
The Library
The Tate-Oort group scheme TOp
Tools
Reid, Miles (2019) The Tate-Oort group scheme TOp. Proceedings of the Steklov Institute of Mathematics / Trudy Matematicheskogo Instituta imeni V.A. Steklova, 307 . pp. 245-266. doi:10.4213/tm4042 ISSN 0081-5438.
|
PDF
WRAP-Tate-Oort-group-scheme-Reid-2019.pdf - Accepted Version - Requires a PDF viewer. Download (659Kb) | Preview |
|
![]() |
PDF (Russian version)
WRAP-Tate-Oort-group-scheme-TOp-Reid-2020.pdf - Accepted Version Embargoed item. Restricted access to Repository staff only - Requires a PDF viewer. Download (343Kb) |
Official URL: https://doi.org/10.4213/tm4042
Abstract
Over an algebraically closed field of characteristic p, there are 3 group schemes of order p, namely the ordinary cyclic group Z/p, the multiplicative group μp⊂Gm and the additive group αp⊂Ga. The Tate–Oort group scheme TOp puts these into one happy family, together with the cyclic group of order p in characteristic zero. This paper studies a simplified form of TOp, focusing on its representation theory and basic applications in geometry. A final section describes more substantial applications to varieties having p-torsion in Picτ, notably the 5-torsion Godeaux surfaces and Calabi–Yau 3-folds obtained from TO5-invariant quintics.
Над алгебраически замкнутым полем характеристики p существуют три групповые схемы порядка p, а именно циклическая группа Z/p, мультипликативная группа μp⊂Gm и аддитивная группа αp⊂Ga. Групповая схема Тэйта–Оорта TOp помещает их в единое семейство вместе с циклической группой порядка p в нулевой характеристике. В статье рассматривается упрощённая форма TOp с упором на её теорию представлений и базовые приложения к геометрии. В последнем параграфе описываются более существенные приложения к некоторым многообразиям с p-кручением в Picτ, а именно, к поверхностям Годо с 5-кручением и к трехмерным многообразиям Калаби–Яу, полученным из TO5-инвариантных квинтик.
Item Type: | Journal Article | ||||||
---|---|---|---|---|---|---|---|
Alternative Title: | Групповая схема Тэйта–Оорта TOp | ||||||
Subjects: | Q Science > QA Mathematics | ||||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Mathematics | ||||||
Library of Congress Subject Headings (LCSH): | Calabi-Yau manifolds, Manifolds (Mathematics), Geometry, Algebraic | ||||||
Journal or Publication Title: | Proceedings of the Steklov Institute of Mathematics / Trudy Matematicheskogo Instituta imeni V.A. Steklova | ||||||
Publisher: | Springer | ||||||
ISSN: | 0081-5438 | ||||||
Official Date: | 25 November 2019 | ||||||
Dates: |
|
||||||
Volume: | 307 | ||||||
Page Range: | pp. 245-266 | ||||||
DOI: | 10.4213/tm4042 | ||||||
Status: | Peer Reviewed | ||||||
Publication Status: | Published | ||||||
Reuse Statement (publisher, data, author rights): | This is a post-peer-review, pre-copyedit version of an article published in Proceedings of the Steklov Institute of Mathematics / Trudy Matematicheskogo Instituta imeni V.A. Steklova. The final authenticated version is available online at: https://doi.org/10.4213/tm4042. | ||||||
Access rights to Published version: | Restricted or Subscription Access | ||||||
Description: | Co-published as: Trudy Matematicheskogo Instituta imeni V.A. |
||||||
Date of first compliant deposit: | 24 July 2019 | ||||||
Date of first compliant Open Access: | 25 November 2020 | ||||||
RIOXX Funder/Project Grant: |
|
||||||
Related URLs: |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year