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Abstract

Stem-cell transplantation is the last chance for patients of various blood-related diseases. Stem-cell donation

centres admit patients in need of a stem-cell transplant and search for a perfect match between the patients

and donors. The search process is time-consuming and requires expensive advanced equipments, in particular

for DNA typing. In this paper, we are concerned with a capacity planning problem in a network of stem-cell

donation centres. The underlying optimization model integrates the operations for a donor search and aims

to maximize the number of transplantations. A scenario-based stochastic programming approach is introduced

to investigate the effect of the demand and service time variabilities into the capacity planning problem. We

consider the maximum possible waiting time during the search process to obtain robust solutions against un-

certainties. For this purpose, we approximate the maximum waiting time in the advanced blood testing with

a robust queuing approach. The computational experiments are designed to illustrate the performance of the

capacity planning model.
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1. Introduction

Stem-cell transplantation is the infusion or injection of healthy stem-cells to replace diseased or damaged

ones (Fruchtman, 2003). This type of transplantation is crucial for the treatment of several blood and immune

system illnesses including leukemia. Healthy stem-cells are collected directly from donors’ hip bones or separated

from donors’ blood samples. The collection process normally does not cause any harm to donors, which makes

it possible for a large donor database for stem-cells donation to be created. Potential donors can register to

be included in the donor database and patients requiring stem-cell transplants have the option of conducting a

search for matching cells among these potential donors. The stem-cell donor search process usually follows the

same standards set by World Marrow Donation Agency (WMDA, 2018) which has 75 accredited registries in 53

countries across the world. Advanced blood-gene tests are then needed to find good matches between potential

donors and patients. These tests can only be done in highly specialized histocompatibility and immunogenetics

(H&I) laboratories. Within a country, these laboratories are linked with a network of stem-cell donation centres,

which is normally managed by the national health authority as in Turkey, China, Spain, and France or some

transplantation foundation as in Canada and UK. The stem-cell donation centres support patients in need of

stem-cell transplants with donor search procedures and advanced blood-gene tests. Although recent advances in

data management may speed up initial steps of the donor search process, the advanced blood testing remains the

bottleneck of the whole process given the limited resources for H&I tests at those stem-cell donation centres. It

is therefore important to efficiently allocate resources in terms of capacity planning for these stem-cell donation

centres within the national network.

The main objective of the stem-cell donation centres is to find in time as many good matches as possible

for patients who need stem-cell transplants. In general, life expectancy of patients waiting for a stem-cell

transplant is short (Odejide, 2014); in other words, the probability of patient death or being not suitable for

the transplantation due to the deterioration in their medical condition during the search is high. Therefore,

the processing time to search for the best match is the most crucial factor for the survival of these patients

(Heemskerk et al., 2005; Dini et al., 2000). For a donation centre with over-utilized testing capacity, the search

process generally takes longer and the number of patient deaths is likely to increase (Oudshoorn et al., 2006). For

example, in Turkey, around 70 out of 1000 patients die over a year due to the lack of suitable stem-cell donations

(Beksac, 2014). Diler et al. (2008) suggest that the national network of Turkish stem-cell donation centres needs

to be restructured and the resources for advanced testing should be increased to decrease the number of patient

deaths. It shows that the network structure of stem-cell donation centres also plays an important role in

supporting their main performance objective of increasing the number of successful transplants. Another study
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by Heemskerk et al. (2005) shows that in Netherlands, although the matching probabilities for patients has

increased with a larger donor database, the total number of (successful) transplantations is still significantly

affected by long search durations. This indicates that to achieve the main performance objective of increasing

the number of successful transplants, it is important for stem-cell donation centres to improve search durations

with effective capacity planning. In this paper, we are concerned with a capacity planning problem for networks

of stem-cell donation centres, which aim to achieve the best overall performance in terms of the number of

successful transplants while taking into account their search operations.

The search operations conducted by stem-cell donation centres depend on several uncertain factors including

patient arrivals and waiting times for advanced blood tests. The final outcomes of these search operations rely

on test results as well as health conditions of patients. These uncertain factors need to be fully considered since

their variabilities may result in excessive waiting times and poor utilization of facility resources (Salzarulo et

al., 2011). In this paper, we propose a novel approach which combines both stochastic programming and robust

optimization techniques to handle the capacity planning problem for networks of stem-cell donation centres

under uncertainty. More specifically, our contributions and the structure of the paper are as follows:

(1) In Section 2, we model complex search operations of stem-cell donation centres and their outcomes using a

scenario-based stochastic programming approach in which patient arrivals and test results are represented

with appropriate scenarios.

(2) In Section 3, we approximate waiting times for advanced blood tests using a robust optimization model

for queuing systems. We reformulate the (non-linear) capacity planning problem as a mixed-integer linear

optimization problem.

(3) Finally, in Section 4, we introduce design of experiments and data generation. In Section 5 we provide

numerical results to demonstrate the performance of our approach as compared to that of existing policies.

We also analyze effects of different parameters such as patient arrival rates on the performance of stem-cell

donation centres.

Related Literature

Capacity planning concerns the utilization of available resources to meet demands for products or services

and it is an important and challenging problem in healthcare management given the limited resources of staff,

hospital beds, and specialized medical equipment among others. In addition, uncertain factors such as patient
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demands, staff availability, and medical results make the capacity planning problem in healthcare more chal-

lenging. Different modelling and solution approaches have been widely used to solve capacity planning problems

under uncertainty for healthcare operations management. In this section, we will briefly review these approaches

and how uncertainty is handled in healthcare capacity planning applications and also explicitly state how our

approach is different from the existing ones.

Queuing theory, a modelling approach to obtain performance measures in queuing systems, has been widely

applied for the capacity planning of healthcare services; a related review can be found in Fomundam and

Hermann (2007). Creemers and Lambrecht (2009) use built-in queuing formulas to find the number of servers,

i.e., capacity level, required to achieve a certain degree of performance. Hulshof et al. (2013) use the queuing

theory to model the elective patient admission process and study the resource allocation problem for hospitals

with uncertain treatment pathways. They consider different queues for different types of services with time-

dependent capacity levels of resources. Similarly, Cochran and Roche (2009) apply the queuing theory to

test various capacity design alternatives to be used in real time when the capacity cannot meet the demand.

Bretthauer et al. (2011) consider the capacity planning problem for healthcare operations with blocking between

different units. Castillo et al. (2009) determine capacity and location of healthcare facilities using queuing

models with exponential service times and poisson arrivals. By considering time-varying demands in hospitals,

Green et al. (2007) analyze the staffing requirement in hospitals based on queuing analysis. The main drawback

of queuing models comes from their intractability due to nonlinear formulations of performance metrics under

certain distribution assumptions for arrival and service processes.

Simulation is an alternative approach to model the service systems when the queuing formulations are not

useful due to their complexities. Harper et al. (2010) introduce a discrete-event simulation model to analyze

the operations management of an intensive care unit and use the data generated by the simulation approach

to solve the stochastic optimization model which computes the optimum number of nurses required to achieve

the service targets. De Angelis et al. (2003) consider simulation optimization to determine the capacity of a

transfusion centre under multiple objectives: cost minimization to achieve a fixed waiting time and minimization

of waiting time under a limited budget. The queuing system is modelled with a discrete-event simulation and

the objective functions are approximated by function fitting with data generated by the simulation model.

Similarly, Alfonso et al. (2013) model processes in a blood collection unit with a simulation-based approach.

They evaluate possible blood-collection server configurations from a cost-effectiveness perspective. Although

simulation is very useful to model complex systems, it can only provide approximate solutions that are affected

by the bias of data generation.
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Optimization models in healthcare capacity planning focus not only on single hospital or department but

also the interconnection between departments and hospitals, which usually has significant effects on the overall

performance. Several studies focus on this interconnection in different capacity planning problems modelled for

networks of hospitals or departments. Flessa (2000) develops a model to allocate resources in the preventive and

curative services in hospitals. The deterministic optimization model distributes a fixed budget among different

institutions based on the expected patient arrivals. Stummer et al. (2004), Govind et al. (2008), Santibanez

et al. (2009) and Gunes et al. (2010) focus on the location and number of beds in hospitals within a network

to minimize operation cost and maximize patient utility. Also, they consider the patient flows either at the

unit level or regional level to find the optimum bed/staff capacities. The parameters in these problems such

as patient arrivals are assumed to be deterministic. Mahar et al. (2011) study a different capacity planning

problem for specialized services such as imaging or neonatal intensive care services and identify which hospitals

in a network should offer these specialized care services.

The hospital network capacity planning models developed in the literature are not directly applicable to mod-

elling of search operations within stem-cell donation centres. The stem-cell donation centres have distinctive and

complex operations, making the problem novel in this sense. Besides, the capacity planning model introduced

in this paper incorporates the queuing theory that has not been widely studied in the network capacity planning

under uncertainty, apart from Pehlivan et al. (2012) and Asaduzzaman et al. (2010) which incorporate queuing

formulas into the optimization model. Pehlivan et al. (2012) develop a mixed-integer optimization model to

determine the capacity of maternity facilities in a network in view of uncertain patient arrivals and service times.

The objective is to minimize the number of refused admissions which is formulated by using available queuing

formulations. They assume the interarrival and service times are exponentially distributed. They also minimize

the cost of reorganizing the available capacity. They do not consider a scenario-based programming to model

other uncertainties in the model. On the other hand, Asaduzzaman et al. (2010) develop a queuing model to

find the optimum capacities of neonatal centres to minimize refusal and overflow probabilities. They also assume

exponential interarrival and service times. Besides, they do not develop an optimization model but rather a

simulation model which is used to compute expected performance measures for different capacity combinations.

In this paper, we employ a novel robust approach to derive the maximum waiting time in a queuing system.

The resulting nonlinear integer formulation is then approximated as a linear integer model that can be solved

by exact methods.

5



2. Stochastic Capacity Planning Model

In this section we first present problem description and underlying model assumptions, and then introduce

mathematical formulation of the stochastic capacity planning problem.

2.1. Problem Descriptions and Assumptions

We consider a network of stem-cell donation centres managed and financially supported by a central authority.

There are usually several stem-cell donation centres located strategically within a country which aim to support

regional patients effectively without causing long-distance travel for these patients. As mentioned previously,

capacities for advanced blood testing at these donation centres significantly affect the transplantation outcomes

and the central authority needs to allocate resources efficiently with respect to these capacities to maximize the

overall performance.

Given the network of stem-cell donation centres, patients who need a stem-cell transplant have to register

with a donation centre, usually their regional one. The search operations start with an online database search

for potential donors who possess the same blood characteristics as those of the patient. A number of suitable

donors is contacted to provide blood samples for advanced blood tests. These tests can take place when the

blood samples are delivered to the donation centre. Patients need to wait for results of these blood tests and

waiting times depend significantly on testing capacities of donation centres. If the advanced blood tests result in

a good matching between the patient and a potential donor, a transplantation can take place, assuming that the

patient is still well enough after waiting for results of those advanced blood tests. Otherwise, an international

search might be initiated as the final stage of the search process. In this case, the search operations are completed

with or without a transplantation depending on the outcome of the international search and health conditions

of the patient.

The search process emphasizes that capacities for advanced blood tests at donation centres play an important

role in determining overall performance of the network. It is crucial to determine appropriate service capacities

for all stem-cell donation centres within the network, especially when several uncertain factors need to be taken

into account. Before introducing the mathematical formulation of the capacity planning problem for the network

of these stem-cell donation centres, we shall discuss all assumptions needed for the model development.

Assumption 1 (Donor Database). The online search process for potential donors uses the same national
donor database for all patients. Over the planning horizon, although there might be an increase in the donor
database level, we assume that the probability of a successful match remains unchanged. According to Muller
et al. (2003), for a significant increase in the probability of a successful match (such as 0.01), there should be
a very significant increase in the donor database level (such as 100,000). In reality, the increase in the donor
database level is usually significantly less, e.g., the Turkish national donor database only reaches the level of
30,000 donors after 30 years, Savran-Oguz (2013).
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Assumption 2 (Advanced Blood Tests’ Completion Time). A donor search at the national level is ter-
minated only when the advanced blood tests for all suitable donors are completed regardless of their outcomes.
Recall that a transplantation can be conducted only when a good match from suitable donors is found (Antony
Nolan, 2017). Having said that, there might be a better match resulting from subsequent tests of blood samples
of other donors. In addition, the first matched donor may not be available (for medical and non-medical reasons
such as no-shows) and there should be back-up donors (Walraven et al., 2005). Technically, this assumption with
the consideration of the longest possible completion time also fits into the worst-case approach that we are going
to consider later in the proposed model.

Assumption 3 (International Search). In general, an international search starts only after the results of all
advanced blood tests are revealed. However, for cases where the medical situation of a patient is very critical, an
international search may start as soon as the patient is admitted. Although these special cases are not taken into
account in the proposed model, the problem formulation can be easily modified to incorporate the medical condition
of a patient. In addition, we assume that the international search is an independent process. The advanced blood
tests of blood samples to be collected from suitable international donors, are assumed to be conducted at their
own centres. It is worthwhile to mention that these tests of international donors might be done at the stem-cell
donation centre where the patient is registered. For the sake of simplicity, these cases are omitted in the problem
formulation.

Assumption 4 (Unmatched Patients). Unmatched patients, i.e., those patients with unsuccessful national
and international search operations, might return to the system for new searches. We shall consider these patients
as new arrivals in the proposed model given that in practice, they should wait for a certain period of time for
donor databases to be updated with new donors. During that waiting period, we assume that these patients would
consider other available therapies before being considered again (Weisdorf et al., 2002).

Assumption 5 (Patient’s Remaining Lifetime). Health conditions of patients affect the outcome of donor
searches since they need to be well enough for transplantation when a good match is found. Most of the patients
seeking transplants have critical health conditions. In the proposed model, we shall use patient’s remaining
lifetime as the main factor to determine whether a transplant could take place after a good match is found.
Given a particular patient, his/her random remaining lifetime can only be estimated by doctors and for registered
patients who are still alive after the searches, their actual remaining lifetimes are still unknown. In other words,
one can only obtain probabilistic information of a patient’s remaining lifetime given his/her conditions. We,
therefore, assume that this random remaining lifetime factor is represented by a known probability distribution
for each patient as a part of patient data in the proposed model.

2.2. Problem Formulation

We consider the capacity planning problem over a planning horizon for a network consisting of J stem-cell

donation centres. The planning horizon is discretized into T time periods. For example, each time period might

correspond to one week in practice while the planning horizon lasts for one year with T = 52. Throughout the

paper, uncertain parameters are indicated by a tilde .̃

Let Ĩj denote the number of patients who arrive to centre j, j = 1, · · · , J , during the planning horizon.

There can be a single or a batch arrival of patients in any time period. For each patient i, i = 1, · · · , Ĩj , suppose

that there are p̃ij suitable donors found from the online search. These candidate donors are then invited to

supply blood samples for further advanced blood tests. Let t̃ijk denote the time between the arrival of patient
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i to centre j and the arrival of blood samples of his/her candidate donor k, k = 1, · · · , p̃ij , for advanced blood

tests.

Let xj be the decision variable representing the capacity for advanced blood tests at centre j, j = 1, · · · , J .

One unit of capacity consists of one specialized equipment for advanced blood tests and all personnel needed to

operate the equipment. Given this capacity xj , let W̃ijk(xj) represent the waiting time before blood samples

of donor k of patient i can be tested. It is clear that these waiting times directly depend on the capacity of

the centre and the number of blood samples which have already arrived. W̃ijk(xj) = 0 if there are available

capacities when the blood samples of donor k arrives; otherwise, W̃ijk(xj) > 0.

We introduce õijk to represent the duration of advanced blood tests for blood samples of donor k of patient

i at centre j. Note that, even though the variation in durations of these tests is usually small in practice and

it might be ignored completely without any significant impact, we still consider these durations to be uncertain

so that the proposed model can be as general as possible. We can compute the completion time ũijk(xj) of

advanced blood tests for blood samples of donor k of patient i since his/her arrival as follows:

ũijk(xj) = t̃ijk + õijk + W̃ijk(xj). (1)

Now, let’s define r̃ij and z̃ij to represent the search results obtained by the national and international sources,

respectively, for patient i admitted to centre j. If at least one blood test result is positive, then r̃ij takes 1. If

the results of all blood tests are negative, then r̃ij is assigned to 0. Similarly, if the search using international

sources for patient i is successful, then z̃ij takes 1; otherwise, it takes 0. If a search at the international level

is never initiated, then it is fixed at zero (z̃ij = 0). Let ṽij denote the duration of the international search for

patient i admitted to centre j if the search is needed. Note that under Assumption 3, the international search

is an independent process, which does not depend on capacities of (national) donation centres.

Given all these information, we are interested in computing how long it takes to obtain a good match for

patients. Let d̃ij(xj) be the time duration from the admission of patient i to centre j until a suitable match

is found. If at least one positive outcome from the national search is achieved, i.e., r̃ij = 1, then we have:

d̃ij(xj) = max
k=1,··· ,p̃ij

{ũijk(xj)}. Note that under Assumption 2, the final national search result is obtained when

advanced blood tests of all candidate donors of the patient are completed. On the other hand, if no suitable

match is found from the national search (r̃ij = 0) but the international search is successful (z̃ij = 1), then clearly,

d̃ij(xj) = max
k=1,··· ,p̃ij

{ũijk(xj)}+ ṽij . If both national and international searches are unsuccessful (r̃ij = z̃ij = 0),

there is no suitable match found for the patient, which means d̃ij(xj) = +∞. Under Assumption 4, the

unmatched patients will be considered as new arrivals when new searches are initiated again later for them.
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Finally, the case z̃ij = r̃ij = 1 never occurs since a search at the international level for patient i is only initiated

after no suitable donor is identified from the national search as stated in Assumption 3. The computation of

d̃ij(xj) can be summarized as follows:

d̃ij(xj) =



max
k=1,··· ,p̃ij

{ũijk(xj)}, if r̃ij = 1,

max
k=1,··· ,p̃ij

{ũijk(xj)}+ ṽij , if r̃ij = 0 & z̃ij = 1,

+∞, if r̃ij = z̃ij = 0.

(2)

A successful search process (at either national or international level) leads to a transplant if the patient is

still alive when the search process is completed. Suppose that l̃ij is the random remaining lifetime of patient

i, which is estimated with a complete probability distribution ϕij as indicated in Assumption 5, when s/he is

admitted to centre j. Let ỹij(xj) be the indicator of whether the search for patient i admitted to centre j is

unsuccessful with no transplant taken place. We have:

ỹij(xj) =


1, if d̃ij(xj) > l̃ij ,

0, otherwise.

Given these indicators, the number of searches conducted at centre j resulting in no transplant can then be

computed as
Ĩj∑
i=1

ỹij(xj). We are now ready to formulate the capacity planning problem.

The integer decisions which the central authority needs to make are the capacities xj ∈ Z+ for advanced

blood tests at donation centres j = 1, · · · , J . The overall performance of the network of stem-cell donation

centres can be measured by the total expected number of successful transplants (the higher the better) or

equivalently, the expected number of unsuccessful searches without transplants (the lower the better). Given

that the network of stem-cell donation centres is managed by a central authority, there are several constraints

(imposed by the central authority) that need to be addressed in the model. One of the important constraints is

the budget constraint. For the budget B and the unit cost Cj of managing specialized equipment and personnel

at each centre j, j = 1, · · · , J , the budget constraint can be simply stated as
J∑
j=1

Cjxj ≤ B. We will discuss

some of these constraints in detail in Section 5 but for now, we assume that the vector of decision variables

x = (x1, · · · , xJ) belongs to a general feasible set X , x ∈ X . For example, if only the budget constraint is

considered, the feasible set X is written as X =

x
∣∣∣ J∑
j=1

Cjxj ≤ B; xj ∈ Z+, j = 1, · · · , J

. The general

stochastic capacity planning model SCP for a network of stem-cell donation centres can then be formulated as
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follows:

SCP: min
J∑
j=1

E

[ Ĩj∑
i=1

ỹij(xj)

]
,

s.t. x ∈ X .

The expectation in the objective function depends on several uncertain factors mentioned above. In order

to capture these uncertain factors which arise in the real-life operations of a stem-cell donation network, we

introduce a finite number of discrete scenarios (or so-called cases), each of which represents a possible future

realization of random patient arrivals and search results. In general, these scenarios can be generated by using

past data and statistics. Let S denote the total number of scenarios. Each scenario s, s = 1, · · · , S, displays a

sequence of patient arrivals with the corresponding probability ωs where
S∑
s=1

ωs = 1. The notation used for a

specific scenario s along with the operational diagram is illustrated in Figure 1.

Figure 1: A description of search operations along with notation used for scenario s.

There are Ijs patients arriving to centre j, j = 1, · · · , J , during the planning horizon in scenario s for

s = 1, · · · , S. For each patient i, i = 1, · · · , Ijs, number of candidate donors identified from the initial online

search is pijs. Blood samples of candidate donor k, k = 1, · · · , pijs, of patient i arrive to centre j after tijks

time periods. The waiting time is W s
ijk(xj) for these blood samples of candidate donor k before they are tested.

The duration of advanced blood tests for these blood samples is oijks whereas vijs is the duration of internal

search for patient i at centre j under scenario s. In addition, the search results obtained by the national and

international sources are denoted by rijs and zijs, respectively, for patient i in centre j under scenario s. Finally,

the probability distribution of the random remaining lifetime l̃ijs of patient i at centre j under scenario s is set

to be ϕijs. Given these data inputs for each scenario s, s = 1, · · · , S, we can compute ỹijs(xj), the indicator

whether the donor search conducted at centre j for patient i is unsuccessful with no transplant, as follows:
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ỹijs(xj) =


0, if max

k=1,··· ,pijs
{tijks + oijks +W s

ijk(xj)} − l̃ijs < 0 & rijs = 1,

0, if max
k=1,··· ,pijs

{tijks + oijks +W s
ijk(xj)}+ vijs − l̃ijs < 0 & rijs = 0 & zijs = 1, (3)

1, otherwise.

We can then state the scenario-based stochastic capacity planning model SCPscen as follows:

SCPscen : min
S∑
s=1

ωs

J∑
j=1

Ijs∑
i=1

Eϕijs [ỹijs(xj)],

s.t. x ∈ X .

In order to solve the SCPscen model, we need to compute Eϕijs [ỹijs(xj)], which involves computation of waiting

times W s
ijk(xj). The exact computation of waiting times in each scenario given capacity x is difficult due

to complexity of the queuing system resulting from the search operations. The computational intractability

due to combinatorial number of calculations has already been proven for a queuing system of multiple servers

with exponential arrivals and general service time distribution (Tijms et al. 1981). In the next section, we

shall approximate waiting times with a robust optimization model for queuing systems and develop a tractable

approximate model for the scenario-based stochastic capacity planning problem SCPscen.

3. Approximate Capacity Planning Model with Robust Queuing Theory

Given the difficulty of computing individual waiting times exactly, one can consider the average waiting time

instead. However, capacity planning decisions based on average waiting times can cause severe delays when there

are more patient arrivals than average. In this proposed model, we will approximate individual waiting times

by their maximum waiting time. In this application of stem-cell transplantation, this worst-case approach is

reasonable given that it is important to be able to find as many suitable matches as possible in time for patients

even in the situations when waiting times are longer than usual. In addition, the approximation approach that

we are going to adopt is a parametric approach whose conservativeness level can be handled easily by changing

appropriate parameters. We are going to analyze the effect of these parameters in detail in Section 5.

There exist different methods to approximate the maximum waiting time in a queuing system; for instance,

see Gupta and Osogami (2011). However, according to Bandi and Bertsimas (2012), these approximations

usually do not lead to realistic results when the arrival process follows a distribution different from Poisson. In

order to overcome this problem, Bandi and Bertsimas (2012) proposed an alternative method based on robust

optimization to approximate the maximum waiting time when the arrival and service times are independent and
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identically distributed (i.i.d.) random parameters following an unknown distribution for a first-come first-serve

(FCFS) queue with a fixed number of servers x. We now provide a brief overview of this approach and then

explain how to apply it in our model.

Let Tk and Yk represent random interarrival and service times for blood samples k = 1, · · · ,K, respectively.

Following the robust optimization approach, Tk and Yk are assumed to belong to uncertainty sets Uarrv and

U serv, respectively. The structure of these uncertainty sets is inspired from the central limit theorem that

asserts asymptotic results for a large set of i.i.d. random variables. Readers are referred to Bandi and Bertsimas

(2012) and references therein for more details regarding the motivation of the uncertainty set structures as well

as the general robust optimization approach. Moreover, the sizes of these uncertainty sets are determined by

parameters Γarrv and Γserv that basically measure the variability of interarrival and service times, respectively.

The uncertainty set Uarrv for interarrival times Tk of samples k = 1, · · · ,K is defined as follows:

Uarrv =

{
(T1, T2, · · · , TK)

∣∣∣
∣∣∣∣∣

K∑
k=m+1

Tk −
K −m
λ

∣∣∣∣∣
√
K −m

≤ Γarrv, ∀m ≤ m0

}
, (4)

where 1/λ is the expected interarrival time. According to Bandi and Bertsimas (2012), the parameter m0 should

be selected such that the central limit theorem is valid for the random variables T1, · · · , Tm0 and a typical value

is m0 = K − 30. Similarly, the uncertainty set U serv for service times Yk of samples k = 1, · · · ,K is

U serv =

{
(Y1, Y2, · · · , YK)

∣∣∣
∣∣∣∣∣

κ∑
i=m+1

Yi·x+n −
κ−m
µ

∣∣∣∣∣
√
κ−m

≤ Γserv, ∀m ≤ κ− 1, 0 ≤ n < x

}
, (5)

where 1/µ is the expected service time and κ = bK/xc. The idea here is that for multi-server queuing systems,

the uncertainty set is built with constraints which are constructed based on the central limit theorem separately

for each server n, n = 0, · · · , x − 1 using κ arrivals assigned to each server from a round-robin allocation of

arrivals, hence the indices (i · x+ n) for i = 0, · · · , κ− 1 in (5) (see Bandi and Bertsimas (2012) and references

therein for more details). The following proposition provides an upper-bound W (x) for the waiting time W (x)

in view of these uncertainty sets for stable queue systems with traffic density ρ =
λ

µx
< 1.

Proposition 1. (Bandi and Bertsimas, 2012) Assume that the interarrival and service times for a FCFS queue
with x servers belong to the uncertainty sets Uarrv and U serv, respectively. The upper bound W (x) on the waiting
time of the queue can be calculated as,

W (x) =
λ(Γarrv + Γserv/

√
x)2

4
[
1− λ/(µx)

] . (6)
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Proof. The reader is referred to Bandi and Bertsimas (2012) for its proof and details of parameter estimation.

We are ready to use Proposition 1 to approximate the waiting time W s
ijk(xj) with the upper bound W j(xj).

In order to compute W j(xj), parameters λj , µj , Γarrvj , and Γservj are derived from scenario data. The arrival

sequence of blood samples to each centre in each scenario s, s = 1, · · · , S, can be used to derive their interarrival

times while service times, i.e., durations of the advanced blood tests, are already available. λj and µj are the

inverse of expected interarrival time and service time, respectively. Following the suggestion in Bandi and

Bertsimas (2012), we set Γarrvj = k · σarrvj and Γservj = k · σservj with k > 0, where σarrvj and σservj are the

standard deviation of interarrival time and service time, respectively. The parameter k acts as an indicator of

the conservativeness level of the robust optimization approach we adopt here. The effect of conservativeness

level will be further analyzed in numerical experiments in Section 5.

Now, let us define ỹ′ijs(xj) by replacing W s
ijk(xj) with W j(xj) in (3) as follows;

ỹ′ijs(xj) =


0, if W j(xj)− l̃ijs + max

k=1,··· ,pijs
{tijks + oijks} < 0 & rijs = 1, (7)

0, if W j(xj)− l̃ijs + max
k=1,··· ,pijs

{tijks + oijks}+ vijs < 0 & rijs = 0 & zijs = 1,

1, otherwise.

Since W j(xj) ≥ W s
ijk(xj), we have: ỹ′ijs(xj) ≥ ỹijs(xj). Replacing ỹijs(xj) with ỹ′ijs(xj) in the scenario-based

stochastic capacity planning model SCPscen, we obtain the following approximate optimization model

SCPappx : min
S∑
s=1

ωs

J∑
j=1

Ijs∑
i=1

Eϕijs [ỹ
′
ijs(xj)]

s.t. x ∈ X .

The model SCPappx is a robust (or safe) approximation of SCPscen, which follows the worst-case principle

of robust optimization (Ben-Tal et al. (2009)). The replacement of W s
ijk(xj) by its upper bound W j(xj) (and

ỹijs(xj) with ỹ′ijs(xj)) covers the worst-case scenario when the waiting times are much longer than average. The

conservativeness level of this robust approximation is controlled by the setting of Γarrvj , and Γservj and its effects

will be analyzed in Section 5. In the rest of this section, we shall focus on

developing further the approximate model SCPappx, especially on how to represent the expectation Eϕijs [ỹ
′
ijs(xj)]

with detailed information of the probability distribution ϕijs, as follows.

Let Θijs = {lijs, · · · , lijs} be the support set of the (discrete) probability distribution ϕijs and define

qijs(w) = Pr(l̃ijs = w) for w ∈ Θijs. Note that the planning horizon is discretized; therefore, discrete distribu-

tions are appropriate to be considered for patients’ random remaining lifetimes. For the sake of convenience,
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we introduce random parameters

l̃′ijs = l̃ijs − max
k=1,··· ,pijs

{tijks + oijks} and l̃′′ijs = l̃ijs − max
k=1,··· ,pijs

{tijks + oijks} − vijs,

with the corresponding support sets Θijs = {l′ijs, · · · , l
′
ijs} and Θijs = {l′′ijs, · · · , l

′′
ijs}, which can be easily

derived from Θijs. Similarly, we can define the probability distribution functions for these parameters as

q′ijs(w) = Pr(l̃′ijs = w) for w ∈ Θijs and q′′ijs(w) = Pr(l̃′′ijs = w) for w ∈ Θijs, respectively. Moreover, let’s

introduce an indicator function as ψj(w) = 1(w > βj) for w ∈ Θijs ∪Θijs, j = 1, · · · , J and s = 1, · · · , S. Note

that a characteristic (indicator) function 1(•) takes 1 if • holds and 0, otherwise.

Proposition 2. The model SCPappx with discrete distributions of patients’ random remaining lifetimes is equiv-
alent to the following integer linear optimization problem SCPip-appx with additional binary decision variables
τwj for j = 1, . . . , J , and w ∈ Θijs ∪Θijs, where s = 1, . . . , S, and i = 1, . . . , Ijs:

SCPip-appx : min
xj ,τwj

S∑
s=1

ωs

J∑
j=1

Ijs∑
i=1

(
rijs

∑
w∈Θijs

q′ijs(w)(1− ψj(w)τwj)

)
+

S∑
s=1

ωs

J∑
j=1

Ijs∑
i=1

(
zijs

∑
w∈Θijs

q′′ijs(w)(1− ψj(w)τwj) + (1− rijs)(1− zijs)

)
s.t. x ∈ X ,

φj(w)− xj ≤M(1− τwj), w ∈ Θijs ∪Θijs, ∀j, s, i = 1, · · · , Ijs,

τwj ∈ {0, 1}, w ∈ Θijs ∪Θijs, ∀j, s, i = 1, · · · , Ijs,

where M represents a sufficiently big number and

φj(w) =

[
Γarrvj Γservj +

√
(1− λ2

j )(Γ
arrv
j Γservj )2 +

4λjw

µj
(4w − λj(Γarrvj )2) + 4λjw(Γservj )2

]2

[
λj(Γarrvj )2 − 4w

]2 .

Proof.

For clarity of exposition, we rewrite the upper bound W j(xj) =
λj(Γ

arrv
j + Γservj /

√
xj)

2

4
[
1− λj/(µjxj)

] on the waiting

times at centre j as W j(xj) =
βjxj + γj

√
xj + ηj

xj − πj
by setting parameters βj =

(Γarrvj )2λj

4
, γj =

Γarrvj Γservj

2
,

ηj =
(Γservj )2λj

4
, and πj =

λj
µj

. Then, the expected number of unsuccessful searches becomes

Eϕijs [ỹ
′
ijs(xj)] =



Pr
(
W j(xj)− l̃ijs + max

k=1,··· ,pijs
{tijks + oijks} > 0

)
, if rijs = 1,

Pr
(
W j(xj)− l̃ijs + max

k=1,··· ,pijs
{tijks + oijks}+ vijs > 0

)
, if zijs = 1,

1, otherwise.

(8)
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From the first two conditionsW j(xj)− l̃′ijs > 0 andW j(xj)− l̃′′ijs > 0 in (8), we obtain the following inequalities:
(βj − l̃′ijs)xj + γj

√
xj + ηj + l̃′ijsπj

xj − πj
> 0 and

(βj − l̃′′ijs)xj + γj
√
xj + ηj + l̃′′ijsπj

xj − πj
> 0, respectively. Since (xj−πj)

is always positive due to the traffic intensity condition, we can rewrite (8) as follows;

Eϕijs [ỹ
′
ijs(xj)] =


Pr
(
(βj − l̃′ijs)xj + γj

√
xj + ηj + l̃′ijsπj > 0

)
, if rijs = 1,

Pr
(
(βj − l̃′′ijs)xj + γj

√
xj + ηj + l̃′′ijsπj > 0

)
, if zijs = 1,

1, otherwise.

(9)

Let us define ξj =
√
xj in order to analyze the first condition in (9). In this case, we have a quadratic function

h(ξj) = (βj − l̃′ijs)ξ2
j + γjξj + ηj + l̃′ijsπj .

• If βj − l̃′ijs ≥ 0, then h(ξj) > 0 since γj , ξj , ηj , l̃′ijs, πj are all positive.

• On the other hand, if βj− l̃′ijs < 0, then h(ξj) = (βj− l̃′ijs)(ξj−ξ
+
j )(ξj−ξ−j ), where ξ+

j and ξ−j are positive

and negative roots of h(ξj), which can be computed as ξ+
j =

−γj −
√
γ2
j − 4(βj − l̃′ijs)(ηj + l̃′ijsπj)

2(βj − l̃′ijs)
and

ξ−j =
−γj +

√
γ2
j − 4(βj − l̃′ijs)(ηj + l̃′ijsπj)

2(βj − l̃′ijs)
, respectively. Thus h(ξj) > 0 is satisfied if and only if

ξj =
√
xj < ξ+

j , which implies that xj < (ξ+
j )2. Let’s introduce φj(l̃′ijs) = (ξ+

j )2, which can be explicitly

written as φj(l̃′ijs) =

(
γj+

√
γ2
j − 4(βj − l̃′ijs)(ηj + l̃′ijsπj)

)2

4(βj − l̃′ijs)2
. Then we have xj < φj(l̃

′
ijs).

As a result, h(ξj) > 0 in the first probability of (9) is valid only when βj − l̃′ijs ≥ 0 or βj − l̃′ijs < 0 and

xj < φj(l̃
′
ijs). Then we can easily show that

Pr
(
(βj − l̃′ijs)xj + γj

√
xj + ηj + l̃′ijsπj > 0

)
= 1− Pr

(
βj − l̃′ijs < 0, xj ≥ φj(l̃′ijs)

)
by using the following relationship between probability functions

Pr
(
βj − l̃′ijs < 0

)
= Pr

(
βj − l̃′ijs < 0, xj < φj(l̃

′
ijs)
)

+ Pr
(
βj − l̃′ijs < 0, xj ≥ φj(l̃′ijs)

)
.

By applying the same procedure, equivalent conditions for (βj − l̃′′ijs)xj + γj
√
xj + ηj + l̃′′ijsπj > 0 in the

second probability of (9) are obtained. Moreover, we have

Pr
(
(βj − l̃′′ijs)xj + γj

√
xj + ηj + l̃′′ijsπj > 0

)
= 1− Pr

(
βj − l̃′′ijs < 0, xj ≥ φj(l̃′′ijs)

)
.
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Then, the expected number of unsuccessful searches in view of W j(xj) for patient i at centre j under scenario

s can be computed as follows;

Eϕijs [ỹ
′
ijs(xj)] =


1− Pr

(
βj − l̃′ijs < 0, xj ≥ φj(l̃′ijs)

)
, if rijs = 1,

1− Pr
(
βj − l̃′′ijs < 0, xj ≥ φj(l̃′′ijs)

)
, if zijs = 1,

1, otherwise.

(10)

that can also be equivalently rewritten as

Eϕijs [ỹ
′
ijs(xj)] =

[
1− Pr(βj − l̃′ijs < 0, xj ≥ φj(l̃′ijs)

]
rijs +[

1− Pr(βj − l̃′′ijs < 0, xj ≥ φj(l̃′′ijs)

]
zijs + (1− rijs)(1− zijs).

Under the general lifetime distribution assumption, probabilities in (10) are calculated as

Pr
(
l̃′ijs > βj , xj ≥ φj(l̃′ijs)

)
=

∑
w∈Θijs

q′ijs(w)1(w > βj , xj ≥ φj(w))

=
∑

w∈Θijs

q′ijs(w)1(w > βj)1(xj ≥ φj(w))

=
∑

w∈Θijs

q′ijs(w)ψj(w) 1(xj ≥ φj(w)), (11)

and

Pr
(
l̃′′ijs > βj , xj ≥ φj(l̃′′ijs)

)
=

∑
w∈Θijs

q′′ijs(w)1(w > βj , xj ≥ φj(w))

=
∑

w∈Θijs

q′′ijs(w)1(w > βj)1(xj ≥ φj(w))

=
∑

w∈Θijs

q′′ijs(w)ψj(w) 1(xj ≥ φj(w)). (12)

In order to express 1(xj ≥ φj(w)), we introduce binary variable τwj for w ∈ Θijs∪Θijs and patient i = 1, · · · , Ijs

under scenario s = 1, · · · , S such that

τwj =


1, if xj ≥ φj(w),

0, otherwise.
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This relationship can be formulated as a set of constraints using the big M approach;

φj(w)− xj ≤M(1− τwj), w ∈ Θijs ∪Θijs, j = 1, · · · , J, i = 1, · · · , Ijs, s = 1, · · · , S.

The expected number of unsuccessful searches Eϕijs [ỹ
′
ijs(xj)] in view of generally distributed life expectancy of

patients can be computed as

Eϕijs [ỹ
′
ijs(xj)] =

S∑
s=1

ωs

J∑
j=1

Ijs∑
i=1

(
rijs

∑
w∈Θijs

q′ijs(w)(1− ψj(w)τwj)

)
+

S∑
s=1

ωs

J∑
j=1

Ijs∑
i=1

(
zijs

∑
w∈Θijs

q′′ijs(w)(1− ψj(w)τwj) + (1− rijs)(1− zijs)

)
. (13)

The stochastic capacity planning problem SCPappx can then be reformulated as the stated integer (linear)

programming model SCPip-appx with φj(w) represented using the original parameters of Γarrvj , Γservj , λj , and µj

instead of βj , γj , ηj , and πj for all j = 1, . . . , J .

The reformulation presented in this proposition is an integer linear optimization model if X is specified by

linear constraints in x: i.e., X is polyhedral. In addition to integer decision variables x, there are additional

binary decision variables τwj , whose total number depends on the number of patients arriving at the donation

centres in each scenario as well as the size of supports of distributions of patients’ random remaining lifetimes.

Computationally, the resulting optimization models with polyhedral X can be solved with standard optimization

solvers such as CPLEX solver. In the next section, we will focus on those integer linear optimization models

resulting from polyhedral X in our computational experiments.

4. Design of Computational Experiments and Input Data

We design a series of computational experiments in order to illustrate performance of the capacity planning

model for a network of stem-cell donation centres. The integer (linear) optimization model SCPip-appx with

polyhedral X is implemented in IBM ILOG CPLEX and solved by the CPLEX solver. All computational

experiments are carried out on a laptop with Windows XP operating system, CPU 2.26GHz Intel Core i5 and

8GB of RAM. We can report that the CPU time taken to solve the underlying optimization model with any

size of network and parameter specifications specified in our computational experiments is at most 5 minutes.

A discrete event simulation model is developed in Matlab to validate the results obtained from the stochastic

capacity planning optimization model SCPip-appx.
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For numerical experiments, we start with a two-centre network, which is based on the current existing

network in Turkey with two stem-cell donation centres located in Istanbul and Ankara. A planning horizon is

set for one year with T = 350 one-day time periods. Data for this two-centre network are gathered from different

sources such as published research papers in the literature as well as interviews with staff from Istanbul Faculty

of Medicine, Istanbul University. Table 1 shows a description of input data used for numerical experiments and

the corresponding sources from where the data are obtained.

Table 1: Input data for model parameters used in the numerical experiments

Description of Parameters Value/Range Source of Data Distribution
Patient arrival rates for two centres, respectively 2 and 1.5 patient/day Kibank (2016) Exponential
Probability of finding a perfect match via 0.12 and 0.4 Querol et al. (2009a) Binomialnational and international sources, respectively
International search duration [25, 165] days Querol et al. (2009a) Uniform
Travel time of donors (samples) [5, 15] days Interviews Uniform
Average service (blood-testing) time 5 days DYBMS (2015) Uniform
Number of donors found by initial search [0, 6] donors Interviews Uniform
Patients’ remaining lifetime distributions Uniform Salomon et al., (2001) Uniform
Lower bound of remaining lifetime distribution [40, 45] days Costa et al. (2007) Uniform
Range of remaining lifetime distribution [30, 70] days Costa et al. (2007) Uniform
Variabilities (σ) of interarrival and service times 0.5 and 0.015 Interviews –

Based on information provided in Table 1, we generate S = 200 scenarios with equal probabilities (i.e.,

ωs = 1/S, s = 1, · · · , S) as input to the optimization model. In addition, we randomly generate 2000 scenarios

to use for out-of-sample tests. Note that in these computational experiments, we assume that remaining patient

lifetimes follow uniform (discrete) distributions as suggested by Salomon et al. (2001). Each patient has a

different uniform distribution for his/her random remaining lifetime whose lower bound and range are generated

randomly. As shown in Table 1, these two parameters also follow uniform distributions.

As suggested by Bertsimas and Bandi (2012), the interarrival time variability (Γarrv) is set to three times

of the standard deviation in the generated interarrival times, i.e., k = 3. Similarly, the service time variability

(Γserv) is set to the three times of the standard deviation in the generated service times.

For the feasible set X , we impose the simple budget constraint in most of the computational experiments, i.e.,

X =

x
∣∣∣ J∑
j=1

Cjxj ≤ B; xj ∈ Z+, j = 1, · · · , J

, as discussed before. We normalize the unit cost to 1$/day,

i.e., Cj = 1 for all j = 1, . . . , J . According to [29], the estimated total capacity of the two-centre network in

Turkey is 100. We shall initially set the budget to 100$, which can cover for that estimated total capacity of

the considered network. The effect of budget on the performance of the network will be analyzed in the next

section.
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5. Numerical Results

In this section, we present the numerical results to illustrate performance of the proposed capacity planning

model and effects of various model parameters on capacity decisions and total number of successful searches.

5.1. Performance of Capacity Planning Strategies

We solve the model SCPip-appx with data generated as discussed. The results show that there should be

x∗1 = 55 capacity units for advanced blood tests in the first centre and x∗2 = 45 units in the second centre given

the budget. The expected number of successful searches is 230 out of 700 expected patient arrivals (32.8%) at

the first centre throughout the planning horizon and 200 out of 525 (38.10%) at the second centre. The bound

on the longest waiting time in both centres is 28 days. Using these capacity settings, we simulate the operations

of the given two-centre network with out-of-sample data. Figure 2 displays relative frequency histograms of

the longest waiting time for test results (left plot) and the number of successful searches (right plot) using

out-of-sample data for the first donation centre. Similar results are obtained for the second centre.
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Figure 2: Histograms of the longest waiting time (left) and the number of successful searches (right) obtained at a stem-cell donation
centre using the out-of-sample data

The results show that the actual longest waiting time is 36 days as compared to the upper bound of 28 days

(based on Bandi and Bertsimas (2012)) in the optimization model. This implies that there are out-of-sample

scenarios that do not belong to uncertainty sets used in the optimization model. As shown in Figure 2, the

number of such scenarios with longer waiting times is very small. We will show later that the effect of these
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scenarios with longer waiting times (i.e., outliers) on the performance is not very significant when uncertainty

sets are appropriately selected. As compared to the expected number of successful searches of 249 obtained

from the optimization model, the actual number of successful searches ranges from 211 to 368 with the mean

of 284. It shows that the proposed optimization model with robust approximation of waiting times is a good

robust (or safe) approximation model for the capacity planning problem in the out-of-sample test.

The proposed model SCPip-appx can accommodate a more general feasible set X . To demonstrate this aspect

of the model, we construct a larger instance of the network with five stem-cell centres. Note that in reality,

larger networks exist in other countries such as UK and Italy that have four and seventeen centres, respectively,

and the Turkish policy makers also plan to increase the number of stem-cell donation centres in Turkey to better

serve patients in remote areas of the country (Diler et al., 2008). For this instance, the centres are assumed

to be located in five geographically different areas in Turkey. The interarrival rates to donation centres are

determined based on the population of regions as 1, 1, 0.75, 0.5, and 0.25 patient/days, respectively. All other

model parameters remain the same as specified in Table 1.

We now introduce additional constraints to be included in the model. For the given network instance with

five donation centres, there might be concerns about staff availability in some (remote) regions. Generally, we

can impose the following additional constraints

∑
r∈Rn

xr ≤ Hn, n = 1, · · · ,K, (14)

to indicate that there is a certain capacity limit Hn in each region n which covers all stem-cell centres in the set

Rn, n = 1, · · · ,K. For the given instance, we consider a single region of R1 = {1, 2} with capacity limit H1 = 50.

The optimal capacities of stem-cell centres without staff constraints are obtained as {26, 28, 21, 15, 10} with

the total expected number of successful search of 460. On the other hand, with the staff capacity constraint

for R1, the capacities of stem-cell centres are found as {25, 25, 21, 17, 12} with the total expected number

of successful search of 413. Figure 3 shows the histograms of the total number of successful searches achieved

from the network with/without the additional staff capacity constraint. This case clearly illustrates that the

additional constraint can affect the performance of the network in terms of successful searches.

The results above demonstrate how the proposed model SCPip-appx can handle additional constraints, which

results in different optimal capacity planning solutions. Even with only the simple budget constraint, the optimal

solutions obtained from the proposed model are not easy to determine or approximate due to the non-linearity

of waiting time functions. An intuitive heuristic for the capacity planning problem is to allocate the budget
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Figure 3: Histograms of total number of successful searches obtained by the optimization model with/without additional capacity
constraint using out-of-sample data

among the centres according to patient arrival rates. More precisely, given the budget constraint
J∑
j=1

xj ≤ B

with normalized unit costs, the heuristic solutions are obtained as xHj ≈ λjB ·

 J∑
j=1

λj

−1

for j = 1, · · · , J .

Applying this heuristic to the given instance of the network with five centres, we obtain the capacity planning

solutions as {29, 29, 21, 14, 7} for five centres.

The performance of network in terms of total number of successful searches is presented in Figure 4. From

performance comparison of the heuristic and optimization based approaches, we observe that the solutions

obtained from the proposed model is indeed better than the heuristic solutions. In other words, the optimal

capacities found by the proposed optimization model provide higher number of successful searches than those

obtained by the heuristic approach. The relationship between capacity and patient arrival rate is in general

more complicated than the simple linear relationship assumed by the heuristic approach. This relationship is

better captured in the proposed optimization model using the non-linear relationship between (approximate)

waiting time and patient arrival rate as shown in (6). It provides a possible explanation why the proposed model

performs better than the heuristic approach.

Overall, the numerical experiments so far show that the proposed model SCPip-appx is appropriate for the

capacity planning problem and also capable of handling additional constraints and better than the ad-hoc

heuristic which allocates the budget based on arrival rates of patients to stem-cell donation centres.
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Figure 4: Histograms of total number of successful searches obtained by the optimization and heuristic approaches using out-of-
sample data

5.2. Impact of Model Parameters

We now focus on impacts of various model parameters on the performance of capacity planning solutions

obtained from the proposed model. The numerical results are reported for instances of the network with two

centres and the simple budget constraint. We start with the daily budget by varying it from $70 to $120. We

present the optimal capacities of individual (two) centres as well as the total capacity of the whole network of

centres given at different budgets in Figure 5 (left). The results indicate that for small budgets, the first centre

(with higher patient arrival rate) seems to be more important as it keeps being allocated with additional budgets.

When the budget is large enough, the focus is then shifted to the second centre. One possible explanation is that

the performance of centres with higher patient arrival rates in terms of waiting time is much worse than that

of centres with lower patient arrival rates when the capacity is low given the non-linear relationship between

capacity and patient arrival rates. It is therefore preferable in these situations to first improve the performance

of centres with higher patients arrival rates if additional budgets are available.

Figure 5 (right) also shows the box plots of total number of successful searches obtained by the optimization

model at different budgets using out-of-sample data. The performance of the network measured in terms of the

number of successful searches improves significantly with the increase of the budget (as total budget is increased

from $70 to $90) when the budget is small. The improvement becomes less significant when the budget is

sufficiently large. It indicates that large budget is not necessarily preferable and the decision makers need to

select an appropriate level of budget by taking into account how it affects the overall performance.

As discussed in Section 3, the variability parameters (denoted by Γarrv and Γserv) define the conservativeness

of the underlying uncertainty sets for random interarrival and service times used to find upper bounds of waiting
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Figure 5: Impact of total budget on optimal capacities of the two-centre network (left) and number of successful searches (right)

times in the proposed optimization model. In other words, a larger variability corresponds to more conservative

uncertainty set since they cover a larger number of corresponding realizations. In this experiment, we vary

the ratio k from 0.5 to 5 and set accordingly Γarrv = k · σarrv and Γserv = k · σserv. Note that when k = 5,

the uncertainty sets cover almost all possible realizations of interarrival times and service times. We present

the optimal capacities of two centres obtained from the proposed model for varying values of k in Figure 6

(left). When 0.5 ≤ k ≤ 2.5, more capacities are allocated to the first centre (with higher patient arrival rate),

which might be due to the fact that two uncertainty sets concentrate more on two nominal scenarios, which

are different in terms of patient arrival rates. The capacity solutions remain the same when k ≥ 2.5. Figure 6

(right) also shows the box plots of total number of successful searches for different variabilities of uncertainty

sets determined by k. There is a significant improvement in terms of number of successful searches when k

increases from 1.0 to 1.5. For large k values, given that the capacity solutions remain the same (or very similar),

the optimization model displays similar performance in terms of number of successful searches. These results

indicate that there is no need to consider very large uncertainty sets in general to achieve good performance

given that (a small percentage of) scenarios with long waiting times (i.e., outliers) would not significantly affect

the overall expected number of successful searches.

Next, we test our proposed model with different settings for uniform distributions of remaining lifetime. In

this case, the minimum lifetime and lifetime range are varied. New scenarios are generated to build uncertainty

sets (200 scenarios) and to carry out-of-sample tests (1000 scenarios) in each settings. Even though the capacity

solutions remain the same in all settings, the overall performance of the network changes. Figure 7 shows the

box plots of the total number of successful searches for different settings of minimum lifetime and lifetime range

of patients. The results indicate that the higher the lower bound is, the better the performance is achieved

given that the whole range of remaining lifetime is shifted. Similarly, the larger the range is, the better the
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Figure 6: Impact of conservativeness of uncertainty sets for random interarrival and service times on optimal capacities of the
two-centre network (left) and number of successful searches (right)

performance is obtained, but the effect is less significant since the minimum lifetime remains the same.
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Figure 7: Box plots of the total number of successful searches for different settings of patient’s remaining lifetime distribution using
out-of-sample data

Finally, we would like to illustrate performance of the proposed capacity planning model at increasing patient

arrival rates. We change the patient arrival rates for both centres and use them to generate 200 scenarios, which

in turns, are used to build the uncertainty sets. Similarly, 1000 scenarios are generated again for out-of-sample

tests. Figure 8 (left) shows the optimal capacities of two centres in response to the changes in the patient arrival

rates. The results indicate that when the arrival rates of both centres increase, more capacities are allocated to

the first centre to achieve good performance. We also present the box plots of the rate of successful searches for

different patient arrival rates using out-of-sample data in Figure 8 (right).
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Figure 8: Impact of varying patient arrival rates on optimal capacities of the two-centre network (left) and number of successful
searches (right)

Rates instead of total number of successful searches are used given that when the patient arrival rates change,

the total number of patient arrivals is also changed accordingly. The results show that when the patient arrival

rates increase, the rate of successful searches decreases significantly. This implies that the total budget should

be increased to improve the performance of the network if patient arrival rates are increased.

6. Conclusions

Stem-cell donation centres serve patients with an urgent need of stem-cell transplantation. The search

process for a suitable stem-cell donor consists of several steps and requires time-consuming and expensive

advanced blood tests. In this paper, we propose an optimization model with robust queuing approximation

for the capacity planning problem faced by these stem-cell donation centres which takes into account several

uncertain factors such as unknown distributions of patient arrivals and service times.

The computational experiments show that the proposed optimization model is appropriate for the capacity

planning problem and flexible enough to incorporate additional practical constraints. The model performs better

than the simple heuristic that allocates the budget based on arrival rates. The sensitivity analysis demonstrates

that the conservativeness of the model can be controlled by the variabilities of patient arrivals and service

times set by decision makers. The numerical results illustrate that patient remaining lifetime mainly affects the

performance of the network. Although the increase in patient arrival rates affects both capacity solutions and

performance of the network of stem-cell centres, an increase in the total budget might be needed to improve

the overall performance the network in such cases. On future work, robust queuing approximation could be

considered in other relevant applications and the proposed optimization model could be further developed to

address other practical constraints in real case studies.
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