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AVERAGING ON THIN SETS OF DIAGONAL FORMS

SAM CHOW

Abstract. We investigate one-dimensional families of diagonal forms, con-
sidering the evolution of the asymptotic formula and error term. We then
discuss properties of the average asymptotic formula obtained. The subse-
quent second moment analysis precipitates an effective means of computing
p-adic densities of zeros for large primes p.

1. Introduction

The study of families of integral forms has long been espoused by arithmetic
geometers in order to understand fundamental differences in the prevalences of
rational points of forms. The idea of counting zeros on average, however, seems
to be recent, and has been quite successful in extracting information about
typical behaviour in situations where the anomalies have not been classified
[2, 6, 14]. Much of the inspiration for this paper is owed to recent work of
Brüdern and Dietmann [6]. By averaging over all coefficients in a range far
exceeding the box length B, they demonstrated the Hasse principle for almost
all degree k diagonal forms in just 3k + 2 variables. Our goal is to see what
can be achieved using as little averaging as possible.

Let k > 3 be an integer. Let h1, . . . , hs be polynomials of degree d > 1
with integer coefficients, being pairwise relatively prime in Q[t] and having no
integer roots. In the case that k is even, we assume that the leading coefficients
of the hi do not all have the same sign. For positive integers t 6 Bδ, where δ
is a small positive constant, we first estimate the number N(B, t) of integral
solutions x ∈ [−B,B]s to

h1(t)xk1 + . . .+ hs(t)x
k
s = 0. (1.1)

Suppose that either s > 2k + 1 and dδ < 21−k; or s > 2k2− 2 and dδ < 1/3.
Define

G(t) =
∞∑
q=1

q−s
q∑

a=1
(a,q)=1

s∏
i=1

q∑
m=1

e(ahi(t)m
k/q).

Theorem 1.1. There exist positive constants C and ε such that if Bε � t 6
Bδ then

N(B, t)td = CG(t)Bs−k +O(Bs−k−ε). (1.2)
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Theorem 1.1 provides an asymptotic formula forN(B, t), since we know from
[7, Chapter 8] that G(t) is a positive real number for any integer t. Motivated
by the estimate (1.2), we study the asymptotic behaviour of the corresponding
weighted average. Let T be a positive integer satisfying Bε � T 6 Bδ.

Theorem 1.2. There exist positive constants K and ε, independent of T , such
that

T−1
∑
t6T

N(B, t)tdBk−s −K � B−ε.

Let C and K be as in Theorems 1.1 and 1.2. Put

G =
∞∑
q=1

q−1−s
q∑
t=1

q∑
a=1

(a,q)=1

s∏
i=1

q∑
m=1

e(ahi(t)m
k/q). (1.3)

We will see that K = CG. We will show in Lemma 3.1 that T−1
∑

t6T G(t)
converges to G as T →∞. If the variance of the singular series were zero then
KBs−kt−d would be a good approximation to N(B, t) for almost all t.

Proposition 1.3. Assume that

lim
T→∞

T−1
∑
t6T

(G(t)−G)2 = 0. (1.4)

Then there exists a positive-valued arithmetic function ρ(t), decreasing to 0,
such that the following statement holds for almost all positive integers t: if
B > t1/δ then

|N(B, t)tdBk−s −K| < ρ(t).

This would be a beautiful estimate, well behaved and independent of any
singular series. Unfortunately the variance is positive almost surely.

Theorem 1.4. Let h1, . . . , hs be as defined in the preamble to Theorem 1.1, and
assume that they are irreducible in Q[t]. Then T−1

∑
t6T (G(t)−G)2 converges

to a positive real number.

The assumptions on h1, . . . , hs are mild. Indeed, almost all degree d poly-
nomials with integer coefficients are irreducible in Q[t] and therefore have no
integer root (see [12] or [15, p. 365]). Moreover, almost all s-tuples of such
polynomials are pairwise relatively prime in Q[t].

Theorem 1.1 ought to bear no surprises, but note that the coefficients are
non-negligible in terms of the box size, and that the constants C and ε do not
depend on t. We omit the case k = 2 for simplicity, as one would expect a
Kloosterman [11] or Heath-Brown [10] approach to produce the asymptotic for-
mula (1.2) with just s > 4 variables, subject to an assumption on dδ. Theorem
1.2 provides the estimate KBs−k for the weighted average T−1

∑
t6T N(B, t)td,

with a uniform power saving in the error term. This is an elegant estimate,
independent of any singular series and independent of T . Theorem 1.4 shows
that the singular series G(t) fluctuates not insignificantly about its mean value
G. Our proof requires us to compare p-adic densities of zeros for large primes
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p, so we develop an effective method to compute these. To the author’s knowl-
edge, this is the first such method. Note that one could use the second part of
[20, Lemma 10.2] to establish our results for any s > 2k2 − 2k, but this would
require a stronger assumption on dδ.

We now elaborate briefly on previous related work, referring the reader to
the introduction of [6] for a more detailed account. Poonen and Voloch [16]
considered the set of all integral forms of degree k > 2 in s > 3 variables,
for a given (k, s) 6= (2, 3), demonstrating that a positive proportion of such
forms are everywhere locally soluble. Browning and Dietmann [3] proved an
additive analogue of this result for s > 4, and also showed that almost all
additive forms of degree k > 2 in s = 3 variables admit no nontrivial integral
solutions. It appears that average solution-counting was pioneered by Breyer
in his doctoral thesis [2]. Brüdern and Dietmann subsequently strengthened
his results to produce the aforementioned paper [6], and undertook parallel
research for Diophantine inequalities in [5]. Madlener applied similar tech-
niques to two problems in his dissertation [14], in particular considering a
thinner s-dimensional family where the coefficients are ϕ1(a1), . . . , ϕs(as) for
fixed polynomials ϕ1, . . . , ϕs of the same degree d, and showing that O(k)
variables suffice for almost all forms in this family to satisfy the Hasse prin-
ciple. Note that in [2], [6] and [14] it is necessary for the coefficients to be
much greater than B in absolute value, in order to interchange the rôles of
coefficients and variables.

For 3 6 k 6 6 in Theorem 1.1, our assumptions on s and dδ present a
trade-off between the number of variables needed and the allowed size of the
coefficients hi(t). Assuming that s > 2k2 − 2 we may, for any k > 3, allow
coefficients of size � B1/3−ε. With td = B1/3−ε and m = max |hi(t)|, Theorem
1.1 gives an asymptotic formula for the number of solutions x to equation
(1.1) satisfying 0 < |x| � m3+ε whenever s > 2k2 − 2. If one is interested
only in upper bounds for the height |x| of a smallest nontrivial zero x of a
diagonal form in s variables, with m the maximum of the absolute values of
the coefficients, then more can be said. Schmidt [17] established the bound
mε for k odd and s extremely large. Brüdern [4] achieved the bound m8/3+ε

for diagonal cubic forms in just nine variables. By averaging over all possible
coefficients in a large range, Brüdern and Dietmann [6, Theorem 1.3] obtained
the impressive bound m1/(s−2−k) for almost all locally soluble diagonal forms
in s > 3k + 2 variables. Our averaging occurs over a much thinner set, and
yields the expected asymptotic formula (1.2).

This paper is organised as follows. In §2 we establish Theorem 1.1 via the
circle method. The singular integral is treated as in [6, §3.1]. Our results for
s > 2k2 − 2 and dδ < 1/3 rely on recent work of Wooley [20], where efficient
congruencing is used to show that 2k2 − 2 variables suffice to establish an as-
ymptotic formula for diagonal forms under mild conditions on the coefficients.
In §3 we average the singular series by considering congruences with one extra
variable, yielding Theorem 1.2. We conclude in §4 by proving Proposition 1.3
and Theorem 1.4. To show Theorem 1.4 we realise the second raw moment as
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an Euler product, leading us to compare p-adic densities. A simplest scenario
is apparent, and a Chebotarev-type result (Lemma 4.6) enables us to construct
a ‘next simplest’ scenario. The densities are understood via a lifting argument.

We adopt the convention that ε denotes an arbitrarily small positive num-
ber, so that its value may differ between instances. The implicit constants in
Vinogradov and Landau notation depend at most on k, s, d, δ, h1, . . . , hs and
ε. Almost all means proportion 1, and similarly for almost surely. Bold face
will be used for vectors, for instance we shall abbreviate (x1, . . . , xs) to x and
write |x| = max |xi|. The letter p is reserved for prime numbers. A kth power
residue modulo m is a kth power of some x ∈ (Z/mZ)×. Denote by Fq the
finite field of order q.

The author is very grateful towards Trevor Wooley for his enthusiastic su-
pervision. Thanks also to Adam Morgan for his invaluable help with Lemmas
2.2 and 4.6.

2. The circle method

We show, a fortiori, that there exists C > 0 such that

N(B, t)tdBk−s − CG(t)� B−ε + 1/t (2.1)

whenever t 6 Bδ is a positive integer, since we will also need this to prove
Theorem 1.2 and Proposition 1.3. Let t 6 Bδ be a positive integer. Let

f(γ) =
∑
|x|6B

e(γxk),

and put fi(γ) = f(γhi(t)) for i = 1, 2, . . . , s. Fix an integer λ such that
|hi(t)| 6 λtd uniformly in i and t.

We begin with the assumptions s > 2k + 1 and dδ < 21−k. If a > 0 and
q > 0 are integers, let M(q, a) be the set of α ∈ (0, 1) such that |qα − a| 6
(2kλBk−k/2k−1

)−1. Let M be the (disjoint) union of the arcs M(q, a) over

0 6 a 6 q 6 λtdBk/2k−1
with (a, q) = 1. Put m = (0, 1) \M. By orthogonality,

N(B, t) =

∫
M

f1(α) · · · fs(α) dα +

∫
m

f1(α) · · · fs(α) dα.

The following is the crux of the minor arc analysis.

Lemma 2.1. Let α ∈ m and c = hi(t) for some i. Then

f(αc)� B1−21−k+ε. (2.2)

Proof. Let p be the set of real numbers β such that if q > 0 is coprime to a and
|qβ − a| 6 (2kBk−1)−1 then q > B. First suppose that αc ∈ p. By Dirichlet’s
approximation theorem [19, Lemma 2.1], we may choose coprime q > 0 and
a such that q 6 2kBk−1 and |αcq − a| 6 (2kBk−1)−1. Since αc ∈ p, we have
q > B, and the bound (2.2) follows from Weyl’s inequality [19, Lemma 2.4].

Thus, we may assume that αc /∈ p. Now there exist coprime integers q > 0
and a such that q 6 B and |αcq − a| 6 (2kBk−1)−1. By [19, Theorem 4.1 and
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Lemma 4.6], we have

f(αc)� q1/2+ε + q−1/k min(B, |αc− a/q|−1/k), (2.3)

so we may assume that q 6 Bk/2k−1
. Write a/c = ã/c̃ with c̃ > 0 and (ã, c̃) = 1.

Then c̃q 6 λtdBk/2k−1
, so the fact that α ∈ m gives

|c̃qα− ã| > (2kλBk−k/2k−1

)−1.

In particular q|αc−a/q| � (Bk−k/2k−1
)−1 which, via the bound (2.3), completes

the proof. �

Periodicity and Hua’s lemma [19, Lemma 2.5] yield∫ 1

0

|fi(α)|2k dα =

∫ 1

0

|f(γ)|2k dγ � B2k−k+ε, (2.4)

and Hölder’s inequality now gives∫ 1

0

|f1(α) · · · f2k(α)| dα� B2k−k+ε.

Combining this with Lemma 2.1 on the remaining variables, we get∫
m

f1(α) · · · fs(α) dα� Bs−k+ε−21−k(s−2k). (2.5)

This completes our treatment of the minor arcs m.

Define Q = λtdBk/2k−1
. When β ∈ R and P > 0, put

v(β, P ) =

∫ P

−P
e(βγk) dγ

and v(β) = v(β, 1). For i = 1, 2, . . . , s, write vi(β,B) = v(βhi(t), B) and
vi(β) = vi(β, 1). Let

S(q, a) =

q∑
m=1

e(amk/q) (2.6)

whenever q > 0 and a are integers.

We begin by considering some c = hi(t) and α ∈M(q, a), where q 6 Q and
(a, q) = 1. Write c/q = c̃/q̃ with q̃ > 0 and (c̃, q̃) = 1, and note that

q−1S(q, ac) = q̃−1S(q̃, ac̃). (2.7)

Since |qα− a| 6 (2kλBk−k/2k−1
)−1 and dδ < 21−k, we have

|q̃αc− ac̃| 6 td(2kBk−k/2k−1

)−1 6 (2kBk−1)−1.

Now [19, Theorem 4.1] yields

f(αc)− q̃−1S(q̃, ac̃)v(αc− ac̃/q̃, B)� q̃1/2+ε. (2.8)

Let

Vi(α) = q−1S(q, ahi(t))vi(α− a/q,B) (1 6 i 6 s)
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when α ∈M(q, a) ⊆M, and let

Xs =

∫
M

V1(α) · · ·Vs(α) dα.

The identity (2.7) and the bound (2.8) give
s∏
i=1

fi(α)−
s∏
i=1

Vi(α)� Qs/2+ε +Q1/2+ε max
i
|fi(α)|s−1

so, using the bound (2.4),∫
M

f1(α) · · · fs(α) dα−Xs � E1 + E2,

where
E1 = Qs/2+1Bk/2k−1−k+ε � (td)s/2+1B(s/2+2)k/2k−1−k+ε

and
E2 = Q1/2Bs−k−1+ε � td/2Bk/2k+s−k−1+ε.

In light of our assumptions s > 2k + 1 and dδ < 21−k, we now have∫
M

f1(α) · · · fs(α) dα−Xs � td/2Bk/2k+s−k−1+ε. (2.9)

Next we estimate Xs. Let

G(t, q) =

q∑
a=1

(a,q)=1

s∏
i=1

q−1S(q, ahi(t)), (2.10)

and note that

G(t) =
∞∑
q=1

G(t, q). (2.11)

Let

Js(q) =

∫ T1

−T1
v1(β,B) · · · vs(β,B) dβ,

where T1 = (2kλqBk−k/2k−1
)−1, so that

Xs =
∑
q6Q

Js(q)G(t, q). (2.12)

First we consider Js(q). By a change of variables,

Js(q) = Bs−k
∫ T2

−T2
v1(β) · · · vs(β) dβ,

where T2 = Bk/2k−1
/(2kλq). By [6, Lemma 3.1], the integral

I(t) =

∫ ∞
−∞

v1(β) · · · vs(β) dβ

is a positive real number. The classical bound [19, Theorem 7.3] gives

vi(β)� |βhi(t)|−1/k 6 |β|−1/k. (2.13)
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Hence

Js(q)B
k−s − I(t)�

( s∏
i=1

|hi(t)|−1/k
)∫ ∞

T2

β−s/k dβ,

so
td(Js(q)B

k−s − I(t))� (Q/q)1−s/k. (2.14)

Next we consider G(t, q). By the identity (2.7) and [19, Theorem 4.2],
s∏
i=1

q−1S(q, ahi(t))� q−s/k
s∏
i=1

(hi(t), q)
1/k. (2.15)

We now exploit the fact that h1, . . . , hs are pairwise relatively prime in Q[t].

Lemma 2.2. Let q and t be positive integers. Then
s∏
i=1

(hi(t), q)� q (2.16)

uniformly in t and q.

Proof. For each pair hi, hj with i 6= j, perform Euclid’s algorithm in Q[t] and
clear denominators to give a positive integer mij and polynomials ϕij, ψij ∈ Z[t]
such that

hiϕij + hjψij = mij.

Then
(hi(t), hj(t)) 6 mij, (2.17)

and this bound depends only on the polynomials hi and hj. Note that if
x, y ∈ N then (x, q)(y, q) 6 (xy, q)(x, y). This shows by induction on n 6 s
that

n∏
i=1

(hi(t), q) 6
( n∏
i=1

hi(t), q
) ∏

16i<j6n

(hi(t), hj(t)).

Hence,
s∏
i=1

(hi(t), q) 6 q
∏

16i<j6s

mij.

�

The inequalities (2.15) and (2.16) yield

G(t, q)� q1+(1−s)/k (2.18)

so, by equation (2.12) and the inequality (2.14),

td
(
XsB

k−s − I(t)
∑
q6Q

G(t, q)
)
� Q(2k+1−s)/k. (2.19)

The identity (2.11) and the bound (2.18) give

G(t)� 1 (2.20)

and
I(t)

∑
q6Q

G(t, q)− I(t)G(t)� I(t)Q(2k+1−s)/k. (2.21)
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The error bounds (2.5), (2.9), (2.19) and (2.21) yield

td(N(B, t)Bk−s − I(t)G(t))� E + I(t)tdQ(2k+1−s)/k, (2.22)

where

E = tdBε−21−k(s−2k) + t3d/2Bk/2k−1+ε +Q(2k+1−s)/k.

Lemma 2.3. There exists a constant C > 0 such that

I(t)td = C +O(1/t)

for positive integers t.

Proof. We may assume that t is large in terms of h1, . . . , hs. First assume that
k is odd. By a change of variables,

I(t) = k−s
∫ ∞
−∞

∫
(−1,1)s

(ζ1 · · · ζs)1/k−1e(βh · ζ) dζ dβ,

where h = (h1(t), . . . , hs(t)). The strategy is to change the order of integration
and use Fourier inversion. It transpires that it is of key importance that a
certain function yet to appear is of bounded variation. We begin by tweaking
the integral so that this will follow easily. For 0 < ρ < 1 put

W (ρ) = {ζ ∈ (−1, 1)s : |ζi| > ρ for i = 1, 2, . . . , s}

and

U(ρ) = (−1, 1)s \W (ρ).

For S ⊆ (−1, 1)s, let

IS =

∫ ∞
−∞

∫
S

(ζ1 · · · ζs)1/k−1e(βh · ζ) dζ dβ,

so that ksI(t) = IU(ρ) + IW (ρ). The bounds∫ ρ

−ρ
ζ

1/k−1
i dζi � ρ1/k

and (2.13) imply that IU(ρ) � ρ1/k → 0 as ρ→ 0+, so

ksI(t) = lim
ρ→0+

IW (ρ). (2.23)

By Fubini’s theorem we deduce

IW (ρ) = lim
X→∞

∫
W (ρ)

(ζ1 · · · ζs)1/k−1 sin(2πXh · ζ)

πh · ζ
dζ.

Write as = |hs(t)|,

ζ ′ = (ζ1, . . . , ζs−1), Y =
s−1∑
i=1

hi(t)ζi, Cρ = (−1,−ρ) ∪ (ρ, 1)

and

C ′ρ = (Y − as, Y − asρ) ∪ (Y + asρ, Y + as).
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Changing variables from ζs to u = h · ζ shows that a
1/k
s IW (ρ) equals

lim
X→∞

∫
Cs−1
ρ

(ζ1 · · · ζs−1)1/k−1

∫
C′ρ

(u− Y )1/k−1 sin(2πXu)

πu
du dζ ′.

For real numbers u, let

Bρ(u) = {ζ ′ ∈ Cs−1
ρ : asρ < |u− Y | < as},

gu(ζ
′) = (ζ1 · · · ζs−1)1/k−1(u− Y )1/k−1

and

Vρ(u) =

∫
Bρ(u)

gu(ζ
′) dζ ′,

so that

a1/k
s IW (ρ) = lim

X→∞

∫ ∞
−∞

Vρ(u)
sin(2πXu)

πu
du.

The function Vρ(·) is compactly supported. To show that it is of bounded
variation, we show that the gradient (Vρ(u) − Vρ(v))/(u − v) is bounded for
u 6= v. Since the numerator is bounded, it suffices to consider 0 < |u − v| <
asρ/2. Here

Vρ(u)− Vρ(v)

u− v
= I + J ,

where

I =

∫
Bρ(u)

(ζ1 · · · ζs−1)1/k−1 (u− Y )1/k−1 − (v − Y )1/k−1

u− v
dζ ′

and

J =
{
∫
Bρ(u)\Bρ(v)

−
∫
Bρ(v)\Bρ(u)

}gv(ζ ′) dζ ′

u− v
.

The integral I is bounded because the integrand is bounded, while the quantity
J is bounded because the integrand is bounded and the volume of integration
is O(|u− v|). The function Vρ(·) is therefore of bounded variation.

Using the Fourier inversion theorem,

a1/k
s IW (ρ) = lim

X→∞

∫ ∞
−∞

Vρ(u)

∫ X

−X
e(xu) dx du

=

∫ ∞
−∞

∫ ∞
−∞

e(xu)Vρ(u) du dx = Vρ(0). (2.24)

Let
B(0) = {ζ ′ ∈ (−1, 1)s−1 : |Y | < as}

and

V (0) =

∫
B(0)

g0(ζ ′) dζ ′.

By the monotone convergence theorem Vρ(0)→ V (0) as ρ → 0+. Equations
(2.23) and (2.24) now give

ksa1/k
s I(t) = V (0). (2.25)



10 SAM CHOW

Next we consider V (0) =
∫
B(0)

(ζ1 · · · ζs−1Y )1/k−1 dζ ′. For i = 1, 2, . . . , s, let

ci denote the leading coefficient of the polynomial hi. Put

ηi =

{
hi(t)/(cit

d) · ζi, i = 1, 2, . . . , s− 1

−Y/(cstd), i = s.

Since ηi = (1 +O(1/t))ζi for i = 1, 2, . . . , s− 1 and as = (1 +O(1/t))|cs|td, we
have

(ζ1 · · · ζs−1Y )1/k−1

(η1 · · · ηs)1/k−1
= (1 +O(1/t))(cst

d)1/k−1 =
(1 +O(1/t))a

1/k
s

|cs|td
.

Observe that

ηs = −c−1
s (c1η1 + . . .+ cs−1ηs−1). (2.26)

We recall equation (2.25) and change variables from ζ1, . . . , ζs−1 to η1, . . . , ηs−1.
The Jacobian determinant is

s−1∏
i=1

∂ζi
∂ηi

= 1 +O(1/t),

so

kstdI(t) =
1 +O(1/t)

|cs|

∫
R1

(η1 · · · ηs)1/k−1 dη1 · · · dηs−1, (2.27)

where

R1 = {(η1, . . . , ηs−1) : |ηi| < hi(t)/(cit
d) for i = 1, 2, . . . , s}.

Note that hi(t)/(cit
d) > 0 for all i, since t is large.

Recall equation (2.26), and let

R2 = {(η1, . . . , ηs−1) ∈ (−1, 1)s−1 : |ηs| < 1}.
Next we establish that∫

∆

(η1 · · · ηs)1/k−1 dη1 · · · dηs−1 � t−1, (2.28)

where ∆ = R1∆R2 is the symmetric difference. For any (η1, . . . , ηs−1) ∈ ∆,
there exist i, j ∈ {1, 2, . . . , s} satisfying

i 6= j, |ηi| − 1� t−1, ηj � 1. (2.29)

Hence ∆ = ∪j∆j, where ∆j is the set of (η1, . . . , ηs−1) ∈ ∆ such that the
conditions (2.29) are met for some i. Changing variables from ηj to ηs (if
j 6= s) shows that ∫

∆j

(η1 · · · ηs)1/k−1 dη1 · · · dηs−1 � t−1

for j = 1, 2, . . . , s, which proves the inequality (2.28).

Recalling equation (2.27), we now have

I(t)td =
1 +O(1/t)

ks|cs|

∫
R2

(η1 · · · ηs)1/k−1 dη1 · · · dηs−1 = C +O(1/t),
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where we define the positive constant

C =
1

ks|cs|

∫
R2

(η1 · · · ηs)1/k−1 dη1 · · · dηs−1.

To see that C < ∞, observe that the same procedure with c1, . . . , cs in place
of h1(t), . . . , hs(t) yields

C =

∫ ∞
−∞

v(βc1) · · · v(βcs) dβ

which, by [19, Theorem 7.3], is well defined. This establishes Lemma 2.3 in
the case that k is odd.

Suppose now that k is even. We follow closely the case where k is odd, so
the notation is the same unless otherwise indicated. We now have

I(t) = (2/k)s
∫ ∞
−∞

∫
(0,1)s

(ζ1 · · · ζs)1/k−1e(βh · ζ) dζ dβ.

When 0 < ρ < 1, let W (ρ) = (ρ, 1)s and U(ρ) = (0, 1)s\W (ρ). For S ⊆ (0, 1)s,
put

IS =

∫ ∞
−∞

∫
S

(ζ1 · · · ζs)1/k−1e(βh · ζ) dζ dβ,

so that (k/2)sI(t) = IU(ρ) + IW (ρ). Again IU(ρ) → 0 as ρ→ 0+, so

(k/2)sI(t) = lim
ρ→0+

IW (ρ).

For i = 1, 2, . . . , s, let ci denote the leading coefficient of hi, and without
loss of generality cs > 0. Put as = hs(t). Since t is large, we have as > 0. We
derive

a1/k
s IW (ρ) = lim

X→∞

∫ ∞
∞

sin(2πXu)

πu

∫
Bρ(u)

gu(ζ
′) dζ ′ du,

where ζ ′ = (ζ1, . . . , ζs−1), Y =
∑s−1

i=1 hi(t)ζi,

gu(ζ
′) = (ζ1 · · · ζs−1)1/k−1(u− Y )1/k−1

and

Bρ(u) = {ζ ′ ∈ (ρ, 1)s−1 : ρas < u− Y < as}.
Continuing to follow the case where k is odd, we deduce that

(k/2)sa1/k
s I(t) =

∫
B(0)

(ζ1 · · · ζs−1(−Y ))1/k−1 dζ ′,

where

B(0) =
{
ζ ′ ∈ (0, 1)s−1 : 0 < −Y < as

}
.

With ηs = −c−1
s (c1η1 + . . .+ cs−1ηs−1), let

R1 = {(η1, . . . , ηs−1) : 0 < ηi < hi(t)/(cit
d) for i = 1, 2, . . . , s}

and

R2 = {(η1, . . . , ηs−1) ∈ (0, 1)s−1 : 0 < ηs < 1}.
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By changing variables with ηi = hi(t)/(cit
d)·ζi for i = 1, 2, . . . , s−1, we deduce

that

(k/2)stdI(t) = c−1
s (1 +O(1/t))

∫
R1

(η1 · · · ηs)1/k−1 dη1 · · · dηs−1,

and hence

I(t)td = C +O(1/t),

where

C = c−1
s (2/k)s

∫
R2

(η1 · · · ηs)1/k−1 dη1 · · · dηs−1.

The ci are not all of the same sign, so R2 has nonempty interior, so C > 0,
and C <∞ because, as in the odd case,

C =

∫ ∞
−∞

v(βc1) · · · v(βcs) dβ.

�

Combining Lemma 2.3 with the inequalities (2.20) and (2.22) gives

N(B, t)tdBk−s − CG(t)� E + 1/t,

which yields the error bound (2.1) subject to the hypotheses s > 2k + 1 and
dδ < 21−k.

It remains to discuss the case where

s > 2k2 − 2 and dδ < 1/3. (2.30)

If a > 0 and q > 0 are integers, let M(q, a) be the set of α ∈ (0, 1) such that
|qα− a| 6 (2kBk−1)−1. Let M be the (disjoint) union of the arcs M(q, a) over
0 6 a 6 q 6 Q with (a, q) = 1, where

Q = λtdB/(2k),

and let m = (0, 1) \M.

Let p be the set of β ∈ (0, 1) such that if (a, q) = 1 and |qβ−a| 6 (2kBk−1)−1

then q > B/(2k). For i = 1, . . . , s let pi be the set of β ∈ (0, |hi(t)|) such that
if (a, q) = 1 and |qβ−a| 6 (2kBk−1)−1 then q > B/(2k). It is routinely verified
that if α ∈ m then

α|hi(t)| ∈ pi = p ∪ (1 + p) ∪ . . . ∪ (|hi(t)| − 1 + p).

Thus, by periodicity and [20, Theorem 10.1] we have, for i = 1, 2, . . . , s,∫
m

|fi(α)|s dα 6
∫
p

|f(β)|s dβ � Bs−k−1+ε.

Now, by Hölder’s inequality,∫
m

f1(α) · · · fs(α) dα� Bs−k−1+ε.

For the major arcs we follow the previous analysis, mutatis mutandis, so
the notation is the same unless otherwise indicated. Using the definitions
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preceding equation (2.7), we have |q̃αc− ac̃| 6 λtd/(2kBk−1), so [19, Theorem
4.1] and equation (2.7) give

f(αc)− q−1S(q, ac)v(αc− ac/q)� q̃1/2+ε(1 + tdB/q̃)1/2 � Q1/2+ε.

Invoking [20, Lemma 10.2] and using periodicity now yields∫
M

f1(α) · · · fs(α) dα−Xs � E1 + E2,

where

E1 = Qs/2+1B1−k+ε � (td)s/2+1Bs/2+2−k+ε

and

E2 = Q1/2Bs−k−1+ε � td/2Bs−k−1/2+ε.

In light of our assumptions (2.30), we now have∫
M

f1(α) · · · fs(α) dα−Xs � td/2Bs−k−1/2+ε.

This time

Js(q) = Bs−k
∫ B/(2kq)

−B/(2kq)
v1(β) · · · vs(β) dβ,

and we again have the error bound (2.14), but with Q = λtdB/(2k). The
remainder of the analysis is identical, and we conclude that

N(B, t)tdBk−s − CG(t)� t3d/2Bε−1/2 +Q(2k+1−s)/k + 1/t,

with C > 0 as in Lemma 2.3. We now have the error bound (2.1) under the
hypotheses (2.30) also, which completes the proof of Theorem 1.1.

3. Averaging on the singular series

Put

S(q) = q−1

q∑
t=1

G(t, q). (3.1)

Recalling equations (1.3), (2.6) and (2.10), we note that

G =
∞∑
q=1

S(q).

The inequality (2.18) ensures that
∑∞

q=1 S(q) converges absolutely, so G ∈ C.
The following is the key to Theorem 1.2.

Lemma 3.1. The constant G is a positive real number, and

T−1
∑
t6T

G(t) = G +O(T ε−1 + T ε+2−(s−1)/k). (3.2)
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Proof. We begin by demonstrating the asymptotic formula (3.2). Recall equa-
tions (2.6) and (2.10), and recall that T is a positive integer. For a given
positive integer q, let r = r(q, T ) denote the remainder when T is divided by
q. By periodicity modulo q, we have

T∑
t=r+1

G(t, q) =
T − r
q

q∑
t=1

G(t, q).

Recalling equation (2.11), we now have

T−1
∑
t6T

G(t)−G =
∞∑
q=1

T−1
(∑
t6T

G(t, q)− T

q

q∑
t=1

G(t, q)
)

=
∞∑
q=1

T−1
( r∑
t=1

G(t, q)− r

q

q∑
t=1

G(t, q)
)
.

Noting that r(q, T ) = T when q > T , the inequality (2.18) now gives

T−1
∑
t6T

G(t)−G� T−1
∑
q6T

rq1+(1−s)/k +
∑
q>T

q1+(1−s)/k.

This yields equation (3.2), since∑
q6T

rq1+(1−s)/k =
T−1∑
r=0

r
∑
q>r

q|(T−r)

q1+(1−s)/k � T ε
T−1∑
r=1

r2+(1−s)/k

� T ε + T ε+3−(s−1)/k. (3.3)

Next we establish that G is a positive real number. By following the proof
of [19, Lemma 2.11], we deduce that S(·) is multiplicative. Since S(·) is mul-
tiplicative and G =

∑∞
q=1 S(q) converges absolutely, we have the absolutely

convergent Euler product

G =
∏
p

T (p), (3.4)

where

T (p) =
∞∑
h=0

S(ph).

In order to prove that G > 0 it remains to show that T (p) > 0 for each
prime p. Let

M(q) = q−1

q∑
r=1

q∑
t=1

∑
x

s∏
i=1

e(q−1rhi(t)x
k
i ),

where the inner summation is over x1, . . . , xs modulo q. By orthogonality,
M(q) counts integer solutions to

h1(t)xk1 + . . .+ hs(t)x
k
s ≡ 0 mod q (3.5)
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with 1 6 x1, . . . , xs, t 6 q. Writing r/q = a/d with d > 0 and (a, d) = 1 yields

M(q) = q−1
∑
d|q

d∑
a=1

(a,d)=1

(q/d)s+1

d∑
t=1

∑
x

s∏
i=1

e(d−1ahi(t)x
k
i ),

where the inner summation is over x1, . . . , xs modulo d. Thus, upon recalling
equations (2.6), (2.10) and (3.1), we have

q−sM(q) =
∑
d|q

S(d).

In particular,

T (p) = lim
r→∞

p−rsM(pr). (3.6)

Let pτ‖k, and define

γ = γ(p) =

{
τ + 1, if p > 2 or (p, τ) = (2, 0)

τ + 2, if p = 2 and τ > 0.
(3.7)

By the discussion on [19, p. 22], the kth power residues modulo pγ are kth
power residues modulo every power of p. Choose a positive integer m such that
pm > maxi |hi(1)|, and let r > γ+m. There are pr−m possibilities for t mod pr

that are congruent to 1 modulo pm. Thus, in order to show that T (p) > 0, it
suffices to show that for such values of t and r there are at least p(s−1)(r−γ−m)

solutions x modulo pr to the congruence

h1(t)xk1 + . . .+ hs(t)x
k
s ≡ 0 mod pr. (3.8)

For i = 1, 2, . . . , s, put ai = hi(t) and note that pm does not divide ai. The
illustrious work of Davenport and Lewis [8] tells us that s is large enough to
guarantee a solution y modulo pγ+m to the congruence

a1y
k
1 + . . .+ asy

k
s ≡ 0 mod pγ+m

such that p does not divide gcd(y1, . . . , ys). Without loss of generality p does
not divide y1, and we show that this solution lifts to the requisite p(s−1)(r−γ−m)

solutions x modulo pr to the congruence (3.8). There are p(s−1)(r−γ−m) ways
to choose x2, . . . , xs modulo pr such that

xi ≡ yi mod pγ+m (i = 2, . . . , s),

so it remains to show that, given any such x2, . . . , xs, there exists x1 such that
the congruence (3.8) is satisfied.

Note that

−a1y
k
1 ≡

s∑
i=2

aix
k
i mod pγ+m.

Let pα‖a1, and let c be the multiplicative inverse of −a1p
−α modulo pr. Then

yk1 ≡ cp−α
s∑
i=2

aix
k
i mod pγ,
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so cp−α
∑s

i=2 aix
k
i is a kth power residue modulo pγ, and hence modulo every

power of p. Thus there exists x1 such that

xk1 ≡ cp−α
s∑
i=2

aix
k
i mod pr,

which yields the congruence (3.8). We conclude that T (p) > 0 for every p,
which shows that G is a positive real number. �

Let K = CG with C as in §2. The estimate (2.1) and Lemma 3.1 imply
Theorem 1.2, since T is a positive integer satisfying Bε � T 6 Bδ.

4. Second moment analysis

We attack Proposition 1.3 by focusing on the singular series.

Lemma 4.1. Assume equation (1.4). Then there exists a positive-valued arith-
metic function r(t), decreasing to 0, such that

|G(t)−G| < r(t)

for almost all positive integers t.

Proof. The result is trivial if G(t) = G for all t, so assume otherwise. Let

AT = T−1
∑
t6T

(G(t)−G)2.

Define Υ : N→ N by Υ(1) = 1 and, for m > 2,

Υ(m) = min{T0 ∈ N : if T > T0 then AT 6 m−3}.
This is well defined, by our assumption (1.4), and Υ(m) is increasing to infinity,
since AT is positive for large T . Define r(t) = m−1 if Υ(m) 6 t < Υ(m+ 1).

Now r(t) is a positive-valued arithmetic function, decreasing to 0. Moreover,

T−1#{t 6 T : |G(t)−G| > r(t)} 6 r(T )−2AT → 0

as T →∞. �

By Lemma 4.1 and the bound (2.1), the following statement holds for almost
all positive integers t: if B > t1/δ then

N(B, t)tdBk−s −K � r(t) + t−ε/δ.

Therefore there exists a positive constant c such that Proposition 1.3 holds
with ρ(t) = c(r(t) + t−ε/δ).

Our final task is to establish Theorem 1.4. Let

U(q1, q2) = (q1q2)−1
∑
t6q1q2

G(t, q1)G(t, q2) (4.1)

and

C =
∞∑
q1=1

∞∑
q2=1

U(q1, q2). (4.2)

The bound (2.18) ensures that the series (4.2) converges absolutely, so C ∈ C.
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Lemma 4.2. The constant C is a positive real number, and

T−1
∑
t6T

G(t)2 = C +O(T ε−1 + T ε+2−(s−1)/k). (4.3)

Proof. We begin by establishing the asymptotic formula (4.3). Our argument
is similar to that used in the proof of Lemma 3.1 to establish the asymptotic
formula (3.2). Write

Gt,q1,q2 = G(t, q1)G(t, q2).

Recall equations (2.6) and (2.10), and recall that T is a positive integer. For
given positive integers q1 and q2, let r = r(q1, q2, T ) denote the remainder when
T is divided by q1q2. By periodicity modulo q1q2, we have

T∑
t=r+1

Gt,q1,q2 =
T − r
q1q2

q1q2∑
t=1

Gt,q1,q2 .

Recalling equation (2.11), we now have

T−1
∑
t6T

G(t)2 − C =
∞∑
q1=1

∞∑
q2=1

T−1
(∑
t6T

Gt,q1,q2 −
T

q1q2

q1q2∑
t=1

Gt,q1,q2

)
=

∞∑
q1=1

∞∑
q2=1

T−1
( r∑
t=1

Gt,q1,q2 −
r

q1q2

q1q2∑
t=1

Gt,q1,q2

)
.

On noting that r(q1, q2, T ) = T when q1q2 > T , the inequality (2.18) now gives

T−1
∑
t6T

G(t)2 − C� T−1
∑
q1q26T

r(q1q2)1+(1−s)/k

+
∑

q1q2>T

(q1q2)1+(1−s)/k. (4.4)

Using the calculation (3.3) with q = q1q2, we have∑
q1q26T

r(q1q2)1+(1−s)/k � T ε
∑
q6T

rq1+(1−s)/k � T ε + T ε+3−(s−1)/k. (4.5)

Furthermore, ∑
q1q2>T

(q1q2)1+(1−s)/k = P1 + P2, (4.6)

where

P1 =
∑
q1>T

q
1+(1−s)/k
1

∞∑
q2=1

q
1+(1−s)/k
2 � T 2+(1−s)/k (4.7)

and

P2 =
∑
q16T

q
1+(1−s)/k
1

∑
q2>T/q1

q
1+(1−s)/k
2

�
∑
q16T

q
1+(1−s)/k
1 (T/q1)2+(1−s)/k � T ε+2+(1−s)/k. (4.8)
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Considering equation (4.6) and the inequalities (4.4), (4.5), (4.7) and (4.8)
yields equation (4.3). In particular T−1

∑
t6T G(t)2 converges to C as T →∞

so, by Lemma 3.1,

0 6 T−1
∑
t6T

(G(t)−G)2 → C−G2, (4.9)

so C is a real number with C > G2 > 0. �

In view of equation (4.9), in order to prove Theorem 1.4 it remains to show
that C > G2. For positive integers t and q, let Mt(q) count solutions x modulo
q to the congruence (3.5). Then

M(q) =

q∑
t=1

Mt(q). (4.10)

The Chinese remainder theorem shows that Mt(·) is multiplicative for any
given t. For positive integers t and prime numbers p, define

Tt(p) =
∞∑
h=0

G(t, ph). (4.11)

The classical theory in [7, Chapters 5 and 8] tells us that Tt(p) is a positive
real number, that

pr(1−s)Mt(p
r) =

r∑
h=0

G(t, ph), (4.12)

and that
Tt(p) = lim

r→∞
pr(1−s)Mt(p

r). (4.13)

For positive integers q1 and q2, let M(q1, q2) count integer solutions to the
system

s∑
i=1

hi(t)x
k
i ≡ 0 mod q1,

s∑
i=1

hi(t)y
k
i ≡ 0 mod q2

with 1 6 t 6 q1q2, 1 6 x1, . . . , xs 6 q1 and 1 6 y1, . . . , ys 6 q2. By orthogonal-
ity,

M(q1, q2) = (q1q2)−1
∑

r1,r2,x,y,t

s∏
i=1

e(q−1
1 r1hi(t)x

k
i + q−1

2 r2hi(t)y
k
i ),

where the summation is over 1 6 r1, x1, . . . , xs 6 q1, 1 6 r2, y1, . . . , ys 6 q2 and
1 6 t 6 q1q2. Recall equations (2.6), (2.10) and (4.1). By writing ri/qi = ai/di
with di > 0 and (ai, di) = 1 for i = 1, 2, we can now deduce that

(q1q2)−sM(q1, q2) =
∑
d1|q1

∑
d2|q2

U(d1, d2). (4.14)

By considering the underlying congruences, we observe that

M(q, q) = q

q∑
t=1

Mt(q)
2 (4.15)
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for all q. The multiplicativity of q 7→ M(q, q) is inherited from that of Mt(·),
for if (u, v) = 1 then

M(uv, uv) = uv
∑

t mod uv

Mt(u)2Mt(v)2

= uv

u∑
a=1

v∑
b=1

Mav+bu(u)2Mav+bu(v)2 = M(u, u)M(v, v).

For each prime p, let

χp =
∞∑
a=0

∞∑
b=0

U(pa, pb). (4.16)

We showed that the series (4.2) converges absolutely so, a fortiori, the series
(4.16) converges absolutely. Equation (4.14) yields

p−2rsM(pr, pr) =
r∑

a=0

r∑
b=0

U(pa, pb),

so
χp = lim

r→∞
p−2rsM(pr, pr). (4.17)

The identities (3.6), (4.10), (4.15) and (4.17), together with Cauchy’s inequal-
ity, yield

χp > T (p)2. (4.18)

Lemma 4.3. We have
C =

∏
p

χp. (4.19)

Proof. Let R > 2 be a real number, and put

P =
∏
p6R

p.

The multiplicativity of q 7→M(q, q) and the identity (4.14) yield∏
p6R

p−2rsM(pr, pr) = P−2rsM(P r, P r) =
∑

d1,d2|P r
U(d1, d2),

and now equations (4.17) gives∏
p6R

χp =
∑

d1,d2∈S(R)

U(d1, d2),

where S(R) = {n ∈ N : if p|n then p 6 R} is the set of R-smooth numbers.
Recalling the definitions (4.1) and (4.2), as well as the inequality (2.18), we
now see that

C−
∏
p6R

χp =
∑

(d1,d2)/∈S(R)2

U(d1, d2)�
∑

(d1,d2)/∈S(R)2

(d1d2)1+(1−s)/k

6
∑

d1>R or d2>R

(d1d2)1+(1−s)/k � R2+(1−s)/k
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converges to zero as R→∞. �

It remains to show that χp > T (p)2 for some prime p. Then equations (3.4)
and (4.19), together with the inequality (4.18), will give C > G2, which will
thereby complete the proof of Theorem 1.4.

Lemma 4.4. We have

χp − T (p)2 =
1

2
lim
r→∞

p−2r
∑

16u,v6pr

(Tu(p)− Tv(p))2. (4.20)

Proof. The identities (3.6), (4.10), (4.15) and (4.17) give

χp − T (p)2 = lim
r→∞

p−2rs
(
pr
∑
t6pr

Mt(p
r)2 −

(∑
t6pr

Mt(p
r)
)2)

=
1

2
lim
r→∞

p−2rs
∑

16u,v6pr

(Mu(p
r)−Mv(p

r))2. (4.21)

For any t and r, equations (4.11) and (4.12), together with the inequality
(2.18), yield

Tt(p)− pr(1−s)Mt(p
r) =

∑
h>r

G(t, ph)� p(1+(1−s)/k)(r+1).

The definition (4.11) and the bound (2.18) show that, moreover,

Tt(p)� 1

uniformly in t. Hence

(Tu(p)− Tv(p))2 − p2r(1−s)(Mu(p
r)−Mv(p

r))2 � p(1+(1−s)/k)(r+1).

This equates the right hand sides of equations (4.20) and (4.21). �

Lemma 4.5. Suppose there exist p, v and κ = κ(p) > 0 such that if a ≡
1 mod p and b ≡ v mod p2 then |Ta(p)−Tb(p)| > κ. Then Theorem 1.4 holds.

Proof. By Lemma 4.4,

χp − T (p)2 >
1

2
lim
r→∞

pr−1pr−2κ2/p2r =
1

2
κ2/p3 > 0.

�

Our methods allow us to compute the p-adic density Tt(p) whenever p divides
no more than one of h1(t), . . . , hs(t); the argument needs to be modified slightly
if pk divides some hi(t). We do not require such generality, so we specialise for
simplicity. We choose p and v via the following lemma.

Lemma 4.6. Let f be a nonconstant polynomial with integer coefficients, ir-
reducible in Q[x]. Then there exist infinitely many primes p such that f has a
root modulo p that is not a root modulo p2.
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Proof. First we establish that f can be assumed to be monic. Put d = degf ,
and let a be the leading coefficient of f . Now ad−1f is a monic irreducible
polynomial in y = ax, with integer coefficients. For large p we know that p
does not divide a, so applying the result for this polynomial yields the desired
outcome.

With f monic, the Frobenius density theorem (see [9] or [18]) yields infinitely
many primes p for which there exist a1, . . . , ad ∈ Fp such that

f(x) = (x− a1) · · · (x− ad) ∈ Fp[x],

and there are infinitely many such p that do not divide the discriminant ∆
of f . Given such a prime p, the discriminant is nonzero in Fp, so ai 6= aj
whenever i 6= j. Now Hensel’s lemma allows us to lift the ai to roots ãi ∈ Zp
of f . Thus

f(x) = (x− ã1) · · · (x− ãd) ∈ Zp[x],

and ãi 6≡ ãj modulo p whenever i 6= j. Put ṽ = p+ ã1 ∈ Zp/p2Zp, so that

f(ṽ) = p
d∏
i=2

(p+ ã1 − ãi)

is exactly divisible by p. Now p‖f(v), where v is any integer representing the
image of ṽ under the isomorphism Zp/p2Zp → Z/p2Z. �

By Lemma 4.6 we can choose an arbitrarily large prime p and an integer
v such that p‖hs(v). Since p is large it does not divide hi(1) for any i, nor
does it divide k, and by the inequality (2.17) it does not divide hi(v) for
i = 1, 2, . . . , s− 1. Let a ≡ 1 mod p and b ≡ v mod p2.

Put g = (p− 1, k), let t be an integer, let r be a large positive integer, and
write ai = hi(t) for i = 1, 2, . . . , s; we will consider t = a and t = b. Recall
equation (4.13), and that Mt(p

r) counts integer solutions to

a1x
k
1 + . . .+ asx

k
s ≡ 0 mod pr (4.22)

with 1 6 x1, . . . , xs 6 pr. Since γ = 1 in equation (3.7), a kth power residue
will mean modulo p, or equivalently modulo py for any positive integer y.

Computation of Ta(p). In this case p does not divide ai for any i. For a
given solution x, let m be maximal such that pm|xi for all i, and let I denote
the nonempty subset

I = {i : pm‖xi}.
We count solutions with a specific m and I, in order to later sum the contri-
butions from all m and I. We only need to consider m < r/k, for the number
of solutions with pr|xks is o(pr(s−1)) as r →∞.

For i ∈ I write xi = pmyi. Our congruence (4.22) becomes∑
i∈I

aiy
k
i +

∑
j /∈I

aj(xj/p
m)k ≡ 0 mod pr−mk
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with the yi modulo pr−m not divisible by p and the xj modulo pr divisible by
pm+1 for j /∈ I. Fix i0 ∈ I and put I∗ = I \ {i0}. Note that

g = (ϕ(pr−mk), k),

where ϕ is Euler’s totient function. Choosing yi for i ∈ I∗ and xj for j /∈ I
determines g solutions yi0 if

−a−1
i0

∑
i∈I∗

aiy
k
i

is a kth power residue and no solutions otherwise. Let AI count solutions to∑
i∈I

aiz
k
i ≡ 0 mod p, zi ∈ (Z/pZ)×.

For any choice of (xj)j /∈I there are AI/g choices for (yi ∈ (Z/pZ)×)i∈I∗ yielding
solutions yi0 , and these lift to g−1AI(p

r−m−1)#I−1 choices for (yi mod pr−m)i∈I∗ .

There are pr−m−1 possible xj for each j /∈ I, so the total number of solutions
with m < r/k is thus ∑

∅6=I⊆{1,...,s}

∑
06m<r/k

(pr−m−1)s−1AI .

Hence, by equation (4.13),

Ta(p) =
∑

∅6=I⊆{1,...,s}

AI

∞∑
m=0

(p1−s)m+1 =

∑
∅6=I⊆{1,...,s}AI

ps−1 − 1

=
A− 1

ps−1 − 1
,

where A is the number of solutions w1, . . . , ws modulo p to the congruence
s∑
i=1

aiw
k
i ≡ 0 mod p.

We have simplified Ta(p) sufficiently for our purposes, but note that A and
hence Ta(p) is easily computable in any specific instance.

Computation of Tb(p). This is similar to the previous calculation. In this
case p‖as, and p does not divide ai for i = 1, 2, . . . , s − 1. Let m < r/k
be maximal such that pm|xi for i = 1, 2, . . . , s − 1. Note that pm necessarily
divides xs, since p2 does not divide as. Now put

I = {i ∈ {1, . . . , s− 1} : pm‖xi}
and J = {1, . . . , s− 1} \ I. Our congruence (4.22) becomes∑

i∈I

aiy
k
i +

∑
j /∈I

aj(xj/p
m)k ≡ 0 mod pr−mk,

with the yi mod pr−m not divisible by p, the xj mod pr divisible by pm+1 for
j ∈ J , and xs mod pr divisible by pm. Note that the second summation above
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is divisible by p, since as is divisible by p. In analogy with the computation of
Ta(p), we deduce that

Tb(p) =
p(Ã− 1)

ps−1 − 1
,

where Ã is the number of solutions w1, . . . , ws−1 modulo p to the congruence

s−1∑
i=1

aiw
k
i ≡ 0 mod p.

Note that Ã and hence Tb(p) is easily computable in any specific instance.

The integer Tb(p) · (ps−1 − 1) is divisible by p, while Ta(p) · (ps−1 − 1) is not
divisible by p, since the Chevalley-Warning theorem (see [1]) yields p|A. In
particular, the hypotheses of Lemma 4.5 are satisfied with κ = (ps−1 − 1)−1.
This completes the proof of Theorem 1.4.
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[4] J. Brüdern, Cubic Diophantine inequalities, II, J. London Math. Soc. (2) 53 (1996), no.
1, 1–18.
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[15] G. Pólya and G. Szegö, Problems and Theorems in Analysis, Vol. II, Springer, Berlin-

Heidelberg-New York, 1976.
[16] B. Poonen and J. F. Voloch, Random Diophantine equations, Arithmetic of higher-

dimensional algebraic varieties, Prog. Math. 226 (2004), 175–184.
[17] W. M. Schmidt, Small zeros of additive forms in many variables. II, Acta Math. 143

(1979), no. 3–4, 219–232.
[18] B. Sury, Frobenius and his density theorem for primes, Resonance 8 (2003), no. 12,

33–41.



24 SAM CHOW

[19] R. C. Vaughan, The Hardy-Littlewood method, 2nd edition, Cambridge University Press,
Cambridge, 1997.

[20] T. D. Wooley, Vinogradov’s mean value theorem via efficient congruencing, II, Duke
Math. J. 162 (2013), no. 4, 673–730.

School of Mathematics, University of Bristol, University Walk, Clifton,
Bristol BS8 1TW, United Kingdom

E-mail address: Sam.Chow@bristol.ac.uk


	1. Introduction
	2. The circle method
	3. Averaging on the singular series
	4. Second moment analysis
	Computation of Ta(p)
	Computation of Tb(p)

	References

