day. The year-specific quartiles of residuals are plotted against time.
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A Appendix

A.1 Overnight trading volume vs. overnight price movement

In this section, we establish that even though overnight trading volume trade represents a

very tiny share of total trading volume, overnight price movements comprise a large share

of close-to-close price movements. Using Monthly TAQ data from the 1993–2013 period,

we construct measures of 24-hour trading volume for all NYSE-listed common stocks. For

each stock, we calculate the share of trading volume realized in windows open–close, close–

4:15pm, and 4:15pm–open next day out of the 24-hour volume annually. We also collect open

and close prices (both from CRSP), and the last transaction price before or at 4:15pm (from

TAQ). We then calculate absolute returns over each window, adjusting for any overnight price

adjustment or dividend distribution. For each stock, we calculate average absolute return in

each window, and divide it by the corresponding average absolute close-to-close return.

Figure A.1 shows that between 4:15pm and the next open, the ratio of the mean absolute

return to mean absolute close-to-close return exceeds 0.45 for a typical stock, even though

the associated volume is less than 1.5% of total trading volume. The analogous ratio for

the mean absolute open-to-close return is 0.91, and 95% of trading volume is realized during

regular hours.

A.2 Liquidity premia 1993-2019: CRSP data only

This section verifies the robustness of findings to the source of open prices. We focus on the

time period when open prices are available by CRSP, so that OCAM can be constructed

using CRSP or GFD. We also extend the analysis to NASDAQ-listed common shares for the

1993�2019 period, establishing qualitatively identical findings for NASDAQ-listed firms.

Table A.1 presents the Fama-MacBeth regression analogues to Table 4, reinforcing our

earlier findings. Once more, liquidity premia based onOCAM are roughly double those based
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Panel A: Trading volume Panel B: Mean absolute return
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Figure A.1: Empirical distributions of trading volume and average absolute return

across 24 hours. Panel A shows the composition of NYSE-listed stocks’ annual trading volumes
for time windows of open–close, close–4:15pm, and 4:15pm–open. Trading volumes are calculated
using Monthly TAQ data, and average fractions of annual trading volumes in each window out
of the 24-hour volume are plotted over time. Panel B plots the ratio of absolute returns over a
window to absolute close–close returns. Using open price, close price, and the last transaction
price by 4:15pm from each stock-day, absolute returns for each window are calculated (adjusted for
overnight price adjustments and dividend distributions). The average absolute return in a window
is calculated for each stock annually, and then divided by the corresponding average absolute
close-close return. For each stock-year, cumulative ratios going from open-close to 4:15pm-open
of the next day are constructed. Jensen’s inequality implies that the sum of the three ratios must
exceed one. The cross-stock medians of the resulting cumulative ratios are plotted over time.

on CCAM in the 1993�2013 period. More importantly, this finding does not vary with data

source (although about 9% of the sample stocks di↵er by source). For NYSE-/AMEX-listed

firms, we fit equation (7) using three constructions of OCAM : (i) GFD only; (ii) CRSP only;

(iii) CRSP only when observations can be matched with GFD-only sample. In all three cases

OCAM -based liquidity premia are over twice CCAM -based counterparts. Moreover, pre-

mia based on OCAM remain statistically significant in WLS fits while CCAM ’s coe�cients

are no longer significant. Additionally, using CRSP data, we establish that liquidity premia

based on OCAM are over twice those based on CCAM for NASDAQ-listed stocks.
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Table A.1: Fama-MacBeth estimates of monthly returns on stock characteristics, NYSE- and AMEX-listed

versus NASDAQ-listed common shares, 1993�2019 (CRSP data only). This table presents Fama-MacBeth estimates
of Equation (7) for NYSE- and AMEX-listed common shares in the 1993�2019, contrasting findings when OCAM is constructed
using GFD data to when it is constructed based CRSP. The data sources used to construct OCAM include: (i) GFD only;
(ii) CRSP only; (iii) CRSP only when observations can be matched with GFD-only sample. Table also presents estimates
of Equation (7) for NASDAQ-listed stocks using CRSP. Variable construction is identical to that in Table 4. Estimates are
carried out using both ordinary least squares and weighted least squares, with lagged monthly gross (one plus) return used as
weights, to correct for biases identified by Asparouhova et al. (2010). Newey-West standard errors using two lags are reported
in parentheses. Symbols ⇤, ⇤⇤, and ⇤⇤⇤ reflect statistical significance at 10%, 5%, and 1% type one error, respectively.

Method Ordinary Least Squares Weighted Least Squares

Exchange NYSE/AMEX NASDAQ NYSE/AMEX NASDAQ

Data GFD only CRSP only CRSP: GFD-match CRSP only GFD only CRSP only CRSP: GFD-match CRSP only

CCAM 0.026⇤ 0.022⇤ 0.025⇤ 0.074⇤ 0.021 0.017 0.020 0.061⇤

(0.014) (0.013) (0.014) (0.031) (0.014) (0.013) (0.014) (0.031)

OCAM 0.049⇤⇤ 0.044⇤⇤ 0.044⇤⇤ 0.157⇤⇤⇤ 0.038⇤ 0.034⇤ 0.034⇤ 0.135⇤⇤⇤

(0.019) (0.018) (0.019) (0.042) (0.019) (0.018) (0.019) (0.041)

�mkt 0.667 0.801⇤ 0.555 0.712⇤ 0.667 0.791⇤ �0.116 �0.012 0.678 0.776⇤ 0.576 0.700⇤ 0.681⇤ 0.775⇤ �0.206 �0.107
(0.421) (0.408) (0.407) (0.391) (0.420) (0.406) (0.317) (0.304) (0.411) (0.403) (0.400) (0.389) (0.410) (0.400) (0.308) (0.297)

R100 �0.067 �0.082 �0.041 �0.049 �0.071 �0.081 �0.113 �0.120 0.002 �0.008 0.048 0.043 0.001 �0.005 �0.063 �0.069
(0.333) (0.331) (0.324) (0.323) (0.333) (0.330) (0.239) (0.240) (0.331) (0.328) (0.320) (0.318) (0.330) (0.327) (0.230) (0.231)

R100Y R 0.058 0.054 0.041 0.039 0.058 0.056 �0.005 �0.003 0.076 0.071 0.065 0.063 0.076 0.073 0.018 0.020
(0.118) (0.118) (0.113) (0.113) (0.119) (0.118) (0.057) (0.056) (0.119) (0.119) (0.113) (0.113) (0.119) (0.119) (0.057) (0.057)

ln(M) �0.058 �0.050 �0.050 �0.042 �0.058 �0.054 0.006 0.027 �0.056 �0.049 �0.048 �0.041 �0.057 �0.053 0.019 0.035
(0.037) (0.037) (0.036) (0.036) (0.037) (0.037) (0.043) (0.042) (0.037) (0.037) (0.037) (0.037) (0.037) (0.037) (0.042) (0.042)

SDRET �1.23⇤⇤ �1.30⇤⇤ �1.20⇤⇤ �1.27⇤⇤⇤ �1.24⇤⇤ �1.31⇤⇤⇤ �1.13⇤⇤⇤ �1.28⇤⇤⇤ �1.26⇤⇤ �1.31⇤⇤⇤ �1.20⇤⇤ �1.26⇤⇤⇤ �1.27⇤⇤ �1.32⇤⇤⇤ �1.25⇤⇤⇤ �1.37⇤⇤⇤

(0.494) (0.501) (0.474) (0.481) (0.494) (0.502) (0.417) (0.432) (0.491) (0.498) (0.469) (0.476) (0.491) (0.499) (0.417) (0.433)

DYD �0.223 �0.222 �0.178 �0.182 �0.234 �0.242 �0.318 �0.297 �0.286 �0.283 �0.221 �0.222 �0.298 �0.302 �0.469 �0.457
(0.332) (0.331) (0.304) (0.307) (0.332) (0.330) (0.672) (0.677) (0.333) (0.332) (0.306) (0.308) (0.333) (0.331) (0.666) (0.670)

Obs. 451,562 522,808 451,562 765,569 451,562 522,808 451,562 765,569
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A.3 Liquidity premia 1993-2019: The GFD-CRSP hybrid sample

In this section, we establish that our qualitative findings are una↵ected if we pool GFD and

CRSP data in order to maximize the cross-sections of available stocks post 1992. As in

the analysis reported in Table 6, we construct CCAM and OCAM after taking out 3-day

windows around earnings announcement dates. We then standardize the liquidity measures,

reporting estimates that are the analogues to those in Table 5. Table A.2 shows that for this

hybrid sample over the entire time period, liquidity premia based on standardized OCAM

are 56% larger than those based on standardized CCAM .

Table A.2: Fama-MacBeth estimates of liquidity premia using standardized liquidity

measures, 1964�2019 GFD-CRSP hybrid sample. This table presents Fama-MacBeth
estimates of liquidity premia using Equation (7) for NYSE and AMEX-listed common shares in
time periods 1964�2017, 1964�1980, 1981�2000, and 2011�2019. The last two columns present
estimates after removing the largest 400 stocks in the 2011�2019 period. Data used to construct
OCAM are obtained from GFD for 1964�1992 and from CRSP for 1993�2019. The dependent
variable is the monthly stock return in percentage points. CCAM std is the standardized traditional
Amihud (2002) liquidity measure, and OCAM std is the standardized Amihud (2002) measure
after removing overnight price movements. 3-day windows around earnings announcements are
excluded from the construction of the liquidity measures. The set of controls is identical to that
in Table 4. Estimates are carried out using weighted least squares, with lagged monthly gross
(one plus) return used as weights, to correct for biases identified by Asparouhova et al. (2010).
Newey-West standard errors using two lags are reported in parentheses. Symbols ⇤, ⇤⇤, and ⇤⇤⇤

reflect statistical significance at 10%, 5%, and 1% type one error, respectively.

1964�2019 1964�1980 1981�2000 2001�2019 2001�2019
mid-/small-cap

CCAM std 0.140⇤⇤⇤ 0.183⇤⇤ 0.168⇤⇤⇤ 0.071 0.102
(0.034) (0.072) (0.051) (0.053) (0.064)

OCAM std 0.218⇤⇤⇤ 0.290⇤⇤⇤ 0.260⇤⇤⇤ 0.110⇤ 0.150⇤

(0.042) (0.092) (0.060) (0.068) (0.82)

A.4 Correlations between numerator and denominator terms

In this section we demonstrate that the correlation between the numerator and the denom-

inator of the Amihud measure substantially increases when we use absolute open-to-close
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Figure A.2: Evolution of the ratio of OCAM to CCAM . The figure plots the tem-
poral changes in the cross-stock distribution of the OCAM -to-CCAM for NYSE- and
AMEX-listed common shares in the 1964-2019 period. For each stock i in year y, the ra-
tios ROCiy = OCAMi,y�1/CCAMi,y�1 and ROC⇢

iy
= ⇢OCAM

i,y�1 /⇢CCAM

i,y�1 are calculated. Stocks are
sorted into terciles of ROCiy each year, and the year-specific medians of ROC⇢ in the respective
terciles of ROC are plotted against time

returns, instead of close-to-close returns, in the numerator of the price impact proxy. Equa-

tion (15) does not account for the fact that covariance is not a scale-free statistic. This

means that ROCCov may be impacted by the scale e↵ects embed in di↵erences between the

levels of |R| and |ROC|. As a result, to accurately measure the e↵ect of removing overnight

returns on the linear association between the numerator and 1/DV OL, we next produce the

analogue of Panel B in Figure 4 for the ratio of correlation coe�cients,

ROCrho ⌘ ⇢OCAM

⇢CCAM
=

Corr

✓
|OCR|, 1

DV OL

◆

Corr

✓
|R|, 1

DV OL

◆ , (16)

where Corr(., .) stands for the correlation coe�cient.

Figure A.2 shows that, consistent with theory, the correlation between the numerator and

the denominator of the Amihud measure rises substantially when we filter out overnight price

movements. More importantly, this feature is more pronounced for stocks whose OCAM
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and CCAM di↵er by more, i.e., for stocks that belong to the lower terciles of ROC. Of

note, this e↵ect remains present until 2014.

A.5 The e↵ects of the open auction

In this section we show that variations driven by the open auction may not drive our findings.

We fit equation (7) for the 1993–2013 period using four versions of OCAM reflecting “alter-

native” open prices. We find that excluding the first 5 and 10 minutes of trading day before

constructing the Amihud measure greatly reduces the noise in capturing liquidity. That is,

excluding the first five minutes results in an improved open to close Amihud measure. We

reinforce this conclusion by showing that the correlation between the numerator and the de-

nominator of the measure is often negative or close to zero in the first 5 minutes of trading,

whereas it is high (and very similar across subperiods) for the rest of the trading day.

To complement the baseline OCAM (and CCAM) measure that includes o�cial open

and close prices as well as the dollar volume from the entire trading day, we use TAQ data

to construct three alternative measures. OCAMx excludes trading volume from the first x

minutes of the trading day and using the most recent transaction price prior to the xth minute

of the trading day as “open” price, with x 2 {5, 10, 15}. For this smaller subset of stocks

(which requires matching across both our sample and TAQ), neither CCAM nor OCAM is

priced. This reflects the fact that matching TAQ with our main sample reduces the per-year

average number of stocks in the cross-section from 1,708 to 1,436, and the cross-stock average

market-cap rises 17% from $4.8 billion to $5.6 billion. The insignificant OCAM coe�cient

reflects the exclusion of smaller stocks that, on average, command larger liquidity premia,

and are less subject to the over-aggregation bias that drives estimated liquidity premia down

toward zero. By contrast, OCAM5 and OCAM10 are significantly priced—showing that

excluding the open auction eliminates substantial noise and retrieves the measure’s ability

to explain expected returns—although OCAM15 is not.
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Table A.3: Fama-MacBeth estimates of monthly returns on stock characteristics,

NYSE- and AMEX-listed common shares, 1993�2013. This table presents Fama-MacBeth
estimates of Equation (7) for NYSE- and AMEX-listed common shares in the 1993�2013,
contrasting findings given simple CCAM and OCAM , as well as three alternative versions of
OCAM using TAQ data. OCAMx excludes trading volume from the first x minutes of the
trading day and using the most recent transaction price prior to the xth minute of the trading
day as “open” price, with x 2 {5, 10, 15}. Variable construction is identical to that in Table 4
in the paper. Estimates are carried out using weighted least squares, with lagged monthly gross
(one plus) return used as weights, to correct for biases identified by Asparouhova et al. (2010).
Newey-West standard errors using two lags are reported in parentheses. Symbols ⇤, ⇤⇤, and ⇤⇤⇤

reflect statistical significance at 10%, 5%, and 1% type one error, respectively.

Coe�cient
Liquidity measure (St. Dev.)

CCAM 0.008
(0.016)

OCAM 0.020
(0.021)

OCAM5 0.025⇤⇤

(0.011)

OCAM10 0.023⇤

0.013

OCAM15 (0.010)
0.016

Our findings indicate that the first few minutes of the trading day contain noisy trading

and price dynamics that distort OCAM from capturing liquidity. To show this, we divide the

trading day into four windows x: Open-9:35am, denoted by x = O�5; 9:35-9:40am, denoted

by x = 5�10; 9:40-9:45am, denoted by x = 10�15; and 9:45am-close, denoted by x = 15�C.

Then, for each stock, we calculate the correlation coe�cients between absolute return |ret|x

and dollar volumesDV OLx, denoting them ⇢x for windows x 2 {O�5, 5�10, 10�15, 15�C}.

Recall that the first three windows are excluded cumulatively when we construct alternative

versions of OCAM . Hence, ⇢15�C serves as a benchmark. Recall that, as Table 7 shows,

the correlation between absolute return and dollar-volume, if obtained at the daily level, is
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priced in the cross-section. The figure below shows the cross-sectional averages of these cor-

relations over time. ⇢O�5 is remarkably smaller than its analogues in the following windows.

The other windows, however, contain useful information for liquidity in the context of the

Amihud measure since ⇢5�10, ⇢10�15 and ⇢15�C are fairly close and stable across all years. As

such, while excluding the first 5 minutes improve the Amihud measure, excluding minutes

past 9:40am hurts more that it helps.

Figure A.3: Correlation between absolute return and DV OL by time of day
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A.6 Liquidity premia 1964-2019: panel regressions

In this section, we contrast the explanatory powers of CCAM and OCAM in panel regres-

sion settings, and document robustness of out main findings. To motivate the sue of panel

regressions, we first note that Fama-MacBeth regressions are not designed to control for

unobserved temporally-fixed stock characteristics when estimating coe�cients, and cannot

account for fixed or varying auto-correlations in the error terms that may lead to inflated

t-statistics (see Petersen 2009). Another possible concern with our previous estimates is that

we match all monthly returns observations in year y with measures constructed using data

from year y � 1. This matching suggests that investors only care about information from

last calendar year rather than more recent information.

We estimate panels of monthly stock returns that are matched with stock characteristics

constructed, mostly, from the most recent twelve months of data (see Section 2)—similar to

Lou and Shu (2017) and Amihud and Noh (2020), we allow an additional month of gap for

measures of liquidity, dividend yield, and volatility. Importantly, panel regressions facilitate

(i) controlling for invariant stock and time characteristics by use of stock and month-year

fixed e↵ects; (ii) estimating clustered standard errors at the stock level to account for the

fact that most of the independent variables in our analysis are auto-correlated. Both of these

qualities are absent in Fama-MacBeth regressions. Hence, we estimate the panel of monthly

returns

Rit = ↵0 + ↵1LIQi,t�2 + ↵2�
mkt

i,t�1 + ↵3�
hml

i,t�1 + ↵4�
smb

i,t�1 + ↵5�
umd

i,t�1

+ ↵6 ln(Mi,t�12) + ↵7RETi,t�1 + ↵8RET t�2
i,t�12 + ↵9SDRETi,t�2

+ ↵10DYDi,t�2 + fixed e↵ects + uit, (17)

with independent variables described in Section 2.38. Table A.4 shows that qualitatively

identical findings obtain when we estimate the model using panel regressions, constructing

38Also see the caption in Table A.4
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Table A.4: Panel regression estimates of monthly returns on stock characteristics,

NYSE- and AMEX-listed common shares, 1964�2019. This table presents GLS estimates of
Equation (17) for NYSE-listed common shares in time periods 1964�2019, 1964�1980, 1981�2000,
and 2011�2019. The dependent variable is the monthly return, in percentage points. CCAM is
the traditional Amihud (2002) liquidity measure, and OCAM is the Amihud (2002) measure after
removing overnight price movements. Both measures are constructed monthly, using daily absolute
return per dollar observations from the 12-month period ending in t�2. Liquidity premium, in basis
points, is the product of the coe�cient on the liquidity measure and the measure’s average monthly
standard deviation. Dividend yield, DYDi,t�2, divides total dividend distributions between months
t� 13 and t� 2 by the closing price at the end of month t� 2. Momentum measures RETi,t�1 and
RET t�12

i,t�1 , respectively, capture compound returns over the preceding month and the eleven months
before that. Return volatility SDRETi,t�2 is given by the standard deviation of daily stock returns
over the 12-month ending in month t� 2. Market capitalization, Mi,t�12, is the product of shares
outstanding and the closing price at the end of the month, a year earlier. Panel regression estimates
control for stock and year-month fixed e↵ects. Standard errors are clustered at the stock level.
Symbols ⇤, ⇤⇤, and ⇤⇤⇤ reflect statistical significance at 10%, 5%, and 1% type one error, respectively.

1964�2017 1964�1980 1981�2000 2001�2019

CCAM 0.139⇤⇤⇤ 0.098⇤⇤⇤ 0.395⇤⇤⇤ 0.342
(0.015) (0.018) (0.056) (0.210)

OCAM 0.604⇤⇤⇤ 0.549⇤⇤⇤ 2.00⇤⇤⇤ 1.22⇤⇤

(0.054) (0.065) (0.220) (0.529)

�mkt �0.068 �0.059 �0.043 �0.032 0.187⇤⇤ 0.206⇤⇤ �0.388⇤⇤⇤ �0.380⇤⇤⇤

(0.043) (0.043) (0.065) (0.065) (0.086) (0.086) (0.098) (0.098)

�hml 0.058⇤⇤ 0.053⇤⇤ 0.085⇤⇤ 0.077⇤⇤ �0.095⇤ �0.106⇤⇤ 0.065 0.066
(0.024) (0.024) (0.034) (0.035) (0.051) (0.051) (0.056) (0.056)

�smb �0.101⇤⇤⇤ �0.106⇤⇤⇤ �0.107⇤⇤⇤ �0.111⇤⇤⇤ �0.010 �0.011 �0.225⇤⇤⇤ �0.219⇤⇤⇤

(0.027) (0.028) (0.039) (0.039) (0.055) (0.055) (0.068) (0.068)

�umd 0.043 0.048 �0.012 0.001 �0.196⇤⇤⇤ �0.190⇤⇤⇤ 0.419⇤⇤⇤ 0.420⇤⇤⇤

(0.030) (0.030) (0.040) (0.040) (0.055) (0.055) (0.074) (0.074)

ln(M) �1.27⇤⇤⇤ �1.25⇤⇤⇤ �2.21⇤⇤⇤ �2.09⇤⇤⇤ �1.75⇤⇤⇤ �1.65⇤⇤⇤ �1.58⇤⇤⇤ �1.56⇤⇤⇤

(0.038) (0.038) (0.069) (0.070) (0.070) (0.070) (0.081) (0.081)

Rt�1 �0.054⇤⇤⇤ �0.054⇤⇤⇤ �0.086⇤⇤⇤ �0.087⇤⇤⇤ �0.059⇤⇤⇤ �0.059⇤⇤⇤ �0.044⇤⇤⇤ �0.044⇤⇤⇤

(0.002) (0.002) (0.003) (0.003) (0.003) (0.003) (0.004) (0.004)

Rt�2
t�12 �0.002⇤⇤⇤ �0.002⇤⇤⇤ 0.000 0.001 �0.007⇤⇤⇤ �0.007⇤⇤⇤ �0.014⇤⇤⇤ �0.014⇤⇤⇤

(0.000) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

SDRET �0.133 �0.284⇤ �2.18⇤⇤⇤ �2.56⇤⇤⇤ �1.50⇤⇤⇤ �1.86⇤⇤⇤ 2.35⇤⇤⇤ 2.35⇤⇤⇤

(0.169) (0.171) (0.244) (0.249) (0.321) (0.326) (0.319) (0.318)

DYD 0.005 0.007 0.613 0.607 �0.144 �0.138 0.504⇤⇤⇤ 0.503⇤⇤⇤

(0.253) (0.253) (0.497) (0.507) (0.241) (0.243) (0.119) (0.119)

Premia† 0.161 0.218 0.237 0.399 0.359 0.537 0.101 0.159
†Reflects the change in excess return in response to one standard deviation increase in illiquidity.
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stocks characteristics at a higher granularity.

We also establish the robustness of the orthogonal-decomposition analysis in the context

of panel regressions. Then we use the residuals obtained in Equations (8) and (9) to per-

form the analogous analysis to that in Section 5. Table A.5 shows that the residuals from

regressing OCAM on CCAM provides incremental explanatory power when we control for

CCAM . In sharp contrast, the residuals from regressing CCAM on OCAM do not add any

incremental explanatory power when we control from OCAM .

Table A.5: Panel regression estimates of monthly returns on stock characteristics and

linearly-decomposed liquidity measures, NYSE- and AMEX-listed common shares,

1964�2019. This table presents GLS estimates of Equation (17) for NYSE-listed common shares
in time periods 1964�2019, 1964�1980, 1981�2000, and 2011�2019. The dependent variable is the
monthly return, in percentage points. CCAM is the traditional Amihud (2002) liquidity measure,
and OCAM is the Amihud (2002) measure after removing overnight price movements. CCAM
(OCAM) is included along with residuals from Equation (9) (Equation (8)), as an additional
independent variables. The rest of independent variables are identical to those in Table A.4. Panel
regression estimates control for stock and year-month fixed e↵ects. Standard errors are clustered
at the stock level. Symbols ⇤, ⇤⇤, and ⇤⇤⇤ reflect statistical significance at 10%, 5%, and 1% type
one error, respectively.

1964�2017 1964�1980 1981�2000 2001�2019

CCAM 0.148⇤⇤⇤ 0.113⇤⇤⇤ 0.465⇤⇤⇤ 0.371⇤

(0.015) (0.018) (0.057) (0.211)

Z̃ 0.583⇤⇤⇤ 0.567⇤⇤⇤ 2.03⇤⇤⇤ 2.72⇤⇤⇤

(0.095) (0.108) (0.339) (0.926)

OCAM 0.604⇤⇤⇤ 0.545⇤⇤⇤ 1.98⇤⇤⇤ 1.11⇤⇤

(0.055) (0.065) (0.219) (0.528)

Z �0.001 �0.023 �0.053 �0.658⇤

(0.026) (0.029) (0.085) (0.368)
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