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Abstract

We consider evidence integration from potentially dependent observation processes
under varying spatio-temporal sampling resolutions and noise levels. We develop a
multi-resolution multi-task (MRGP) framework while allowing for both inter-task
and intra-task multi-resolution and multi-fidelity. We develop shallow Gaussian
Process (GP) mixtures that approximate the difficult to estimate joint likelihood
with a composite one and deep GP constructions that naturally handle biases in the
mean. By doing so, we generalize and outperform state of the art GP compositions
and offer information-theoretic corrections and efficient variational approximations.
We demonstrate the competitiveness of MRGPs on synthetic settings and on the
challenging problem of hyper-local estimation of air pollution levels across London
from multiple sensing modalities operating at disparate spatio-temporal resolutions.

1 Introduction

The increased availability of ground and remote sensor networks coupled with new sensing modalities,
arising from e.g. citizen science intiatives and mobile platforms, is creating new challenges for
performing formal evidence integration. These multiple observation processes and sensing modalities
can be dependent, with different signal-to-noise ratios and varying sampling resolutions across
space and time. In our motivating application, London authorities measure air pollution from
multiple sensor networks; high-fidelity ground sensors that provide frequent multi-pollutant readings,
low fidelity diffusion tubes that only provide monthly single-pollutant readings, hourly satellite-
derived information at large spatial scales, and high frequency medium-fidelity multi-pollutant sensor
networks. Such a multi-sensor multi-resolution multi-task evidence integration setting is becoming
prevalent across any real world application of machine learning.

The current state of the art, see also Section 5, is assuming product likelihoods and unbiased
observation processes as in [13], and cannot handle the challenges of real world settings that are
jointly non-stationary, multi-task, multi-fidelity, and multi-resolution [1, 6, 13, 20, 21, 26, 27]. The
latter challenge has recently attracted the interest of the machine learning community under the context
of working with aggregate, binned observations [1, 13, 27] or the special case of natural language
generation at multiple levels of abstraction [26]. The independence and unbiasedness assumptions
lead to posterior contraction, degradation of performance and of uncertainty quantification.

In this paper we introduce a multi-resolution multi-task GP framework that can integrate evidence
from observation processes with varying support (e.g. partially overlapping in time and space),
that can be dependent and biased while allowing for both inter-task and intra-task multi-resolution
and multi-fidelity. Our first contribution is a shallow GP mixture, MR-GPRN, that corrects for the
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dependency between observation processes through composite likelihoods and extends the Gaussian
aggregation model of Law et al. [13], the multi-task GP model of Wilson et al. [33], and the variational
lower bound of Nguyen and Bonilla [18]. Our second contribution is a multi-resolution deep GP
composition that can additionally handle biases in the observation processes and extends the deep GP
models and variational lower bounds of Damianou and Lawrence [5] and Salimbeni and Deisenroth
[25] to varying support, multi-resolution data. Lastly, we demonstrate the superiority of our models
on synthetic problems and on the challenging spatio-temporal setting of predicting air pollution in
London at hyper-local resolution.

Sections 3 and 4 introduce our shallow GP mixtures and deep GP constructions respectively. In
Section 6 we demonstrate the empirical advantages of our framework verus the prior art followed by a
additional related work in Section 5 and our concluding remarks. Further analysis and full derivations
are provided in the Supplement.

2 Multi-resolution Multi-task Learning

Consider A ∈ N observation processes Ya with varying resolutions Ra and sampling periods
Sa. The observation process Ya′ with the highest sampling rate per unit measure and hence the
smallest sampling period has the base sampling period Sa′ = B. Typically the observation process
of interest, denoted YB, is at the sampling period B but our formulation and framework applies
generally. We normalize the sampling periods with respect to the base one such that Sa′ := 1 and
hence Sa 6=a′ ∈ R≥1. For example if the base period is hourly and we have a process a with Na
daily observations then its sampling period is Sa=24 and Ya ∈ IRNa×1 and X1 ∈ IRNa×24×1. We
construct A datasets {(Xa,Ya)}Aa=1 across the set of all tasks P = {p} with Xa ∈ IRNa×Sa×Da

and Ya ∈ IRNa×|Pa| where Na ∈ N, Pa ⊆ P , Da ∈ N are the number of observations, set of
observed tasks and input dimensions, for the observation process a.

When our observation processes are also multivariate we have additional dependencies arising from
this multi-task setting [3]. Multi-resolution observations can now exist both within tasks (intra-task
multi-resolution) and across tasks (inter-task multi-resolution). In our motivating application, multiple
sensing modalities measure multiple air pollutant levels (e.g. CO2, NO2, PM10, PM25) that can be
highly correlated across space-time due to e.g. common emission sources and dispersion mechanisms.
We are interested in flexible non-stationary non-parametric models that can scale to millions of
observations while delivering improved uncertainty quantification.

3 Multi-Resolution Gaussian Process Regression Networks (MR-GPRN)

We first introduce a shallow instantiation of the multi-resolution multi-task framework. MR-GPRN is
a shallow GP mixture, Fig. 1, that extends the Gaussian process regression network (GPRN) [33],
itself a special case of the Linear Coregionalization Model (LCM) [2]. Briefly, the GPRN jointly
models the set of tasks P by introducing Q ∈ N latent GP functions fq that are mixed through further
|P |Q ∈ N latent GP functions Wp,q. More formally, fq ∼ GP(0,Kf

q ) and Wp,q ∼ GP(0,Kw
p,q).

For taskp the observations Yp = Wpf + ε where ε ∼ N (0, σ2
yI) such that Yp is a (noisy) linear

combination of product of GPs. This enables learning non-stationary random fields by varying the
mixing of stationary latent GPs across input space.

Model Specification. We place a GPRN prior over the joint p(W, f) =∏|P |Q
i,j N (Wij |0,Kij)

∏Q
i N (fi|0,Ki). Apart from the standard inter-task dependency we

ideally also want to model directly the additional dependency of the observation processes but it can
vary in input space quickly leading to intractability. At the other end, one can ignore this dependency
and assume a product likelihood form, as in [13, 17], but this misspecification results in severe
posterior contraction (see Fig. 2) when the independence assumption is violated. To circumvent
these extremes we propose to approximate the full likelihood using a multi-resolution composite
likelihood. This posterior over the latent functions is now:
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Algorithm 1 Inference of MR-GPRN

Input: A multi-resolution datasets
{(Xa,Ya)}Aa=1, initial parameters θ,
θ̂ ← arg maxθ

∑A
a=1 `(Ya|θ)

H←
∑A
a=1(∇`(Ya|θ̂)(∇`(Ya|θ̂))T

J← ∇2`(Y|θ̂)

φ←


|θ̂|

Tr[H(θ̂)−1J(θ̂)]
Tr[H(θ̂)J(θ̂)−1H(θ̂)]

Tr[H(θ̂)]

θ1 ← arg minθ

(∑A
a=1 φEq [`(Ya|θ)] +KL

)
Figure 1: Left: Graphical model of MR-GPRN for A observation processes each with |Pa| tasks. This
allows multi-resolution learning between and across tasks. Right: Inference for MR-GPRN.

p(W, f |Y) ∝
A∏
a=1

|Pa|∏
p=1

N∏
n=1

N (Ya,p,n|
1

Sa

∫ Sa
s=1

Wp(Xa,n,s)f(Xa,n,s) dXa,n,s, σ
2
aI)φ︸ ︷︷ ︸

MR-GPRN Composite Likelihood

p(W, f)︸ ︷︷ ︸
GPRN Prior

.

(1)

where φ ∈ IR>0 are the composite weights that are critical for inference [30]. We tie the underlying
process Wf to each of observations processes by integrating over the sampling period of Xr,n. In
general the integral is not available in closed form and so we approximate it by discretizing over
a uniform grid. When we only have one task and W is a matrix constant functions we denote the
model as MR-GP.

Composite Likelihood Weights. Under a misspecified model the asymptotic distribution of the
MLE estimate converges to N (θ0,

1
nH(θ0)J(θ0)−1H(θ0)) where θ0 are the true parameters and

H(θ) = 1
n

∑N
n=1∇`(Y|θ)∇`(Y|θ)T and J(θ) = 1

n

∑N
n=1∇2`(Y|θ) the Hessian and Jacobian

respectively. The form of the asymptotic variance is the sandwich information matrix and it represents
the loss of information in the MLE estimate due to the failure of Bartletts second identity [30].

Following Lyddon et al. [15] and Ribatet [24] we write down the asymptotic posterior of MR-GPRN
as N (θ0, n

−1φ−1H(θ)). Asymptotically one would expect the contribution of the prior to vanish
causing the asymptotic posterior to match the limiting MLE. The composite weights φ can be used to
bring these distributions as close together as possible. By setting φ−1H(θ̂) = H(θ0)J(θ0)−1H(θ0),
and rearranging to find φ we recover the magnitude correction of Ribatet [24]. Instead if we take
traces and then rearrange we recover the correction of Lyddon et al. [15]:

φRibatet =
|θ̂|

Tr[H(θ̂)−1J(θ̂)]
, φLyddon =

Tr[H(θ̂)J(θ̂)−1H(θ̂)]

Tr[H(θ̂)]
. (2)

Inference. We derive a closed form evidence lower bound (ELBO) for MR-GPRN, see Supplemen-
tary. For computational efficiency we introduce inducing points U = {uq}Q=1

q=1 for uq ∈ IRM ,

V = {vp,q}|P |,Qp,q=1 for vp,q ∈ IRM at the corresponding locations Z(u) = {Z(u)
q }Qq=1,Z

(v) =

{Z(v)
p,q}|P |,Qp,q=1 for Z

(·)
· ∈ IRM,D for each latent GP following [29]. We construct the augmented

posterior and use the approximate posterior q(u,v, f ,W)p(f ,W|u,v)q(u,v) where q(u,v) =∑K
k=1 πk

∏Q
q=j N (m

(u)
j ,S

(u)
j ) ·

∏|P |,Q
i,j=1 N (m

(v)
i,j ,S

(v)
i,j ) is a free form mixture of Gaussians. The

3



3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

-1

0

1

2

3

4

5

6

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

1

2

3

4

5 MR-DGP

MR-CASCADE

MR-GP

MR-GPRN

VBAGG-NORMAL

True Posterior
Observed Y - K = 1

Observed Y - K = 3

Observed Y - K = 5

Target

Figure 2: Left: MR-GP recovers the true predictive variance whereas the product likelihood assump-
tion in VBAGG-NORMAL leads to posterior contraction. Right: MR-DGP recovers the true predictive
mean under a multi-resolution setting with scaling biases. Both VBAGG-NORMAL and MR-GPRN
fail as they propagate the bias. Grey crosses and lines denote observed values. Black crosses denote
observations removed for testing.

expected log-likelihood (ELL) of each component a is available in closed form:

La =

|Pi|∑ N∑
n

YT
a,i,nYa,i,n +

Sa∑
a

Sa∑
b=a

Tr[ΣWa
ni

Σfa
n

] + µTfaΣWa
ni
µfa

n
+ µTWa

ni
Σfa

n
µWa

ni

+
2

Sa
YT
a,i,n

Sa∑
a

µTWa
ni
µfa

n
+

1

Sa2
Sa∑
a

Sa∑
b

µTfa
n
µTwa

ni
µwb

ni
µfb

n
.

(3)

where µaWa
ni

, Σa
Wa

ni
and µafa

n
, Σa

fa
n

are respectively the mean and variance of q(W) and q(f) at input
Xa,n,s. To infer the composite weights we first obtain the MLE estimate of θ by maximizing the
likelihood in Eq. 1. The weights can then be calculated and the variational lowerbound optimised
as in Alg. 1 with O(E · (|P |Q+Q)NM2) for E optimization steps until convergence. Our closed
form ELBO generalizes prior art on the GPRN when there is only one observation process a and
Ra = 1 by allowing for a free form mixture of Gaussian variational posteriors [12, 18].

Predictive Density. Although the full predictive distribution of a specific observation process
is not available in closed form, using the variational posterior we derive the predictive mean
and variance, avoiding MC estimates. The mean is E[Y∗a,p] =

∑K
k πkEk

[
W∗

p

]
Ek [̂f∗] and

the variance is: V[Y∗a,p] =
∑K
k πk(σ2

yI + Tr(Vk [̂f∗]Vk[W∗
p]) + Ek

[
W∗

p

]
Vk [̂f∗]Ek

[
W∗

p

]
+

Tr(Ek [̂f∗]Ek [̂f∗]TVk[W∗
p]) + Ek

[
W∗

p

]
Ek
[
f̂∗
]
Ek
[
f̂∗
]T

Ek
[
W∗

p

]T
)− E[Y∗a]E[Y∗a]T. Where K

is the number of components in the mixture of Gaussians variational posterior and πk is the k’th
weight. Full derivations are in the Supp. together with corresponding ones for the positively-restricted
GPRN form Y =

∑|P |
p=1 exp(Wp)f + ε that improves identifiability and predictive performance.

4 Multi-Resolution Deep Gaussian Processes (MR-DGP)

We now introduce a deep instantiation of the multi-resolution multi-task framework. MR-DGP is
a deep GP (DGP) composition that extends the model of Damianou and Lawrence [5] into a tree-
structured multi-resolution composition, Fig. 3. Briefly, a DGP is a composition of GPs where the
output of each layer feeds into the input of the next. This hierarchical structure allows for complex,
non-stationary, processes to be modelled without the use of highly parameterized kernels.

Model Specification. Consider a multi-resolution dataset {(Xa,Ya)}Aa=1 and the latent functions
{f (k)a }Ka

k=1 that are linearly mixed to model each observation process a following a mixture of experts
approach [19, 22, 34]: mk(x) =

∑Ka

k w
(k)
a f

(k)
a (x). Every f

(k)
a is a deep DGP of length L(k)

a and is
targeting the same response Ya. Notice that the gating network is naturally defined by the multiple
resolutions and intuitively we want to weigh higher the latent GPs that are closest to the base resolution
of interest and that provide the most support. In prediction we achieve this through the predictive

4
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Figure 3: Left: General plate diagram of MR-DGP for A observation processes and the target
observation process YB at the base resolution B. Right: A specific instantiation of an MR-DGP for
the case of 2 resolutions and 2 observation processes with a target process Y2 as in the intra-task
multi-resolution NO2 experiment in Section 4.

variances of the latent functions; taking V(x)ka to be the normalized predictive variance of the k’th
function then w(k)

a = (1 −V
(k)
a )

∑k
i=1 V

(i−1)
a . Formally f

(k)
a ∼ GP(0,K

(k)
a (P(Xa),P(1)

a,k(Xa))

and P(1)
a,k denotes the parent function of f

(k)
a . When k = 0 we define P(·)

a,0 to be the identity function,

and when k > 1 then P(·)
a,0 denotes the prediction from a specific ma. For example in Fig. 3 the

parent function of f
(2)
2 , denoted by P1

2,2, is m1. Following Section 3 we link each of the functions

to their target resolution through the likelihood. The posterior, p({{f (k)a }Ka

k }Aa=1|Y,X), is now
proportional to:

A∏
a=1

Ka∏
k=1

Na∏
n=1

N (Ya,n|
∫ Sa
s=1

f (k)a (Xa,n,s) dXa,n,s, σ
2
a,kI)︸ ︷︷ ︸

MR-DGP Likelihood

·
A∏
a=1

Ka∏
k=1

p(f (k)a |P
(1)
a,k,X

(k)
a )︸ ︷︷ ︸

MR-DGP Prior

(4)

The integral is again approximated by discretizing the sampling region with a uniform grid. Our
formulation naturally handles biases between the mean of different observation processes and has an
appealing and meaningful interpretation as each ma is modelling a specific observation process.

Augmented Posterior. Due to the nonlinear form of P(1)
a inside p(fA|Xa,P(1)

a ) the marginal
p(fA|X) is in general analytically intractable. Introducing inducing points U = {ua}Aa=1 for ua ∈
IRM and locations Z = {Za}Aa=1 for Za ∈ IRM×D, allows P(f

(1)
a ) to be propagated through the

non-linear kernel function of the GP [5, 29]. The augmented joint is now given by:

p({Ya, fa,ua}Aa=1) = (

A∏
a=1

Ka∏
k=1

p(Ya|Xa, f
(k)
a )p(f (k)a |X(k)

a ,P(1)
a,k,u

(k)
a )p(u(k)

a )) (5)

where p(u
(k)
a ) = N (u

(k)
a |0,Ka) and p(fa|Xa,P(1)

a,k,u
(k)
a ) is a Gaussian with mean

fa|Ka(P(1)
a,k(Xa),Z

(k)
a )K−1a (Z

(k)
a ,Z

(k)
a )u

(k)
a , and variance Ka(P(1)

a,k(Xa),P(1)
a,k(Xa))a −

Ka(P(1)
a,k(Xa),Z

(k)
a )K−1a (Z

(k)
a ,Z

(k)
a )Ka(Z

(k)
a ,P(1)

a,k(Xa)) which is the standard noise-free
GP predictive distribution.

Inference. Following [25] we construct an approximate posterior q({fa,ua}Aa=1) that maintains the
dependency structure between the latent functions:

q({fa,ua}Aa=1) =

A∏
a=1

Ka∏
k=1

p(f (k)a |X(k)
a ,P(f (k)a ),u(k)

a )q(u(k)
a ) (6)

5



Algorithm 2 Inference procedure for MR-DGP

Input: S multi-resolution datasets {(Xs,Ys)}Ss=1, initial parameters θ0,
procedure MARGINAL(f (k)a ,X, l)

if l = L(k)
a then

return q(f (k)a |X)
end if
q(P(f

(k)
a )|X)← MARGINAL (P(f

(k)
a ), X, l + 1)

return 1
S

∑S
s=1 p(f

(k)
a |f (s),X)) where f (s) ∼ q(P(f

(k)
a )|X)

end procedure
θ1 ← arg min

θ

[∑A
a=1

∑Ka

k=1 EMARGINAL(f
(k)
a ,Xa,0)

[
log p(Ya|f (k)a ,Xa, θ)

]
+KL(q(u)||p(u))

]

where q(ua) = N (ma,Sa) is a free-form Gaussian. The ELBO is:

LMR-DGP =

A∑
a=1

Ka∑
k=1

E
q(f

(k)
a )

[
log p(Ya|Xa, f

(k)
a )

]
︸ ︷︷ ︸

Lell

+

A∑
a=1

Ka∑
k=1

E
q(u

(k)
a )

[
log

p(u
(k)
a )

q(u
(k)
a )

]
︸ ︷︷ ︸

−KL(q(U)||p(U))

where the likelihood factorizes across observation processes. For each likelihood component the
marginal q(f (k)a ) is required and the posterior of a specific latent function only depends on the parent
functions in the previous layer. For general f

(k)
a the posterior is:

q(f (k)a ) =

∫
q(f (k)a |P(1)(f (k)a ))

L−1∏
l=1

q(P(l)(f (k)a )|P(l+1)(f (k)a )) dP(1)(f (k)a ) · · · dP(L)(f (k)a ) (7)

SinceP(L)(f
(k)
a ) is a Gaussian, sampling is straightforward and the integral is approximated by Monte

Carlo and we use the reparametization trick to draw samples from the variational posteriors [10]. The
inference procedure is given in Alg. 2 and has an epoch time complexity ofO(

∑A
a

∑K
k NaM

2
aL

(k)
a ).

Predictive Density. To predict at x∗ ∈ IRD for process k we approximate the predictive density
q(m∗a) by sampling from the variational posteriors:

q(m∗a) =

∫
q(m∗a|f (1)a , · · · , f (k)a )

Ka∏
k

q(f (k)a ) df1a · · · df (K)a ≈ 1

S

S∑
s=1

q(m∗a|f (1)(s)a , · · · , f (k)(s)a )

(8)
where f

(·)(s)
· ∼ q(f (·)· ).

5 Related Work

Gaussian processes (GPs) are the workhorse for spatio-temporal modelling in spatial statistics [8]
and in machine learning [23] with the direct link between multi-task GPs and Linear Models of
Coregionalisation (LCM) reviewed by Alvarez et al. [2]. Heteroscedastic GPs [14] and recently
proposed deeper compositions of GPs for the multi-fidelity setting [4, 20, 21] assume that all
observations are of the same resolution. In spatial statistics the related change of support problem
has been approached through Markov Chain Monte Carlo approximations and domain discretizations
[7, 8]. A recent exception to this is the work by Smith et al. [27] that solves the integral for squared
exponential kernels but only considers observations from one resolution and cannot handle additional
input features. Finally, we note that the multiresolution GP work by Fox and Dunson [6] defines a
DGP construction for non-stationary models that is more akin to multi-scale modelling [32] which
typically focuses on learning multiple kernel lengthscales to explain both broad and fine variations in
the underlying process and hence cannot handle multi-resolution observations .
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MR-DGP VBAGG-NORMAL CENTER-POINT

Figure 4: Spatio-temporal estimation and forecasting of NO2 levels in London. Top Row: Spatial
slices from MR-GPRN, VBAGG-NORMAL and CENTER-POINT respectively at 09/02/2019 11:00:00
using observations from both LAQN (base resolution B) and the satellite model (low spatial res-
olution). Bottom Row: Spatial slices at the base resolution from the same models at 09/03/2019
17:00:00 where only observations from the satellite model are present.

6 Experiments

We demonstrate and evaluate the MRGPs on synthetic experiments and the challenging problem
of estimating and forecasting air pollution in the city of London. We compare against VBAGG-
NORMAL [13] and two additional baselines. The first, CENTER-POINT , is a GPRN modified to
support multi-resolution data by taking the center point of each aggregation region as the input. The
second, MR-CASCADE is a MR-DGP but instead of a tree structured DGP as in Fig. 3 we construct
a cascade to illustrate the benefits of the tree composition and the mixture of experts approach of
MR-DGP. Experiments are coded1 in TensorFlow and we provide additional analysis and experiments
in the Supp.

Dependent observation processes: We provide additional details of the dependent observation
processes experiment in the left of Fig. 2 in the Supp.

Biased observation processes:. To demonstrate the ability of MR-DGP in handling biases across
observation processes we construct 3 datasets from the function y = s · 5 sin(x)2 + 0.1ε where
ε ∼ N (0, 1). The first X1,Y1 is at resolution S1 = 1 in the range x=[7,12] with a scale s = 1. The
second is at resolution of S2 = 5 between x=[-10, 10] with a scale s = 0.5 and lastly the third is at
resolution of S3 = 5 x=[10, 20] with a scale s = 0.3. The aim is to predict y across the range [-10,
20] and the results are shown in Table 2 and Fig. 2. MR-DGP significantly outperforms all of the four
alternative approaches as it is learning a forward mapping between observation processes, e.g. f

(2)
2 in

Fig. 3, and is not just trusting and propagating the mean.

1Codebase and datasets to reproduce results will be made available on publication
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Table 1: Inter-task multi-resolution. Missing data predictive MSE on PM25 from MR-GPRN, MR-DGP
and baseline CENTER-POINT for 4 different aggregation levels of PM10. VBAGG-NORMAL is
inapplicable in this experiment as it is a single-task approach and can be seen as a special case of
MR-GPRN without composite weight corrections.

Model PM10 Resolution

2 Hours 5 Hours 10 Hours 24
CENTER-POINT 12.72 ± 1.29 13.56 ± 1.88 14.99 ± 3.63 16.21 ± 2.54
MR-DGP 13.22 ± 0.89 13.24 ± 1.6 14.41 ± 1.42 14.59 ± 1.18
MR-GPRN 10.54 ± 1.15 10.21 ± 0.92 10.11 ± 1.13 10.17 ± 0.68

Table 2: Intra-task multi-resolution. Left: Predicting NO2 across London (Fig. 4). Right: Synthetic
experiment results (Fig. 2) with three observations processes and scaling bias.

Model RMSE MAPE
CENTER-POINT 18.74 ± 12.65 0.65 ± 0.21

VBAGG-NORMAL 15.98 ± 9.5 0.72 ± 0.47
MR-GPRN 12.95 ± 7.78 0.51 ± 0.33
MR-DGP 8.7 ± 5.51 0.36 ± 0.17

Model RMSE MAPE
MR-CASCADE 1.61 5.87

VBAGG-NORMAL 1.8 2.53
MR-GPRN 1.68 2.96
MR-DGP 0.3 3.83

Training. When training both MR-GPRN and VBAGG-NORMAL we first jointly optimize the varia-
tional and hyper parameters while keeping the likelihood variances fixed and then jointly optimize
all parameters together. For MR-DGP we first optimize layer by layer and then jointly optimize all
parameters together, see Appendix. We find that this helps to avoid early local optima.

Inter-task multi-resolution: modelling of PM10 and PM25 in London: In this experiment we
consider the case of having multiple tasks with different resolutions. We jointly model PM10 and
PM25 at a specific location in London. The site we consider is RB7, from the LAQN network, in
the date range 18/06/2018 to 28/06/2018. At this location we have hourly data from both PM10 and
PM25. To simulate having multiple resolutions we construct 2, 5, 10 and 24 hour aggregations of
PM10 and remove a 2 day region of pm25 which is the test region. The results are shown in Table 1.

Intra-task multi-resolution: spatio-temporal modelling of NO2 in London: In this experiment
we consider the case of a single task but with multiple multi-resolution observation processes. First we
use observations coming from ground point sensors from the London Air Quality Network (LAQN).
These sensors provide hourly readings of NO2. Secondly we use observations arising from a global
satellite model [16] that provide hourly data at a spatial resolution of 7km × 7km and provide 48
hour forecasts. We train on both the LAQN and satellite observations from 19/02/2018-20/02/2018
and just the satellite sensors from 20/02/2018-21/02/2018. We then predict at the resolution of the
LAQN sensors in the latter date range. To calculate errors we predict for each LAQN sensor site, and
find the average and standard deviation across all sites.

We find that MR-DGP is able to substantially outperform both VBAGG-NORMAL, MR-GPRN and
the baselines, Table 2, as it is learning the forward mapping between the spatially low-resolution
process and the high resolution LAQN reference grade sensors, while handling scaling biases. This is
further highlighted in the bottom of Fig. 4 where MR-DGP is able to predict and retain high resolution
structure based only on satellite observations whereas VBAGG-NORMAL and CENTER-BASELINE
completely over-smooth.

7 Conclusion

We offer a framework for evidence integration when observation processes can have varying inter-
and intra-task sampling resolutions, dependencies, and different signal to noise ratios. Our motivation
comes from a challenging and impactful problem of hyper-local air quality prediction in the city of
London, while the underlying multi-resolution multi-sensor problem is general and pervasive across
modern spatio-temporal settings and beyond. We proposed both shallow mixtures and deep learning
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models that generalise and outperform the prior art, correct for posterior contraction, and can handle
biases in observation processes such as discrepancies in the mean. Further directions now open up to
robustify the multi-resolution framework against outliers and against further model misspecification
by exploiting ongoing advances in generalized variational inference [11]. Finally an open challenge
remains on developing continuous model constructions that avoid domain discretization, as in [1], for
multivariate settings.
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A Definitions

In this section we provide additional mathematical definitions needed to support Sec. C.2.

E[exp(Wni)] =

∫
N (Wni|µWni ,ΣWni) exp(Wni) dWni

= C1 ·
∫

exp(−1

2
(Wni − µWni

)TΣ−1Wni
(Wni − µWni

) + Wni) dWni

= C1 ·
∫

exp(−1

2
(Wni − (µWni + ΣWni))

TΣ−1Wni
(Wni − (µWni + ΣWni)))

· exp(µWni
+

1

2
ΣWni) dWni

= exp(µWni
+

1

2
ΣWni

)

(9)

where C1 = ((2π)
1
2 |ΣWni

| 12 )−1.

Similarly we can derive the expectation of the square forms:

E[exp(Wni)
T exp(Wni)] = exp(2 · (µWni

+ ΣWni
)) (10)

and :

E[exp(Wni)
TΣ exp(Wni)] =

∫
N (Wni|µWni ,ΣWni) exp(Wni)

TΣ exp(Wni) dWni

= exp(µWni + ΣWni)
TΣ exp(µWni + ΣWni)

(11)

B MR-DGP: Variational Lower Bound

In this section we provide the derivation of the variational lower bound for MR-DGP. Following [25]
we construct an approximate posterior that maintains the dependency structure between layers

q({fa,ua}Aa=1) =

A∏
a=1

p(fa|{X(k)
a , f (k)a ,u(k)

a }
Ka

k=1)q({u(k)
a }Kk=1) (12)

where q(ua) = N (ma,Sa) is a free-form Gaussian. The evidence lowerbound (ELBO), which lower
bounds the log marginal likelihood log p(Y|X), is

L = Eq({fa,ua}Aa=1)

[
log

p({Ya, fa,ua}Aa=1)

q({fa,ua}Aa=1)

]
= E

[
log

(
∏A
a=1

∏Ka

k=1 p(Ya|Xa, f
(k)
a )) ·

∏A
a=1(p(fa|{X(k)

a , f
(k)
a ,u

(k)
a }Ka

k=1)p({u(k)
a }Kk=1))∏A

a=1 p(fa|{X
(k)
a , f

(k)
a ,u

(k)
a }Ka

k=1)q({u(k)
a }Kk=1)

]
.

(13)
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Cancelling the relevant terms inside the logarithm we get

LMR-DGP = Eq({fa,ua}Aa=1)

[
log

(
∏A
a=1

∏Ka

k=1 p(Ya|Xa, f
(k)
a )) ·

∏A
a=1 p({u

(k)
a }Kk=1)∏A

a=1 q({u
(k)
a }Kk=1)

]

= E

[
log

A∏
a=1

Ka∏
k=1

p(Ya|Xa, f
(k)
a )

]
+ E

[
log

∏A
a=1 p({u

(k)
a }Kk=1)∏A

a=1 q({u
(k)
a }Kk=1)

]

=

A∑
a=1

Eq(fa) [log p(Ya|Xa, fa)]︸ ︷︷ ︸
ELL

+

A∑
a=1

Eq(ua)

[
log

p(ua)

q(ua)

]
︸ ︷︷ ︸

−KL(qU||p(u))

C MR-GPRN: Variational Lower Bound

In this section we provide the full derivation of the variational lower bound of MR-GPRN. Recall
that we have Q global latent processes fq ∼ N (0,Kq) and P × Q task specific latent functions
Wp,q ∼ N (0,Kp,q). To allow for computationally efficient inference we introduce inducing
points [29] for all latent functions. For f : U = {uq}Q=1

q=1 where uq ∈ IRM at locations Z(f) =

{Zq}Qq=1 for Zq ∈ IRM,D. For W: V = {vp,q}PQ=1
p,q=1 where vp,q ∈ IRM at locations

Z(w) = {Zp,q}PQp,q=1 for Zp,q ∈ IRM,D.

Following [9] we keep U,V explicit in our approximate posterior. The goal is
now to learn the augmented posterior p(f ,W,UV|X,Y, θ). To do so we introduce
our approximate posterior q(f ,W,U,V) = p(f |U)p(W|v)q(U,V) where q(U,V) =∑K
k=1 πk

∏P
p=1N (m

(f)
p ,S

(f)
p )

∏PQ
p,q=1N (m

(w)
pq ,S

(w)
pq ) which is a mixture of Gaussians and de-

fines the variational parameters to learn. The conditionals p(f |U) and p(W|v) are given by the
standard noise free GP prediction.

Variational inference turns into an optimisation problem where the objective function is the evidence
lower bound (ELBO). Our ELBO is:

L(q) =

A∑
a=1

αEq [log p(Ya|f ,W,Xa)] +KL(q(U,V)||p(U,V)), (14)

The subsequent sections derive the forms of both the expected log likelihood (ELL) and the KL term.

C.1 MR-GPRN: Closed Form Expected Log Likelihood

We now derive the closed form expected log likelihood (ELL) from Eq. 14. The ELL is:

Lell =

A∑
a=1

αkEq

[
logN (Ya|

1

Ra

Ra∑
r=1

(Wf)(r), σ2
a)

]
(15)

where each of the components can now be dealt with separately. Dealing with component a:
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Lella =

Na∑
n=1

K∑
k=1

πk

P∑
p=1

∫
qk(fn)qk(Wni) logN (Y

(a)
ni |

1

Ra

Ra∑
r

W(r)nif(r)n, σ
2
a) dWni dfn

= C1 + C2

Na∑
n=1

K∑
k=1

πk

P∑
p=1

∫
qk(fn)qk(Wni)·

(Y
(a)
ni −

1

Ra

Ra∑
r

W(r)nif(r)n)T (Y
(a)
ni −

1

Ra

Ra∑
r

W(r)nif(r)n) dWni dfn

= C1 + C2

Na∑
n=1

K∑
k=1

πk

P∑
p=1

Eq
[
(Y

(a)
ni )TY

(a)
ni

]
− Eq

[
(

1

Ra

Ra∑
r

W(r)nif(r)n)TY
(a)
ni

]
−

Eq

[
(Y

(a)
ni )T (

1

Ra

Ra∑
r

W(r)nif(r)n)

]
+ Eq

[
(

Ra∑
r

W(r)nif(r)n)T (

Ra∑
r

W(r)nif(r)n)

]

We now deal with each of the expectations separately.

C.1.1 ELL: 1st Term

The first expectation does not contain f or W and so the expectations can be dropped:

Eq
[
(Y

(a)
ni )TY

(a)
ni

]
= Y

(a)
ni

T
Y

(a)
ni (16)

C.1.2 ELL: 2nd and 3rd Term

In the 2nd and 3rd terms the expectation is brought inside the sum and applied to f and W separately:

Eq

[
(

1

Ra

Ra∑
r

W(r)nif(r)n)TY
(a)
ni

]
= (

1

Ra

Ra∑
r

Eq(Wni) [W(r)ni]Eq(fn)
[
f(r)n)T

]
Y

(a)
ni (17)

C.1.3 ELL: 4th Term

In the last expectation we have a product of sums that is expanded into a double sum over a and b.
There is now two cases: when a = b inside the sum f and W will appear in square forms, when
a 6= b the expectation can be treated as in Sec. C.1.2.

Eq
[
(

Ra∑
r

W(r)nif(r)n)T (

Ra∑
r

W(r)nif(r)n)
]

=
1

Ra
2

Ra∑
a

Ra∑
b

Eq(fn)q(Wni)

[
f(a)TnW(a)TniW(b)nif(b)n

]
(18)

case a = b:∫
q(fn)q(Wni)f(a)TnW(a)TniW(a)nif(a)n dfn dWni

=

∫
q(fan)q(Wa

ni)f(a)TW(a)TW(a)nif(a) dfa dW
a
ni

= Tr[ΣWaΣfan ] + µTfanΣWa
ni
µfan + µTWa

ni
ΣfanµWa

ni
+ µTfaµ

T
Wa

ni
µWa

ni
µfan

(19)
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case a 6= b:∫
q(fn)f(a)Tn

∫
q(Wni)W(a)TniW(b)ni dWni f(b)n dfn

=

∫
q(fn)f(a)Tn

∫
q(Wc

ni)

∫
q(Wb

ni)

∫
q(Wa

ni)W(a)TniW(b)ni dW
a
ni dW

b
ni dW

c
ni f(b)n dfn

=

∫
q(fn)f(a)Tnµ

T
Wa

ni
µWb

ni
f(b) dfn

= µTfanµ
T
Wa

ni
µWb

ni
µfbn

(20)

Because we are summing over a, b we can write

Eq
[
(

Ra∑
r

W(r)nif(r)n)T (

Ra∑
r

W(r)nif(r)n)
]

= (
1

R2
a

Ra∑ Ra∑
b

µTfanµ
T
Wa

ni
µWb

ni
µfbn

)

+ (
1

R2
a

Ra∑
a

Ra∑
b=a

Tr[ΣWa
Σfan ] + µTfanΣWa

ni
µfan + µTWa

ni
ΣfanµWa

ni

(21)

C.2 MR-GPRN: Closed Form Expected Log Likelihood (W→ exp(W))

If W is passed through an exponential function to enforce positive latent weights the expected log
likelihood is:

Lell =

A∑
a=1

αEq

[
logN (Ya|

1

Ra

Ra∑
r=1

(exp(W)f)(r), σ2
a)

]
(22)

Each of the likelihood components can now be dealt with separately. Consider the general a
component we have:

Lella = C1 + C2

Na∑
n=1

K∑
k=1

πk

P∑
p=1

Eq
[
(Y

(a)
ni )TY

(a)
ni

]
− Eq

[
(

1

Ra

Ra∑
r

exp(W(r)ni)f(r)n)TY
(a)
ni

]
−

Eq

[
(Y

(a)
ni )T (

1

Ra

Ra∑
r

exp(W(r)ni)f(r)n)

]
+

Eq

[
(

Ra∑
r

exp(W(r)ni)f(r)n)T (

Ra∑
r

exp(W(r)ni)f(r)n)

]
We now deal with each of the expectations separately.

C.2.1 ELL: 1st Term

As in Sec. C.1.1 the expectation is constant:

Eq
[
(Y

(a)
ni )TY

(a)
ni

]
= Y

(a)
ni

T
Y

(a)
ni (23)

C.2.2 ELL: 2nd and 3rd Term

As in Sec. C.1.2 the expectation is applied to f and W separately. To evaluate the expectation of
exp W we use the result from Eq. 9:
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Eq
[
(

1

Ra

Ra∑
r

exp(W(r)ni)f(r)n)TY
(a)
ni

]
= (

1

Ra

Ra∑
r

Eq(Wni) [exp(W(r)ni)]Eq(fn)
[
f(r)n)T

]
Y

(a)
ni

= (
1

Ra

Ra∑
r

exp(Eq(Wni) [W(r)ni] + Vq(Wni) [Wni(r)]) · Eq(fn)
[
f(r)n)T

]
Y

(a)
ni

(24)

C.2.3 ELL: 4th Term

In the last expectation we have a product of sums that is expanded into a double sum over a and b.
There is now two cases: when a = b inside the sum f and W will appear in square forms, when
a 6= b the expectation can be treated as in Sec. C.2.2.

Eq
[
(

Ra∑
r

exp(W(r)ni)f(r)n)T (

Ra∑
r

exp(W(r)ni)f(r)n)
]

=
1

Ra
2

Ra∑
a

Ra∑
b

Eq(fn)q(Wni)

[
f(a)Tn exp(W(a)ni)

T exp(W(b)ni)f(b)n
]

(25)

case a = b:

∫
q(fan)q(Wa

ni)f(a)T exp(W(a))T exp(W(a)ni)f(a) dfa dW
a
ni

=

∫
q(fan)f(a)T exp(2 · (Eq(Wa

ni)
[Wa

ni] + Vq(Wa
ni) [Wa

ni]))f(a) dfa

= µTfan exp(2 · (Eq(Wa
ni)

[Wa
ni] + Vq(Wa

ni)
[Wa

ni]))µfan

+ Tr
[
exp(2 · (Eq(Wa

ni)
[Wa

ni] + Vq(Wa
ni) [Wa

ni]))Σfan

]
To evaluate the expected value of the square form of exp(W) we apply the result of Eq. 10.

In the case of a 6= b:

∫
q(fn)f(a)Tn

∫
q(Wc

ni)

∫
q(Wb

ni)

∫
q(Wa

ni) exp(W(a)ni)
T exp(W(b)ni) dW

a
ni dW

b
ni dW

c
ni f(b)n dfn

=

∫
q(fn)f(a)Tn exp(µWa

ni
+

1

2
Σani)

T exp(µWb
ni

+
1

2
Σbni)f(b) dfn

= µTfan exp(µWa
ni

+ Σani)
T exp(µWb

ni
+ Σbni)µfbn

D Synthetic Examples

Apart from the variational experiments in Section 2 of the main paper, additional experiments using a
Markov Chain Monte Carlo (MCMC) approach are conducted in this section. We show that when the
dependency structure is lost through the product likelihood construction, the mean of the posterior
distribution for the latent function will also deviate from the true one. We also demonstrate the
posterior contraction and the effect of the different corrections.
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D.1 Data Generating Process

We generate two synthetic observation processes from:

y
(1)
i = f(xi) + ε1

y
(2)
j =

1

2

2j∑
k=2j−1

y
(1)
k + ε2

(26)

Where y(1)i , i = 1, ..., 2N is the observed value of f(xi) with noise ε1 ∼ N (0, σ2
1) and y(2)j , j =

1, ..., N is the aggregate function of y(1) with noise ε2 ∼ N (0, σ2
2),σ1 = 1, σ2 = 0.1. We are using

a sin function to generate data f(xi) = 5 sin2(xi). The likelihood function with the observation
processes Y1 = {y(1)i }2Ni=1 , Y2 = {y(2)j }Nj=1 is given by:

L(Y1,Y2) = p(Y1|f(x), σ2
1)p(Y2|Y1, σ

2
2) (27)

When the data from Y1 has the same support as the observation process Y2, the evidence
from Y2 will not affect parameter estimation in the probability function p(Y1|f(x), σ1). How-
ever, when Y2 has different support from the observed Y1, the additional evidence should
impact parameter inference. As Y2 does not depend on the latent function, this evidence
will be hard to pass via the likelihood function in Eq. 27. One way to correct for this is to in-
troduce dependency between Y1 and Y2 through a non-parametric prior over the latent function f(x).

D.2 Gaussian Processes: Product Likelihood

Since the two observation processes follow the same underlying function sin2(x), we use a single
Gaussian process to model the latent function f(x). We assume:

f(x) ∼ GP(0, k(x, x′)) (28)

where k(x, x′) is the covariance function of f(x). We are using the squared exponential kernel:

k(x, x′) = A exp(− (x− x′)2

l
) (29)

where A is the amplitude parameter and l is the length scale for the kernel function. Thus, we can
write down the joint distribution of Y1 and Y2 as:

p(Y1,Y2, f(x)) = p(f(x)|θ)p(Y1|f(x), σ2
1)p(Y2|Y1, σ

2
2) (30)

Where θ is the hyper-parameters for the Gaussian process. We can write down the distribution of Y1

and Y2 by marginalizing out the latent function:

p(Y1,Y2) =

∫
p(f(x)|θ)p(Y1|f(x), σ2

1)p(Y2|Y1, σ
2
2)df(x) (31)

As Y1 has all the information of f(x), this integral is tractable and we can write y(1) ∼
GP(0, k(x, x′) + σ1). But when the aggregation function Y2 has additional information about
the latent function, i.e. Y1 and Y2 only partially overlapping, bringing additional information from
Y2 requires the prediction of the missing values of the corresponding Y1 process. This can be done
in Markov Chain Monte Carlo(MCMC) setting by treating the unobserved value of Y1 as extra
parameters. However, this increase a lot of computational complexity for the MCMC sampler. One
option is to make an independence assumption for Y1 and Y2. Thus, the information in Y2 can
affect the latent function f directly.
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D.3 Gaussian Processes: Composite Likelihood

Using the composite likelihoods, we assume each part of the likelihood is independent to each other.
For the joint probability of Y1 and Y2 , we have:

p(Y1,Y2) =

∫
p(f(x)|θ)p(Y1|f(x), σ2

1)p(Y2|f(x), σ2
2)df(x) (32)

Instead of assuming the conditional probability p(Y2|Y1, σ
2
2), we are now assuming the data depends

on the latent function f(x) directly. However, when Y1 and Y2 are different resolutions under the
same support, this likelihood misspecifies the correlation and will make the inference of f(x) contract
into the observed mean. While this contraction actually equals to an extra bias to the data in the
overlapping zone, the misspecified dependency structure will lead to an overfitting problem. This
overfitting problem of product likelihoods has been studied in the information theory [28, 31] and the
simplest way is to use an exponential weight to correct the inference:

L(Y1,Y2) =

∫
p(f(x)|θ)p(Y1|f(x), σ2

1)αp(Y2|f(x), σ2
2)αdf(x) (33)

where α ∈ IR>0 is composite weight for the likelihood. The problem of learning the latent function
becomes learning the parameters of the likelihood function and the composite weights.

D.4 Composite Weights

The composite log likelihood function can be written as:

`c(θ̂) =

k∑
i=1

f(θ̂i|Y) (34)

where f(θ̂i|Y ) is the likelihood function of i-th parameter θi and we assume each part of the
likelihood function is independent to each other. θ̂i is the estimated value of θi. With the observed
distribution of Y, p0(Y|θ0) and θ0 as the true parameter value, we have:

`′c(θ0) = `′c(θ̂) + (θ0 − θ̂)`′′c (θ̂) + o(n−1) (35)

θ̂ − θ0 → −
`′(θ0)

`′′(θ0)
(36)

Since we have `′(θ) = J(θ) and `′′(θ) = H(θ), the variance of θ will follow the sandwich variance
H−1(θ)J(θ)H−1(θ). Then, calculating the Taylor expansion for the likelihood, we have:

`c(θ0) = `c(θ̂) + (θ0 − θ̂)`′c(θ̂) +
1

2
(θ0 − θ̂)`′′c (θ̂)(θ0 − θ̂)T + o(n−1) (37)

The expected variance from the composite likelihood model is :

Eθ[V ar(θ̂|Y)] = −H(θ̂|Y) (38)

Since θ̂ → θ, we need to set the variance of the estimated parameter to the asymptotic variance. Thus,
we have:

Eθ[αV ar(θ̂|Y)] = H−1(θ̂|Y)J(θ̂|Y)H−1(θ̂|Y) (39)

For a scalar variable, we can match the variance to the exact asymptotic vairance using a scalar
number. But if the estimating variable θ is high dimensional, it’s not easy to adjust the proper variance
using a single weight. We could use a matrix (C ∈ IRk×k) to adjust the covariance structure. In this
case we would have:

CH(θ̂|Y)CT = H−1(θ̂|Y)J(θ̂|Y)H−1(θ̂|Y) (40)
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However, this increases the computational complexity substantially. One alternative way is to use a
scalar weight to match the identities of the covariance matrix. Lyddon et al. [15] and Ribatet [24]
developed two different ways to adjust the identities of the covariance matrix:

αRibatet =
|θ̂|

Tr[H(θ̂)−1J(θ̂)]
, αLyddon =

Tr[H(θ̂)J(θ̂)−1H(θ̂)]

Tr[H(θ̂)]
. (41)

Where αRibatet considers all the information in the covariance matrix and αLyddon only matches the
information in the diagonal elements.

D.5 MCMC Composite Likelihood Experiments

We now construct an MCMC experiment for the synthetic data using Eq. 26. Instead of sampling
directly from the intractable joint distribution of L(Y1,Y2), we sample from the joint probability
with the latent variable L(Y1,Y2, f(x)) via a Metropolis-Hastings within Gibbs sampler. We
perform three block updates: on θ0 for the Gaussian process prior, f(x) for the latent function
variables and σ2 = {σ2

1 , σ
2
2} for the noise parameter.

Algorithm 3 Block Metropolis-Hastings within Gibbs

Input: Observed datasets {(Xs,Ys)}Ss=1, initial parameters θ0,

for i-th iteration do
Update parameter block θi

function BLOCK (θi)

1. Sample proposed value of the Gaussian process prior θ′i ∼ N(θi−1,∆)

2. Calculate the conditional probability distribution p(θ′i|Y1, Y2, σ2
i−1, f(x)i−1)

3. Calculate the acceptance rejection ratio:

π =
p(θ′i|Y1,Y2,σ

2
i−1,f(x)i−1)

p(θi−1|Y1,Y2,σ2
i−1,f(x)i−1)

4. Update the i-th value of θi via π

end function

Update the parameter block f(x)i via π =
p(f(x)′i|Y1,Y2,σ

2
i−1,θi)

p(f(x)i−1|Y1,Y2,σ2
i−1,θi)

Update the parameter block σi via π =
p(σ2

i |Y1,Y2,θi,f(x)i)

p(σ2
i−1|Y1,Y2,θi,f(x)i)

end for
return θ, f(x), σ2

D.6 Variational Composite Likelihood Experiments

In this section we provide further details to reproduce the variational composite likelihood experiments
in Sec. 2.2 and Fig. 2 of the main paper.

Data Generation We consider the case of having two dependent observation processes. We generate
one process Y1 = 5 · sin(X)2 + 0.1 · ε with ε ∼ N (0, 1) with 100 samples over the range [−2, 15].
For Y2 we aggregate Y1 into bins of size 3, S2 = 3, so that Y2 ∈ IR33 and X2 ∈ IR33×3. In Fig. 2
we only plot the range [3, 10].

Parameter Initialization For both MR-GP and VBAGG-NORMAL we use an SE kernels with length-
scale of 0.1 and variance 1.0. We initialize the likelihood noise to 0.1.
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Figure 5: Top Left: Comparing the posterior of the latent function f(x) under the product likelihood
assumption and a correctly specified likelihood. The product likelihood assumption causes extreme
posterior contraction which effects both the mean and variance. Bottom Left: Comparison of the true
posterior of σ1 noise to the posterior under the product likelihood and under the composite likelihood
with different weights. The composite likelihood is able to recover the true posterior. Top Right:
Comparing the posterior of the latent function f(x) under the composite likelihood assumption with
Lyddon correction and a correctly specified likelihood.Bottom Right: Comparing the posterior of
the latent function f(x) under the composite likelihood assumption with Ribatet correction and
a correctly specified likelihood. The two correction have the similar results for our experiments.
Although the mean of the function is not exactly match the true function, the variance of the latent
function is corrected close to the true function. The misspecified part is due to the imprefect match of
the asymptotic variance discussed in section D.4

Additional Training Details For VBAGG-NORMAL we run for 10000 epochs. For MR-GP for we
run the MLE estimate for 10000 epochs, obtain αRibatet and then optimize the ELBO for 10000
epochs.

E Multi-resolution Air Pollution Experiments

E.1 Inter-task Multi-resolution: PM10-PM25

In this section we provide additional details for reproducing the inter-task multi-resolution experiments
as described in the main paper.

Variational Parameter Initialization: For MR-DGP we initialize all likelihood noises to 0.01 and
we use a Matern32 kernel for all latent functions with a lengthscale of 0.01. For both MR-GPRN and
CENTER-POINT we initialize the likelihood noise to be 0.1 and use a squared exponential kernel for
all latent functions. We use Q = 1 and set the lengthscale of f to be 0.1 and the lengthscales of W to
be 3.0.
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Training Details: We train MR-DGP for a total of 900 iterations. We train both MR-GPRN and
CENTER-POINT for 2000 iterations each.

E.2 Intra-task Multi-resolution: Space-time NO2

In this section we provide additional details for reproducing the intra-task multi-resolution experi-
ments described in Sec. 4 of the main paper.

Data pre-processing: We extract spatial features based on the London road network (OS Highways)
2 and land use (UKMap) 3. OS Highways is a dataset of every road in London with information of
the length, road classification (A Road, B Road, etc). UKMap is a dataset of polygons where each
polygon represents a physical entity, e.g a building, a river, a park, etc. UKMap provides additional
information such as the height of the buildings and the area of the parks and rivers. For each input
location we construct a buffer of approximately 100m (a radius 0.001 degrees in SRID:4326). Within
the buffer zone we calculate the average length of the A-roads, the average ratio between the width of
the roads and height of buildings on the corresponding roads, and the total area of vegetation and
water. We convert all time stamps into unix epochs and we standardize all features before training. To
approximate the integral in the likelihood (Eq. 4 in main text) we discretize the area of each satellite
based observation input into a 10 by 10 uniform grid of lat-lon points.

MR-DGP Architecture: For MR-DGP we use the architecture described on the right subfigure of
Fig. 3 in the main paper where X2,Y2 corresponds to the LAQN dataset and X1,Y1 to the satellite
dataset. We give the initialization of the specific latent functions below.

Variational Parameter Initialization: For MR-GPRN and VBAGG-NORMAL we use 400 inducing
points for all latent functions. Both the inducing function values and the variances are randomly
initialized between 0 and 1. For MR-DGP the latent functions f

(1)
1 and f

(1)
2 we place 300 inducing

points and for f
(2)
2 we use 100. For all models we initialize the inducing points locations with

K-means with K=300 on the satellite model observations input for f
(1)
1 and f

(1)
2 and K=100 for f

(2)
2 .

Model Parameter Initialization: In all models and latent function withing, MR-GPRN, VBAGG-
NORMAL and MR-DGP we use SE kernels initialized with lengthscales of 0.1 and SE variance to 1.0.
We initialize the likelihood noise to be 0.1.

Additional Training Details: We train MR-DGP for a total of 1200 iterations. We train both MR-
GPRN, VBAGG-NORMAL and CENTER-POINT for 2000 iterations each.

F Relation to VBAgg

In this section we show that MR-GPRN is a generalisation of VBAGG-NORMAL [13] from a single
GP to a GPRN. In VBAgg each observation ya is the aggregate output of some bag of items
xa = {xai }

Na
i=1. The likelihood of each bag is ya|xa ∼ N (y|ηa, τa) where ηa =

∑Na

i=1 w
a
i µ(xai )

and µ is the mean of the latent process f . In MR-GPRN we are modelling the underlying process
with the sum of products of GPs. Rewriting MR-GPRN using the notation of [13]: µ = Wf and
each dataset {Xa,Ya}Aa=1 directly corresponds to the observations and bag of items defined in
VBAGG-NORMAL. Let Na = Sa, and τa = σ2

a and the composite weight α = 1. The composite
weight of value 1 is implicitly included in the model of VBAGG-NORMAL through the independence
assumption. We assume an simple aggregation of the bag of items, although we note that is not
necessary, so setting wai = 1

Sa we obtain ya ∼ N (
∑Na

i=1 w
a
i µ(xai ), τa) which is MR-GPRN in the

notation of [13]. VBAGG-NORMAL is then recovered when we use only one latent function (by
setting W to a constant value), by only considering the single task setting and by setting the composite
weight to one.

2https://www.ordnancesurvey.co.uk/business-and-government/help-and-support/
products/os-mastermap-highways-network.html

3https://www.geoinformationgroup.co.uk/ukmap
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