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ABSTRACT
Molecular signals are fundamental to achieving synchronous func-

tionality in both biological and bio-engineering systems. Synchro-

nization on complex molecular signaling networks depend on both

local diffusion-advection dynamics and the overall complex net-

work topology. Here, we consider a spatial-temporal dynamic com-

plex network with molecular signaling. Unlike current Kuramoto

phase models that only consider scalar coupling between oscillator

units, we introduce diffusion-advection lag that represents realistic

molecular transportation processes. Our results across different

networks and molecular dynamics show that the local connectiv-

ity status and dynamics dominate system-wide synchronization

behaviour. We go on to create distributed control that can allow dif-

ferent networks to achieve similar overall synchronization profiles.

We expect these findings to help the design of IoNT mesh networks

and understanding of chrono-biological systems.
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1 INTRODUCTION
Many essential biological activities inside living organisms have

equilibrium periodicity, which are strongly coupled to external

stimuli (e.g. sunrise-sunset, tidal and lunar rhythms for marine

life) and affect both long-term hormone cycles to short-term gene

oscillations. Stimuli that knock the clock out of equilibrium can

cause undesirable side effects and illness [15]. For example, cir-

cadian clocks are biochemical oscillators that are synchronized
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with solar time with an equilibrium period of 23.8 hours [10]. One

interesting aspect of circadian clocks is its resilience to external

perturbations, whereby despite the abundance of different artificial

light sources (e.g. indoor lighting and mobile phones screens after

sunset), the temporal standard deviation is approximately 3 to 5

min each day. Singular oscillators cannot achieve this level of preci-

sion and it has been recently shown that highly coupled oscillators

via a complex network can explain the collective enhancement of

temporal synchronization precision [2]. Some research works study

using inducer or inhibitory molecules to realize the network wide

synchronization [1, 19].

1.1 Current Kuramoto Model
Current Kuramoto models are linear coupling models used to de-

scribe a variety of problems that can be described by networks of

coupled dynamical systems [14]. The Kuramoto model tracks the

phase rate of change
Ûϕi as a function of the inherent desirable or

natural frequency ωi in each unit and the coupling from connected

neighbouring units j:

Ûϕi = ωi +
∑
j, j,i

Ki j sin (ϕ j − ϕi ) + L sin (Ωt − ϕi ) + ζ (t),
(1)

where Ki j describes the scalar coupling complex network’s con-

nectivity matrix, and ζ (t) is a white Gaussian noise. The sinusoidal

function sin (ϕ j − ϕi ) describes the positive or negative contribu-

tion to
Ûϕi depending on the sign of (ϕ j − ϕi ). The optional pertur-

bation signal L sin (Ωt − ϕi ) describes a disturbance at frequency
Ω.

A major drawback of many existing studies is that the coupling

dynamics only focus on phase level coupling using scalar weights,

but do not represent the spatial-temporal dynamics of molecular sig-

nals. As such, space (scale of the molecular signal propagation) and

time (periodicity of the clock) are not factored into the Kuramoto

framework. Whilst some work have considered diffusion dynamics

[3, 22], they have not considered the joint effect of topology and

dynamics in their analysis.

1.2 Contribution
In this paper, we investigate the synchronization process based

on a model similar to the Kuramoto model, but take the diffusion-

advection dynamics and graph topological properties into account.

The rate of synchronization has two contexts. For chrono-biological

https://doi.org/ 
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Figure 1: Negative perturbation causes synchronization to
new signal in single and coupled systems: spatial-temporal
diffusion-advection signal-to-noise ratio affect the decision
for a unit to synchronize or not synchronize and coupling
individual units changes the overall synchronization profile
to be more resilient to external perturbations.

systems, it gives us an understanding of how resilient the signal-

ing network is against perturbation signals. For Internet-of-Nano-

Things (IoNT) systems [4], this knowledge enables us to design

effective mesh communication networks.

The academic insight lies in understanding synchronization

rate’s relationship with the complex network topology (e.g. graph

degree distribution or spectral properties) and functional dynam-

ics (e.g. diffusion-advection coupling between nodes). In order to

consider the spatial-temporal aspects of molecular signaling, each

coupling is a diffusion-advection function that is intimately related

to the spatial graph structure. In this paper, we focus on the synchro-

nization rate from non-equilibrium to equilibrium phase, whereby

the rate is a proxy for the resilience of the system to external dis-

turbances. Indeed, recent work by the authors in synchronization

between a pair of molecular communication units have considered

spatial temporal diffusion dynamics (e.g. using timing channels

[16] with maximum likelihood estimation of offset [17]) and in-

creasing robustness by using multiple receptors receiving the same

synchronization signal to exploit path diversity [18].

The rest of the paper is organized as follows. In Section II, we

define the system model. In Section III, we detail the synchroniza-

tion methodology. In Section IV, we analyse the impact of graph

structure and the dynamical molecular signals on the results, includ-

ing looking at how molecular signal modulation control can give

equivalent synchronization behaviour across different networks.

Our results apply to both the circadian rhythm and the IoNT with

molecular communication research communities.

2 SYSTEM MODEL
In our system, we assume a coupling network composed ofN nodes.

These nodes are identical in behaviour. Each node is assumed to be

a processing unit (e.g. a cell or a nano-device) and each edge is a

diffusion-advection molecular signaling pathway [12]. We assume
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Figure 2: Different network topologies represent the real-
world phenomenon of hubs and spatial embedding. Their
degree distribution and community structure (modularity
maximization) is shown.

the signaling edges do not interfere with each other (e.g. not a free-

space diffusion environment where stochastic geometry analysis

applies for cross-interference [9]). This is particularly valid in many

realistic biological systems, whereby crowded cellular environment,

constrained blood capillary vessels, and chemically specific path-

ways (e.g. no interference).

2.1 Coupling Network Structure
The Ki j connectivity matrix here is considered in the form of well-

established random graph structures of different properties, see Fig.

2. The two properties of concern are: (i) local degree distribu-
tion, whereby the degree is the number of connections γ per node

and this clearly affects the local rate of synchronization; and (ii)

regional community structure [20], whereby highly connected

communities of nodes are either all synchronized or all not syn-

chronized.

Bernoulli Graph - We first consider a naive random graph,

whereby nodes have a degree that follows a binomial distribu-

tion with probability of attachment as the control parameter. The

communities are somewhat fuzzy due to the random preferential

attachment of the graph generation, which means we expect syn-

chronization to not be bottle-necked, see Fig. 3a. However, most

real world networks are not uniformly and randomly connected

in this way, due to the existence of heterogeneous structures (e.g.

a heart or an internet router is more important) and preferential

attachment (metric driven).

Barabasi-AlbertGraph - As such, we then consider the Barabasi-

Albert (BA) graph [6]. It has been shown that many natural and
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Figure 3: Synchronization with diffusion-advection dynam-
ics at different representative time steps across: (a) Bernoulli
uniform randomgraph, (b) Barabasi-Albert small-world ran-
dom graph, and (c) Spatial graph with nested communities.

engineering systems (Internet) and some social networks can be

well approximated by the scale-free network, where a few hubs dom-

inate the network structure. The generates a scale-free networks

using a preferential attachment probability (control parameter),

whereby each node is connected to less thanm nodes with prob-

ability: pi =
γi∑
j γj

. This process gives nodes with a high number

of connections a greater chance of being further connected. The

degree distribution follows a power law, i.e. P(γ ) ∼ γ−3. We expect

the hubs to play a critical effect in synchronization rate, see Fig. 3b.

Spatial Graph - Many networks also exhibit spatial embedding

[7], whereby small cliques of well connected nodes are nested in

a larger network. This is because many interactions have high

impedance, causing a strong bias towards well connected local

coupling and weak global coupling. Spatial networks have a high

clustering coefficient (control parameter) and are typically found in

infrastructure networks, transport networks and neural networks.

In spatial graphs, the meso-scale communities tend to be well de-

fined (stable boundaries), which means we expect synchronization

to be bottle-necked by community boundaries, see Fig. 3c. This

is particularly relevant in diffusion-advection dynamics, whereby

transportation of molecular signals is likely to be more reliable

locally than across longer distances.

2.2 Diffusion-advection Molecular Signaling
Each edge in the coupling network is a molecular signaling pathway.

The propagation is driven by mass diffusion with advection drift

(low Peclet number), which is governed by [11]

Ai j (d, t) =
1

√
4πDt

exp

[
−
(di j −vt)2

4Dt

]
, (2)

whereAi j (d, t) describes the coupling dynamic that is in the form of

a 1-D diffusion-advection dynamic, with distance di j , flow velocity

v , and diffusivity D. Here is the 1-D equation is chosen to represent

molecular signals traveling in capillary blood vessels and active

transport channels, where the length-scale dominates dynamics

and the higher dimensions (e.g. width) doesn’t dominate. It is worth

noting that the dynamics can easily take on the 3-D form with or

without an absorbing receiver [12]. We also do not consider factors

such as the heart pump rate and shear stress from the wall in this

paper. The receiver will use the information from the received or

sensed molecules to perform the synchronization (see below).

3 SYNCHRONIZATION FRAMEWORK AND
METHOD

In this section, the synchronization framework and method are

presented based on the given network structure and a model simi-

lar to the Kuramoto model. The Kuramoto model focuses on the

mathematical model of the phase interaction and synchronization,

but lacks of the description of the synchronization process and

does not mention the molecular diffusion-advection dynamics such

as distance. More importantly, the spatial dynamics do not map

back to the network structure. Here we take the diffusion-advection

dynamics and graph structure into account.

Aswe focus on the synchronization rate as a function of diffusion-

advection dynamics and define the propagation delay from node

i to node j equal to the peak concentration time of the molecular

signal at node j [23]. The peak concentration time can be calculated

by taking the derivative of (2) with respect to t and setting it to

zero. Then we have

Tc =
d2

√
D2 +v2d2 + D

. (3)

We now examine the synchronization framework and convergence

properties.

3.1 Synchronization Between Two Nodes via
Single Signaling Pathway

In first instance, an individual unit can receive an undesirable pertur-

bation signal A(d, t). To consider distance-dependent signal degra-

dation in the synchronization process, we define a concentration

threshold Thc as a proxy for reliable detection [13]. If the arrived

peak concentration of themolecular signals at the receiver is smaller

than Thc as (see Fig. 1):Cpeak
< Thc , then the receiver will not use

that signal for the synchronization operation. For synchronization,

node j updates its own phase ϕ as:

ϕ j (t + ∆t) =
(ϕi (t) + ϕ j (t))

2

+ η(t). (4)

where η(t) is additive noise from molecular arrival [21].

3.2 Synchronization Among All Nodes in the
Complex Network

Different from centralized synchronization, where a reference node

floods the network with a broadcast signal, the biological synchro-

nization in living organisms is always realized in a distributed

manner. That is to say, the nodes only interact with their neighbors.

In the end, the whole network can converge to a certain phase to re-

alize the synchronization. When the individual units are connected
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(a) Effect of graph type and connectivity. (b) Effect of graph type and connectivity.
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Figure 4: Effect of global network topology on network synchronization rate.

together, the modified spatial-temporal synchronization system is

given by a new function дi (t) which describes the synchronization

signal strength:

дi (t) =
∑
j, j,i

Ki jAi j (d, t).
(5)

It is assumed that the phase for node i at time t is denoted asϕi (t).
Then the updated phase, denoted as ϕi (t +∆t), can be expressed by

ϕi (t + ∆t) = f (ϕi (t),дi (t)). (6)

where f (·) is the synchronization operation.

Proposition 1 Synchronization leads to phase convergence.

Proof. Assume that Pmax and Pmin are the maximum and mini-

mum phase values among all the nodes in the complex network at

the initial time. Pn
max

and Pn
min

are the maximum value and mini-

mum value among the phase values of all the nodes after the nth
round synchronization. For the (n + 1)th round of synchronization,

the maximum phase value would be averaged with some other

phase values which are smaller than or equal to it. Then the result

should be smaller than or equal to Pn
max

. If this result is the new

maximum value after the (n + 1)th round of synchronization, we

can say Pn+1
max

≤ Pn
max

. If Pn+1
max

is not from the averaging operation

of Pn
max

, meaning that the averaging operation is performed from

two values which is smaller than or equal to Pn
max

, then we can also

obtain Pn+1
max

≤ Pn
max

. Pn+1
max

is equal to Pn
max

only when the two phase

values for the averaging operation are equal to Pn
max

. From P0
max

to

Pn
max

, until P+∞
max

, the maximum phase value is non-increasing over

the whole synchronization time. Similarly, we have Pn+1
min

≥ Pn
min

,

meaning that from P0
min

to Pn
min

, until P+∞
min

, the minimum phase

value is non-decreasing over the whole synchronization time. As

the averaging operation is conducted all the time, we can obtain

that

lim

n−>+∞
Pn
max
= lim

n−>+∞
Pn
min
= Pc . (7)

This demonstrates that the phase values of all the nodes in the

complex network will converge to the certain value Pc finally. □

Next, to consider the quality of the synchronization, we would

like to define how a node in the network is considered to be syn-

chronized. If the phase of a node P(t) satisfies

|P(t) − Pc | < Thsync, (8)

where Thsync is a user defined threshold, then the node is con-

sidered to be synchronized. Otherwise it is considered that the

synchronization fails. It should be noted that because the synchro-

nization process, i.e., the phase averaging operation, is performed

round-by-round, it is possible that a already synchronized node

becomes not synchronized from a synchronized status after certain

synchronization operation with its neighbor.

Finally, we would like to define the synchronization rate at time

t as

SyncRate(t ,Thsync) =
Sum({ϕi (t) − Pc } < Thsync)

N
, (9)

where Sum{} is a function which returns the number of elements in

the array {ϕi (t) − Pc } which satisfies the inequality {ϕi (t) − Pc } <
Thsync at time t .

We will now in the results section consider the synchronization

behaviour for a variety of network topology, signaling distance,

and flow velocity values.

4 RESULTS
4.1 Simulation Setup
In a 2-dimensional simulation space, N nodes are deployed. The po-

sition of the nodes are randomly generated. The edges connecting

those nodes are generated based on different network structures.

In the Barabasi-Albert-N -m model, them is the parameter of at-

tachment. In the Bernoulli-N -p model, every edge has the same

probability p. In the spatial network-N -r is drawn by getting N
random nodes in the unit square and connecting the ones that are

closer than some distance r .
For the synchronization process, every node begins with no

natural frequency ω = 0, a random uniformly distributed phase,

which is the random non-equilibrium state. The nodes send syn-

chronization signals via its diffusion-advection molecular signaling

pathway once for each round. Once a node receives a synchroniza-

tion signal, it takes average of its own phase and the phase of the
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Figure 5: Phase convergence for different network structures.

Table 1: Simulation Parameters in SI Units

Parameters Symbol Values

distance ratio 0.7-1.3×10−5

diffusivity D 10
−9

m
2
/s

velocity v 2 to 4 × 10
−5

m/s

no. nodes N 30 to 100

natural freq. ω 0Hz

initial conditions ϕ(0) random uniform phase

received signal. The network performs the synchronization in a

distributed manner until a homogeneous equilibrium is established.

The simulation parameters are given in Table 1.

4.2 Graph Properties on Synchronization
Fig. 4 shows the effect of overall network topology on the network

synchronization rate. We can see that the synchronization rate for

the spatial graph with nested communities and poor connection

between communities exhibit particularly high resilience to syn-

chronization than other similar networks with same number of

nodes and links. We can also see that the increase of the network

size has a larger effect on the Barabasi-Albert (BA) graphs than on

the Bernoulli graphs. The increase of the network size increases

the convergence time for BA graphs, although the synchronization

is performed in a distributed manner. It is not easy for BA graphs

to converge rapidly. However from Fig. 4c, we can see the network

size has little effect on the synchronization rate in a distributed

manner for Bernoulli graph, a well connected graph. This is quite

different from a centralized tree topology network.

4.3 Dynamic Properties on Synchronization
This leads nicely to local functional dynamics and their influence

on global synchronization dynamics. In Fig. 6, we can see the effect

of diffusion-advection dynamics on the synchronization rate. For

greater distances between nodes, a 2-fold increase in distance will

increase the synchronization time by 5-fold. Similarly, for increased

flow velocity, a 2-fold increase in velocity leads to an also 5-fold

increase in synchronization time. This can be easily understood that
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Figure 6: Effect of local diffusion-advection on overall net-
worked synchronization rate.

the increase of the distance ratio and the decrease of the velocities

will cause the molecules to take a longer time to diffuse and arrive

at the receiver for a certain edge according to (3).

One may also notice that the synchronization rate is not mono-

tonically increasing. For example in Fig. 6b, it is seen that the

synchronization rate fluctuates frequently. The reason is that the

operation in (4) cannot guarantee that after every single synchro-

nization behaviour between two nodes, the phase would be closer

to the network convergence value. If the synchronization rate de-

creases, it means that a already synchronized nodes falls into the

un-synchronized status due to the synchronization behaviour with

another node. However, for a long run, the overall synchronization

process will lead to a network convergence, as shown in Fig. 5. We

can also note that the spatial graph converges more slowly than

BA and Bernoulli graph. This is because of less connectivity among

different clusters of nodes.

We also investigate the influence of the concentration threshold

Thc and the threshold Thsync, which is used in the definition of

“synchronization", on the synchronization rate. We can see in Fig. 7a

that larger value of Thc leads to slower synchronization of the net-

work, because more signals are considered to be not large enough

to be used for the synchronization. As in Fig. 7b, the increase of

Thsync leads to a fast complex network synchronization, which can

easily understood from (8).
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Figure 7: Effect of concentration threshold and synchroniza-
tion threshold.
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Figure 8: By adjusting weight parameters in the graph, we
can achieve similar synchronization time profiles across dif-
ferent networks.

4.4 Network Equivalence using Distributed
Control

So far in this paper, it is worth noticing that our graphs are randomly

weighted graphs, where the adjacency matrix Ki j is unweighted
and the diffusion-advection dynamics Ai j (d, t) weights it. Interest-
ingly, it has been recently shown that if we are able to configure the

weights using maximum entropy or minimum KL divergence and

within some constraint, we can achieve similar synchronization

time profiles across different networks [5]. As it is often hard to

change the network topology (e.g. predefined signal pathways),

this opens up exciting possibilities to connect local functional op-

timisation (e.g. changing the diffusion-advection dynamics) and

achieving optimal synchronization behaviour. Through distributed

control of individual molecular signal concentration modulation,

we can achieve a similar synchronization rate profile across dif-

ferent network topologies (see Fig. 8). Here, we use two Bernoulli

networks with differing connectivity parameters of 0.4 and 0.8, re-

sulting in different random networks. We tune the concentration

arrival profile by tuning the average advection velocity to achieve

similar synchronization profile between the two different networks.

5 CONCLUSION
Network synchronization via molecular signals is fundamental to

chrono-biological functions and IoNT bio-engineering systems. We

introduce spatial-temporal molecular propagation to the classical

Kuramoto model, and analyse the impact of both topology and

dynamics on synchronization rate. The simulation results show

that the least constrained Bernoulli network synchronized faster,

regardless of size. We also demonstrated that active control of

the signal dynamics can achieve similar synchronization profiles

amongst dramatically different complex network topologies, thus

highlighting the importance of distributed control [8]. This will be

investigated further in future research. The research has widespread

implications in understanding chrono-biology as well as the design

of future IoNT systems that require both synchronous action and

resilience to both wanted and unwanted stimuli signals.
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