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Abstract

There is a range of practical problems where advanced engineering heterogeneous

materials undergo chemical transformations. The primary example of such system is

energy storage materials, in particular anodes of Li-ion batteries containing active Si

particles. The exploitation of such anodes involves extreme volumetric expansion of

the active particles during the chemical reaction. The expansion is causing mechani-

cal stress, which, in turn, influences the kinetics of chemical reactions even up to their

arrest. A particular reaction between Si and Li is localised, as well as a number of

other reactions, such as oxidation or precipitate formation. The model presented in

this paper accounts for the kinetics of the reactions in a collection of particles inside

a matrix material. The microstructure is modelled using the multiscale mean-field

framework based on the incremental Mori-Tanaka method. This is the first appli-

cation of a multiscale mean-field technique to modelling reaction front kinetics in

particles and linking the intra-particle kinetics with the response of the matrix. A

number of physical effects arising from the influence of the deformation mechanisms of

the matrix on the kinetics of the intra-particle reactions is investigated. Furthermore,

the applicability of the proposed model and the incremental Mori-Tanaka homogeni-

sation scheme is studied by comparison to the full-field simulations in the cases of

small and finite strains.

Keywords: chemo-mechanical processes, chemical affinity tensor, silicon lithiation,

non-linear viscoelastic material, Mori-Tanaka model.

1 Introduction

In recent years, there has been an emergence of interest in the influence of mechanical stresses on kinetics
of chemical reactions taking place at the microscopic scale, which is relevant, for example, for formation of
oxide layers on parts of micro-electro-mechanical systems (MEMS) or other materials [1–3], for lithiation
of Si in Li-ion batteries [4, 5] or lead soap aggregate formation in old paintings [6]. Chemical reactions
in these specific examples are localised, i.e. they take place at a surface inside a deformable solid.
Furthermore, the chemically transformed material has intrinsic volumetric expansion compared to the
untransformed material, which causes mechanical stresses. In the case of Si oxidation, crack initiation
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might take place in the oxide layer, which leads to fatigue failure [1]. When lithiation of Si takes place
in Li-ion batteries, there is reaction arrest due to a build-up of mechanical stresses [7].

There are several models of stress-affected chemical reactions [8–16]. In the localised reactions, the
chemical reaction front moves due to the consumption of the diffusive reactant, which is supplied to the
reaction front by a diffusion process. The chemical reaction rate and, thus, the velocity of the front is
affected by the stresses, which, in turn, emerge due to transformation of the material as the front moves.
There is a similarity between the mechanochemical transformation and the movement of phase boundaries
in the classical stress-induced solid-solid phase transformations, where the configurational force, which is
driving the phase boundary kinetics, is equal to the jump of the normal component of the Eshelby stress
tensor at the phase boundary [17–19]. In [12–14], it has been shown that the configurational force for
a localised chemical reaction front is the normal component of a specific tensor, which has been called
the chemical affinity tensor. This tensor is equal to the combination of the chemical potential tensors of
the reaction constituents, which, in turn, are equal to the Eshelby stress tensors divided by the reference
mass densities.

Theory built on the chemical affinity tensor has been applied to a number of problems with linear
elastic constitutive behaviour of materials: an analysis of a planar reaction front [13], a spherical reaction
front [20] and a reaction front propagation in a 2D plate with a groove [21]. Furthermore, the theory has
been used to simulate the so-called two-phase lithiation of Si particles utilised in Li-ion batteries [22],
where the constituent materials undergoing large elasto-viscoplastic deformations were considered. The
work has been focused on single particles with stress-free boundary conditions and on the analysis of the
influence of various model parameters on the reaction locking effect. When Si particles are used as anode
active material in Li-ion batteries, they are placed inside a matrix material, which usually consists of a
graphite and a polymer binder, and analysis of the influence of the matrix material on the kinetics of the
two-phase lithiation, has not been performed yet.

There are multiple ways of modelling particle-reinforced heterogeneous materials via micromechanical
full-field and mean-field approaches. For a recent review of the full-field homogenisation techniques, the
reader is referred to [23], while a recent overview of the mean-field techniques can be found in [24–26]. Full-
field homogenisation techniques have an advantage over the mean-field techniques in terms of accuracy;
however, they require the full-field solution of the underlying PDEs. In relatively standard problems, e.g.
first-order computational homogenisation in application to mechanics, which is now well-established, this
is not an issue, especially considering available computational tools. However, the microstructure con-
sidered in this paper undergoes chemical transformation with moving phase boundaries. Such problems
are non-trivial themselves and require special techniques for handling the moving phase boundary, e.g.
XFEM [27,28], the enhanced gradient FEM [29,30] or CutFEM [31] approaches. In the case of absence
of the chemical reaction front, the full-field homogenisation has already been formulated for problems of
stress-affected diffusion of Li-ions and applied to some test cases in [32–34].

The mean-field techniques rely on a number of assumptions, which simplify the underlying problem.
The one of the established mean-field homogenisation techniques is the Mori-Tanaka inclusion-matrix
coupling scheme [35, 36]. This scheme has already been used in the context of coupled stress-affected
electrochemical modelling of Li-ion batteries [37–39], however, only for volumetric reactions and linear
elastic materials. Furthermore, this scheme has also been applied to obtain the effective properties of
the composite electrodes [40, 41], again, in the elastic regime. The Mori-Tanaka scheme has originally
been proposed for linear elasticity [35, 36], later extended to non-elastic behaviour using an incremental
formulation [42] and, finally, has also been formulated for finite deformations [24, 25]. However, up to
now, the Mori-Tanaka approach has not been applied to heterogeneous materials, where mechanochemical
transformation takes place and involves propagating reaction fronts, in both small-strain and non-linear
finite-strain settings.

Therefore, the aim of this paper is to model the mechanochemical behaviour of particles with localised
stress-affected chemical reactions, embedded into a matrix material, using a micromechanical approach
based on the Mori-Tanaka model generalised to a finite-deformation regime. The finite-deformation
problem formulation is used, as it also allows studying both the case of small and finite strains in a
natural way. Furthermore, a validation procedure, which is based on a limit case of small particle volume
fraction, is carried out to estimate the accuracy of the incremental Mori-Tanaka scheme in the cases of
small and finite strains.

It is shown that, the incremental Mori-Tanaka scheme can be considered as useful approach for
micromechanical modelling of heterogeneous materials, undergoing mechanochemical transformations.
However, this work shows that extra care must be considered generalising the model to finite strains.
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This is due to inaccurate estimation of the local fields, which highly affect the reaction kinetics, in the
finite-strain regime. On the other hand, the validation showed perfect consistency of the model in the
case of small strains. In the results section of this paper, the dependency of the intra-particle reaction
front kinetics on the matrix material parameters (stiffness, relaxation time, etc.) is studied.

2 Micromechanical model

The heterogeneous materials, which are considered here, consist of particles (inclusions) embedded into
a matrix. Initially, the particles are homogeneous inclusions, e.g. silicon particles incorporated into
graphite/binder matrix. Upon initiation of the mechanochemical transformation, the particles become
two-phase structures, consisting of the shell (the transformed material) and the core (the untransformed
material), which are separated by the chemical reaction front. As the transformation advances, the
reaction front moves from the external surface of the particle to its centre. The transformed material has
intrinsic volumetric expansion, which causes inhomogeneous stress and strain spatial distribution within
the particle and the volumetric expansion of the particle itself.

The model of the composite material is built upon the incremental Mori-Tanaka (IMT) homogenisation
scheme [42]. This scheme was originally designed for a two-phase composite with homogeneous inclusions
incorporated into a homogeneous matrix. Since in the considered case, the inclusions have a two-phase
structure, the IMT scheme is used to link the matrix strain and the effective inclusion strain, while the
intra-inclusion structure and stress-strain state are resolved by a separate sub-model, as schematically
shown in Figure 1. Thus, the description of the micromechanical model is split into three main parts:
the inclusion-matrix coupling, the intra-inclusion sub-model and the constitutive laws of the materials
involved in the model.

To achieve computational efficiency, the micromechanical model uses the assumption that the inclusion
geometry remains spherical throughout the transformation and the deformation processes. This allows
using the spherical symmetry and solving 1D equations for the intra-inclusion quantities. Although the
underline equations become 1D, the model is still presented in tensorial form.

2.1 Inclusion-matrix coupling and volume-averaging

For completeness of the paper, the ideas behind the IMT scheme are briefly summarised. The IMT
scheme is a modification of the classical Mori-Tanaka (CMT) mean-field homogenisation scheme [35,36],
which has been designed for the particle-reinforced composites with linear elastic constituents. The
CMT scheme is a way of coupling inclusion and matrix stress-strain states and linking these states to
the macroscopic (volume-averaged) quantities. It must be emphasised that the CMT scheme operates
specifically with the volume-averaged matrix stress/strain and does not resolve the local details. The
CMT scheme is built using three assumptions:

• the inclusion strain is assumed to be spatially homogeneous (the matrix strain is spatially homoge-
neous by definition, as it is the volume average),

• the inclusion strain is assumed to be given by the solution of the Eshelby’s problem,

• in which the strain applied at the infinity (the far-field strain) is assumed to be equal to the matrix
strain in the composite.

The IMT scheme, in turn, generalises the CMT scheme for the case of arbitrary constitutive behaviour
of the phases. It is founded on the assumption that at any moment of time, the linearised with respect
to time inclusion and matrix strains are coupled by the CMT scheme. In the IMT scheme, the tangent
stiffness tensors are used in the Eshelby’s solution. This implies the following important assumption of
the IMT scheme:

• the tangent stiffness of the matrix is assumed to be spatially homogeneous.

Although the scheme is called “incremental”, it is often written in a rate form, e.g. [43, 44], which is
presented below. When the rate form is discretised in time, the incremental form is recovered. Although
the IMT scheme in application to finite deformations and non-linear material behaviour contains a number
of relatively restrictive assumptions, it is well-established and a satisfactory quantitative match of this
scheme with the full-field simulations has been observed in a number of cases, see literature reviews
in [24, 25].
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Figure 1: The schematic illustration of the micromechanical model of the composite mate-
rial, which consists of the inclusions embedded into the matrix. The inclusions, in turn, have
a two-phase structure during the mechanochemical transformation. The inclusion-matrix
coupling is performed by the incremental Mori-Tanaka (IMT) homogenisation scheme.

2.1.1 Spherical inclusions — effective quantities

As mentioned above, during mechanochemical transformation, the intra-inclusion stress and strain are
spatially inhomogeneous. Determination of these quantities is discussed in section 2.2. The IMT coupling
scheme, however, operates with homogeneous quantities. Therefore, the effective inclusion Cauchy stress
and deformation gradient1 are introduced as

σa = TI, (1)

F a =
ra

R0

I, Ja =

(

ra

R0

)3

, (2)

respectively, where I is the second-order unit tensor, T is the traction at the edge of the particle, ra is
the current radius of the particle, R0 is the initial radius of the particle and Ja is the volume change of
the particle (details are given in section 2.2.1).

2.1.2 Volume-averaging

The macroscopic (volume-averaged) Cauchy stress and deformation gradient are introduced as

〈σ〉 = fσa + (1 − f)σm, (3)

〈F 〉 = f0F
a + (1 − f0)Fm, (4)

where f and f0 are the current and the initial (reference) volume fractions of the inclusion, respectively,
tensors σm and Fm are the average Cauchy stress and the average deformation gradient of the matrix,
respectively. Such averaging is common in micromechanics, e.g. [45]. The current and reference volume
fractions are related as

f =
f0J

a

f0Ja + (1 − f0)Jm
, (5)

where Jm is the volume change of the matrix.

2.1.3 Rate formulation of volume-averaging

To obtain the inclusion-matrix coupling law, the rate formulation of the volume-averaging equations must
be obtained. It can be shown that

d〈σ〉

dt
= f

dσa

dt
+ (1 − f)

dσm

dt
+ (σa − σm) f (1 − f) tr (Da −Dm) , (6)

〈D〉 = χDa + (1 − χ)Dm, χ =
f0 (Ja)

1
3

f0 (Ja)
1
3 + (1 − f0) (Jm)

1
3

, (7)

1Here, superscript ‘a’ is used for effective inclusion quantities, as superscript ‘i’ will be used later for the intra-inclusion

quantities.
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where 〈D〉, Da and Dm are the macroscopic, the inclusion and the matrix rate of deformation tensors,
respectively. The derivation of the equations is given in appendix A. It must be emphasised that
equation (7) is only valid for the case when the inclusion is spherical and the macroscopic deformations
are exclusively volumetric.

2.1.4 Inclusion-matrix coupling

As discussed above, in the original IMT scheme (formulated for small strains), the inclusion strain is
coupled to the matrix strain using the solution of the Eshelby’s problem. Furthermore, in the original
IMT scheme, the inclusion and the matrix strains are usually written as functions of either the incremental
macroscopic strain or the incremental macroscopic stress. Here, first, the rate formulation of the IMT
scheme is used, second, the finite-deformation framework is used. There can be two distinct cases — the
macroscopic deformation-controlled case and the macroscopic stress-controlled case.

When 〈F 〉 is imposed (the deformation-controlled case), the following relations1 are used:

Da = 4Ga : 4Qm : 〈D〉 +
(

4Ga : 4Rm + 4Ha
)

: D∗, (8)

Dm = 4Qm : 〈D〉 + 4Rm : D∗, (9)

where 4Ga, 4Ha, 4Qm, 4Rm are fourth-order stress/strain concentration tensors, which are functions of the
tangent stiffness tensors of the inclusion and the matrix, current stresses of the inclusion and the matrix,
current volume ratios of the inclusion and the matrix, the Eshelby tensor of the spherical inclusion in the
matrix with averaged properties. The expressions for these tensors are derived in appendices B and C.

As the particle expands during the transformation of the shell, the effective stress-free rate of defor-
mation of the particle D∗ is introduced in the scheme. It is defined as the effective inclusion rate of
deformation under zero traction rate,

D∗ = Da|Ṫ=0 . (10)

When 〈σ〉 is imposed (the stress-controlled case), the micro-macro coupling relations become

Da = 4Ga : 4Qm : 4C̃−1 :
d〈σ〉

dt
+
(

4Ga :
(

4Qm : 4Ẽ + 4Rm
)

+ 4Ha
)

: D∗, (11)

Dm = 4Qm : 4C̃−1 :
d〈σ〉

dt
+
(

4Qm : 4Ẽ + 4Rm
)

: D∗. (12)

Tensors 4C̃ and 4Ẽ are given in appendix C.

2.2 Intra-inclusion structure and kinetics

The inclusion is modelled using the mechanochemical model published previously [22]. This model resolves
the kinetics of the chemical reaction front using the chemical affinity tensor [12–14], which acts as the
configurational driving force for the front and was derived from the balance laws and the dissipation
inequality for materials with arbitrary rheology.

2.2.1 Mechanics

The model equations are given in a tensorial form, although a specific form of the deformation gradient
is used in the model, due to the spherical symmetry restriction of the particle. More specifically, the
current position of a material point inside the particle is denoted as r (R), which is a function of the
reference position of the material point R. Thus, the intra-particle deformation gradient is

F i =
dr

dR
~eR~eR +

r

R
(I − ~eR~eR) . (13)

The intra-inclusion Cauchy stress, in turn, is denoted as σi (R). Furthermore, as the particle consists of
the core and the shell, the quantities within the core and the shell are denoted using subscripts ‘−’ and
‘+’, respectively,

F i =

{

F−, R < Γ,

F+, R > Γ,
σi =

{

σ−, R < Γ,

σ+, R > Γ,
(14)

1In this paper, double inner product A : B = AijBji is used.
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where the position of the reaction front mapped onto the reference configuration of the untransformed
material is denoted as Γ . It is useful to denote the traction at the edge of the particle and the current
total radius of the particle as

T = σi (R0) : ~eR~eR, (15)

ra = r (R0) . (16)

The intra-inclusion stress and deformation are found by solving the equilibrium equation

∇ · σi = 0, (17)

with either imposed traction boundary conditions or imposed displacement boundary conditions. The
former boundary condition is used to calculate the effective stress-free expansion of the particle (details
are given in section 3.3.1), while the latter boundary condition is used to calculate the current stress
distribution within the particle coupled to the matrix. Equation (17) is solved with respect to the
unknown function r (R). Furthermore, as the shell undergoes the transformation strain, the displacement
and traction continuity conditions are enforced at R = Γ . It must also be noted that operator ∇ is defined
with respect to the current configuration.

2.2.2 Diffusion

The reaction front moves due to the consumption of the reactant, which diffuses through the transformed
material from the outer surface of the particle to the reaction front. The diffusion flux is projected onto
the reference configuration of the untransformed material and the quasi-stationary diffusion equation is
considered,

∆0c = 0, (18)

with boundary conditions

D~eR · ∇0c− n∗V
ρ−

n−M−

= 0, at R = Γ, (19)

D~eR · ∇0c + α (c− c∗) = 0, at R = R0, (20)

where n∗ and n− are the stoichiometric coefficients of the reactant and the untransformed material,
respectively, in the chemical reaction; ρ− is the density of the untransformed material in the reference
(undeformed) state and M− is the molar mass of the untransformed material; V is the velocity of the
reaction front and is discussed in section 2.2.3; D is the diffusion coefficient of the reactant through the
transformed material; α is the surface mass transfer coefficient; c∗ is the solubility of the reactant in the
transformed material. Operators ∇0 and ∆0 are defined with respect to the reference configuration of
the untransformed material.

2.2.3 Chemical reaction

The chemical reaction results in the propagation of the chemical reaction front from the outer surface of
the particle towards its centre. The expression for the normal component of the reaction front velocity
with respect to the reference configuration of the untransformed material is given by

V =
n−M−

ρ−
k∗c

(

1 − exp

(

−
ANN

Rgθ

))

, at R = Γ, (21)

where k∗ is the kinetic coefficient, Rg is the universal gas constant, θ is the temperature and ANN is the
normal component of the chemical affinity tensor [12–14]. If the pressure produced at the interface by
the diffusive constituent is neglected (as it is small compared to stresses produced by the transformation
strain), then this component is given by

ANN =
n−M−

ρ−

(

γ + W− − g3W+ + PT
−

: JF K
)

+ n∗Rgθ ln
c

c∗
, at R = Γ, (22)

where γ is the temperature-dependent combination of the chemical energies of the constituents, g3 is
the volumetric expansion ratio of the material due to the chemical transformation, P− is the first Piola-
Kirchhoff stress of the untransformed material, the double square brackets denote the jump of the quantity
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at the reaction front. Furthermore, W− and W+ are the elastic strain energy densities per unit volume
of the untransformed and the transformed materials, respectively, with respect to their reference configu-
rations. It must be emphasised that W+ is represented in the reference configuration of the transformed
material, since the constitutive laws for the transformed material are defined in its reference configuration.

2.3 Mechanical constitutive laws

As mentioned above, the micromechanical model uses an assumption that the inclusion remains spherical
throughout the transformation and the deformation processes. Therefore, the effective inclusion stress
and deformation gradient, σa and F a, respectively, are exclusively volumetric. Hence, if the macroscopic
stress and deformation gradient, 〈σ〉 and 〈F 〉, respectively, are also volumetric, then the matrix stress
and deformation gradient, σm and Fm, respectively, will also be volumetric, according to (3) and (4).
Therefore, to simplify the model, the micromechanical model is limited to volumetric 〈σ〉 and 〈F 〉 and,
thus, the non-volumetric components of σm and Fm are excluded. It must be emphasised here that in the
Mori-Tanaka scheme, the matrix stress and strain are volume-averaged quantities. Therefore, locally, the
matrix can deform deviatorically, while the volume-averaged deviatoric stress is zero. This is implicitly
used in the scheme when the Eshelby’s solution is adopted for the particle.

2.3.1 Particle core

The core of the particle consists of the untransformed material and is subjected only to a volumetric
deformation. Therefore, it is modelled as a non-linear elastic material with the elastic strain energy
density

W− = K− (J− − 1 − ln J−) , (23)

and the Cauchy stress tensor

σ− = K−

(

1 −
1

J−

)

I, J− = detF−, (24)

where K− is the bulk modulus and J− is the volume change of the material of the core. For completeness
of the equations, the expression for P− used in equation (22) is given in appendix D.

2.3.2 Particle shell

The shell of the particle consists of the transformed material, which is modelled as the finite-strain non-
linear viscoelastic material with hardening. The total deformation gradient is decomposed into elastic,
viscoplastic and chemical parts,

F+ = F e · F p · F g, J+ = detF e, F g = gI, (25)

where F g is the transformation strain (analogous to thermal expansion of the material), which is taken
to be isotropic. The following elastic strain energy density is used:

W+ = K+ (J+ − 1 − ln J+) +
Gs

2

(

tr
(

B̄e

)

− 3
)

+
Gh

2

(

tr
(

B̄a

)

− 3
)

, (26)

where K+ is the bulk modulus, Gh is the hardening modulus and (Gs + Gh) is the total shear modulus
of the material. It must be emphasised that the elastic strain energy density is given in the reference
configuration of the transformed material. Here B̄e and B̄a denote the elastic and the total (with respect
to the reference configuration of the transformed material) isochoric Finger tensors (definitions are given
in appendix D), respectively. This corresponds to the following Cauchy stress:

σ+ = K+

(

1 −
1

J+

)

I + Gs

1

J+
B̄d

e + Gh

1

J+
B̄d

a , (27)

where superscript ‘d’ denotes the deviatoric part of a tensor. Finally, the evolution of the plastic defor-
mation is prescribed using the plastic rate of deformation tensor (definition is given in appendix D):

Dp =
σd

s

2η+
, σd

s = Gs

1

J+
B̄d

e , (28)
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where η+ is the viscosity governed by the power law relation:

η+ = τ+σ0

(

σ0

σ̄s

)q+

, σ̄s =

√

3

2
σd

s : σd
s , (29)

where σ̄s is the equivalent deviatoric driving stress, τ+, σ0 and q+ are material parameters.

2.3.3 Matrix

The matrix is modelled as the finite-strain non-linear viscoelastic material with non-isochoric viscoplas-
ticity and non-isochoric hardening. The motivation for such choice is further discussed in section 4.5.1.

Since only volumetric deformation of the matrix is modelled, the deformation gradient tensor, the
volume change and the stretch are represented as

Fm = λmI, Jm = λ3
m, λm = λeλp, (30)

respectively, where λe and λp are the elastic and plastic stretches, which correspond to volumetric defor-
mations. Analogous to the intra-particle constitutive laws, the following Cauchy stress is used:

σm = σmI, σm = Ks

(

1 −
1

λ3
e

)

+ Kh

(

1 −
1

λ3
m

)

, (31)

where Kh is the volumetric hardening modulus. The total bulk modulus of the material is

Km
0 = Ks + Kh. (32)

The model is completed with the following law of the evolution of the plastic deformation:

1

λp

λ̇p =
σn

2ηm
, σn = Ks

(

1 −
1

λ3
e

)

, (33)

ηm = τmσ0

∣

∣

∣

∣

σ0

σn

∣

∣

∣

∣

qm

, (34)

where, analogous to the intra-particle constitutive laws, τm and qm are material parameters. Parameter
σ0 is just a normalisation constant and is chosen to be the same as in section 2.3.2.

2.3.4 Tangent stiffness tensors

The inclusion-matrix coupling law, as presented in section 2.1.4, requires the instantaneous tangent
stiffness tensors of the inclusion and the matrix. These tensors can formally be defined as tensors relating
the incremental stress and the incremental strain for an infinitesimal time increment. When the limit of
the time increment to zero is taken, this results in

σ̇a = 4Ca : Da, σ̇m = 4Cm : Dm. (35)

These relations can be split into the deviatoric and the volumetric parts, where the latter leads to the
tangent bulk moduli of the inclusion and the matrix:

Ka =
1

3
ra

dT

dra

∣

∣

∣

∣

ṙa/ra=const

, (36)

Km =
1

3
λm

dσm

dλm

∣

∣

∣

∣

λ̇m/λm=const

, (37)

The evaluation of the derivatives at a constant deformation rate results from the consideration of the
strain-rate dependent materials. This is important because the tangent can be understood as the stiffness
of the material in response to small-strain perturbations at the current (deformed) state, and, since
the stress-strain response of the material changes with the strain rate, the tangent is also strain-rate
dependent.
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Using Ka and Km, the following tangent compliance tensors for the inclusion and the matrix, respec-
tively, are obtained:

(

4Ca
)

−1
=

1

9Ka
II +

1

2Ga

(

4I −
1

3
II

)

, (38)

(

4Cm
)

−1
=

1

9Km
II +

1

2Gm

(

4I −
1

3
II

)

, (39)

where 4I = ~es~ek~ek~es and II = ~es~es~ek~ek are the forth-order isotropic tensors with ~ei, i ∈ {1, 2, 3} being
the basis vectors. Here, Ga and Gm are the tangent shear moduli of the inclusion and the matrix,
respectively. As mentioned above, the inclusion is allowed to deform only volumetrically, therefore, its
effective shear modulus is infinite. Thus, when concentration tensors 4Ga, 4Ha, 4Qm, 4Rm are calculated,
limit Ga → ∞ is taken. Furthermore, since the matrix material is modelled as volumetrically non-linear
viscoelastic material, the deviatoric state of the matrix material is assumed to be elastic, therefore, Gm

is a material parameter.

3 Numerical solution procedure

The micromechanical model relies on the resolution of the intra-particle stress fields and the reaction front
kinetics. This part is described in detail in section 3.6 of reference [22], where the intra-particle kinetics
of an isolated stress-free particle has been considered. Here, only the general idea of the intra-particle
solution scheme is outlined. Afterwards, the global computational scheme (i.e. the micro-macro coupling)
is discussed. The scheme is non-trivial and the motivation for such choice is explained first, with the
discretised set of equations provided afterwards. In this section, only macroscopic strain-controlled case
is considered, i.e. equations (8) and (9), since the macroscopic stress-controlled case is identical from the
implementational point of view.

3.1 Intra-particle quantities

Equation (18) is solved analytically, since the problem is spherically symmetric, and the closed form of
concentration c as a function of velocity V is obtained. Next, equation (17) is rewritten in the reference
configuration of the untransformed material and is discretised using the finite-element method. Since
the problem is spherically symmetric, 1D mesh with the equidistant nodal spacing is used; the finite-
element mesh is fixed in the time domain. Finally, the chemical reaction front can be located only at
the nodal positions and the reaction front movement is resolved by the reaction front moving from one
nodal position to a neighbouring node. Since the extent of the movement is known, which is the element
size, the time required for the move, which is the time step, becomes unknown and is obtained by solving
the discretised version of equation (21). Thus, within a time step, the unknowns of the problem are the
nodal solution and the time step. The discretisation in time of the equation for the velocity and the
constitutive relations is implicit. The equations are solved using the Newton-Raphson method.

3.2 Necessity for implicit/explicit hybrid scheme

The micro-macro coupling equations (8) and (9) are given in the rate form and there are several ways of
obtaining their discrete form. The straightforward approach would be the implicit discretisation in time.
However, this would lead to an inefficient scheme due to one specific interdependency, which is explained
in this subsection.

The micro-macro coupling equations contain the concentration tensors, which depend on Ka and
Km, and the stress-free rate of deformation D∗. Since it is not possible to calculate Ka analytically for
non-trivial constitutive laws, Ka must be calculated numerically by small perturbation of the boundary
conditions of equation (17) and by subsequent solution of the intra-particle model. Similarly, D∗ cannot
be calculated analytically either and must be calculated numerically by solving the intra-particle model
with the moving front and zero applied traction rate, equation (10). Therefore, at each moment in time,
at least three different intra-particle stress states must be obtained by solving the intra-particle model:
the stress state with the actual boundary conditions coming from the micro-macro coupling equations,
the stress state with the perturbed boundary conditions to calculate Ka and the stress state with the
zero traction rate boundary conditions to calculate D∗.
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Equations (8) and (9) can be discretised implicitly or explicitly, which corresponds to tensors 4Ga,
4Ha, 4Qm, 4Rm being taken at the current or at the previous increments, respectively. If the implicit
formulation is used, the above-mentioned problems of obtaining three different intra-particle stress states
become interdependent via the boundary conditions and the time steps. The solution of the problems, in
this case, involves operations with large matrices and a significantly more complex code compared to the
case when the problems are solved separately. To be able to solve the problems sequentially, equations
(8) and (9) can be discretised explicitly.

During the development of the numerical implementation of the micromechanical model, at first, an
explicit representation of the micro-macro coupling equations has been implemented. This, however,
resulted in a numerically unstable model. This instability of the explicit scheme was similar to the
phenomenon encountered in stiff systems, where the time step must be extremely small for the numerical
stability. Here, however, as explained in section 3.1, the time step is varying with time when the intra-
particle model is resolved, since the time step is connected to the reaction front “jumping” from one
node to another on the mesh with equidistantly-spaced nodes. Thus, when the velocity drops, the time
step increases, which initiates the instability in the fully explicit scheme. The problem of instability has
been resolved by employing the implicit/explicit hybrid discretisation scheme of the micro-macro coupling
equations, which is explained below.

3.3 Computational scheme

The scheme starts by assuming that all quantities at the previous time step tj−1 are known. The aim
of the scheme is to find the incremental changes of the inclusion and the matrix strains and to find the
intra-inclusion stress and strain distributions at the current time step, subject to the transformation
strain of the inclusion, i.e. volumetric change, and the imposed macroscopic stress or deformation.

3.3.1 Intra-particle quantities and stress-free expansion

From the previous time increment tj−1 to the current time increment tj , the reaction front inside the
particle moves by ∆R, which is the finite-element length in the intra-particle model. The positions of the
reaction front at tj−1 and tj can be defined as Γj−1 and Γj , respectively. The time step ∆t that is required
for this movement results from the solution of the discretised version of the equation for the velocity (21),
as explained in section 3.1. It is important to note that since the velocity is stress-dependent in this
model, the time step also becomes stress-dependent and, thus, also dependent on the traction applied to
the particle.

The intra-particle quantities depend on the position of the reaction front. Furthermore, when traction
is applied to the particle, the intra-particle quantities also become dependent on the traction. Therefore,
the current radius of the particle can be represented as the function of the front position and the traction,
ra (Γ, T ). On the other hand, when the displacement boundary conditions are applied to the particle, it
is convenient to denote the traction at the edge of the particle as the function of the front position and
the imposed particle radius, T (Γ, ra).

Using the above definitions, the incremental stress-free expansion of the particle within a time step
can be written as

D∗ ≈
ε∗∆
∆t∗

=
1

∆t∗

(

ra (Γj , Tj−1)

ra (Γj−1, Tj−1)
− 1

)

I, (40)

where Tj−1 denotes the traction at the previous time increment. In equation (40) the reaction front
moves from Γj−1 to Γj , which causes the expansion of the particle, while the traction is kept constant,
i.e. the traction time derivative is zero. For convenience, the following short notation is introduced:

ra
∗

= ra (Γj , Tj−1) , raj−1 = ra (Γj−1, Tj−1) .

Quantity raj−1 in equation (40) is the solution at the previous time step, i.e. already known, while
the determination of ra

∗
involves solving the intra-particle model with the imposed traction boundary

conditions for equation (17). The time step, with which solution ra
∗

is calculated, is denoted as ∆t∗. The
physical meaning of this time step is the time required for the reaction front to move by one element
length while the traction applied to the particle stays constant. This is important as, obviously, ∆t∗

differs from ∆t = tj − tj−1. Thus, an intermediate time instant t∗j = tj−1 + ∆t∗ can be introduced.
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3.3.2 Micro-macro coupling equations

Equations (8) and (9) are rewritten using increments instead of the time derivatives,

εa∆ = 4Ga : 4Qm : 〈ε∆〉 +
(

4Ga : 4Rm + 4Ha
)

: ε∗∆, (41)

εm∆ = 4Qm : 〈ε∆〉 + 4Rm : ε∗∆, (42)

where all strain increments take place within time step ∆t∗. In the case of macroscopic stress-controlled
problem, tensors 4C̃ and 4Ẽ are also present in the equations. The fourth-order Mori-Tanaka tensors are
the functions of the bulk moduli, the stresses and the volume fractions, which in turn, are the functions
of time,

4Ga = 4Ga (Ka,Km) , 4Ha = 4Ha (Ka,Km) ,
4Qm = 4Qm (Ka,Km, χ) , 4Rm = 4Rm (Ka,Km, χ) ,

4C̃ = 4C̃ (Ka,Km, σa, σm, f, χ) , 4Ẽ = 4Ẽ (Ka,Km, σa, σm, f, χ) .

In equations (41) and (42), these quantities are taken as

Ka = Ka
(

t∗j
)

, Km = Km
(

t∗j
)

, f = f (tj−1) , χ = χ (tj−1) ,

σa = σa (tj−1) , σm = σm (tj−1) ,

Thus, the micro-macro coupling equations are discretised using an implicit/explicit hybrid scheme, where
bulk moduli Ka and Km, are taken at the intermediate time increment, while all other functions are
taken at the previous time increment. Such choice avoids solving the intra-particle problem for finding
Km as a root of a non-linear equation.

As mentioned above, the strain increments in (41) and (42) are incremental strains taking place from
tj−1 to t∗j . However, to solve the intra-inclusion problem, incremental strains from tj−1 to tj are required.
To obtain them, the increments from equation (41) are extrapolated, i.e.

εaD = εa∆ + (∆t− ∆t∗)
∂εa∆
∂ε∗∆

:
∂ε∗∆
∂∆t∗

, (43)

where εaD denotes the inclusion incremental strain taking place from tj−1 to tj . Here, derivative ∂ε∗∆/∂∆t∗

is found computationally, as explained in section 3.3.3. Using εaD, the boundary condition for the intra-
inclusion problem can be formulated:

raj =

(

1

3
tr εaD + 1

)

raj−1. (44)

Time step ∆t, which enters the boundary condition, is unknown and is solved for in the Newton-Raphson
loop for the intra-inclusion solution. Such choice allows decoupling the calculation of the current intra-
inclusion stress-strain state and the stress-free incremental expansion of the inclusion.

3.3.3 Tangent bulk moduli and derivative of incremental expansion with respect to time step

The computational scheme is completed by formulation of the discrete equations for Ka and Km. Equa-
tion for Km can be obtained analytically and is provided in appendix E. Due to the intra-particle model
given by the set of non-linear PDEs, Ka can only be obtained numerically. To obtain it, the perturbation
of the traction at t∗j is defined as

δT = T (Γj , r
a
∗

+ δra) − Tj−1, (45)

where δra is a small perturbation of the radius and ra
∗

is already known, as it has been used for calcu-
lating ε∗∆. The first term in expression for δT is obtained by solving the intra-particle model with the
displacement boundary conditions for equation (17) and with time step ∆t∗ + δt instead of solving the
equation for the velocity, which is explained below. This leads to the discretisation of equation (36) for
Ka at t∗j ,

Ka =
1

3
ra
∗

δT

δra
. (46)
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The way how the time step is calculated in the intra-particle model is modified for the calculation of
the first term in expression for δT and it is required for enforcing the constant deformation rate when
Ka is evaluated. To enforce ṙa/ra = const according to (36), time δt it takes for the particle to expand
from ra

∗
to ra

∗
+ δra should be found from

δt = δra
(

∂ra
∗

∂∆t∗

)

−1

.

The derivative of ra
∗

by ∆t∗ is calculated numerically, which involves solving the intra-particle model
with the perturbed time step. Furthermore, this derivative is related to the derivative of the incremental
expansion with respect to the time step in (43),

∂ε∗∆
∂∆t∗

=
1

raj−1

∂ra
∗

∂∆t∗
I. (47)

3.3.4 Sequence of steps

To summarise the algorithm, the following procedure is performed at each time step:

1. Time tj−1.

(a) Start with all quantities known at the previous time step, tj−1.

2. Time t∗j .

(a) Find the incremental stress-free expansion of the particle ε∗∆ by solving the intra-particle model
under previous time step traction Tj−1, equation (40).

(b) Find the derivative of ε∗∆ by ∆t∗, equation (47), by solving the intra-particle model with
perturbed time step.

(c) Find the effective bulk modulus of the particle Ka, equation (46), by solving the intra-particle
model with perturbed radius.

(d) Solve non-linear equations for the tangent bulk modulus of the matrix Km
(

t∗j
)

and the matrix
incremental strain εm∆, equation (42).

(e) Calculate the incremental expansion of the particle εa∆ at t∗j , equation (41).

3. Time tj .

(a) Extrapolate εa∆ at t∗j to εaD at tj , equation (43).

(b) Apply displacement boundary conditions to the particle based on εaD, equation (44), and find
the current intra-particle stresses and strains by solving the intra-particle model.

(c) Update volume fraction of the particle according to equation (5).

4 Results

Micromechanical modelling of heterogeneous materials with particles undergoing chemical transformation
allows investigating the influence of the material composition (e.g. particle volume fraction) and the
properties of the matrix material on the kinetics of the localised chemical reaction taking place within
the particles. This section aims at investigating these effects and is structured as follows. First, the
reaction front kinetics is discussed for a free particle (i.e. not inside the matrix), section 4.1. Next, the
incremental Mori-Tanaka model is applied and validated for small strains by performing a comparison with
the full-field FE simulations, section 4.2. Afterwards, effects of the matrix properties on the kinetics of
the chemical reaction front are studied for the case of small strains, sections 4.3 and 4.4. This is followed
by a finite-strain example of lithiation of Si particles inside anodes of the next-generation lithium-ion
batteries, section 4.5. Next, an effect matrix relaxation on kinetics of the reaction is also studied, section
4.6. Finally, a comparison to the full-field simulations is performed for the finite-strain setting in section
4.7.

It is well known that any type of mean-field modelling has a discrepancy with the full-field models
due to restrictive underlying assumptions. Usually, the comparison is performed at the macroscopic
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level by comparing the stress-strain dependencies, e.g. [25], and the discrepancy is usually quantitatively
acceptable. On the other hand, when the local quantities are compared, e.g. inclusion-averaged stresses,
significant discrepancies can be observed. In the case of the proposed micromechanical model, the local
quantities are essential, as they determine the intra-particle lithiation kinetics. Therefore, it is useful to
compare the proposed mean-field (MF) and the full-field (FF) models, before using the MF model to
predict various physical effects.

4.1 Velocity profile

Since the reaction front in the particle is assumed to remain spherical, the velocity is given by the radial
component V which is the same for all points of the front. As the reaction front moves from the edge
of the particle towards its centre, the velocity changes due to the build-up of mechanical stresses. Here,
as in the previous study [22], the materials of the particle core and the particle shell are taken to be
non-linear elastic and elasto-viscoplastic, respectively. Typical profiles of the velocity V in the particle
without the surrounding matrix material are presented in Figure 2. The exact shape of the curve depends
on the transformed/untransformed material parameters. In general, the profile has three distinct regions:
the increase of the velocity, approximately constant velocity and rapid decrease of the velocity to zero
corresponding to the reaction arrest. Depending on the parameters of the problem, these regions can
either more or less pronounced, as for example can be seen by comparing Figures 2a, 2b and 6a. The latter
figure is discussed in section 4.5.2. Such complex behaviour results from the interplay of the components
of the chemical affinity tensor and is discussed in the previous publication by the authors [22] and earlier
in [13, 20].

For stress-free spherical particle, given that the transformed phase behaves as elastoplastic material,
the velocity profile qualitatively follows the behaviour of the radial stress at the reaction front. Initially,
the radial stress at the front is tensile and increases, which accelerates the chemical reaction, as in the
case of linear elastic spherical particle [20], where it has been shown that the tensile radial stress in
the shell of the particle with stress-free boundary conditions leads to the increase of the reaction front
velocity. In the case of an elastoplastic shell, at some point, the increase of the stress slows down, since
the formation of the new material requires stretching already expanded and plastically-deformed shell,
which superposes compressive stress onto the radial stress at the front. This leads to the decrease of the
stress to negative values — the compressive regime, which slows down the reaction. Although stresses
at the reaction front enter only one of the terms of the normal component of the chemical affinity tensor
ANN , equation (22), such increase-decrease pattern is further magnified by the exponent of ANN within
the equation for the velocity, equation (21).

4.2 Model validation for small strains

As mentioned in the introduction, the FF 3D finite-element models of the considered composite material
with particles undergoing a localised chemical reaction are relatively difficult to construct and solve due
to the non-trivial problem of the resolution of the reaction front kinetics. To avoid constructing full 3D
models, a limited comparison can still be performed in a simplified spherically-symmetric setting. When
the volume fraction of the particle in the MF model approaches zero, the model represents an isolated
particle in the infinite matrix (which, in the case of linear elasticity, is the classical Eshelby’s inclusion
problem). The corresponding problem in the FF setting is the particle encapsulated into a very thick
“coating” and with the thickness of the “coating” approaching infinity. Although such comparison is a
limiting case of a volume fraction approaching zero, it is still useful and shows whether the MF and FF
models match at least for small volume fractions (dilute regime).

The focus of this paper is on local kinetics of the chemical reaction, which is affected by local quantities,
such as tractions applied to the particles. Therefore, the comparison which is performed here is non-
standard, since usually only the macroscopic quantities are compared. The reaction front velocity has been
calculated for three different cases: an isolated particle (i.e. without the surrounding matrix material),
the particle inside the matrix using the MF model and the particle inside the matrix using the FF model.
The first calculation is necessary to show that the presence of the matrix has an effect on kinetics, while
the other two provide the comparison between the models.
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Figure 2: The dependence of the reaction front velocity on the normalised reaction front
position measured from the edge of the particle. Comparison of an isolated particle, the
particle inside the matrix according to the MF model and the particle inside the matrix
according to the FF model. Subfigures (a) and (b) use different parameter sets, which can
be found in tables 3 and 4, respectively.

4.2.1 Linear elastic matrix

When the matrix material is linear elastic and the particle volume fraction tends to zero, the exact match
between the MF and the FF models is expected because both of them become the classical Eshelby’s
inclusion problem. This is expected irrespectively of the constitutive behaviour of the particle, as the
Mori-Tanaka scheme takes the entire transformation strain of the particle for the calculation of the stresses
and strains in the matrix. In Figure 2a, the particle velocity as a function of reaction front position is
plotted for three above-mentioned cases. The important result here is that there is a perfect match
between the MF and the FF models, as expected for the linear elastic matrix. Parameters that were used
in the simulations can be found in tables 1, 3 and 5. In the case of the MF model, the volume fraction
has been taken to be f0 = 0.001. In the case of the FF model, the relation between the radius of the
particle with the “coating” and the particle has been 10 : 1.

4.2.2 Elasto-viscoplastic matrix

When the matrix material is not linear elastic, the exact match between the MF and the FF models cannot
be expected anymore even for the infinitely small volume fraction, due to assumptions of the MF model.
In Figure 2b, the kinetics of the reaction front in the particle placed inside the elasto-viscoplastic matrix
is compared for the proposed MF and the FF model. Again, three cases are considered to show that the
matrix indeed has an effect on the kinetics, which is studied below in more detail, and it is seen that the
discrepancy between the MF and FF is unnoticeable. It must be emphasised that the velocity depends
on local quantities, such as tractions applied to the particle, which do not usually match well when
the MF-type and FF models are compared. Therefore, the match observed in Figure 2b is specifically
valuable and shows the validity of the proposed model for small strains. Thus, it can be concluded that
at least for small volume fractions and small strains the proposed model has been validated and matches
well the FF simulations. Parameters that were used in the simulations can be found in tables 1, 4 and
6. The same initial volume fraction in the MF model and the particle/coating ratio as in Figure 2a have
been used.

4.3 Influence of matrix stiffness on kinetics

Having validated the model under original Mori-Tanaka assumptions (i.e. low particle volume fraction,
small strains), it is now possible to study various effects arising from the interaction of the deformation
mechanisms of the matrix and the reaction front kinetics within the small-strain setting.

To perform simulations in this subsection, the bulk modulus Km
0 was assumed to range from 250 MPa

to 32 GPa in logarithmic scale. The volumetric hardening modulus Kh was taken to be 1/5 of the bulk
modulus Km

0 for each simulation. Finally, the relaxation time τm was fitted for each bulk modulus, such
that true strain at the yield point was 0.7% at the strain rate of 10−2 s−1. The volumetric stress-strain
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Figure 3: The volumetric stress-strain response of the matrix material (a) at the strain rate
of 10−2 s−1 and at various values of the total matrix bulk modulus. The dependence of the
reaction front velocity on the normalised reaction front position measured from the edge of
the particle (b) at various values of Km

0 .

behaviour of the considered matrix materials is shown in Figure 3a. The parameters corresponding to
the simulations be found in tables 1, 4 and 7. The initial volume fraction of f0 = 0.2 was taken for the
simulations.

4.3.1 Influence of the matrix bulk modulus on the front velocity

When the bulk modulus of the matrix is increased, the velocity decreases, as shown in Figure 3b. This
result is obvious, since higher matrix bulk modulus leads to higher constraints from the matrix on the
particle, hence higher stresses in the particle, which slow down kinetics. The somewhat more complicated
result to interpret is the non-linear effect of the matrix bulk modulus on the velocity. Initially, up to
1 GPa, the effect of the bulk modulus is small, however, it becomes significant for the intermediate values
and diminishes again at large values.

The decay of the influence of the bulk modulus at high values can be explained by the matrix becoming
so stiff after a certain threshold value, that the particle almost cannot expand the matrix volumetrically.
However, it should be emphasised that the extremely large bulk modulus does not mean that the matrix
becomes essentially a fixed displacement boundary condition for the particle. The reason for this is
that only an average far-field behaviour of the matrix is represented in the model and the Mori-Tanaka
matrix-particle coupling is used, which relies on the Eshelby’s solution for the particle. In the Eshelby’s
problem with the incompressible matrix, the particle can expand due to the shear mechanism of the
matrix, while the shear stress at the infinity is zero. Here, the Mori-Tanaka assumptions are essential,
since the scheme assumes that the matrix stresses of the Mori-Tanaka composite are the stresses at the
infinity in the Eshelby’s solution. Thus, in the Mori-Tanaka scheme, the inclusion is allowed to expand
into the almost incompressible matrix due to the shear of the matrix, while the average far-field stresses
(which are simply called “the matrix stresses” in the Mori-Tanaka scheme) remain volumetric and small
due to almost near incompressibility.

4.3.2 Stresses and strains in the matrix

When Figure 3b is carefully examined, it can be seen that there is a kink in the velocity profile in the
region of the reaction front position between 0 and 0.2. This kink is the result of the onset of the plastic
deformation in the matrix, which is plotted in Figure 4b as lnλp. This shows that the elastoplastic
transition in the matrix changes the kinetics of the chemical reaction. This effect is further explored in
section 4.6 for the case of matrix with constant viscosity. The amount of the plastic deformation increases
with the increase of the matrix bulk modulus. To explain this effect, first, the total volumetric expansion
of the composite, which is shown in Figure 4d as the total strain of the composite,

εc = ln

(

f0
ra

R0

+ (1 − f0)λm

)

,

must be considered.
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Figure 4: The dependence of the matrix stress (a), the matrix plastic strain (b), the matrix
tangent bulk modulus (c) and the total strain of the composite (d) on the normalised reaction
front position measured from the edge of the particle at various values of Km

0 . Some lines
in subfigures (b) and (c) are cropped due to the selected axis ranges.

The Mori-Tanaka coupling scheme provides the behaviour that is between the Reuss bound (“sequen-
tial” connection of materials) and the Voigt bound (“parallel” connection of materials). To understand
the observed behaviour of the Mori-Tanaka composite, an auxiliary 1D case can be examined — two linear
elastic materials with different stiffnesses and with the first material undergoing transformation strain
(e.g. thermal expansion). The second material does not have any transformation strain. Furthermore,
materials have equal volume fractions. The materials are coupled using the Reuss and the Voigt schemes
and the total stress is zero. When these materials are coupled sequentially, everything is trivial — all
stresses are zero and the total strain is equal to the transformation strain. When these materials are
coupled in a parallel way, it is easy to see that

ε1 = ε2 = εmacro =
E1

E1 + E2

εtransf , σ2 =
E1E2

E1 + E2

εtransf .

This means that when stiffness of the second material E2 is small, the total strain is close to the trans-
formation strain and the stress in the second material is close to zero. For large E2, the total strain
becomes small and the stress in the second material becomes large (close to E1 times the transformation
strain). Furthermore, the strain of the first material is equal to the total strain. Since the Mori-Tanaka
composite is expected to be between the Reuss and the Voigt bounds, the effects of E2 should be less
profound than in the Voigt scheme, but follow it qualitatively in this example with two materials.

Exactly these effects are qualitatively observed in Figures 4d and 4a, for the total strain of the
composite and the matrix stress, εc and σm, respectively. With the increase of the matrix bulk modulus,
the total strain decreases, while the matrix stress increases approaching a certain limit. In the simulations,
due to the elasto-viscoplasticity of the matrix and the selected problem parameters, the elastic matrix
strain is close to 0.7% (depending on the strain rate). According to the auxiliary 1D example above, the
matrix strain should also decrease with the matrix bulk modulus. This means that the matrix plastic
strain should also decrease with the increase of the matrix bulk modulus, as seen in Figure 4b.

The decrease of the matrix plastic strain and the increase of the matrix stresses in Figures 4b and
4a, respectively, also match from the quantitative point of view. For example, when the bulk modulus
increases from 250 MPa to 8 GPa (32 times increase), the matrix plastic strain decreases from 3.57% to
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0.63% (5.7 times decrease) at front position 0.5. From this it can be concluded that the stresses should
definitely increase, as the increase is the bulk modulus in significantly higher than the decrease of the
strains.

4.3.3 Stress relaxation

There is another interesting effect that can be observed in Figure 4a. At some point, the stress relaxation
takes place and the matrix stress starts decreasing. The reason for this is that matrix is modelled
as a viscoelastic material with highly non-linear stress-dependent viscosity, which effectively behaves as
elastoplastic material. However, when simulation times become large, the viscous effects start dominating
and the stress relaxation takes place. Figure 3b shows that there is a region between front positions of
0.6 and 0.9 when the velocity of the front rapidly slows down and approaches zero. This means that the
time required for the front to move by certain distance increases non-linearly, which eventually leads to
stress relaxation. Furthermore, the assymptotic decrease of the velocity to zero is directly linked to the
non-linear viscoelasticity of the transformed material (particle shell). This effect is further discussed in
the previous study [22] and compared to the case of linear elastic particle where the velocity does not
approach zero asymptotically [20].

The qualitative changes in the behaviour of the matrix stress can be seen more clearly when the
average matrix tangent Km is plotted in Figure 4c. Due to non-linear constitutive law, this tangent
depends on the average deformation of the matrix, which, in turn, depends on the deformation of the
inclusion, which is governed by the reaction front position. In the initial section of the plot, tangent
degreases slightly due to non-linearity of the material. After this, there is a rapid elastoplastic transition,
which is also seen as a kink in Figure 4a. The transition point is followed by the almost linear decrease of
the tangent, which now roughly corresponds to the volumetric hardening modulus of the matrix. Starting
from front position of 0.6, which coincides with the velocity rapidly decreasing, Figure 3b, tangent again
changes the slope and goes below zero, corresponding to the stress decrease. Finally, there is one more
change of slope in the tangent around front position of 0.8, which coincides with the change of sign of
the second derivative of the front velocity, i.e. when the velocity is already small (below 1 nm/s) and it
starts approaching zero asymptotically. This last kink in the tangent modulus also corresponds to the
kinks around 0.8 in Figures 4a and 4b for the matrix stress and the matrix plastic strain, respectively,
which is especially visible for the large bulk modulus. As a final point, the obvious fact can be noted
that the starting point of the matrix tangent in Figure 4c corresponds to the matrix bulk modulus.

4.4 Influence of particle volume fraction on kinetics

The reaction front velocity V increases with the increase of the initial volume fraction f0, which has been
varied from 0.05 to 0.3 linearly, as shown in Figure 5b. The parameters corresponding to the simulations
be found in tables 1, 4 and 8. To explain the behaviour of the velocity of the reaction front as a function of
the particle volume fraction, an auxiliary 1D example from section 4.3.2 with two linear elastic materials
can be considered. However, now it is assumed that the materials have different volume fractions, with
the volume fraction of the first material, which has undergone the transformation strain, denoted as f1
and the volume fraction of the second material denoted as 1 − f1. The Reuss connection is again trivial
— all stresses are zero. In the Voigt scheme, the total stress becomes the sum of stresses multiplied by
the corresponding volume fractions. It is easy to show that in the Voigt connection of the materials,

σ1 = −
(1 − f1)E1E2

f1E1 + (1 − f1)E2

εtransf ,

σ2 =
f1E1E2

f1E1 + (1 − f1)E2

εtransf =
E1E2

E1 − E2

(

1 −
E2

E2 + f1 (E1 − E2)

)

εtransf .

Given that E1 > E2, this means that with the increase of the volume fraction, the magnitude of the
stress of the first material decreases, while the stress remain compressive. The magnitude of the stress of
the second material, in turn, increases with the increase of f1. Again, since the Mori-Tanaka composite
is expected to be between the Reuss and the Voigt bounds, similar trends are expected for it. This was
indeed observed in the simulations, where the decrease of the magnitude of the compressive inclusion
stress was observed with the increase of the initial volume fraction (results are not shown in figures).
This leads to the increase of the velocity in Figure 5b with the volume fraction. Furthermore, as the
magnitude of the matrix stress increases with the increase of the initial inclusion volume fraction, while
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Figure 5: The dependence of the current volume fraction scaled by the initial volume
fraction of the particle (a) and the reaction front velocity (b) on the normalised reaction
front position measured from the edge of the particle at various values of the initial volume
fraction of the particle.

the matrix bulk modulus remains constant, the elastoplastic transition in the matrix, which causes the
kink around front position of 0.1, starts happening earlier, i.e. smaller transformation strain of the
inclusion is required to reach the yield stress of the matrix. Furthermore, it must be noted that the
sensitivity of the front kinetics to the initial volume fraction is much more prominent for stiffer matrix
materials (results are not shown in figures).

Since the composite undergoes finite deformations, the volume fraction of the inclusion evolves during
the front movement within the inclusion. This evolution is plotted in Figure 5a for the current volume
fraction scaled by the initial volume fraction, f/f0. It is interesting to note that this quantity highly
depends on the initial volume fraction. To understand this, the auxiliary 1D example with two linear
elastic materials can be invoked again. Now, however, the strains are the quantities of interest. In the
case of Reuss coupling, it is obvious that ε1 = εtransf , ε2 = 0 and εmacro = f1εtransf . Using the strains,
an updated volume fraction can be constructed,

fupd
1 =

f1J1
f1J1 + (1 − f1)J2

=
(1 + εtransf) f1
1 + f1εtransf

.

which will correspond to the current volume fraction in the case of finite deformations. Since the example
is the small-strain 1D case, J1,2 = 1 + ε1,2. This means that in the Reuss scheme fupd

1 /f1 decreases with

the increase of f1. In the case of Voigt coupling, ε1 = ε2 = εmacro, which means that fupd
1 /f1 = 1. As

the Mori-Tanaka composite demonstrates the intermediate behaviour between these two schemes, the
qualitative trend for the scaled volume fraction is expected to repeat the qualitative trend for the Voigt
scheme. This is confirmed in Figure 5a, where f/f0 decreases with the increase of f0. There are of course
two distinct kinks on the plot. The first one is related to the elastoplastic transition of the matrix, the
second one is due to the onset of the matrix stress relaxation.

4.5 Model application to finite strains — lithiation of Si particles

Having studied some of the physical effects arising from the matrix deformation in the small-strain setting,
it is useful to study the model within the finite-strain setting. For this purpose, lithiation of Si particles
inside battery anode matrix material is considered. The parameters related to Si particles (mechanical
properties of the transformed and the untransformed phases of the particle, the parameters related to the
diffusion process and the chemical reaction) have been identified in the previous study by the authors [22].
The parameters of the matrix material are somewhat more challenging to identify and a literature study
of the mechanical properties of the battery anode matrix materials is given below.

4.5.1 Model parameters

Typical lithium-ion battery anodes consist of a mixture of graphite, voids, polymer binder and a liquid
electrolyte that allows for the transport of Li ions. As discussed in the introduction, the next-generation
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battery anodes also contain Si particles which act as an active material for storage of Li ions. During
lithiation, Si undergoes large volumetric expansion of up to 300% [5], which leads to mechanical stresses
affecting the kinetics of the reactions. Therefore, from the mechanical point of view, the most important
effect for the analysis is the stress-affected kinetics inside the particle, while the matrix interferes in this
process as a “boundary condition” for the particle. This justifies the consideration of an average matrix,
without making a distinction between graphite, binder or voids. This, however, leads to a difficulty of
estimating the effective properties of such averaged matrix.

Since, from the physical point of view, the matrix material is a porous or a granular foam-like structure
made of graphite and polymer binder, the chosen constitutive law for the matrix, section 2.3.3, has the
volumetric plasticity, which corresponds to the irreversible collapse of the walls in the matrix material,
and the volumetric hardening. The deviatoric deformation of the matrix is not explicitly modelled here,
although the shear modulus of the matrix participates in the formation of the Eshelby tensor used in
the Mori-Tanaka coupling scheme, which assumes that the average deviatoric deformation of the matrix
remains elastic. Such constitutive behaviour requires 5 parameters: the bulk and the shear moduli, the
bulk hardening modulus, the power law parameter and the relaxation time.

Literature on the volumetric mechanical behaviour of the graphite-binder anode materials is very
limited. In [46], density as a function pressure has been measured for anodes consisting of 90 − 92%
graphite and 8 − 10% PVDF binder (in the experimental papers discussed in this subsection, weight
percentages were given). It is easy to convert density-pressure data to volume-stress dependence, where
the volumetric stress is implied. Thus, from the data of Figure 2 of [46] it is possible to extract the
bulk modulus of 56 MPa for the mixture. In [47], density vs. pressure has been measured for anodes
prepared of three different types of coated/uncoated graphite particles and 10% PVDF binder. Using
the same procedure, from the data of table 1 of [47] it is possible to extract the bulk moduli of 81.5, 78
and 153 MPa for three different types of source material. Finally, in [48], density vs. pressure has been
measured for anodes consisting of 50% graphite 35% PVDF binder and 15% acetylene black. Similarly,
from the data of Figure 3 of [48] it is possible to obtain the bulk modulus of 7.5 MPa. It can be seen
that there is a more than an order of magnitude spread in the average bulk modulus of the anode matrix
material. Furthermore, none of the studies characterised the volumetric yield and post-yield behaviour.

The uniaxial compressive deformation of the graphite-binder anode materials including the post-yield
behaviour has been characterised in [49]. The prepared samples contained 4% PVDF binder. From the
data of Figure 2 of [49] it is possible to obtain the Young’s modulus of 150 MPa, the hardening modulus
of 31 MPa and the yield stress of 67 MPa, although the images of the samples clearly showed the signs
of fracture during the post-yield behaviour, which means that the post-yield parameters are not very
reliable. Furthermore, in [50] the Young’s moduli of materials, which were made of 89% of graphite,
8% PVDF and 3% acetylene black using different production process, were measured to be ranging from
258 MPa to 693 MPa.

Due to a large spread of matrix properties found in literature, which depend on the manufacturing
conditions as well as on the composition of the matrix, the parametric study was performed in sections
4.3 and 4.4. For the anode material the bulk modulus Km

0 used in the simulations ranged from 12.5 MPa
to 3200 MPa in logarithmic scale. Of course, values of 3200 MPa are well beyond those of the considered
materials, but the results are provided to demonstrate the asymptotics of the behaviour. The shear
modulus Gm was assumed to be 400 MPa. These properties correspond to the Young’s modulus ranging
from 103 MPa to 1152 MPa, which covers the experimentally observed range. Using the assumption that
the volumetric behaviour is similar to the tensile behaviour, the volumetric hardening modulus Kh was
always taken to be 1/5 of the bulk modulus Km

0 . Since no data on strain-rate sensitivity of the matrix
material is available, the power law parameter qm was assumed to be 20, which gives almost strain-rate
independent material. Finally, the relaxation time τm was fitted for each bulk modulus, such that true
strain at the yield point was 3% at the strain rate of 10−2 s−1. All simulation parameters used in this
subsection are summarised in tables 1, 2 and 9.

4.5.2 Effects of matrix stiffness and particle volume fraction on kinetics

The velocity profiles resulting from variation of the matrix stiffness and the particle volume fraction are
shown in Figure 6. It can be seen that in the case of finite deformations, qualitatively exactly the same
effects are observed as in the case of small deformations: (A) the increase of the matrix bulk modulus
decreases overall velocity and leads to the arrest of the chemical reaction earlier, (B) the elasto-plastic
transition in the matrix (which corresponds to the kink in the velocity profile) takes place further from
the initial position of the reaction front with the increase of the matrix bulk modulus, (C) there are two
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Figure 6: The dependence of the reaction front velocity on the normalised reaction front
position measured from the edge of the particle when the matrix bulk modulus is varied and
f0 = 0.1 (a) and when the particle volume fraction is varied (b) for the case of finite strains.

asymptotic behaviours with respect to the matrix bulk modulus — first is the approach of the velocity
profile to that of the stress-free particle for small matrix bulk modulus, second is the approach a certain
profile corresponding to a particle in an incompressible matrix for large matrix bulk modulus, (D) the
increase of the particle volume fraction increases overall velocity profile and leads to the arrest of the
chemical reaction later, (E) there is one asymptotic behaviour with respect to the particle volume fraction
— the velocity profile approaches that of the stress-free particle for large volume fractions, (F) the elasto-
plastic transition in the matrix is shifted to positions closer to the initial position of the reaction front
with the increase of the particle volume fraction. In Figure 6, it can also be seen that under current model
parameters, the velocity is not significantly affected by the matrix, as the matrix is relatively compliant
compared to the particle. This results in a conclusion that currently used graphite-voids-binder matrix
materials discussed in section 4.5.1 should affect the kinetics of the chemical reaction only slightly, while
the major effect of the stresses on the kinetics results from the build-up of stresses in the particle shell.
Since the observed physical effects for the case of finite deformations are qualitatively identical to the
effects for the case of small deformations, the analysis of the stresses and strains in the matrix material,
section 4.3.2, and stress relaxation, section 4.3.3, remains valid for this case.

4.6 Influence of matrix relaxation on kinetics

As discussed above, the elasto-plastic transition in the matrix material is manifested as a kink in the
kinetics of the reaction front. Such effect should be observed when any change of a deformation mechanism
of the matrix takes place. In this subsection, a system with the linear viscoelastic matrix material is
studied, where the matrix material can undergo stress relaxation. The simulation parameters used in
this subsection are summarised in tables 1, 2 and 10. The initial volume fraction has been taken f0 = 0.1.

In Figure 7, the reaction front velocity profile is plotted for different shear moduli and relaxation
times of the matrix. It is clearly seen that the profiles become non-monotonous and now, there are two
competing characteristic processes in the system with their own characteristic times: (A) the reaction
front retardation due to the material transformation and the build-up of stresses and (B) the relaxation
of the matrix stresses.

Higher shear modulus of the matrix corresponds to higher matrix stresses and, therefore, higher
sensitivity of the velocity to the stress relaxation mechanism. Obviously, the absolute value of the
velocity for a given relaxation time is lower for a higher shear modulus.

As summarised in section 2.3.3, the rheological model of the matrix is similar to the standard linear
solid model, i.e. two branches connected in parallel: the spring and dashpot branch and the hardening
spring branch. In the simulations, the relaxation time was ranging from 0.1 s to 100 s. This means that
at the lower limit, the dashpot relaxes almost instantaneously and the matrix is effectively represented
by only the hardening spring. At the higher limit, the dashpot stays “locked” for the most part of the
simulation, i.e. the matrix is effectively represented by two parallel springs, and “unlocks” only when
the velocity drops to small values, which corresponds to the simulation time increasing rapidly. Such
“unlocking” for high τm leads to an interesting effect — in Figure 7b, the velocity rapidly decreases
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Figure 7: The dependence of the reaction front velocity on the normalised reaction front
position measured from the edge of the particle at various values of the matrix shear modulus
and at various values of the matrix relaxation time.

almost linearly to a certain threshold value, beyond which the profile becomes almost horizontal and
corresponds to the reaction front slowly creeping towards the centre of the particle. This is the extreme
case of the “kink” in the velocity profile due to change of the deformation mechanism of the matrix.

At the intermediate values of the relaxation time, initially, the profile is following the “locked” dash-
pot case, and after the stress relaxation process takes over, the matrix stress rapidly decreases, which
removes the surplus pressure from the particle and the velocity increases rapidly. With time, the velocity
approaches the “unlocked” dashpot case. Here terms “locked” and “unlocked” are used in an approximate
way, as the dashpot relaxation is exponential.

4.7 Comparison to the full-field simulations for finite strains

Finally, it is useful to perform a similar comparison between the proposed MF model and the FF simula-
tions, as done in section 4.2, but now for the case of finite deformations. In Figure 8 an example of such
comparison is provided for the traction at the edge of the particle and the reaction front velocity. In the
case of the FF model, the total radius of the “coated” particle is denoted as RC. Thus, the decrease of
R0/RC represents the approach to the case of an isolated particle in the infinite matrix. In the case of
the MF model, such approach takes place when f0 tends to zero. It can be seen that there is certain dis-
crepancy in the solutions with the FF model having the higher absolute values of stresses in the particle,
therefore, lower velocity and earlier reaction arrest. The parameters used for these simulations are given
in tables 1, 2 and 11.

The differences are quantitatively significant and result from the MF model not being able to resolve
the local stresses around the particle. The selected set of the matrix parameters for the comparison
is somewhat intermediate within the range of parameters used in section 4.5.2. For a different set of
parameters the discrepancy might change, and it can be speculated the it can increase for a stiffer matrix,
due to higher absolute values of the stresses in this case. Due to highlighted differences, the Mori-Tanaka
coupling scheme in application to the particles undergoing large mechanochemical transformation must
be viewed as the qualitative tool, although for in the case of small strains, the MF and the FF models
matched both qualitatively and quantitatively even for non-linear time-dependent constitutive behaviour
of the matrix.
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Figure 8: The dependence of the traction at the edge of the particle (a) and the reaction
front velocity (b) on the normalised reaction front position measured from the edge of the
particle. The mean-field model (MF) with the various initial volume fraction of the inclusion
is compared to the full-field model (FF) with the various proportion of the inclusion radius
to the total radius.

5 Conclusions

There is a number of advanced engineering heterogeneous materials, which undergo complex localised
chemo-mechanical transformations. Since the kinetics of the chemical reactions is stress-affected, accurate
and computationally efficient way of accounting for the behaviour of material components (e.g. matrix)
is required. In this paper, a multiscale approach based on the mean-field homogenisation, which captures
the movement of the reaction front in spherical particles and accounts for the particle-matrix coupling,
has been proposed and examined. This has been achieved by combining a single two-phase particle,
in which the kinetics of the reaction front is explicitly described and governed by the chemical affinity
tensor, with a matrix using the Mori-Tanaka approach that is generalised for finite deformations and
time-dependent inelastic materials.

The major advantage of the model proposed in this paper is that it allows performing investigations
of the effects related to the interaction of the particle undergoing mechanochemical transformation and
the matrix with complex rheology. An application of the model to large volumetric deformation of the
Si-based composite anodes of Li-ion batteries showed that in the case when the matrix is viscoelastic
or elasto-viscoplastic, the change in the deformation mechanism of the matrix due to the build-up of
stresses, caused by the particles’ expansion, impacts the kinetics of the chemical reaction with a visible
kink in the velocity. When matrix is viscoelastic, there are two competing processes in the system
— the retardation of the reaction due to build-up of stresses and the stress relaxation in the matrix.
Such competition causes non-monotonous kinetics of the chemical reaction, which follows deceleration-
acceleration-deceleration pattern.

The proposed micromechanical model is computationally fast compared to the full-field schemes. The
model has been compared to the full-field simulations in the regime when the particle volume fraction
tends to zero. In the case when the particle expansion remained in the small-strain regime, an excellent
match between the mean-field and the full-field models has been observed, even for the elasto-viscoplastic
constitutive behaviour of the matrix. It must be emphasised, that the compared quantity has been
the velocity of the chemical reaction front, which is strongly sensitive to local fields at the interfaces.
Usually, when MF-type and FF models are compared, local quantities demonstrate poorer match than
global quantities. Therefore, the achievement of the validity of the proposed model in the small-strain
regime becomes of high significance. Similar comparison in the finite-strain regime, however, resulted in
an observable discrepancy between the models, which could have been expected due to the restrictive
mean-field assumptions. Although the proposed model cannot qualitatively capture the extreme finite-
strain regime of 300% volumetric deformation, for which the validation has been performed, it can still
be useful for predicting overall trends with computational efficiency.

There are studies, where the comparison between MF and FF models in the finite-strain regime is
performed for effective composite properties, e.g. [24, 25], and the MF models are shown to provide
good estimates. Here, it has been shown that certain caution must be exercised when MF-type mod-
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els are generalised to finite deformations, as the predictions of the local fields at the interfaces, which
can be important to some physical problems, such as mechanochemistry, might somewhat deviate from
the FF models. Hence, reliable simulation of the matrix-particle interaction in the finite-strain regime
still requires full-field simulations, while in the small-strain regime, the proposed model is an excellent
alternative to the full-field models.
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Appendix A Derivation of the rate formulation of volume-averaging

Equation (6) is obtained from (3) by differentiation. In this case, the derivative of the volume fraction
appears, which is equal to

ḟ =
f0J

a

f0Ja + (1 − f0)Jm

J̇a

Ja
−

f0J
a

(f0Ja + (1 − f0)Jm)
2

(

f0J
a J̇

a

Ja
+ (1 − f0)Jm J̇m

Jm

)

=

= f
J̇a

Ja
− f2 J̇

a

Ja
− f (1 − f)

J̇m

Jm
= f (1 − f) tr (Da −Dm) ,

where the following property of the derivative of the determinant of the deformation gradient was used:

1

detF

d(detF )

dt
=

1

detF

d(detF )

dF
:

dFT

dt
= F−T : ḞT =

=
1

2
tr
(

Ḟ · F−1 + F−T · ḞT
)

= trD.

When equation (4) is differentiated, the expression for the velocity gradient can be obtained,

〈L〉 =
d〈F 〉

dt
· 〈F 〉

−1
= f0

dF a

dt
· 〈F 〉

−1
+ (1 − f0)

dFm

dt
· 〈F 〉

−1
=

= f0L
a · F a · 〈F 〉−1 + (1 − f0)Lm · Fm · 〈F 〉−1 ,

where La and Lm are the velocity gradients of the inclusion and the matrix, respectively. For purely
volumetric deformations,

F a = (Ja)
1
3 I, Fm = (Jm)

1
3 I,

equation for the velocity gradient becomes

〈L〉 = f0
(Ja)

1
3

f0 (Ja)
1
3 + (1 − f0) (Jm)

1
3

La + (1 − f0)
(Jm)

1
3

f0 (Ja)
1
3 + (1 − f0) (Jm)

1
3

Lm.

Taking the symmetric part of 〈L〉 and substituting expression for χ, equation (7) is obtained.

Appendix B Incremental formulation of volume-averaging

The time derivative of the deformation gradient can be represented as

Ḟ = lim
∆t→0

∆F

∆t
= lim

∆t→0

F n − F n−1

∆t
, (48)

where subscripts n and n− 1 denote the current and the previous time increments, respectively. This is
applicable to any deformation gradient — the macroscopic, the inclusion and the matrix. Furthermore,

23

Page 23 of 31 AUTHOR SUBMITTED MANUSCRIPT - MSMSE-103748.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



such representation introduces two distinct configurations — the current and the previous time increment
configurations. Therefore, it is possible to construct a mapping

F n = F∆ · F n−1, (49)

where F∆ maps the previous time increment configuration onto the current configuration. Using (48), it
is easy to show that

F∆ = I + ∆F · (F n−1)−1 . (50)

Following this, it is possible to represent the rate of deformation tensor using the increment of the
deformation gradient

D =
1

2

(

L + LT
)

=
1

2

(

Ḟ · F−1 + F−T · ḞT
)

=

= lim
∆t→0

1

∆t

1

2

(

∆F · (F n−1)
−1

+ (F n−1)
−T

· ∆FT
)

=

= lim
∆t→0

1
2

(

F∆ + (F∆)T
)

− I

∆t
= lim

∆t→0

ε∆

∆t
.

(51)

Here, the infinitesimal linear strain ε∆, which is applied to the previous time increment configuration, is
introduced. Using this, it is easy to see that equations (6) and (7) become

〈∆σ〉 = f∆σa + (1 − f) ∆σm + (σa − σm) f (1 − f) tr (εa∆ − εm∆) , (52)

〈ε∆〉 = χεa∆ + (1 − χ) εm∆, (53)

where 〈∆σ〉, ∆σa and ∆σm are the increments of the macroscopic, the inclusion and the matrix Cauchy
stresses, respectively, which arise due to infinitesimal linear strains 〈ε∆〉, ε

a
∆ and εm∆. Here, f and χ are

taken at the previous time increment and when ∆t → 0, they become the current values.

Appendix C Tensors in the Mori-Tanaka scheme

The Mori-Tanaka homogenisation scheme relies on the solution of the Eshelby’s problem (ellipsoidal
inclusion in the infinite matrix). In the general case, the inclusion has different stiffness tensor than the
matrix, it has undergone stress-free transformation strain (e.g. thermal expansion) and, furthermore,
there is strain applied at the infinity. The solution to this problem is well-known and can be found in
many textbooks, e.g. [51, 52],

ε1 =
(

4I + 4S :
(

4C2

)

−1
:
(

4C1 −
4C2

)

)

−1

:
(

ε∞ + 4S :
(

4C2

)

−1
: 4C1 : ε∗

)

, (54)

where ε1 is the inclusion strain, ε∞ is the strain applied at infinity1, ε∗ is the stress-free transformation
strain of the inclusion, 4C1 and 4C2 are stiffness tensors of the inclusion and the matrix, respectively,
and 4S is the Eshelby tensor.

The idea of the incremental Mori-Tanaka (IMT) scheme is to apply the classical Mori-Tanaka (CMT)
equations to the incremental form of the volume-averaging equations. Since the matrix and the inclusion
undergo finite deformations in this paper, the incremental volume-averaging equations are non-trivial and
are derived in appendix B. Thus, the CMT scheme it applied to equations (52) and (53).

In the CMT scheme, it is assumed that the Eshelby’s solution for the inclusion is valid, equation (54),
in which ε∞ is equated to to the matrix strain of the CMT composite. Therefore, using equation (54),
the incremental matrix strain becomes a linear function of the incremental inclusion strain,

εa∆ = 4Ga : εm∆ + 4Ha : ε∗∆, (55)

4Ga =
(

4I + 4S :
(

4Cm
)

−1
:
(

4Ca − 4Cm
)

)

−1

, (56)

4Ha = 4Ga : 4S :
(

4Cm
)

−1
: 4Ca, (57)

1In the Eshelby’s problem with homogeneous matrix, ε∞ is also the strain that would have been at the place occupied

by the inclusion, if the inclusion was absent.
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where the notation was deliberately changed from subscripts ‘1’ and ‘2’ to superscripts ‘e’ and ‘m’,
respectively, to distinguish the Eshelby’s problem from the IMT scheme. Here, 4Cm and 4Ca are the
tangent stiffness tensors at the the previous time increment and when ∆t → 0, they become the current
tangent stiffness tensors. The Eshelby tensor, 4S, is a function of 4Cm. Here, ε∗∆ denotes the incremental
stress-free expansion of the inclusion, i.e. such expansion of the inclusion within the increment that the
increment of the inclusion stress is zero.

By the assumptions of the CMT scheme, section 2.1, it is always possible to relate εm∆ to 〈ε∆〉 and
ε∗∆ using the concentration tensors:

εm∆ = 4Qm : 〈ε∆〉 + 4Rm : ε∗∆. (58)

These tensors can be found by substituting (55) into (53) and substituting the result into (58), which
gives

εm∆ = 4Qm :
(

χ4Ga : εm∆ + χ4Ha : ε∗∆ + (1 − χ) εm∆
)

+ 4Rm : ε∗∆, (59)

By collecting the corresponding terms in equation (59), the concentration tensors are obtained:

4Qm =
(

χ4Ga + (1 − χ) 4I
)

−1
, (60)

4Rm = −χ4Qm : 4Ha. (61)

Finally, equation relating εa∆ to 〈ε∆〉 and ε∗∆ is obtained by substituting (58) into (55), resulting in

εa∆ = 4Ga : 4Qm : 〈ε∆〉 +
(

4Ga : 4Rm + 4Ha
)

: ε∗∆. (62)

Equations (8) and (9), in turn, are obtained by taking the limit ∆t → 0 in equations (62) and (58),
respectively.

The matrix, the inclusion and the macroscopic stress increments are given by

∆σa = 4Ca : (εa∆ − ε∗∆) , (63)

∆σm = 4Cm : εm∆, (64)

〈∆σ〉 = 4C̃ : (〈ε∆〉 − ε̃∆) , ε̃∆ = 4Ẽ : ε∗∆, (65)

where expressions for 4C̃ and 4Ẽ are obtained by substituting (62) and (58) into (63) and (64) and the
result into (52), which gives

4C̃ =
((

f4Ca + ΣI
)

: 4Ga + (1 − f) 4Cm −ΣI
)

: 4Qm, (66)

4Ẽ = −4C̃−1 :
((

f4Ca + ΣI
)

:
(

4Ga : 4Rm + 4Ha
)

− f4Ca +

+
(

(1 − f) 4Cm −ΣI
)

: 4Rm
)

,
(67)

Σ = (σa − σm) f (1 − f) . (68)

Finally, to obtain relation between εm∆, εa∆ and 〈∆σ〉, equation (65) is rewritten for 〈ε∆〉 and substituted
into (62) and (58) resulting in

εa∆ = 4Ga : 4Qm : 4C̃−1 : 〈∆σ〉 +
(

4Ga :
(

4Qm : 4Ẽ + 4Rm
)

+ 4Ha
)

: ε∗∆, (69)

εm∆ = 4Qm : 4C̃−1 : 〈∆σ〉 +
(

4Qm : 4Ẽ + 4Rm
)

: ε∗∆. (70)

When limit ∆t → 0 is taken, these equations become equations (11) and (12).
The Eshelby tensor for spherical inclusions can be found in many textbooks and is given by

4S =
1 + ν

9 − 9ν
II +

8 − 10ν

15 − 15ν

(

4Is −
1

3
II

)

, ν =
3Km − 2Gm

6Km + 2Gm
, (71)

where Km and Gm are the bulk and the shear moduli of the matrix. Here 4Is denotes the symmetric
fourth-order unit tensor, which maps a second-order tensor onto its symmetric part.
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Appendix D Additional definitions for the constitutive models

The first Piola-Kirchhoff stress tensor of the untransformed material used in equation (22) is defined as

P− = J−σ− · F−T
−

. (72)

Isochoric Finger tensors B̄e and B̄a of the transformed material are defined as

B̄e = (J+)−
2
3 F e · F

T
e , (73)

B̄a = (J+)−
2
3 F e · F p · F

T
p · FT

e . (74)

The rate of deformation tensor Dp of the transformed material is defined as

Dp =
1

2

(

Lp + LT
p

)

, Lp = F e · Ḟ p · F−1
p · F−1

e . (75)

Moreover, the plastic deformation is taken to be isochoric, detF p = 1, and spin-free, Lp −LT
p = 0.

Appendix E Numerical evaluation of matrix plastic strain and
matrix tangent bulk modulus

The evolution of the plastic deformation, equation (33), is discretised using the implicit scheme,

λp (tj) = λp (tj−1) exp

(

1

2τm

σn

σ0

∣

∣

∣

∣

σn

σ0

∣

∣

∣

∣

qm

∆t

)

, σn = σn (tj) . (76)

To evaluate Km, the derivative under constant deformation rate must be taken, λ̇m/λm = const. It
is useful to denote λ̇m/λm = s, which gives the expression for the time step as the function of λm,

∆t =
lnλm (tj) − lnλm (tj−1)

s
. (77)

In the derivations below, argument tj is dropped. Using ∆t as a function of λ, expression for Km at
t = tj can be written,

Km =
1

3
λm

dσm

dλm

, (78)

dσm

dλm

= 3Ks

λ3
p

λ4
m

− 3Ks

λ2
p

λ3
m

dλp

dλm

+ 3Kh

1

λ4
m

, (79)

dλp

dλm

=

(

∂λp

∂σn

dσn

dλe

1

λp

+
∂λp

∂∆t

d∆t

dλm

)(

1 +
∂λp

∂σn

dσn

dλe

λm

λ2
p

)

−1

, (80)

∂λp

∂σn

= λp

qm + 1

2τmσ0

∣

∣

∣

∣

σn

σ0

∣

∣

∣

∣

qm

∆t,
dσn

dλe

= 3Ks

1

λ4
e

, (81)

∂λp

∂∆t
= λp

1

2τm

σn

σ0

∣

∣

∣

∣

σn

σ0

∣

∣

∣

∣

qm

,
d∆t

dλm

=
∆t

lnλm − lnλm,j−1

1

λm

, λm,j−1 = λm (tj−1) . (82)

It must be noted that in the discretised equations (41) and (42), Km is taken at t = t∗j . Furthermore,
it must be emphasised that evaluation of this tangent is different from the evaluation of tangent for the
Newton-Raphson method. In the latter, the time step is taken to be constant, not the strain rate.

Appendix F Model parameters

The full list of parameters used in the simulations is provided in tables 1-11.
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parameter K− [GPa] K+ [GPa] Gs [GPa] Gh [GPa] q+ [−] τ+ [ns] σ0 [GPa]
value 47.6 28.5 15.8 0.5 24 2 1

parameter R0 [nm] c∗
[

mol/cm3
]

θ [K] ρ−
[

g/cm3
]

n− [−] n∗ [−] n+ [−]
value 500 0.053 293 2.285 4/15 1 1/15

Table 1: The material parameters used in the simulations.

parameter g [−] D
[

m2/s
]

α [nm/s] M− [g/mol] k∗ [nm/s] γ
[

J/mm3
]

value 1.587 10−12 2000 28.0855 86 5

Table 2: The material parameters used in the simulations.

parameter g [−] D
[

m2/s
]

α [nm/s] M− [g/mol] k∗ [nm/s] γ
[

J/mm3
]

value 1.01 2 · 10−14 40 1404.275 1.72 0.005

Table 3: The material parameters used in the simulations.

parameter g [−] D
[

m2/s
]

α [nm/s] M− [g/mol] k∗ [nm/s] γ
[

J/mm3
]

value 1.05 10−13 200 280.855 8.6 0.2

Table 4: The material parameters used in the simulations.

parameter Km
0 [GPa] Kh [GPa] Gm [GPa] qm [−] τm [s]

value 2 2 2 − −

Table 5: The material parameters used in the simulations.

parameter Km
0 [GPa] Kh [GPa] Gm [GPa] qm [−] τm [s]

value 2 0.4 8 20 10−30

Table 6: The material parameters used in the simulations.

parameter Km
0 [GPa] Kh [GPa] Gm [GPa] qm [−] τm [s]

value 0.25, . . . , 32 Km
0 /5 8 20 10−49, . . . , 10−5

Table 7: The material parameters used in the simulations.

parameter Km
0 [GPa] Kh [GPa] Gm [GPa] qm [−] τm [s]

value 2 0.4 16 20 10−30

Table 8: The material parameters used in the simulations.

parameter Km
0 [GPa] Kh [GPa] Gm [GPa] qm [−] τm [s]

value 0.0125, . . . , 3.2 Km
0 /5 0.4 20 10−63, . . . , 10−12

Table 9: The material parameters used in the simulations.

parameter Km
0 [GPa] Kh [GPa] Gm [GPa] qm [−] τm [s]

value 0.8 0.16 0.8, 1.6 0 10−1, . . . , 102

Table 10: The material parameters used in the simulations.
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parameter Km
0 [GPa] Kh [GPa] Gm [GPa] qm [−] τm [s]

value 0.2 0.04 0.4 20 10−37

Table 11: The material parameters used in the simulations.
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