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Abstract. In this paper, we propose a new weakly supervised 3D brain
lesion segmentation approach using attentional representation learning.
Our approach only requires image-level labels, and is able to produce
accurate segmentation of the 3D lesion volumes. To achieve that, we de-
sign a novel dimensional independent attention mechanism on top of the
Class Activation Maps (CAMs), which refines the 3D CAMs to obtain
better estimates of the lesion volumes, without introducing significantly
more trainable variables. The generated attentional CAMs are then used
as a source of weak supervision signals to learn a representation model,
which can reliably separate the voxels belong to the lesion volumes from
those of the normal tissues. The proposed approach has been evaluated
on the publicly available BraTS and ISLES datasets. We show with com-
prehensive experiments that our approach significantly outperforms the
competing weakly-supervised methods in both initial lesion localization
and the final segmentation, and is able to achieve comparable Dice scores
in segmentation comparing to the fully supervised baselines.

Keywords: Weakly Supervised · Lesion Segmentation · Representation
Learning.

1 Introduction

Magnetic Resonance Imaging (MRI) has become one of the key diagnostic tech-
niques for brain lesion analysis, offering a non-intrusive and radiation-free modal-
ity to detect abnormalities. For many diseases such as brain tumour, the precise
identification and segmentation of the lesion volumes is a fundamental prerequi-
site for further treatments including surgery or radiation therapy. Traditionally,
this process is performed by the experienced medical experts, which is expensive,
tedious and more importantly prune to the inter-rater/test-retest variability [11].
Recently, there has been a solid body of work on automatic lesion segmenta-
tion [5, 8, 13], offering a faster and more objective alternative to human labor.
In particular, the deep learning based methods have demonstrated impressive
performance in various segmentation tasks, and are robust enough to process
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lesion volumes with irregular shapes or challenging sizes [8, 13]. However, most
of the existing deep learning methods are supervised, whose success depends on
substantial amount of training data with accurate labels. Particularly for the
task of brain lesion segmentation, such labels have to be the accurate lesion
boundaries in the 3D space, which are often annotated by the experts manually.
They are extremely expensive and time-consuming to obtain, which significantly
limits the application of those approaches in clinical practice.

On the other hand, weakly supervised segmentation approaches which only
require the coarse-grained (e.g. image-level) labels point to a promising direc-
tion [4, 3, 6, 7, 10]. These approaches aim to exploit the minimum level of expert
annotations, while being able to generate the fine-grained segmentation automat-
ically. Many of these weakly supervised approaches leverage the Class Activation
Maps (CAMs) [14] as a key step for segmentation. For example, the work in [7]
uses multi-layer CAMs to detect histological features of glioma in CLE images,
while [3] proposes an iterative mining pipeline to localise lesion in different areas.
However, a major drawback of CAMs is that they can be very noisy in practice,
and thus it is often challenging to derive good initial segmentation proposals
from them, especially for 3D images.

In this paper, we propose a novel weakly supervised segmentation approach
for brain lesion in MRI images, which only requires image-level binary labels in-
dicating whether the lesion is present or not. Such weak labels are much easier to
obtain in practice, and thus our approach can generate high quality segmentation
proposals on the vast unlabeled data with minimum human input, which can
then be refined by experts to produce accurate voxel-level labels in 3D. In partic-
ular, we develop a new dimensional independent attention mechanism on top of
the standard CAMs, which can significantly improve lesion localization without
introducing excessive trainable variables to the network. This attentional CAM
provides high quality estimates of the lesion regions as well as normal tissues,
which are then used to train a representation model. The learned model can
reliably distinguish the voxels of lesion volumes from those belong to the nor-
mal tissues, and thus generate the accurate lesion segmentation. We evaluate the
proposed approach on the public BraTS [2] and ISLES [9] datasets. Extensive ex-
periments show that with the proposed attentional CAMs, our approach is able
to acquire much better initial estimates of lesion regions comparing to the com-
peting methods, and the proposed representation learning technique is evidently
beneficial in improving segmentation performance, significantly outperforming
the state-of-the-art while offering comparable accuracy with the fully supervised
baselines.

2 Method

The proposed weakly supervised 3D lesion segmentation approach consists of
three steps: i) obtaining the initial lesion regions with image-level labels; ii)
learning a representation model to distinguish the voxels belong to normal and
lesion tissues; and iii) using the learned model to obtain the fine-grained voxel-
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Fig. 1. The overview of the proposed weakly supervised lesion segmentation approach.

level segmentation of lesion volume. Fig.1 shows the overview of the proposed
approach. In particular, our approach is based on two deep neural networks:
a) a classification network which is used to compute the 3D Class Activation
Maps (CAMs); and b) another network which learns the voxel representation
model and performs the segmentation. The remainder of this section describes
the design of the two networks and training techniques for them in more details.

2.1 Lesion Localization with Attentional CAM

Generating CAMs with Image-level Labels: As in many state of the art
weakly supervised approaches, the Class Activation Maps (CAMs)[14] are often
considered as the seeds for later segmentation. In the proposed approach, we also
consider CAMs as the initial segmentation proposals, which can roughly localize
the lesion volumes within the images. In particular, given the image-level labels
i.e. binary labels indicating if lesion tissues exist, the standard technique [15] to
obtain the CAM is to train a classification network with global average pooling
(GAP) or global mean pooling (GMP) followed by a fully connected layer. The
CAM of a positive sample (image with lesion) is computed by:

C(h,w, d) = wT
CAMF (h,w, d) (1)

where w is the weights associated to the positive class, F is the feature map
extracted by the last convolutional layer before the GAP/GMP operation, and
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F (h,w, d) is the feature vector at location (h,w,d). In practice, C is typically
normalized to make the maximum activation equals to one, and a threshold is
often used to extract the region of target objects, which can be used as an initial
proposal for segmentation.
Refining CAMs with Attention: However for 3D medical images, in some
cases the lesion tissues may only occupy a small fraction of the entire volume,
e.g., in our experiments with the ISLES [9] and BraTS datasets [2], the tumor
or stroke volumes can be just 0.1% of the whole brain. For those samples, the
CAMs tend to be very noisy, making it challenging to select the appropriate
threshold to obtain the desired lesion regions. In practice, if GAP is used in the
network then we typically need to consider larger activation values which make
training more difficult to converge. On the other hand, if GMP is considered,
the network may focus too much on small areas with stronger responses, and
generate incomplete regions that won’t be able to cover the whole lesion volumes.

To address this problem, we proposed to use the attention mechanism to
refine the generated CAMs. Conceptually this can be achieved by directly ap-
plying the learned attention sores to the 3D CAMs. However, in practice it is
prohibitively expensive for 3D images since the amount of trainable parameters
are significantly larger than 2D, which can easily lead to over-fitting. Therefore,
in this paper, we consider an approximation approach, which enforces atten-
tion along individual dimensions and fuses the re-weighted features afterwards.
Concretely, let F ∈ RH×W×D×K be the activation map extracted by the last
convolutional layer. F can be viewed as K 3D feature cubes Fk ∈ RH×W×D.
For each cube Fk, we first apply average pooling to its slices along the three
different dimensions. For example along the dimension of size D, we do average
for the D feature slices, each of which is a H ×W feature, and obtain a vector
FD ∈ RD×K across the K cubes. We then consider a self-attention over this
feature FD, where the attention scores sd (1 ≤ d ≤ D) is calculated as:

sd =
exp(gd)∑D
d=1 exp(gd)

, where gd = wT
attF

D(d) (2)

Here FD(d) is the d-th feature in FD, and watt are the weights learned via
training. The attention scores sd are then used to re-weight the generated CAM
along the dimension of size D, i.e. multiplied to the 2D slices of the activation
values (with size H × W ) in the CAM: C ′D(d) = sd · C(d). Similarly, we can
learn the attention scores along the other two dimensions (with size H and W ),
which are used to obtain the re-weighted CAMs C ′H and C ′W . Then the final
attentional CAM (ACAM) C ′ is computed by fusing the three CD, CH and CW ,
which is also normalized to [0, 1].

Intuitively, the learned attention scores specify how important the feature
slices are with respect to the final classification results (lesion or not) along
a certain dimension, which is exploited to refine the standard CAM. It is also
worth pointing out that here we implicitly assume that the attention scores along
different dimensions are independent, and thus they are actually approximations
to the full 3D self-attention, which however would require much more training
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effort. In our experiment, we show that the proposed attentional CAM (ACAM)
can achieve much better performance than the standard CAMs (using GMP or
GAP), while won’t incur significantly expensive training cost.

2.2 Weakly Supervised Representation Learning for Segmentation

As discussed above, the ACAMs generated by the classification network provide
rough estimates of the 3D lesion volumes. To obtain the accurate voxel-level
segmentation, in this paper we use another network, which exploits the ACAMs
as a source of weak supervision. The key idea is that although ACAMs are not
globally accurate segmentation, in regions with high confidence they can still pro-
vide valuable information on features of the foreground (lesion) and background
(normal tissues). We could then leverage that to learn a universal representation
model, with which voxels from the foreground can be effectively separated from
those from the background, and thus obtain the voxel-level segmentation.

Learning the Representation Model: To learn the representation model,
we first randomly select the voxels with high confidence from both the fore-
ground (lesion) and background (normal tissues) according to the ACAMs. In
particular, we select a foreground voxel if the ACAM C ′(h,w, d) ≥ θFG , while
the background if C ′(h,w, d) ≤ θBG. In our experiments, we set θFG to 0.1 and
θBG to 0.01 respectively.

With the selected set of high confidence voxels V , we aim to learn a repre-
sentation model fR in the form of a neural network, which maps an arbitrary
voxels p to its embedding vector fR(p). In this case, the distance between two
voxels p and q can be defined as D(p, q) = (1 + exp{−‖fR(p) − fR(q)‖22})−1,
where ‖ · ‖2 is the L2 norm. We train fR using a cross-entropy loss:

L = − 1

|V |
∑

p,q∈V

(
log[D(p, q)]1(p,q) + log[1−D(p, q)]1−1(p,q)

)
(3)

where the indicator function 1(p, q) returns 1 if the voxels p and q both belong
to the foreground or background, while 0 if p and q are different.

Segmentation based on Voxel Affinity: Let p be a foreground voxel in V .
With the learned representation model fR, we could obtain a lesion segmentation
candidate Sp by selecting all voxels q that are close enough (with high affinity)
to p, i.e. Sp = {q|D(p, q) ≥ λ}, where the rest is considered as the background
(normal tissues). In practice, the quality of the segmentation Sp depends on the
selection of the seed voxel p, which can lead to noisy results in some cases. To
mitigate that, in this paper we firstly use multiple foreground seed voxels in
V to generate an array of segmentation candidates S. Then for each candidate
Sp ∈ S, we assign a confidence score cp, which is computed as the mean of the
voxel ACAM values, i.e. the average confidence that the voxels in Sp are belong
to the foreground. Finally we combine the segmentation candidates S by non-
maximum suppression according to the confidence scores, and obtain the final
segmentation of the lesion volume.



6 K. Wu et al.

BraTS Dataset ISLES Dataset

Dice Sensitivity Specificity Dice Sensitivity Specificity

CAM(GMP) 0.3229 0.2713 0.9745 CAM(GMP) 0.2873 0.5509 0.9853
CAM(GAP) 0.6205 0.5642 0.9867 CAM(GAP) 0.2791 0.6026 0.9821

ACAM 0.7464 0.7326 0.9858 ACAM 0.3381 0.6513 0.9827

Table 1. Lesion localisation performance of the competing approaches.

3 Evaluation

3.1 Experimental Setup

Datasets: We consider two datasets in our experiments: i) the Multimodal
Brain Tumor Segmentation dataset (BraTS 2017) [2] and ii) the Ischemic Stroke
Lesion Segmentation (ISLES 2017) dataset [9]. The BraTS dataset contains mul-
timodal MRI images including T1, T1c, T2 and Flair, where the training set has
210 samples and the test set contains 47 samples. The ground truth segmenta-
tion includes four tumor tissue classes, but in this paper we only consider those
for the whole tumors. The ISLES dataset also contains multi-spectral MRI data
of 43 stroke patients, with ground truth segmentation provided.
Competing Approaches: For initial lesion localization, we compare the pro-
posed attentional CAM with CAM(GMP) and CAM(GAP), which are the stan-
dard approaches of generating CAMs using Global Maximum Pooling(GMP) and
Global Average Pooling(GAP) respectively. For lesion segmentation we compare
the proposed weakly supervised representation learning approach (ACAM+WSR)
with: i) a fully supervised UNet [12] (S-UNet) trained with the ground truth; and
ii) a weakly supervised UNet (WS-Unet), which uses the results of our ACAM
as the weak supervision signals to train the UNet.
Metrics: We consider the Dice, Sensitivity and Specificity as the evaluation
metrics, which are computed as: Dice = 2TP/(2TP+FP+FN); Sensitivity =
TP/(TP+FN); and Specificity = TN/(TN+FP) respectively. Here TP, FP, TN
and FN are true positive, false positive, true negative and false negative.
Implementation: Our networks are implemented with Tensorflow [1], and
trained on a single Titan X GPU with the Adam optimiser of learning rate 0.001.
The network to generate ACAM is a VGG-like 3D convolutional network, where
at the end of the conv layer we incorporate the proposed attention mechanism.
The network for representation learning shares the similar structure with 3D
UNet. We train the networks with only binary labels, i.e. if this image contains
lesion or not, and report the segmentation performance with respect to the
ground truth segmentation labels. For BraTS dataset, we report results returned
from the official evaluation server, while for the ISLES dataset, we randomly
divide training and testing sets (3:1) and report results on the testing set.

3.2 Results

Lesion Localization: Table 1 shows the lesion localisation performance of
the competing approaches. We can see that on the BraTS dataset, the standard
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BraTS Dataset ISLES Dataset

Dice Sensitivity Specificity Dice Sensitivity Specificity

S-UNet 0.8811 0.8691 0.9950 S-UNet 0.4459 0.3753 0.9984
WS-UNet 0.7682 0.7727 0.9874 WS-UNet 0.3374 0.7348 0.9795

ACAM+WSR 0.7997 0.8973 0.9785 ACAM+WSR 0.3827 0.8306 0.9791

Table 2. Lesion segmentation performance of the competing approaches.

CAM with GMP has the much lower Dice and Specificity scores (around 0.32
and 0.27), which won’t be able to localise the lesion volume. The CAM(GAP)
works better than CAM(GMP), but it is the proposed ACAM that achieves the
best results overall (up to 42% improvement in Dice and 46% in Sensitivity).
It confirms that the attention mechanism can help the network to focus more
on the lesion volumes, and significantly improve the localization performance
(see Fig. 2(b) and (c)). On the other hand, we see that on ISLES dataset the
gap between CAM(GMP) and CAM(GAP) is smaller, where CAM(GMP) even
has slightly better Dice score. This is because unlike in the BraTS dataset, the
lesion volumes in ISLES dataset tend to be smaller, where the max pooling used
in CAM(GMP) is more suitable to detect such small regions. Again we see the
proposed ACAM achieves the best results, offering up to 6% improvement in
Dice and 10% better Sensitivity scores.
Lesion Segmentation: We are now in a position to evaluate the performance
of lesion segmentation of the competing approaches. Table 2 shows the results on
both BraTS and ISLES datasets. Note that here the S-UNet is a fully supervised
approach, which has access to the ground truth segmentation. On the other
hand, both WS-UNet and the proposed ACAM+WSR only use the image level
labels. We see that the proposed ACAM+WSR generally outperforms the weakly
supervised WS-UNet, e.g., in the ISLES dataset it enjoys roughly 5% better
dice and 10% better sensitivity scores, while in the BraTS the improvements
are 3% and 12.5% respectively. This means the representation learning does
help to effectively extract lesion volumes from the normal tissues, leading to
more accurate segmentation. On the other hand, we see that the gap between
the proposed ACAM+WSR and the fully supervised S-UNet is only about 6%
in Dice (note that for ACAM+UNet the gap is 11%), which means even with
image-level labels, our weakly supervised approach could achieve comparable
accuracy with fully supervised baseline (see Fig. 2(d) and (e) for an example).

4 Conclusion

In this paper, we present a new weakly supervised brain lesion segmentation ap-
proach that only requires image-level labels to generate the accurate voxel-level
3D boundaries of the lesion volumes. We develop a novel attentional CAM tech-
nique to better localize the lesion regions, and exploit representation learning to
further improve lesion segmentation. The proposed approach has been validated
on two public datasets, the BraTS and ISLES, where experimental results show
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(a) Ground Truth (c) ACAM(b) CAM(GAP) (d) ACAM+WSR (e) S-UNet

Fig. 2. Qualitative results on BraTS dataset showing extracted lesion volumes by
(a) ground truth, (b) CAM(GAP), (c) the proposed ACAM, (d) the proposed
ACAM+WSR and (e) fully supervised S-UNet.

that our approach offers superior performance to the state-of-the-art, and can
achieve comparable segmentation accuracy with the fully supervised methods.
For future work, we would like to explore approaches that can detect multiple
classes of the lesion structure with similar weak supervision signals and consider
more types of lesion data.
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5. Despotović, I., Goossens, B., Philips, W.: Mri segmentation of the human brain:
challenges, methods, and applications. Computational and mathematical methods
in medicine 2015 (2015)

6. Hwang, S., Kim, H.E.: Self-transfer learning for weakly supervised lesion localiza-
tion. In: International Conference on Medical Image Computing and Computer-
Assisted Intervention. pp. 239–246. Springer (2016)

7. Izadyyazdanabadi, M., Belykh, E., Cavallo, C., Zhao, X., Gandhi, S., Moreira, L.B.,
Eschbacher, J., Nakaji, P., Preul, M.C., Yang, Y.: Weakly-supervised learning-
based feature localization for confocal laser endomicroscopy glioma images. In:
International Conference on Medical Image Computing and Computer-Assisted
Intervention. pp. 300–308. Springer (2018)



Title Suppressed Due to Excessive Length 9

8. Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon,
D.K., Rueckert, D., Glocker, B.: Efficient multi-scale 3d cnn with fully connected
crf for accurate brain lesion segmentation. Medical image analysis 36, 61–78 (2017)

9. Maier, O., Menze, B.H., von der Gablentz, J., Häni, L., Heinrich, M.P., Liebrand,
M., Winzeck, S., Basit, A., Bentley, P., Chen, L., et al.: Isles 2015-a public eval-
uation benchmark for ischemic stroke lesion segmentation from multispectral mri.
Medical image analysis 35, 250–269 (2017)

10. Mlynarski, P., Delingette, H., Criminisi, A., Ayache, N.: Deep learning with mixed
supervision for brain tumor segmentation. arXiv preprint arXiv:1812.04571 (2018)

11. Porz, N., Bauer, S., Pica, A., Schucht, P., Beck, J., Verma, R.K., Slotboom, J.,
Reyes, M., Wiest, R.: Multi-modal glioblastoma segmentation: man versus ma-
chine. PloS one 9(5), e96873 (2014)

12. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234–241. Springer (2015)

13. Tseng, K.L., Lin, Y.L., Hsu, W., Huang, C.Y.: Joint sequence learning and cross-
modality convolution for 3d biomedical segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 6393–6400 (2017)

14. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features
for discriminative localization. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 2921–2929 (2016)

15. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features
for discriminative localization. In: CVPR. pp. 2921–2929 (2016)


