

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/125033

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/125033
mailto:wrap@warwick.ac.uk

Using Threat Analysis Techniques to Guide
Formal Verification: A Case Study of

Cooperative Awareness Messages?

Marie Farrell1, Matthew Bradbury2, Michael Fisher1,
Louise A. Dennis1, Clare Dixon1, Hu Yuan2, and Carsten Maple2

1 Department of Computer Science, University of Liverpool, UK
2 Cyber Security Centre, WMG, University of Warwick, UK

Abstract. Autonomous robotic systems such as Connected and Au-
tonomous Vehicle (CAV) systems are both safety- and security-critical,
since a breach in system security may impact safety. Generally, safety
and security concerns for such systems are treated separately during the
development process. In this paper, we consider an algorithm for send-
ing Cooperative Awareness Messages (CAMs) between vehicles in a CAV
system and the use of CAMs in preventing vehicle collisions. We employ
threat analysis techniques that are commonly used in the cyber secu-
rity domain to guide our formal verification. This allows us to focus our
formal methods on those security properties that are particularly impor-
tant and to consider both safety and security in tandem. Our analysis
centres on identifying STRIDE security properties and we illustrate how
these can be formalised, and subsequently verified, using a combination
of formal tools for distinct aspects, namely Promela/SPIN and Dafny.

1 Introduction

Emerging applications of autonomous robotic systems include Connected and
Autonomous Vehicle (CAV) systems where self-driving vehicles communicate
with each other in order to safely travel between different locations. This com-
munication typically occurs over a wireless network that is vulnerable to attacks
and these attacks could potentially impede the safety of the passengers. There-
fore, ensuring that both cyber security and safety issues are properly addressed
during the software development process is crucial for these CAV systems. While
a recent survey on formal verification techniques for autonomous robotic sys-
tems identified a number of challenges for applying formal methods to these
systems [19], cyber security as a distinct challenge for formal methods has often
been overlooked. In particular, identifying which cyber security properties to
verify is often difficult for formal methods practitioners.

? This work is supported by grant EP/R026092 (FAIR-SPACE Hub) through UKRI
under the Industry Strategic Challenge Fund (ISCF) for Robotics and AI Hubs in
Extreme and Hazardous Environments.

In this paper, we present a simple case study that employs (informal) threat
analysis techniques from the cyber security domain to guide our verification ef-
fort of the Cooperative Awareness Message (CAM) protocol, used in vehicle-to-
vehicle communications [26]. CAMs are heartbeat messages that are periodically
broadcast by each vehicle to its neighbours to provide basic vehicle status infor-
mation including position, velocity, acceleration, heading, etc. [26]. Since these
vehicles communicate over an unsecured network, ensuring that CAMs are se-
cure is crucial as we move toward driverless cars. This is also relevant in other
areas where autonomous vehicles communicate with each other, such as a group
of vehicles in orbit or rovers mapping an unknown and hazardous environment.

To this end, we contribute a basic methodology for security-minded formal
verification and a case study demonstrating our approach using existing formal
methods and STRIDE threat analysis. The threat analysis will identify threats
that fall into specific aspects of the six categories specified by STRIDE. Since
CAMs are for use in CAV systems, which are inherently cyber-physical, we see
this case study as an experiment on how to combine threat analysis and formal
verification and our approach could be used in the development of other cyber-
physical systems.

This paper is structured as follows. In the remainder of Section 1 we outline
our basic methodology for security-guided formal verification. Then, Section 2
describes the relevant background material and related work. In Section 3, we
present our threat analysis of the CAM protocol using the STRIDE classification.
In Section 4, we present our results of analysing how a spoofing attack can impact
the safety of a simple, three vehicle CAV system by devising an abstract system
model in Promela and using the SPIN model-checker for verification. Section 5
presents a Dafny implementation of the CAM protocol and illustrates how we
can verify properties related to Denial of Service and Repudiation. Finally, we
conclude and outline future work in Section 6.

1.1 Methodology

In order to enhance the software engineering process and encourage collabora-
tion between cyber security and formal methods practitioners we followed the
high-level methodology outlined in Fig. 1. We started by analysing the available
documentation that informally describes the CAM messaging protocol [1]. Then
we independently carried out threat analysis and construction of formal models
of the CAM protocol.

In particular, we constructed two formal models of the protocol. The first
is a high-level system model that is written in Promela and verified using the
SPIN model-checker which we use to investigate a spoofing attack. The second
is an algorithm-level model of the CAM protocol, written in Dafny, which we use
to analyse properties related to denial of service and non-repudiation. Finally,
we defined formal properties, based on the threat analysis that was carried out,
that we then encoded and verified with respect to our formal models of the CAM
protocol.

2

Analyse the Doc-
umentation [1]

Threat Modelling
of CAM protocol

Build formal model(s)
of CAM protocol

Formalisation and
Verification of

Potential Threats

Fig. 1: Our high-level methodology for security-guided formal verification of the
CAM protocol involved independently carrying out threat analysis and formal
modelling based on the available documentation. Then we used the identified
threats to guide our formal verification effort.

In the event that errors or discrepancies were found in either the threat anal-
ysis or formal verification, we returned to the documentation for clarification.
This is indicated by the arrows in Fig. 1 and allowed us to discern whether the
errors were in our modelling of the protocol and/or if the correct level of abstrac-
tion was captured by our formal models. By following this methodology we were
able to foster cooperation and combine expertise from both the cyber security
and formal methods domains. This kind of collaboration can be easily integrated
into the development process and can potentially save time since formal veri-
fication and security analysis can be combined and used in a complementary
fashion.

In practice, the system might be modified as mechanisms are put in place to
prevent attacks that were exposed by threat analysis. When this occurs, devel-
opers should revise and reverify their models in light of this new behaviour.

2 Background and Related Work

In this section, we present the relevant background material under three distinct
headings. First, we describe the threat analysis techniques that we have used,
then we discuss formal verification and introduce the tools and techniques that
we use throughout the remainder of this paper. We also provide concrete details
about Cooperative Awareness Messages (CAMs) as contained in the standard
documentation [1]. Finally, we briefly describe related work in this area.

Threat Analysis: When engineering security-critical systems, developers often
employ threat analysis techniques to help to identify security vulnerabilities
so that targeted mitigations can be put in place. One such technique is the
STRIDE [15] classification. In fact, there are many other techniques for threat

3

modelling, and our approach works equally well with any of them (e.g. CIA
which stands for Confidentiality, Integrity and Availability [31]), but for ease of
explanation, we adopt STRIDE. This includes: (i) Spoofing - attacker pretends
to be another system entity, (ii) Tampering - attacker manipulates data mali-
ciously, (iii) Repudiation - attacker can deny sending a message that it sent, (iv)
Information Disclosure - attacker can cause the system to reveal information
to those it is not intended for, (v) Denial of Service - attacker can prevent the
system from functioning, and (vi) Escalation of Privilege - attacker can perform
more actions than allowed. Analysing a system in light of STRIDE threats helps
developers to secure the system by identifying vulnerable areas so that miti-
gations can be included. The identified threats will also have their impact and
likelihood assessed in order to calculate the risk of each threat [24], allowing the
prioritisation of developing mitigations for threats with a higher risk.

Formal Verification: In order to assure the correctness of a software system,
formal methods provide an array of mathematically-based tools and techniques
for proving properties about a system. Formal methods are predominantly used
in safety-critical systems where a software failure can potentially cause harm.
In this paper, we employ two distinct formal methods; Promela/SPIN [10] and
Dafny [17] to verify properties about the CAM protocol. In each case, we model
the CAM protocol at a different abstraction level; Promela for system-level mod-
elling and Dafny for algorithm-level verification. Since these systems are typically
very complex, the use of multiple formal methods is necessary [8], and cyber se-
curity threat analysis techniques help us to highlight the most relevant security
properties.

Promela is a general purpose programming language, particularly developed
for protocol verification, while the patterns of temporal behaviour that can be
verified can be complex and varied [9]. SPIN is a model-checker that automat-
ically checks temporal properties over system models encoded in the Promela
programming language [9, 10]. Essentially, SPIN explores all possible runs of
Promela input models and assesses these against an automaton capturing tem-
poral behaviour that should never occur. If all runs have been explored without
finding a violation of the temporal properties then the model is valid. If a viola-
tion is found, it is returned as a counter-example3.

Dafny is a programming language that facilitates the use of specification
constructs that allow the user to specify pre- and post-conditions as well as
loop invariants and variants [17]. Dafny is used in the static verification of the
functional correctness of programs. Dafny programs are translated into the Boo-
gie intermediate verification language [3] and then the Z3 automated theorem
prover discharges the associated proof obligations [7]. We chose Dafny for this
case study because of its similarity to other programming languages making it
easy to communicate the verified solution to security engineers that are unfa-
miliar with formal methods4.

3 We used version 6.4.6 of SPIN.
4 We used version 2.2.0 of Dafny.

4

Cooperative Awareness Messages (CAMs): As outlined briefly in Section 1, CAM
are heartbeat messages that are sent between vehicles in a CAV system. The
CAM standard documentation is contained in [1] and we briefly summarise this
here in order to give the reader an understanding of the nature of the CAM
protocol. In autonomous vehicles, the CA Basic Service is a facilities layer that
is responsible for operating the CAM protocol which is composed of two services:
(1) the sending of CAMs, including their generation and transmission, and, (2)
the receiving of CAMs and the modification of the receiving vehicle’s state in
light of the received messages. The CA Basic Service is in control of how fre-
quently CAMs are sent and it interfaces to a number of other services, such as
the SF-SAP which provides a number of basic security services (including digital
signatures and certificates) for CAM [1, §5.1].

CAMs are sent in plain text as they are intended for all vehicles within range
of the sender. This also means that time expensive encryption and decryption is
not required. However, to ensure the authenticity of the sender (that a message
sent from vehicle v actually came from vehicle v), digital signatures are used
as they allow a receiver to use the contents of the message, the signature and
the public key of the sender to verify its origin. Note that in this paper we are
primarily concerned with the protocol for sending and receiving CAMs and the
threats that can be identified at this level rather than detailed cryptographic
protocols and digital signing.

Once CAMs are received by surrounding vehicles, the receivers can modify
their own state based on the received messages. In particular, if a vehicle receives
a message from one proceeding it which indicates that the leading vehicle is
slowing down, then the vehicle that received this CAM should also slow down
in order to avoid collision.

Related Work: iUML-B and refinement in Event-B have been used to analyse
a known security flaw called double tagging in a network protocol [30]. Other
related work includes the use of the Tamarin prover to formally analyse and
identify one known functional correctness flaw and one unknown authentication
flaw for a revocation protocol [33]. Here, the revocation is of malicious or mis-
behaving vehicles from a vehicular networking system. Our work differs to these
in that we use threat analysis to guide our verification rather than use formal
methods to identify previously known bugs.

Vanspauwen and Jacobs have devised an approach to the static verification
of cryptographic protocol implementations using their symbolic model of cryp-
tography formalised in VeriFast [32]. They attach contracts to the primitives in
an existing cryptography library. Their focus is on the verification of crypto-
graphic protocols whereas we focus on using cyber security techniques to guide
verification rather than verifying cryptographic protocol implementations.

Huang and Kang [11] use a probabilistic extension of the Clock constraint
specification language (Ccsl) to analyse safety and security properties related to
timing constraints for a cooperative automotive system. They specified a num-
ber of safety constraints as well as a number of security constraints including
spoofing, secrecy, tampering and availability. Their work facilitates the verifica-

5

tion, using the Uppaal model-checker, of safety and security properties related
to timing constraints. It does not, however, integrate results from a security
engineering perspective in order to define these properties and only focuses on
those properties related to timing.

Other related work includes the use of the CSP process algebra for protocol
verification [27–29]. Their focus is on authentication [28] and non-repudiation
protocols [27]. Their approach involves specifying the relevant protocol, agents
and environment in CSP [29]. Notably, they remark that, by modelling the proto-
col in CSP, they could provide a formal and verified specification of the protocol
which allowed them to clarify the, usually, informal protocol description.

Kamali et al. [14] have used formal verification of an autonomous vehicle
platooning system to demonstrate the use of different formal techniques for dis-
tinct system subcomponents. In this case, autonomous decision-making, real-
time properties and spatial aspects. Our approach, presented in this paper uses
different formal methods to verify distinct security-related properties of the CAM
protocol at different levels of abstraction.

3 Threat Analysis of CAM

In this section, we describe our threat analysis of the CAM protocol. Threat
analysis is important for ensuring the security of a system since it is used to
identify all of the potential threats to the system. There are a variety of different
threat modelling methods including STRIDE, SAHARA, HARA, TARA and
others that are suggested in multiple industry standards (i.e. ISO26262, SAE
J3061). In this paper, we use the STRIDE classification outlined earlier [15].

3.1 Specialising STRIDE for CAM

CAMs (formatted using ASN.1 as specified in [1, Annex A]) are a vital aspect of a
safe CAV system, as they are used by each vehicle to inform surrounding vehicles
of their current status. Each vehicle needs to trust that the values contained
within a CAM are timely and accurate. If this is not the case then autonomous
vehicles could make incorrect and even unsafe decisions. Note that we focus here
on CAMs generated by On-Board Units (OBU) in vehicles rather than Road
Side Units (RSU) as the OBU algorithm for CAM generation is more complex
and thus more interesting from a formal methods perspective. In terms of the
CAM protocol, we specialise the STRIDE threats:

Spoofing: attacker sends messages masquerading as another vehicle.
Tampering: attacker tampers with a message sent by another vehicle.
Repudiation: a vehicle can deny sending a message that it has actually sent.
Information Disclosure: vehicles only receive messages intended for them.
Denial of Service: messages are not sent within a reasonable time frame.
Escalation of Privilege: attacker can send more CAMs than permitted.

6

Message Type Message Element Requirement Attack Surfaces Threats

Vehicle
information [20]

Vehicle Type

Originating Station
(RSU), Vehicle length,
Vehicle width

Data system,
Planning system,
Wireless Comms S, I, D

Position Reference position
Lane Position Current Lane Position Sensing: Lidar,

Radar, Camera,
Ultrasonic

Positioning system:
GPS, A-GPS

Wireless Comms

S, T, R, I, D

Speed Vehicle velocity

Acceleration Longitudinal,
Lateral, Vertical

Heading Heading
Driving model Acceleration control

GPS
Preceding vehicle GPS,
Following vehicle GPS

Traffic
notification [1]

Warning Emergency vehicle,
crash, collision.

Controlling centre
Infrastructures,
Wireless Comms

D, E

Indication Speed limits,
traffic light

Table 1: This table contains our threat analysis of the CAM protocol. Here,
‘Requirement’ corresponds to the information that the vehicle must sense about
itself in order to know the value of the corresponding ‘Message Element’ on the
left. Furthermore, the ‘Threats’ correspond to those identified using STRIDE.

The threat modelling contained in Table 1 was carried out by examining
each piece of information that could be sent via CAMs and considering which
STRIDE threats an attacker might exploit. The information contained in Table
1 is based on the C-ITS standard messages elements, a summary of threats [5,
6, 12,18,22,25]. We summarise the information contained in Table 1 as follows.

For CAM, there are two distinct kinds of ‘Message Type’. In particular, ‘Vehi-
cle information’ CAMs include the vehicle type and its state information (speed,
position, GPS, etc.). Conversely, ‘Traffic notification’ CAMs provide emergency
warnings and traffic indications. For each kind of CAM, ‘Message Element’ in-
dicates the specific components that are included in the messages. For each
message element, its corresponding ‘Requirement’ refers to the information that
the vehicle must sense/have access to in order to populate the corresponding
message element field. In cyber security, an ‘Attack Surface’ is the region of the
system that an adversary can exploit to attack the system. Finally, the possible
‘Threats’ for CAM are modelled based on STRIDE.

For example, in order to include GPS information we require the GPS infor-
mation of both the leader and following vehicles. Here, the attack surface is the
positioning system (GPS/A-GPS) and possible threats are Repudiation [25] or
Spoofing [5].

The threat analysis contained in Table 1 has identified potential points of
attack and we consider them in more detail in the next subsection. Note that,
in the remainder of this paper, we focus on ‘Vehicle information’ CAMs but we
have included ‘Traffic notification’ messages in Table 1 for illustrative purposes.
These Decentralised Environment Notification Messages (DENM) are generated
using a different protocol which we are not focusing on in this work.

7

3.2 Considering the Threats

We have identified a number of threats in Table 1 and, as part of the threat
analysis process, we examine them in more detail here which allows us to identify
which are the most likely to occur/cause the most damage.

In Table 1, we have identified Tampering as a threat for some of the state
information contained in CAMs. However, in practice, Tampering is prevented
via digital signatures and certificates, the verification of which is beyond the
scope of this paper but details can be found in [16]. In particular, the CA Basic
Service, which is responsible for operating the CAM protocol, interfaces with
the SF-SAP security entity as described in [1, §5.1 & §6.2.2] which provides
access to security services for CAM such as digital signing and certificates. Here,
certificates are used to indicate the holder’s privileges for sending CAMs. In
this way, incoming CAMs are accepted if the sender’s certificate is valid and is
consistent with their privileges.

As CAMs are intended for all who receive them, we do not analyse Infor-
mation Disclosure properties. Escalation of Privilege attacks could enable an
attacker to send more messages than allowed, but in general all vehicles have
the same level of authority so we do not consider this attack here.

Based on our analysis, we conclude that Spoofing, Denial of Service and
Repudiation threats are the most relevant/important threats pertaining to this
case study. To our knowledge, no formal, mathematical definition of the STRIDE
properties exists since they are to be specialised for a given system. However, if
we wish to include these in our formal verification of CAM then we must more
closely consider those properties that we are interested in (Spoofing, Denial of
Service and Repudiation). We explore these in more detail as follows:

Spoofing: an attacker pretends to be another vehicle and sends false informa-
tion about that vehicle (e.g. speed) in CAMs. This could potentially cause
vehicles to collide and we analyse this using Promela/SPIN in Section 4 by
modelling an attacker of the system.

Denial of Service: a compromised vehicle does not send CAMs within a rea-
sonable amount of time. If a vehicle sends too many CAMs then the network
becomes overloaded. Conversely, if a vehicle does not send CAMs frequently
enough then the most recent CAMs sent may be deemed out of date and
thus ignored. In particular, a replay attack could occur where an attacker or
a compromised vehicle resends CAMs that have already been sent causing
a network overload. If suitable measures are not put in place to ensure that
the time that the message was sent was not too far in the past then vehicles
may react to an out of date message. We address this using Dafny in Section
5 by verifying an availability property of the algorithm for sending CAMs.

Repudiation: we can reduce the possibility of a vehicle denying that it has sent
a CAM by requiring that CAMs are stored in a sequence and not providing
functionality to remove CAMs from this sequence. Another repudiation re-
lated attack could result in an attacker or compromised vehicle claiming to
have sent a CAM when in fact it has not sent one. In this case, vehicles could

8

potentially forward CAMs to other vehicles. This is a particular condition
that is prohibited in the documentation [1] and our Dafny implementation
of the algorithm for receiving CAMs in Section 5 considers this.

These are the threats that, based on our threat analysis, we consider to be
the most relevant/likely with respect to the CAM protocol and we use these to
guide our formal verification effort5.

4 Model-Checking with Promela/SPIN

In this case study, it is easy to see that safety and security are inextricably
linked. For CAV systems, the most important safety property to consider is that
collisions should be avoided at all costs. Therefore, an attacker of the system who
is attempting to cause harm will likely target security vulnerabilities that have
the potential to violate this safety property. A key aspect of the threat analysis
process is the identification of a suitable attacker. To this end, we recognise
that there may be malicious vehicles on the road that are attempting to cause
vehicles to collide, perhaps a disgruntled taxi driver who is unemployed due
to the adoption of autonomous vehicles. Such a collision could be caused by
spoofing the CAMs sent between vehicles. Our analysis of spoofing and how it
can impact the safety of the CAV system is captured here in a SPIN analysis of
a simplified scenario involving CAMs between vehicles in a platoon/convoy.

4.1 Basic Scenario: Safety

We investigated message passing between multiple vehicles by applying SPIN to
an abstracted Promela model for sending and receiving CAMs. Fig. 2 contains
three vehicles travelling in a platoon/convoy: one leader; one middle; and one
tail vehicle. The leader and tail send CAMs to the middle vehicle, and it follows
a simple protocol.

– If no CAMs are received then it continues unchanged.
– If it receives exactly one CAM then sets its own speed to half the speed in

the CAM.6

– If it receives two CAMs then it sets its own speed to be the average of the
two speeds (rounded down).

We used the following default conditions to analyse this Promela model with
SPIN: (1) the leader chooses a random discrete speed 10, 20, 30, 40, 50, 60 or
70 at each time step,(2) the tail similarly chooses a random discrete speed at
each time step, and (3) we ran the system for 100 time steps with a round-robin
interleaving concurrency between vehicles.

The simple safety property that we verified is that the speed of the middle
vehicle is never much different to the speed of the leader or of the tail, for more

5 Artefacts available at: https://github.com/mariefarrell/CAMVerification.git
6 This only occurs at initialisation when the speed of the other vehicle is 0.

9

https://github.com/mariefarrell/CAMVerification.git

Leader Vehicle Middle Vehicle Tail Vehicle

Attacker Vehicle

Fig. 2: Our three vehicle model where CAMs are sent from the leader and tail
vehicles to the middle vehicle. The attacker executes a Spoofing attack.

than one step. Here, much different means a difference of more than ‘51’ in
speed. We formalise: it is always the case that, if the speed of the middle vehicle
is much different then it will not be in the next state. We write this in temporal
logic as:

�(big speed difference ⇒©¬big speed difference)

where ‘�’ and ‘©’ are LTL’s [23] “always” and “in the next state”operators,
respectively. Although we have only written © here for ease of presentation, in
the actual implementation the property is that the difference has been corrected
after twelve next steps – this is because SPIN treats next as the next instruction
execution, which includes print states used for understandability and debugging
purposes not as the next tick of the internal clock. In SPIN, we negate this
property and so the “never claim” (or safety property [4]) that we implement is

♦(big speed difference ∧©big speed difference)

where ‘♦’ is LTL’s [23] “eventually” operator. Here, big speed difference is true
when any of the following inequalities hold

– middle vehicle speed > (leader vehicle speed + 51)
– middle vehicle speed < (leader vehicle speed - 51)
– middle vehicle speed > (tail vehicle speed + 51)
– middle vehicle speed < (tail vehicle speed - 51)

We have successfully verified that this safety property holds of our model
using the SPIN model-checker. Next, we use this model to investigate how a
Spoofing attack could lead to an unsafe scenario for the vehicle platoon.

4.2 Investigating Spoofing

Inspired by the threat analysis contained in Table 1, we have modelled a Spoofing
attack in Promela for the above scenario. In order to analyse this kind of threat,
we add a process to our Promela model to describe an attacker of the system.
The behaviour of this attacker (as illustrated in Fig. 2 and Fig. 3) is as follows:

– At one point in the execution trace the attacker may insert two speed mes-
sages into the channel between the leader and middle vehicle stating that
the leader’s speed is 10, 20, 30, . . . or 70 (lines 6–10 of Fig. 3).

10

0 proctype attacker(chan l_in , t_in){ /* attacker */
1 printf("attacker : starting\n");
2 bool head = 0;
3 bool tl = 0;
4 A: (clock > 10); /* wait until under way */
5 if
6 : : (head = 0) -> printf("attacker : inserting vspeed of 10\n");
7 l_in!10; l_in!10; head = 1; goto A;
8 . . .
9 : : (head = 0) -> printf("attacker : inserting vspeed of 70\n");

10 l_in!70; l_in!70; head = 1; goto A;
11 : : (tl = 0) -> printf("attacker : inserting tspeed of 10\n");
12 t_in!10; t_in!10; tl = 1; goto A;
13 . . .
14 : : (tl = 0) -> printf("attacker : inserting tspeed of 70\n");
15 t_in!70; t_in!70; tl = 1; goto A;
16 : : (clock ≤ 100) -> goto A;
17 : : (clock > 100) -> goto FIN;
18 fi;
19 FIN : printf("attacker : finishing\n")
20 }

Fig. 3: Promela model of the attacker.

– At one point in the execution trace the attacker may insert two speed mes-
sages into the channel between the tail and the middle vehicle stating that
the leader’s speed is 10, 20, 30, . . . or 70 (lines 11–15 of Fig. 3).

We note that in each of the above cases, both the speed, whether to insert a
message and the time that the message is inserted are chosen at random. Running
SPIN with this attacker model and the initial model described above, we can see
that our �(big speed difference ⇒ ©¬big speed difference) property has been
violated. It is important to note that this is a deliberately simple example but
scales up to more complex versions of such Spoofing attacks.

4.3 Discussion

In Section 3, cyber security threat analysis focused the whole vehicle security
area to scenarios, such as the one illustrated in Fig. 2, that were identified as high
risk. In particular, this threat that was identified following STRIDE and anal-
ysed using Promela/SPIN could potentially lead to an unsafe scenario causing
vehicles to collide. Note that whilst the above example deals with modelling and
verification of aspects of a platoon/convoy, where a group of vehicles drive to-
gether with a leader, this could be generalised to messages between autonomous
vehicles driving without a platoon.

The evidence that we have collected above illustrates how a spoofing attack
on this system can negatively impact its safe operation. We have focused on
speed, but using model-checking, we can explore whether spoofing of other at-
tributes, as identified in Table 1, can impact safety. These results can help to
strengthen the argument as to why mitigations should be put in place against
specific threats. Our simple attacker model has allowed us to identify that a

11

spoofing attack is indeed possible for this scenario. In practice, mitigations would
be put in place against this kind of attack. Then, our simple model would be
refined to add these mitigations and would then undergo further verification.

In particular, those implementing the CAM protocol should consider the
possibility that malicious vehicles may join the platoon with the sole aim of
causing collisions. Based on our formal Promela model, runtime monitors could
be synthesised to monitor the CAMs being sent between vehicles so that this
spoofing attack could be recognised and prevent it from causing harm.

Our Promela model that describes an attacker and three vehicles is only one
scenario that could occur, particularly as there may be many more vehicles in a
real world scenario. To our knowledge, there is no systematic way of identifying
all possible models of the system that include a spoofing attack. However, we can
systematically work through the attributes that have been identified in Table 1 as
likely to be vulnerable to spoofing to examine how spoofing attacks can influence
safe system behaviour.

5 Deductive Verification with Dafny

In this section, we construct and verify a CAM send and receive implementation
using Dafny. Our Dafny implementation of CAM contains two basic methods;
sendCAM (Fig. 4) and receiveCAM (Fig. 5). We have formalised the specification
of CAM using the available documentation [1, §6.1.3] and followed its nomencla-
ture. As is to be expected when following the associated documentation, quite
some time was taken when constructing the formal specification from the infor-
mal, English-language description of the CAM protocol contained in [1].

Our verification of sendCAM and receiveCAM in Dafny focuses on the Denial
of Service and Repudiation security threats, this time at the algorithmic level. In
our implementation we have simplified the structure of CAMs from the ASN.1
encoding to focus on the semantic contents of the message as follows:

CAM(id:int, time:int, heading:int, speed:int, position:int)

Here, id refers to the vehicle that is sending the CAM and time is the timestamp
at which the CAM was sent. These attributes are required by the documentation
[1]. As mentioned earlier, CAMs are sent periodically, or when any of the status
information (e.g. speed) contained in the message has changed since the last
message was sent.

5.1 Sending CAMs

Fig. 4 contains the verified Dafny code corresponding to the sendCAM algorithm
which is responsible for generation and transmission of CAMs. We describe the
key components of the Dafny algorithm in Fig. 4 as follows:

Lines 0–3: Since CAMs should be sent periodically within time bounds spec-
ified by the CA Basic Service, this method takes two variables as input.
T CheckCamGen describes how often to check if another CAM should be sent

12

0 method sendCAM(T_CheckCamGen : int , T_GenCam_DCC : int)
1 returns (msgs : seq <CAM >, now : int)
2 requires 0 < T_CheckCamGen ≤ T_GenCamMin;
3 requires T_GenCamMin ≤ T_GenCam_DCC ≤ T_GenCamMax;
4 ensures T_GenCam_DCC * |msgs| ≤ now ≤ T_GenCamMax * |msgs|;
5 ensures |msgs| ≥ 2 =⇒ ∀ i: int • 1 ≤ i < |msgs| =⇒
6 T_GenCam_DCC ≤ (msgs[i].time - msgs[i-1]. time) ≤ T_GenCamMax;
7 ensures |msgs| = MaxMsgs;
8 {
9 var T_GenCam , T_GenCamNext , j := T_GenCamMax , T_GenCamMax , GetId();

10 var N_GenCam , trigger_two_count := N_GenCamDefault , 0;
11 msgs , now := [], 0;
12 var LastBroadcast , PrevLastBroadcast ,prevsent := now , now , msgs;
13 var heading , speed , pos := GetHeading (), GetSpeed (), GetPosition ();
14 var prevheading , prevspeed , prevpos , statechanged := -1, -1, -1, false;
15

16 while (|msgs| < MaxMsgs)
17 decreases MaxMsgs - |msgs|;
18 invariant 0 ≤ |msgs| ≤ MaxMsgs ∧ 0 < N_GenCam ≤ N_GenCamMax;
19 invariant T_GenCamMin ≤ T_GenCamNext ≤ T_GenCamMax;
20 invariant T_GenCamMin ≤ T_GenCam ≤ T_GenCamMax;
21 invariant 0 ≤ PrevLastBroadcast ≤ now ∧ now = LastBroadcast;
22 invariant now - T_GenCamMax ≤ PrevLastBroadcast ≤ LastBroadcast;
23 invariant |msgs| ≥ 1 =⇒ msgs[|msgs |-1]. time = LastBroadcast;
24 invariant |msgs| ≥ 2 =⇒ msgs[|msgs |-2]. time = PrevLastBroadcast;
25 invariant now > 0 =⇒ T_GenCam_DCC ≤ LastBroadcast - PrevLastBroadcast ≤

T_GenCamMax;
26 invariant now > 0 =⇒ CAM(j,now ,heading ,speed ,pos) in msgs;
27 invariant now > 0 =⇒ |prevsent| + 1 = |msgs|;
28 invariant |msgs| ≥ 2 =⇒ ∀ i: int • 1 ≤ i < |msgs| =⇒
29 T_GenCam_DCC ≤ (msgs[i].time - msgs[i-1]. time) ≤ T_GenCamMax;
30 invariant T_GenCamMin * |msgs| ≤ T_GenCam_DCC * |msgs| ≤ now;
31 invariant now > 0 =⇒ now ≤ T_GenCamMax * |msgs|;
32 {
33 prevsent , PrevLastBroadcast := msgs , LastBroadcast;
34 T_GenCam , statechanged := T_GenCamNext , false;
35 now := now + T_GenCam_DCC;
36

37 while (true)
38 decreases LastBroadcast + T_GenCam - now;
39 invariant now - LastBroadcast ≤ max(T_GenCam_DCC , T_GenCam);
40 {
41 heading , speed , pos := GetHeading (), GetSpeed (), GetPosition ();
42 statechanged := abs(heading - prevheading) ≥ headingthreshold ∨
43 abs(speed - prevspeed) ≥ speedthreshold ∨
44 abs(pos - prevpos) ≥ posthreshold.Floor;
45

46 if (statechanged ∨ now - LastBroadcast ≥ T_GenCam) { break; }
47 else { now := now + T_CheckCamGen; }
48 }
49 msgs := msgs + [CAM(j,now ,heading ,speed ,pos)];
50

51 if (statechanged) {
52 T_GenCamNext , trigger_two_count := now - LastBroadcast , 0;
53 }
54 else if (now - LastBroadcast ≥ T_GenCam){
55 trigger_two_count := trigger_two_count + 1;
56 if (trigger_two_count = N_GenCam) { T_GenCamNext := T_GenCamMax; }
57 }
58 LastBroadcast := now;
59 prevheading , prevspeed , prevpos := heading , speed , pos;
60 }
61 return msgs , now;
62 }

Fig. 4: Dafny implementation of the sendCAM algorithm. We have specified the
Denial of Service property as a postcondition on lines 4–5.

13

and T GenCam DCC which describes the minimum time interval between two
consecutive CAM generations. It returns a sequence of CAMs that have been
sent, denoted by msgs, and the current time given by the variable, now. The
preconditions, indicated by the requires keyword on lines 2 and 3, provide
constraints on these variables. In particular, T GenCam DCC is required to be
between T GenCamMin (100ms) and T GenCamMax (1000ms) [1, §6.1.3].

Lines 4–7: The postconditions on lines 4–7, indicated by the ensures keyword,
specify that the expected number of CAMs have been sent and that these
messages were sent within the required time bounds. This corresponds to
the Denial of Service threat by ensuring that messages are sent on time and
arrive within specified time bounds. In particular, line 4 provides constraints
on the value of the current time. This is necessary because Dafny does not
support real-time systems so we had to manually keep track of time. The
postcondition on line 5 specifies that the interval between any two consecu-
tive CAMs is between T GenCam DCC and T GenCamMax as described in [1]. For
the purpose of discretising the system, the postcondition on line 7 ensures
that the maximum number (MaxMsgs := 100) of CAMs are sent7.

Lines 8–14: Here, we initialise the relevant local variables. In particular, we set
msgs to the empty sequence and now to 0 (line 11). Some of these variables
are specified in the CAM documentation but others are not and we include
them for implementation purposes. In particular, T GenCam as defined on
line 9 represents the current upper limit of the CAM generation interval,
by default this is equal to T GenCam Max [1, §6.1.3]. We also assume the
existence of verified helper functions for GetHeading(), GetSpeed() and
GetPosition() as used on line 13.

Lines 16–17: The method loops until MaxMsgs number of CAMs have been
sent. In order to prove termination of the loop, we specify the loop variant
as indicated by the decreases keyword on line 17.

Lines 18–25: We specify these loop invariants to ensure that the relevant vari-
ables stay within the allowable bounds during loop execution. In particular,
the invariant on line 18 relates to the postcondition on line 7 by specifying
that the number of CAMs sent so far is less than or equal to MaxMsgs.

Lines 26–27 These invariants ensure that once time has begun then at least
one CAM has been sent.

Lines 28–31: These invariants relate to the postcondition on lines 4–6 and thus
relate to the availability property described earlier.

Lines 32–36: During each loop iteration we update the appropriate variables.
Note that we increment the current time, now, by T GenCam DCC to allow
time to advance until the earliest time that the next CAM can be sent.

Lines 37–50: This inner loop checks if any state information has changed
and updates the statechanged variable accordingly. Note that the vari-
ables headingthreshold, speedthreshold and posthreshold are global
and their values are controlled by the CA Basic Service [1] as described in
Section 2. If the autonomous vehicle’s state has changed or it is time to send

7 We chose 100 as a value but we could easily have chosen some other value.

14

0 method receiveCAM(fromid : int , cams : seq <CAM >, now : int) returns (brake : bool)
1 requires 0 ≤ fromid < |cams|;
2 requires fromid = cams[fromid].id;
3 ensures !(now - cams[fromid].time > T_GenCamMax)
4 ∧ Sign(Magnitude(cams[fromid]. heading)) = Sign(Magnitude(GetHeading

(now)))
5 ∧ GetSpeed(now) - cams[fromid].speed < 0 =⇒ brake;
6 ensures now - cams[fromid].time > T_GenCamMax =⇒ !brake;
7 {
8 var speeddiff := 0;
9

10 if (now - cams[fromid].time > T_GenCamMax){
11 brake := false;
12 }
13 else if(Sign(Magnitude(cams[fromid]. heading)) = Sign(Magnitude(GetHeading

(now))))
14 {
15 speeddiff := GetSpeed(now) - cams[fromid].speed;
16

17 if (speeddiff < 0){
18 brake :=true;
19 }
20 }
21 }

Fig. 5: Dafny implementation of the receiveCAM algorithm.

another CAM then we break from this inner loop. Otherwise, nothing has
changed so we keep looping to allow time to advance until either the state
has changed or sufficient time has passed since the last CAM was sent. Once
we have exited this inner loop then a CAM is sent.

Lines 51–57: Based on the reason that the CAM was sent, i.e. whether the
state changed or it was simply time to send a CAM, this if-else statement
updates the relevant variables as described in [1, §6.1.3].

Lines 58–62: Finally, we update and return the appropriate variables.

In this way, the Dafny algorithm illustrated in Fig. 4 is verified with respect
to the STRIDE Denial of Service threat (or Availability property). We also
verified other correctness properties that were derived from the documentation
[1]. As mentioned above, it was necessary to discretise some components of the
specification. In fact, discretising the continuous features of autonomous systems
is a common challenge for formal methods [19]. As already discussed, the CA
Basic Service also facilitates the receiving of CAMs and we describe our Dafny
implementation of the receive method in the next subsection.

5.2 Receiving CAMs

Fig. 5 contains our Dafny implementation of the receiveCAM algorithm which
takes as input the id of the vehicle sending the CAM (fromid), the sequence of
CAMs that have been sent (cams) and the current time (now).

We have used this to verify a simple Non-Repudiation property as specified
by the preconditions on lines 1–2. We assume that CAMs are uploaded to a se-
quence that can then be accessed by the other vehicles nearby. The latest CAM

15

for each car is stored at a position in the sequence that matches its vehicle id
number. We express the non-repudiation property by requiring that the received
CAM did indeed come from a vehicle with a valid id and that the vehicle claim-
ing to have sent the CAM did actually send one. §6.1.1 of [1] specifies that any
received CAMs should not be forwarded to other vehicles in the intelligent trans-
port system and our preconditions capture this by requiring that the sender did
actually send a CAM.

Of course, CAMs are used by the receiving vehicles to modify their state
with respect to the information that they receive. For example, if a leader vehicle
decreases their speed then a vehicle that is travelling behind it should also reduce
their speed, provided that they are travelling in the same direction. To this
end, our receiveCAM implementation in Fig. 5 also describes when the vehicle
should brake. We specify this safety property as a postcondition on lines 3–6. In
particular, if the current vehicle and the one that sent the CAM are travelling
in the same direction and the current vehicle has a greater speed than the one
in front, then the brake should be engaged.

Without the security property on line 1–2, the safety property can still be
verified. However, if the security property is violated and an attacker is sending a
false message to the receiving vehicle, potentially that the leader has not slowed
down when they have, then there could be a collision even though the safety
property on lines 3–6 is preserved. This illustrates the importance of considering
security properties alongside safety for these complex and connected systems
where security violations can impact safety. In reality, the braking mechanism
would be more complex than simply toggling a boolean flag as we have done
above, however, the same basic properties apply.

5.3 Discussion

One advantage of Dafny for this case study is that we were able to run tests
in Visual Studio to complement the formal verification results presented above.
Crucially, Dafny is relatively easy to communicate to security practitioners since
it more closely resembles the implementation language than other formal meth-
ods such as Promela/SPIN (Section 4). However, since it is not a language that
can be used for the final implementation, some discrepancies may exist between
our implementation and the one used in the fully implemented system. In partic-
ular, a more realistic version of this algorithm would keep track of whether the
receiving vehicle are getting closer to the vehicle in front or not rather than just
focusing on the speed part of the CAM and this could be seen as a refinement
of our original model.

Note that the Denial of Service property that we have verified in the sendCAM
method only applies if the attacker is trying to flood the network with CAMs,
and does not address the scenario when they might use other kinds of messages.
However, our approach could be extended to other message types in vehicle-to-
vehicle communications, such as DENM [26].

An open question in software verification is in ensuring that the verified
models faithfully capture what happens in the fully implemented systems. This

16

“reality gap” is difficult to traverse and will almost always exist when building
abstract models of program behaviour [8, 19]. Since all real world implementa-
tions of CAM should comply to the specification outlined in [1], we chose it
as our starting point for modelling this protocol. We could potentially run the
Dafny implementation alongside a real world implementation and check that
they exhibit the same behaviour but this was out of the scope of this work.

6 Conclusions and Future Work

This paper presents a case study showing how cyber security threat analysis
techniques can be used to guide formal methods practitioners in verifying secu-
rity properties, particularly as they may impact safety. Previously, we discussed
the need for the use of integrated formal methods in the robotics domain and
the example that we present here is no different [8].

We carried out STRIDE threat analysis of the CAM protocol for sending and
receiving messages between autonomous vehicles. This resulted in the identifi-
cation of spoofing, denial of service and repudiation as attacks that may occur.
We modelled spoofing by specifying the behaviour of an attacker in our Promela
model. Denial of service was considered via an availability property in the Dafny
implementation of the algorithm for sending CAMs. Finally, repudiation was ad-
dressed as a property to be verified of the Dafny algorithm for receiving CAMs.

By modelling the system at different levels of abstraction; system-level in
Promela/SPIN and algorithm-level in Dafny, we were able to investigate and
to verify properties related to STRIDE threat analysis. In particular, model-
checking with Promela/SPIN is useful for examining high-level temporal prop-
erties. Conversely, the use of theorem proving with Dafny allowed us to examine
properties of an implementation of the CAM protocol. Our use of distinct tools
allowed us to examine different properties of the CAM protocol at different lev-
els of abstraction. Future analysis of CAM with various tools will likely provide
a better understanding of which STRIDE properties should be checked using
different kinds of formal methods.

An important aspect here is that, although it could be useful, the individual
formal analyses do not need to be combined as in holistic/compositional formal
approaches [2,13,21]. Instead, formal methods are used to focus security analysis
on to specific areas/scenarios highlighted by informal cyber security analysis as
being of “high risk”. However, an interesting avenue of future work might involve
proving that the independent formal models do, in fact, capture the same system.

This work is a first step toward a detailed methodology of how STRIDE prop-
erties should be treated in formal verification. Therefore, our future work aims
to define a more general methodology for combining threat analysis techniques
and formal methods. Of course, our use of Promela/SPIN and Dafny has been
motivated by our familiarity with these tools and it is certainly the case that
other formal methods may have been a better choice for our study. We intend
to investigate this further in future work.

17

References

1. Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Ap-
plications; Part 2: Specification of Cooperative Awareness Basic Service. Stan-
dard Draft ETSI EN 302 637-2, European Telecommunications Standards Insti-
tute, Nov. 2018. V1.4.0 (2018-08).

2. R.-J. Back. A calculus of refinements for program derivations. Acta Informatica,
25(6):593–624, 1988.

3. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:
A modular reusable verifier for object-oriented programs. In Formal Methods for
Components and Objects, volume 4111 of LNCS, pages 364–387. Springer, 2005.

4. M. Ben-Ari. Principles of the Spin model checker. Springer, 2008.
5. S. Bittl, A. A. Gonzalez, M. Myrtus, H. Beckmann, S. Sailer, and B. Eissfeller.

Emerging attacks on vanet security based on gps time spoofing. In IEEE Confer-
ence on Communications and Network Security, pages 344–352. IEEE, 2015.

6. J. Choi and S.-i. Jin. Security threats in connected car environment and proposal of
in-vehicle infotainment-based access control mechanism. In Advanced Multimedia
and Ubiquitous Engineering, volume 518 of LNEE, pages 383–388. Springer, 2018.

7. L. De Moura and N. Bjørner. Z3: An efficient smt solver. In Tools and Algorithms
for the Construction and Analysis of Systems, volume 4963 of LNCS, pages 337–
340. Springer, 2008.

8. M. Farrell, M. Luckcuck, and M. Fisher. Robotics and Integrated Formal Methods:
Necessity meets Opportunity. In Integrated Formal Methods, volume 11023 of
LNCS, pages 161–171. Springer, 2018.

9. M. Fisher. An Introduction to Practical Formal Methods Using Temporal Logic.
Wiley, 2011.

10. G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, 2003.

11. L. Huang and E.-Y. Kang. Formal verification of safety & security related timing
constraints for a cooperative automotive system. In Fundamental Approaches to
Software Engineering, volume 11424 of LNCS, pages 210–227. Springer, 2019.

12. M. Jagielski, N. Jones, C.-W. Lin, C. Nita-Rotaru, and S. Shiraishi. Threat de-
tection for collaborative adaptive cruise control in connected cars. In ACM Con-
ference on Security & Privacy in Wireless and Mobile Networks, pages 184–189.
ACM, 2018.

13. C. B. Jones. Tentative Steps Toward a Development Method for Interfering Pro-
grams. ACM Transactions on Programming Languages and Systems, 5(4):596–619,
1983.

14. M. Kamali, S. Linker, and M. Fisher. Modular verification of vehicle platooning
with respect to decisions, space and time. In International Workshop on For-
mal Techniques for Safety-Critical Systems, volume 1008 of CCIS, pages 18–36.
Springer, 2018.

15. L. Kohnfelder and P. Garg. The Threats to Our Products. adam.shostack.org/

microsoft/The-Threats-To-Our-Products.docx, Apr. 1999. Accessed: 2018-12-
10.

16. B. Langenstein, R. Vogt, and M. Ullmann. The use of formal methods for trusted
digital signature devices. In Florida Artificial Intelligence Research Society, pages
336–340. AAAI Press, 2000.

17. K. R. M. Leino. Dafny: An automatic program verifier for functional correctness.
In Logic for Programming Artificial Intelligence and Reasoning, volume 6355 of
LNCS, pages 348–370. Springer, 2010.

18

adam.shostack.org/microsoft/The-Threats-To-Our-Products.docx
adam.shostack.org/microsoft/The-Threats-To-Our-Products.docx

18. J. Liu, C. Yan, and W. Xu. Can you trust autonomous vehicles: Contactless
attacks against sensors of self-driving vehicles. DEFCON24 (Aug. 2016); http://bit.
ly/2EQNOLs, 2016.

19. M. Luckcuck, M. Farrell, L. Dennis, C. Dixon, and M. Fisher. Formal specifica-
tion and verification of autonomous robotic systems: A survey. accepted, ACM
Computing Surveys, 2019.

20. A. C. Michele Rondinone. Deliverable (d) no: 5.1 definition of v2x message sets.
report, Universidad Miguel Hernandez, Aug. 2018. V1.0 27/08/2018.

21. C. Morgan, K. Robinson, and P. Gardiner. On the Refinement Calculus. Springer,
1988.

22. J. Petit, B. Stottelaar, M. Feiri, and F. Kargl. Remote attacks on automated
vehicles sensors: Experiments on camera and lidar. Black Hat Europe, 11:2015,
2015.

23. A. Pnueli. The Temporal Logic of Programs. In 18th Symposium on the Founda-
tions of Computer Science, pages 46–57. IEEE, 1977.

24. R. S. Ross. Guide for Conducting Risk Assessments. Technical report, National
Institute of Standards and Technology, Sept. 2012. SP 800-30 Rev. 1.

25. A. Ruddle, D. Ward, B. Weyl, S. Idrees, Y. Roudier, M. Friedewald, T. Leimbach,
A. Fuchs, S. Gürgens, O. Henniger, et al. Security requirements for automotive
on-board networks based on dark-side scenarios. EVITA Deliverable D, 2:3, 2009.

26. J. Santa, F. Pereñ́ıguez, A. Moragón, and A. F. Skarmeta. Vehicle-to-infrastructure
messaging proposal based on cam/denm specifications. In Wireless Days (WD),
IFIP, pages 1–7. IEEE, 2013.

27. S. Schneider. Formal analysis of a non-repudiation protocol. In Computer Security
Foundations Workshop, pages 54–65. IEEE, 1998.

28. S. Schneider. Verifying authentication protocols in csp. IEEE Transactions on
Software Engineering, 24(9):741–758, 1998.

29. S. Schneider and R. Delicata. Verifying security protocols: An application of csp. In
Communicating Sequential Processes. The First 25 Years, volume 3525 of LNCS,
pages 243–263. Springer, 2005.

30. C. Snook, T. S. Hoang, and M. Butler. Analysing security protocols using refine-
ment in iUML-B. In NASA Formal Methods Symposium, volume 10227 of LNCS,
pages 84–98. Springer, 2017.

31. W. Stallings, L. Brown, M. D. Bauer, and A. K. Bhattacharjee. Computer security:
principles and practice. Pearson, 2012.

32. G. Vanspauwen and B. Jacobs. Verifying protocol implementations by augmenting
existing cryptographic libraries with specifications. In Software Engineering and
Formal Methods, volume 9276 of LNCS, pages 53–68. Springer, 2015.

33. J. Whitefield, L. Chen, F. Kargl, A. Paverd, S. Schneider, H. Treharne, and S. Wese-
meyer. Formal analysis of v2x revocation protocols. In Security and Trust Man-
agement, volume 10547 of LNCS, pages 147–163. Springer, 2017.

19

	Using Threat Analysis Techniques to Guide Formal Verification: A Case Study of Cooperative Awareness Messages

