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Abstract 29 

Movements are essential for the economic success of the livestock industry. These 30 

movements however bring the risk of long-range spread of infection, potentially bringing 31 

infection to previously disease-free areas where subsequent localised transmission can 32 

be devastating. Mechanistic predictive models usually consider controls that minimize 33 

the number of livestock affected without considering other costs of an ongoing 34 

epidemic. However, it is more appropriate to consider the economic burden, as 35 

movement restrictions have major consequences for the economic revenue of farms. 36 

Using mechanistic models of foot-and-mouth disease (FMD), bluetongue virus (BTV) and 37 

bovine tuberculosis (bTB) in the UK, we contrast the economically optimal control 38 

strategies for these diseases. We show that for FMD, the optimal strategy is to ban 39 

movements in a small radius around infected farms; the balance between disease control 40 

and maintaining ‘business as usual’ varies between regions. For BTV and bTB, we find 41 

that the cost of any movement ban is more than the epidemiological benefits due to the 42 

low within-farm prevalence and slow rate of disease spread. This work suggests that 43 

movement controls need to be carefully matched to the epidemiological and economic 44 

consequences of the disease, and optimal movement bans are often far shorter than 45 

existing policy. 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

 54 
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 55 

Recent outbreaks have shown the sensitivity of farming industries to invasion by novel 56 

pathogens, with examples including: the 2001 outbreak of foot and mouth disease (FMD) in the 57 

UK and the Netherlands [1-3]; the 2006-7 outbreaks of bluetongue virus (BTV) to Northern 58 

Europe [4]; the 2014 invasion of Lumpy Skin disease to Greece and the Balkans [5-6]; and the 59 

pan-European spread of Schmallenberg virus since 2011 [7-8]. These recent experiences have 60 

increased fears about novel infections that may threaten livestock industries in disease free 61 

countries in the future, such as avian influenza, african swine fever, Newcastle disease, Rift 62 

Valley fever or brucellosis, in addition to those above. Once established, there are considerable 63 

difficulties in controlling endemic diseases in the livestock industry, as exemplified by infections 64 

in the UK such as Footrot [9], Scrapie [10] and bovine tuberculosis (bTB) [11-12]. Many of these 65 

novel and endemic diseases spread easily between the animals on a farm, which are kept at 66 

relatively high densities, and can spread between farms through a mixture of air-borne infection, 67 

fomites, vector-transmission and animal movements [13]. Of these transmission routes, animal 68 

movements have the potential to lead to very long-distance dispersal of infection, and yet can 69 

be readily prevented through emergency legislation [14]. For this reason, local, regional or 70 

national scale movement restrictions (often banning the non-essential movement of all farm 71 

livestock) are often one of the first control policies to be adopted when an outbreak occurs [15]. 72 

Such bans have the advantage (in comparison to say vaccination or other treatments) that they 73 

are independent of disease etiology and therefore can be enacted before the causative agent 74 

has been fully identified. 75 

 76 

The revenue of livestock farms is largely based on the movement of animals, either through 77 

selling animals to other farms or by moving animals to slaughter. Therefore, adopting any form 78 

of movement restrictions may have substantive economic consequences for the livestock 79 

industry. In the UK, a nationwide ban on animal movements and the “closing of the countryside” 80 



 4

during the 2001 FMD outbreak had huge economic implications for the tourist industry and the 81 

wider rural economy [16]. Given these extreme financial implications, and that money provides a 82 

unified measure for comparing multiple consequences, here we optimise infection control in 83 

terms of minimising the economic consequences of any intervention measure. We adopt an 84 

aggregate, national economic perspective and consider the total costs of an epidemic and the 85 

associated movement controls to both the livestock industry and beyond. In particular we focus 86 

on outbreaks of FMD and BTV, and endemic bTB, which offer contrasting behaviour. FMD is 87 

characterized by extremely rapid within-farm transmission and localized airborne or fomite 88 

spread [2-3]. BTV is a more cryptic infection, often only infecting only a proportion of the animals 89 

on a farm and can spread over large distances by infected midge vectors [17]. bTB is a much 90 

slower infection, generally infecting just one or two animals on a farm; problems with control are 91 

exacerbated by poor test sensitivity [12] and potential reservoirs of infection in wildlife 92 

populations [18-19]. 93 

 94 

Quantifying the economic impact of an animal disease and its management is complex. The 95 

economic costs of an outbreak fall into three broad categories: costs due to loss of production, 96 

control costs and wider economic costs [20]. The large-scale 2001 UK FMD outbreak provided 97 

some of the most comprehensive data available; it is estimated that this outbreak cost the UK 98 

livestock sector £3.1 billion with similar additional costs to the wider economy. However, it is 99 

acknowledged that these wider costs were more challenging to calculate as losses in one area 100 

(e.g. tourism) may have led to gains in other areas of the economy [16]. In addition, economic 101 

impacts may depend in a highly non-linear manner on the scale of an outbreak; a short duration 102 

outbreak may have a limited impact on farming, whereas a protracted outbreak can leave the 103 

industry unable to recover [21]. 104 

In the event of livestock disease outbreaks or the management of endemic disease, there are 105 

economic trade offs that need to be taken into account when considering a set of control options 106 
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[22] and the policy that is deemed to be optimal may be dependent upon specific demographic 107 

characteristics and the state of the outbreak as it evolves in time [23-25]. Recently, complex 108 

economic models have been developed which capture the multitude of economic interactions 109 

that are perturbed by an infectious disease outbreak and the subsequent control measures. 110 

These have been used to calculate the economic impact of outbreaks such as FMD in the UK 111 

[26] and South America [27], avian influenza in the Netherlands [28] and Rift Valley Fever in 112 

Kenya [29]. Here we use a simpler approach in which the cost calculation is comprised of the 113 

economic impact on up to five different sectors, linearly dependent on different attributed of 114 

each disease. This approach is designed to enable comparisons between different policies and 115 

indicate those that are optimal in reducing outbreak costs; we recognise that this is a 116 

simplification of the true economic cost of an outbreak, especially if different controls can 117 

generate extremes of epidemic size and duration. 118 

 119 

In this paper, we use state of the art mathematical models [2,12, 30-31] to investigate the cost-120 

effectiveness of local and regional movement control upon outbreaks of FMD and BTV and the 121 

endemic dynamics of bTB in the UK. Such policies, if implemented effectively, could balance the 122 

need of containing and controlling the spread of infection with the economic incentive of 123 

maximising business continuity for a large number of unaffected farms. 124 

For all three diseases we used sophisticated stochastic spatial simulations, which are matched 125 

to historical epidemiological data; these are used to address how costs (including culling, 126 

testing, loss of exports and tourism) vary with the scale and nature of movement restrictions. All 127 

simulations reflect disease-specific transmission routes and control measures. As such, 128 

localized high-risk (dangerous contact) culling is implemented for FMD, a range of movement 129 

zones (protection and surveillance zones) are enforced for BTV, while for bTB a targeted test-130 

and-slaughter policy is enacted. Greater information on the formulation of the models is included 131 

in the Supplementary Material. These three infections reflect different contributions of 132 
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movements to the spread of infection; in the absence of movement controls, the movement of 133 

cattle accounts for 28% (26%-31%), 4% (2%-15%) and 13% (7%-22%) for FMD, BTV and bTB 134 

respectively (95% confidence intervals are given in brackets).  135 

 136 

For a given set of movement controls, we consider five factors that may contribute to the overall 137 

national cost of the outbreak: (i) the number (and type) of animals infected, and their eventual 138 

fate; (ii) the number (and type) of animals culled as part of the control; (iii) the duration of the 139 

outbreak; (iv) the number of movements prevented by the restrictions and (v) the amount of 140 

testing that was undertaken (for bTB only). These epidemic descriptors are used to calculate the 141 

economic losses to different sectors: 142 

● Direct costs to farms are a weighted sum of the number of animals infected or culled. 143 

● Costs due to Welfare culls are proportional to the number of farm days (farms × days) 144 

where movements are completely banned. 145 

● Costs to the wider Agricultural Sector are proportional to the number of animal 146 

movements that are prevented by movement restrictions. 147 

● Loss of Exports is proportional to the duration of the epidemic plus a delay to achieve 148 

disease-free status. 149 

● Impact on Tourism is proportional to the number of farm days where movements are 150 

completely banned, assumed to give a measure of the regions of the countryside that 151 

are closed (FMD only). 152 

● Testing Costs (bTB only) are proportional to the number of animals tested, and include 153 

both costs to the farmer and those met by government. 154 

The precise formula used to calculate these costs are given in more detail in Table 1 (the 155 

implications of changes to each economic value upon the optimal policies can be assessed 156 

using the Shiny app: https://livestockmovements.shinyapps.io/movement_control/). We now consider 157 
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how movement restrictions of different types can minimise the overall expected economic cost 158 

of the disease, as well as which controls minimise economic extremes (as captured by the 159 

upper 95th percentiles). In this paper we take a national perspective, minimising the total losses 160 

to the country including government, farmers, wider rural economy and tourism where 161 

appropriate. 162 

 163 

The costs associated with FMD outbreaks differ considerably according to the scale of the 164 

movement ban and the origin of the outbreak (figures 1A and B correspond to outbreaks starting 165 

in Cumbria and Devon respectively; other regions are shown in the Supplementary Material, 166 

Supplementary Figure 1). We consider the outbreak costs from multiple simulations with 167 

interventions including culling of livestock on infected premises and on farms considered high-168 

risk (dangerous contacts; [32]), together with a localized movement ban surrounding infected 169 

premises. We show by bars the mean total cost (together with 95% confidence intervals) broken 170 

down into five key losses; it is clear that direct costs to the farm (dark blue) and impact on 171 

tourism (orange) dominate but show opposite trends with the radius of movement control.  We 172 

also consider extreme ‘worse-case’ costs (red dots) which are defined as the upper 95% 173 

prediction interval of all simulations. 174 

For Devon (figure 1B), direct farm costs predominate and the economic optimum occurs at 175 

relatively small radius movement bans (12-38 km – horizontal black bar); for radii below this 176 

optimum, the scale of potentially extreme ‘worst-case’ costs (red dots) increases and hence 177 

small-scale bans are far less effective. Even if the effects of tourism are ignored and we focus 178 

only on costs to the whole agricultural sector, there is still an optimal radius although this is 179 

increased (42-48 km – horizontal blue bar). Finally, if the main concern is mitigating ‘worst-case’ 180 

costs, the optimal radius is larger than when considering the mean (22-48 km – horizontal red 181 

bar). 182 
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For Cumbria the patterns look subtly different. Due to higher densities of livestock, outbreak 183 

sizes and hence direct costs remain relatively high even when movement restrictions are 184 

enacted nationally. An implication of this is that the total costs associated with national control 185 

are higher than those when there are no movement restrictions: it may be more cost effective to 186 

allow all movements rather than ban all movements. For Cumbria the optimal radius for 187 

movement bans is more tightly defined compared with Devon where there is more stochastic 188 

variability: the optimal ban radius for mean total costs is around 20 km, when tourism costs are 189 

excluded this increases to 52-63 km, whilst when mitigating ‘worst-case’ costs the optimal 190 

radius reduces to just 7.5-13 km. 191 

 192 

For BTV the potential control options are very different; culling has very little impact and 193 

therefore was not used as a practical control measure. In addition, while the 2001 (and 2007) 194 

FMD epidemics led to national movement bans, the 2007 BTV outbreak was controlled by the 195 

establishment of localised zones around infected areas, where movements from higher risk to 196 

lower risk zones were banned. Mirroring this strategy we focus on the optimal generation of 197 

three zones: an inner zone with a complete movement ban, a high-risk protection zone (PZ) and 198 

an outer lower-risk surveillance zone (SZ).  All farms within the inner zone are completely 199 

banned from moving livestock either off-farm or on-farm. Livestock movements are not 200 

completely restricted for farms within either the PZ or SZ, however livestock could not be moved 201 

from a farm in a higher risk zone to a farm in a lower risk zone. 202 

Our results focus on outbreaks initiating in Devon (although results are qualitatively generic; see 203 

Supplementary Figure 2 for outbreaks in Suffolk, where the 2007 outbreak started), which are 204 

generally larger due to a combination of warmer summers and higher host density necessary for 205 

sustained transmission. Figure 1C compares five different radii for the complete movement ban 206 

(different colours) and four combinations of protection and surveillance zones (PZ and SZ 207 

respectively, x-axis). We consistently find that not having any complete ban (purple) 208 
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outperforms all other strategies from an economic perspective, irrespective of the size of the PZ 209 

and SZ. In part this is due to rapidly increasing losses due to tourism, to the wider agricultural 210 

sector and due to welfare as the number of farms experiencing a complete ban increases; even 211 

ignoring tourism these results still hold. When no complete bans take place around infected 212 

farms, Figure 1D focuses on the optimal radii for the protection and surveillance zone -- 213 

assuming that the SZ radius is twice that of the PZ. For BTV (and assuming no complete bans) 214 

it is only the direct costs to farms (blue) and agricultural sector losses (green) that impact on the 215 

economic costs. We note that agricultural sector losses increase with the radii of the two zones, 216 

but the epidemic size (and hence direct costs to farms) is largely independent of movement 217 

bans, leading to the situation where it is optimal to allow free movement of livestock. Our model 218 

prediction of ineffectiveness of movement bans in controlling BTV broadly agrees with another 219 

UK BTV transmission modelling study [33], where movement bans were found to have a limited 220 

impact on controlling farm-to-farm spread even without the ancillary consideration of economic 221 

impact. 222 

 223 

Finally, for endemic bTB, we consider the impact of a combined movement ban and testing 224 

protocol, such that, in addition to the standard (test and cull) policy, once a farm tests positive all 225 

surrounding farms within a given radius are also placed under a cattle-only movement ban until 226 

they clear a subsequent test within 60 days. As such, waves of testing and cattle movement 227 

bans can propagate through highly infected regions. A scenario is also considered where no 228 

movement controls are imposed even when infected animals are detected (and culled). We 229 

consistently find that this no-movement-ban policy has the lowest economic costs (figure 1E) as 230 

it eliminates the costs to the agricultural sector that arise from movement restrictions, and that 231 

larger radii bans are increasingly costly. (An alternative policy that only bans movements from 232 

infected farms but still generates tests within a given radius, has a local minimum cost at a 233 

radius of around 2km; Supplementary Figure 3).  The economically optimal policy, however, 234 
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leads to a long-term increase in the number of infected cattle (figure 1F), whereas large-radii 235 

ban-and-test strategies are predicted to lead to far lower incidence. Importantly we note that 236 

there is relatively little difference in incidence between the no-ban strategy and the current 237 

policy of only banning movements from infected farms (0km).  238 

 239 

The results for both BTV and bTB contrast with the findings for FMD; this may be explained by 240 

the different within-farm dynamics of the infections. Given that FMD is directly transmitted and 241 

highly infectious, any movement of an infected animal into a naive farm leads to rapid infection 242 

of all livestock on the farm, hence movements are extremely detrimental. In contrast, BTV is 243 

vector transmitted such that infection can readily escape the farm environment by the 244 

movement of vectors. In addition the weakly transmissible nature of both bTB and BTV means 245 

that there is only limited saturation (density dependent effects) of infection on farms; this means 246 

that the movement of an infected animal simply transfers the risk of infection to animals on the 247 

new farm rather than on the farm of origin.  248 

 249 

The economic parameters used in this work (Table 1) have been based on government agency 250 

assessments of national costs associated with each disease. However, such parameters are 251 

open to different interpretations and will be influenced by both the scale of the outbreak and the 252 

current economic climate. In addition different organisations may wish to alternative 253 

perspectives, by focusing on losses to particular sectors, such as the farming industry or 254 

government. This entire range of sensitivity can be explored through the online Shiny app 255 

(https://livestockmovements.shinyapps.io/Movement_Control/), which allows the individual 256 

economic parameters to be varied (although sensitivity to individual economic values is 257 

considered in the Supplementary Material – see Supplementary Figure 4). In general we find 258 

that the optimal movement ban radius for FMD is most sensitive to the costs of livestock and 259 
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tourism losses, while for BTV and bTB the optimal radius only changes at extremes of economic 260 

costs. 261 

 262 

For a policy of movement bans to be effective, it must be enforceable. There is an argument 263 

that a nationwide ban, where all livestock movements are prevented, could be more enforceable 264 

as it is more obvious when the ban is being broken. In addition, a regional ban may meet 265 

opposition from farmers just within the radius of the movement ban who view themselves 266 

penalised relative to farms just outside the radius. However, localised movement bans ﴾of the 267 

form instigated during the 2006 bluetongue epidemic﴿ allow resources to be concentrated into a 268 

smaller regions, and hence it may be easier to enforce compliance. This may be particularly the 269 

case in lower and middle income countries, when typically interventions are initiated at the local 270 

level in response to livestock disease outbreaks [33]. Incorporating such factors into 271 

mathematical models requires the ability to predict farmer behaviour which is likely to be 272 

complex and heterogeneous, and beyond the scope of this work.  273 

 274 

This suite of model predictions demonstrate that movement restrictions have a dramatic impact 275 

on the national cost of livestock diseases, such that large-scale movement bans are generally 276 

prohibitively expensive. By considering these three very different infections, we draw the 277 

general conclusion that movement bans are most needed for diseases like FMD, where there is 278 

considerable within farm transmission and where movements form a dominant source of long-279 

range transmission. For slower spreading infections, exemplified by bTB and BTV, it may be 280 

economically preferable to allow movements to continue unrestricted. Optimisation of movement 281 

restrictions, informed by bespoke predictive models, has the potential to dramatically reduce the 282 

cost of an outbreak: balancing the need for control and containment with the desire to maintain 283 

the economic viability of the livestock industry. 284 

 285 
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Figure Legends 407 

FIGURE 1. Impact of movement bans on the cost of livestock infectious diseases. Panels A and B 408 

show results for FMD epidemics seeded in 5 infected farms in Cumbria and Devon, respectively. Stacked 409 

(coloured) bars represent the different costs: direct farm losses, welfare loses, loses to the general 410 

agricultural sector, lost revenue due to export bans and the losses to the tourist industry (as quantified in 411 
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Table 1). Red points (with confidence intervals from bootstrapping) represent the upper 95% prediction 412 

interval on the costs. Horizontal bars show the optimal movement ban radius to minimise different 413 

economic measures: black bar average total costs; blue bar average cost without tourism losses; red bar 414 

the upper 95% prediction interval. Panels C and D focus on bluetongue outbreaks initiated in Devon. In C 415 

we consider the mean outbreak cost, and vary both the inner radius where movements are completely 416 

banned (colours) and the Protection / Surveillance zones where only outward movements are banned 417 

(grouped on the x-axis). In D we focus solely on the Protection / Surveillance zones, using the same 418 

format as graphs A and B. Panels E and F present results for bovine tuberculosis, simulations are run for 419 

14 years with alternative movement controls and testing implemented for the last 6 years, and the costs 420 

averaged across all years of alternative control. As in other panels, in E we show means, extremes and 421 

the associated confidence intervals. In F, we demonstrate the epidemiological consequences of 422 

alternative control policies, showing the incidence of new infections that we note can be very different 423 

from the number of detected infections owing to both test sensitivity and spatial patterns of testing. 424 

Table 425 

Type of Cost Calculated as: Reference 

Direct Farm 
Costs (FMD) 

£1962×Culled Cattle + £523×Culled Sheep [16, 35] 

Direct Farm 
Costs (BTV) 

£145×Infected Cattle + £29×Infected Sheep + £203×Sheep 
Deaths 

[36] 

Direct Farm 
Costs (bTB) 

£1557×Infected Cattle + £531×Breakdowns [37] 

Welfare Costs £8.00×Farm Days Restricted [16, 35] 

Agricultural 
Sector losses 

£227×Animal Movements Prevented [16, 35] 

Export Losses 
(FMD only) 

£655,000× (Duration of Export Ban) [16, 35] 

Tourism 
 (FMD & BTV) 

£271×Farm Days Restricted [16, 35] 

Testing  
(bTB only) 

£10×Cattle tested 
(approx £2.50 to farmer and £7.50 for performing the test) 

[37] 

 426 
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TABLE 1. Costs related to movement bans for the three livestock diseases: Foot-and-Mouth Disease 427 

(FMD), Bluetongue Virus (BTV) and bovine Tuberculosis (bTB). All costs have been inflated from the date 428 

the assessments were made to generate prices relevant for 2019. Here Farm Days Restricted refers to 429 

the number of farms each day that are placed under movement restrictions summed across the epidemic. 430 

 431 

 432 
 433 
Methods 434 

The FMD Model 435 

The mathematical model utilised in this paper is a modified version of the FMD model used both 436 

during and after the 2001 outbreak by Keeling and co-workers to predict the spread of disease 437 

and the impact of control [2, 26]. Infection between farms can occur via two mechanisms – 438 

movements of infected livestock and local, distance-dependent transmission. The local 439 

transmission component of the model encapsulates the risks associated with aerosol spread, 440 

direct contact of infectious and susceptible animals or fomites (i.e. contaminated vehicles or 441 

farm equipment). The rate at which an infectious farm j transmits infection to a susceptible farm i 442 

via local spread is given by: 443 

ܴ௜,௝ = ෍ߪ௞ ௞ܰ,௜௣ೖ௞ 		×෍߬௟ ௟ܰ,௝௤ೖ௟ 		× 	൫݀௜௝൯ܭ		
σk represents the susceptibility of species k on susceptible farm i, τl is the transmissibility of 444 

species l on farm j, Nk,i is the number of animals of species k on farm I and pk and qk are power- 445 

law parameters accounting for a non-linear increase in susceptibility and transmissibility as 446 

animal numbers on a farm increase. Previous work has found that this power-law model 447 

provides a closer fit to the 2001 data than one in which the powers are set to unity [38-41]. K(dij) 448 

is a distance dependent transmission kernel that is estimated from contact tracing data from the 449 

2001 outbreak [2]. In line with previous work [39], all model parameters are estimated for five 450 
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distinct regions: Cumbria, Devon, the rest of England (excluding Cumbria and Devon), Wales 451 

and Scotland. This allows the model to account for regional variation in FMD epidemiology and 452 

animal husbandry. 453 

In order to assess the daily risk of between farm infection occurring via movement of live 454 

animals, a movement network (A) is integrated into the model, mimicking the impact of animal 455 

movements from infected farms. The probability of a susceptible farm i being infected by an 456 

exposed or infectious farm (Ej or Ij) through a live animal movement, is given by: 457 

௜ߣ =෍ܣ௝௜൫ܧ௝ + ௝൯௝ܫ 	
Here Aji is the daily risk of movement occurring from farm j to farm i, calculated by averaging 458 

recorded cattle movements across a year; these livestock movement data were obtained from 459 

DEFRA and the Scottish Government and have been analysed in a number of studies (e.g. [14, 460 

42-44]). Given our assumptions that infection acts at the level of the entire farm, we are only 461 

concerned with batches of livestock movements, not the number of animals in these batches. Ej 462 

and Ij are indicator variables (0 or 1) which inform about the current status of farm j in the 463 

simulation. 464 

Simulations in this paper are seeded by infecting 5 (randomly chosen) farms in a 5 km cluster 465 

(in a randomly chosen location) within a given county to approximate the initial conditions of a 466 

localised outbreak; detection of the first case and the implementation of controls then follows. In 467 

line with previous work, we assume that all livestock on IPs are culled within 24 hours of being 468 

reported and all associated dangerous contacts (DCs) are culled within 48 hours [30]. 469 

Contiguous premises (CP) culling is not performed. 470 

In order to determine the effectiveness of a livestock movement ban, we utilise data from the 471 

2001 FMD epidemic that detail the costs associated with the outbreak. The economic costs of 472 

the 2001 outbreak fell into 5 distinct categories: direct costs, indirect costs, costs associated 473 

with welfare culls, losses to the agricultural sector and losses to tourism [35]. We will utilise this 474 
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economic framework to translate our simulation results into a national epidemic cost, although 475 

alternative scenarios could be considered, such as minimising the cost to the farming industry or 476 

to the UK tax-payer. In 2001 (and 2007) national scale movement bans were imposed such that 477 

animals could only be moved under specific veterinary licence. Here we relax this control 478 

measure and consider a range of movement bans that act upon all farms within a given radius 479 

of infected premises. We impose this radius based on the straight-line distance between the 480 

recorded point location (which generally identifies the farmhouse) of each pair of farms; in 481 

practise regional control teams would presumably account for the location of livestock, although 482 

this distinction is likely to be negligible for large radii. The parameters used in the FMD 483 

simulations are taken from matching regional prevalence from simulations to the results of the 484 

2001 FMD outbreak (see Supplementary Table 1). 485 

 486 

The BTV model 487 

Our model for BTV operates at the level of individual animals, replicating the known pattern of 488 

animal movements and captures the transmission of infection through spatially dispersing midge 489 

vectors that are affected by climatic conditions in a similar fashion to other spatial models of 490 

BTV transmission [33, 45-47]. 491 

The model describes each farm as a stochastic metapopulation of sheep and cattle [33, 45], the 492 

two main ruminant hosts of BTV amongst European commercial livestock. The livestock 493 

population at each farm i is subdivided by their species k and BTV infection status: susceptible 494 

(ܵ௞,௜), infected and infectious (ܫ௞,௜) and recovered and immune (ܴ௞,௜). The total population at 495 

each farm is assumed to remain static except for movement of infected animals and disease 496 

induced mortality. The infectious duration for BTV in a given animal is modelled as a multi-stage 497 

Erlang process according to commonly used estimates of BTV viraemia amongst cattle and 498 

sheep [48]. Culicoides biting midge spatial population dynamics are described using a spatial 499 

grid overlaying the UK at a 5 x 5km resolution, therefore each grid might contain 0,1, 2 or more 500 
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farms. The grid cell locations and daily mean temperature for each cell was drawn from the 501 

UKCP09 [49] retrospective data for 2007, the year of the first UK BTV outbreak. The midge 502 

population in the spatial grid at coordinate location x is described by a Poisson distribution for 503 

the number of latently infected midges (ܧெ,௫) and actively infectious midges (ܫெ,௫). The mean of 504 

these two distributions is determined by biting on infected livestock within the grid, and by 505 

dispersal of infected midges from nearby grids (see below). The latency duration (or extrinsic 506 

incubation period) of infected midges is modelled as a 10 stage temperature dependent Erlang 507 

process [31, 50].  508 

The daily number of bites emanating from the infectious midges in the grid square at location x 509 

is Poisson distributed with mean ݐ)ߙ, ,ݐ)ߙ ெ,௫, whereܫ(ݔ  is the biting rate for midges using the 510 (ݔ

mean daily temperature on day t at the grid square x [31, 48]. The expected proportion of all 511 

daily infectious bites distributed to a single animal of species k in farm i within the spatial grid 512 

box at x is: 513 

߶௞,௜ 	= ∑)	௞ߨ ௟ߨ ௟ܰ,௜௟ )௣ିଵ∑ (∑ ௠ܰ௠,௝௠ߨ )௣௝∈௫ .				
where ߨ௞ is the relative preference of midges for species k and p is a parameter tuning the 514 

seeking preference of midges for larger farms within the grid cell. The sum in the denominator is 515 

over all the farms in the grid box at x. Therefore, the risk of the animal being infected on each 516 

day t is: 517 1	 − exp(− ுܲ߶௞,௜ݐ)ߙ,  ெ,௫). 518ܫ(ݔ

where ுܲ is the probability of BTV transmission per bite from an infectious midge.  519 

We assume that the expected number of susceptible midges arriving to bite each animal each 520 

day is proportional to the expected prediction of a seasonal and temperature dependent 521 

generalised linear mixed-effect model (GLMM) inferred from wide-scale midge trapping 522 

experiments in the UK and specialised to the activity of C. Obsoletus females [31, 51]. 523 

Underlying GLMM random effects were drawn either once per simulation for each farm (for farm 524 
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level random effects) or daily for each farm (overdispersion and autocorrelation random effects). 525 

We denote the unscaled mean biting rate prediction from the GLMM, conditional on local 526 

temperature and random effects for each farm on each day t, ݐ)ܤ,  Therefore, the expected 527 .(ݔ

number of newly infected midges in the grid cell at x on day t is: 528 ݍ ௏ܲݐ)ܤ, (ݔ ∑ ∑ ௞,௝௞௝∈௫ܫ௞ߨ . 529 

Where ௏ܲ is the midge BTV infection probability per bite on an infected host, and ݍ is a 530 

parameter that scales the difference between the biting rate and the trap capture rate. 531 

In line with the known biting behaviour of Culicoides midges [52-53] we assume that all biting 532 

occurs over short dusk/dawn periods and that otherwise midges are in oogenesis, seeking 533 

oviposition sites or seeking new hosts. We model the movement of midges between daily biting 534 

as an inhomogeneous diffusion process with the local diffusion rate at each grid square x as: 535 (ݔ)ܦ = 		 ஽బଵ	ା	క	 ∑ (∑ గ೘ே೘,ೕ೘ )೛ೕ∈ೣ . 536 

where ܦ଴ is the reference diffusivity of midges in a grid square devoid of commercial livestock 537 

hosts and ߦ is a tunable scalar. The diffusion rate for the grid box x depends on the denominator 538 

for the proportion of bites per animal; this quantity acts as an effective population size for the 539 

grid box. That is, we model diffusion as decreasing with more animals per grid square and 540 

higher values of the seeking behaviour parameter. 541 

The daily number of BTV-infected animals introduced into a farm i due to livestock movement 542 

from farm j was calculated in three steps for each day: 1) for each farm pair a movement was 543 

generated with probability ܣ௝௜ (see above), 2) if a movement occurred in step 1 it was chosen 544 

randomly to be a batch of sheep or cattle according the relative population density in the farm 545 

sending the batch, 3) a batch size was randomly generated according to species type and 546 

infected animals of the chosen species were sampled uniformly without replacement from the 547 

total population of the chosen species at the sending farm. Only infected animals were moved 548 
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within the simulation, in order to better minimise population flux and in line with other simulation 549 

studies of BTV in the UK [33].  550 

The morbidity and mortality rates associated with BTV serotype 8 infection were low during the 551 

2006 outbreak [17]. Therefore, we assume that the introduction of BTV into the UK is initially 552 

cryptic (occurring on 1st June) and the virus spreads without movement bans until it is detected 553 

by either a) the death of an animal due to disease induced mortality, or b) clinical signs of BTV 554 

are detected amongst infected animals. The probability of clinical detection per farm per species 555 

per day is: 556 ܳ௞,௜ 	= 	1	 − 	(1 −  ஽,௞)ூೖ,೔. 557݌

where ݌஽,௞ is the daily chance of an infected animal of species k showing clinical signs of BTV. 558 

After detection of a BTV outbreak we assume that DEFRA recommendations are followed and 559 

all farms within 15km of the initial IP have all their animals investigated for BTV [54]. The initial 560 

zones (CZ, PZ and SZ) are constructed around all the detected IPs, and are extended as new 561 

IPs are detected during the ongoing outbreak. Parameters used in the BTV model are provided 562 

in Supplementary Tables 2 and 3. 563 

 564 

bTB Model 565 

In this paper we make use of a national-scale stochastic metapopulation model of bTB 566 

transmission and detection [12]. In essence the model operates at the scale of individual farms, 567 

but (unlike the FMD model) captures the stochastic cattle-level infection dynamics within a farm; 568 

this is necessary as an infected farm is likely to contain only a few infected cattle. Each farm is 569 

defined by its location and the number of susceptible, latently infected and infectious cattle 570 

present on a given day; sheep, pigs and other livestock species are assumed to have no role in 571 

bTB transmission.  572 
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The transmission and disease progression processes within the model are stochastic, and occur 573 

in discrete time as follows: for farm i the number of Susceptible, Exposed and Infectious cattle 574 

are given by: 575 

௜ܵ(ݐ + 1) 	= 	 ௜ܵ	(ݐ) 	− ݐ)௜ܧ	௜,௧߉ + 1) 	= (ݐ)	௜ܧ	 	+ ௜,௧߉ − ݐ)௜ܫ௜,௧ܣ + 1) 	= 	 (ݐ)	௜ܫ 	+ 	௜,௧ܣ ௜,௧߉   = )݊݅ܤ ௜ܵ(ݐ), 1 − ௜,௧ܣ((௜,௧ߣ−)݌ݔ݁ = ,(ݐ)௜ܧ)݊݅ܤ 	(ߙ
where ߣ is the force of infection acting on cattle within the farm (see below), and ߙ is the rate at 576 

which latent animals become infectious. 577 

In addition there are three deterministic demographic processes acting on the farm – births, 578 

deaths and movements – which follow the recorded pattern from the UK’s Cattle Tracing 579 

System (CTS), which is run by the British Cattle Movement Service (part of the Department for 580 

Environment, Food and Rural Affairs, DEFRA). All three of these processes can be considered 581 

as a movement; births are movements onto a farm without an origin and deaths are movement 582 

from a farm without a destination. For all of these movements, an individual animal is chosen 583 

randomly independent of its infection status or its history of movements. The recorded 584 

movement of ~30,000 cattle per day is one of the primary mechanisms of long-range 585 

transmission of infection from the movement of infected animals. 586 

Transmission to cattle on a given farm comes from three different sources: cattle-to-cattle 587 

transmission, transmission from infection within the farm environment and transmission from 588 

infection within the wider environment. Hence the force of infection, ߣ, to cattle on farm i is given 589 

by: 590 ߣ௜,௧ = ߚ (ݐ)௜ܰ(ݐ)௜ܫ	 			+ (ݐ)௜ݒ	݂		 	+ 	ܨ	 ௜ܸ(ݐ)	
where ௜ܰ 	(= ௜ܵ + ௜ܧ +  ௜) is the number of cattle on farm i, v is the level of infection in the farm 591ܫ

environment, and V is the level of infection in the wider environment which is considered to be 592 

the local parish [12]. The level of infection in the environment is increased by the proportion of 593 

infectious cattle, but wanes over time as the bacteria become non-viable. 594 
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ݐ௜݀ݒ݀ = ௜ܰ௜ܫ −  	௜ݒ߳
݀ ௜ܸ݀ݐ = ∑ ∑	௉௔௥௜௦௛	∈	௝௝ܫ ௝ܰ௝	∈	௉௔௥௜௦௛	 			− 	߳ ௜ܸ	

 595 

 596 

These two local reservoirs of infection could both represent the persistence of infectious matter 597 

on pasture or persistence in a local wildlife reservoir. 598 

In addition, we simulate routine testing for surveillance, which follows the DEFRA rules 599 

appropriate for the time and varies between annual and 4-yearly testing depending on location. 600 

This test is not perfect [55] and we therefore use a test sensitivity of ߩ for infectious cattle and 601 ߩா ×  for exposed / latent animals. Once infected cattle are detected within a farm, the animals 602 ߩ

are culled and the farm placed under movement restrictions until all its cattle clear a further two 603 

tests at 60-day intervals; in addition these farms are also subjected to further testing after 6 and 604 

12 months. 605 

The model parameter are inferred by matching simulations to the number of reactors (positive 606 

cattle) and number of failed herd tests recorded per county per year between 1997 and 2007 607 

using Sequential Monte Carlo Approximate Bayesian Computation [12]; the main parameters 608 

are given below.  609 

The model was adapted to allow us to investigate the addition of radial movement restrictions. 610 

Given that bTB is an endemic disease (unlike FMD and BTV), movement restrictions must be 611 

temporary with some means in which they are lifted from given farms in the future. In our 612 

adapted model, when a herd is first identified as being infected (that is an animal tests positive 613 

on a farm that is not under restrictions), we assume that movements from the infected farm and 614 

those within a radius of the infected farm are banned. (although we also simulate the extreme 615 

case where there are no movement bans, even on the infected farms). The infected farm is 616 

subject to the usual measures, with the positive animal(s) culled and movement restrictions in 617 
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place until two follow-up tests (at 60-day intervals) are all clear; additional tests at both 6 and 12 618 

months are scheduled.  For those farms within the radius (which may be considered at risk due 619 

to their proximity) movements are banned until a follow-up test after 30 days can be performed 620 

– following the results of this test either movements are resumed or the farm is identified as 621 

infected and the entire process is repeated. In this way, waves of testing spread through high 622 

prevalence areas. Results from such control policies are shown in the main paper. 623 

A modification to this control policy is explored further below. Farms with cattle testing positive 624 

are handled as described above; farms within the surrounding radius are only subject to follow-625 

up tests but do not have their cattle movements restricted. This policy is extended to have 626 

slightly higher incidence (due to movement of cattle to new regions) but significantly lower 627 

economic costs due to the reduction in movement restrictions. 628 

Simulations begin in 1998 and utilise the pattern of recorded movements and random herd-level 629 

test; changes to the control policy (additional radial controls and testing) is assumed to begin at 630 

the start of 2005, and its impact over 6 years on the progress of the endemic recorded. 631 
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