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Abstract—Network security is increasing in importance as
systems become more interconnected. Much research has been
conducted on large appliances for network security, but these do
not scale well to lightweight systems such as those used in the
Internet of Things (IoT). Meanwhile, the low power processors
used in IoT devices do not have the required performance for
detailed packet analysis. We present an approach for network
intrusion detection using neural networks, implemented on FPGA
SoC devices that can achieve the required performance on
embedded devices. The design is flexible, allowing model updates
in order to adapt to emerging attacks.

I. INTRODUCTION

The Internet of Things (IoT) is driving an exponential
growth in connectivity between lightweight embedded sys-
tems. These devices are often severely computationally con-
strained, being designed to fulfil a single task well. This
increased networking presents a challenge in terms of network
security since these devices can expose a wider attack surface
on account of not being as rigorously engineered as more
complex systems. Indeed, the use of IoT devices as a tool in
cyberattacks was exemplified by the Mirai malware in 2016,
among other cases.

Traditional network security has aimed to provide confi-
dentiality, integrity and availability of resources to authorized
users. This has often occurred in more controlled network
environments such as corporate networks, where firewalls
serve as a secure point of interface with open networks. Even
in such cases, the possibility of an internal system being
compromised requires monitoring for attacks of all traffic, even
from within the network.

Intrusion Detection Systems (IDSs) collect and analyse
information from the systems within a network for malicious
attack detection. Detection can be logged as an event of
interest or trigger a defence mechanism to deal with the
event in real-time. Mainstream IDSs use pattern matching,
string matching, multi-match packet classification and regular
expressions for operation [1]]. These computationally complex
approaches are often implemented using hardware accelerators
on FPGAs or ASICs, or run on highly parallel multi-core
processors or GPUs to enable them to process network traffic
at the high rates required. Hence, such complex systems are
usually integrated within the network infrastructure of large
organisations.

The limited computing power of embedded systems means
IoT devices will often not incorporate significant security

capabilities at the nodes, making them an ideal target for
malicious attacks. With such devices being deployed in less
controlled environments, and without access to significant
infrastructure, more lightweight approaches to such security
mechanisms are required.

In this paper we explore a Network Intrusion Detection
approach based on Machine Learning, specifically Artificial
Neural Networks (ANNSs), that provides flexibility to evolve
to emerging attacks. We demonstrate how this can be imple-
mented on a lightweight Xilinx Zynq FPGA SoC, designed
to act as an IoT gateway, that processes packets at line rate
while enabling model parameter updates to adapt to changing
requirements.

II. BACKGROUND

Intrusion Detection Systems (IDSs) can be divided into two
categories, according to the detection method used:

« Signature (or misuse) based: Captured data is compared
against a database containing signatures of known attacks.
e Anomaly based: Captured data is compared against a
model of the expected normal behaviour of the system. If
a deviation is observed then an attack has been detected.

Signature based IDSs are widely used in commercial sys-
tems because of their accurate detection of known attacks,
while anomaly based systems are prone to generating false
classifications. Signature based IDSs, however, fail to detect
unknown (zero-day) attacks. There can also be a significant
delay for a new attack to be detected and its signature
generated and distributed in an update [2]. Moreover, signature
based systems must consider a large database of signatures, re-
quiring substantial memory and computational power. Hybrid
implementations of signature and anomaly based IDSs present
a more robust approach since one method complements the
other, though these still require significant computing power.

Intrusion Detection has been an appealing domain for
Machine Learning (ML) algorithms in general. The strongest
incentive lies in the ability of ML algorithms to generalize
their learned pattern to new, unknown data. As a result,
algorithms in this domain have the potential to detect modified
known attacks, that have been altered adequately to deceive
signature based systems, in addition to unknown, zero-day,
attacks. It is also worth considering that IoT, as a developing
domain, will entail evolving (normal) traffic patterns as it
finds more uses, so the safe patterns of communication are



themselves evolving, and hence an adaptable approach to
intrusion detection is needed.

As the functionality of Machine Learning models is defined
during training, the dataset used becomes very important.
Algorithms in this domain extract patterns from the training
dataset that are subsequently used to classify new, previously
unseen data. Datasets used for intrusion detection fall into
two broad categories, private (or custom) and public datasets.
Private datasets may contain more realistic data for training
and testing as in most of the cases they are created from
the specific scenario under consideration. Moreover, they can
be tailored to a specific attack detection by manipulating the
number of records in each class accordingly. Proprietary and
commercially sensitive datasets, however, are not available to
researchers. Publicly available datasets, on the other hand,
are widely used and, as a result, thoroughly tested [3]. They
constitute a safer choice to avoid potential flaws and, more
importantly, they provide a means to compare with previous
work using the same datasets.

III. RELATED WORK

Network security has sustained interest in the research
community and IDSs using a variety of approaches have
been proposed. Acceleration of pattern matching on FPGAs
has been explored in [4, |5]. The authors in [[6] proposed an
approach using Principal Component Analysis (PCA) with
features extracted from network traffic, which was tested on
the publicly available KDD Cup 1999 dataset. The IDS was
implemented on a Xilinx Virtex II Pro FPGA and achieved
a 23.76 Gb/s throughput with an attack detection rate of
over 99%. In [7], the authors explored an energy efficient
implementation on an Altera Cyclone IV using Decision Trees
(DTs). The authors present two test cases: the first classifies
the NSL-KDD dataset using 9 manually selected features out
of 41, achieving a 96.5% accuracy on the train set and 77.8%
on the test set. The second detects probe attacks on a custom
dataset, misclassifying only 3 out of 37548 instances in the test
set. The hardware implementation of the probe attack detection
DT is 15.4x better in throughput while consuming only 0.03%
the energy of its software equivalent executed on an Intel
Atom CPU. The authors further expanded their work using
their custom dataset to evaluate 3 ML classifiers (Decision
Tree, Naive Bayes, and k-Nearest Neighbours) in a similar
manner [8]. In this case, the fastest classifier in hardware
was 926x faster while consuming 0.05% the energy of its
equivalent in software. The work in [9]] showed how security
primitives could be built into network controllers to enable
enhanced security.

In broader work in neural network implementations, the
ANN developed in [10] detects Distributed Denial of Service
(DDoS) and DoS attacks. The authors use a custom dataset
to train a three-layer (shallow) ANN for binary classification
(normal-DoS/DDoS) and test it in a simulated IoT network,
demonstrating 99.4% accuracy. The work in [11]] presents two
ANNs trained on the UNSW-NB15 and NSL-KDD datasets
to detect DoS attacks. The authors use only input features

relevant to such attacks, obtaining at best a detection accuracy
of 99% on the NSL-KDD and 97% on the UNSW-NB15.

The work in [[12]] presents two ANNSs trained on the NSL-
KDD dataset to detect all 4 types of attacks in the dataset
(DoS, Probe, R2L and U2R). The first ANN categorizes
records between normal and malicious (binary classification),
while the second classifies the malicious records into types
(5-categories). On the test set, for binary classification, the
best accuracy of 81.2% was obtained using a subset of the
input features, while for attack classification the best accuracy
of 79.9% was obtained using all features. The work in [2],
similarly uses two shallow ANNs trained on the KDD Cup
1999 dataset for binary and attack type classification. The
ANNs use 36 of the 41 features, demonstrating an average
precision of 98.86% for binary classification and 95.05% for
the attack type classification.

The authors in [[13]] review IDSs that utilize Deep Learning
approaches, the most relevant of them to our work found
in [14, (15| [16]. The work in [14]] uses a Recurrent Neural
Network (RNN) to the NSL-KDD dataset using all provided
input features for binary and attack type classification. For
binary classification, the authors obtained 99.81% and 83.28%
accuracy on the train and test set respectively using 80
hidden nodes. Regarding the 5-category classification, they
demonstrate 99.53% and 81.29% accuracy on the train and
test set respectively using 80 hidden nodes. Although CNNs
are primarily used for image classification tasks, an approach
that uses CNNs to classify the NSL-KDD dataset is proposed
in [15]]. The authors utilize an image conversion technique
that maps all the input features of each record to an image.
They implement 2 popular CNN models, ResNet 50 and
GoogleNet, obtaining 79.14% and 77.04% on the test set for
binary classification respectively. The Deep Neural Network
(DNN) approach presented in [16] uses 6 raw features of the
NSL-KDD dataset to achieve 91.62% and 75.5% accuracy on
the train and test set respectively. Using the same number of
raw features, the authors applied their methodology to Deep
RNNs in [17] obtaining 89% accuracy on the test set.

The topology configurations of the aforementioned NNs are
summarised in Table [, where available.

TABLE I: Network configurations in related work.

Citation Configuration
[16] 6-12-6-3-2
[10] 6-3-1
[11]]: UNSW 6-7-1
[11]: NSL-KDD 5-6-1
[12] 29-21-2
112] 41-23-5

IV. EXPERIMENTAL METHODOLOGY
A. Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational mod-
els inspired by human cognition, able to model complex non-
linear functions that correlate inputs and expected outputs.
They have successfully been applied in a broad range of fields,



from automotive [18]], to healthcare [[19]. Each artificial neuron
calculates the weighted sum of its inputs and adds this to an
offset value (bias), passing the result to an activation function.
ANNs comprise a sequence of neuron layers propagating
results between them. During training, the functionality of the
network is defined using back-propagation to determine the
weights and biases that optimally classify the training data.
Once these are set, the ANN can be used for inference where
it processes new data to determine a classification. Inputs
to the ANN are represented numerically and so symbolic
(or categorical) inputs must be converted to suitable formats
before being applied. An indicative structure of an ANN is
shown in Fig.

Fig. 1: Artificial neural network structure.

Training can be very time consuming and typically occurs
offline using highly parallel computing systems. Trained model
parameters are used to perform online classification, and as
such, inference hardware needs to be optimised. We use a
three-layer (shallow) ANN for intrusion detection in this work.
While DNNs and RNNs are growing in importance, they entail
more complex computation making the real time processing
on embedded hardware extremely difficult.

In Section [III| we saw that tailoring an ANN to detect only
a single type of attack or all the attacks in one category
can result in better accuracy. Moreover, selecting the most
relevant features from the dataset decreases the dimensionality
and this in turn enables ANNs to perform better in simple
classification [[12]]. Hence, the proposed ANN is trained to
detect all types of attacks in one category (Normal-Anomaly),
using a selected subset of the available features.

B. NSL-KDD Dataset

We use the publicly available NSL-KDD dataset, a labelled
dataset for supervised learning. It is an updated version of
the KDD Cup 1999 dataset, addressing its shortcomings [20].
While the dataset is not directly related to IoT applications, it
is widely used, enabling comparisons with previous work. The
approach presented here can be applied to any future dataset
which can be used to retrain the network for IoT specific traffic
patterns. The dataset is divided into the frain and fest sets
which contain data for normal and malicious traffic. Each entry
comprises 41 features categorized into 3 groups [20]:

« Basic features: features that are extracted from a TCP/IP

connection.

o Traffic features: features that are generated within a
window of the last 100 connections, to enable detection
of longer probe attacks. These features provide an ele-
ment of time-domain memory. Traffic features are further
categorized into service and host based.

o Content features: features that are extracted from the
packets’ data and provide the means to detect attacks
with infrequent sequential patterns.

The train set contains 22 attack types, divided into 4 main
categories: DoS (Denial of Service), Probe, R2L (Remote to
Local) and U2R (User to Root). In the test set, there are 17
additional attacks that fall into the same 4 categories. In this
way, the ability of the ANN to generalize its learned pattern
to unknown data is put under test.

In order to fairly train the model, categorical features are
mapped to one-hot encoded representation for the training
phase, mitigating the possible bias introduced by ad-hoc
numerical mapping.

C. Software Implementation

We used TensorFlow [21] to train an ANN with 29 input
features, 21 hidden neurons and 2 output neurons, similar to
that in [12]]. Of the 41 input features, the authors in [22]]
concluded that 8 of them have little or no impact in attack
detection, while the work in [12] highlights that the values
of 4 other features are close to 0. The selected features span
all types of features in the dataset. This enables the ANN to
extract patterns in the time domain using Traffic Features, thus
avoiding the use of more computationally complex machine
learning models that do so with raw features, such as Recurrent
Neural Networks. Out of the 29 selected features, 3 are
categorical, increasing the number of inputs to 110 after one-
hot encoding. We use the relatively simple and inexpensive
Rectified Linear Unit (ReLU) activation function, that can
be easily implemented with a comparator instead of more
complex functions that include divisions and exponents, such
as the sigmoid function.

The proposed ANN was trained with the Adam optimizer,
using the cross entropy loss function (that also includes
softmax) with weights and biases randomly initialized. We
further determine some training parameters experimentally,
such as the learning rate and batch size. For fair comparison,
the same randomly initialized weights and biases are used in
all our experiments. We run our experiments using 3 learning
rates (0.01, 0.001, 0.0001) on four different batch sizes (32, 64,
128, 256) for a total of 5 epochs. We evaluate the classification
performance of each run using:

TP+TN
=1 1
accuracy 00 = TP+ TN + FP+ FN (1)

where:

o TP: True Positive, corresponds to an attack that has been
correctly detected.

o TN: True Negative, corresponds to normal traffic that has
been correctly classified as such.



o FP: False Positive, corresponds to normal traffic that has

been classified as an attack.

« FN: False Negative, corresponds to an attack classified

as normal traffic.

We summarize the highest accuracies obtained after the pass
of one epoch in Table [[I, While we train the proposed ANN
on the train set and test it on the test set, the results in Table
are selected by prioritizing the accuracy obtained from the test
set across runs.

TABLE II: Accuracy results for training parameters.

Learning Rate

Batch
Size 0.01 0.001 0.0001
Test Train Test Train Test Train
32 77.61 89.15 80.52 96.02 80.37 89.09
64  73.16 94.71 80.64 94.05 80.29 93.62
128  76.65 93.09 79.01 96.62 79.80 91.99
256  77.56 94.49 80.84 94.22 77.47 94.06

From the results in Table [T, we see that learning rate of
0.001 and batch size of 32 provides the optimal combined
accuracy across the test and train sets. This results in the
confusion matrix of the test set in Table

TABLE III: Test set classification results.

Predicted Class Actual Class

Normal Malicious
Normal 9257 3937
Malicious 454 8896

Compared to other work in the literature that use the NSL-
KDD dataset, with which a direct comparison can be made,
the proposed model is close to that in [[I2], where the authors
reported 99.3% and 81.2% accuracy on the train and test sets
respectively. It is worth noting that the authors in this case
normalized the dataset prior to its use. While data normal-
ization has been proven to enhance the accuracy of ANNG, it
also entails additional workload during inference. The authors
in [16] use a DNN with 6 input features, reporting 91.62%
and 75.75% accuracy on the train and test sets respectively.
This shows that deep models that use a small subset of the
input features do not necessarily outperform shallow models
that use more features. All the referenced implementations in
this paper that use the NSL-KDD dataset are summarized in
Table along with their configurations.

TABLE IV: Accuracy comparisons on the NSL-KDD dataset.

Accuracy %

Citation ML Model Classification # Features RS

(out of 41) Train Set Test Set
|7 DT N/A 9 96.5 77.8
12 ANN Binary 29 99.3 81.2
112 ANN 5-Cat. 41 98.9 79.9
|16 DNN Binary 6 91.62 75.75
117 D-RNN Binary 6 N/A 89
|14 RNN Binary 41 99.81 83.28
|14 RNN 5-Cat. 41 99.53 81.29
|15 CNN-ResNet50 Binary 41 N/A 79.14
|15 CNN-GoogleNet Binary 41 N/A 77.04
Proposed ANN Binary 29 96.02 80.52

D. Hardware Implementation

Unlike previous work, our aim is to build a fully functional
embedded IDS to perform these classifications in real time.
Hence, the trained ANN was used to build a working system
for this purpose. We used Xilinx Vivado HLS 2016.4 target-
ing the Xilinx Zynq Z-7020 FPGA as found on the Xilinx
Zedboard. This is a modest FPGA SoC device that includes
flexible Programmable Logic (PL) tightly coupled with an
Arm Cortex-A9 Processing System (PS), as shown in Fig.
This system is designed to act as an [oT gateway, securing the
network for a group of less capable devices. The peripherals,
e.g. Ethernet Phy and SD card, are connected through Multi-
plexed I/O (MIO) interconnect to the Arm core and 512 MB
of DRAM is also available. This flexible connectivity enables
runtime processing of network data by forwarding packets to
the accelerator, or processing them in software. For testing and
verification, it allows the test set and model coefficients to be
stored in an SD card, transferred to the memory and then to
the accelerator over DMA.

PS

DRAM DRAM

Controller

SD Card Arm-A9

Ethernet PHY
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Fig. 2: Overview of the Xilinx Zynq based system architecture.

Most work on optimising FPGA implementations of neural
networks considers fixed network parameters. Network prun-
ing, data quantization, and reduced arithmetic precision can be
exploited to trade off performance, power consumption, and
detection accuracy [23| |24} [25]]. However, this comes at the
cost of flexibility as any change in network parameters re-
quires a new design exploration and hardware implementation
process. The architecture we present is designed to be flexible,
by allowing the coefficients to be modified at runtime, thereby
enabling the same hardware to be used to detect different or
evolving attacks without the need for additional design space
exploration or hardware optimisation.

Vivado HLS allows us to exploit the inherent parallelism in
the ANN structure using pragmas to unroll loops for maximum
parallelism and performance, without the need for low level
Hardware Description Language (HDL). The inputs and in-
termediate results are represented in single precision floating
point format (IEEE-754), as the architecture is designed to



retain flexibility to accept newly trained model parameters.
The accelerator operates in one of three modes: IDLE, LOAD,
or COMP. It starts in the IDLE mode where it can make a
transition to LOAD or COMP. Transitions between states are
triggered from the Arm core over AXI-Lite since these are not
time critical operations.

In LOAD mode, the coefficients (weights and biases) of the
model are modified to update the ANN at runtime, which is
done over AXI-Lite using the 4 accelerator inputs:

« mem_sel: selects the memory bank to configure. (i.e. first

layer weights, first layer biases, etc.)

o dimA: indexes the first dimension of the weights, or the

only dimension of the biases.

o dimB: indexes the second dimension of the weights.

o coeff_in: value of the coefficient to be stored.

FPGAs support flexibility through reconfiguration by load-
ing alternative bitstreams that modify the hardware on the
FPGA [26]. One method for using different NN models would
be to generate multiple bitstreams and load them as needed.
Howeyver, this would entail the separate design and compilation
of these optimised hardware models and would not allow for
easy modification of model parameters to deal with emerging
attacks. The Xilinx Zynq allows the PL configuration to be
changed by the PS in software, taking around 30 milliseconds.
Alternatively, Partial Reconfiguration (PR) can be used with
an optimised reconfiguration controller [27] to reduce the time
to below 10 milliseconds. We choose to retain full flexibility
by implementing a general datapath with reprogrammable
coefficients, rather than tightly optimising the datapath around
a fixed set of coefficients.

We measured the time needed for the configuration of
all 2375 coefficients to be 2.273 ms. This includes the time
needed for the Arm core to iterate through the data, increment
its indexing variables, configure the accelerator accordingly
and make the appropriate checks. Updating coefficients is not
considered a time-critical operation as one configuration of the
IDS is expected to be active for a large volume of network
data. Nonetheless, the proposed approach offers competitive
configuration time compared to reconfiguring the hardware,
while offering a much more flexible implementation that
allows coefficients to be updated directly, without the need
for vendor tools and a full hardware compilation.

The intrusion detection process takes place in the COMP
state. To mitigate the increased complexity due to the one-hot
encoding, we take advantage of the fact that only one input
of each one-hot encoded feature is used at a time. During
inference, integer representation is used for each attribute and
in each case only the index of the active attribute is needed.
The index of the active attribute is used as an address to a
Look-Up-Table, that outputs the corresponding weight. This
restores the number of input features needed for inference from
110 to 29, while also avoiding redundant multiplications by
0 caused by the inactive attributes in each one-hot encoded
feature. Meanwhile, any multiplication by 1 of each active
attribute is replaced with a low latency table look-up. The 29
input features along with the 2 output results (corresponding to

the normal/malicious score), are interfaced with the Arm core
through 2 separate AXI-Stream ports with the data transferred
sequentially in consecutive clock cycles.

The timing results of the implemented design from HLS are
shown in Table [V] while the resource utilization on the Xilinx
Zynq device is shown in Table

TABLE V: Timing results on the Xilinx Zynq Z-7020.

Frequency Latency Initiation Interval
(MHz) (Clock Cycles) (Clock Cycles)
76 237 29

The initiation interval of 29 clock cycles is bounded by
the number of input features that need to be read through the
AXI-Stream port.

TABLE VI: Resource utilization on the Xilinx Zynq Z-7020.

LUTs FFs DSPs BRAM
Utilized 26463 56478 111 88
Available 53200 106400 220 280
% Utilization 50 53 50 31

The proposed system, shown in Fig. [2] uses 2 FIFOs on
each AXI-Stream port of the accelerator to act as buffers.
Data is transferred to and from the AXI-Stream ports through
the AXI-DMA that is interfaced with the PS using the HPO
(High Performance 0) port. The HPO port, in turn, using
the DRAM controller, transfers data to and from DRAM.
The configuration of the accelerator coefficients as well as
the configuration of the AXI-DMA take place using AXI-
Lite ports, which are interfaced with the PS through the GPO
(General Purpose 0) port.

V. RESULTS AND EVALUATION

To evaluate the performance of the proposed IDS in practice,
we used Xilinx Vivado 2016.4 to implement the system as
shown in Fig. P} The AXI-Timer IP, operating at 100 MHz,
was used to measure the execution time. The coefficients and
test dataset were stored in an SD card, read from the Arm core,
transferred to DRAM and then fed to the accelerator first by
configuring the coefficients in LOAD mode, before reading
the dataset in COMP mode. In order to provide a reference
for comparison, the execution time of the proposed IDS on
a single core of the Arm-A9 (bare metal) was recorded. To
demonstrate and evaluate the benefits of utilizing the Look-Up-
Table mechanism, we also provide the execution time of the
unoptimized software implementation on the Arm core. This
version of the ANN uses 110 inputs at the input layer and goes
through a number of redundant multiplications as described in
the Section [[V-D] We also compare our work with the test time
of the ANN used in [11]. Although the authors use a different
dataset and detect only DoS attacks, we only focus on the
execution time and corresponding workload in this section.
Their implementation uses Keras and Theano frameworks in
Python, on an Intel Core i3 2.4GHz under Debian Linux 8.



The authors used 43748 records to test their ANN. For a fair
comparison, we normalize their obtained test time of 0.466
seconds according to the number of test records in the NSL-
KDD (22544). The execution time of the three methods for
the classification of the test set is shown in Table

TABLE VII: Execution time.

Arm-A9 2 Arm-A9 P Accelerator ? Idhammad et al.
@667MHz  @667MHz @76MHz [11] (normalized)
4751.440ms 1458.1ms 9.018ms 240.136ms

2 Unoptimised, 110 inputs.
b Optimised, Look-Up-Table.

The execution time of the accelerator includes the time
needed for the input data to be transferred to the accelerator
from the DRAM and the results to be written back to the
same memory. The utilization of a Look-Up-Table mechanism
yields a 69% reduction in the software execution time. A
straightforward comparison between the proposed accelerator,
operating as a streaming engine in this case, and the optimised
execution on the Arm Cortex-A9 shows a 161.7x improve-
ment in the execution time. Compared to the unoptimized
software version, the HW implementation is 526.9x faster.

If we naively compare the execution time of the proposed
ANN, considering our proposed optimised implementation
with a 29-21-2 configuration, and the work in [11], our
proposed accelerator performs about 26.6x faster. Meanwhile,
our optimised model on the Arm core is about 6x slower.
In this case, however, the workload of the ANN in [11]
with a 6-7-1 configuration is significantly smaller compared
to the proposed ANN’s configuration. Taking into account
the number of multiplications and additions in each layer, as
those are the most computationally intensive operations, we
estimate 49 multiplications and 57 additions for the ANN in
[11]. Meanwhile for our work, a total of 651 multiplications
and 674 additions are required. This amounts to 13.3x the
multiplications and 11.8x the additions of the ANN used
in [11]], while delivering 26.6x its performance. Overall, our
proposed approach is able to detect more types of attack: DoS,
Probe, R2L and U2R, at a faster detection rate compared to
the work in [11]].

A. Network Throughput and Detection Rate

A considerable aspect of an IDS is whether it can make
decisions on packets at a suitable rate to ensure detection
does not lag the start of an attack significantly. Ideally, such
a system should be able to flag malicious packets before
many of them have entered the network, so that evasive action
can be taken. We determined the time required to classify a
single data record on both the Arm core and the accelerator
by normalizing execution time in Table We take into
consideration the required minimum transmission size for IPv4
which is 576 bytes according to the Internet Protocol [28]]. We
observe the results in Table [VIIIl

TABLE VIII: Detection rate in packets.

Transfer Rate Platform Latency Detection Rate
(Packets/Second) (us) (Packets/Classification)
1Gbps Arm-A9 64.678 14.036
(217,014) Accel 0.4 0.0868
10Gbps Arm-A9 64.678 140.360
(2,170,139) Accel 0.4 0.8680

At 1Gbps, 217,014 packets per second of the minimum
packet size can be transferred when the network is saturated.
The accelerator offers a detection rate within a small fraction
of a packet (0.0868 packets). On the other hand, the Arm
core can only process one in 14 packets. While the Zedboard
does not offer a 10G Ethernet interface, we also evaluated
the performance for such a setup that might be deployed
in an edge datacenter interacting with IoT devices. Newer
Zynq UltraScale+ development boards do offer 10G Ethernet,
meaning our design could be ported to such boards for more
complex networks. At 10Gbps, a maximum of 2,170,139
packets per second can be transferred. The detection rate in
this case is still within a single packet (0.8680 packets), which
is 16.2x faster than the Arm core at 1Gbps and 161.7x faster
at 10Gbps. The Arm core at 10Gbps only processes one in
140 packets.

These results demonstrate the benefit of our hardware ac-
celerated ANN detection mechanism in terms of scaling to
faster networks, while still offering the flexibility needed to
accept updated model parameters for emerging threats. Porting
to newer FPGA SoC devices such as the Zynq UltraScale+
would also likely offer significant runtime improvements.

VI. CONCLUSION

This paper presented an approach for network intrusion de-
tection using ANNs on FPGA SoCs. The topology of the ANN
maintains moderate computational complexity for a hardware
implementation that can be deployed on a modest Xilinx Zynq
device. It also allows runtime configuration of neural network
parameters to allow for updates to address emerging attacks
We used TensorFlow [21] to train the proposed ANN using
the NSL-KDD dataset, obtaining at best 80.52% accuracy
on the test dataset. The proposed hardware accelerator is
161.7x faster than software execution on the Zynq Arm core,
allowing it to detect malicious packets within a single packet
window for 1Gbps and 10Gbps. In the future, we plan to
investigate deeper and alternative neural network topologies
for comparison in terms of performance and accuracy, as well
as extending network testing to alternative datasets and more
varied live traffic patterns in 10G networks. Finally, we aim
to explore approaches to reduce latency by processing data
directly in the PL to circumvent the PS network stack using
the method in [29].
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