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Abstract 

Increasing urbanization, smart cities and other cutting-edge technologies offer the prospect of 

providing more functions to benefit citizens by relying on the substantial data processing and 

exchange capabilities now possible. This can generate significant unpredictable and unbalanced data 

loads for the bearing IoT network to support its application and service demands. We thus propose a 

wireless routing scheme designed to use the Particle Filter algorithm to empower portable smart 

devices with intelligent capacities for the radio communication system. This facilitates the offloading 

of traffic from traditional wireless networks and enables the IoT system to adopt unmanned aerial 

vehicles, thus also offering further innovation to flying network platforms. The proposed PaFiR 

routing protocol offers the network more scalability, tolerance and resilience, to achieve the goal of 

smart relaying. Simulation results that demonstrate the routing algorithm designed offers excellent 

performance when compared with existing wireless relaying schemes. It provides delivery ratios that 

are improved by up to 40% without unmanageable increases in latency or overheads. 
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Nomenclature 

5G Fifth Generation of Cellular Networks 

DARPA Defense Advanced Research Projects Agency 

DTN Delay Tolerant Network 

FSO Free Space Optics  

HetNet Heterogeneous Network 

IoT Internet of Things 

MANET Mobile Ad Hoc Network 

MC Monte Carlo 

NoF Network of the Future 

ONE Opportunistic Network Environment 

PaFiR Particle Filter Routing 

PF Particle Filter 



PRNET Packet Radio Network 

PRoPHET  Probabilistic Routing Protocol using History of Encounters and Transitivity 

RF Radio Frequency 

SIS Sequential Importance Sampling 

SMC Sequential Monte Carlo  

SURAN Survivable Packet Radio Network 

TTL Time to live 

UAV Unmanned Aerial Vehicle 

VANET Vehicular Ad-hoc Network 

VDTN Vehicular Delay Tolerant Network 

 

 

1. Introduction 

1.1. Background 

Increasing urbanization means that smart cities can provide more and more functions to benefit 

their citizens by relying on the substantial data processing and exchange capabilities now possible. 

City sizes are constantly increasing so that the population living in urban territories is anticipated to 

double by 2050 [1]. In consequence, the number of IoT devices in smart cities will grow significantly. 

Although it is difficult to predict the numbers precisely, the total sum of Internet-connected things is 

most likely to be between 25 billion to 50 billion by 2020. The issues of security and interoperability 

can now be solved by multiple state-of-the-art solutions [2]. All of these provide substantial 

opportunities for applications of IoT techniques that can generate significant unpredictable and 

unbalanced data loads for the bearing IoT network to support the consequent application and service 

demands. Therefore, for the citizens to enjoy the benefits of ubiquitous networking, the traffic-bearing 

infrastructure of smart cities will face more and more challenges on its resources in high density smart 

cities. In particular: limited radio frequency (RF) spectrum; radio signal coverage and blind spots; 

extremely high density of wireless network subscribers; network congestion caused by unbalanced or 

bursty data; mobile site acquisition; electromagnetic interference. Furthermore, natural disasters 

(hurricanes, thunderstorms, earthquakes and tsunamis) or unpredictable incidents (power cuts, system 

failures, fire accidents, hacker or terrorist attacks and sabotage) are potential risks that make the 

communication system vulnerable and ubiquitous access extremely challenging. A backup solution 

could alleviate these problems; however, the degree and scale of the solution is complex, and even a 

small-scale solution could result in an extremely high cost for some complex cases in such a super 

smart city. Here, we present a sophisticated algorithm to provide an enhanced solution to adapt to 

these changes but offer easy deployment. 

1.2. Challenges 

The flexibility of Unmanned Aerial Vehicles (UAVs) permits the rapid implementation of Delay 

Tolerant Network (DTN) systems leading to the proposal of a low altitude UAV-based solution for 

IoT services that can be applied to assist data packet relaying by Motlagh et al. [3].  

Considering the expansion of mobile IoT systems in smart cities, a large population of portable 

devices will attach to the network in the air and on the ground. The motions of UAVs and ground 

moving elements are thus dramatically diversified, bringing numerous uncertainties into the wireless 

network. For instance, the movement direction of the message carrying node is uncertain, meaning 

that data packets could suffer unpredictable long delays; the best next hop changes every moment 



based on different criteria; the individual mobile radio signal patterns change caused by different 

ambient environments as the location changes. This puts the RF (Radio Frequency) channel in an 

unpredictable condition and the radio coverage of the whole wireless network is different at every 

moment. 

2. Related work 

As the interest in smart cities applications and IoT technologies joined with 5G has grown 

substantially, there has been significant research work undertaken regarding different aspects of the 

various issues, applications and services. 

Al-Turjman et al. provided an overview of the deployment of femtocells in 5G/IoT environments 

[4]. Ozera et al. presented a detailed review on the IoT architecture and protocols, followed by the 

introduction of a fuzzy-based control approach for cluster management for Vehicular Ad-hoc 

Networks (VANETs) [5]. With respect to the difference between DTN and ad-hoc systems, Rahman 

and Frater proposed vehicular communication based on a DTN system, referred to as a Vehicular 

Delay Tolerant Network (VDTN) [6]. Given the limited energy of each network terminal within the 

DTN scenario, Pino et al. proposed dominating set algorithms for decentralized wireless networks [7]. 

The idea of DTN systems was first introduced by Intel Corporation’s Kevin Fall at the beginning 

of 21st century [8] and this paper defines the network architecture and application interface of 

wireless DTNs. Mobile Ad Hoc Networks (MANETs) have a much longer history than DTNs. The 

Packet Radio Network (PRNET) [9] can be seen as their first generation, which was sponsored by the 

Defense Advanced Research Projects Agency (DARPA) [10]. It can be traced back to 1972 and 

evolved into the Survivable Packet Radio Network (SURAN) program in the early 1980s [11]. 

Early DTN routing protocols operated under simple relaying strategies, such as the epidemic 

routing scheme that floods messages without network knowledge to maximize delivery probability 

[12]. However, this strategy can waste a large volume of network resources in the transfer of 

redundant data packages. This method was made more sophisticated by Spray-and-Wait, which limits 

the number of message duplicates using a duplication control design [13]. The Probabilistic Routing 

Protocol using History of Encounters and Transitivity (PRoPHET) is a classical network protocol that 

introduced a prediction mechanism into the forwarding determination by using the number of 

meetings between pairs of mobile nodes to estimate the future encounter probability [14]. 

The development of the big data era has resulted in information systems and intelligent 

knowledge processing playing an increasingly essential role in everyday life [14]. Moreover, machine 

learning coupled with the big data revolution is changing ways of living, working, studying and 

thinking [16]. Smart digital devices are increasingly everywhere to keep collecting various pieces of 

information, but these are commonly only in the form of raw and rough digital symbols, digits, graphs 

or images. The information cannot mean anything without subsequent processing, such as machine 

learning, data mining, pattern recognition, data analysis and knowledge discovery. All these 

applications give rise to significant demands on data transmission and processing that cause 

exponentially increasing requirements for data communication networks and affiliated technologies. 

The flexibility of the UAV can assist more applications into the system in difference scenarios. 

The applications of UAVs in some critical scenarios have been developed by Al-Turjman [17], and 

Al-Turjman and Alturjman [18] adapt UAVs into the applications of multimedia and video streaming 

services in the 5G/IoT system. The idea of the network of the future (NoF) is a technology fusion of 

the future network design that includes the multi-layer network structure and hybrid system. Flying 

network platforms are an essential part of the different communication systems [19]. 



 

Fig. 1.   Multi-layer UAV assisted network flying platform. 

The application of UAV technology allows mobile networks to easily acquire the characteristics 

of flexibility, energy-efficiency and adaptability for multiple applications. The UAV aided mobile IoT 

system could be a part of the multi-layer network flying platform in the NoF, since both wireless 

systems can share flying intermediate nodes to relay the data packets. Figure 1 shows a UAV-assisted 

network flying platform with a multi-layer structure that forms a substantial complex system for 

movement analysis [20], as network flying elements need to catch the motion of cruising nodes and 

find out the best intermediate relaying hop, then transfer data packets cross aerial platforms. 

In this work, a Particle Filter (PF) based DTN routing strategy is proposed to assist complex 

mobile networking structures with multiple aerial platforms. To the best of our knowledge this work 

is one of the first studies on adopting filtering technologies for use in movement tracking to assist the 

DTN routing determination process. 

3. Routing algorithm design 

3.1. Relay hop selection 

Here, we introduce a case study that is Vertical FSO-based Front haul for Ultra-dense HetNets in 

an NoF mobile system with a single-layer network flying platform as shown in Figure 2 [21]. The 

scenario considered assumes that the UAVs fly horizontally at a constant altitude and the movement 

of each for the flying platform can be projected onto a two-dimensional ground trajectory. In the 

mathematical and statistical model, the motion of the UAV can thus be mapped onto the ground and 

processed as a ground moving node. Given the freedom of movement of each element involved in the 

NoF system, the movement of each node is random meaning that UAVs and ground mobile devices 

establish a stochastic system, which can be represented by a stochastic process. This random motion 

(or movement state) is measurable for other mobile users as long as they are in bi-directional radio 

connection range. The state of surrounding nodes is collected by the observers at every instant, and 

the collected data (locations, velocities and accelerations or decelerations) are the samples to be used 

to track and predict the motion of targeted objects in a future moment. If there are obstacles in 

unknown real states that make the scheduled pass unavailable, the nodes will generate an instant 



message to indicate the disconnection of bi-directional air links. The data package carrying nodes then 

needs to discover an alternate route.  

 

Fig. 2.   Vertical FSO-based Fronthaul for Ultra-dense HetNets [21]. 

However, the real states of the observed targets could be different from the observations at a 

certain instant so two different data categories are defined: (a) the unknown real state of the observed 

portable device which is denoted by X; (b) the observed data of a targeted node which are denoted by 

Y. Based on the mathematical and statistical model, the unknown data comprising X can be computed 

using the observed data Y by reasoning or tracking that includes a series of filtering, prediction and 

smoothing operations relying on the Bayesian statistical approach [22]. Here, we adopt the PF 

algorithm discussed in detail in Section 3.3 below to undertake the prediction.    

When a message is generated by a source device or stored and carried by an intermediate node, 

an observation takes place to gather the movement state of neighboring network elements with the 

ability to create a bi-directional radio connection to relay the message. The observed data give the 

input as the prior probability distribution for the PF algorithm to predict the movement state of 

portable nodes in the next moment, which implies the transmission probability of the observed device 

moving towards the destination to deliver the message, for example, when one moving node has the 

highest likelihood to move towards the destination node then this node will have the highest 

transmission probability to fulfil the relaying task. After the packet holding smart device replicates the 

observation and prediction procedure for each surrounding bi-directional connected mobile node, it 

will have a comprehensive list of transmission probabilities for all adjacent portable terminals. 

Following the exchange of transmission probabilities among the serving nodes, each message holding 

intelligent device will have knowledge of the transmission probabilities of every potential hop along 

the forwarding path toward the message destination. The node with the highest transmission 

probability will then be selected to relay the packets. If the next hop is not present, the intermediate 

node will store and carry the packets until the appropriate node appears. 

When only low transmission probability nodes are available for relaying packets, to avoid 

inappropriate relaying actions taking place, an optional predefined threshold n may be utilized. The 

predefined n will only allow the data transfer through a bi-directional connection that happens when 

the transmission probability between two adjacent mobile nodes is greater than the threshold. Thus, if 



the transmission probabilities of all surrounding smart devices are lower than n, the relaying process 

will pause and the message will be buffered by the carrying node. The transmission threshold is 

designed to help the NoF mobile system planner design a parallel DTN system to balance the traffic 

load or make a backup solution in emergency cases. This permits the satisfaction of different system 

performance criteria in various scenarios regarding delivery probability, average latency, message hop 

count and energy consumption. For some instances, a higher value of transmission threshold ensures 

that the message is relayed to a more reliable forwarding device. This does, however, cause the 

message to suffer a longer delay waiting for an appropriate relaying node, potentially increasing the 

overall average latency. The strength and purpose for the transmission threshold is to save the 

message hop count and transmission energy consumption. As high transmission probability 

intermediate nodes rarely appear in some scenarios, the predefined transmission threshold cannot be 

very high, and the application circumstance needs careful consideration. 

3.2. Forwarding Strategies 

There are advantages and disadvantages of established forwarding strategies for different DTN 

routing protocols. Thus, the proposed PaFiR DTN routing protocol uses the current status of network 

nodes to forecast the future pattern of the network topology. This is especially pertinent to the 

movement trajectory pattern of UAVs with high mobility since even using energy efficient routing 

they present a very different behavior to ground-based portable nodes [23]. Conventional forwarding 

strategies are not applicable to cope with the complex scenarios exhibiting highly diversified 

behavioral instances but the nature of the PF algorithm makes it easy to track and predict different 

mobile patterns of ground smart terminals and UAVs. 

3.3. Particle Filter (PF) 

The PF, also known as the Sequential Monte Carlo (SMC) method [24], is a statistical filtering 

method based on Monte Carlo (MC) simulation and recursive Bayesian estimation [25]. It uses MC to 

solve the integral operation of Bayesian estimation based on the Bernoulli Law of large numbers and 

the central limit theorem in probability theory. When a problem is repeated infinitely many times, the 

suboptimal solution that is closest to the correct result, and the frequency of occurrence of time is 

used to replace the probability of occurrence of an event [26]. 

The idea of Monte Carlo sampling is to use the empirical mean value to substitute for the integral 

operation: 

𝐸(𝑓(𝑥)) ≈
𝑓(𝑥1) + ⋯ +  𝑓(𝑥𝑁)

𝑁
                                                (1) 

This is based on the Law of large numbers, so if the number of samples N is large enough, the 

above formula approximates the expected value. The method of estimating the probability is to 

achieve the expected probability by the MC method. Assuming that N samples can be acquired from 

the posterior probability, the calculation of this can be expressed as: 
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where, 𝑓(𝑥) =  δ(𝑥𝑘 − 𝑥𝑘
(𝑖)

) is the Dirac delta function [27]. 

For object tracking, it is necessary to acquire the expected value of the movement current state 

that is the meaning of filtering: 
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The PF algorithm generates a set of random samples in the state space according to the 

empirical condition distribution of the system state vector, and then continuously adjusts the weight 

and position of the particles to correct the initial empirical condition distribution by adjusting the 

information of the particles. When the sample size is large, MC can formulate a distribution that is 

similar to the real posterior probability density function of the state variable. Here, samples are the 

particles that can be understood as estimators.  The PF is applicable to any non-Gaussian and 

nonlinear stochastic system that can be represented by a state space model. [28] 

Thus, the PF enhances the traditional filtering theory framework and has no restrictions on the 

process noise and measurement noise of the system. It can be applied to any nonlinear system and the 

accuracy can approximate the optimal estimation, which is a very effective nonlinear filtering 

technology. With the increasing capability of portable terminals and improvements in algorithm 

optimization, the PF can be widely applied in smart devices. 

4. PaFiR Routing Protocol 

As stated in Section 3.3, the PF algorithm is very appropriate for tracking objects in complex 

scenarios that contain various states of moving objects. This is particularly true when UAVs are 

introduced into the system as intermediate relaying nodes to assist data packet forwarding. Here the 

proposed DTN routing strategy is termed as the Particle Filter Routing (PaFiR) protocol. Another 

strength of the PF algorithm is that the number, m, of particles applied for processing can be adjusted 

to cut down the algorithm’s computational complexity. This is useful as the numerous smart terminals 

attached to the wireless DTN system differ greatly in their available processing resources such as, 

processing capacity, memory size and battery capacity and this is easily accommodated by adjusting 

the number of particles in the PaFiR routing algorithm. 

4.1. Principles of Design 

One of design purposes of the PaFiR routing protocol is to accommodate a hierarchical wireless 

relaying network that consists of the ground layer with one or multiple layers in the air. The applied 

scenario assumes that all intelligent devices deployed on the ground are completely free to move 

within the radio coverage area. The assisted UAVs cruise at a constant altitude dedicated for each 

aerial layer, and their cruising area can cover the ground network radio coverage or the lower aerial 

layer. All of network elements can be either maneuvering objects or non-maneuvering objects. In this 

article, the proposed routing strategy will address the single aerial layer network. 

The air links between ground nodes or between UAVs and ground devices are taken to be bi-

directional connections and the movement of ground portable devices and UAVs is observable when 

they are in the bi-directional radio connection range. 

The PaFiR routing scheme can be a solution for offloading traffic from the conventional traffic 

bearing system voluntarily to balance the network data traffic load or for use as an emergency 

connection with tolerable propagation delays when the traditional mobile communication system is 

not available. 



4.2. PF Inferencing 

As all the network elements in a DTN system are autonomous, the movement states of portable 

devices and different types of UAVs could be extremely diversified, for example stable with zero 

speed and acceleration, steady speed with zero acceleration, small speed change with low acceleration 

(or deceleration) and significant speed change with high acceleration (or deceleration). Thus, in 

addition to maneuvering objects there are thus slow-moving or stationary objects classified as non-

maneuvering. In the mathematical and statistical model, these different states are classified into two 

categories: a non-maneuvering model and a maneuvering model. For wireless systems with complex 

multi-layer relaying networking in smart cities or other applications, there are many network elements 

that are required to have high mobility; this is particularly true as UAVs are deployed into the NoF 

precisely because of their movement flexibility. The strength of the PF lies in its application of the 

SMC method to form particle sets that express probabilities in a way that can be used in any form of 

state space model to achieve online tracking.  

To express the probability distribution, the algorithm extracts posterior probabilities through 

random state particles, which is referred to as the Sequential Importance Sampling (SIS) method. The 

PF algorithm refers to the process of obtaining a state minimum variance distribution by finding a set 

of random samples in the state space to approximate the probability density function instead of the 

integral operation with the sample mean. For example, it is not possible to acquire the exact 

distribution information of moving targets directly, however, the approximation process can be 

operated from a known distribution that is sampled with weight coefficients and each sample particle 

has its own corresponding weight that reflects the importance of the particle. If the weight of a 

particle is significant, it means it is reliable in approaching the true distribution. 

If more samples are given to describe the posterior probability distribution, the algorithm can 

approximate a more complex probability density function, and outcomes will be presented more 

accurately. However, the complexity of the algorithm will become higher in consequence hence 

costing more in terms of individual smart terminal processing capability and other resources to 

process it. 

The design of the routing protocol for decentralized wireless networks must consider various 

embedded resources on different portable devices and minimize impacts on client applications and 

customer experience. It is necessary to estimate the appropriate value for the number of particles 

employed in the routing algorithm based on the various capabilities of the terminals deployed in the 

multi-layer wireless relaying network applications and the scenario in which devices are required to 

work. As an option, the design of the routing protocol may introduce this estimation process as an 

adaptive function, after the air connected nodes exchange information, the protocol self-adjusts the 

number of particles to balance the algorithm complexity and prediction accuracy. The proposed 

protocol routing process is shown in Fig. 3. 



 

Fig. 3.   Flowchart of the protocol routing process. 



5. Routing protocol simulation 

5.1 Introduction 

The current version of the Opportunistic Network Environment (ONE) simulator [29] does not 

support three-dimensional trace data, and there are no three-dimensional object movement trace data 

available for public use. All proposed applications and scenarios were thus mapped into a two-

dimensional model, and the mapping approach of the single-layer network flying platform. If the 

multi-layer network flying platform in the NoF had more than one aerial layer, the UAV flying trace 

of the upper layer was mapped to the lower layer, and then aerial layers were projected onto a two-

dimensional trajectory on the ground. 

The entire simulation process will be presented in two parts. The first was designed evaluate the 

individual performance of the PaFiR message forwarding protocol produced and test it with various 

parameters to simulate different application scenarios. The second, compared the PaFiR relaying 

strategy to some existing routing methods to find the best solution for the multi-layer network flying 

platform in the NoF. 

5.2 Performance Evaluation 

This section presents the evaluation of the performance in terms of resilience and tolerance of the 

proposed PaFiR DTN protocol. The sample dataset was generated by the ONE simulator event 

generator utilized to simulate a complex wireless network condition, and the map data set was the 

downtown area of Helsinki city including road and pedestrian walk paths. The connectivity traces for 

the real time location data of various moving objects in the defined region carrying portable smart 

devices, such as pedestrians, cars and trams, were generated by the ONE simulator. Parameters for the 

simulation configurations were as specified in Table 1. These were chosen to be of the same order as 

the parameters in [30] with the buffer size large enough that it did not impact performance. 

Table 1  
Parameters of Simulation Configurations. 

 

Parameters Value of parameters 

Simulation Time (second) 86400 

Buffer Size (MB) 10, 20, 50, 75, 100, 200, 500 

Packet Lifetime (TTL) (minutes) 60, 120, 180, 240, 300, 360, 420  

Message Interval (second) 3, 5, 10, 20, 30, 60 

Message Size (MB) 0.3-0.5, 0.5-1, 1-2, 2-3, 3-4, 4-5, 5-6, 6-7 

Number of Nodes 126, 306, 606, 786, 906, 1206, 1356, 1506 

 

The message interval simulated the information rate of the sender. The parameters for this 

category tested the circumstances from a low packet generation rate of 1 packet per minute (67 kbps) 

to a high packet generation rate of 20 packets per minute (1.33 Mbps). The number of nodes varied 

the density of the wireless system from a low-density (126 nodes) mobile network to an extremely 

high-density (1506 nodes) system. 



In this part of work, there are four key factors of wireless system that are addressed to evaluate 

the overall performance of proposed mobile routing strategy, which are: Delivery Probability, 

Overhead Ratio, Average Latency and Average number of hops. The variety of simulation parameter 

against different performance metrics are given as follows: 

5.2.1 Node Density 

   

    (a) (b) 

Fig. 4.   (a) Delivery probability; (b) average hop count for different network densities. 

Fig. 4 shows that the delivery probability and average hop count reach an approximately steady 

state when the total node number exceeds 606. The delivery ratio remains above 0.9 with a highest 

point of 0.941 when the node population is 1506. This means that the PaFiR protocol can handle a 

high-density network and keep improving its performance with the increase in the number of nodes. 

At the same time, the average hop count only slightly increases from 3.3 to 3.7, even if the node 

population almost triples. 

   

  (a) (b) 

Fig. 5.   (a) overhead ratio; (b) average latency for different network densities. 

Fig. 5 indicates that the changes of overhead ratio and average latency are almost in step. The 

increase of the overhead ratio slows down when the node density is over 1000. Meanwhile, the 

average delay time drops from 2974 seconds to 819 because more candidate nodes participate into the 

message relaying process and PaFiR can manage to find the better or best intermediate nodes to 

forward data packets. 

 

 



5.2.2 Message Interval 

   

(a) (b) 

Fig. 6.   (a) Delivery probability; (b) average hop count for different message generation intervals. 

Fig. 6 presents that the delivery probability decreases when the message generation rate increases, 

however, the delivery ratio only has 10% drop from 0.91 to 0.81 when the generation interval changes 

from 60 seconds per message to 5 seconds per message. A larger decrease occurs when the message 

interval changes from 5 seconds to 3 seconds but such high message generation rates are rare in DTN 

systems. The constant decrease in average hop count improves the system performance since smaller 

hop counts consume less transmission energy to relay the data packets. 

   

(a) (b) 

Fig. 7.   (a) overhead ratio; (b) average latency for different message generation intervals. 

Fig. 7 reveals that the overhead ratio becomes only a quarter as the data rate increases from 67 

kbps to 1333 kbps. The average latency has a drop after increasing from 1929 seconds to 2851 

seconds and stays at 2263 seconds and 2299 seconds when the message interval is 5 seconds and 3 

seconds respectively. 

The PaFiR routing scheme exhibits a good overall performance, in particular with respect to 

tackling the heavy data traffic between nodes, PaFiR does not show a substantially degraded overall 

result. 

 

 

 



5.2.3 Time To Live 

   

(a) (b) 

Fig. 8.   (a) Delivery probability; (b) average hop count for different TTL in mins. 

In Fig. 8, the diagrams indicate that the delivery probability only fluctuates between 0.81 and 

0.92, and it gets steady after message lifetime is larger than 240 mins. The average hop count drops 

from 2.98 to 2.76 as the TTL increases from 60 mins to 240 mins, then slows down and remains the 

same from 360 mins to 420 mins. 

   

(a) (b) 

Fig. 9.   (a) overhead ratio; (b) average latency for different TTL in mins. 

The changes of the overhead ratio and average latency display the same pattern in Fig. 9. A 

substantial increase happens as message lifetime rises from 60 mins to 240 mins, then there is a 20% 

drop and to a level that remains unchanged for the rest of the parameter changes. 

5.2.4 Message Size 

Fig. 10 shows that increasing the message size affects the delivery probability significantly. The 

delivery probability is acceptable for the majority of DTN services while the data packet size extends 

from 0.3-0.5 MB to 1-2 MB; the delivery ratio decreases from 0.92 to 0.75, however, when the size 

exceeds 2MB, there is a rapid reduction. The ratio is only 0.097 by 6-7 MB that makes most of the 

nodes unreachable as most of messages are dropped during the relaying process. The average hop 

count only has one hop reduced when packets become 20 times larger so is less affected. 



   

(a) (b) 

Fig. 10.   (a) Delivery probability; (b) average hop count for different message sizes. 

   

(a) (b) 

Fig. 11.   (a) overhead ratio; (b) average latency for different message sizes. 

By a ten times expansion of message size from 0.3-0.5 MB to 3-4 MB, the overhead ratio shows 

a more than four times improvement from 203% to 50%, meanwhile, the average time delay grows 

from 1673 seconds to 3733 seconds. 

These test results imply that the PaFiR routing protocol is more appropriate for services that 

generate small messages or applications that encapsulate data in to small packets -it is better to keep 

the size smaller than 1MB. 

5.2.5. Buffer Size 

   

(a) (b) 

Fig. 12.   (a) Delivery probability; (b) average hop count for different buffer sizes. 



Fig. 12 presents that when the capacity of the buffer on smart terminals reaches 50 MB, the 

expansion of buffer size will not help to improve the system performance. For the delivery probability, 

it rises from 0.55 to 0.88 and then remains at 0.89 when the buffer size is bigger than 50 MB. The 

average hop count reduces slightly from 3.33 to 2.91 and stays at the same value when more cache is 

given. 

   

(a) (b) 

Fig. 13.   (a) overhead ratio; (b) average latency for different buffer sizes. 

As can be seen in Fig. 13, the overhead ratio drops by almost a half when the buffer extends its 

size from 10 MB to 75 MB. At the same time, only 18% of extra time delay is added to the entire 

packet forwarding process. 

5.3. Performance Comparison with Other DTN Routing Protocols 

In the last section, the overall performance of the proposed PaFiR DTN routing protocol has been 

tested comprehensively, and the results have indicated that PaFiR can deliver a good overall result in 

complex wireless network conditions. In this section, the simulation process was used to investigate 

how PaFiR performed in comparison to established DTN routing strategies under the same mobile 

system conditions, in particular when the population of portable smart devices expands from a sparse 

network to high dense system. 

Parameters for the simulation configurations in this part are specified in Table 2. 

Table 2  
Parameters of Simulation Configurations. 

 

Parameters Value of parameters 

Simulation Time (second) 18000 

Buffer Size (MB) 15 

Packet Lifetime (TTL) (minutes) 60 

Message Interval (second) 25-35 

Message Size (MB) 0.5-1 

Number of Nodes 126, 156, 186, 306, 606, 906, 1056 

 



The simulation outcomes reveal that the PaFiR routing protocol delivers an excellent 

performance compared with the existing DTN forwarding methods. In Fig. 14, the delivery 

probability of the PaFiR protocol exhibits a constant improvement as the density of the wireless 

network increases, which means that as more mobile subscribers join the network it becomes more 

reliable. For instance, when more than 1000 IoT devices are involved in the network, the delivery 

probability can reach 0.9 which is 40% increased when the population grows by almost one order of 

magnitude. The Epidemic protocol performs well in lower density DTN networks but when the 

number of smart nodes exceeds 186, the delivery rate decays fast. PRoPHET shows good 

performance only when the portable device population is less than 606. After the number of smart 

terminals in the system exceeds 909, the delivery probability starts to drop more quickly. The delivery 

rate of Spray and Wait only fluctuates between 0.55 and 0.69 and most of parts are the worst among 

the tested protocols, and the trend shows that it will have a further decrease when the number of 

portable nodes is over 1000. 

 

Fig. 14.   Delivery Probability vs. Number of Nodes. 

In Fig. 15, the average latency of the different forwarding schemes, except Spray and Wait, 

follows the same downward trend as the number of smart nodes increases but PaFiR has the strongest 

performance as the overall time delay drops much faster than any of the other schemes. When the 

system population is greater than 550, PaFiR presents the smallest of delay by up to 27% over Spray 

and Wait. As the node number grows from 126 to 1056, the average latency is reduced by 40%. Spray 

and Wait performs well only when the device population is small and does not benefit from the 

growth in the number of nodes. 

In Fig. 16, Spray and Wait keeps the overhead ratio at a very low level all the time, meanwhile, 

Epidemic and PRoPHET begin to increase rapidly after number of nodes exceeds 306. PaFiR shows a 

slight increasing trend when the node population is greater than 306, which is 71% to 81% less than 

Epidemic and 54% to 74% less than PRoPHET respectively. 



 

Fig. 15.   Average Latency vs. Number of Nodes. 

 

Fig. 16.   Overhead Ratio vs. Number of Nodes. 

In Fig. 17, Spray and Wait has a very stable average number of hop count, in contrast, Epidemic 

and PRoPHET have a significant growth after the node population exceeds 306. PaFiR keeps an 

almost constant level of average hop count, and only one hop is added when the node population 

grows almost ten times. This means that even in a dense network, the PaFiR protocol can manage the 

number of relaying events as well as in a sparse system without many more intermediate nodes being 

required. 



 

Fig. 17.   Average Hopcount vs. Number of Nodes. 

Although Spray and Wait has the best performance on overhead ratio and average hopcount, the 

poor performance on the more important aspects of delivery probability and average latency indicates 

that Spray and Wait has less ability with respect to resilience, tolerance and scalability. 

All the results show that the PF prediction algorithm assists the protocol in tracking and inferring 

the movement of ground intelligent gadgets and associated UAVs. Hence, the proposed PaFiR routing 

protocol offers an extremely competitive performance with respect to all key assessment metrics when 

the mobile network becomes more complex. 

6. Conclusions and Future Work 

With the flexibility of IoT portable devices and assisted UAVs deployed in mobile IoT Smart 

Cities, and the variety of application and service demands, a routing protocol needs to cope with 

extremely complex scenarios. The characteristics of the PF algorithm endow the PaFiR routing 

protocol with more tolerance, resilience and scalability than other current relaying schemes. It offers 

delivery ratios that are up to 40% better than existing methods and latency gains of up to 27%. Its hop 

count is closer to Spray and Wait but for a much smaller overhead and reduced latency compared to 

PRoPHET. The movement prediction capability of the PaFiR routing protocol potentially enables the 

IoT system to provide more functionalities and applications, such as positioning services, behavior 

analysis and object tracking. 

In future research work, the movement prediction can cooperate with UAV trajectory 

optimization to improve the accuracy of prediction and to optimize the packet relaying path. Also, by 

consideration of the optimization of relaying path, balancing of the data traffic flow to increase the 

overall IoT system performance can be achieved. 
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