
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/124386                                
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/124386
mailto:wrap@warwick.ac.uk


Predictability of individual circadian phase
during daily routine for medical applications of
circadian clocks

Sandra Komarzynski, … , Bärbel Finkenstädt, Francis Lévi

JCI Insight. 2019. https://doi.org/10.1172/jci.insight.130423.

 In-Press Preview  

Graphical abstract

Clinical Medicine Neuroscience Therapeutics

Find the latest version:

http://jci.me/130423/pdf

http://insight.jci.org
https://doi.org/10.1172/jci.insight.130423
http://insight.jci.org/tags/3?utm_campaign=cover-page&utm_medium=pdf&utm_source=content
http://insight.jci.org/tags/59?utm_campaign=cover-page&utm_medium=pdf&utm_source=content
http://insight.jci.org/tags/32?utm_campaign=cover-page&utm_medium=pdf&utm_source=content
http://insight.jci.org/tags/39?utm_campaign=cover-page&utm_medium=pdf&utm_source=content
http://jci.me/130423/pdf
http://jci.me/130423/pdf?utm_content=qrcode


 1 

 

Predictability of individual circadian phase during daily routine for medical applications of 

circadian clocks 

 

Authors 

Sandra Komarzynski1,2*, Matei Bolborea1,3*, Qi Huang1,4*, Bärbel Finkenstädt2,4 and Francis 

Lévi1,2 

 

*Contributed equally to the work 

 

Affiliations 

1Medical School, Warwick University, Coventry, United Kingdom 

2INSERM-Warwick European Associated Laboratory, INSERM U935, Villejuif, France 

3School of Life Sciences, Warwick University, Coventry, United Kingdom 

4Department of Statistics, Warwick University, Coventry, United Kingdom 

 
Corresponding author:  
Francis Lévi, MD 
Cancer Chronotherapy Team 
School of Medicine 
University of Warwick 
Gibbet Hill Road 
Coventry, CV4 7AL 
United Kingdom 
Phone: +44 2476575132 
Email: F.Levi@warwick.ac.uk 
 
  

mailto:F.Levi@warwick.ac.uk


 2 

Conflict of interest statement 

SK, MB, QH, and BF have nothing to disclose. 

FL reports grants from Medical Research Council UK, non-financial support from INSERM 

France, grants from AP-HP Foundation France, during the conduct of the study; grants from 

Philips Respironics USA, non-financial support from Altran Research Foundation France, 

outside the submitted work. 

 
 
  



 3 

Abstract  
 
Background: Circadian timing of treatments can largely improve tolerability and efficacy in 

patients. Thus, drug metabolism and cell cycle are controlled by molecular clocks in each cell, 

and coordinated by the core body temperature 24-hour rhythm, which is generated by the 

hypothalamic pacemaker. Individual circadian phase is currently estimated with 

questionnaire-based chronotype, center-of-rest time, dim light melatonin onset (DLMO), or 

timing of CBT maximum (acrophase) or minimum (bathyphase). 

Methods: We aimed at circadian phase determination and read-out during daily routine in 

volunteers stratified by sex and age. We measured (i) chronotype; (ii) q1min CBT using two 

electronic pills swallowed 24-hours apart; (iii) DLMO through hourly salivary samples from 

18:00 to bedtime; (iv) q1min accelerations and surface temperature at anterior chest level 

for seven days, using a tele-transmitting sensor. Circadian phases were computed using 

cosinor and Hidden-Markov modelling. Multivariate regression identified the combination of 

biomarkers that best predicted core temperature circadian bathyphase.  

Results: Amongst the 33 participants, individual circadian phases were spread over 5h10min 

(DLMO), 7h (CBT bathyphase) and 9h10 min (surface temperature acrophase).  CBT 

bathyphase was accurately predicted, i.e. with an error <1h for 78.8% of the subjects, using a 

new digital health algorithm (INTime), combining time-invariant sex and chronotype score, 

with computed center-of-rest time and surface temperature bathyphase (adjusted R-squared 

= 0.637).  

Conclusion: INTime provided a continuous and reliable circadian phase estimate in real time. 

This model helps integrate circadian clocks into precision medicine and will enable treatment 

timing personalisation following further validation. 

Funding: MRC, UK; AP-HP Foundation and INSERM, France.   
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Text 

Introduction  

The discovery of the molecular mechanisms of circadian clocks has highlighted a new 

potential for improving human health through the translation of circadian timing concepts to 

medical practice(1-3). In mammals, a molecular oscillator involving 15 clock genes generates 

an about 24-hour oscillation that rhythmically regulates cellular metabolism, division, and 

death within each cell(2, 4, 5).  The molecular clocks in the cells of all organs are coordinated 

by an array of physiological rhythms that are generated by the suprachiasmatic nuclei (SCN) 

in the hypothalamus(6). Thus, the circadian phase of SCN function constitutes a critical 

measure for inferring timing throughout the organism. The circadian rhythm in core body 

temperature and that in circulating glucocorticoids, which are controlled by the SCN, play a 

key role in the coordination of the molecular clocks outside the brain(7-9), while the 

melatonin secretion rhythm both informs on the circadian phase of the SCN, and helps 

calibrate its period(10).  The rest-activity circadian pattern, which integrates lifestyle and 

social signals, has bidirectional linkage with the SCN, thus can moderate the robustness of SCN 

rhythmic functions in rodents(11).  The circadian timing system (CTS) involves the several 

components that generate, moderate or reset the circadian rhythms at cellular, tissue or 

whole body levels, including the retinal light sensor melanopsin, the SCN, the SCN-generated 

circadian physiology, and the network of molecular clocks in all organs and tissues(2). Studies 

in healthy humans and in patients with cancer or other diseases have revealed large between-

subjects differences for the rhythms in rest-activity(12, 13), body temperature(13), circulating 

cortisol(14), and melatonin levels(15), as well as those in clock gene expression in peripheral 

tissues(16). More specifically, the extent of the circadian variations (double-amplitude of the 

fitted 24-hour cosine function) in the physiological biomarkers varied by up to several-fold, 

and the timing of maximum (acrophase) or minimum (bathyphase) by up to 12-h in humans 

studied during their daily routine(12-16). Occupational schedules can also impact on health, 

through altering circadian timing system (CTS) function. For instance, night shift work that 

causes circadian disruption was identified as increasing the risks of breast and possibly other 

cancers, as well as cardio-vascular, gastro-intestinal, metabolic, and reproductive 

disorders(17-19). Recently, circadian rhythm research has reached a critical level where 

translational applications to human health have become fundamental for many 
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conditions(20, 21). It is clear that treatment timing can largely affect the occurrence of 

adverse events and efficacy, thus making the consideration of individual differences in CTS 

function essential for the proper care of patients. Such time dependencies have been 

demonstrated in randomized clinical trials and meta-analyses involving patients with 

malignant, cardio-vascular, rheumatologic, or neurodegenerative diseases(20, 22-25). 

Similarly, the daily timing of preventive interventions also appeared critical, as shown for 

vaccination(26). Experimental and clinical studies have further indicated that patients on 

antibiotics or analgesic medications could benefit from circadian timing optimization of their 

treatment(2). However, human physiology, experimental chronopharmacology, and clinical 

chronotherapy trial data have revealed sex-dependent differences in CTS function and 

stressed their clinical relevance(23, 27). For instance, overall survival was improved 

significantly in men but not in women receiving the same fixed time chronomodulated 

chemotherapy protocol with oxaliplatin and 5-fluorouracil-leucovorin for metastatic 

colorectal cancer as compared to conventional delivery, as demonstrated in a meta-analysis 

of three international randomized trials involving individual patient data(23).  

Thus, it is necessary to reliably determine the circadian phase in real time for each patient, 

using a non-invasive and simple method, in order to fulfil the promises resulting from the 

discovery of circadian clocks mechanisms for precision medicine. Novel diagnostic tools have 

to be developed that aim both at the prevention of circadian disorders, that can lead to 

chronic diseases or their exacerbation, and at the personalization of clock-based therapies for 

cancers and other chronic diseases.  

Toward this goal, the current study aimed at the continuous and remote determination of the 

individual subject’s bathyphase (timing of the computed daily nadir) of the overt 24-hour 

rhythm in core body temperature. New digital health method and algorithm were designed 

here for computing internal circadian phase (INTime) in people whose circadian rhythms were 

tele-monitored in real time during their daily routine.  
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Results 

Subjects’ characteristics and chronotype 

Of the 37 recruited participants, 33 provided valid data, including 15 males and 18 females, 

aged 21 to 78 years, with a similar distribution according to age (Figure 1, Table S1). The 

majority of participants had no ongoing medical condition and were not taking any 

medication. Oral contraceptive pills or intrauterine systems were used by 39% of the female 

participants.  

The morningness-eveningness questionnaire scores revealed that chronotype was 

categorized as “morning” for 15 subjects, “intermediate” for 15 other and “evening” for three 

participants.  

Dim Light Melatonin Onset 

Adequate saliva samples were available for 24 of 30 subjects assessed for this endpoint (80%). 

Salivary melatonin data were available for computing Dim Light Melatonin Onset (DLMO) 

using a threshold based on individual baseline values for 12 participants (40%) (Figure 2A). 

The estimated threshold method based on the pooled 34 baseline values in the same subjects 

was also applied. Individual DLMOs using both methods differed by -32 min to +11 min, and 

were strongly correlated (Pearson’s correlation, r = 0.96, p < 0.001). Thus, we used the 

estimated threshold method to compute the DLMOs of the 24 subjects. The median clock 

hour of melatonin secretion onset occurred at 20:50 with an Inter-Quartile Range (IQR) of 

[20:01 to 21:19] and individual values spread over 5h10 min (Figure 2B).  

Core body temperature 

Overall, core body temperature time series were provided by both e-Celsius pills in each 

subject for a median time span of 2.9 days [IQR, 2.0-3.4], ranging from 1.3 up to 14.4 days 
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according to individual gastro-intestinal transit. Each of the 66 pills ingested by the 33 

participants provided temperature time series over durations ranging from 0.2 to 13.4 days 

(median, 1.6; IQR, 1.1 to 2.4). There was an overlap of 24-h or more for the records by the 

first and second pill in 13 subjects. Raw temperature data from both pills were correlated 

within each of these 13 participants, with a median Pearson correlation coefficient of 0.86 

(IQR, 0.74 to 0.93), that was highest with a time lag of -2 min. 

Our cosinor analysis revealed that most individuals displayed a strong 24-h rhythmic pattern 

occasionally with an additional prominent 12-h component (Figure 2C). We found that the 

precision of the individual bathyphases, as indicated with 90% Confidence Intervals (CI) < 55 

min, was much better than that of the corresponding acrophases, whose CIs largely exceeded 

this value for six subjects (18.2%).  The median acrophase was located at 17:40 [IQR, 15:20 to 

19:05], with individual values staggered over 12h05min. The median bathyphase occurred at 

03:30 [IQR, 2:30 to 4:15], with individual values spread over a 7-h span (Figure 2D). 

Rest-activity and surface temperature tele-transmitted by chest sensor 

Rest-activity and temperature time series from the chest surface sensor were available for 

the 33 participants, for a median duration of 7.0 days [IQR, 6.9 to 7.3]. Large inter-subject 

variations were obvious (Figure 3A). Thus, median number of accelerations per min ranged 

from 6 to 135 between subjects, with highest values reaching 331 up to 538. Median chest 

surface temperature values (5-min aggregates) varied from 32.6 to 36.5°C between 

participants.  

Chest surface temperature lowest daily values in fitted curves from individual participants 

ranged from 32.1 to 36.4°C and highest daily values, from 34.5 to 36.8°C.  

Rest activity time series displayed regular 24-h patterns that were highly reproducible from 

one day to the next in all the subjects, as indicated with prominent 24-h period according to 
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spectral analyses(28). Harmonic HMM analyses(29) revealed that the median center-of-rest 

time was located at 03:05 [IQR, 02:15 to 03:25], with individual values ranging over 5h15min 

(Figure 3B). 

Spectral analyses(13, 28) of chest surface temperature time series identified a dominant 24-

h periodic component for 21 participants (63.6 %), and a dominant 12-h component for nine 

of them (27.3%), resulting in two daily maxima as shown in cosinor fittings (Figure 3C). No 

circadian or 12-h pattern was found for three participants (9.1%). According to our cosinor 

analysis, the median nightly acrophase of chest temperature occurred at 03:00 [IQR, 02:10 to 

03:55], with individual values spread over 9h10min (Figure 3D). The corresponding median 

daily bathyphase that followed the nightly acrophase took place at 11:00 [IQR, 9:40 to 12:35], 

with individual values spread over 10h25min.  

Non-invasive prediction of core temperature bathyphase 

No statistically significant correlation was found between sex, age, BMI or concurrent 

treatment, on the one hand, and the various phase indicators, on the other hand, according 

to two-sample t-test and pairwise Spearman’s correlation (p > 0.10).  In contrast, circadian 

phase estimates were correlated to some extent (Figure S1). The DLMO was weakly 

correlated with the core temperature acrophase (Spearman’s correlation, r=0.40, p=0.05) and 

bathyphase (r=0.36, p=0.09). Chronotype score was strongly correlated with center-of-rest 

time (r=-0.70, p<0.001), chest surface temperature acrophase (r=-0.60, p <0.001), and core 

temperature bathyphase (r=-0.67, p<0.001). The center-of-rest time was further correlated 

with both chest surface and core temperature acrophases (r= 0.67 and r=0.69, respectively; 

p<0.001) and core temperature bathyphase (r=0.71, p<0.001). Stepwise model selection 

identified the ‘best’ regression model for predicting core temperature bathyphase, with an 

adjusted R-squared of 0.637. The resulting model named “INTime” predicted core 
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temperature bathyphase using the covariates sex (p<0.001) and chronotype score (p=0.009) 

as well as two computed phase indicators from the chest sensor data, namely the center-of-

rest time (p=0.033), and chest surface temperature bathyphase (p = 0.063) by means of the 

following estimated equation: 

Core temperature bathyphase = 1.33* sex– 0.058*chronotype score + 0.472*center-of-rest 

time - 0.145 chest temperature bathyphase, with sex being coded as 1 for male and 0 for 

female, and phases in hours and decimal hours. 

The accuracy of the predicted core temperature bathyphase (Figure 4) was computed by the 

distance between the predicted and measured values, whose median was 7 min [IQR, -40min-

31min], with individual errors from -106 to +108 min. As a result, the fitting error was < 1h 

for 26 participants (78.8%). In addition, the 90% prediction bands covered most individuals’ 

measured bathyphase values, i.e. 31-in-33 participants (93.9%), indicating a very satisfactory 

within-sample prediction accuracy.  
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Discussion 

Inter-subject differences in chronotype make it crucial to perform circadian rhythm 

measurements without interfering with the daily life of people, in order to successfully 

translate and broadly apply circadian clock concepts to precision medicine. The current study 

represents an important step toward such goal as it revealed inter-individual differences by 

7h for the bathyphase of core body temperature, by 5h10 min for DLMO, by 5h15 min for 

center-of-rest time, and by 9h10 min for the acrophase of chest surface temperature, thus 

highlighting large inter-subject variability for these distinct and correlated estimates of 

circadian phase. The endogenous circadian rhythms in core body temperature, as 

continuously recorded using a rectal probe(30), and that in circulating melatonin 

concentrations were robustly coordinated in healthy humans. As a result, the bathyphase of 

core body temperature has been largely used as an adequate reference for the endogenous 

circadian phase in humans(31, 32),  based on studies performed under constraining constant 

routine protocols in human chronophysiology laboratories(30, 33). While salivary DLMO at 

home might have proven as a precise indicator of circadian phase, it could only be estimated 

in 80% of our very compliant participants. Reasons involved occasional environmental light 

contamination both outside and at home, possible food contamination by melatonin-

containing ailments, and need for alterations in daily and familial routine, including meal 

timing. To circumvent such drawbacks and to enable clinical applications of circadian clocks, 

the current study has identified a non-invasive method that provides a precise and continuous 

estimate of individual circadian bathyphase of core body temperature in real time from 

remote people during their daily routine. Within-sample accuracy was less than one hour for 

78.8% of the participants. The use of this model in medical practice requires information on 

sex, score from the chronotype questionnaire, and two circadian timing parameters extracted 
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from chest rest-activity and surface temperature monitoring. Both of them are easily 

amenable to automatic real time computation out of tele-transmitted time series being 

recorded during the daily routine of the person. We expect that INTime will enable circadian 

timing of treatments, i.e. chronotherapy, to irreversibly complement the basic principle of 

today’s toxicology “The dose makes the poison”. This paradigm which was proposed by 

Paracelsius some 500 years ago(2) has driven the current adjustment of drug dose levels to 

body weight or surface area, pharmacokinetics, or drug polymorphisms, which have become 

indispensable information for both regulatory approval, and safe medical use of medications. 

Although there is strong evidence that time-of-day of treatment delivery can matter as much 

as dose(2, 3, 22-24, 26, 27), we have been lacking a metrics for the determination of optimal 

treatment timing in individual patients. Indeed, results from randomized clinical trials and 

meta-analyses have shown that the patients’ benefits resulting from drug timing could be as 

large as 5-fold, yet they could depend upon patient’s sex and circadian timing system 

function(23, 27). The need for the personalization of treatment timing was further highlighted 

by up to 8-hours difference in optimal timing of the anticancer drug irinotecan, as a function 

of mouse sex and genetic background. In this large study, optimal timing was predicted by a 

mathematical model combining the circadian mRNA expression patterns of clock genes Bmal1 

and Rev-erbα in liver or colon, which also governed the key pharmacology mechanisms of this 

drug(34, 35).  Recent results have further highlighted consistent relations between 24-hour 

temperature cycles and circadian patterns in metallodrugs toxicity both in vitro and in 

vivo(36).  The findings are in line with previous studies linking the circadian rhythms in mouse 

tolerability for 16 anticancer drugs to the intraperitoneal temperature cycle(37).  

Both the limited sample size available for DLMO estimations and the weak correlations 

between DLMO and other timing indicators precluded any attempt toward the search for a 
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prediction model of DLMO. Moreover, the ability to reset most peripheral clocks with 

physiological temperature cycles but not with melatonin supported a potential key role of 

this rhythm for the biomedical applications of circadian clocks. The limitations of our study 

involve the measurement of core body temperature within various segments of the gastro-

intestinal tract, and the lack of a validation sample of the INTime model. Previous studies have 

shown that the circadian patterns in body temperature measurements were very similar if 

taken from gut using an ingested pill or from rectum using a dedicated probe(38),  thus 

supporting gut temperature bathyphase as a reliable circadian phase biomarker.  Moreover, 

INTime predicted circadian phases to range from 1:55 to 7:05 in a distinct cohort of 18 healthy 

subjects whose sex, chronotype, center-of-rest time, and chest surface temperature 

bathyphase had been determined previously(13). In this independent sample, median, IQR, 

and extremes of predicted individual circadian phases matched very well those in the current 

study (Figure S2), although accuracy could not be computed since core body temperature 

rhythms were not recorded.  By bootstrapping the residuals of the INTime model fit, we 

obtained pseudo datasets with arbitrary size N. By applying 1000 Monte Carlo simulation 

trials, we find that N=600 and N=1000 samples would be required to stabilize the INTime 

model fit so that the corresponding 90% and 95% confidence intervals of the adjusted R-

squared are less than 10% of the given value of 0.637.  

Our findings have a major potential impact for the reduction of severe adverse events from 

treatments, whose reduction represent a critical challenge for improving patient quality of 

life, treatment compliance, treatment efficacy, and human health cost burden. As an 

example, a 10.8-fold increase in the yearly rate of emergency visits for cancer treatment-

related toxicities has been documented over ten years in a large US study, where 91% of the 



 13 

emergency visits translated into emergency admissions, and 4.9% of deaths, resulting in 

related costs of billions of US$(39).  

In conclusion, using a tele-transmitting dual-function chest sensor and INTime, treatment 

timing can be personalized both between and within patients, thus potentially reducing 

adverse events and improving therapeutic outcomes. Such personalized chronotherapy 

deserves prospective testing and could help invert the steadily rising economic burden of 

treatment morbidities in cancer and chronic diseases.  
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Methods 

Study design and human subjects 

The study aimed at (i) the estimation of the internal circadian phase during daily routine, a 

process that usually requires a constraining circadian physiology protocol in the 

laboratory(30, 33), and (ii) the assessment of the relevance of age and sex on the non-invasive 

circadian biomarkers selected for informing on the CTS during human daily routine (Figure 5). 

We aimed to recruit 30 adult volunteers stratified by sex and age above or below 40 years 

with valid data. 

Eligibility criteria included the ability to work or to perform usual activities and to be aged 18 

years or more. Non-inclusion criteria involved any uncontrolled pathologic or psychological 

condition, any known gastro-intestinal disease, any ongoing treatment with 

glucocorticosteroids, melatonin agonists or antagonists, lithium, or analgesic, any contra-

indication to the use of electronic devices, and night shift work or crossing of more than three 

time zones within the past four weeks. Volunteers were recruited locally through flyers and 

advertisements in newsletters and local journals. The study participants were asked not to 

change their free-living daily schedule throughout the study, except on the evening when they 

were to collect six hourly samples at home in dim light starting at 18:00 until usual bedtime. 

Data collection and processing 

Main characteristics of the subjects, including sex, birth date, marital status, professional 

activity, past and current illnesses and treatments, were recorded upon study entry. Chest 

surface temperature, activity and 3-D orientation were recorded every minute for one week 

using the PiCADo mobile eHealth platform(13). These three variables were measured using a 

chest sensor (Movisens, Karlsruhe, Germany) and a pocket-sized gateway (Eeleo, Montrouge, 

France). Anonymous data were transmitted via Bluetooth from the sensor to the connected 
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gateway and then transmitted to a secure and dedicated server via General Packet Radio 

Service (GPRS) every 24 hours. As the devices used were not waterproof, their short removal 

was allowed for showers, baths or occasional needs. A body weight scale was also connected 

to the gateway via Bluetooth, with daily measurements acquired before breakfast. 

Saliva was self-collected by the participants using saliva collection aids (SalivaBio Passive 

Drool, Salimetrics, State College, Pennsylvania, USA) and 2 mL micro tubes (SARSTEDT AG & 

Co., Nümbrecht, Germany). Participants were asked to collect five hourly samples at home 

during an evening in dim light starting at 18:00 and a sixth one at 23:00 or before retiring, 

whichever came first. Dim light conditions were verified using a wrist actigraph 

(Motionlogger® Micro Watch, Ambulatory Monitoring Inc., Ardsley, NY, USA), with all subjects 

being reminded not to occlude the light sensor with sleeves. A salivary sample was considered 

invalid for melatonin determination, if light intensities > 50 lux(40) had been recorded by the 

wrist watch light detector  within the 30 minutes preceding collection.  

Core body temperature was measured using an electronic ingestible pill (e-CELSIUS 

Performance® pill, BodyCAP Medical, Hérouville Saint-Clair, France). Participants were asked 

to ingest one such pill in the morning for two consecutive days. Data were transmitted via 

Radio Frequency to a dedicated monitor (e-viewer® performance monitor, BodyCAP Medical). 

Data were transferred from the monitor to the computer of the biomedical engineer after 

both pills had been eliminated through the stools. The abnormally low or high core body 

temperature values in the first few hours of recording were deleted as they were typically 

due to the temperature of food or drink ingestion. Data from the first ingested pill were used 

until pill elimination in the feces. Data from the second pill were used thereafter to obtain a 

complete time series. Participants provided a detailed diary with time of awakening and 

retiring, mealtimes, intense activity times, and medication times (if any). 
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Chronotypes were determined using the largely-validated morningness-eveningness self-

assessment questionnaire(41). 

Data Management 

Tele-transmitted chest sensor data were stored on the server based on HL7 standards 

(international standards for transfer of clinical and administrative data). Data were 

downloaded from the server to the computer of the biomedical engineer only. Anonymized 

data were saved on a secure storage server according to the national Data Protection and 

Freedom of Information Acts guidance. Data transmission was inspected at least twice a week 

during the monitoring sessions to insure adequate functioning.  

e-CELSIUS temperature data from the ingestible pills were received on the BodyCAP monitor. 

Similarly, after retrieval of the monitor from the subjects, data were downloaded and saved 

on a secure storage server according to the national Data Protection and Freedom of 

Information Acts guidance.  

Statistical Methods for Quantifying Circadian Rhythmicity 

Salivary Melatonin Secretion 

DLMO is commonly computed as the time when melatonin concentration in plasma or saliva 

exceeds a threshold computed as the mean of three consecutive daytime values before rise 

plus twice the standard deviation of these three points(42). For those subjects with 

insufficient baseline data, an estimated threshold value was computed as the mean plus twice 

the standard deviation of the pooled baseline melatonin values in the subjects with adequate 

baseline data. This estimated threshold was first validated in the subjects with adequate 

baseline data by Pearson correlation, prior to its use for all the subjects. 

Chest Surface Temperature and Core Body Temperature  

A single core temperature time series linked the temperature data measured by the first pill, 



 17 

until its elimination and the second one, afterwards. The temperature data were first 

aggregated by 5-min mean and smoothed using a 1-hour moving average window, then 

computed as an averaged 24-h profile. We further fitted the following two-harmonic cosinor 

model(43), with periods 𝑇1 = 12-h and 𝑇2 = 24-h to describe the average day oscillation of 

both chest surface and core body temperatures based on prior evidence(13): 

𝑦(𝑡) = 𝑀 + 𝑎1 sin (
2𝜋𝑡

𝑇1
) + 𝑏1 cos (

2𝜋𝑡

𝑇1
) + 𝑎2 sin (

2𝜋𝑡

𝑇2
) + 𝑏2 cos (

2𝜋𝑡

𝑇2
) + 𝑒(𝑡)   (1)  

where 𝑦(𝑡) is the temperature at time t; 𝑀 is the mesor (mean level of the fitted cosine 

function); 𝑎1, 𝑎2 and 𝑏1, 𝑏2 are the coefficients of the cosinor model, and 𝑒(𝑡) is the error. 

Given the periods 𝑇1 and 𝑇2, the coefficients were estimated by least-squares linear 

regression. We report the overall acrophase 𝜃𝑚𝑎𝑥, i.e. time of maximal value in the fitted 

values �̂�(𝑡), and the overall bathyphase 𝜃𝑚𝑖𝑛, i.e. time of minimal value in �̂�(𝑡). Note that for 

core body temperature, we mainly considered bathyphase because it could be identified with 

a better precision than acrophase in most individuals. 90% confidence intervals for 𝜃𝑚𝑎𝑥  and 

𝜃𝑚𝑖𝑛 were evaluated and reported by applying 𝑁 = 1000 bootstrap trials(44). 

Telemetric Rest-Activity  

A recently developed 24-h harmonic Hidden Markov Model (HMM) approach(29) was fitted 

to the data to compute numerical quantifiers that were associated with circadian rhythm in 

rest-activity data. The HMM approach categorizes the actigraphy measurement into three 

states, namely inactive/rest, moderately active, and highly active, in a probabilistic way. We 

focused on the inactive/rest state, in particular the center-of-rest time over a 24-h span, 

which provided an estimation of the average center-of-rest time point during the recording 

period. 

Prediction of Core Body Temperature Bathyphase 
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The main aim of the study was to provide a method for the continuous and remote estimation 

of the individual subject’s bathyphase of the overt 24-hour rhythm in core body temperature. 

The potential for core temperature bathyphase to be predicted by DLMO, rest-activity, chest 

surface temperature, and chronotype as well as the subject’s characteristics was investigated 

using a multivariate linear regression model. Potential predictors were first explored via 

pairwise Spearman correlations. An initial regression model was formulated by considering 

all phases, together with sex, age, and BMI, as explanatory variables. A parsimonious 

regression model was then identified by a stepwise model selection procedure based on AICc 

criterion (corrected Akaike’s information criterion for small sample size) using the R function 

StepAICc (https://github.com/biometry/APES/blob/master/Data/Dormann2013/stepAICc.r ). 

 Significance of explanatory variables was also tested by two-tailed t-test where a possible 

significant effect was considered for p-values smaller than 0.1.  The distribution of the time 

distance between predicted and real core body temperature bathyphase measures 

(residuals) was computed to study the reliability of the prediction. A prediction accuracy of 

<1 h was considered as being precise enough for clinical applications. 

 

Study approval 

The protocol and subsequent amendments were approved by the Ethical Committee of 

Warwick University (REGO-2017-2055). The study was conducted according to the Helsinki 

Declaration(45). The subjects provided signed informed consent for their participation in the 

study. 

 

 

https://github.com/biometry/APES/blob/master/Data/Dormann2013/stepAICc.r
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Figure 1: Consort diagram 

Flow diagram showing the enrollment of participants, according to sex and age, and the 

variables that were measured with key features. DLMO stands for Dim Light Melatonin Onset. 
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Figure 2: Inter-subject variabilities in main circadian biomarkers.  

Panel A: Salivary melatonin profiles in two female participants (28 y.o. in gray and 30 y.o. in 

blue); the vertical dashed lines indicate Dim Light Melatonin Onset (DLMO), which differed by 

1h and 11 min between both subjects. The dark bar represents the mean sleep spans of both 

participants. Panel B: DLMO variations among 24 subjects. DLMO could not be computed for 

six participants, due to improper or lacking information on sampling times (N=5) or exposure 

to light > 50 lux within 30 min of sampling (N=1). The dark bar represents the mean sleep span 

of the 24 participants. Panel C: core body temperature patterns in the two same participants 

shown in panel A. Five-min aggregated data are displayed as dots; the solid curves illustrate 

the averaged 24-h profiles according to two-harmonic cosinor fitting. Bathyphases with 90% 

confidence intervals estimated by the bootstrap method are indicated with dashed lines and 

color bands. The dark bar represents the mean sleep span of both participants. Panel D: Core 

body temperature bathyphase (and 90% confidence interval) variations among the 33 

participants. The dark bar represents the mean sleep span of all participants. Panel E:  

Scatterplots and dashed regression line, with results from both Pearson and Spearman 

correlations between DLMO and core body temperature bathyphase for the 24 subjects. 
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Figure 3: Inter-subject variabilities in rest-activity and chest surface temperature.  

Panel A: representative examples of chronograms of chest surface temperature (top) and 

rest-activity (bottom) of two participants (blue, female 71 y.o.; gray, male 34 y.o.). Hourly 

aggregated data are shown with dots, with solid curves corresponding to Fourier fitting with 

harmonics estimated using Spectrum Resampling algorithm(28). The dark bars represent the 

participants respective sleeping spans. Panel B: Top, circadian activity state probability plot 

from harmonic HMM for a 78 y.o male participant illustrating the computation method of the 

center-of-rest time. Three activity states were assumed in the Hidden Markov Model, i.e. 

inactive state (blue), moderately active state (pink) and highly activity state (red). The three 

states probabilities sum up to 1. The “center-of-rest time” was computed as the gravity center 

of the inactive state probability profile (blue), as indicated with a dashed vertical black line. 

Bottom: Boxplot (5-95 percentiles) of the center-of-rest times in the 33 participants. The dark 

bar represents the mean sleep span of all 33 participants. Panel C: representative examples 

of the chest surface temperature of both same participants as in panel A. Five-min aggregated 

data are shown as dots and solid curves represent the averaged 24-h profiles using cosinor 

fitting. The dark bar represents the mean sleep span of both participants. Panel D: range of 

chest surface temperature acrophases (and 90% confidence limits estimated by bootstrap 

method) of the 24 participants displaying a 24-h rhythm (left) and the 9 participants with a 

dominant 12-h rhythm (right). The dark bar represents the mean sleep span of the 

corresponding participants. 
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Figure 4: Relations between measured and predicted core body temperature bathyphases 

in the 33 participants.  

Red stars indicate the computed bathyphases of core body temperature, with their respective 

90% confidence limits shown as horizontal limited lines, according to cosinor analysis of real 

measurements. Gray dots and bands represent the within-sample predicted bathyphases 

with corresponding 90% prediction bands, as computed using the INTime model. 
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Figure 5: Study picture 

Schematic description of the study design. GPRS stands for General Packet Radio Service. 

 

 

Source of icons: pixabay. 
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Abstract  
 
Background: Circadian timing of treatments can largely improve tolerability and efficacy in 

patients. Thus, drug metabolism and cell cycle are controlled by molecular clocks in each cell, 

and coordinated by the core body temperature 24-hour rhythm, which is generated by the 

hypothalamic pacemaker. Individual circadian phase is currently estimated with 

questionnaire-based chronotype, center-of-rest time, dim light melatonin onset (DLMO), or 

timing of CBT maximum (acrophase) or minimum (bathyphase). 

Methods: We aimed at circadian phase determination and read-out during daily routine in 

volunteers stratified by sex and age. We measured (i) chronotype; (ii) q1min CBT using two 

electronic pills swallowed 24-hours apart; (iii) DLMO through hourly salivary samples from 

18:00 to bedtime; (iv) q1min accelerations and surface temperature at anterior chest level 

for seven days, using a tele-transmitting sensor. Circadian phases were computed using 

cosinor and Hidden-Markov modelling. Multivariate regression identified the combination of 

biomarkers that best predicted core temperature circadian bathyphase.  

Results: Amongst the 33 participants, individual circadian phases were spread over 5h10min 

(DLMO), 7h (CBT bathyphase) and 9h10 min (surface temperature acrophase).  CBT 

bathyphase was accurately predicted, i.e. with an error <1h for 78.8% of the subjects, using a 

new digital health algorithm (INTime), combining time-invariant sex and chronotype score, 

with computed center-of-rest time and surface temperature bathyphase (adjusted R-squared 

= 0.637).  

Conclusion: INTime provided a continuous and reliable circadian phase estimate in real time. 

This model helps integrate circadian clocks into precision medicine and will enable treatment 

timing personalisation following further validation. 

Funding: MRC, UK; AP-HP Foundation and INSERM, France.   
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Text 

Introduction  

The discovery of the molecular mechanisms of circadian clocks has highlighted a new 

potential for improving human health through the translation of circadian timing concepts to 

medical practice(1-3). In mammals, a molecular oscillator involving 15 clock genes generates 

an about 24-hour oscillation that rhythmically regulates cellular metabolism, division, and 

death within each cell(2, 4, 5).  The molecular clocks in the cells of all organs are coordinated 

by an array of physiological rhythms that are generated by the suprachiasmatic nuclei (SCN) 

in the hypothalamus(6). Thus, the circadian phase of SCN function constitutes a critical 

measure for inferring timing throughout the organism. The circadian rhythm in core body 

temperature and that in circulating glucocorticoids, which are controlled by the SCN, play a 

key role in the coordination of the molecular clocks outside the brain(7-9), while the 

melatonin secretion rhythm both informs on the circadian phase of the SCN, and helps 

calibrate its period(10).  The rest-activity circadian pattern, which integrates lifestyle and 

social signals, has bidirectional linkage with the SCN, thus can moderate the robustness of SCN 

rhythmic functions in rodents(11).  The circadian timing system (CTS) involves the several 

components that generate, moderate or reset the circadian rhythms at cellular, tissue or 

whole body levels, including the retinal light sensor melanopsin, the SCN, the SCN-generated 

circadian physiology, and the network of molecular clocks in all organs and tissues(2). Studies 

in healthy humans and in patients with cancer or other diseases have revealed large between-

subjects differences for the rhythms in rest-activity(12, 13), body temperature(13), circulating 

cortisol(14), and melatonin levels(15), as well as those in clock gene expression in peripheral 

tissues(16). More specifically, the extent of the circadian variations (double-amplitude of the 

fitted 24-hour cosine function) in the physiological biomarkers varied by up to several-fold, 

and the timing of maximum (acrophase) or minimum (bathyphase) by up to 12-h in humans 

studied during their daily routine(12-16). Occupational schedules can also impact on health, 

through altering circadian timing system (CTS) function. For instance, night shift work that 

causes circadian disruption was identified as increasing the risks of breast and possibly other 

cancers, as well as cardio-vascular, gastro-intestinal, metabolic, and reproductive 

disorders(17-19). Recently, circadian rhythm research has reached a critical level where 

translational applications to human health have become fundamental for many 
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conditions(20, 21). It is clear that treatment timing can largely affect the occurrence of 

adverse events and efficacy, thus making the consideration of individual differences in CTS 

function essential for the proper care of patients. Such time dependencies have been 

demonstrated in randomized clinical trials and meta-analyses involving patients with 

malignant, cardio-vascular, rheumatologic, or neurodegenerative diseases(20, 22-25). 

Similarly, the daily timing of preventive interventions also appeared critical, as shown for 

vaccination(26). Experimental and clinical studies have further indicated that patients on 

antibiotics or analgesic medications could benefit from circadian timing optimization of their 

treatment(2). However, human physiology, experimental chronopharmacology, and clinical 

chronotherapy trial data have revealed sex-dependent differences in CTS function and 

stressed their clinical relevance(23, 27). For instance, overall survival was improved 

significantly in men but not in women receiving the same fixed time chronomodulated 

chemotherapy protocol with oxaliplatin and 5-fluorouracil-leucovorin for metastatic 

colorectal cancer as compared to conventional delivery, as demonstrated in a meta-analysis 

of three international randomized trials involving individual patient data(23).  

Thus, it is necessary to reliably determine the circadian phase in real time for each patient, 

using a non-invasive and simple method, in order to fulfil the promises resulting from the 

discovery of circadian clocks mechanisms for precision medicine. Novel diagnostic tools have 

to be developed that aim both at the prevention of circadian disorders, that can lead to 

chronic diseases or their exacerbation, and at the personalization of clock-based therapies for 

cancers and other chronic diseases.  

Toward this goal, the current study aimed at the continuous and remote determination of the 

individual subject’s bathyphase (timing of the computed daily nadir) of the overt 24-hour 

rhythm in core body temperature. New digital health method and algorithm were designed 

here for computing internal circadian phase (INTime) in people whose circadian rhythms were 

tele-monitored in real time during their daily routine.  
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Results 

Subjects’ characteristics and chronotype 

Of the 37 recruited participants, 33 provided valid data, including 15 males and 18 females, 

aged 21 to 78 years, with a similar distribution according to age (Figure 1, Table S1). The 

majority of participants had no ongoing medical condition and were not taking any 

medication. Oral contraceptive pills or intrauterine systems were used by 39% of the female 

participants.  

The morningness-eveningness questionnaire scores revealed that chronotype was 

categorized as “morning” for 15 subjects, “intermediate” for 15 other and “evening” for three 

participants.  

Dim Light Melatonin Onset 

Adequate saliva samples were available for 24 of 30 subjects assessed for this endpoint (80%). 

Salivary melatonin data were available for computing Dim Light Melatonin Onset (DLMO) 

using a threshold based on individual baseline values for 12 participants (40%) (Figure 2A). 

The estimated threshold method based on the pooled 34 baseline values in the same subjects 

was also applied. Individual DLMOs using both methods differed by -32 min to +11 min, and 

were strongly correlated (Pearson’s correlation, r = 0.96, p < 0.001). Thus, we used the 

estimated threshold method to compute the DLMOs of the 24 subjects. The median clock 

hour of melatonin secretion onset occurred at 20:50 with an Inter-Quartile Range (IQR) of 

[20:01 to 21:19] and individual values spread over 5h10 min (Figure 2B).  

Core body temperature 

Overall, core body temperature time series were provided by both e-Celsius pills in each 

subject for a median time span of 2.9 days [IQR, 2.0-3.4], ranging from 1.3 up to 14.4 days 
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according to individual gastro-intestinal transit. Each of the 66 pills ingested by the 33 

participants provided temperature time series over durations ranging from 0.2 to 13.4 days 

(median, 1.6; IQR, 1.1 to 2.4). There was an overlap of 24-h or more for the records by the 

first and second pill in 13 subjects. Raw temperature data from both pills were correlated 

within each of these 13 participants, with a median Pearson correlation coefficient of 0.86 

(IQR, 0.74 to 0.93), that was highest with a time lag of -2 min. 

Our cosinor analysis revealed that most individuals displayed a strong 24-h rhythmic pattern 

occasionally with an additional prominent 12-h component (Figure 2C). We found that the 

precision of the individual bathyphases, as indicated with 90% Confidence Intervals (CI) < 55 

min, was much better than that of the corresponding acrophases, whose CIs largely exceeded 

this value for six subjects (18.2%).  The median acrophase was located at 17:40 [IQR, 15:20 to 

19:05], with individual values staggered over 12h05min. The median bathyphase occurred at 

03:30 [IQR, 2:30 to 4:15], with individual values spread over a 7-h span (Figure 2D). 

Rest-activity and surface temperature tele-transmitted by chest sensor 

Rest-activity and temperature time series from the chest surface sensor were available for 

the 33 participants, for a median duration of 7.0 days [IQR, 6.9 to 7.3]. Large inter-subject 

variations were obvious (Figure 3A). Thus, median number of accelerations per min ranged 

from 6 to 135 between subjects, with highest values reaching 331 up to 538. Median chest 

surface temperature values (5-min aggregates) varied from 32.6 to 36.5°C between 

participants.  

Chest surface temperature lowest daily values in fitted curves from individual participants 

ranged from 32.1 to 36.4°C and highest daily values, from 34.5 to 36.8°C.  

Rest activity time series displayed regular 24-h patterns that were highly reproducible from 

one day to the next in all the subjects, as indicated with prominent 24-h period according to 
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spectral analyses(28). Harmonic HMM analyses(29) revealed that the median center-of-rest 

time was located at 03:05 [IQR, 02:15 to 03:25], with individual values ranging over 5h15min 

(Figure 3B). 

Spectral analyses(13, 28) of chest surface temperature time series identified a dominant 24-

h periodic component for 21 participants (63.6 %), and a dominant 12-h component for nine 

of them (27.3%), resulting in two daily maxima as shown in cosinor fittings (Figure 3C). No 

circadian or 12-h pattern was found for three participants (9.1%). According to our cosinor 

analysis, the median nightly acrophase of chest temperature occurred at 03:00 [IQR, 02:10 to 

03:55], with individual values spread over 9h10min (Figure 3D). The corresponding median 

daily bathyphase that followed the nightly acrophase took place at 11:00 [IQR, 9:40 to 12:35], 

with individual values spread over 10h25min.  

Non-invasive prediction of core temperature bathyphase 

No statistically significant correlation was found between sex, age, BMI or concurrent 

treatment, on the one hand, and the various phase indicators, on the other hand, according 

to two-sample t-test and pairwise Spearman’s correlation (p > 0.10).  In contrast, circadian 

phase estimates were correlated to some extent (Figure S1). The DLMO was weakly 

correlated with the core temperature acrophase (Spearman’s correlation, r=0.40, p=0.05) and 

bathyphase (r=0.36, p=0.09). Chronotype score was strongly correlated with center-of-rest 

time (r=-0.70, p<0.001), chest surface temperature acrophase (r=-0.60, p <0.001), and core 

temperature bathyphase (r=-0.67, p<0.001). The center-of-rest time was further correlated 

with both chest surface and core temperature acrophases (r= 0.67 and r=0.69, respectively; 

p<0.001) and core temperature bathyphase (r=0.71, p<0.001). Stepwise model selection 

identified the ‘best’ regression model for predicting core temperature bathyphase, with an 

adjusted R-squared of 0.637. The resulting model named “INTime” predicted core 
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temperature bathyphase using the covariates sex (p<0.001) and chronotype score (p=0.009) 

as well as two computed phase indicators from the chest sensor data, namely the center-of-

rest time (p=0.033), and chest surface temperature bathyphase (p = 0.063) by means of the 

following estimated equation: 

Core temperature bathyphase = 1.33* sex– 0.058*chronotype score + 0.472*center-of-rest 

time - 0.145 chest temperature bathyphase, with sex being coded as 1 for male and 0 for 

female, and phases in hours and decimal hours. 

The accuracy of the predicted core temperature bathyphase (Figure 4) was computed by the 

distance between the predicted and measured values, whose median was 7 min [IQR, -40min-

31min], with individual errors from -106 to +108 min. As a result, the fitting error was < 1h 

for 26 participants (78.8%). In addition, the 90% prediction bands covered most individuals’ 

measured bathyphase values, i.e. 31-in-33 participants (93.9%), indicating a very satisfactory 

within-sample prediction accuracy.  
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Discussion 

Inter-subject differences in chronotype make it crucial to perform circadian rhythm 

measurements without interfering with the daily life of people, in order to successfully 

translate and broadly apply circadian clock concepts to precision medicine. The current study 

represents an important step toward such goal as it revealed inter-individual differences by 

7h for the bathyphase of core body temperature, by 5h10 min for DLMO, by 5h15 min for 

center-of-rest time, and by 9h10 min for the acrophase of chest surface temperature, thus 

highlighting large inter-subject variability for these distinct and correlated estimates of 

circadian phase. The endogenous circadian rhythms in core body temperature, as 

continuously recorded using a rectal probe(30), and that in circulating melatonin 

concentrations were robustly coordinated in healthy humans. As a result, the bathyphase of 

core body temperature has been largely used as an adequate reference for the endogenous 

circadian phase in humans(31, 32),  based on studies performed under constraining constant 

routine protocols in human chronophysiology laboratories(30, 33). While salivary DLMO at 

home might have proven as a precise indicator of circadian phase, it could only be estimated 

in 80% of our very compliant participants. Reasons involved occasional environmental light 

contamination both outside and at home, possible food contamination by melatonin-

containing ailments, and need for alterations in daily and familial routine, including meal 

timing. To circumvent such drawbacks and to enable clinical applications of circadian clocks, 

the current study has identified a non-invasive method that provides a precise and continuous 

estimate of individual circadian bathyphase of core body temperature in real time from 

remote people during their daily routine. Within-sample accuracy was less than one hour for 

78.8% of the participants. The use of this model in medical practice requires information on 

sex, score from the chronotype questionnaire, and two circadian timing parameters extracted 
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from chest rest-activity and surface temperature monitoring. Both of them are easily 

amenable to automatic real time computation out of tele-transmitted time series being 

recorded during the daily routine of the person. We expect that INTime will enable circadian 

timing of treatments, i.e. chronotherapy, to irreversibly complement the basic principle of 

today’s toxicology “The dose makes the poison”. This paradigm which was proposed by 

Paracelsius some 500 years ago(2) has driven the current adjustment of drug dose levels to 

body weight or surface area, pharmacokinetics, or drug polymorphisms, which have become 

indispensable information for both regulatory approval, and safe medical use of medications. 

Although there is strong evidence that time-of-day of treatment delivery can matter as much 

as dose(2, 3, 22-24, 26, 27), we have been lacking a metrics for the determination of optimal 

treatment timing in individual patients. Indeed, results from randomized clinical trials and 

meta-analyses have shown that the patients’ benefits resulting from drug timing could be as 

large as 5-fold, yet they could depend upon patient’s sex and circadian timing system 

function(23, 27). The need for the personalization of treatment timing was further highlighted 

by up to 8-hours difference in optimal timing of the anticancer drug irinotecan, as a function 

of mouse sex and genetic background. In this large study, optimal timing was predicted by a 

mathematical model combining the circadian mRNA expression patterns of clock genes Bmal1 

and Rev-erbα in liver or colon, which also governed the key pharmacology mechanisms of this 

drug(34, 35).  Recent results have further highlighted consistent relations between 24-hour 

temperature cycles and circadian patterns in metallodrugs toxicity both in vitro and in 

vivo(36).  The findings are in line with previous studies linking the circadian rhythms in mouse 

tolerability for 16 anticancer drugs to the intraperitoneal temperature cycle(37).  

Both the limited sample size available for DLMO estimations and the weak correlations 

between DLMO and other timing indicators precluded any attempt toward the search for a 
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prediction model of DLMO. Moreover, the ability to reset most peripheral clocks with 

physiological temperature cycles but not with melatonin supported a potential key role of 

this rhythm for the biomedical applications of circadian clocks. The limitations of our study 

involve the measurement of core body temperature within various segments of the gastro-

intestinal tract, and the lack of a validation sample of the INTime model. Previous studies have 

shown that the circadian patterns in body temperature measurements were very similar if 

taken from gut using an ingested pill or from rectum using a dedicated probe(38),  thus 

supporting gut temperature bathyphase as a reliable circadian phase biomarker.  Moreover, 

INTime predicted circadian phases to range from 1:55 to 7:05 in a distinct cohort of 18 healthy 

subjects whose sex, chronotype, center-of-rest time, and chest surface temperature 

bathyphase had been determined previously(13). In this independent sample, median, IQR, 

and extremes of predicted individual circadian phases matched very well those in the current 

study (Figure S2), although accuracy could not be computed since core body temperature 

rhythms were not recorded.  By bootstrapping the residuals of the INTime model fit, we 

obtained pseudo datasets with arbitrary size N. By applying 1000 Monte Carlo simulation 

trials, we find that N=600 and N=1000 samples would be required to stabilize the INTime 

model fit so that the corresponding 90% and 95% confidence intervals of the adjusted R-

squared are less than 10% of the given value of 0.637.  

Our findings have a major potential impact for the reduction of severe adverse events from 

treatments, whose reduction represent a critical challenge for improving patient quality of 

life, treatment compliance, treatment efficacy, and human health cost burden. As an 

example, a 10.8-fold increase in the yearly rate of emergency visits for cancer treatment-

related toxicities has been documented over ten years in a large US study, where 91% of the 



 13 

emergency visits translated into emergency admissions, and 4.9% of deaths, resulting in 

related costs of billions of US$(39).  

In conclusion, using a tele-transmitting dual-function chest sensor and INTime, treatment 

timing can be personalized both between and within patients, thus potentially reducing 

adverse events and improving therapeutic outcomes. Such personalized chronotherapy 

deserves prospective testing and could help invert the steadily rising economic burden of 

treatment morbidities in cancer and chronic diseases.  
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Methods 

Study design and human subjects 

The study aimed at (i) the estimation of the internal circadian phase during daily routine, a 

process that usually requires a constraining circadian physiology protocol in the 

laboratory(30, 33), and (ii) the assessment of the relevance of age and sex on the non-invasive 

circadian biomarkers selected for informing on the CTS during human daily routine (Figure 5). 

We aimed to recruit 30 adult volunteers stratified by sex and age above or below 40 years 

with valid data. 

Eligibility criteria included the ability to work or to perform usual activities and to be aged 18 

years or more. Non-inclusion criteria involved any uncontrolled pathologic or psychological 

condition, any known gastro-intestinal disease, any ongoing treatment with 

glucocorticosteroids, melatonin agonists or antagonists, lithium, or analgesic, any contra-

indication to the use of electronic devices, and night shift work or crossing of more than three 

time zones within the past four weeks. Volunteers were recruited locally through flyers and 

advertisements in newsletters and local journals. The study participants were asked not to 

change their free-living daily schedule throughout the study, except on the evening when they 

were to collect six hourly samples at home in dim light starting at 18:00 until usual bedtime. 

Data collection and processing 

Main characteristics of the subjects, including sex, birth date, marital status, professional 

activity, past and current illnesses and treatments, were recorded upon study entry. Chest 

surface temperature, activity and 3-D orientation were recorded every minute for one week 

using the PiCADo mobile eHealth platform(13). These three variables were measured using a 

chest sensor (Movisens, Karlsruhe, Germany) and a pocket-sized gateway (Eeleo, Montrouge, 

France). Anonymous data were transmitted via Bluetooth from the sensor to the connected 
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gateway and then transmitted to a secure and dedicated server via General Packet Radio 

Service (GPRS) every 24 hours. As the devices used were not waterproof, their short removal 

was allowed for showers, baths or occasional needs. A body weight scale was also connected 

to the gateway via Bluetooth, with daily measurements acquired before breakfast. 

Saliva was self-collected by the participants using saliva collection aids (SalivaBio Passive 

Drool, Salimetrics, State College, Pennsylvania, USA) and 2 mL micro tubes (SARSTEDT AG & 

Co., Nümbrecht, Germany). Participants were asked to collect five hourly samples at home 

during an evening in dim light starting at 18:00 and a sixth one at 23:00 or before retiring, 

whichever came first. Dim light conditions were verified using a wrist actigraph 

(Motionlogger® Micro Watch, Ambulatory Monitoring Inc., Ardsley, NY, USA), with all subjects 

being reminded not to occlude the light sensor with sleeves. A salivary sample was considered 

invalid for melatonin determination, if light intensities > 50 lux(40) had been recorded by the 

wrist watch light detector  within the 30 minutes preceding collection.  

Core body temperature was measured using an electronic ingestible pill (e-CELSIUS 

Performance® pill, BodyCAP Medical, Hérouville Saint-Clair, France). Participants were asked 

to ingest one such pill in the morning for two consecutive days. Data were transmitted via 

Radio Frequency to a dedicated monitor (e-viewer® performance monitor, BodyCAP Medical). 

Data were transferred from the monitor to the computer of the biomedical engineer after 

both pills had been eliminated through the stools. The abnormally low or high core body 

temperature values in the first few hours of recording were deleted as they were typically 

due to the temperature of food or drink ingestion. Data from the first ingested pill were used 

until pill elimination in the feces. Data from the second pill were used thereafter to obtain a 

complete time series. Participants provided a detailed diary with time of awakening and 

retiring, mealtimes, intense activity times, and medication times (if any). 
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Chronotypes were determined using the largely-validated morningness-eveningness self-

assessment questionnaire(41). 

Data Management 

Tele-transmitted chest sensor data were stored on the server based on HL7 standards 

(international standards for transfer of clinical and administrative data). Data were 

downloaded from the server to the computer of the biomedical engineer only. Anonymized 

data were saved on a secure storage server according to the national Data Protection and 

Freedom of Information Acts guidance. Data transmission was inspected at least twice a week 

during the monitoring sessions to insure adequate functioning.  

e-CELSIUS temperature data from the ingestible pills were received on the BodyCAP monitor. 

Similarly, after retrieval of the monitor from the subjects, data were downloaded and saved 

on a secure storage server according to the national Data Protection and Freedom of 

Information Acts guidance.  

Statistical Methods for Quantifying Circadian Rhythmicity 

Salivary Melatonin Secretion 

DLMO is commonly computed as the time when melatonin concentration in plasma or saliva 

exceeds a threshold computed as the mean of three consecutive daytime values before rise 

plus twice the standard deviation of these three points(42). For those subjects with 

insufficient baseline data, an estimated threshold value was computed as the mean plus twice 

the standard deviation of the pooled baseline melatonin values in the subjects with adequate 

baseline data. This estimated threshold was first validated in the subjects with adequate 

baseline data by Pearson correlation, prior to its use for all the subjects. 

Chest Surface Temperature and Core Body Temperature  

A single core temperature time series linked the temperature data measured by the first pill, 
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until its elimination and the second one, afterwards. The temperature data were first 

aggregated by 5-min mean and smoothed using a 1-hour moving average window, then 

computed as an averaged 24-h profile. We further fitted the following two-harmonic cosinor 

model(43), with periods 𝑇1 = 12-h and 𝑇2 = 24-h to describe the average day oscillation of 

both chest surface and core body temperatures based on prior evidence(13): 

𝑦(𝑡) = 𝑀 + 𝑎1 sin (
2𝜋𝑡

𝑇1
) + 𝑏1 cos (

2𝜋𝑡

𝑇1
) + 𝑎2 sin (

2𝜋𝑡

𝑇2
) + 𝑏2 cos (

2𝜋𝑡

𝑇2
) + 𝑒(𝑡)   (1)  

where 𝑦(𝑡) is the temperature at time t; 𝑀 is the mesor (mean level of the fitted cosine 

function); 𝑎1, 𝑎2 and 𝑏1, 𝑏2 are the coefficients of the cosinor model, and 𝑒(𝑡) is the error. 

Given the periods 𝑇1 and 𝑇2, the coefficients were estimated by least-squares linear 

regression. We report the overall acrophase 𝜃𝑚𝑎𝑥, i.e. time of maximal value in the fitted 

values �̂�(𝑡), and the overall bathyphase 𝜃𝑚𝑖𝑛, i.e. time of minimal value in �̂�(𝑡). Note that for 

core body temperature, we mainly considered bathyphase because it could be identified with 

a better precision than acrophase in most individuals. 90% confidence intervals for 𝜃𝑚𝑎𝑥  and 

𝜃𝑚𝑖𝑛 were evaluated and reported by applying 𝑁 = 1000 bootstrap trials(44). 

Telemetric Rest-Activity  

A recently developed 24-h harmonic Hidden Markov Model (HMM) approach(29) was fitted 

to the data to compute numerical quantifiers that were associated with circadian rhythm in 

rest-activity data. The HMM approach categorizes the actigraphy measurement into three 

states, namely inactive/rest, moderately active, and highly active, in a probabilistic way. We 

focused on the inactive/rest state, in particular the center-of-rest time over a 24-h span, 

which provided an estimation of the average center-of-rest time point during the recording 

period. 

Prediction of Core Body Temperature Bathyphase 
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The main aim of the study was to provide a method for the continuous and remote estimation 

of the individual subject’s bathyphase of the overt 24-hour rhythm in core body temperature. 

The potential for core temperature bathyphase to be predicted by DLMO, rest-activity, chest 

surface temperature, and chronotype as well as the subject’s characteristics was investigated 

using a multivariate linear regression model. Potential predictors were first explored via 

pairwise Spearman correlations. An initial regression model was formulated by considering 

all phases, together with sex, age, and BMI, as explanatory variables. A parsimonious 

regression model was then identified by a stepwise model selection procedure based on AICc 

criterion (corrected Akaike’s information criterion for small sample size) using the R function 

StepAICc (https://github.com/biometry/APES/blob/master/Data/Dormann2013/stepAICc.r ). 

 Significance of explanatory variables was also tested by two-tailed t-test where a possible 

significant effect was considered for p-values smaller than 0.1.  The distribution of the time 

distance between predicted and real core body temperature bathyphase measures 

(residuals) was computed to study the reliability of the prediction. A prediction accuracy of 

<1 h was considered as being precise enough for clinical applications. 

 

Study approval 

The protocol and subsequent amendments were approved by the Ethical Committee of 

Warwick University (REGO-2017-2055). The study was conducted according to the Helsinki 

Declaration(45). The subjects provided signed informed consent for their participation in the 

study. 

 

 

https://github.com/biometry/APES/blob/master/Data/Dormann2013/stepAICc.r
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Figure 1: Consort diagram 

Flow diagram showing the enrollment of participants, according to sex and age, and the 

variables that were measured with key features. DLMO stands for Dim Light Melatonin Onset. 
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Figure 2: Inter-subject variabilities in main circadian biomarkers.  

Panel A: Salivary melatonin profiles in two female participants (28 y.o. in gray and 30 y.o. in 

blue); the vertical dashed lines indicate Dim Light Melatonin Onset (DLMO), which differed by 

1h and 11 min between both subjects. The dark bar represents the mean sleep spans of both 

participants. Panel B: DLMO variations among 24 subjects. DLMO could not be computed for 

six participants, due to improper or lacking information on sampling times (N=5) or exposure 

to light > 50 lux within 30 min of sampling (N=1). The dark bar represents the mean sleep span 

of the 24 participants. Panel C: core body temperature patterns in the two same participants 

shown in panel A. Five-min aggregated data are displayed as dots; the solid curves illustrate 

the averaged 24-h profiles according to two-harmonic cosinor fitting. Bathyphases with 90% 

confidence intervals estimated by the bootstrap method are indicated with dashed lines and 

color bands. The dark bar represents the mean sleep span of both participants. Panel D: Core 

body temperature bathyphase (and 90% confidence interval) variations among the 33 

participants. The dark bar represents the mean sleep span of all participants. Panel E:  

Scatterplots and dashed regression line, with results from both Pearson and Spearman 

correlations between DLMO and core body temperature bathyphase for the 24 subjects. 
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Figure 3: Inter-subject variabilities in rest-activity and chest surface temperature.  

Panel A: representative examples of chronograms of chest surface temperature (top) and 

rest-activity (bottom) of two participants (blue, female 71 y.o.; gray, male 34 y.o.). Hourly 

aggregated data are shown with dots, with solid curves corresponding to Fourier fitting with 

harmonics estimated using Spectrum Resampling algorithm(28). The dark bars represent the 

participants respective sleeping spans. Panel B: Top, circadian activity state probability plot 

from harmonic HMM for a 78 y.o male participant illustrating the computation method of the 

center-of-rest time. Three activity states were assumed in the Hidden Markov Model, i.e. 

inactive state (blue), moderately active state (pink) and highly activity state (red). The three 

states probabilities sum up to 1. The “center-of-rest time” was computed as the gravity center 

of the inactive state probability profile (blue), as indicated with a dashed vertical black line. 

Bottom: Boxplot (5-95 percentiles) of the center-of-rest times in the 33 participants. The dark 

bar represents the mean sleep span of all 33 participants. Panel C: representative examples 

of the chest surface temperature of both same participants as in panel A. Five-min aggregated 

data are shown as dots and solid curves represent the averaged 24-h profiles using cosinor 

fitting. The dark bar represents the mean sleep span of both participants. Panel D: range of 

chest surface temperature acrophases (and 90% confidence limits estimated by bootstrap 

method) of the 24 participants displaying a 24-h rhythm (left) and the 9 participants with a 

dominant 12-h rhythm (right). The dark bar represents the mean sleep span of the 

corresponding participants. 
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Figure 4: Relations between measured and predicted core body temperature bathyphases 

in the 33 participants.  

Red stars indicate the computed bathyphases of core body temperature, with their respective 

90% confidence limits shown as horizontal limited lines, according to cosinor analysis of real 

measurements. Gray dots and bands represent the within-sample predicted bathyphases 

with corresponding 90% prediction bands, as computed using the INTime model. 

 

 

  



 31 

Figure 5: Study picture 

Schematic description of the study design. GPRS stands for General Packet Radio Service. 
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