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Abstract The theory of intrinsic volumes of convex cones has recently found striking
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cations are presented.

Keywords Intrinsic volumes · Integral geometry · Hyperplane arrangements ·
Polyhedral cones · Geometric probability

Mathematics Subject Classification 05-02 · 52B05 · 52C35 · 52A22 · 52A39 ·
60D05

Editors in Charge: Günter M. Ziegler, János Pach

Dennis Amelunxen
damelunx@cityu.edu.hk

Martin Lotz
martin.lotz@manchester.ac.uk

1 Department of Mathematics, City University of Hong Kong, Kowloon Tong, Hong Kong

2 School of Mathematics, The University of Manchester, Manchester M13 9PL, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-017-9904-9&domain=pdf
http://orcid.org/0000-0003-0000-7512


372 Discrete Comput Geom (2017) 58:371–409

1 Introduction

The theory of conic intrinsic volumes (or solid/internal/external/Grassmann angles)
has a rich and varied history, with origins dating back at least to the work of Som-
merville [32]. This theory has recently found renewed interest, owing to newly found
connections with measure concentration and resulting applications in compressive
sensing, optimization, and related fields [3,5,11,14,24]. Despite this recent surge in
interest, the theory remains somewhat inaccessible to a general public in applied areas;
this is, in part, due to the fact that many of the results are found using varying termi-
nology (cf. Sect. 2.3), or are available as special cases of a more sophisticated theory
of spherical integral geometry [13,30,34] that treats the subject in a level of gener-
ality (involving curvature/support measures or relying on differential geometry) that
is usually more than what is needed from the point of view of the above-mentioned
applications. In addition, some results, such as the relation to the theory of hyperplane
arrangements, have so far not been connected to the existing body of research.

One aim of this article is therefore to provide the practitioner with a self-contained
account of the basic theory of intrinsic volumes of polyhedral cones that requires little
more background than some elementary polyhedral geometry and properties of the
Gaussian distribution. While some of the material is classic (see, for example, [25]),
we blend into the presentation a generalization of a formula ofKlivans and Swartz [22],
with a streamlined proof and some applications.

The focus of this text is on simplicity rather than generality, on finding the most
natural relations between different results that may be derived in different orders from
each other, and on highlighting parallels between different results. Despite this, the
text does contain some generalizations of known results, provided these can be derived
with little additional effort. In the interest of brevity, this article does not discuss the
probabilistic properties of intrinsic volumes, such as their moments and concentration
properties, nor does it go into related geometric problems such as random projections
of polytopes [1,35].

Section 2 is devoted to some preliminaries from the theory of polyhedral cones
including a discussion of conic intrinsic volumes, a section devoted to clarifying the
connections between different notation and terminology used in the literature, and a
section introducing some concepts and techniques from the theory of partially ordered
sets. In Sect. 3 we present a modern interpretation of the conic Steiner formula that
underlies the recent developments in [5,14,24], and in Sect. 4, which is based on the
influential work of McMullen [25], we derive and discuss the Gauss–Bonnet relation
for intrinsic volumes. Section 5 contains a crisp proof of the Principal Kinematic
Formula for polyhedral cones, and Sect. 6 is devoted to a generalization of a result by
Klivans and Swartz [22] and some applications thereof.

1.1 Notation and Conventions

Throughout, we use boldface letters for vectors and linear transformations. To lighten
the notation we denote the set consisting solely of the zero vector by 0. We use
calligraphic letters for families of sets. We use the notation ⊆ for set inclusion and ⊂
for strict inclusion.

123



Discrete Comput Geom (2017) 58:371–409 373

2 Preliminaries

General references for basic facts about convex cones that are stated here are, for
example, [9,28,38]. More precise references will be given when necessary. A convex
cone C ⊆ R

d is a convex set such that λC = C for all λ > 0. A convex cone
is polyhedral if it is a finite intersection of closed half-spaces. In particular, linear
subspaces are polyhedral, and polyhedral cones are closed. In what follows, unless
otherwise stated, all cones are assumed to be polyhedral and non-empty. A supporting
hyperplane of a convex cone C is a linear hyperplane H such that C lies entirely
in one of the closed half-spaces induced by H (unless explicitly stated otherwise, all
hyperplanes will be linear, i.e., linear subspaces of codimension one). A proper face of
C is a set of the form F = C∩H , where H is a supporting hyperplane. If set F is called
a face of C if is either a proper face or C itself. The linear span lin(C) of a cone C is
the smallest linear subspace containing C and is given by lin(C) = C + (−C), where
A+B = {x+ y : x ∈ A, y ∈ B} denotes theMinkowski sum of two sets A and B. The
dimension of a face F is dim F := dim lin(F), and the relative interior relint(F) is
the interior of F in lin(F). A cone is pointed if the origin 0 is a zero-dimensional face,
or equivalently, if it does not contain a linear subspace of dimension greater than zero.
If C is not pointed, then it contains a nontrivial linear subspace of maximal dimension
k > 0, given by L = C ∩ (−C), and L is contained in every supporting hyperplane
(and thus, in every face) of C . Denoting by C/L the orthogonal projection of C on
the orthogonal complement of L , the projection C/L is pointed, and C = L + C/L
is an orthogonal decomposition of C ; we call this the canonical decomposition of C .

We denote by F(C) the set of faces, Fk(C) the set of k-dimensional faces,
and let fk(C) = |Fk(C)| denote the number of k-faces of C . The tuple f (C) =
( f0(C), . . . , fd(C)) is called the f -vector of C . Note that if C = L + C/L is the
canonical decomposition, then f (C) is a shifted version of f (C/L). The most fun-
damental property of the f -vector is the Euler relation.

Theorem 2.1 (Euler) Let C ⊆ R
d be a polyhedral cone. Then

d∑

i=0

(−1)i fi (C) =
{

(−1)dim L if C = L is a linear subspace,
0 else.

(2.1)

This relation is usually stated and proved in terms of polytopes [38, Chap. 8], but
intersecting a pointed cone with a suitable affine hyperplane yields a polytope with
a face structure equivalent to that of the cone; the general case can be reduced to the
pointed case through the canonical decomposition. A short proof of the Euler relation
along with remarks on the history of this result can be found in [23].

2.1 Duality

The polar cone of a cone C ⊆ R
d is defined as

C◦ = {
x ∈ R

d : ∀y ∈ C, 〈x, y〉 ≤ 0
}
.
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If C = L is a linear subspace, then C◦ = L⊥ is just the orthogonal complement, and
the polar cone of the polar cone is again the original cone, as will be shown below. To
any face F ∈ Fk(C) we can associate the normal face NFC ∈ Fd−k(C◦) defined as
NFC = C◦ ∩ lin(F)⊥. To ease notation we will sometimes use F� = NFC when the
cone is clear. The resulting map Fk(C) → Fd−k(C◦) is a bijection, which satisfies
NF�(C◦) = F . This relation is easily deduced from thementioned involution property
of the polarity map, cf. Proposition 2.3 below. The polar operation is order reversing,
C ⊆ D impliesC◦ ⊇ D◦, as follows directly from the definition; more properties will
be presented below.

Central to convex geometry and optimization are a variety of theorems of the alter-
native, the most prominent of which is known as Farkas’ Lemma (among the countless
references, see for example [38, Chap. 2]). All versions of Farkas’ Lemma follow from
a special case of the Hahn–Banach theorem, the separating hyperplane theorem. In
what follows we need a conic version of this result.

Theorem 2.2 (Separating hyperplane for cones) Let C, D ⊂ R
d be non-empty, closed

convex cones. Then relint(C) ∩ relint(D) = ∅ if and only if there exists a linear
hyperplane H, not containing both C and D, such that C ⊆ H+ and D ⊆ H−, where
H+, H− denote the closed half-spaces defined by H.

This theorem is usually stated for closed convex sets and affine hyperplanes H (see,
e.g., [28, Thm. 11.3]). Theorem 2.2 then follows from this more general version by
noting that the relative interior of any non-empty, closed convex cone contains points
arbitrary close to 0, which implies 0 ∈ H .

The separating hyperplane theorem can be used to derive some interesting results
involving the polar cone. The first such result states that polarity is an involution on
the set of closed convex cones. We write C◦◦ := (C◦)◦ for the polar of the polar.

Proposition 2.3 Let C be a non-empty, closed convex cone. Then C◦◦ = C.

Proof Let x ∈ C . Then, by definition of the polar, for all y ∈ C◦ we have 〈x, y〉 ≤ 0.
This, in turn, implies that x ∈ C◦◦. Now let x ∈ C◦◦ and assume that x /∈ C . In
particular, x �= 0, and by closedness of C there exists ε > 0 such that the ε-cone
around x, Bε := { y : 〈x, y〉 ≥ (1 − ε)‖x‖‖ y‖}, satisfies relint(C) ∩ relint(Bε) = ∅.
By Theorem 2.2, there exists a hyperplane separating C and Bε, and thus a non-zero
h ∈ R

d such that
〈x, h〉 > 0, ∀ y ∈ C : 〈h, y〉 ≤ 0.

The first condition implies h /∈ C◦, while the second one implies h ∈ C◦. It follows
that x ∈ C . ��

The following variation of Farkas’ Lemma for convex cones, which is slightly more
general than the usual one, is taken from [4].

Lemma 2.4 (Farkas) Let C, D be closed convex cones. Then

relint(C) ∩ D = ∅ ⇐⇒ C◦ ∩ −D◦ �= 0.
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Fig. 1 Either a subspace intersects C non-trivially, or its complement intersects C◦

In particular, if D = L is a linear subspace, then

relint(C) ∩ L = ∅ ⇐⇒ C◦ ∩ L⊥ �= 0. (2.2)

The situation in which D = L is a hyperplane is best visualised as in Fig. 1.

Proof If relint(C)∩ D = ∅, then by Theorem 2.2 there exists a separating hyperplane
H = h⊥, h �= 0, such that 〈h, x〉 ≤ 0 for all x ∈ C and 〈h, y〉 ≥ 0 for all y ∈ D. But
this means h ∈ C◦ ∩ (−D◦). On the other hand, if x ∈ relint(C) ∩ D then only in
the case C = R

d , for which the claim is trivial, can x = 0 hold. If x �= 0, then C◦\0
lies in the open half-space {h : 〈h, x〉 < 0} and −D◦ lies in the closed half-space
{h : 〈h, x〉 ≥ 0}, and thus C◦ ∩ (−D◦) = 0. The case D = L follows immediately. ��

In view of some of the later developments, it is important to understand the
behaviour of duality under intersections. The following is a conic variant of [28,
Cor. 23.8.1] (see also [38, Chap. 7] for a similar theme).

Proposition 2.5 The polar operation of intersection is the Minkowski sum,

(C ∩ D)◦ = C◦ + D◦.

Moreover, every face of C ∩ D is of the form F ∩ G for some F ∈ F(C),G ∈ F(D),
and the polar face satisfies

NF∩G(C ∩ D) ⊇ NFC + NGD. (2.3)

If additionally relint(F) ∩ relint(G) �= ∅, then (2.3) holds with equality.

Proof For the first claim, note that

C ∩ D = C◦◦ ∩ D◦◦ = {
z ∈ R

d : ∀(x, y) ∈ C◦ × D◦, 〈z, x〉 ≤ 0, 〈z, y〉 ≤ 0
}

= {
z ∈ R

d : ∀(x, y) ∈ C◦ × D◦, 〈z, x + y〉 ≤ 0
} = (C◦ + D◦)◦

where in the first equality we used Proposition 2.3; the third equality is easily verified
by noting that 〈z, x + 0〉 = 〈z, x〉 and 〈z, 0 + y〉 = 〈z, y〉. The first claim then follows
by polarity and another application of Proposition 2.3.
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For the second claim, note that a face F̄ ∈ F(C ∩ D) can be written as F̄ = {x ∈
C ∩ D : 〈x, h〉 = 0} for some h ∈ (C ∩ D)◦. By the first claim, we can write the
normal vector in the form h = hC + hD with hC ∈ C◦ and hD ∈ D◦. Denoting
F := {x ∈ C : 〈x, hC 〉 = 0} ∈ F(C), G := { y ∈ D : 〈 y, hD〉 = 0} ∈ F(D), we
obtain

F ∩ G = {
x ∈ C ∩ D : 〈x, hC 〉 = 〈x, hD〉 = 0

} = {
x ∈ C ∩ D : 〈x, h〉 = 0

}= F̄,

where the second equality follows from the fact that 〈x, hC 〉 ≤ 0 and 〈x, hD〉 ≤ 0 if
x ∈ C ∩ D.

Finally, for the claim about the polar face, note that, by what we have just shown
and using double polarity,

(NFC)◦ = (C◦ ∩ lin(F)⊥)◦ = C + lin(F) = C + (−F),

so that

(NF∩G(C ∩ D))◦ = (C ∩ D) + (−(F ∩ G)) ⊆ (C + (−F)) ∩ (D + (−G))

= (NFC)◦ ∩ (NGD)◦ = (NFC + NGD)◦. (2.4)

The claim (2.3) follows by invoking polarity again.
To show that the inclusion in the above display is an equality if relint(F) ∩

relint(G) �= ∅, note first that if x ∈ relint(F), then for every y ∈ C + (−F) we
have y + λx ∈ C for λ > 0 large enough. Indeed, if y = yC − yF with yC ∈ C ,
yF ∈ F , then y+λx = yC +λ(x− 1

λ
yF ), and x− 1

λ
yF ∈ F for λ > 0 large enough.

Now, if x ∈ relint(F)∩ relint(G) and y ∈ (C + (−F))∩ (D+ (−G)), then for λ > 0
large enough, y + λx ∈ C ∩ D. Hence,

y = ( y + λx) + (−λx) ∈ (C ∩ D) + (−(F ∩ G)),

which shows that (2.4), and thus (2.3), hold with equality. ��
Two faces F ∈ F(C) and G ∈ F(D) are said to intersect transversely, written F �

G, if their relative interiors have a non-empty intersection, relint(F) ∩ relint(G) �= ∅,
and dim F ∩ G = dim F + dimG − d.

Corollary 2.6 Let C, D be cones and F ∈ F(C), G ∈ F(D) be faces that intersect
transversely. Then NFC + NGD = NF∩G(C ∩ D), and is a face of C◦ + D◦ of
dimension (d − dim F) + (d − dimG).

For a polyhedral cone C ⊆ R
d , denote by �C the Euclidean projection,

�C (x) = argmin
{‖x − y‖2 : y ∈ C

}
. (2.5)

The Moreau decomposition of a point x ∈ R
d is the sum representation

x = �C (x) + �C◦(x), (2.6)
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where�C (x) and�C◦(x) are orthogonal. A direct consequence is the disjoint decom-
position

R
d =

⋃

F∈F(C)

(relint(F) + NFC), (2.7)

see also [25, Lem. 3].

2.2 Intrinsic Volumes

For C ⊆ R
d a polyhedral cone and for two faces F,G ∈ F(C), define

vF (G) = P
{
�G(g) ∈ relint F

}
,

where g ∼ N (Rd) is a standardGaussian vector inR
d . If F ⊆ G, it follows from (2.7)

that
vF (G) = P

{
g ∈ F + NFG

}
.

On the other hand, since the relative interiors of faces of C are disjoint, we have
vF (G) = 0 if F � G. For the most part we will consider the case G = C . Define the
k-th intrinsic volumes of C , 0 ≤ k ≤ d, to be

vk(C) =
∑

F∈Fk(C)

vF (C).

For a fixed cone, the intrinsic volumes form a probability distribution on {0, 1, . . . , d}.
Note that if F ∈ Fk(C) then, by the decomposition (2.6),

vF (C) = vk(F) vd−k(NFC).

For later reference, we note that in combination with Corollary 2.6, we get for cones
C, D and faces F ∈ Fk(C),G ∈ F�(D) that intersect transversely, with j = k+�−d,

vF∩G(C ∩ D) = v j (F ∩ G) vd− j (NFC + NGD). (2.8)

Example 2.7 Let C = L ⊆ V be a linear subspace of dimension i . Then

vk(C) =
{
1 if k = i,

0 if k �= i.

Example 2.8 Let C = R
d≥0 be the non-negative orthant, i.e., the cone consist-

ing of points with non-negative coordinates. A vector x projects orthogonally to a
k-dimensional face of C if and only if exactly k coordinates are non-positive. By
symmetry considerations and the invariance of the Gaussian distribution under per-
mutations of the coordinates, it follows that

vk(R
d≥0) =

(
d

k

)
2−d .
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The following important properties of the intrinsic volumes, which are easily veri-
fied in the setting of polyhedral cones, will be used frequently:

(a) Orthogonal invariance. For an orthogonal transformation Q ∈ O(d),

vk(QC) = vk(C);

(b) Polarity.
vk(C) = vd−k(C

◦);
(c) Product rule.

vk(C × D) =
∑

i+ j=k

vi (C)v j (D). (2.9)

Note that the product rule implies vi (C×L) = vi−k(C) if i ≥ k and L is a subspace
of dimension k. We will sometimes be working with the intrinsic volume generating
polynomial,

PC (t) =
d∑

k=0

vk(C)tk .

The product rule then states that the generating polynomial is multiplicative with
respect to direct products. A direct consequence of the orthogonal invariance and the
polarity rule is that the intrinsic volume sequence is symmetric for self-dual cones
(i.e., cones such that C = −C◦).

An important summaryparameter is the expectedvalue of the distribution associated
to the intrinsic volumes, the statistical dimension, which coincides with the expected
squared norm of the projection of a Gaussian vector on the cone,

δ(C) =
d∑

k=0

kvk(C) = E
[‖�C (g)‖2].

The statistical dimension reduces to the usual dimension for linear subspaces. The
coincidence of the two expected values is a special case of the generalized Steiner
formula 3.1, and is crucial in applications of the statistical dimension. More on the
statistical dimension and its properties and applications can be found in [5,14,24].

2.3 Angles

In the classical works on polyhedral cones, intrinsic volumes were viewed as polytope
angles, see [12] for some perspective. Polyhedral cones arise as tangent or normal
cones of polyhedra K ⊆ R

d . Given such a polyhedron K and a face F ⊆ K , with
x0 ∈ relint(F), the tangent cone TF K is defined as

TF K =
⋃

τ>0

{
v ∈ R

d : x0 + τv ∈ K
}
.
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The normal cone to K at F is the polar of the tangent cone. To clarify the relations to
the terminology used in this paper and to facilitate a translation of the results of some
of the referenced papers, we provide the following list.

2.3.1 Solid Angle

When speaking about the solid angle of a coneC ⊆ R
d , sometimes denoted α(C), one

usually assumes that C has non-empty interior, and one defines α(C) as the Gaussian
volume of C (or equivalently, the relative spherical volume of C ∩ Sd−1, where Sd−1

is the (d − 1)-dimensional unit sphere); we extend this definition to also cover lower-
dimensional cones, and define for dimC = k,

α(C) := vC (C) = vk(C) = vd−k(C
◦).

2.3.2 Internal/External Angle

The internal and external angle of a polyhedral set K ⊆ R
d at a face F are defined as

the solid angle of the tangent and normal cone of K at F , respectively,

β(F, K ) = α(TF K ), γ (F, K ) = α(NFK ).

Note that we have vF (C) = β(0, F)γ (F,C). Furthermore, conic polarity swaps
between internal and external angles:

β(F,C) = γ (F�,C◦), γ (F,C) = β(F�,C◦),

where we use the notation F� := NFC for the face of C◦, which is polar to the face
F of C . This shows that any formula involving the internal and external angles of a
cone C has a polar version in terms of the internal and external angles of C◦ where
the roles of internal and external have been exchanged. (Some of the formulas in [25]
are stated in this polar version.)

Remark 2.9 The Brianchon–Gram–Euler relation [27, Thm. (1)] of a convex polytope
K translates in the above notation as

∑

F∈F(K )

(−1)dim Fβ(F, K ) = 0.

Replacing the bounded polytope by an unbounded cone makes this relation invalid.
However, there exists a closely related conic version, which is called Sommerville’s
Theorem [27, Thm. (37)]. This in turn can be used to derive a Gauss–Bonnet relation,
cf. Sect. 4.

2.3.3 Grassmann Angle

The Grassmann angles of a cone C , which have been introduced and analyzed by
Grünbaum [15], are defined through the probability that a uniformly random linear

123



380 Discrete Comput Geom (2017) 58:371–409

subspace of a specific (co)dimension intersects the cone nontrivially. The kine-
matic/Crofton formulae express this probability in terms of the intrinsic volumes,
cf. Sect. 5. More precisely, we have

P{C ∩ Lk �= 0} = 2
∑

i≥1 odd

vk+i (C) =: 2hk+1(C), (2.10)

where Lk ⊆ R
d denotes a uniformly random linear subspace of codimension k. Notice

that when considering the intrinsic volumes and the Grassmann angles as vectors,
(v0, v1, . . . , vd) and (h0, h1, . . . , hd), then these are related through a nonsingular
linear transformation. Hence, any formula in the intrinsic volumes of a cone has an
equivalent form in terms of Grassmann angles and vice versa; in this paper we prefer
the intrinsic volume versions.

Remark 2.10 The preference of intrinsic volumes over Grassmann angles has an odd
effect on the logic behind Corollary 4.3 below, which is attributed to Grünbaum. This
result is originally stated and proved in [15, Thm. 2.8] in terms of the Grassmann
angles. So in order to rewrite Corollary 4.3 in its original form, one needs to apply
Crofton’s formula (2.10) whose proof, given in Sect. 5, uses Gauss–Bonnet (4.4),
which in turn is a direct consequence of Corollary 4.3. The resulting proof of the
original result [15, Thm. 2.8] (in terms of Grassmann angles) is thus much less direct
than the original one given by Grünbaum.

2.4 Some Poset Techniques

In this section we recall some notions from the theory of partially ordered sets (posets)
that we will need in Sect. 6. We only recall those properties that we will directly use,
see [33, Chap. 3] for more details and context.

A lattice is a poset with the property that any two elements have both a least upper
bound and a greatest lower bound. We will only consider finite lattices; in particular,
for these lattices the greatest and the least elements 1̂, 0̂ both exist. More precisely, we
will consider the following two (types of) finite lattices.

Example 2.11 (Face lattice) Let C ⊆ R
d be a polyhedral cone. Then the set of faces

F(C) with partial order given by inclusion is a finite lattice. The elements 1̂, 0̂ are
given by 1̂ = C and 0̂ = C ∩ (−C).

Example 2.12 (Intersection lattice of a hyperplane arrangement) Let A = {H1, . . . ,

Hn} be a set of (linear) hyperplanes Hi ⊂ R
d , i = 1, . . . , n. The set of all intersections

L(A) = {⋂i∈I Hi : I ⊆ {1, . . . , n}}, endowed with the partial order given by reverse
inclusion, is called the intersection lattice of the hyperplane arrangement A. This
lattice has a disjoint decomposition into L0(A), . . . ,Ld(A), where L j (A) = {L ∈
L(A) : dim L = j}. The minimal and maximal elements are given by 0̂ = R

d and
1̂ = ⋂n

i=1 Hi .

One can define the (real) incidence algebra of a (locally) finite poset (P, �) as the
set of all functions ξ : P × P → R, which besides having the usual vector space
structure also possesses the multiplication
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ξν : P × P → R, ξν(x, y) =
∑

x�z�y

ξ(x, z) ν(z, y)

defined for two functions ξ, ν : P × P → R. The identity element in this algebra is
the Kronecker delta, δ(x, y) = 1 if x = y and δ(x, y) = 0 else. Another important
element is the characteristic function of the partial order, ζ(x, y) = 1 if x � y and
ζ(x, y) = 0 else. This function is invertible, and its inverse μ, calledMöbius function
on P , can be recursively defined by μ(x, y) = 0 if x � y, and

μ(x, x) = 1, μ(x, y) = −
∑

x�z≺y

μ(x, z) if x ≺ y. (2.11)

The incidence algebra acts on the set of functions f : P → R on the right by

( f ξ)(y) =
∑

x�y

f (x)ξ(x, y).

The Möbius inversion is the simple fact that for two functions f, g : P → R one has
f ζ = g if and only if f = gμ. Explicitly, this equivalence can be written out as
follows:

∀y ∈ P : g(y) =
∑

x�y

f (x) ⇐⇒ ∀y ∈ P : f (y) =
∑

x�y

g(x)μ(x, y). (2.12)

The Möbius function of the face lattice from Example 2.11 is given by μ(F,G) =
(−1)dimG−dim F . For a whole range of techniques for computing Möbius functions
we refer to [6,33].

2.4.1 Some Elementary Facts About Hyperplane Arrangements

The last concept we need to introduce is that of a characteristic polynomial, which can
be defined for any finite graded lattice; we only introduce the characteristic polynomial
for hyperplane arrangements, as we will only use it in this context. We use the notation
from Example 2.12. The characteristic polynomial of a hyperplane arrangement A
in R

d is defined as [33, Sect. 3.11.2]

χA(t) =
∑

L∈L(A)

μ(Rd , L)tdim L .

More generally, we introduce the j th-level characteristic polynomial ofA as follows,

χA, j (t) =
∑

L̃∈L j (A)

∑

L∈L(A)

μ(L̃, L)tdim L , (2.13)
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so that χA = χA,d , and we also introduce the bivariate polynomial1

XA(s, t) :=
d∑

j=0

s jχA, j (t) =
∑

L̃,L∈L(A)

μ(L̃, L)sdim L̃ tdim L . (2.14)

The j th level characteristic polynomial can be written in terms of characteristic poly-
nomials by considering restrictions of A: If L ⊆ R

d is a linear subspace, then the
arrangement AL = {H ∩ L : H ∈ A, L � H} is a hyperplane arrangement relative
to L . It is easily seen that we obtain

χA, j (t) =
∑

L∈L j (A)

χAL (t). (2.15)

TheMöbius function of the intersection lattice alternates in sign [33, Prop. 3.10.1], and
so do the coefficients of the ( j th-level) characteristic polynomial. Note that χA, j (t) (is
either zero or) has degree j and the leading coefficient is given by |L j (A)| =: � j (A).
For future reference we also note that in the cases j = 0, 1 we have

χA,0(t) = �0(A), χA,1(t) = �1(A)(t − �0(A)). (2.16)

The complement of the hyperplanes of an arrangement A, Rd\ ⋃
H∈A H , decom-

poses into open convex cones. We denote by R(A) the set of polyhedral cones given
by the closures of these regions, and we denote r(A) := |R(A)|. More generally, we
define

R j (A) =
⋃

C∈R(A)

F j (C), r j (A) = |R j (A)|, (2.17)

so thatR(A) = Rd(A) and r(A) = rd(A). The following theorem by Zaslavsky [37]
lies at the heart of the result by Klivans and Swartz [22] that we will present in Sect. 6.

Theorem 2.13 (Zaslavsky) Let A be an arrangement of linear hyperplanes in R
d .

Then
r j (A) = (−1) j χA, j (−1).

Note that since the coefficients of the characteristic polynomial alternate in sign,
the number of j-dimensional regions, r j (A), is given by the sum of the absolute values
of the coefficients of the j th-level characteristic polynomial.

1 This bivariate polynomial (or simple transformations thereof) is also known as Möbius polynomial [37]
or Whitney polynomial [7,8]; it should not be confused with the coboundary/Tutte polynomial [19].
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Fig. 2 vol(K + εB2) =
area+ circumference · ε + π · ε2

3 The Conic Steiner Formula

Aclassic result in integral geometry is the Steiner Formula: the d-dimensionalmeasure
of the ε-neighbourhood of a convex body K ⊂ R

d (compact, convex) can be expressed
as a polynomial in ε of degree at most d, with the intrinsic volumes as coefficients:

vol(K + εBd) =
d∑

i=0

Vi (C)ωd−iε
d−i , (3.1)

where Bd denotes the unit ball, ωd−i = vol(Bd−i ) = 2π(d−i)/2

�((d−i)/2+1) , and the Vi (K )

are the Euclidean intrinsic volumes (see, e.g., [21, Thm. 9.2.3]). For example, in the
two-dimensional case, we have the situation of Fig. 2.

In order to state an analogous result for convex cones or spherically convex sets
(intersections of convex cones with the unit sphere), we have to agree on a notion of
distance. A natural choice here is the capped angle�(C, x) = arccos(‖�C (x)‖/‖x‖).
Note thatwith this definition,�(C, x) ≤ π/2, and is equal toπ/2 if and only if x ∈ C◦.
Note also that for x with ‖x‖ = 1 and α ≤ π/2, we have �(C, x) ≤ α if and only if
‖�C (x)‖2 ≥ cos2 α. Using this notion of distance, one obtains a formula similar to
the Euclidean Steiner formula (3.1), which is usually called spherical/conic Steiner
formula, see for example [34, Chap. 6.5] and the references given there, or the formula
below.

It turns out that, when working with cones rather than spherically convex sets, it
is convenient to work with the squared length of the projection on C rather than with
the angle. Moreover, it turns out quite useful to also consider the squared length of the
projection on the polar cone C◦. The following general Steiner formula in the conic
setting is due to McCoy and Tropp [24, Thm. 3.1]; its formulation in probabilistic
terms, as suggested by Goldstein, Nourdin and Peccati [14], is remarkably elegant.
We sketch their proof (in the polyhedral case) below.

Theorem 3.1 Let C ⊆ R
d be a convex polyhedral cone, let g ∈ R

d be a Gaussian
vector, and let the discrete random variable V on {0, 1, . . . , d} be given by P{V =k}
= vk(C). Then (‖�C (g)‖2, ‖�C◦(g)‖2) d= (

XV ,Yd−V
)

(3.2)

where
d= denotes equality in distribution, and Xk,Yk are independent χ2-distributed

random variables with k degrees of freedom.
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A geometric interpretation of this form of the conic Steiner formula is readily
obtained by considering moments of the two sides in (3.2). Indeed, the expectation of
f
(‖�C (g)‖2, ‖�C◦(g)‖2) equals the Gaussian volume of the angular neighbourhood

around C of radius α ≤ π/2, i.e., of the set Tα(C) := {x : �(C, x) ≤ α}, if one sets
f (x, y) = 1 if x/(x + y) ≥ cos2 α, and f (x, y) = 0 otherwise. For this choice of f
the expectation of f

(
XV ,Yd−V

)
becomes a finite sum

∑d
k=0 vk(C)P{g ∈ Tα(Lk)},

where Tα(Lk) denotes the angular neighbourhood of radius α around a k-dimensional
linear subspace.TheseGaussianvolumesof angular neighborhoods of linear subspaces
replace the monomials in the Euclidean Steiner formula (3.1). By taking a suitable
moment of (3.2) we obtain the usual conic Steiner formula.

Proof sketch of Theorem 3.1 In order to show the claimed equality in distribution (3.2)
it suffices to show that the moments coincide. Let f : R

2+ → R be a Borel measur-
able function. In view of the decomposition (2.5) we can express the expectation of
f
(‖�C (g)‖2, ‖�C◦(g)‖2) as

E
[
f
(‖�C (g)‖2, ‖�C◦(g)‖2)]

=
d∑

k=0

∑

F∈Fk(C)

E
[
f (‖�C (g)‖2, ‖�C◦(g)‖2) 1{�C (g)∈relint(F)}

]
.

Notice now that for g ∈ (relint F) + NFC we have �C (g) = �lin(F)(g) and
�C◦(g) = �lin(NFC)(g). This implies

E
[
f
(‖�C (g)‖2, ‖�C◦(g)‖2) 1{�C (g)∈relint(F)}

]

= E
[
f
(‖�lin(F)(g)‖2, ‖�lin(NFC)(g)‖2) 1{�(g)∈relint(F)}

]
.

Using spherical coordinates and the orthogonal invariance of Gaussian vectors, one
can deduce that the above expectation equals

E
[
f
(‖�lin(F)(g)‖2, ‖�lin(NFC)(g)‖2) 1{�C (g)∈relint(F)}

]

= E
[
f
(‖�Lk (g)‖2, ‖�L⊥

k
(g)‖2)] P

{
�C (g) ∈ relint(F)

}

= E[ f (Xk,Yd−k)] vF (C),

where Lk denotes an arbitrary k-dimensional linear subspace. Summing up the terms
gives rise to the claimed coincidence of moments, which shows equality of the distri-
butions. ��

A useful consequence of the general Steiner formula is that the moment generating
functions of the discrete random variable V from Theorem 3.1 and the continuous
random variable ‖�C (g)‖2 coincide up to reparametrization:

E[etV ] = E[es‖�C (g)‖2 ], s = 1 − e−2t

2
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which directly follows from (3.2) by the well-known formula for the moment generat-
ing function of χ2-distributed random variables, E[esXk ] = (1 − 2s)−k/2. This result
is from [24], where it is used to derive a concentration result for the random variable
V , and also underlies the argumentation in [14], where a central limit theorem for V
is derived.

4 Gauss–Bonnet and the Face Lattice

The Gauss–Bonnet Theorem is a celebrated result in differential geometry connecting
curvature with the Euler characteristic. In the setting of polyhedral cones, this theorem
asserts that the alternating sum of the intrinsic volumes equals the alternating sum of
the f -vector,

d∑

k=0

(−1)kvk(C) =
d∑

k=0

(−1)k fk(C).

The main goal of this section is to show the connections between the Gauss–
Bonnet relation, a result by Sommerville [32], which can be seen as a conic version
of the Brianchon–Euler–Gram relation for polytopes [16, 14.1], and a result by Grün-
baum [15, Thm. 2.8]. More precisely, wewill provide an elementary proof of the result
by Sommerville, which is basically an application of Farkas’ Lemma, and show how
the other relations are easily deduced from this. The derivation of the Gauss–Bonnet
relation from the Sommerville relation presented here follows McMullen [25], who
used the language of internal and external angles (see Sect. 2.3.2).

Theorem 4.1 (Sommerville) For any polyhedral cone C ⊆ R
d ,

v0(C) =
∑

F∈F(C)

(−1)dim Fv0(F). (4.1)

Proof Both sides in (4.1) are zero if C contains a nonzero linear subspace. So we
assume in the following thatC is pointed,C ∩ (−C) = 0. Let g be a randomGaussian
vector and H = g⊥ the orthogonal complement, which is almost surely a hyperplane.
By Farkas’ Lemma 2.4,

P{C ∩ H = 0} = P{g ∈ C◦ ∪ −C◦} = 2P{g ∈ C◦} = 2v0(C). (4.2)

Note that with probability 1, the intersection C ∩ H is either 0 or has dimension
dimC −1. Setting χ = ∑d−1

i=0 (−1)i fi (C ∩ H), the Euler relation (2.1) implies χ = 0
if C ∩ H �= 0 and χ = 1 if C ∩ H = 0. Using (4.2) we get the expected value

E
[
χ

] = E
[
χ |C∩H �= 0

]
(1−2v0(C))+E

[
χ |C∩H = 0

]
2v0(C) = 2v0(C). (4.3)

On the other hand, for 0 < i < d and using (4.2),

E
[
fi (H ∩ C)

] =
∑

F∈Fi+1(C)

P{F ∩ H �= 0} = fi+1(C) − 2
∑

F∈Fi+1(C)

v0(F),
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where in the first step we used the fact that almost surely every i-dimensional face of
C ∩ H is of the form F ∩ H , with F ∈ Fi+1(C), and for every F ∈ Fi+1(C) the
intersection F ∩ H is either an i-dimensional face of C ∩ H or 0. Alternating the sum
and using linearity of expectation,

E[χ] = 1 +
d−1∑

i=1

(−1)iE[ fi (C ∩ H)]

= 1 +
d−1∑

i=1

(−1)i
(
fi+1(C) − 2

∑

F∈Fi+1(C)

v0(F)

)

= 1 −
d∑

i=2

(−1)i fi (C) + 2
d∑

i=2

∑

F∈Fi (C)

(−1)dim Fv0(F)

= 1 + f0(C) − f1(C) −
d∑

i=0

(−1)i fi (C)

+ 2

(
− v0(0) +

∑

F∈F1(C)

v0(F) +
∑

F∈F(C)

(−1)dim Fv0(F)

)

= 2
∑

F∈F(C)

v0(F)(−1)dim F ,

where in the final step we used the Euler relation (2.1), the fact that f1(C) =
2

∑
dim F=1 v0(F) (because each F◦ is a halfspace), and f0(C) = v0(0) = 1. Com-

bining this with (4.3) yields the claim. ��

The following theorem is a simple generalization of Sommerville’s Theorem.Recall
from Sect. 2.2 that vG(F) = 0 if G is not contained in F .

Theorem 4.2 Let C ⊆ R
d be a polyhedral cone. Then for any face G ⊆ C,

(−1)dimGvG(C) =
∑

F∈F(C)

(−1)dim FvG(F). (4.4)

Proof If G = 0 then we obtain Sommerville’s Theorem 4.1. Let G �= 0 and let C/G
denote the orthogonal projection of C onto the orthogonal complement of the linear
span of G. It follows from the Gaussian distribution that vG(C) = vG(G) v0(C/G),
which can be expressed as

vG(G) v0(C/G) = vG(G)
∑

F/G∈F(C/G)

(−1)dim F/Gv0(F/G)

=
∑

F∈F(C)

(−1)dim F−dimGvG(F),
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where in the first step we used Sommerville’s Theorem, and in the second step we
used that vG(F) = 0 if G is not a face of F , and dim F/G = dim F − dimG. This
shows the claim. ��

The following corollary is [15, Thm. 2.8], cf. Sect. 2.3.3.

Corollary 4.3 Let C ⊆ R
d be a closed convex cone. Then

(−1)kvk(C) =
∑

F∈F(C)

(−1)dim Fvk(F). (4.5)

Proof Follows by summing in (4.4) over all k-dimensional faces and noting that for
every face F of C we have Fk(F) ⊆ Fk(C). ��
Corollary 4.4 (Gauss–Bonnet) For a polyhedral cone C,

d∑

i=0

(−1)ivi (C) =
d∑

i=0

(−1)i fi (C) =
{

(−1)dimC if C is a linear subspace,

0 else.
(4.6)

Proof Summing the terms in (4.5) over k and using
∑d

k=0 vk(C) = 1 yields

d∑

k=0

(−1)kvk(C) =
d∑

k=0

∑

F∈F(C)

(−1)dim Fvk(F)

=
∑

F∈F(C)

(−1)dim F
d∑

k=0

vk(F) =
d∑

k=0

(−1)k fk(C).

The rest follows from the Euler relation (2.1). ��
If C is not a linear subspace, then the Gauss–Bonnet relation can be interpreted

as saying that the random variable V on {0, 1, . . . , d} given by P{V = k} = vk(C),
actually decomposes into two random variables V 0, V 1 on {0, 2, 4, . . . , 2�d/2�} and
{1, 3, 5, . . . , 2�(d − 1)/2� + 1}, respectively, such that

P{V 0 = k} = 2vk(C) if k even, P{V 1 = k} = 2vk(C) if k odd.

In fact, the same argument that gives the general Steiner formula (3.2) also shows that

(‖�C (g0)‖2, ‖�C◦(g0)‖2) d= (
XV 0 ,Yd−V 0

)
,

(‖�C (g1)‖2, ‖�C◦(g1)‖2) d= (
XV 1 ,Yd−V 1

)
,

where g0 and g1 denote Gaussian vectors conditioned on their projection on C
falling in an even- or odd-dimensional face, respectively, and Xk,Yk are independent
χ2-distributed random variables with k degrees of freedom. We can paraphrase (4.5)
in terms of the moments of these random variables.
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Corollary 4.5 Let f : R
2+ → R be a Borel measurable function, and for C ⊆ R

d a
polyhedral cone, which is not a linear subspace, let ϕ f (C), ϕ0

f (C), ϕ1
f (C) denote the

moments

ϕ f (C) = E
[
f
(‖�C (g)‖2, ‖�C◦(g)‖2)],

ϕ
0/1
f (C) = E

[
f
(‖�C (g0/1)‖2, ‖�C◦(g0/1)‖2)].

Then we have

ϕ0
f (C) − ϕ1

f (C)

2
=

∑

F∈F(C)

(−1)dim Fϕ f (F),

ϕ f (C) =
∑

F∈F(C)

(−1)dim F
ϕ0
f (F) − ϕ1

f (F)

2
.

Proof The first equation is obtained by invoking the general Steiner formula and
applying (4.5):

ϕ0
f (C) − ϕ1

f (C)

2
=

d∑

k=0

(−1)kE
[
f
(
Xk,Yd−k

)]
vk(C)

=
d∑

k=0

E
[
f
(
Xk,Yd−k

)] ∑

F∈F(C)

(−1)dim Fvk(F)

=
∑

F∈F(C)

(−1)dim Fϕ f (F).

The second equation is obtained by using Möbius inversion (2.12) and noting that the
Möbius function of the face lattice is μ(F,C) = (−1)dimC−dim F . ��

We list a few more corollaries, the usefulness of which may yet need to be estab-
lished. The proofs are variations of the proof of Corollary 4.4.

Corollary 4.6 For the statistical dimension δ(C) we obtain

d∑

k=0

(−1)kk · vk(C) =
∑

F∈F(C)

(−1)dim Fδ(F).

In particular, if dimC is odd, then

2
∑

k even

k vk(C) =
∑

F⊂C

(−1)dim Fδ(F),
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and if dimC is even, then

2
∑

k odd

k vk(C) = −
∑

F⊂C

(−1)dim Fδ(F).

Corollary 4.7 Let VC be the random variable on {0, 1, . . . , d} defined by P{VC =
k} = vk(C). The alternating sum of the exponential generating function satisfies

E
[
(−1)VC etVC

] =
∑

F∈F(C)

(−1)dim F
E

[
etVF

]
.

Remark 4.8 TheGauss–Bonnet relation can also bewritten out as
∑

F∈F(C)(−1)dim F

vF (C) = 0, if C is not a linear subspace. If G ∈ F(C) is a proper face, i.e., G �= C ,
then one can apply Gauss–Bonnet to the projected cone C/G, as in the deduction of
Theorem 4.2 from Sommerville’s Theorem 4.1, to obtain

∑

F∈F(C)

(−1)dim FvF/G(C/G) = 0.

Rewriting this formula in terms of internal/external angles, and extending this to
include also the case G = C , one obtains

∑

G≤F≤C

(−1)dim F−dimGβ(G, F) γ (F,C) =
{
1 if F = G,

0 else,

where ≤ denotes the order relation in the face lattice, i.e., the inclusion relation.
In [25] McMullen observed that this relation means that the internal and external
angle functions (one of them multiplied by the Möbius function) are mutual inverses
in the incidence algebra of the face lattice, cf. Sect. 2.4. More precisely, the Gauss–
Bonnet relation only shows that one of them is the left-inverse of the other (and of
course the other is a right-inverse of the first), but since left-inverse, right-inverse, or
two-sided inverse are equivalent in the incidence algebra [33, Prop. 3.6.3] one obtains
the following additional relation “for free”:

∑

G≤F≤C

(−1)dimC−dim Fγ (G, F) β(F,C) =
{
1 if F = G,

0 else.

This is [25, Thm. 3].

The relation (4.2) used in the proof of Sommerville’s Theorem 4.1 is a special case
of the principal kinematic formula, to be derived in more detail next.
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5 Elementary Kinematics for Polyhedral Cones

The principal kinematic formulae of integral geometry relate the intrinsic volumes,
or certain measures that localize these quantities, of the intersection of two or more
randomly moved geometric objects to those of the individual objects. This section
presents a direct derivation of the principal kinematic formula in the setting of two
polyhedral cones. The results of this section are special cases of Glasauer’s Kinematic
Formula for spherically convex sets [13,34], though in the spirit of the rest of this
article, our proof is combinatorial, based on the facial decomposition of the cone, and
uses probabilistic terminology.

In what follows, when we say that Q is drawn uniformly at random from the
orthogonal group O(d), we mean that it is drawn from the Haar probability mea-
sure ν on O(d). This is the unique regular Borel measure on O(d) that is left and
right invariant (ν(QA) = ν(AQ) = ν(A) for Q ∈ O(d) and a Borel measurable
A ⊆ O(d)) and satisfies ν(O(d)) = 1. Moreover, for measurable f : O(d) → R+,
we write

EQ∈O(d)[ f (Q)] :=
∫

Q∈O(d)

f (Q) ν(dQ)

for the integral with respect to the Haar probability measure, and we will occasionally
omit the subscript Q ∈ O(d), or just write Q in the subscript, when there is no
ambiguity.More information on invariant measures in the context of integral geometry
can be found in [34, Chap. 13].

Theorem 5.1 (Kinematic Formula) Let C, D ⊆ R
d be polyhedral cones. Then, for

Q ∈ O(d) uniformly at random, and k > 0,

E[vk(C ∩ QD)] = vk+d(C × D), E[v0(C ∩ QD)] =
d∑

j=0

v j (C × D). (5.1)

If D = L is a linear subspace of dimension d − m, then

E[vk(C ∩ QL)] = vk+m(C), E[v0(C ∩ QL)] =
m∑

j=0

v j (C). (5.2)

Implicit in the statement of the theorem is the integrability of vk(C ∩ QD) as a
function of Q. This will be established in the proof. Recall that the intrinsic volumes
of C × D are obtained by convoluting the intrinsic volumes of C and D, cf. Sect. 2.2.
The second equation in (5.1) follows from the first and from

∑
k vk(C) = 1, and

statement (5.2) follows from (5.1) by applying the product rule (2.9). Note also that
using polarity (Proposition 2.5) on both sides of (5.1) we obtain the polar kinematic
formulas

E[vd−k(C + QD)] = vd−k(C × D), E[vd(C + QD)] =
d∑

j=0

vd+ j (C × D),

(5.3)
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and similarly for (5.2). Combining Theorem 5.1 with the Gauss–Bonnet relation (4.6)
yields the so-called Crofton formulas, which we formulate in the following corollary.
They relate the Grassmann angles (see Sect. 2.3.3) to the intrinsic volumes.

Corollary 5.2 Let C, D ⊆ R
d be polyhedral cones such that not both of C and D are

linear subspaces. Then, for Q ∈ O(d) uniformly at random,

P{C ∩ QD �= 0} = 2
∑

i≥1 odd

vd+i (C × D).

In particular, if D = L is a linear subspace of dimension d − m,

P{C ∩ QL �= 0} = 2
∑

i≥1 odd

vm+i (C).

For the derivation of this corollary, and for later use, we need the following gener-
icity lemma. Recall from Sect. 2.1 that two cones C, D ⊆ R

d are said to intersect
transversely, writtenC � D, if relint(C)∩relint(D) �= ∅ and dim(C∩D) = dim(C)+
dim(D)−d. For the rest of this section, we use the notation LC := lin(C) = C+(−C)

for the linear span of a convex cone C .

Lemma 5.3 Let C, D ⊆ R
d be polyhedral cones. Then for Q ∈ O(d) uniformly at

random, almost surely either C ∩ QD = 0 or C � QD holds. In particular, if not
both of C and D are linear subspaces, then almost surely either C ∩ QD = 0, or
C ∩ QD is not a linear subspace.

Proof The set S of Q ∈ O(d)with dim LF ∩ QLG �= max{0, dim LF +dim LG −d}
for some (F,G) ∈ F(C)×F(D) hasmeasure zero, see for example [34, Lem. 13.2.1].

Assume Q /∈ S and C ∩ QD �= 0. If relint(C) ∩ relint(QD) �= ∅, then Q /∈ S
implies dimC ∩ QD = dimC + dim D − d, and hence C � QD. If relint(C) ∩
relint(QD) = ∅, then by the Separating Hyperplane Theorem 2.2 there exists a
hyperplane H such thatC ⊆ H+ and QD ⊆ H−. Let F = C∩H andG = D∩ QT H .
By the assumption C ∩ QD �= 0, we have F �= 0 and G �= 0. Since LF and QLG

are in H and dim H = d − 1, we get dim LF ∩ QLG ≥ dim LF + dim LG −
d + 1 and therefore Q ∈ S, which contradicts our assumption. We thus established
{Q ∈ O(d) : C ∩ QD �= 0 and C �� QD} ⊆ S.

For the second claim, assume that C is not a linear subspace. The lineality space of
C , C ∩ (−C), is contained in every supporting hyperplane of C , and therefore does
not intersect relint(C). If C � QD, then there exists nonzero x ∈ relint(C) ∩ QD.
In particular, x does not lie in the lineality space of C . Since the lineality space of
the intersection C ∩ QD is the intersection of the lineality spaces of C and of QD,
it follows that x is in the complement of the lineality space of C ∩ QD in C ∩ QD,
which shows that C ∩ QD is not a linear subspace. ��
Proof of Corollary 5.2 Denoting χ(C) := ∑d

i=0(−1)ivi (C), the Gauss–Bonnet rela-
tion (4.6) says that χ(C) = 0 if C is not a linear subspace, and χ(0) = 1. By
Lemma 5.3 we see that χ is almost surely the indicator function for the event that C
and D only intersect at the origin. We can therefore conclude,
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P{C ∩ QD = 0} = E[χ(C ∩ QD)]

= E[ v0(C ∩ QD)︸ ︷︷ ︸
=1−∑d

i=1 vi (C∩QD)

] +
d∑

i=1

(−1)iE[vi (C ∩ QD)]

= 1 − 2
∑

i≥1 odd

E[vi (C ∩ QD)] (5.1)= 1 − 2
∑

i≥1 odd

vd+i (C × D).

The second claim follows by replacing D with L . ��
Our proof of Theorem 5.1 is based on a classic “double counting” argument; to

illustrate this, we first consider an analogous situation with finite sets. We note that
Proposition 5.4 generalizes without difficulties to the setting of compact groups acting
on topological spaces, as in [34, Thm. 13.1.4].

Proposition 5.4 Let � be a finite set and G be a finite group acting transitively on �.
Let M, N ⊆ � be subsets. Then for uniformly random γ ∈ G,

Eγ ∈G |M ∩ γ N | = |M ||N |
|�| . (5.4)

Proof Taking ξ ∈ � uniformly at random, we obtain the cardinality of M as |�| ·
P{ξ ∈ M}. Introduce the indicator function 1M (ξ) for the event ξ ∈ M and note that
1γ N (x) = 1N (γ −1x) and Eγ ∈G[1N (γ −1x)] = |N |/|�| for any x ∈ �. It follows that
the random variables 1M (ξ), 1γ N (ξ) are uncorrelated:

Eγ ∈G |M ∩ γ N | = |�| · Eγ ∈G[Eξ∈�[1M (ξ) 1γ N (ξ)]]
= |�| · Eξ∈�[1M (ξ) Eγ ∈G[1N (γ −1ξ)]]
= Eξ∈�[1M (ξ)] · |N | = |M ||N |

|�| .

��
Lemma 5.5 uses the same idea to establish the kinematic formula for the Gaussian

measure of cones of different dimensions, and Theorem 5.1 then follows by applying
this to the pairwise intersection of faces.

Lemma 5.5 Let C, D ⊆ R
d be polyhedral cones with dimC = j and dim D = �,

and assume 0 < k ≤ d. If j + � = k + d, then for Q ∈ O(d) uniformly at random,

E[vk(C ∩ QD)] = v j (C) v�(D). (5.5)

If j + � = d − k, then for Q ∈ O(d) uniformly at random,

E[vd−k(C + QD)] = v j (C) v�(D). (5.6)

The proof of Lemma 5.5 relies crucially on the left and right invariance of the
Haar measure, which implies that for any measurable f : O(d) → R+ and fixed
Q0, Q1 ∈ O(d),
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EQ∈O(d)[ f (QQ0)] = EQ∈O(d)[ f (Q1Q)] = EQ∈O(d)[ f (Q)]. (5.7)

For a linear subspace L ⊆ R
d , we can (and will) naturally identify the group O(L) of

orthogonal transformations of L with the subgroup of O(d) consisting of those Q ∈
O(d) for which Qx = x for x ∈ L⊥. The group O(L) carries its ownHaar probability
measure. We also use the following characterization of the Gaussian volume of a
convex cone C ⊆ R

d :
vd(C) = EQ∈O(d)[1C (Qx)], (5.8)

where x �= 0 arbitrary. This characterization follows from the fact that for Q ∈ O(d)

uniformly at random, the point Qx is uniformly distributed on the sphere of radius
‖x‖.
Proof of Lemma 5.5 For illustration purposes we first prove (5.5) in the case k = d,
as it is almost a carbon copy of the proof of Proposition 5.4 and [34, Thm. 13.1.4].
We need to show that

EQ∈O(d)[vd(C ∩ QD)] = vd(C) vd(D).

Note that the map Q �→ vd(C ∩ QD) is in fact measurable; this follows from the
characterization

vd(C ∩ QD) = Eg∼N (Rd )[1C∩QD(g)] = Eg∼N (Rd )[1C (g) 1D(QT g)],

the measurability of (x, Q) �→ 1C (x)1D(QT x), and the fact that the integral
Eg∼N (Rd )[1C (g) 1D(QT g)] is then measurable in Q, see for example [29, Thm. 8.5].
Fubini’s Theorem and (5.8) then yield

EQ∈O(d)[vd(C ∩ QD)] = EQ∈O(d)[Eg∼N (Rd )[1C (g) 1QD(g)]]
= Eg∼N (Rd )[1C (g) EQ∈O(d)[1D(QT g)]]
= Eg∼N (Rd )[1C (g)] vd(D) = vd(C) vd(D).

We proceed with the general case of (5.5). By Lemma 5.3, almost surely dim LC ∩
QLD = k and dim(C ∩ QD) = k or C ∩ QD = 0. For generic Q we can therefore
write

vk(C ∩ QD) = Eg∈N (LC∩QLD)[1C (g) 1QD(g)]
= Eg∈N (LC∩QLD)[1C (g) 1D(QT g)].

We thus need to show that

EQ∈O(d)Eg∈N (LC∩QLD)[1C (g) 1D(QT g)] = v j (C) v�(D). (5.9)

To see that the map Q �→ vk(C ∩ QD) is measurable, note that, using the fact that the
orthogonal projection of a Gaussian vector to a subspace is again Gaussian, we have
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Eg∈N (LC∩QLD)[1C (g) 1D(QT g)]
= Eg∈N (Rd )[1C (�LC∩QLD (g)) 1D(QT�LC∩QLD (g))].

It is enough to verify that the projection �LC∩QLD (x) is continuous in x and Q
outside a set of measure zero; the measurability of vk(C ∩ QD) then follows from the
same considerations as in the case k = d. If C � QD, then LC ∩ QLD is the kernel
of a matrix of rank d − k whose rows depend continuously on Q. The projection
�LC∩QLD (x) depends continuously on x and on this matrix, and therefore also on Q.

We now proceed to show identity (5.9). Let Q0 ∈ O(LD). By the orthogonal
invariance (5.7),

EQ∈O(d)Eg∈N (LC∩QLD)[1C (g) 1D(QT g)]
= EQ∈O(d)Eg∈N (LC∩QQ0LD)[1C (g) 1D(QT

0 QT g)].

Since this holds for any Q0 ∈ O(LD), we can choose Q0 ∈ O(LD) uniformly at
random to obtain

EQ∈O(d)Eg∈N (LC∩QLD)[1C (g) 1QD(g)]
= EQ0∈O(LD)EQ∈O(d)Eg∈N (LC∩QQ0LD)[1C (g) 1D(QT

0 QT g)]
(1)= EQ0∈O(LD)EQ∈O(d)Eg∈N (LC∩QLD)[1C (g) 1D(QT

0 QT g)]
(2)= EQ∈O(d)Eg∈N (LC∩QLD)[1C (g)EQ0∈O(LD)[1D(QT

0 QT g)]]
(3)= EQ∈O(d)Eg∈N (LC∩QLD)[1C (g)] v�(D),

where in (1) we used Q0LD = LD , in (2) we used Fubini’s Theorem, and in (3) we
used (5.8). For the remaining part, replacing Q with Q1Q for Q1 ∈ O(LC ) uniformly
at random, and applying (5.7) again,

EQ∈O(d)Eg∈N (LC∩QLD)[1C (g)] = EQ1∈O(LC )EQ∈O(d)Eg∈N (Q1(LC∩QLD))[1C (g)]
= EQ1∈O(LC )EQ∈O(d)Eg∈N (LC∩QLD)[1C (Q1g)]
= EQ∈O(d)Eg∈N (LC∩QLD)EQ1∈O(LC )[1C (Q1g)]
= v j (C),

where the last equality follows again from (5.8).
We now derive (5.6). By Lemma 5.3, for generic Q, LC ∩ QLD = 0 and dim LC +

QLD = j + � = d − k. Using the fact that an orthogonal projection of a Gaussian
vector is Gaussian, we get

vd−k(C + QD) = Eg∈N (LC+QLD)[1C+QD(g)]
= Eg∈N (Rd )[1C+QD+(LC+QLD)⊥(g)]
= Eg∈N (Rd )[1C+QD+(L⊥

C∩QL⊥
D)(g)].
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The integrability of this expression in Q follows, as above, from the fact that the
projectionmap to LC + QLD is continuous for almost all Q and g. For generic Q, any
g ∈ R

d has a unique decomposition g = gC + gD + g⊥, with gC ∈ LC , gD ∈ QLD ,
g⊥ ∈ (LC + QLD)⊥. Note that gC and gD are not orthogonal projections, and that
the decomposition (even gC ) depends on Q.

From the uniqueness of this decomposition we get the equivalence

g ∈ C + QD + (L⊥
C ∩ QL⊥

D) ⇐⇒ gC ∈ C and gD ∈ QD,

and therefore

E[vd−k(C + QD)] = EQEg∈N (Rd )[1C+QD+(L⊥
C∩QL⊥

D)(g)]
= EQEg∈N (Rd )[1C (gC )1QD(gD)].

Now let Q0 ∈ O(LC ) be fixed. By orthogonal invariance of the Haar measure and of
theGaussian distributionwe can replace Qwith Q0Q and gwith g′ := Q0g.We next
determine the decomposition g′ = g′

C+g′
D+g′⊥ in LC+Q0QLD+(L⊥

C∩Q0QL⊥
D).

Note that under this substitution,

g′ = Q0g = Q0gC + Q0gD + Q0g
⊥,

with Q0gC ∈ LC (by the fact that Q0 ∈ O(LC )), Q0gD ∈ Q0QLD (by definition),
and Q0g

⊥ ∈ Q0(L
⊥
C ∩ QL⊥

D) = (L⊥
C ∩ Q0QL⊥

D) (since Q0 is the identity on L⊥
C ).

By uniqueness of the decomposition,

g′
C = Q0gC , g′

D = Q0gD, g′⊥ = Q0g
⊥ = g⊥.

We therefore have

EQEg∈N (Rd )[1C (gC )1QD(gD)]
= EQ0∈O(LC )EQEg∈N (Rd )[1C (Q0gC )1Q0 QD(Q0gD)]
= EQEg∈N (Rd )[EQ0∈O(LC )[1C (Q0gC )]1D(QT gD)]
= v j (C)EQEg∈N (Rd )[1D(QT gD)],

where we used Fubini in the second and (5.8) in the last equality. Note that QT gD ∈
LD . Repeating the argument above by replacing Q with QQT

1 for Q1 ∈ O(LD), we
get

EQEg∈N (Rd )[1D(QT gD)] = EQ1∈O(LD)EQEg∈N (Rd )[1D(Q1Q
T gD)]

= EQEg∈N (Rd )EQ1∈O(LD)[1D(Q1Q
T gD)] = v�(D),

where again we used (5.8). This finishes the proof. ��
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Proof of Theorem 5.1 We first note that it suffices to prove the first equality in (5.1),
as we can deduce the second from the fact that the intrinsic volumes sum up to one,

E[v0(C ∩ QD)] = E

[
1 −

∑

k>0

vk(C ∩ QD)
]

= 1 −
∑

k>0

E[vk(C ∩ QD)]

=
( ∑

i

vi (C × D)
)

−
( ∑

k>0

vk+d(C × D)
)

=
d∑

j=0

v j (C × D).

(5.10)

The equations in (5.2) follow directly from (5.1) as a special case, since

vk+d(C × L) =
∑

i+ j=k+d

vi (C)v j (L) = vk+m(C)vd−m(L) = vk+m(C)

if L is a linear subspace of dimension d − m.
The genericity Lemma 5.3 implies that the k-dimensional faces of C ∩ QD are

generically of the form F ∩ QG with (F,G) ∈ F(C) ×F(D) and dim F + dimG =
k + d. If we have shown that for F ∈ F j (C), G ∈ F�(D), with j + � > d, one has

E[vF∩QG(C ∩ QD) · 1{F�QG}] = vF (C) vG(D), (5.11)

then the kinematic formula follows by noting that vF (C)vG(D) = vF×G(C × D) and

E[vk(C ∩ QD)] =
∑

(F,G)∈F(C)×F(D)
dim F+dimG=k+d

E[vF∩QG(C ∩ QD) · 1{F�QG}]

=
∑

(F,G)∈F(C)×F(D)
dim F+dimG=k+d

vF×G(C × D) = vk+d(C × D).

It remains to show (5.11). By (2.8) and Lemma 5.3, almost surely

vF∩QG(C ∩ QD) · 1{F�QG} = vk(F ∩ QG) vd−k(NFC + QNGD).

The integrability of these terms has been shown in the proof of Lemma 5.5, which
shows the integrability in (5.1). In order to prove (5.11) we proceed as in the proof
of Lemma 5.5. Let Q0 ∈ O(LF ) be uniformly at random. Note that the normal cone
NFC lies in the orthogonal complement of LF , so that Q0 leaves the normal cone
invariant. Using the invariance of the Haar measure as in the proof of Lemma 5.5,

EQ[vF∩QG(C ∩ QD) · 1{F�QG}]
= EQ[vk(F ∩ QG) vd−k(NFC + QNGD)]
= EQ0

EQ[vk(F ∩ Q0QG) vd−k(NFC + Q0QNGD)]
(1)= EQ0

EQ[vk(QT
0 F ∩ QG) vd−k(QT

0 NFC + QNGD)]
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= EQ
[
EQ0

[vk(QT
0 F ∩ QG)]vd−k(NFC + QNGD)

]

= EQ
[
EQ0

[vk(QT
0 F ∩ (QG ∩ LF ))]vd−k(NFC + QNGD)

]

= EQ
[
EQ0

[vk(F ∩ Q0(QG ∩ LF ))]vd−k(NFC + QNGD)
]

(2)= v j (F) EQ
[
vk(LF ∩ QG)vd−k(NFC + QNGD)

]
,

where in (1) we used the orthogonal invariance of the intrinsic volumes and in (2)
we applied Lemma 5.5 to the inner expectation (note that the dimensions match).
Comparing the first line with the last line we see that the term v j (F) could be extracted
by replacing F with LF . Repeating the same trick by replacing Q with QQ1 for
Q1 ∈ O(LD), we get

EQ[vF∩QG(C ∩ QD) · 1{F�QG}]
= v j (F)v�(G) EQ

[
vk(LF ∩ QLG)vd−k(NFC + QNGD)

]

= v j (F)v�(G) EQ
[
vd−k(NFC + QNGD)

]

= v j (F)v�(G)vd− j (NFC)vd−�(NGD) = vF (C)vG(D),

where in the second equation we used that vk(LF ∩ QLG) = 1, and the last equality
follows from (5.6). ��
Remark 5.6 In the literature there are roughly two different strategies used to derive
kinematic formulas:

(1) Use a characterisation theorem for the intrinsic volumes (or a suitable localisa-
tion thereof) that shows that certain types of functions in a cone must be linear
combinations of the intrinsic volumes. This approach is common in integral geom-
etry [21,34], see [2,13] for the spherical/conic setting.

(2) Assume that the boundary of the cone intersected with a sphere is a smooth
hypersurface; then argue over the curvature of the intersection of the boundaries.
For a general version of this approach, with references to related work, see [17].

The second approach is usually also based on a double-counting argument that involves
the co-area formula. Our proof can be interpreted as a piecewise-linear version of this
approach.

6 The Klivans–Swartz Relation for Hyperplane Arrangements

While the most natural lattice structure associated to a polyhedral cone is arguably
its face lattice, there is also the intersection lattice generated by the hyperplanes that
are spanned by the facets of the cone (assuming that the cone has non-empty interior;
otherwise one can argue within the linear span of the cone). In this section we present
a deep and useful relation between this intersection lattice and the intrinsic volumes of
the regions of the hyperplane arrangement, which is due to Klivans and Swartz [22],
and which we will generalize to also include the faces of the regions. We finish this
section with some applications of this result.
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Let A be a hyperplane arrangement in R
d . Recall from (2.17) the notationR j (A)

and r j (A) for the set of j-dimensional regions of the arrangement and for their cardi-
nality, respectively. Also recall Zaslavsky’s Theorem 2.13, which is the briefly stated
identity r j (A) = (−1) j χA, j (−1), where χA, j denotes the j th-level characteristic
polynomial of the arrangement. Expressing this polynomial in the form

χA, j (t) =
j∑

k=0

a jk t
k,

and using the identity
∑

k vk(C) = 1, we can rewrite Zaslavsky’s result in the form

j∑

k=0

∑

F∈R j (A)

vk(F) =
j∑

k=0

(−1) j−ka jk .

Klivans and Swartz [22] have proved that in the case j = d this equality of sums
is in fact an equality of the summands. We will extend this and show that for all j
the summands are equal. In particular, taking the sum of intrinsic volumes of all
regions of a certain dimension j in a hyperplane arrangement yields a quantity that is
solely expressible in the lattice structure of the hyperplane arrangement. So while the
intrinsic volumes of a single region are certainly not necessarily invariant under any
nonsingular linear transformations, the sum of intrinsic volumes over all regions of a
fixed dimension is indeed invariant under any nonsingular linear transformations.

Theorem 6.1 Let A be a hyperplane arrangement in R
d . Then for 0 ≤ j ≤ d,

∑

F∈R j (A)

PF (t) = (−1) jχA, j (−t),

where PF (t) = ∑
k vk(F)tk . In terms of the intrinsic volumes, for 0 ≤ k ≤ j ,

∑

F∈R j (A)

vk(F) = (−1) j−ka jk, (6.1)

where a jk is the coefficient of tk in χA, j (t).

Note that in the special case j = k we obtain
∑

F∈R j (A) v j (F) = � j (A), which
is easily verified directly. We derive a concise proof of Theorem 6.1 by combining
Zaslavsky’s Theorem with the kinematic formula. A similar, though slightly different,
proof strategy using the kinematic formula was recently employed in [20] to derive
Klivans and Swartz’s result.

The cases j = 0, 1 will be shown directly; in the case j ≥ 2 we prove (6.1) by
induction on k. This proof by induction naturally consists of two steps:
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(1) For the case k = 0 we need to show

∑

F∈R j (A)

v0(F) = (−1) j a j0.

Let H be a hyperplane in general position relative to A, that is, H intersects all
subspaces in L(A) transversely. In H consider the restriction AH = {H ′ ∩ H :
H ′ ∈ A}. The number of ( j − 1)-dimensional regions in AH is given by the
number of j-dimensional regions in A, which are hit by the hyperplane H . With
the simplest case of the Crofton formula (4.2), we obtain for a uniformly random
hyperplane H ,

E
[
r j−1(AH )

] =
∑

F∈R j (A)

P{F ∩ H �= 0}

=
∑

F∈R j (A)

(1 − 2v0(F)) = r j (A) − 2
∑

F∈R j (A)

v0(F),

and therefore,

∑

F∈R j (A)

v0(F) = 1

2
(r j (A) − E[r j−1(AH )]). (6.2)

We will see below that r j−1(AH ) is almost surely constant (which eliminates the
expectation on the left-hand side) and is in fact expressible in terms of χA, j . This
will give the basis step in a proof by induction on k of (6.1).

(2) For the induction step we use the kinematic formula (5.2) with m = 1, that gives
for a uniformly random hyperplane H ,

∑

F∈R j (A)

v1(F) =
∑

F∈R j (A)

(
E[v0(F ∩ H)] − v0(F)

)

= E

[ ∑

F∈R j (A)

v0(F ∩ H)
]

−
∑

F∈R j (A)

v0(F), (6.3)

∑

F∈R j (A)

vk(F) =
∑

F∈R j (A)

E[vk−1(F ∩ H)]

= E

[ ∑

F∈R j (A)

vk−1(F ∩ H)
]
, if k ≥ 2. (6.4)

Notice that if the summation would be over the regions inAH , then we could (and
in fact can if k ≥ 2) apply the induction hypothesis and express

∑
vk(C ∩ H)

in terms of the characteristic polynomials of AH , which, as we will see below,
is constant for generic H and expressible in the characteristic polynomial of A.
Since the summation is over the regions of A we need to be a bit careful in the
case k = 1.
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To implement this idea we need to understand how the characteristic polynomial of a
hyperplane arrangement changes when adding a hyperplane in general position.

Lemma 6.2 Let A be a hyperplane arrangement in R
d , and let j ≥ 2. If H ⊂ R

d

is a linear hyperplane in general position relative to A, then the ( j − 1)th-level
characteristic polynomial of the reduced arrangementAH and the number of ( j −1)-
dimensional regions of AH are given by

χAH , j−1(t) = χA, j (0) + χA, j (t) − χA, j (0)

t
,

r j−1(AH ) = r j (A) − (−1) j2χA, j (0).

In terms of coefficients, if χA, j (t) = ∑
k a jk tk , then

χAH , j−1(t) = a j0 +
j∑

k=1

a jk t
k−1, r j−1(AH ) = r j (A) − (−1) j2a j0. (6.5)

Proof Note first that if L̃, L ∈ L(A), with dim L̃, dim L ≥ 2, then L̃ ⊇ L if and only
if L̃ ∩ H ⊇ L ∩ H . Indeed, if L̃ ∩ H ⊇ L ∩ H , then

dim(L̃ ∩ L) − 1 = dim(L̃ ∩ L ∩ H) = dim(L ∩ H) = dim L − 1 ≥ 1,

where we used the assumption that H intersects all subspaces in L(A) transversely.
Hence, dim L = dim(L̃ ∩ L), and L̃ ⊇ L . In other words, the map L �→ L ∩ H is
a bijection between L j (A) and L j−1(AH ) for all j ≥ 2 that is compatible with the
partial orders on L(A) and L(AH ). Of course, all elements in L0(A) ∪ L1(A) are
mapped to 0.

Now, recall the form of the j th-level characteristic polynomial (2.13)

χA, j (t) =
j∑

k=0

a jk t
k, a jk =

∑

L̃∈L j (A)

∑

L∈Lk (A)

μ(L̃, L),

and also recall the recursive definition of the Möbius function (2.11), μ(L̃, L) = 0 if
L̃ � L , and

μ(L , L) = 1, μ(L̃, L) = −
∑

L̃⊇M⊃L

μ(L̃, M) if L̃ ⊃ L .

From the above observation about the setsL j (A) andL j−1(AH ) for j ≥ 2 we obtain

∀L̃, L ∈ L(A), dim L̃, dim L ≥ 2 : μ(L̃, L) = μ̄(L̃ ∩ H, L ∩ H),

where μ̄ shall denote theMöbius function onL(AH ). This shows the claimed formula
for the nonconstant coefficients of χAH , j−1. We obtain the claim for the constant
coefficient by noting that for L ∈ L(A), dim L ≥ 2, and L̄ := L ∩ H ,
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μ̄(L̄, 0) = −
∑

L̄⊇M̄⊃0

μ̄(L̄, M̄) = −
∑

L⊇M
dim M≥2

μ̄(L ∩ H, M ∩ H)

= −
∑

L⊇M
dim M≥2

μ(L , M),

so that the constant coefficient of χAH , j−1 is given by

ā j−1,0 = −
∑

L∈Lk (A)

∑

L⊇M
dim M≥2

μ(L , M).

The constant and linear coefficients of χA, j are given by

a j0 =
∑

L∈L j (A)

μ(L , 0) = −
∑

L∈L j (A)

∑

L⊇M
dim M≥1

μ(L , M)

= −
∑

L∈L j (A)

∑

L⊇M
dim M≥2

μ(L , M) −
∑

L∈L j (A)

∑

M∈L1(A),L⊇M

μ(L , M),

a j1 =
∑

L∈L j (A)

∑

M∈L1(A),L⊇M

μ(L , M),

which shows that indeed ā j−1,0 = a j0+a j1. As for the claimed formula for r j−1(AH )

we use Zaslavsky’s Theorem 2.13 to obtain

r j−1(AH ) = (−1) j−1 χAH , j−1(−1)

= (−1) j−1 (
2χA, j (0) − χA, j (−1)

) = r j (A) − (−1) j2χA, j (0),

which finishes the proof. ��
Proof of Theorem 6.1 We first verify the cases j = 0, 1 directly. Recall from (2.16)
that χA,0(t) = �0(A) and χA,1(t) = �1(A)(t − �0(A)), where � j (A) = |L j (A)|.
In a linear hyperplane arrangement we have at most one 0-dimensional region, and
R0(A) = L0(A) (possibly both empty). Therefore,

∑

F∈R0(A)

PF (t) = r0(A) = �0(A) = χA,0(−t).

As for the case j = 1, note first that if r0(A) = 0, then R1(A) = L1(A) and the
claim follows as in the case j = 0. If on the other hand r0(A) = 1, then every line
L ∈ L1(A) corresponds to two rays F+, F− ∈ R1(A), that is, r1(A) = 2�1(A). Since
v1(F±) = v0(F±) = 1/2, and �0(A) = 1, we obtain

∑

F∈R1(A)

PF (t) = r1(A)

2
(t + 1) = �1(A)(t + �0(A)) = −χA,1(−t).
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We now assume j ≥ 2 and proceed by induction on k starting with k = 0. In (6.2)
we have seen that

∑

F∈R j (A)

v0(F) = 1

2
(r j (A) − E[r j−1(AH )]).

From Lemma 6.2 we obtain that r j−1(AH ) is almost surely constant and given by
r j (A) − (−1) j2χA, j (0). Therefore,

∑

F∈R j (A)

v0(F) = 1

2

(
r j (A) − (

r j (A) − (−1) j2χA, j (0)
))

= (−1) jχA, j (0) = (−1) j a j0.

This settles the case k = 0. For k > 0 we need to distinguish between k = 1 and
k ≥ 2. From (6.3), we obtain, using the case k = 0 and Lemma 6.2,

∑

F∈R j (A)

v1(F) = E

[ ∑

F∈R j (A)

v0(F ∩ H)
]

−
∑

F∈R j (A)

v0(F)

= E

[ ∑

F̄∈R j−1(AH )

v0(F̄) + |{F ∈ R j (A) : F ∩ H = 0}|
]

− (−1) j a j0

= (−1) j−1(a j0 + a j1) +
∑

F∈R j (A)

P{F ∩ H = 0}︸ ︷︷ ︸
=2v0(F)

−(−1) j a j0

= (−1) j−1(a0 + a1) + 2(−1) j a j0 − (−1) j a j0 = (−1) j−1a1.

This settles the case k = 1. Finally, in the case k ≥ 2 we argue similarly, using that
vi (0) = 0 if i > 0,

∑

F∈R j (A)

vk(C)
(6.4)= E

[ ∑

F∈R j (A)

vk−1(F ∩ H)
]

= E

[ ∑

F̄∈R j−1(AH )

vk−1(F̄)
]

= (−1) j−1−(k−1)ā jk = (−1) j−ka jk . ��
Remark 6.3 It was pointed out to us by Rolf Schneider that for k > 0, j > 0 and a
subspace L of dimension dim L = d − m, in general position relative to A, one can
(as we did in the case k = 0) use the identity

r j−m(AL) = E[r j−m(AL)] = E

[ ∑

F∈R j (A)

1{L ∩ F �= 0}
]

=
∑

F∈R j (A)

P{L ∩ F �= 0}

to express the sum of the Grassmann angles in terms of the number of regions of the
reduced arrangement. One can then derive the expression (for example, by applying
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Lemma 6.2 iteratively),

r j−m(AL) = (−1) j−m
(
a j0 + · · · + a jm +

j∑

k=m+1

(−1)k−ma jk

)

to express the number of regions of the reduced arrangement in terms of the charac-
teristic polynomial of A. Via the Crofton formulas 5.2, we can use this to recover the
expressions for the intrinsic volumes.

6.1 Applications

In this section we compute some examples and present some applications of Theo-
rem 6.1.

6.1.1 Product Arrangements

Let A,B be two hyperplane arrangements in R
d and R

e, respectively. The product
arrangement in R

d+e is defined as

A × B = {
H × R

e : H ∈ A} ∪ {
R
d × H : H ∈ B}

.

The characteristic polynomial is multiplicative, χA×B(t) = χA(t)χB(t), and so is
the bivariate polynomial (2.14), XA×B(s, t) = XA(s, t)XB(s, t). This can either be
shown directly [26, Chap. 2], or deduced from Theorem 6.1, as the intrinsic volumes
polynomial satisfies PC×D(t) = PC (t)PD(t).

6.1.2 Generic Arrangements

A hyperplane arrangementA is said to be in general position if the corresponding nor-
mal vectors are linearly independent.2 Combinatorial properties of such arrangements
have been studied by Cover and Efron [10], who generalize results of Schläfli [31]
and Wendel [36] to get expressions for, among other things, the average number of
j-dimensional faces of a region in the arrangement. We set out to compute the char-
acteristic polynomial of an arrangement of hyperplanes in general position, and in the
process recover the formulas of Cover and Efron and a formula of Hug and Schnei-
der [18] for the expected intrinsic volumes of the regions.

Lemma 6.4 LetA = {H1, . . . , Hn} be a generic hyperplane arrangement in R
d with

n ≥ d. Then for 0 < j ≤ d,

2 We only discuss linear hyperplane arrangements; for generic affine hyperplane arrangements see for
example [6].
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(−1) jχA, j (−t) =
( n
d − j

)((n − d + j − 1
j − 1

)
+

j∑

k=1

(n − d + j
j − k

)
tk

)
. (6.6)

Proof Assume first that j = d. The proof in this case relies onWhitney’s theorem [33,
Prop. 3.11.3]

χA(t) =
∑

B⊆A
(−1)|B|td−ρ(B),

where ρ denotes the rank of the arrangement B. We can subdivide the sum into two
parts: ∑

|B|<d

(−1)|B|td−ρ(B) +
∑

|B|≥d

(−1)|B|td−ρ(B).

Since A is in general position, ρ(B) = |B| if |B| ≤ d, and ρ(B) = d if |B| ≥ d.
Collecting terms with equal rank, we obtain

χA(t) =
d−1∑

k=0

(n
k

)
(−1)k td−k +

n∑

k=d

(n
k

)
(−1)k .

An easy induction proof shows that
∑n

k=d

(n
k

)
(−1)k = (n−1

d−1

)
(−1)d , which settles the

case j = d.
For the case 0 < j < d note that if L ∈ L j (A), then L is the intersection of

d − j uniquely determined hyperplanes, and the restriction AL is a generic hyper-
plane arrangement in L consisting of n − d + j hyperplanes. Furthermore, there are
exactly

( n
d− j

)
linear subspaces of dimension j in L(A). Therefore, using the charac-

terisation (2.15) of the j th-level characteristic polynomial, we obtain

(−1) jχA, j (−t) =
∑

L∈L j (A)

(−1) jχAL (−t)

=
( n
d − j

)(( n − d + j − 1
j − 1

)
+

j∑

k=1

( n − d + j
j − k

)
tk

)
,

where the second equality follows from the case j = d. ��
From Zaslavsky’s Theorem 2.13 we obtain from (6.6) the number of j-dimensional

regions in a generic hyperplane arrangement, r j (A), by setting t = 1. Using the
simplification

(n − d + j − 1
j − 1

)
+

j∑

k=1

(n − d + j
j − k

)
= 2

j∑

k=1

( n − d + j − 1
j − k

)

we recognize the right-hand side as Schläfli’s formula [10, (1.1)] for the number of
regions of a generic arrangement of n − d + j hyperplanes in j-dimensional space.
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The resulting formula for r j (A) allows us to recover the formula of Cover and
Efron [10, Thm. 1] for the sum of the f j (C) over all regions.

If one takes one of these j-dimensional regions uniformly at random, then one
also recovers the expression for the average number of j-dimensional faces from [10,
Thm. 3’]. Moreover, then (6.6) and Theorem 6.1 together yield a closed formula for
the expected intrinsic volumes of the regions. In particular, the d-dimensional regions
have expected intrinsic volumes of

EC∈Rd (A)[v0(C)] = 1

rd(A)

( n − 1
d − 1

)
,

EC∈Rd (A)[vk(C)] = 1

rd(A)

( n
d − k

)
, if k > 0.

This is [18, Thm. 4.1].

6.1.3 Braid and Coxeter Arrangements

Finally, we compute the j th-level characteristic polynomial for the three families of
arrangements

AA := {{x ∈ R
d : xi = x j } : 1 ≤ i < j ≤ d

}
,

ABC := {{x ∈ R
d : xi = ±x j } : 1 ≤ i < j ≤ d

}

∪ {{x ∈ R
d : xi = 0} : 1 ≤ i ≤ d

}
,

AD := {{x ∈ R
d : xi = ±x j } : 1 ≤ i < j ≤ d

}
.

These arrangements are particularly nice to work with as the d-dimensional regions
are all isometric; these chambers are indeed given by

AA : {
x ∈ R

d : xπ(1) ≤ · · · ≤ xπ(d)

}
, π ∈ Sd ,

ABC : {
x ∈ R

d : 0 ≤ s1xπ(1) ≤ · · · ≤ sd xπ(d)

}
, s1, . . . , sd ∈ {±1}, π ∈ Sd ,

AD : {
x ∈ R

d : −s1xπ(1) ≤ s1xπ(1) ≤ · · · ≤ sd xπ(d)

}
,

s1, . . . , sd ∈ {±1}, π ∈ Sd .

The characteristic polynomials of these arrangements are well known, see for exam-
ple [6, Sect. 6.4],

χAA (t) =
d−1∏

i=0

(t − i), χABC (t) =
d−1∏

i=0

(t − 2i − 1),

χAD (t) = (t − d + 1)
d−2∏

i=0

(t − 2i − 1) = χABC (t) + d
d−2∏

i=0

(t − 2i − 1). (6.7)
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The bivariate polynomial XAA (s, t) (along with affine generalizations) has been com-
puted in [7, Thm. 8.3.1]. We derive this again, along with polynomials for the other
two arrangements, from the known characteristic polynomials.

Lemma 6.5 The jth-level characteristic polynomials for the above defined hyper-
plane arrangements are given by

χAA, j (t) =
{d
j

} j−1∏

i=0

(t − i), χABC , j (t) =
{d + 1
j + 1

} j−1∏

i=0

(t − 2i − 1),

χAD, j (t) = χABC , j (t) + j
{ d
j

} j−2∏

i=0

(t − 2i − 1),

where
{d
j

}
denote the Stirling numbers of the second kind.

Proof We first discuss the case A = AA. From the formula for the chambers of A it
is seen that an element in L(A) is of the form

L = {
x ∈ R

d : xπ(k1) = · · · = xπ(�1), xπ(k2) = · · · = xπ(�2), . . .
}
,

where k1 ≤ �1 < k2 ≤ �2 < . . . . More precisely, for L ∈ L j (A) there exists a unique
partition I1, . . . , I j , each non-empty, of {1, . . . , d} such that L = {x ∈ R

d : ∀i =
1, . . . , j, ∀a, b ∈ Ii , xa = xb}. The corresponding reduction AL is easily seen to be
a nonsingular linear transformation of the j-dimensional braid arrangement, so that
χAL (t) = ∏ j−1

i=0 (t − i). Since the number of partitions of {1, . . . , d} into j non-empty

sets is given by
{d
j

}
, cf. [33], and by the characterisation (2.15) of χA, j (t), we obtain

the claim in the case A = AA.
In the caseA = ABC we can argue similarly, but we need to keep in mind the extra

role of the origin. For every element L ∈ L(A) there exists a subset I of {1, . . . , d}
of cardinality |I | ≥ j , and a partition I1, . . . , I j of I such that L = {x ∈ R

d : ∀a /∈
I, xa = 0 and ∀i = 1, . . . , j, ∀a, b ∈ Ii , xa = xb}. The same argument as in the
case A = AA, along with the identity

∑d
i= j

(d
i

){i
j

} = {d+1
j+1

}
, then settles the case

A = ABC .
In the case A = AD we have two types of linear subspaces:

L1 = {
x ∈ R

d : xπ(k1) = · · · = xπ(�1), xπ(k2) = · · · = xπ(�2), . . .
}
,

L2 = {
x ∈ R

d : 0 = xπ(k1) = · · · = xπ(�1), xπ(k2) = · · · = xπ(�2), . . .
}
.

For the first type of linear subspace we obtain a reduction AL1 that is isomorphic
to the arrangement AD , while for the second type we obtain a reduction AL2 that is
isomorphic to the arrangementABC (each, of course, of the corresponding dimension).
The number of subspaces of type L1 is given by

{d
j

}
(as in the case A = AA), while

the number of subspaces of type L2 is given by
{d+1
j+1

}−{d
j

}
(as in the caseA = ABC ,

but noting that |I | = d does not give a BC-type reduction). The same argument as
before now yields the formula
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χAD, j (t) =
{d
j

}
(t − j + 1)

j−2∏

i=0

(t − 2i − 1) +
({d + 1

j + 1

}
−

{ d
j

}) j−1∏

i=0

(t − 2i − 1)

=
{d + 1
j + 1

} j−1∏

i=0

(t − 2i − 1) + j
{d
j

} j−1∏

i=0

(t − 2i − 1),

which settles the case A = AD . ��
As before in the case of generic hyperplanes in Sect. 6.1.2, we finish by considering

resulting formulas for uniformly random j-dimensional regions of the arrangement.
We restrict to the arrangements AA and ABC , and we restrict the formulas to the
statistical dimensions. These statistical dimensions are particularly interesting for
applications as seen in [5], where only the d-dimensional regions were considered.
(Here, of course, the expectation vanishes since all d-chambers of these arrangements
are isometric; for the lower-dimensional regions this is no longer true.)

Recall that the statistical dimension is given by δ(C) = v′
C (1). Using again r j (A) =

(−1) jχA, j (−1), we obtain

1

r j (A)

∑

F∈R j (A)

δ(F) = 1

(−1) jχA, j (−1)

∑

F∈R j (A)

v′
F (1) = −

χ ′
A, j (−1)

χA, j (−1)
.

We thus obtain:

χ ′
AA, j (t) = χAA, j (t)

j−1∑

i=0

1

t − i
, χ ′

ABC , j (t) = χABC , j (t)
j−1∑

i=0

1

t − 2i − 1
,

−χ ′
AA, j (−1)

χAA, j (−1)
=

j−1∑

i=0

1

1 + i
= Hj , −χ ′

ABC , j (−1)

χABC , j (−1)
=

j−1∑

i=0

1

1 + 2i + 1
= 1

2
Hj ,

where Hj denotes the j th harmonic number. We have thus derived the following
application.

Proposition 6.6 Let FA ∈ R j (AA)and FBC ∈ R j (ABC )be chosenuniformly at ran-
dom among all elements inR j (AA) andR j (ABC ), respectively. Then their expected
statistical dimensions are given by

E[δ(FA)] = Hj , E[δ(FBC )] = 1

2
Hj .
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