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Abstract. Under fairly natural assumptions, Huang counted the num-
ber of rational points lying close to an arc of a planar curve. He obtained
upper and lower bounds of the correct order of magnitude, and conjec-
tured an asymptotic formula. In this note, we establish the conjectured
asymptotic formula.

1. Introduction

Let f be a real-valued function defined on a compact interval I = [ρ, ξ] ⊆
R. For positive real numbers δ 6 1/2 and Q > 1, define

Ñf (Q, δ) = #

{
(a, b, q) ∈ Z3 : 1 6 q 6 Q, a/q ∈ I, gcd(a, b, q) = 1,

|f(a/q)− b/q| < δ/Q

}
.

Roughly speaking, this counts the number of rational points with denomi-

nator at most Q that lie within δQ−1 of the curve Cf = {(x, f(x)) : x ∈ I}.
Huang [3, Theorem 2] estimated this quantity. As discussed in [3], such es-

timates are readily applied to the Lebesgue theory of metric diophantine

approximation.

Theorem 1.1 (Huang). Let 0 < c1 6 c2. Assume that f : I → R is a C2

function satisfying

c1 6 |f ′′(x)| 6 c2 (x ∈ I),

with Lipschitz second derivative. Assume further that

(1.1) 1/2 > δ > Qε−1,

for some ε ∈ (0, 1). Then

(1.2)
2
√

3

9ζ(3)
+O(Q−ε/2) 6

Ñf (Q, δ)

|I|δQ2
6

1

ζ(3)
+O(Q−ε/2).

The implied constant depends on I, c1, c2, ε and the Lipschitz constant; it is

independent of f, δ and Q.

2010 Mathematics Subject Classification. Primary 11J83; Secondary 11J13.
Key words and phrases. Metric diophantine approximation, rational points near

curves.
1



2 S. CHOW

Theorem 1.1 sharpened the upper bounds obtained by Huxley [4] and

Vaughan–Velani [5], as well as the lower bounds obtained by Beresnevich–

Dickinson–Velani [1] and Beresnevich–Zorin [2].

The purpose of this note is to squeeze together the constants in (1.2), so

as to confirm Huang’s conjectured asymptotic formula

(1.3) Ñf (Q, δ) ∼
2

3ζ(3)
|I|δQ2 (Q→∞),

within the range (1.1). The asymptotic formula (1.3) follows straightfor-

wardly from our theorem, which we state below and establish in the next

section.

Theorem 1.2. Assume the hypotheses of Theorem 1.1. Let η > 0 and

0 < τ < ε/2.

Then

2

3ζ(3)
− η +O(Q−τ ) 6

Ñf (Q, δ)

|I|δQ2
6

2

3ζ(3)
+ η +O(Q−τ ).

The implied constant depends on I, c1, c2, ε, η and the Lipschitz constant.

We use Landau and Vinogradov notation: for functions f and positive-

valued functions g, we write f � g or f = O(g) if there exists a constant C

such that |f(x)| 6 Cg(x) for all x. If S is a set, we denote the cardinality

of S by #S.

2. The count

In this section, we prove Theorem 1.2. For positive real numbers δ 6 1/2

and Q > 1, define the auxiliary counting function

N̂f (Q, δ) = #

{
(a, b, q) ∈ Z3 : 1 6 q 6 Q, a/q ∈ I,

gcd(a, b, q) = 1, |f(a/q)− b/q| < δ/q

}
.

With the same assumptions as in Theorem 1.1, Huang [3, Corollary 1]

showed that

(2.1) N̂f (Q, δ) = (ζ(3)−1 +O(Q−ε/2)) · |I|δQ2.

Let t ∈ N, 1/2 < α < 1 and

αi = αi (0 6 i 6 t).

We will have t�η 1, so the hypothesis (1.1) is satisfied with 2τ in place of

ε and (αiQ,αjδ) in place of (Q, δ), whenever Q is large and 0 6 i, j 6 t. In

particular (2.1) holds with these adjustments, so

(2.2) N̂f (αiQ,αjδ) =
(α2

iαj
ζ(3)

+O(Q−τ )
)
· |I|δQ2 (0 6 i, j 6 t).
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Employing (2.2), we have

Ñf (Q, δ)

>
t∑
i=1

#

{
(a, b, q) ∈ Z3 : αiQ < q 6 αi−1Q, a/q ∈ I,

gcd(a, b, q) = 1, |f(a/q)− b/q| < αiδ/q

}

=
t∑
i=1

(N̂f (αi−1Q,αiδ)− N̂f (αiQ,αiδ))

=
t∑
i=1

(α2
i−1αi − α3

i

ζ(3)
+O(Q−τ )

)
· |I|δQ2.

Now

(2.3) Ñf (Q, δ) >
(X(α)

ζ(3)
+O(tQ−τ )

)
· |I|δQ2,

where

X(α) =
∑
i6t

(α2
i−1αi − α3

i ).

We compute that

X(α) = (α− α3)
t−1∑
j=0

(α3)j =
(α− α3)(1− α3t)

1− α3

= (1− α3t)(1− (1 + α + α2)−1).

Choosing α close to 1, and then choosing t�η 1 large, gives

X(α) > 2/3− ζ(3)η.

Substituting this into (2.3) yields the desired lower bound.

We attack the upper bound in a similar fashion, but there is an extra

term to consider. By (2.2), we have

Ñf (Q, δ)− Ñf (αtQ,αtδ)

6
t∑
i=1

#

{
(a, b, q) ∈ Z3 : αiQ < q 6 αi−1Q, a/q ∈ I, gcd(a, b, q) = 1,

|f(a/q)− b/q| < αi−1δ/q

}

=
t∑
i=1

(N̂f (αi−1Q,αi−1δ)− N̂f (αiQ,αi−1δ))

=
t∑
i=1

(α3
i−1 − αi−1α2

i

ζ(3)
+O(Q−τ )

)
· |I|δQ2.

Now

Ñf (Q, δ)− Ñf (αtQ,αtδ) 6
(Y (α)

ζ(3)
+O(tQ−τ )

)
· |I|δQ2,
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where

Y (α) =
∑
i6t

(α3
i−1 − αi−1α2

i ).

Here

Y (α) = α−1X(α) 6
1− α2

1− α3
=

1 + α

1 + α + α2
.

Choosing α close to 1 gives Y (α) 6 2/3 + ζ(3)η/2, and so

(2.4) Ñf (Q, δ) 6 Ñf (αtQ,αtδ) +
( 2

3ζ(3)
+
η

2
+O(tQ−τ )

)
· |I|δQ2.

For the first term on the right hand side of (2.4), we bootstrap Huang’s

upper bound (1.2). This gives

Ñf (αtQ,αtδ) 6
( α3

t

ζ(3)
+O(Q−τ )

)
· |I|δQ2.

Choosing t�η 1 large, so that α3
t 6 ζ(3)η/2, we now have

Ñf (αtQ,αtδ) 6
(η

2
+O(Q−τ )

)
· |I|δQ2.

Substituting this into (2.4) provides the sought upper bound, completing

the proof of the theorem.
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