A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/125821

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

Investigating Salt Stress Resilience in Brassica oleracea

A thesis submitted for the Degree of Doctor of Philosophy

By

Almustapha Lawal, BSc, NSc
School of Life Sciences, University of Warwick United Kingdom

January 2019

Table of Contents

List of Figures. viii
List of Tables xii
List of Abbreviations xiv
Acknowledgements xvii
Declaration xviii
Abstract xix
CHAPTER ONE 1
General Introduction 1
1.0 Introduction 2
1.1 Health and Economic Benefits of B. oleracea Vegetables 3
1.2 Taxonomy of Brassica oleracea species 4
1.2.1 The Habitat of wild B. oleracea species 6
1.2.2 The significance of morphological diversity and B. oleracea crops domestication 7
1.2.3 Cytological relationship and botanical description of B. oleracea and other members of Brassiceae and Arabidopsis model plant. 8
1.2.4 History and Origin of wild Brassica species 10
1.3 Salt Stress 14
1.3.1 Salt Stress as a factor affecting the environment 14
1.3.2 Soils Salts and its Sources. 15
1.3.3 Impact of Salinity Stress on Plants Growth 16
1.3.4 Physiological Models Describing Plant Response to Salt Stress Conditions. 18
1.3.5 Plant Response to Salinity Stress 19
1.3.6 Plant Salt Stress Signalling Pathways 20
1.3.6.1 $\mathbf{C a}^{2+}$ Signalling 21
1.3.6.2 Cyclic Guanosine Monophosphate (cGMP) Signalling 22
1.3.6.3 Reactive Oxygen Species (ROS) 23
1.3.6.4 Salt Overly Sensitive Pathway (SOS) 24
1.3.7 Phases of Plant Response to Salt Stress 26
1.3.7.1 Osmotic Phase 26
1.3.7.2 Ionic Phase 27
1.3.7.3 Tissue Phase 29
1.3.8 Molecular Basis of Regulatory Networks in Plant Salt Stress Signalling Pathways 31
1.3.9 Mapping Genes Concerning Plant Salt Tolerance 34
1.3.9.1 Mapped Genes Related to vacuolar (NHX1) and plasma membrane (SOS1) Antiporter Genes Associated to Plant Salt Stress Tolerance 35
1.3.9.2 Overexpression of High Potassium Membrane Transporter Genes (HKT) and Plant Salt Stress Tolerance 37
1.3.10 Salinity Tolerance among the Brassicas. 39
1.4 Breeding for Salt Tolerance in Brassicas 39
1.4.1 Conservation of Brassica Germplasm for Breeding Programme 39
1.4.2 Screening of Salt Tolerance from Pre-existing genotypes of Brassicas 40
1.4.3 Conventional Breeding Approaches for Developing Salt Tolerance in Brassica 41
1.4.4 Genetic Engineering (Transgenic) Approaches for Salt Tolerance Enhancement 42
1.4.5 Formation of Diversity Foundation Sets 43
1.4.5.1 B. oleracea Genetic Diversity Foundation Set (Bol DFS) 43
1.4.5.2 Formation of \boldsymbol{B}. oleracea C-genome Genetic Diversity Fixed Foundation Sets (BolCg DFFSs) 44
1.4.5.3 Generation of homozygous Doubled Haploid (DH) Lines of B. oleracea C- genome Diversity Fixed Foundation Sets (BolCg DFFSs) 45
1.5 High throughput Molecular Biology Techniques 47
1.5.1 Serial Analysis of Gene Expression (SAGE) 47
1.5.2 Massively Parallel Signature Sequencing (MPSS) 48
1.5.3 Plants Molecular Genotyping: Genotype-by-Sequencing (GBS) 49
1.5.5 An Outline of Molecular hybridisation techniques for qPCR 51
1.6 Screening the B. oleracea breeding Lines (DFFSs) for Salt Stress Resilience 52
1.6.1 Initial salt stress screening leading to line selection for main thesis. 52
1.6.2 Salt Stress Screening Experiments in 2015 54
1.7 AIM AND OBJECTIVES 55
1.7.1 The aim of the Work is: 55
1.7.2 Objectives are: 55
CHAPTER TWO 56
MATERIAL AND METHODS 56
2.0 Material 57
2.0.1 Description of genetic relationship between the plants used for salt shock experiment 57
2.0.2 Seeds Collection and Seeds Plantation 59
2.0.3 Composition of M2 Compost Soil Used 59
2.0.4 Glasshouse Conditions 59
2.0.5 Experimental Design 61
2.0.6 Seed germination 62
2.0.7 Plant growth 63
2.1 Methods 65
2.1.2 Salt Shock Induction 65
2.1.2 Sample Collection and Storage of Plant Material 66
2.1.3 Plant height 66
2.1.4 Plant fresh/dry weight 66
2.1.5 Leaf fresh/dry weight 67
2.1.6 Leaf Area 67
2.1.7 Mineral Analysis 69
2.1.7.1 Material 69
2.1.7.2 Chemicals 69
2.1.7.3 Sample Handling and Preparations 69
2.1.7.4 Sample dilution 71
2.1.7.5 Preparation of Standard Curve Solution 71
2.1.7.6 Sample Running. 72
2.1.8 qPCR 74
2.1.8.1 RNA Extraction and Purification 74
2.1.8.2 cDNA Synthesis Protocol 75
2.1.8.3 List of Genes, Primer design and Testing. 75
2.1.8.4 Primer Testing, PCR and Gel running 76
2.1.8.5 Sanger sequencing 77
2.1.8.6 Plate preparation and qPCR running 78
2.1.9 Genotyping by sequencing 80
2.1.9.1 Sample Collection 80
2.1.9.2 GBS protocol 80
2.2.10 Data Analysis 80
2.2.10.1 Morphological traits. 80
2.2.10.2 Physiological traits 81
2.2.10.3 RNA-Seq Reprocessing 81
2.2.10.4 qPCR data 82
2.2.10.5 GBS Data Sorting 83
CHAPTER THREE 84
Morphological Variation in B. oleracea genotypes in Response to Salt Stress 84
3.0 Introduction 85
3.1 Results 87
3.1.1 First Salt Stress Screening 87
3.1.1.1 Plant Height 87
3.1.1.2 Effects of Salt Stress on Plant's Biomass Accumulation 93
3.1.1.3 Effect of Salt Stress on Leaf Morphology 96
3.1.1.4 Leaf Surface Area 102
3.1.1.5 Comparison of Morphological Traits 105
3.2 Discussion 107
3.2.1 Plant Growth 107
3.2.2 Biomass accumulation 108
3.2.3 Leaf surface area 109
3.3 Summary 111
CHAPTER FOUR 112
Variation in Mineral Content in B. oleracea genotypes in Response to Salt Stress 112
4.0 Introduction 113
4.1 Results. 115
4.1.1 Variation in Mineral Content First Salt Stress Screening 115
4.2.2 $\mathrm{Na}^{+} / \mathrm{K}^{+}$Ratio (first salt screening) 118
4.2.3 Variation in Mineral Content: Second Salt Stress Experiment 119
4.2.4 $\mathrm{Na}^{+} / \mathrm{K}^{+}$Ratio (second salt screening) 127
4.2.5 Comparison between Morphological and Physiological Traits 128
4.3 Discussion 140
4.4 Summary 143
CHAPTER FIVE 145
Relative Gene Expression of Ion Membrane Transporters in B. oleracea genotypes in Response to Salt Stress 145
5.0 Introduction 146
5.2 Results. 149
5.2.1 Differentially Expressed Genes (DEGs) 149
5.2.2 qPCR Analysis 153
5.2.2.1 Relative expression of Ion membrane transporters genes in twenty-four hours and two-weeks post-salt treatment B. oleracea genotypes 153
5.2.2.1.1 $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporter (NHX) 153
5.2.2.1.2 Calcium-cation exchanger (CAX3) and Ca^{2+}-ATPases (ECA2) 155
5.2.2.1.3 High-affinity Potassium Transporter family (KT9, KUP11, and KT) 157
5.2.2.1.4 V-type ATPases (V-type-a1 and G subunits) 159
5.2.2.1.5 Voltage-gated Chloride Channels (V-CLC) 161
5.3 Discussion 162
5.3.1 $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporter (NHX1) and V-type-a1 and G subunits 162
5.3.2 High-affinity Potassium Transporter family (KT9, KUP11, and KT) 163
5.3.3 $\mathrm{Ca}^{2+} / \mathrm{H}^{+}$- exchangers $(C A X 3)$ and Ca^{2+}-ATPases (ECA2) 164
5.3.4 Voltage-gated Chloride Channels (V-CLC) 165
5.4 Summary 166
CHAPTER SIX. 167
Allelic Variation and level of Gene Introgression between the B. oleracea Genotypes 167
6.0 Introduction 168
6.2 Results 170
6.2.1 Allelic Variation 170
6.2.2 Introgression in the DH lines 171
6.2.3 Discussion 175
6.2.4 Summary 177
CHAPTER SEVEN 178
General Discussion And Future Work 178
7.0 General Discussion 179
7.1 Future work 184
References 186
Appendices 212

List of Figures

Figure 1.0: Taxonomy of the B. oleracea species. 5
Figure 1.1: Different plants morphology in some selected diversified wild B. oleracea species 7
Figure 1.2: The U's Triangle. 10
Figure 1.3: Physiological Models describing two-phase growth response by the plant under salinity conditions 19
Figure 1.4: A mechanistic transient increase in secondary messengers Ca^{2+}, cGMP and ROS due to osmotic and ionic stresses. 23
Figure 1.5: Mechanism of Na^{+}extrusion at the plasma membrane is an active process mediated by Na^{+}-ATPases 25
Figure 1.6: Schematic diagram of the plant regulatory networks induced by drought/salinity stress 33
Figure 1.7: An outline presentation describing the relationship between the BolDFSs, S1s and DH population 45
Figure 1.8: DHSL150 is being produced using two parent materials: 46
Figure 1.9: Diagram showing the stages involved in carrying out GBS 50
Figure 1.10: The polymerase chain reaction (PCR) 51
Figure 1.11: Real-time PCR using hydrolysis (TaqMan) probes 51
Figure 2.1: Phytobiology Facility, Glasshouse, The University of Warwick, UK 60
Figure 2.2: A completely randomised design salt stress experiment. 61
Figure 2.3: A completely randomised design 62
Figure 2.4: A set of 7 days germinated DHSL150 Brassica oleracea lines in a 4×10 tray setting one-week after sowing 63
Figure 2.5: Young growing sets of DHSL150 Brassica oleracea genotypes 64
Figure 2.6: The growing B. oleracea selected wild S1, DHSL150 and doubled haploid lines set up for salt induction at six weeks old 65
Figure 2.7: Morphological differences between the parent and their derived $\mathrm{DH} B$. oleracea genotypes 68
Figure 2.8: MARSX microwave digestion system 71
Figure 2.9: Already set up Agilent Technologies ICP-MS 7500 series 73
Figure 2.10: Analysis of quality assay results. A $5.0 \mu \mathrm{l}$ of each PCR products 77
Figure 2.11: A randomise qRT-PCR design. 78
Figure 2.12: A schematic representation (a) a dissociation curve 79
Figure 3.1: The effects of salt stress on growth of some B. oleracea genotypes 21 days after salt treatment 87
Figure 3.2a : Morphological variation in average plant growth in response to salt stress in B. oleracea genotypes 89
Figure 3.2b : Morphological variation in average plant growth in response to salt stress in B. oleracea genotypes 92
Figure 3.3: Plant fresh weight 14 days after receiving salt treatment B. oleracea genotypes 94
Figure 3.4: Variation in whole plant dry weight 14 days after receiving salt treatment in B. oleracea 95
Figure 3.5: Morphological variation on leaf surface area on treated B. oleracea species 14 days post-treatment. 97
Figure 3.6a: Average Leaf fresh weight 14 days after receiving salt treatment 98
Figure 3.6b: Leaf fresh weight 21 days after receiving salt treatment in B. oleracea genotypes 99
Figure 3.7a: Average Leaf dry weight 14 days after receiving salt treatment 100
Figure 3.7b: Average Leaf dry weight 21 days after receiving salt treatment 101
Figure 3.8a: Genotypic variation in leaf surface area 14 days after receiving salt treatment in B. oleracea genotypes 103
Figure 3.8b: Average Leaf surface area 21 days following salt treatment showing genotypic variation in B. oleracea lines. 104
Figure 3.9: A heat map of Pearson correlation analysis between phenotypic parameters in B. oleracea genotypes in response to salt shock. 106
Figure 4.1: The effects of 250 mM NaCl salt treatment on mineral content 116
Figure 4.2: Regression analysis showing the relationship between $\mathrm{Na}^{+}, \mathrm{K}^{+}$, and Ca^{2+} 117
Figure 4.3: Mineral contents of B. oleracea genotypes twenty-four hours post-treatment.120
Figure 4.4: Variation in leaf mineral content of $\mathrm{Na}^{+}, \mathrm{K}^{+}$and Ca^{2+} two-week post salt treatment in B. oleracea genotypes 121

Figure 4.5: Difference in $\mathrm{Na}^{+}, \mathrm{K}^{+}$and Ca^{2+} level in B. oleracea genotypes 24 hr post-salt
treatment. .. 122
Figure 4.6:Genotypic variation in leaf content of $\mathrm{Na}^{+}, \mathrm{K}^{+}$and Ca^{2+} two-weeks after salt treatment in B. oleracea genotypes.

123
Figure 4.7: A comparison of $\mathrm{Na}^{+}, \mathrm{K}^{+}$and Ca^{2+} level between 2 weeks post initial salt treatment and 2 weeks post second salt treatment in B. oleracea genotypes.. 124

Figure 4.8: A summary of physiological variation observed in B. oleracea genotypes in response to salt shock stress

126
Figure 4.9: A general correlation outlook using the whole data representing relationship between morphological and physiological traits in B. oleracea genotypes..... 136
Figure 4.10: A plot of eigenvalues and variance associated with components generated from the data. ... 137

Figure 4.11: The strength of variables contribution in the formation of PC plot....... 138
Figure 4.12: A biplot of variables and individual B. oleracea genotypes. 139
Figure 5.1: The ratio of differentially expressed genes related to $\mathrm{Na}+/ \mathrm{H}+$ antiporter (NHX1), and Ca2+ homeostasis (CaTATPase), proton gradient (H-ATPase), vacuolar cation exchanger (V-CAX), and voltage-gated chloride channel (VCLC) under salt stress in salt-treated B. oleracea DH genotype. 150

Figure 5.2: Ratio of differentially expressed genes related to vacuolar-type proton pumps ATPases (V-type d2, G subunits and 116 kDa subunit an isoform), and proton pump (H-ATPase), under salt stress in salt-treated B. oleracea DH genotype 151

Figure 5.3: Relative expression of $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporter (NHXI) genes involved in compartmentalisation of excess Na^{+}in response to salt stress in B. oleracea lines.
\qquad
Figure 5.4: Early responses in relative gene expression 24 hr and two-weeks post-salt stress in B. oleracea genotypes 156

Figure 5.5: Relative expression of genes involved in homeostasis of potassium highaffinity $\mathrm{K}^{+} / \mathrm{Na}^{+}$transporter in salt stress in B. oleracea genotypes. 158

Figure 5.6: Relative expression of vacuolar ATPases a and G subunits that involved in the inward proton gradient
Figure 5.7: Variation in the expression of voltage-gated chloride channels genes that involved for anion transporters and contributes to Cl- movement within plants during salt stress

Figure S1: Standard curves established in running samples by using ICP-MS for mineral analysis for sodium (Na), potassium (K) and calcium (Ca) respectively 252

Figure S2a: Comparison of relative abundance of $\mathrm{Na}^{+} / \mathrm{H}^{+}$exchanger (NHX1), potassium transporter ($K T$ and $K U P$) between the control and treated normalized by using housekeeping gene B -Tubulin.264

Figure S2b: Comparison of relative abundance of potassium transporter ($K T$), cation exchanger (CAX3), and endoplasmic reticulum calcium exchanger (ECA2) between the control and treated normalized by using housekeeping gene BTubulin.265

Figure S2c: Comparison of relative abundance of vacuolar proton pumps genes (V-type a, and V-type- G), and chloride channel B subunit (CLC-B), between the control and treated normalized by using housekeeping gene B-Tubulin.266

Figure S2d: Comparison of regulation of potassium transporter genes ($K T, K U P$), 24 hrpt and 2 weeks (2 wkpt) normalized by using housekeeping gene TIP41. . 267

Figure S2e: Comparison of regulation of cation exchanger gene (CAX3), and endoplasmic reticulum calcium exchanger (ECA2) and chloride channel (V $C L C$)between 24 hpt and 2 weeks (2 wk) normalized by using housekeeping gene TIP41268

Figure S2f: Comparison of relative abundance of potassium transporter gene (KT and KUP) between the control and treated normalized by using housekeeping gene TIP41

269
Figure S2g: Comparison of relative abundance of cation exchanger gene (CAX3), endoplasmic reticulum calcium transporter gene (ECA2) and chloride channel B subunit (CLC-B)between the control and treated normalized by using housekeeping gene TIP41.. 270

Figure S3a: Images of potassium ion transporter genes indicating heterozygous alleles at exon regions in wildtype S1 B. oleracea using IGV. 271

Figure S3b: Images of cation $/ \mathrm{H}^{+}$and endoplasmic calcium exchanger showing the presence of heterozygous alleles at exon regions of the transcripts in wildtype S1 B. oleracea. ... 272

List of Tables

Table 1a: Genomic designations of varietal or subspecific taxa of agriculturally important brassicas.. 12
Table 1b: Chromosome Numbers for the taxa of the tribe Brassicacae 13
Table 1.2: List of some selected B. oleracea genotype lines from 2014 54
Table 2.1a: List of the selected B. oleracea S1s and their related DH lines used in 2015
salt stress screening experiment. 58
Table 2.1b: List of B. oleracea lines used in 2017 for salt stress experiment. 58
Table 2.2: A microwave digestion system set-up programmed heating cycles. 70
Table 2.3: ICP-MS Agilent 7500 series programme for sample injection during mineralanalysis72
Table 2.4: List of genes and their mRNA primer sequence used for qPCR validationAnalysis76
Table 2.5: List of membrane ion transporters identified from RNA-Seq that showdifferential expression 24 hour post salt shock in B. oleracea DH lines 82

Table 4.1: Ratios of nutrient content in B. oleracea genotypes following Sat Treatment

Table 4.2: Comparison between $\mathrm{K}^{+} / \mathrm{Na}^{+}$, and $\mathrm{Ca}^{2+} / \mathrm{Na}^{+}$Ratio 24 hrs and two-weeks posttreatments using 250 mM NaCl in B. oleracea genotypes......................... 127

Table 4.3: A comparison between $\mathrm{K}^{+} / \mathrm{Na}^{+}$and $\mathrm{Ca}^{2+} / \mathrm{Na}^{+}$Ratios............................... 128
Table 4.4: A Pearson correlation between morphological and physiological traits in the cultivated rapid cycling DHSL150 and DH line C13013-DH 130

Table 4.5: A Pearson correlation between morphological and physiological traits in the wild S1B. bourgaei-S1 (C07007) and DH line C10025-DH...................... 132

Table 4.6: A Pearson correlation between morphological and physiological traits in the wild S1 B. oleracea (C07079A) and DH line C10121-DH........................ 134

Table 4.7: A Pearson correlation between morphological and physiological traits in the wild S1 B. oleracea-S1(C07060) and DH line C10128-DH 135

Table 6.1: A comparisons of Alleles Introgression in the DH line C13001-DH from the Cultivated DHSL150 and other S1 parent lines 173

Table 6.2: Differences in nucleotides at various transcripts position and introgression in DH line from the wild parent line. 174

List of Abbreviations

The following abbreviations are used in this Thesis write-up

ABA	abscisic acid
ABRE	abscisic acid-response element
AC	Anther culture
ATP	adenosine triphosphate
cAMP	cyclic-adenosine monophosphate
CAX	cation/H ${ }^{+}$exchanger family/genes
CBF	cold-binding factor
CDPK	calcium-dependent protein kinase
cGMP	cyclic-guanosine monophosphate
VCLC	Vacuolar gated chloride channels
CNGCs	cyclic nucleotide-gated channels
COR	cold-regulated
CRD	completely randomised design
CV	coefficient of variation
DH	doubled haploid
DMSO	dimethyl sulfoxide
DNA	deoxyribose nucleic acid
DRE	dehydration-response element
DREB	dehydration-response element binding protein
FDR	fombryo-likes structure
FAB agricultural organization	

GLRs	glutamate receptors
HAK	high-affinity K+ uptake transporter
HKT	high affinity potassium transporter family
ICP-MS	inductively coupled plasma mass spectroscopy
IMC	isolated microspore culture
KT	potassium transporter
MAP	mitogen activated protein
MAS	marker-assisted selection
mRNA	messenger RNA
NHX	$\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporter family
NSCCs	non-selective cation channels
qPCR	quantitative real time polymerase chain reaction
QTL	quantitative trait locus/loci
r	correlation coefficient
RD	responsive to desiccation
RNA	ribose nucleic acid
ROS	reactive oxygen species
RT-PCR	reverse transcriptase polymerase chain reaction
SI	self-incompatible/self-incompatibility
SKOR	stellar K+ outward rectifying channel
SNPs	single nucleotide polymorphisms
SOS1	salt overly sensitive pathway/genes
V-type	vacuolar type
TFs	Transcription factors
DFS	Diversity foundation set

DFFS	Diversity fixed foundation set
SOS	salt overly sensitive
SAGE	serial analysis of gene expression
KORCs	K^{+}outward rectifying channels
VIC	voltage-independent cation channels
NSCCs	non-selective cation channels
KUP	potassium uptake gene
SKOR	stellar K ${ }^{+}$outward rectifying channels
24 hrpt	twenty-four hours post first salt-treatment
2 wkpt	two-weeks post first salt-treatment
8 wk 24hrpt	eight-week 24 hours post second salt-treatment
10 wkpt	two-weeks post second salt treatment

Acknowledgements

I would like to begin by expressing my unreserved gratitude to my supervisor, Dr Guy Barker for his perseverance, guidance and endless support throughout my PhD. I also like to thank my PhD panel members; Dr G. Teakle and Dr Corinne Smith for their constructive and advisory support. I would like to acknowledge the support from the VeGIN project. I also like to mention the contribution of Prof Vicky Buchanan-Wollaston, Prof Katherine Denby, Jonathan Moore, Peter Walley, John Carder, and Christine Hicks. Thank you.

My humble acknowledgments also go to the Nigerian Government, for the privileged under the Tertiary Education Trust Fund (TETFund) for funding my PhD without which these successes would not have been feasible. Worthy to mention also is my deep appreciation to the Management of the Usmanu Danfodiyo University, Sokoto-Nigeria. Thank you.

I would like to mention and appreciate the contributions of the following people: Dr John Carder, Warwick Crop Centre, Peter Walley, and Gary Grant for their support and numerous discussions. I also thank Dr Richard Stark for creating tools that aided me in my data collection and presentation. Thanks to my colleagues in the Guy Barker research group especially, Luca Illing for his kind support. I won't forget all the memorable times we enjoyed together with members of the lab C.46, time shared both in the office or chatting away in the Lab. An experience that will linger for a long time to come.

I would also like to thank all friends I have been privileged to meet over my years at the University of Warwick.

Finally, my special thanks to my wife and kids for their patience, endurance, words of encouragements and prayers. Special thank you to my mother, brothers, and sisters, whom I have missed. Thank you for being there for me all the time. I appreciate your assurances and guidance.

Declaration

I hereby declare that the work contained in this thesis is the original work of the author, except where specific reference is made to other sources, with the nature and extent of the author's contribution indicated (as appropriate) where work was based on collaborative research. The work was undertaken at the School of Life Sciences, University of Warwick between September 2013 and July 2018 and has not been submitted, in whole or in part, for any degree, diploma or other qualification.

Abstract

Soil salinity remains a global problem that affects approximately 20% of irrigated land and reduces plants growth and crop yields. Many of the Brassica oleracea species are important horticultural crops. The work aims to study variation in B. oleracea genotypes in response to salt stress and involves the use of cultivated B. oleracea DHSL150, wild B. oleracea lines and doubled haploid (DH) lines derived from them. Plants were exposed to salt stress through salt-shock using 250 mM NaCl at week-six of their growth. Morphological traits were measured including; plant height, plant fresh/dry weights, leaf fresh/dry weights and leaf area. $\mathrm{Na}^{+}, \mathrm{K}^{+}$and Ca^{2+} were measured by using inductively coupled plasma mass spectrometry (ICP-MS) from leaf mineral. The results indicate significant variation between the lines, for example growth reduction of -11.74% to 14.96% was observed in the parent lines and, -1.84% to -11.24% in the DH lines compared against the untreated control. Plant fresh and dry weights exhibited a reduction between -32.92% to -2.15% in the wild S1parent lines and -20.14% in the parent DHSL150 line while their DH lines reduced by -28.52% to -12.42%. Leaf morphology affects the leaf area, which showed a significant reduction in DHSL150 and four other wild S1 parent lines ($\mathrm{p}<0.05$) as compared to the untreated control. The leaf area of some DH lines showed no difference compared to the control, however others exhibited a significant reduction ($\mathrm{p}<0.05$). Analysis of mineral content within leaves revealed significant variation between the B. oleracea genotypes 24 hr post-exposure to salt treatment. The leaf Na^{+}level showed a significant increase in all the genotypes while K^{+} and Ca^{2+} level showed a non-significant reduction 24 hr post-treatment. Two-weeks posttreatment, K^{+}level were affected. It dropped significantly in some lines especially in DHSL150 thereby affecting $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio. A significant $\mathrm{K}^{+} / \mathrm{Na}^{+}$

ratio increase was observed in some wild S1 accessions and DH lines, which indicates resilience to salt stress. A successful strategy for salt tolerance relies on the maintenance of a high $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio through a mediated active/passive transport systems carried out by ion membrane transporters/channels. The relative gene expression of some selected ion membrane transporters using qPCR was carried out. Relative gene expression of $\mathrm{Na}^{+} / \mathrm{H}^{+}$ antiporter (NHX1), and potassium transporters (KT9 \& KUP11) increased between treated and the control with B. oleracea wild S 1 and DH lines both showing improved $\mathrm{K}^{+} / \mathrm{Na}^{+}$twoweeks post-treatment. Other transporters such as vacuolar H^{+}adenosine triphosphatase (V ATPase $-G$), and chloride gated channel (V-CLC) also showed increased expression with respect to the untreated control. Variation due to the effects of allelic variants was investigated using genotype-by-sequencing (GBS). A significant variation at different chromosome positions corresponding to the introgressed regions in the DH lines was observed between parent lines. These finding could be significant for plant breeding and development of enhanced varieties of brassica vegetables with salt resilience.

CHAPTER ONE

General Introduction

1.0 Introduction

Under the United Nations programme on Sustainable Development Goals (UNSDGs, 2017) presented an urgent and formidable challenge to scientists and society alike, citing the need for agricultural transformation and food sector in order to achieve food and nutrition security, others include ecosystem sustainability, economic growth, and social equity over the coming decades. Global food demand has been predicted to grow by $70-85 \%$ as world population suggested to possibly reach 9.15 billion by 2050 (www.fao.org/economic/esa) (FAO, 2017). These problems are predicted to be exacerbated by the effect of climate change and thus have far-reaching implications for global food security. The predicted increase in drought and intense precipitation, elevated temperatures, as well as increased salt and heavy metals contamination of soils and the effects of pest and pathogen infestations would certainly take a major toll on crop yields (Long et al., 2015). Different environmental stresses are among the main causes of a decline in crop productivity worldwide leading to billions of dollars losses (UNSDGs, 2017). For example, the suggested agricultural losses related to high soil salt are of serious concern both in food production and for the substantial farmable area affected, where 50% of total land mass will be lost due to salinity (Ilangumaran and Smith, 2017). The salt-affected lands identified are often in arid and semiarid regions and this could have a direct conflict with the burgeoning world population posing a significant challenge for sustainable food supplies (Kumar, 2013). Also, the problem of salt stress conditions has been exacerbated by unhealthy human activities, such as illegal mining, explorations, dumping of hazardous substances in oceans and waterways and improper irrigation practices championed by lack of artificial or natural drainage systems (Kumar, 2013). Such practices expose our fertile agricultural land to unwanted and deleterious salts substances. One of the worst being improper irrigation without drainage management which is a source of salt, which can accumulate in the root zone of the plants,
thereby affecting the soil properties and crop productivity (Ram et al., 2008). An FAO report has shown that over 830 million hectares of arable land worldwide are affected, by either saline water (403 million hectares) or by the conditions related to soil sodicity (434 million hectares; FAO, 2008). Additionally, more than 6.0% of the entire land of the world is shown to be involved and the agricultural cost implication is worth of billions of US dollars annually and expected to increase due to the effect of global warming (Metternicht and Zinck, 2003; Yensen, 2008; Patel et al., 2011).

1.1 Health and Economic Benefits of B. oleracea Vegetables

The B. oleracea family, include; the broccoli, cabbages, kale, cauliflower, and Brussels sprouts, which are essential vegetables for nutrients excellent sources of vitamins, minerals and fibre good for the treatment of diseases; such as incidence of type II diabetes and coronary heart disease (Walley and Buchannan-Wollaston, 2011; Ortega et al., 2012). They could also be used to improve receptor sensitivity to insulin (Harris, 2008). The B. oleracea vegetables contain a high level of minerals that are essential components of healthy living. Deficiencies of such minerals could lead to conditions such as anaemia (iron), rickets (calcium and vitamin D), influenza (selenium), reduced immune function, and cognitive decline (zinc) (Beck et al., 2001; Rayman, 2012; Chasapis et al., 2012).

The economic value of individual of B. oleracea crops has been reported to contribute significantly in many countries of the world. For example, in 2004, the United Nations Agriculture Organisation (FAO) database reported that over three million hectares (ha) and eight hundred thousand ha used for cabbages and cauliflowers respectively. Production has shown to amount of over sixty-eight million and sixteen million metric tons (Mt) produced for cabbages and cauliflower. The amount has shown to increase in 2010 where over 76
million tons of Brassica vegetables have been produced worth over 14.85 billion US dollars (http://faostat.fao.org). Record in 2017 shows that the producers have shown to increased worldwide from the FAOSTAT database over $105,494,481$ million tons of cabbages and related B. oleracea crops have been produced (http://faostat.fao.org/).

1.2 Taxonomy of Brassica oleracea species

The taxonomy of Brassica oleracea (B. oleracea) species shows that it comprises a number of important vegetative crops such as cultivars, including; cabbage, cauliflower, broccoli, Brussels sprouts, kohlrabi, kale (Figure 1.0). The cultivated B. oleracea crops have shown to derived their common origin from the wild forms of the B. oleracea species. The B. oleracea species shows a clear morphological diversity and crop forms. Various members are grown for their leaves, flowers, and stems, with different parts of the plant being consumed as vegetables (Liu et al., 2014). Most of the varieties of B. oleracea crops have been in cultivation for time immemorial that little details remain of how they are originated (Gray, 1982). The uncultivated forms of B. oleracea have been the wild cabbage and usually found around the coastal regions especially south and western Europes (Tsunoda et al., 1980; Snogerup 1990). Most of the B. oleracea crops are serve as a good source of protein and carotenoids (Kopsell and Kopsell, 2006). In addition, studies have shown that B. oleracea contain also diverse phytochemicals (glucosinolates, GSLs) for plant defence against fungal and bacterial pathogens (Halkeir et al., 2006) and anticancer properties (Khwaja et al., 2009).

Figure 1.0: Taxonomy of the B. oleracea species (Source: NCBI Taxonomy Brower; www.ncbi.nlm.nih.gov/Taxonomy) and Pictures of some selected B. oleracea cultivars.

1.2.1 The Habitat of wild B. oleracea species

The naturally occurring environment of B. oleracea wild uncultivated species has been considered to be the areas of high salt and lime (Snogerup et al., 1990). They are often found in limestone sea cliffs, which is attributed to its intolerance of other plants (Snogerup et al., 1990). The adaptation of wild B. oleracea to the harsh environment has been related to its morphological advantage. The tall biennial plant of B. oleracea has shown to form a stout rosette of larger leaves in their first year. The description of their leaves has shown that they are fleshier and thicker as compared to the other Brassicas. These offer an adaptational advantage to store more water and nutrients under harsh growing environment. It also shows the ability to utilise stored nutrients to produce flower spike and flowers (Gray, 1980).

Moreover, morphological variation among the wild populations of B. oleracea species has been reported. Studies have shown that there is considerable morphological variation in both intra- and inter-population in wild species. The morphology of wild B. oleracea population differ significantly based on their vegetative and generative characters (McNaughton, 1995a) (Figure 1.1).

Figure 1.1: Different plants morphology in some selected diversified wild B. oleracea species

1.2.2 The significance of morphological diversity and B. oleracea crops domestication

Studies reveal the potential of B. oleracea species particularly in morphological evolution complementing what is obtainable in Arabidopsis thaliana (Lan et al., 2000; Bowman, 2007). Morphological divergence in B. oleracea has been relatively unusual due to its rapid reproduction isolation. That's is to say, a single species with a stunning range of morphologies among the genotypes can be readily intercrossed (Wang et al., 2011). Domestication of many plant crops has resulted in the enhancement of plant parts for use humans, such includes; the seeds, grains of cereal crops, the fruits of some trees, or roots in some vegetable crops. The B. oleracea crops are of exceptional in their range of striking morphology (Wang et al., 2011). They have been selected based on their vegetative meristems, for instance, cabbages for enlarged vegetative apex meristems, Brussels sprouts for leaf axils, broccoli for proliferation of floral meristems, cauliflower for aborted floral
meristems, kohlrabi, and kales for swollen bulbous stems and orate leaf patterns respectively (Wang et al., 2011). (Figure 1.0).

1.2.3 Cytological relationship and botanical description of B. oleracea and other members of Brassiceae and Arabidopsis model plant

B. oleracea belongs to genus Brassica in the tribe Brassiceae, a well-defined clade in the family of Brassicaceae that also includes A. thaliana. This was the first flowering plant to have its genome sequenced (AGI 2000). A comparative analysis study based on mitochondrial DNA has revealed that Brassica and A. thaliana lineages shared an ancestral ancestor ~14-20 million years ago (MYA) (Yang et al., 1999; Koch and Mummenhoff, 2006). Before their divergence, record shows that one round of ancient whole-genome triplication (WGD) referred to as gamma event (γ) in an early eudicot ancestor and two WGD i.e., alpha and beta events $(\alpha \& \beta)$. This is thought to have occurred before the splitting of Arabidopsis-Brassica (Lan et al., 2000; Schmidt et al., 2001; Tang et al., 2008). Further additional polyploidisation(s) in Brassica lineage has been reported to occur after its divergence from Arabidopsis, this reflected by large segments of duplication in the genetic maps of the three diploids; B. rapa, B. nigra and B. oleracea (Parkin et al., 2003; Lukens et al., 2004). Arabidopsis and Brassica share physiological and biological similarities. Comparative genomics studies with the brassicas have been suggested as a means for the identification of genetic determinants in a more broader spectrum of variation than what may be obtainable using Arabidopsis alone (Lan et al., 2000; Bowman, 2007).

The relationships among the cultivated Brassica species have been described by the use of cytological studies (Morinaga 1934). According to these studies, the B. oleracea, B. rapa and B. nigra have been represented as three species of genus Brassica with C, A and B
genomes, which differ in their chromosome number and genome size. The number of chromosomes; i.e., $n=16, n=18$, and $n=20$ was described for B. nigra (B-genome), B. oleracea (C-genome), and B. rapa (A-genome) respectively. These species underwent interspecific hybridisation and duplication event that led to the formation of allotetraploids (amphidiploids) of B. napus $(2 \mathrm{n}=38$, AACC$)$, B. juncea $(2 \mathrm{n}=36$, AABB$)$, and B. carinata $(2 n=34, B B C C)$. The genome size of diploid species has been characterised by low nuclear DNA contents. Studies have shown that the genomes range between $0.97 \mathrm{pg} / 2 \mathrm{C}$ (468 $\mathrm{Mb} / 1 \mathrm{C}$) for B. nigra to $1.37 \mathrm{pg} / 2 \mathrm{C}(662 \mathrm{Mb} / 1 \mathrm{C})$ for B. oleracea (Arumuganathan and Earle, 1991). Also, within the B. oleracea species, the record has shown that the size of the genomes varies from $599 \mathrm{Mb} / 1 \mathrm{C}$ in broccoli to $662 \mathrm{Mb} / 1 \mathrm{C}$ in cauliflower respectively.

The phylogenetic and genome relationships between diploids and amphidiploids have been described and illustrated by using the U's triangle (1935) and further confirmed by using cytogenetic studies (Prakash and Hinata, 1980) (Figure 1.2).

Figure 1.2: The U's Triangle showing the phylogenetic relationships between Brassica species ($\boldsymbol{n}=$ haploid number of chromosomes, and AA, BB, CC and AABB, AACC and BBCC indicate genome). (Morinaga 1934; U 1935).

1.2.4 History and Origin of wild Brassica species

The wild taxa of the species (Table 1a \& 1b) have a global distribution with a specific presence in many regions of the world, e.g., in the Mediterranean region and areas along the Atlantic coasts. Findings have suggested that the Brassicas evolved from the genus Sinapidendron of the Miocene age through Diplotaxix Erucastrum complex (GomezCampo and Tortosa 1974). The cultivated Brassica species are also described by using two way systems, first, with a possibility of B. nigra being derived from the Sinapis stock and second, B. rapa and B. oleracea developed from Diplotaxis erucoides (Song et al., 1990; Warwick and Black, 1991; Pradhan et al., 1992). Reports have shown that the first Brassica species to be domesticated was B. rapa; this was attributed to the closeness of its natural area to the centre of domestication, which has extended from Mediterranean region to

Central Asia in ancient times. Two main domestication centres for B. rapa have been reported; one in Europe, which represent the oleiferous turnip centre, and China, which is represented by the leafy form pak choi (Song et al., 1988b) centre of origin of B. nigra. This overlaps with B. rapa thus both wild-type of B. rapa and B. nigra occur together in the Middle East, and hence, it is believed that B. juncea might have originated there. Other secondary centres considered for B. juncea were China and India (Song et al., 1988). The genus B. oleracea developed much later and is largely far away from the centre of domestication (Gomez-Campo, 1999).

The members of B. oleracea species are botanically diverse, they share considerable variation both in character and shape. These have been observed in many regions, for example, the East Mediterranean and Sicily (Snogerup, 1980). Brassica hilarionis is dominant around Kyrenia mountains, Cyprus, while B. cretica L. are widely distributed in some part of Greece and Turkey. The B. incana populations are distributed in many Island, for instance, north-eastern part of Sicily, while B. rupestris R. and B. villosa are found mostly from the western part of Sicily. Moreover, wild B. macrocarpa has been reported in both islands of Sicily and B. insularis (Moris) are present in Sardinia, Corsica, and Tunisia respectively. B. montana (Pourret) grow naturally around northern Italy, southern France, and Spain (Padilla et al., 2005). In addition, the wildtype of B. bourgeai species grows in the Canary Islands. Wild populations of B. oleracea crops are found in areas around the Atlantic Coasts of northern Spain, France, Great Britain, and Helgoland (Gustafsson and Lannér-Herrera, 1997).

Table 1a: Genomic designations of varietal or subspecific taxa of agriculturally important brassicas. Considerable taxonomic confusion exists in the literature for Brassica (Toxopeus et al., 1984). These designations are a convenient classification of the major Brassica morphotypes. n , the haploid complement of chromosomes; $\mathrm{a}, 10 ; \mathrm{b}, 8 ; \mathrm{c}$ and $\mathrm{r}, 9$.

Species (n)	Subspecies or variety	Genome descriptor (2n)	Common Name
Brasssica			
nigra (8)		bb	Black mustard
oleracea (9)		cc	Cole crops
	acephala	cc.a	Kales
	alboglabra	cc.al	Chinis kale, Kailan
	botrytis	cc.b	Cauliflower, Heading broccoli
	capitata	cc.c	Cabbage
	costata	cc.co	Portuguese cabbage
	gemmifera	cc.g	Brussels sprouts
	gongylodes	cc.go	Kohlrabi
	italica	cc.i	Broccoli, Calabrese
	medullosa	cc.m	Marrow stem kale
	palmifolia	cc.p	Tree cabbage
	ramosa	cc.ra	Thousand-head kale
	sabauda	cc.s	Savoy cabbage
	sabellica	cc.sa	Collards
	selensia	cc.sc	Borecole
campestris (10)		aa	
(syn. rapa)	chinensis	aa.c	Pak choi
	narinosa	aa.na	
	nipposinica	aa.na	
	oleifera	aa.o	Turnip rape, Toria
	parachinensis	aa.pa	Choy sum
	pekinensis	aa.p	Chinese cabbage, Petsai
	perviridis	aa.pe	Tendergreen, Komatsuna, Mustard spinach
	rapifera	aa.r	Turnip
	trilocularis	aa.t	Sarson
	utilis	aa.u	Broccoli raab
carinata (17) juncea (18)		bbcc	Ethiopian mustard
		aabb	
	capitata	aabb.c	Head mustard
	crispifolia	aabb.cr	Cut leaf mustard
	facilifora	aabb.f	Broccoli mustard
	lapitata	aabb.l	Large petiole
	multiceps	aabb.m	Multishoot mustard
	oleifera	aabb.o	Indian mustard, Raya
	rapifera	aabb.r	Root mustard
	rugosa	aabb.ru	Leaf mustard
	spicea	aabb.sp	Mustard
	tsa-tsai	aabb.t	Big stem mustard
napus (19)		aacc	Fodder rape
	oleifera	aacc.o	Oil rape
	rapifera	aacc.r	Swede, Rutabaga

Source: Table was adapted from Williams and Curtis, (1986) Science 232: 1385 - 1389.

Table 1b: Chromosome Numbers for the taxa of the tribe Brassicacae

TAXON [Name Reported as]	n	2 n	Reference
Brassica bourgeaui (Webb ex H. Christ) Kuntze	9	18 (20)	Borgen et al. (1979)
Brassica bourgeaui	-	18	Snogerup et al. (1990)
Brassica cretica Lam.	9	-	Griesinger (1937)
Brassica cretica	-	20	Miège and Greuter (1973)
Brassica cretica	9	-	Montmollin (1986)
subsp. cretica	-	18	Snogerup et al. (1990)
Brassica hilarionis Post	-	18	Snogerup et al. (1990)
Brassica incana Ten.	9	-	Griesinger (1937)
Brassica incana [as B. sylvestris subsp. sylvestris (Lam.) Mill.]	9	-	Griesinger (1937)
Brassica incana	9	-	Takahata and Hinata (1978)
Brassica incana	-	18	Ferrarella et al. (1979a)
Brassica incana	9	-	Gómez-Campo and Hinata (1980)
Brassica incana	-	18	Snogerup et al. (1990)
Brassica insularis Moris	-	18	Manton (1932)
Brassica insularis [as B. oleracea subsp. insularis (Moris) Rouy \& Foucaud]	-	18	Contandriopoulos (1957c)
Brassica insularis [as B. oleracea subsp. insularis]	-	18	Contandriopoulos (1962)
Brassica insularis	9	18	Corsi (1963)
Brassica insularis	9	-	Salmeen (1979)
Brassica insularis	9	-	Snogerup and Persson (1983)
Brassica insularis	-	18	Baltisberger (1988)
Brassica insularis	-	18	Lentini et al. (1988)
Brassica insularis [as var. insularis Moris]	-	27	Verlaque et al. (1993)
Brassica macrocarpa Guss.	-	18	Takahata and Hinata (1978)
Brassica macrocarpa	-	18	Ferrarella et al. (1979b)
Brassica macrocarpa	9	-	Gómez-Campo and Hinata (1980)
Brassica macrocarpa	-	18	Snogerup et al. (1990)
Brassica montana Pourr.	-	18	Netroufal (1927)
Brassica montana	9	-	Harberd (1972)
Brassica montana	-	18	Snogerup et al. (1990)
Brassica oleracea L.	-	18	Nagai and Sasaoka (1930a)
Brassica oleracea	-	18	Nagai and Sasaoka (1930b)
Brassica oleracea	9	18	Catcheside (1937)
Brassica oleracea	-	18	Richharia (1937a)
subsp. oleracea	-	18	Leveque and Gorenflot (1969)
Brassica oleracea	-	18	Mitsukuri (1956)
Brassica oleracea	9	-	Takahata and Hinata (1978)
Brassica oleracea	9	-	Lan (1986)
var. alboglabra (L.H. Bailey) [as B. alboglabra L.H. Bailey]	-	18	Nagai and Sasaoka (1930a)
var. botrytis L.	-	18	Karpetchenko (1924)
var. capitata L.	-	18	Karpetchenko (1924)
var. italica Plenck	-	18	Murín (1978)
var. ramosa DC.	-	18, 36	Zeven et al. (1989)
Brassica rupestris Raf.	-	18	Manton (1932)
Brassica rupestris	9	-	Harberd (1972)
Brassica rupestris	-	18	Colombo et al. (1978)
Brassica rupestris	-	18	Takahata and Hinata (1978)
Brassica rupestris	9	-	Salmeen (1979)
Brassica rupestris	-	18	Snogerup et al. (1990)
Brassica villosa Biv.	-	18	Raimondo et al. (1980)
Brassica villosa	-	18	Snogerup et al. (1990)

* Note: The Table was adapted from a draft of checklist containing all known reports of haploid (n) and diploid chromosome numbers (2n) for taxa of the tribe Brassiceae as contained in Guide to Wild Germplasm of Brassica and Allied Crops (Tribe Brassiceae, Brassicaceae) Part II.

1.3 Salt Stress

1.3.1 Salt Stress as a factor affecting the environment

Under normal field growing conditions, plants are exposed to various environmental factors, which mostly constitute their immediate environment and how they relate symbiotically with the ecosystem. A deviation from the optimal environmental level causes deleterious effects to plant growth and lead to a situation referred to as stress conditions. To define the term stress condition two technical terms have been used: (A) By using physical terms, stress is defined as applied mechanical force per unit area of an object. Thus, by using this definition, it would be difficult to measure exact applied force as a result of stress because plants are considered to be perpetual. (B) To define stress in biological terms could also be conditional because a condition seems to act a stress relative one plant may be an ideal for another plant (Hernandez et al., 1995). Therefore, the biological definition of stress has been any harsh state/conditions or 'applied force' that impedes the normal functioning of a biological system such as plants (Hernandez et al., 1995).

However, different sources of plants stress have been identified and categorically fall into two factions; abiotic factors; for instance high temperatures, cold, drought, salt stress (salinity), and biotic factors; as a result of infection from viruses, insects, nematodes, bacteria, and fungi have been reported to affect the extent of production and cultivation of agricultural crops, and amongst these stresses, salt stress has been argued to be the most important environmental factor limiting crop productivity and quality (Zhu, 2001; Tester and Davenport, 2003; Yamaguchi and Blumwald, 2005; Shahbaz and Ashraf, 2013).

A saline soil is generally defined as any soil with electrical conductivity (EC) of the saturation extract (ECe) in the root zone exceeding $4 \mathrm{dSm}^{-1}$, which is equivalent to 40 mM NaCl at $25^{\circ} \mathrm{C}$ and has an exchangeable sodium of 15% (Munns, 2005; Jamil et al., 2011). At this ECe, many crops yield have shown to be reduced or affected (Jamil et al., 2011).

That is to say, increase soils salinity is the main causes of salt in the soil, therefore salt stress is an environmental factor caused by the increase of salinity and the effects usually refer to as salt stress or salinity stress.

1.3.2 Soils Salts and its Sources

The global scarcity of many valuable resources including water, environmental pollution and increased salinization of soil water has been marked as prominent challenge to the $21^{\text {st }}$ century, because of growing number human population and reduction in the availability of arable land for crop cultivation to meet the need for agricultural sustainability (Shahbaz and Ashraf, 2013). However, soil salinity was first reported in Tigris-Euphrates alluvial plains of Iraq (Russel et al., 1965). The salt-affected soils have shown to affect large climatic regions worldwide, found in different latitudes and in places such as plateaux and the rocky mountains (Singh and Chatrath, 2001). Dissolved salts have shown to be present in all soils, in irrigated waters from canals and underground water (Hanson and May 2011). In fact, the integral part of the earth crust has been formed by these salts and they form chemically complex compounds with essential nutrients for plants growth and developments (example, nitrates, Calcium, Magnesium and Potassium salts) (Singh and Chatrath, 2001).

The major sources of soil salinity have been from mineral weathering, inappropriate use of inorganic fertilizers, gypsum, composts and, organic manures and irrigation waters (KatubyAmacher et al., 2000). Unguided irrigation of crop plants using contaminated water, in particular, has shown to encourage soil salinity. Other implicated sources are unhealthy agricultural practices and the overall effects are the deposition of large amounts of salts to the soil (Munns, 2002). The mineral content of irrigated water includes salts of calcium $\left(\mathrm{Ca}^{2+}\right)$, magnesium $\left(\mathrm{Mg}^{2+}\right)$, and sodium $\left(\mathrm{Na}^{+}\right)$(Munns, 2002). Therefore, evaporation of
surface water due to high temperature and drought causes Ca^{2+} and Mg^{2+} to precipitate into anhydrous carbonated form leaving only sodium salts to dominate the soil thereby increasing the Na^{+}concentrations to supersedes other macromolecules and micronutrients nutrients. High Na^{+}level in the soil deprive plants of other essential nutrients through complex chemistry via interference of nutrient-ion activities and produced extreme $\mathrm{Na}^{+} / \mathrm{Ca}^{2+}$ and $\mathrm{Na}^{+} / \mathrm{K}^{+}$ratios (Grattana and Grieveb, 1999; Hanson and May 2011).

1.3.3 Impact of Salinity Stress on Plants Growth

Salinity stress effects are the results of complex interactions involving processes associated with morphological, physiological, and biochemical evolvement that affects seed germination, growth, and water and nutrient uptake (Akbarimoghaddam et al., 2011; Jung and McCouch, 2013). Soil salinity has shown to imposes ion toxicity (Figure 1.3), osmotic stress, nutrients deficiency and oxidative stress on plants thereby limiting their overall water uptake (Munns, 2002). Excessive accumulation of elements such as sodium, chloride, and boron have shown to cause specific effects on plants. Sodium accumulation causes cell walls distortion, which can lead to osmotic stress (Figure 1.3), and cell death (Munns and Tester, 2008). Salinity also affects photosynthesis mainly through a reduction in leaf area, chlorophyll content and stomatal conductance, and to some extent through a decrease in photosystem II efficiency (Netonda et al., 2004; Munns and Tester, 2008). Also, reproductive development has shown to be affected by salinity stress through inhibitory effects on microsporogenesis and stamen filament elongation, promoting programmed cell death, ovule abortion and senescence of fertilized embryos (Ashraf, 2004). All these factors cause adverse effects on plant growth, and development at physiology, and biochemical levels and molecularly (Munns and James, 2003; Tester and Davenport, 2003).

Assessing tolerance of plants to salinity stress, growth, and survival. Salt tolerance in a plant is defined as plant's ability to reproduce under salt conditions and improve in percent biomass in comparison to a healthy (unsalted) growing environment in an extended period (Prasad et al., 2016). Significant variations have been reported in plants response as a decline in growth is observed often exasperated by the length of exposure over which plants are expected to grow in saline-affected soils (Prasad et al., 2016).

Many studies have shown that the percent decrease in biomass growth has a direct relation with the degree of tolerance to salt. For example, a salt-tolerant plant such as sugar beet has shown to undergo a 20% decrease in total dry weight when exposed to 200 mM NaCl (Gorham and Jones, 2002). However, it was observed that when a plant with moderate salt tolerance is grown in the same salt concentrations such as cotton, a 60% reduction in total dry weight was reported (Gorham and Jones, 2002). A case study using a halophyte plant, Suaeda maritima shows that at 200 mM NaCl conditions, the plant reached its full growth (Flowers and Yeo, 1986). Evaluation of different plant species for their salt-tolerance has been based on their ability to survive. For instance, a perennial plant has been classified tolerant based on their survival rate. A decline in growth rate under salt conditions has been observed in both salt-tolerant and nontolerant plant species after a short exposure to salt stress, because sudden and moderate exposure to soil salinity causes leaf cells to lose water and also inhibits lateral shoot development, and symptoms begin to appear over weeks of growth but this more to salt-sensitive plants than salt tolerant (Munns and Tester, 2008) .

1.3.4 Physiological Models Describing Plant Response to Salt Stress Conditions

The reaction toward salt stress by plants has been represented by using two mechanistic phases: the primary phase, referred to as osmotic phase; and the second phase, usually referred to as the ionic phase (Munns and Tester, 2008) respectively (Figure 1.3).

The experience for plants suddenly exposed to salt stress has been an osmotic shock (stress), which causes a reduction in leaf expansion (Munns, 1993). The osmotic effects have been regarded as an immediate response by plants on the sudden onset of salt experience (Figure 1.3). This has been shown to continue for a period and could last throughout the exposure, thus triggering a reduction in cell expansion, division, and as well as the stomatal closure (Munns, 2002; Flowers, 2004). The prolonged exposure to salinity could lead to ionic stress, which causes premature senescence of adult leaf, and a reduction in photosynthesis. The dissociations of NaCl salt would produce excess sodium ions and chloride ions. The excess Na^{+}ions have the potential to affect the enzymes activities in the plants. The chloride ions play important role in anion homeostasis but an excess of it could be toxic to plant growth. Excesses of Na^{+}and Cl^{-}have been shown cause cell swelling, lead to energy reductions and other physiological changes such as; premature senescence, disruption of protein synthesis, which could further interfere with enzymes activities (Hasegawa et al., 2000a; Munns, 2002). Different mechanisms of resistance have been reported to be employed by plants. For example, plants may either exclude salt from their cells and second, tolerate its presence within the cells to prevent its toxic effects. The mechanisms involved in response to salt stress by plants include; a) biochemical response (b) molecular response, and (c) tissue tolerance (Munns and Tester, 2008).

Figure 1.3: Physiological Models describing two-phase growth response by the plant under salinity conditions. A two-phase model proposed (Munns et al., 1995), describing the osmotic and ionic effects of salt stress. Plants that are sensitive or tolerant to salinity may differ in the rate at which salt reaches many sites of the plant's body; in roots, shoots, or leaves. Timescale to response to salt could be hours, days or weeks or months, depending on the species and salinity level. In Phase 1: the plants may experience an early reduction in growth, causes attributed to osmotic effects of an increased salt solution outside the roots. Phase 2: they may experience increasing dead of old leaves in case of the sensitive plants and reduction in photosynthetic capacity of the plant, hence, triggered biochemical, physiological and molecular adjustments.

1.3.5 Plant Response to Salinity Stress

The effects of salt stress on plant differ mainly due to their genetic differences. The mechanisms involved also differ due to their nature, the complexity of the interactions between environment and genetic make-up, all of which could affect the plant's phenotype responses. The mechanisms of genetic control of salt tolerance in plants are complex. Several genes have been reported to participate in the salt stress tolerance in different species and these depend strongly on interaction/environmental conditions (Allen et al., 1994). The determination of salt stress by genetic variation has been determined through indirect approaches measuring responses of different genotypes, mainly through assessing their growth and yield under different salt conditions (Allen et al., 1994). Percent biomass has
been reported in many studies comparing the control plant and treated under a controlled environment over a period, while tolerance measured as survival has been used mainly for perennial species (Munns, 2002).

Salt tolerance has shown to vary considerably. It has been shown that their response to sudden exposure to salinity affects the way halophytes responds (Albert, 1975). Differential adaptive mechanisms have been hypothesised to be involved including, a gradual acclimation to salinity in contrast to adjustment, and to a sudden exposure (Albert, 1975).

Different plants have evolved several mechanisms to improve or acclimatise to salinity. These include primary mechanisms including osmotic tolerance, the regulation of signal distribution, shoot growth and reduction in young leaves production. These are triggered as initial effects before Na^{+}becomes accumulated in the shoot and the toxic stage is reached. Secondary mechanisms include ion exclusion, which has shown to involve regulation of Na^{+}and Cl^{-}ions influx to prevent over-accumulation and to prevent toxic concentrations within the leaves. And thirdly, tissue tolerance, which involves compartmentalization of accumulated salt in leaves into cellular and intracellular spaces (mainly in the vacuole) (Munns and Tester, 2008).

1.3.6 Plant Salt Stress Signalling Pathways

The initial uptake and the net influx of Na^{+}may be dependent upon the plant's previous exposure to salt, which could result in significant flow initially, but is reduced when the level of exposure increases. Chen et al., (2007) reported that sodium uptake varied between $10-20$ min when moderate or high external Na^{+}are applied. Critical mechanisms regulate the movement of Na^{+}in and out of the cell, and these rely on input signals from secondary
messengers such as calcium $\left(\mathrm{Ca}^{2+}\right)$, cyclic guanosine monophosphate (cGMP), and reactive oxygen species (ROS). Due to elevated sodium concentration, increased ROS production have been reported in the cytoplasm (Knight et al., 1997; Kiegle et al., 2000; Donaldson et al., 2004).

1.3.6.1 $\mathbf{C a}^{2+}$ Signalling

Ca^{2+}, a divalent cation, and an essential plant nutrient that plays a vital role mainly in structure formation in the cell wall and membranes. It act as the principal cation in a countercation pump for both organic and inorganic anions in the cell vacuole. It also serves as a secondary messenger, an increase in the cytosolic concentration due to developmental and environmental challenges and its coordination role in responses have been reported (Marschner, 1995). It is one of the elements that are rarely deficient in plants and is readily absorbed from soils. As the abundant cation Ca^{2+}, concentration in the cytoplasm has usually been kept low by sequestration in the vacuoles, also by forming complexes with calcium-binding proteins, e.g., calmodulin, or through precipitation as calcium oxalate crystals (Bush, 1995; White and Broadley, 2003). It's roles as secondary messenger coordinate activities within the cell. It also has a role in stimulus-response coupling in signal transduction pathways, as it has been reported to facilitate an intracellular release of Ca^{2+} from its pool stimulates many protein kinases, phosphatases, and phospholipases, which shown to have a downstream targets molecules in cellular functions (Bush, 1995).

Plant cells are shown to absorb calcium through Ca^{2+}-permeable channels present in their membranes (White, 2000). High concentrations of calcium have been reported to be toxic, and thus a relatively low level is been ensured by the activities of Ca^{2+-} ATPases and $\mathrm{H}^{+} / \mathrm{Ca}^{2+}$-antiporters. These antiporters ensure the removal of excess cytoplasmic Ca^{2+} to
apoplast and the lumen of intracellular organelles, e.g., vacuole and endoplasmic reticulum (ER) (Figure 1.5) (Sze et al., 2000; Hirschi, 2001). The cytosolic Ca^{2+} accumulations have been implicated to serve as a signal to a diverse range of cues due to developmental and environmental challenges. Reports have shown that rapid influx of calcium ions via cation channels in the plasma membrane, tonoplast, and ER has a direct relationship with generated perturbations, which could lead to significant cellular responses from different environmental stresses, e.g., abiotic (White, 2000; Sanders et al., 2002). A Series of enzymatic reactions involving protein-conformational changes and catalytic activity are some of the vital events that could affect cellular perception and transduction of the calcium ion signal. Protein binding could involve calmodulin (CaM), calcineurin B-like proteins (CBLs) and calcium-dependent protein kinases (CDPKs). It has been hypothesised that responses due to cellular accumulation of calcium have been examples of specific stimuli by biotic and abiotic encoded by cytoplasmic calcium perturbations that are transduced by calcium sensors individually to respond positively through undisclosed networks (White and Broadley, 2003).

1.3.6.2 Cyclic Guanosine Monophosphate (cGMP) Signalling

A study by Donaldson et al., (2004), have shown an upward increase in cGMP increases as a result of the onset of salt and osmotic stresses (Figure 1.4). Maathuis and Sanders (2001); Essah et al., (2003) have corroborated same observation using Arabidopsis seed. Also, a study by Rubio et al., (2003) have described how the influx of Na^{+}is affected by the level of cGMP. The inhibitory role of cGMP on membrane-bound non-selective cation channels was further demonstrated in many studies involving Arabidopsis root protoplast (AtKT1) (reviewed: Maathuis and Sanders, 2001).

Figure 1.4: A mechanistic transient increase in secondary messengers Ca^{2+}, cGMP and ROS due to osmotic and ionic stresses. cGMP regulates Na^{+}influx by negatively inhibiting the non-selective cation channel (NSCC) and facilitating potassium uptake via inward rectifying K^{+}channel (AtKT1) in Arabidopsis and downregulation of Na^{+}absorption due to the downstream effect of transcription processes (Rubio et al., 2003).

The study further indicates that an external application of cGMP had an inhibitory effect on net uptake of Na^{+}and promoted K^{+}uptake and affect transcript levels of genes, specifically those related to transmembrane proteins (Maathuis, 2006). The presence of calcium ions has shown to have an impact on the action of cGMP. It has shown to serve as signalling intermediary downstream to cGMP signal (Donaldson et al., 2004).

1.3.6.3 Reactive Oxygen Species (ROS)

The role of reactive oxygen species (ROS) in the regulation of Na^{+}influx has been attributed to the osmotic effect of salt stress, which has been shown to promotes the release of its products, hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ and superoxide anions (Miller et al., 2010). In addition, up-regulation of antioxidant enzymes, i.e., superoxide dismutases, catalases, and
peroxidases have shown to frequently soften responses as the generation of antioxidant proteins have been reported to serve as signals (Hong et al., 2011). The generation of ROS under salt stress has been shown to occur within minutes and to involve mainly $\mathrm{H}_{2} \mathrm{O}_{2}$, which depends on the activity of NADPH oxidases (Hong et al., 2011). Other studies have also shown that specific ROS-sensitive transcription factors could be activated such as ethylene response factor 1 (ERF1), which have multiple effects on promoters downstream including mitogen-activated protein kinase cascades (MAPK) (Schmidt et al., 2013).

1.3.6.4 Salt Overly Sensitive Pathway (SOS)

Meanwhile, the effluxes of Na^{+}ions from the cytoplasm to either apoplast or to be compartmentalised in the vacuole have been reported in association with salt overly sensitive (SOS) pathway (Figure 1.5). Studies have identified SOS1 as antiporter bound to the plasma membrane $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporter that ensures the extrusion of Na^{+}from the cytoplasm and has been described as the best mechanism to salt stress tolerance (Chinusamy et al., 2004). The activity of SOS1 is associated with the action of kinase enzymes calciuminduced protein kinase family CIPK24 (SOS2), which have been reported to phosphorylate the SOS1(Chinusamy et al., 2004). SOS2 reported being active as a result of an association with another calcium-dependent protein calcineurin-B like-4 (CBL4) also known as calcium sensor CBL4 (SOS3; Figure 1.5) (Chinusamy et al., 2004).

The activation of SOS1 involves a series of reactions that have to do with the bindings of Ca^{2+} to the regulatory site of SOS3, which causes dimerization of the catalytic site of SOS3, which further ensure associations and interactions with the amino acids domain of SOS2, thereby activating it. The Complex intermediary that has shown to form SOS3-SOS2complex (Figure 1.5), mediates the phosphorylation reaction at the C-terminus of SOS1
leading to the removal of SOS1 inhibitory domain, therefore further activating the antiporter (Quintero et al., 2011). Activation of SOS1 antiporter has shown to increase the efflux of Na^{+}from the cytoplasm to vacuole thereby reducing its accumulation (Quintero et al., 2011). The activated form of SOS2 has been implicated to affects the activity of other membrane transporters. And thus, involve in Na^{+}uptake like high-affinity potassium transporters (AtKT1) in Arabidopsis. Therefore, via an interaction between SOS 2 , and vacuolar $\mathrm{Na}^{+} / \mathrm{H}^{+}$ antiporter an isoform discovered in Arabidopsis plant (AtNHX1) have been reported to reduce the cytoplasmic accumulation of Na^{+}, where AtNHX1 has been shown to be the significant Na^{+}evacuator into the vacuole (Apse et al., 1999; Rus et al., 2006; Laurie et al., 2002).

Figure 1.5: Mechanism of Na^{+}extrusion at the plasma membrane is an active process mediated by Na^{+}-ATPases. At acidic extracellular $\mathrm{pH}, \mathrm{Na}^{+}$extrusion at the plasma membrane is mediated mainly $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporter (SOS1) activated by a complex (SOS2SOS3) upon binding by calcium. Also activated by this complex is high-affinity potassium transporters (AKT1) discovered in Arabidopsis which allow potassium entrance into the cytoplasm. (SOS2-SOS3) the complex may facilitate the expression of transcriptions factors that have a downstream effect. AtNHX1, a vacuolar $\mathrm{Na}^{+} / \mathrm{H}^{+}$ antiporter discovered in Arabidopsis plant. This gene expression and transporter activity regulation brings about homeostasis of ions such as Na^{+}and K^{+}and consequently plant tolerance to Na^{+}stress (Zhu, 2001).

1.3.7 Phases of Plant Response to Salt Stress

1.3.7.1 Osmotic Phase

The osmotic phase has been described to involve mechanisms that are mainly regarded as to be rapid, long-distance distribution of signalling, including the processes of ROS generation, Ca^{2+} waves and electrical signalling (Mittler et al., 2011). Although importation of osmotic tolerance is little known, reports have shown that it causes a reduction in the growth of a salt-stressed plant. Regardless of the plant's ability to exclude salt, the osmotic phase creates a decrease in growth rates due to a reduction in stomatal conductance (Fricke et al., 2004; James et al., 2008). Osmotic tolerance has been reported to involve plant's ability to stand the drought phase that was shown to be imposed as a result of salt stress, and its ability to retained leaf area expansion and increase stomatal conductance (Rajendran et al., 2009).

Osmotic tolerance has been reported to be affected by differences in the plant's ability to excite and maintain the long signal, and in the initial perception of the salt and differences in response to the signals. It has shown in a case study on different durum wheat varieties and landraces that tolerance to osmotic stress is positively correlated between the parameters of stomatal conductance and relative growth rate (James, 2008). The biochemical explanation has been attributed to the reduction in the comparable growth and ability of the plants to overcome the toxic level of salt. Toxic salt level has shown to affect the survival of older leaves, and eventually plant death because photosynthesis export can no longer be able to support by the younger leaves thereby affecting both growth and production (Munns and Tester, 2008). Additionally, increase in tolerance to osmotic stress has been associated with and characterised by the ability plant to improve both production and growth of fresh
and older leaves (leaf area), and higher stomatal conductance (Hu et al., 2007; Munns and Tester, 2008).

1.3.7.2 Ionic Phase

This phase has been shown to be involved in the movement of Na^{+}and Cl^{-}ions which have been attributed to the mechanisms mainly for Na^{+}exclusion from the cytoplasm by compartmentalisation intracellularly into the vacuole. This process has been described as a remedy to toxicity, thereby causing the plant to respond by using either one of the two mechanisms. Firstly, preventing the accumulation of ions to reach toxic concentration mainly in the leaf blades $\left(\mathrm{Na}^{+}\right.$and Cl^{-}exclusion); the second one has to do with increasing ability to tolerate the salts by compartmentalisation process. These mechanisms have been reported widely to affect a range of plasma membrane-bound transporters and channel proteins that form part of the membrane and tonoplast (Tester and Davenport, 2003; Plett and Moller, 2010).

There has been significant genetic variation reported between halophytes and glycophytes toward the mechanism of Na^{+}exclusion (Yoo et al., 2009). Accumulation of Na^{+}and Cl^{-} for osmotic adjustment in the saline environment has been reported in some halophytic plants especially C3 plants species (Yoo et al., 2009) The reports have indicated that Na^{+} ions cause more toxicity in the initial stage before Cl^{-}does in plants under salt conditions, as such, most studies have been focussed more on Na^{+}exclusion and its transport (Munns and Tester, 2008). The majority of plant species have been reported to have evolved essential mechanisms of salt tolerance through evolution. The ability of the plant to reduce its ionic stress has to do with an efficient mechanism to minimise the level of Na^{+}in the cytosol of the cell, particularly in the transpiring younger leaves (Munns and Tester, 2008).

It has been hypothesised that halophytes can reduce both transpiration in the leaves and shoot Na^{+}accumulation via an efficient intracellular sensing mechanism (Robinson et al., 1997; Very et al., 2014). Studies have revealed, some glycophytes such as; rice, durum wheat, bread wheat, and barley possess mechanisms for Na^{+}exclusion associated with salt tolerance but the effectiveness of the mechanism differs from that of halophytic plants (Richard et al., 2010).

Transporting Na^{+}through different parts of the plant from roots cortex to the shoot is tightly regulated. The exclusion of Na^{+}from the leaves could be attributed to net Na^{+}uptake by cells in the root cortex and has shown to control to the net loading into xylem by parenchyma cells (Davenport et al., 2005). The process of Na^{+}exclusion by roots ensured Na^{+}removal and delay its toxic concentrations within the leaf. Failure in any of these processes of Na^{+} expulsion have been implicated to the manifestation of deleterious effects of toxic Na^{+}on the plant species, and to lead to the early death of leaves especially the older leaves (Munns and Tester, 2008).

A number of membrane bound-transporters have been reported and suggested to be involved in efficient Na^{+}exclusion and compartmentalisation both into the apoplast and vacuole (Tester and Davenport, 2003). The nature of this transport system is it utilises energy generated from the hydrolysis of ATP and inorganic phosphate (PPi) (Deinlein et al., 2014; Roy et al., 2014). Reported studies have shown that the effectiveness and efficiency of cytosolic Na^{+}evacuator mechanism are dependent upon the activity of an antiporter, $\mathrm{Na}^{+} / \mathrm{H}^{+}$ exchanger (Deinlein et al., 2014; Roy et al., 2014). The activity of membrane-bound vacuolar proteins have been shown to move the potentially toxic ions from the cytosol into internally acidic, tonoplast-bound vacuoles (Tester and Davenport, 2003; Deinlein et al., 2014; Roy et al., 2014). The significance of this active transport of excess ions into vacuoles
has been described as "panacea" which serves as an osmoticum within the vacuole, which could help to maintain water flow into the cell, and thereby allowing the plant to grow in soils containing high salinity (Tester and Davenport, 2003; Deinlein et al., 2014; Roy et al., 2014). The electrochemical energy informs of proton-motive force generated through the activities of vacuolar H^{+}-translocating enzymes, H^{+}- adenosine triphosphate (ATPase), and H^{+}- inorganic pyrophosphatase (PPiase) have shown to be used by antiporters to facilitate the downhill movement of H^{+}(down its electrochemical gradient) with an upward movement of Na^{+}(against its electrochemical gradient) Deinlein et al., 2014; Roy et al., 2014). Many studies have identified different isoforms of $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporters, for example, AtNHX1, in Arabidopsis have been indicated to be involved in the control of vacuolar osmotic potential (James et al., 2006). Other examples such as Nax1 and Nax2 genes found in durum wheat genotype. Glycophytic plants have been reported to have higher affinity to K^{+}over Na^{+}and overexpression of Naxl and $\mathrm{Nax2} 2$ improve Na^{+}exclusion from the rootsshoot and retention of Na^{+}in the leaf (James et al., 2006). In another report, the Nax2 gene has also been shown to enhanced Na^{+}elimination and retention of K^{+}through its power of discrimination, more affinity to K^{+}over Na^{+}(James et al., 2006). The mechanisms of Na^{+} exclusion have enabled the plant to navigate and avoid more salt and its associated toxicity problem and at the same time, compensating such action by adjusting K^{+}uptake, which has been shown to improve osmotic adjustment and enhance cell turgor (Munns and Tester, 2008).

1.3.7.3 Tissue Phase

Tissue tolerance is a term used to describe the plant's ability to grow under salt conditions (Munns and Tester, 2008). The tissue tolerance mechanism is about ensuring the survival of old leaves and improving growth (Munns and Tester, 2008). The compartmentalisation
of Na^{+}and Cl^{-}ions at the cellular and intracellular level is requisite in tissue tolerance phase in order to prevent the toxicity effects of higher concentrations of these ions to the mesophyll cells in the leaf (Munns and Tester, 2008). Also significant is an increase in accumulation of compatible solutes within the cytoplasm under salt stress. The compatible solutes are examples of small molecules, water soluble, derivatives of sugars, phenolic amino acids, and other complex sugars (Ashraf and Foolad, 2007). They play an important role in osmotolerance, protecting enzymes from denaturation, thereby ensuring membrane and macromolecules stability mediating the osmotic adjustment (Ashraf and Foolad, 2007). Their main functions are not limited to balancing and osmotic adjustment as they are involved in regulation of hydrophilicity, and replacement of water molecules at the surface of proteins and membranes, by creating and serving as low molecular weight chaperones (Hasegawa et al., 2000). Studies have also reported their involvement in a scavenging function against the ROS in the stabilisation of cellular structures (Hasegawa et al., 2000; Zhu et al., 2015). Their unique characteristics have attributed to their neutral nature, therefore high accumulation of compatible solutes do not affect cellular processes (Sakamoto and Murata, 2002). Examples of the known compatible solutes include; proline and glycine betaine (GB) levels of both have been shown to increase significantly under salt and drought stresses (Munns, 2002; Sakamoto and Murata, 2002). They constituted a significant amount of the metabolites reported to be increased in studies involving durum wheat under salt stress (Sairam and Tyagi, 2004; Ashraf and Foolad, 2007). Halophytes have also been reported to have an improved osmotic pressure, which was attributed to the increasing accumulation of compatible solutes such as proline and GB (Flowers et al., 1977). In the glycophytes, studies have shown the concentrations of the compatible solutes are lower compared to halophytes. Durum wheat has been shown to have improved osmotic adjustment through a high proline content (39\%), on the other hand, GB has shown to
contribute up to 16% of the osmotic balance in both cytoplasmic compartments of both older and younger leaves tissues (Carillo et al., 2008).

1.3.8 Molecular Basis of Regulatory Networks in Plant Salt Stress Signalling Pathways

The plant's genetic response to salt stress is mechanistically complicated and has been shown to involved strict regulation of significant players, e.g., proteins and RNAs. The mechanism has evolved to act at different stages of regulation that could be described by central dogma, where transcription leads to mRNA synthesis followed by post-translational modification, translation, and post-translational modification where a protein is coded and decoded (Gupta and Huang, 2014). Knowledge of the regulation of gene expression at the mRNA level has provided insight on how plants behave in response to extreme changes due to environmental cues (Gupta and Huang, 2014). Proper profiling of transcriptional processes has been widely used to screen out the candidate genes involved in abiotic stress responses. Information on salt-responsive genes, transcription factors, up-regulation or down-regulation have been documented using microarray data and transcriptomic profiling (Johnson et al., 2006). Furthermore, advances in molecular biology techniques and approaches such as functional genomics have contributed significantly towards identification, cloning, and characterisation of these genes (Johnson et al., 2006). The role of transcription factors in gene expression under salt conditions have been reported and the interaction has been considered to be the most crucial in up- and down-regulation of key genes, which could determine the plant's adaptability to a salt environment (Johnson et al., 2006). For example, zinc finger genes; bZIP, WRKY, AP2, NAC, C2H2, and MYB and DREB family proteins have been considered to be the most stress-responsive members (Figure. 1.6) in abiotic stress signalling pathways. These transcription factors have shown
to have the capacity to alter gene expression by Cis-acting specific binding in the promoter region of many genes (Johnson et al., 2006).

Moreover, a quite significant number of drought/salt stress inducible-genes have been discovered through microarray analysis of Arabidopsis transcriptome and other grasses, such as rice (Oryza sativa) (Takasaki et al., 2010). They have been reported to play vital roles in plants stress tolerance and have the potential to coordinate genes expression through signal transduction in many plant cells (Xiong et al., 2003; Takasaki et al., 2010). Efforts have been undertaken to unmasked the molecular mechanisms involved in the regulation and control of gene expression in response to abiotic stresses (Takasaki et al., 2010). The initial studies have been reported and aimed to establish the key role of cis- and acting elements and how they affect modulation of the stress response by using model dicot plant Arabidopsis thaliana; and some studies involving rice (Oryza sativa) (Egawa et al., 2006; Agarwal et al., 2007).

The transcription factors have shown to bind to the cis-acting elements, these are elements involved in transcription of stress-gene in the promoter region of a target genes thereby affecting its expression, and the complete process of transcriptional regulations is known as the regulon. Several such regulons are actively involved in response to abiotic stress have been identified using the model plant Arabidopsis thaliana (Nakashima et al., 2009).

Figure 1.6: Schematic diagram of the plant regulatory networks induced by drought/salinity stress, which involves the activation of both pathways of Abscisic aciddependent (ABA-dependent) and Abscisic acid independent pathways. This involves the binding of transcription factors (TFs), such as MYB2, MYC2, NAC, AREB/ABF, NAC HD-ZIP and DREB2 to specific cis-acting elements (MYBR, MYCR, ABRE/ABF and DRE/CRT) which leads to the expression of drought/salinity stress-responsive gene such as: RD22, Gly, RD29B, and RD20A respectively (Nakashima et al., 2009).

The transcriptional regulatory networks established by using a model of signalling cascade pathways have shown to comprised two critical operational paths, that have shown to become activated in response to either abiotic/biotic stresses. These have been referred to as ABA-dependent and ABA-independent signalling pathways respectively. This pathway regulates signal transduction and eventual expression of elements responsive to genes including RD29B and RD20A genes. MYB2 and MYC2, are also involved through ABAdependent stress-inducible genes that have shown to influence the appearance of the $R D 22$ genes. Additionally, MYC2 has also been shown to be involved in the metabolic pathway related to JA-inducible genes that are triggered following most biotic stress's especially those that are pathogen related. Other important transcription factors that have shown to play vital roles include, RD26 NACs, which operate through dual pathways; ABAdependent and JA-inducible gene expression, in response to stresses (Nakashima et al.,
2009). The cross-talking between abiotic and biotic stress responses involves activities of MYC2 and NAC transcription factors. In the ABA-independent pathway, DREB2s are the main transcription factors; and are activated in response to dehydration and high salt stresses. Furthermore, dehydration response elements (DREs) have been shown to become operational via cis-acting elements operating through the same pathway to modulate and regulate genes for drought and salt stress. (Nakashima et al., 2009).

1.3.9 Mapping Genes Concerning Plant Salt Tolerance

Polygenes that control many agronomic traits of important such as yield, quality and other forms of disease resistance have been reported (Asins, 2002). The principal method of identification of genomic region that contributes to a phenotypic variation is referred to as quantitative trait loci (QTLs) mapping. QTLs have been typically linked to or shown to contain genes that have been invariably involved in controlling observed phenotypic variation (Mikiko et al., 2001). Fragments of DNAs identified as genetic markers can be used to identify particular points within the genome that represents genetic differences (Asins, 2002).

Genetic markers have been categorised based on their technical requirements; those genetic markers that have shown to detect the whole chromosomes, and those that have a specific (fragments) of genetic variation have been reported (Mikiko et al., 2001). Among the earliest type of DNA markers discovered were Restriction Fragment Length Polymorphisms (RFLPs), which were shown to detect variation in restriction fragment size using southern hybridization. This technique, enables the detection and or removal of a restriction endonuclease recognition site, which resulted from a single nucleotide base alteration which caused a shift in fragment length (Horst and Wenzel, 2007). RFLP markers remain valuable tools that are used in breeding programs, however, advances and
development of simple single repeat (SSR) markers superseded the use of RFLP markers. SSR markers allow detection of variation in the number of short repeat sequences, they could be of two or three base pairs that are repeated in multiple occurring sequences in the genome of a species (Horst and Wenzel, 2007).

Other reported DNA markers that have been developed are the expressed sequence tag (EST) databases and single nucleotide polymorphisms (SNPs) that occur at varying frequencies in the different regions of the genome of any given species (Horst and Wenzel, 2007).

1.3.9.1 Mapped Genes Related to vacuolar (NHX1) and plasma membrane (SOS1) Antiporter Genes Associated to Plant Salt Stress Tolerance

Ion exclusion is one of the essential mechanisms involved in salt stress tolerance. Factors that have been reported to enhance low cytoplasmic Na^{+}concentrations in plant cells have been shown to be associated with the tonoplast $\mathrm{Na}^{+} / \mathrm{H}^{+}$exchanger 1 (NHXI) (Yamaguchi et al., 2013) (Figure 1.5). The activity of the plasma membrane-bound protein SALT OVERLY SENSITIVE (Figure 1.5) (NHX7 in Arabidopsis) $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporters have also been implicated in Na^{+}ion exclusion (Blumwald and Poole, 1987; Qui et al., 2002; Yamaguchi et al., 2013). The role critically played by $N H X s$ gene has been primarily shown to do with Na^{+}exclusion through sequestration of Na^{+}within the vacuole (detoxification process), while the SOS pathway has been shown to be involved in the exporting Na^{+}ions out of the cell. Additionally, overexpression of AtNHX1 and its analogues in Arabidopsis and other plant species, such as tomato (Solanum lycopersicum), and rice have been reported where they have been shown to improved salinity tolerance (Apse et al., 1999; Zhang and Blumwald, 2001). Recent studies have demonstrated other roles played by NHX-type
proteins in K^{+}compartmentalisation into the vacuole for cellular pH homeostasis and maintenance (Barragan et al., 2012). Furthermore, overexpression of $\operatorname{AtNHX1}$ in tomato has been shown to improved vacuolar K^{+}and its transport from the root into the shoot (Leidi et al., 2010; Bassil et al., 2011; Barragan 2012).

A successful QTL mapping of increased leaf Na^{+}accumulation in tomato has identified LeNHX3 (Villalta et al., 2007). This demonstrates that NHX antiporters have more than one role in osmoregulation, cell growth, and plant development (Bassil et al., 2011; Barragan et al., 2012). Other studies have suggested an involvement of endosomal transport proteins, including $N H X s$ genes in plant salt tolerance that show its involvement in pH regulation, especially in the subcellular organelles and ion homeostasis (Krebs et al., 2010; Bassil et al., 2011; Yamaguchi et al., 2013). In addition, two isoforms of $N H X s$, NHX5, and NHX6, have been reported that are localised in Golgi and trans-Golgi networks. nhx5 nhx6 double knockout plants have been shown to demonstrate hypersensitivity to salt stress (Leidi et al., 2010). Likewise, studies involving loss of function have shown that vacuolar transporter H^{+} -ATPase in a mutated Arabidopsis have been attributed to unimpaired salt tolerance, i.e., not significantly shown to alter the salinity stress in Arabidopsis. Other studies, however, have reported the reduction of V-ATPase activity in the trans-Golgi network/early endosome (TGN/EE), which resulted in an increase salt sensitivity (Villalta et al., 2007). Overexpression studies involving vacuolar-type I H ${ }^{+}$-PPase AVP1 have also been shown to improve plant salt tolerance via vacuolar Na^{+}sequestration (Undurraga et al., 2012). Furthermore, overexpression of AtAVP1 in crop barley (Hordeum vulgare) have implicated H^{+}-PPase in the improvement of salinity tolerance under greenhouse controlled environment by substantially improving shoot biomass and grain yield (Schilling et al., 2013).

1.3.9.2 Overexpression of High Potassium Membrane Transporter Genes (HKT) and Plant Salt Stress Tolerance

In order to find the role of HKT in salt tolerance, several studies have been carried out. These have involved identification of the role of HKT1 in wheat (Triticum aestivum) using gene (TaHKT2;1), which was shown to mediate in $\mathrm{Na}^{+} / \mathrm{K}^{+}$cation transport (Schachtman and Schroeder, 1994; Rubio et al., 1995). Further studies in the characterization of different isoforms of $H K T$ genes that have been found present in different plants species have been reported (Horie et al., 2007). Different methods used in the analysis and characterisation of HKT have shown the presence of other copies of HKT transporters isoforms (Uozumi et al., 2000; Mäser et al., 2002). Subsequently, two distinct subgroups have been identified; class I and II, which are believed to mediate Na^{+}-selective transportation (Uozumi et al., 2000; Mäser et al., 2002), and are involved in co-transportation of $\mathrm{Na}^{+}-\mathrm{K}^{+}$(Rubio et al., 1995). Studies have reported that mutated HKT gene in Arabidopsis, AtHKT1; 1, encodes for a class I transporter, which has shown to causes high Na^{+}sensitivity in the mutants (Mäser et al., 2002; Horie et al., 2007). Some detail analyses using mutant have indicated that AtHKT1;1, and its orthologues in rice, O SHKT1;5, play a critical role in the efflux of Na^{+}from the xylem sap into the surrounding xylem parenchyma cells. Thereby, enhancing the protection of leaf from Na^{+}toxicity (Ren et al., 2005; Sunarpi et al., 2005; Horie et al., 2006; Davenport et al., 2007). An overexpression of AtHKT1;1 in a target stele has shown to improves salt tolerance (Moller et al., 2009). Studies involving in vivo electrophysiological analyses using stellar cells from wild-type and Athkt1;1mutant plants have shown to demonstrate the role played by AtHKT1; 1 mediating Na^{+}transport through channel-like transporters (Xue et al., 2013; Xue et al., 2016). It has been suggested that $A t H K T 1 ; 1$ gene play a role in facilitating Na^{+}removal from the xylem and indirectly stimulating K^{+}loading into xylem vessels. The
K^{+}filling was supposed to be carried out through outward rectifying K^{+}channels, leading to the improvement of $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio in the leaves (Ren et al., 2005; Sunarpi et al., 2005).

QTL analyses on Na^{+}resistance have indicated that xylem Na^{+}unloading mechanisms have been essential for salt tolerance on both rice and wheat (Triticum turgidum) (James et al., 2006). Salt tolerance QTLs have been linked to the regions containing to HKT1;5 orthologues, which encodes for increased Na^{+}- exclusion and in particular for a class I HKT transporter (Ren et al., 2005; James et al., 2006; Byrt et al., 2017). Another QTL linked to Na^{+}tolerance has been correlated with a critical role played by the Naxl gene for salt tolerance (Munns et al., 2012). Further work on Naxl locus, have been linked to the region of the TaHKT1;4, gene that encodes for a class I HKT transporter (Huang et al., 2006).

HKT marker-assisted studies have shown to record some successes through the introduction of a wheat HKT1;5 from an old wheat relative Triticum monococcum into commercial durum wheat (T. turgidum ssp. durum var. Tamaroi). Studies on transgenic varieties of this gene have shown to improve tolerance to salt stress (Munns et al., 2012). Finally, it has been suggested that the maintenance of K^{+}acquisition with the exclusion of Na^{+}from leaves have a direct correlation with plant salt tolerance (Hauser and Horie, 2010).

1.3.10 Salinity Tolerance among the Brassicas

Besides using Arabidopsis as a model plant, the second most widely used plant model system of the agronomic (traits) values are the Brassicas. This is because they are rich in genetic diversity and significant inter and intraspecific variation for salt tolerance has been identified which could be exploited through selection and breeding programs for salt tolerance enhancement. The stages of seed germination and early seedling growth have been demonstrated to be relatively sensitive to salinity (Ashraf and McNeilly, 2004).

1.4 Breeding for Salt Tolerance in Brassicas

1.4.1 Conservation of Brassica Germplasm for Breeding Programme

In a search for reliable and conserved sources of variability the gene banks are relied on to regulate the loss of genetic variability in the domesticated gene pool. This has become more common through the setting up of many genetic diversity centres across the regions of the world. A collection of Brassica wild germplasm was first reported in the 1970s and research using cytogenetic studies have led to the conservation of many useful germplasm and landraces, which could have been lost due to genetic drift (Gómez-Campo et al., 2006, 2007). Following these successes in the 70s, the Brassica germplasm has been boosted by setting more centres for biodiversity for the ex-situ and in-situ collections. Two types of gene banks have been set-up: Seed bank, and Gene bank, each of which has shown to be complementary from one another and have been used to represent the conservation processes of both in-situ and ex-situ. The Seed Bank, has been more in-situ oriented, and designed to carry out three main significant responsibilities; 1) ensures a good record of seeds collected from different diversity of genetic Brassica crops, 2) ensures good storage conditions to avoid genetic erosion, and 3) ensures supply for research purposes (Gómez-

Campo 1999a). The Gene Bank, on the other hand, has two significant roles; 1) collection of traditional varieties and landraces around the globe, and 2) centres of genetic diversity of specific crops using accessions for research and regenerations purposes (Gómez-Campo 1999a).

The most extensive seed bank for Brassica collection centre established has been that of the Universidad Politécnica of Madrid (UPM), Spain in 1966. This has a broad aim for both long-term ex-situ conservation and ensures availability of different accessions for research. It has been reported to have an initial collection of over 600 plants (accessions) of crucifer in the Plant Germplasm Bank and has also had a public collection around the western Mediterranean coast (Gómez-Campo 1999a). Other collaborative efforts across Europe have also been reported such as the International Board for Plant Genetic Resources (IBPGR), International Plant Genetic Research Institute (IPGRI) (Gómez-Campo and Gustafsson 1991). The centre has been transformed to a global centre of biodiversity representing different regions, for examples, coastal regions of Spain, Italy, Greece and Tunisia and the Atlantic coast of Spain, France, and the UK. Thereby ensuring large collection of wild B. oleracea species $(\mathrm{n}=9)$ and its related species; B. macrocarpa, B. rupestris, B. incana and B. villosa have been collected around Sicily (Gómez-Campo and Gustafsson 1991).

1.4.2 Screening of Salt Tolerance from Pre-existing genotypes of Brassicas

Salt tolerance is a complex trait and has been shown to be controlled by cross-talk mechanisms from the cell to the whole plant (Greenway and Munns, 1980). Screening of secondary gene pools comprising the amphidiploid (allotetrapolyploids) species; B. carinata, B. juncea, and B. napus, indicated superiority in salt tolerance compared to the
diploids; B. campestris (syn: rapa), B. nigra, and B. oleracea (Makela et al., 1999). The complexity of the salt traits has shown to be different among Brassica species. Because of its quantitative nature, the effect of one mechanism may exclude the significance of the others at certain physiological stages of plant development (Greenway and Munns, 1980; Gorham et al., 1991; Ashraf, 1994; Makela et al., 1999). The cultivated Brassica species comprising both diploid and amphidiploid (allotetrapolyploids) species and other wild Brassica species are considered to be moderately salt tolerant (as mentioned in Section 1.1.2 and 1.1.5), because of their natural growing environment. Some reported studies have favoured the amphidiploid species, B. carinata, B. juncea, and B. napus over the diploid species, B. campestris, B. nigra, and B. oleracea (Malik, 1990; He and Cramer, 1992; Kumar, 1995). Ashraf et al., (2001) have further demonstrated that the salt tolerance of amphidiploids (allotetrapolyploids) was acquired from both the diploid genomes (A \& C), i.e., from B. campestris and B. oleracea species. A study by Purty et al. (2008) on screening for salinity tolerance observed significant interplay and specific variation within the Brassica genera. Such differences have also been observed in responses to growth and physiochemical parameters. For example, electrolyte leakage, proline accumulation and the $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio have shown to be of genotype depended (Ashraf and McNeilly 2004).

1.4.3 Conventional Breeding Approaches for Developing Salt Tolerance in Brassica

Screening of salt tolerance using traditional breeding involving crop varieties has proven to be promising. The economic cost of soil reclaiming once it has become saline is beyond what an ordinary farmer can afford (Ashraf and McNeilly, 2004). A gene pool that has shown to be rich with a heritable variation that can to provide the inherent variability needed has become the prerequisite for any successful breeding program. Good parental genetic
diversity serves as a good source of starting material such as well-adapted landraces that can be used to enhanced local adaptation (Ashraf and McNeilly, 2004). It can also be used to overcome the problem associated with soil salt susceptibilities and thereby provide the needed foundation for breeding requirements (Ashraf and McNeilly, 2004).

In the developing of a salt tolerant plant, the use of conventional breeding approaches has been yielding progress. Its applications have been demonstrated in the generation of a different variety of salt-tolerant Brassicas. Studies reported by Central Soil Salinity Research Institute, Karnal, India, have shown to be quite promising and led to the development of more salt tolerant varieties of B. juncea cultivars; CS52, CS54, CS416, CSTR 330-1, CSTR 600-B-10, CSTR 610-10-1-1, and CS12 respectively. The work further showed B. juncea var. CS52 cultivar tested to grow in the saline land (having EC 7 to 8 dsm-1 and $\mathrm{pH} 9.2-9.3$) with an average good yield (Sadiq et al., 2002). Comparative performance among the various varieties of Brassica cultivars has shown that cultivar P-82 to be more salt tolerant as compared to Peela raya, SPS-23-1, SPS-23-2, ORI-56-6 cultivars (Sadiq et al., 2002).

1.4.4 Genetic Engineering (Transgenic) Approaches for Salt Tolerance Enhancement

The advances in molecular genetics and genetic engineering have provided essential tools for the study of salt tolerance. Tools such as transgenic approaches enable us to address the problem of salt stress. It has been shown how these can impact on the development of enhanced salt-tolerant plants. Although no fully salt-tolerant plant has been obtained by genetic engineering, the use of multiple tolerance mechanisms for one or more of the abiotic stresses through stepwise or co-transformation have shown to be helpful in the quest for high-level salt-tolerant plants for commercial purposes (Bohnert and Jensen, 1996).

Additionally, Bohnert and Jensen (1996) have suggested that the generation of salt-tolerant plants through metabolic engineering would involve the massive transfer of a different set of genes to the affected plant. Advances in biomolecular techniques nowadays have made the idea more conceivable and credible, such techniques have shown to provide channel for identification of specific genes that could respond positively and negatively through combination of RNA and Proteins analyses with a particular focuses on transforming the plants (Kawasaki et al., 2001; Salekdeh et al., 2002).

1.4.5 Formation of Diversity Foundation Sets

1.4.5.1 B. oleracea Genetic Diversity Foundation Set (Bol DFS)

The potential of the B. oleracea C -genome (BolCg), gene pool could be exploited to serve as the reservoir of favourable alleles that could be useful to plants breeding programme primarily in search of salt-tolerant B. oleracea. The advancement of biological techniques, introgression of relevant alleles for the improvement of cultivated B. oleracea vegetables could be facilitated.

The BolDFS are genetically diversity of wild B. oleracea accession lines, some of the names have been earlier mentioned (Section 1.1.6), which are not genetically fixed but have come from a collection of over 89 accessions representing 14 species (see Table S1 Appendix I), which further represent within 386 founder accessions gene pool based on the EU GENRES core collection (Leckie et al., 1996) and their relation to DFFs production is being outlined in Figure 1.7.

1.4.5.2 Formation of B. oleracea C-genome Genetic Diversity Fixed Foundation Sets (BolCg DFFSs)

The production of DFFSs (S1) lines (Figure 1.7) for B. oleracea was initiated to capture the diversity of B. oleracea and other brassica materials held at Horticulture Research International (HRI, Wellesbourne, UK) (see Table S2 Appendix I). These were based on valuable genetic and genomic resources of B. oleracea and related wild C -genome B. oleracea species (BolDFSs) (Babula et al., 2007; Walley et al., 2012). The concept of core collections has been developed to further generate homozygous doubled haploid (DH) lines from microspore culture (Pink et al., 2008; Walley et al., 2012).

Both BolDFS and S1s have been shown to represent diversity within the gene pool and significant effort have been made to fix the S1s through selfed (Figure 1.7) after many generations from the original founder wild accessions and are considered to be 50% more homozygous as compared to the founder wild accessions BolDFS lines (Pink et al., 2008; Walley et al., 2012).

Figure 1.7: An outline presentation describing the relationship between the BolDFSs, S1s and DH population, stages involve and material used. The BolDFSs are main founder parent lines for S1s (50\% homozygous) following generations of selfed, the DHSL150 is a doubled haploid line, genetically fixed (homozygous) (see Section 1.3.5.3) for its description and formation. The F1shybrids materials obtained were sown and flower buds collected and microspore tissue culture was used and an anti-microtubule agent colchicine used for chromosome doubling for DH populations and $1-20 \mathrm{DH}$ lines per accession line was obtained.

1.4.5.3 Generation of homozygous Doubled Haploid (DH) Lines of \boldsymbol{B}. oleracea C-genome Diversity Fixed Foundation Sets (BolCg DFFSs)

The concept of core collections has been developed to further generate homozygous doubled haploid (DH) lines from microspore culture (Pink et al., 2008; Walley et al., 2012). These are clonal, true breeding lines that were genetically fixed. They are obtained from the F1hybrids from the crosses between the DHLS150 (Figure 1.7), which is rapid cycling, selfcompatible and microspore responsive and by using different wild founder accessions of BolDFS lines, which are not genetically fixed, self-incompatible and not microspore responsive, these are due to strong effects of S-alleles in their S-locus (Pink et al., 2008;

Walley et al., 2012). Other characteristics of wild founder BolDFS include; longer time to produce flower and poor seed quality. The diagrammatical presentation for stages and materials used in the production of DHSL150 are outlined in Figure $\mathbf{1 . 8}$ respectively.

Figure 1.8: DHSL150 was produced using two parent materials: A12DHL (Chinese white kale), a DH line, rapid cycling, sets seed easily but not microspore responsive crossed with second parent GDDH33 (Broccoli), a DH line, microspore responsive. The F1s-hybrids obtained are backcross to A12DHL for generations to obtain the substitution lines AGSL150, which undergo selfed stages and finally, flower buds collected and microspore culture used to generate the DHSL150.

1.5 High throughput Molecular Biology Techniques

The development of high throughput technologies in recent times have helped to achieved mapping and quantification, which are highly efficient methods that enable simultaneous detection and measurement of genes expression for a given cell (Tuteja and Tuteja, 2004). Generally, methods used for assaying gene expression are grouped into two; 1) closed method, which requires prior information about the gene to be measured or any collected clones or sequences, and 2) open method, which requires no such prior knowledge before genes being analysed (Tuteja and Tuteja, 2004). Furthermore, techniques that are based on subtractive hybridisation and differential display such as microarray-based methods and Sanger sequencing or Expressed Tag Sequencing (EST) libraries have been employed and used, however, these approaches have application limitation due low throughput, cost and nonquantitative nature (Douglas et al., 1999; Gerhard et al., 2004). To overcome these challenges, throughput techniques were developed e.g., serial analysis of gene expression (SAGE), cap analysis of gene expression (CAGE), and massively parallel signature sequencing (MPSS) have been developed and currently in use (Velculescu et al., 1995; Brenner et al., 2000; Reinertz et al., 2002; Shiraki et al., 2003; 2005; Kodzius et al., 2006; Peiffer et al., 2008). These sequencing techniques are high throughput give precise digital gene expression quantification analysis.

1.5.1 Serial Analysis of Gene Expression (SAGE)

SAGE, this is a high-throughput method with good efficiency for robust detection and measurement of expressional levels of genes in a given cell. The method is mainly work based on two basic principles; a short oligonucleotide sequence tag ($10-11$ base pairs) that contains information to uniquely identify a transcript. These tags are being used to identify genes and their transcripts relative abundance in mRNA, the second principle is by concatenating the short sequence tags this will enable efficient analysis of transcripts in a
serial manner since SAGE uses serial processing (Renu and Tutaja, 2004). The method involves key stages such as; generation of short nucleotide sequences (tags). These are made from a unique position within each species of mRNA, conversion of the mRNA to cDNA by using biotinylated double-stranded cDNA, this follows with digestion using an anchoring enzyme, isolation, and linkers to linkage, amplification of tag-linkers (PCR) and finally, constructs digestion, ligated to concatemers, clone and sequenced. This allows rapid sequencing, quantification, and identification of cellular transcripts (Velculescu et al., 2000).

1.5.2 Massively Parallel Signature Sequencing (MPSS)

MSSP has been developed as the newest tools to conduct an in-depth gene expressional profiling. It uses an open-ended platform in the analysis of virtually all genes present in individual mRNA molecules in a given sample and produced each gene. The method needs no prior knowledge about genes to be identified and characterised before the experiment. It has high sensitivity compared to other hybridisation based methods, microarray and nonmicroarray techniques (Zhou et al., 2000). Its digitalised databases for handling data processes and bioinformatics tools have simplified and added to its advantage for data management and analysis, where genes analysis and sorting out the number of mRNAs from each gene relative to the total number of molecules in a given sample can be performed simultaneously. It offers more ways for generating complete datasets that will help to facilitate hypothesis-driven molecular experiment (Jeannette et al., 2001). When it comes to the generation of complete datasets for building relational databases, MPSS has edged microarray platforms and SAGE (Zhang et al., 1997; Duggan et al., 1999).

1.5.3 Plants Molecular Genotyping: Genotype-by-Sequencing (GBS)

Genotyping-by-sequencing (GBS) has become feasible as a result of advances in nextgeneration sequencing (NGS) that have driven down the cost of sequencing and ultimately made GBS accessible as a tool (Elshire et al., 2011). GBS has become a simple multiplexed system that enables construction of a reduced representation of libraries which can be sequenced on the Illumina NGS platform (Elshire et al., 2011). GBS detects large numbers of SNPs that can be used in genetic analyses and genotyping (Beissinger et al., 2013). GBS requires less sample handling, fewer PCR and purification steps, no size fractionation and reference sequence limits, and finally efficient barcoding (Davey et al., 2011). Different library protocols of GBS have been developed and described by Sonah et al. (2013). Different GBS strategies can be used including the use of Ion PGM system and by using A) Restriction enzyme digestion and B) Multiplex enrichment PCR (Poland et al., 2012a).

The use of sequencing restriction site associated genomic DNA (RAD) has proved valuable for high SNPs discovery and genotyping as reported by Baird et al. (2008). Increased accessibility through cost benefits and efficiency by incorporating a multiplex sequencing that uses a barcode system has been the turning-point for GBS. The advantage of barcodes that are used in one of the adapter sequences, recognised by restriction enzyme (RE) upstream cut-site in genomic DNA eliminates the need of second Illumina sequencing read (Baird et al., 2008). Comparing the two approaches i.e., RAD method and GBS, genotyping-by-sequencing has been substantially less complicated, straightforward, single-well digestion of genomic DNA etc. outlined in Figure 1.9 has made GBS more attractive and apply in many application (He et al., 2014).

Figure 1.9: Diagram showing the stages involved in carrying out genotyping-bysequencing (GBS) for plant breeding. (A): plant tissue (B): ground leaf tissues for DNA isolation, quantification, and normalization. At this step it is important to prevent any cross-contamination among samples; (C): DNA digestion with restriction enzymes; (D): ligations of adaptors (ADP) including a barcoding (BC) region in adapter 1 in random restricted DNA fragments; (E): representation of different amplified DNA fragments with different barcodes from different biological samples/lines. These fragments represent the GSB library; (F): analysis of sequences from the library on an NGS sequencer; (G): bioinformatic analysis of NGS sequencing data; (H): possible application of GBS results. (He et al., 2014).

1.5.5 An Outline of Molecular hybridisation techniques for qPCR

Figure 1.10: The polymerase chain reaction (PCR). Specific sequences of DNA are amplified by PCR using pairs of oligonucleotide primers. Genomic DNA, primers, Taq DNA polymerase, and deoxynucleotides (dNTPs) are combined in a suitable buffer and subjected to repeated cycles of alternating temperatures which denature the template DNA, allow for primer annealing to the template and finally extend the primer to create a new strand DNA (Tagu and Moussard 2003).

Figure 1.11: Real-time PCR using hydrolysis (TaqMan) probes. PCR primers are used to amplify target DNA as in standard PCR. During the annealing step of each PCR cycle a fluorescently labelled oligonucleotide probe, complementary to one strand of the template DNA, anneals along with the primers. The TaqMan probe contains one detection dye (shown in red) whose fluorescence is absorbed by another quencher dye (shown in green) when a probe is intact. During an extension step of each PCR cycle, the TaqMan probes are digested. This physical separation of the dye from the quencher allows for increased fluorescence during the extension step of each PCR cycle (Tagu and Moussard 2003).

1.6 Screening the B. oleracea Breeding Lines (DFFSs) for Salt Stress Resilience

1.6.1 Initial Salt Stress Screening leading to Line Selection for main Thesis.

52 brassica oleracea DFFS lines, (only the S1s), selfed from the original wild founder lines as described in Section 1.3.5.2 and Figure 1.3 were selected based on availability of seed. They were comprised of different Brassica oleracea species as listed in Table SII in Appendix I. In 2014 between May - September, a salt stress experiment was designed in conjunction with Dr Peter Walley. From the design, six replicates of each line (three control and three treated plants) were paired and randomly distributed. Seeds from the 52 lines selected were provided by G. Teakle and the GenBank sourced from the DEFRA funded VeGIN project. The initial experiment setup was executed by Christine Hicks assisted by Gary Grant, in the glasshouse Phytobiology unit. The plants were grown for 4 weeks in smaller plastic pots before being transplanted into bigger pots. LD50 was determined using some spare plants that were not included before the main experiment. Different concentrations of salt (NaCl) were prepared, $350 \mathrm{mM}, 300 \mathrm{mM}$, and 250 mM respectively. Some plants died between $350 \mathrm{mM}-300 \mathrm{mM}$ and the idea was not to kill the plants but observed some immediate salt stress response and by following the Systems biology approach to interpreting the data, therefore 250 mM salt concentration was adapted and mode of salt administration to be as shock (single dose) by feeding the treated lines with 250 mM NaCl .

In addition, plants were treated at week six (6), at least each with four completely expanded leaves. They were allowed to grow for three additional weeks. My role in this experiment started with the data collection and measuring morphological traits; plants dry weight, leaf dry weight, where plants height and leaf area were measured by using photographs of respective lines and leaves in ImageJ respectively. Based on data collected and analysed
individually between myself and Christine significant morphological variation was observed. Statistical analysis ANOVA and t-test carried out by myself compared treated and control plants. Plants were compared only within the line and not between species because of their morphologically diversity. Different lines were grouped and consider as being resilience (tolerance) and or susceptible. After the data was sorted and ranked according to the level of significance (p-values). Based on the ranking, an improvement in leaf area against the control was chosen as a marker to guide selection. This work led to the selection of 13 lines of susceptible and tolerant plants (26 in total) were selected from the 52 (Table 1.2). These were the lines selected to be taken forward within my main thesis. However, some of the wild S1 lines had issue with seeds availability and some on poor germination (see Table 2.1 in Chapter 2 for the list of the retained ones). These were subsequently dropped.

Table 1.2: List of some selected B. oleracea genotype lines from 2014 salt stress experiment

Tolerant			Suscetible		
line no.	Geno ID		line no.	Geno ID	Name
2	C04099	B. oleracea (DHSL150 C01001)	5	C07011	B. cretica
3	C07007	B. bourgaei	8	C07015	B. cretica
4	C07010	B. cretica	11	C07019	B. hilarionis
25	C07059	B. oleracea	12	C07020	B. hilarionis
26	C07060	B. oleracea	14	C07024	B. incana
32	C07073	B. oleracea	20	C07045	B. macrocarpa
33	C07075	B. oleracea	22	C07047	B. macrocarpa
35	C07078	B. oleracea	23	C07049	B. macrocarpa
36	C07079	B. oleracea	29	C07069	B. oleracea
41	C07091	B. incana (listed as villosa in seed book)	37	C07079A	B. oleracea
43	C07094	B. incana	46	C07104	B. villosa bivoniana
47	C07113	B. villosa tinei	49	Early Big	B. oleracea
51	HRIGRU008 B. oleracea	48	C07123	B. oleracea capitata	

*Note: The listed B. oleracea in brown colour Geno ID are those that show an ability to grow (Tolerant) to short-term salt stress based on; Plant Height, Plant dry weight, leaf dry weight and leaf area as compared to the control While those in green colour are considered susceptible to short-term salt stress.

1.6.2 Salt Stress Screening Experiments in 2015

During the initial experiment work by Peter Walley and G. Teakle, generated DH lines derived from the original wild founder DFS (section 1.3.5.1) lines and related S1 lines (Table 2.3 in chapter 2). This offered a valuable resource and lines related to the wild lines selected were identified and seeds obtained. Another valuable addition enabling me to develop my work arose from transcriptomic profiling using RNA-Seq analysis conducted on three (3) of the DH lines and one parent line (DHSL150). Two DH lines, C13013 \& C10128 were selected for resilience while C13001 \& DHSL150 were considered as susceptible. Christine Hicks reported the data in her final thesis this is the reason I have not included this work in my main thesis although she used plant materials (DH lines and DHSL150), from my initial salt stress experiments. Based on this fact, it was recommended that I should review that aspect of her work and come up with my own hypothesis. After this review, I concentrated on the iron membrane proteins that were shown to be expressed in some DH lines and significantly different from the tolerant and susceptible lines. The hypothesis was that expression of these membrane ion transporters would increase in B.
oleracea genotypes tolerant lines enhances resilience as compared to susceptible genotypes. The 2017 the data (Fastq files) were re-analysed and the Fastq files were aligned to B. oleracea (To1000) genome. I kindly appreciate Luca Illing for his support in guiding me through this. Following the alignment, heat-reads (BAM files) were further processed using SeqMonk software, by using two statistical algorisms; DSeq2 and Edge R analyses. This formed the basis of the list of iron membrane transporters that were subsequently investigated (Chapter 5).

1.7 AIM AND OBJECTIVES

1.7.1 The aim of the Work is:

To study variation in salt stress response in some selected B. oleracea genotypes including the founder rapid cycling DHSL150, the wild DFFS S1 and their derived doubled haploid (DH) lines and try to identify the allele(s) that confer beneficial trait(s) in response to salt stress.

1.7.2 Objectives are:

(i) To establish the extent of phenotypic variation in response to salt shock stress in Brassica oleracea genetic collections;
(ii) To determine the difference in the mineral content of diverse Brassica oleracea accessions in response to a salt shock to identify the range of pathways potentially involved. (iii) To verify the effect of genotype and environmental factors in regulating the plant's response to salt shock;
(iv) To employ bioinformatics tools to study the variation in salt shock responsive genes and to determine if the same pathways are shared in salt tolerant lines.
(v) To utilize the functional genomics studies to understand the relationship between the DHs derived from the S1 material, deduce the length of the introgression and consequently map out genes which might underlie salt shock tolerance in Brassica oleracea.

CHAPTER TWO

MATERIAL AND METHODS

2.0 Material

2.0.1 Description of genetic relationship between the plants used for salt shock experiment

The B. oleracea genotypes used in this work are the cultivated rapid cycling founder line B. oleracea (DHSL150) and wildtype S1 plants, they are members of specific core collection of B. oleracea C-genome named Diversity Fixed Foundation Sets (DFSs) "representing an informative set of genetically fixed lines, and a structured sampling of diversity across a gene pool" already described in Chapter 1, under the Warwick Crop Centre, Warwick Horticulture Research International (HRI), Warwick University UK.

The doubled haploid (DH) lines were derived by microspore tissue culture of F1s-hybrids generated from crosses between different accession of wildtype and cultivated rapid cycle line DHSL150, These lines were selected as already discussed and listed in (Table 2.1a) were used for 2015 salt screening experiment and Table 2.1b for 2017. Different F1s were generated and from the haploid F1s-hybrid material, the DH lines were derived by using the microspore tissue culture and chromosomes diploidised by an anti-microtubule agent colchicine (Chapter 1 \& Figure 1.3). The DH lines produced were allowed to selfed where seeds from individual related line were collected together.

Table 2.1a: List of the selected B. oleracea S1s and their related DH lines used in 2015 salt stress screening experiment

Line	Line ID	Line Name	Line Type	Not Used in the screening Founder wild DFS (P2)
A	C10001	DHSL150	DH (P1)	
B	C07007	B. bourga	S1	C04006
C	C10025		DH	C04006
D	C10027		DH	C04006
E	C07060	B.olerace	S1	C04052
F	C10125		DH	C04052
G	C10128		DH	C04052
H	C07094	B. incana	S1	C04081
I	C13012		DH	C04081
J	C13013		DH	C04081
K	C07019	B. hilari	S1	C04015
L	C13001		DH	C04015
M	C07069	B. olerac	S1	C04062
N	C10132		DH	C04062
0	C10139		DH	C04062
\mathbf{P}	C07079A	B. olerac	S1	C04069
\underline{Q}	C10121		DH	C04069

* Note: DH lines are put beneath to any S1 line as their related parent. DFS wild founder lines never being used in this experiment.

Table 2.1b: List of B. oleracea lines used in 2017 for salt stress experiment

Line	Line ID	Line Name	Line Type
A	C10001	DHSL150	DH
B	C07007	B. bourga	S1
C	C10025		DH
E	C07060	B.olerace	S1
G	C10128		DH
J	C13013		DH
L	C13001		DH
P	C07079A	B. olerac	S1
$\underline{2}$	C10121		DH

* Note: Some wild S1 lines and DH lines were dropped in 2017 because of no enough seeds or due to poor germination.

2.0.2 Seeds Collection and Seeds Plantation

Seeds were collected from the VeGIN genetic resources, Warwick Crop Centre, Wellesbourne Campus, The University of Warwick, the UK sourced on the 11th May 2017. This remains the only source of the seeds being used throughout the salt stress experiment.

2.0.3 Composition of M2 Compost Soil Used

M2 compost has been designed to suit the growth of a wide variety of bedding plants. It provides a good quality nutrient supply, and the physicochemical constituents includes; pH - 5.3 - 6.0, nitrogen (N) - $192 \mathrm{mg} / \mathrm{L}$, phosphorus $(\mathrm{P})-98 \mathrm{mg} / \mathrm{L}$, and potassium (K) - 319 mg / L and finally, with particle - size of between $0-10 \mathrm{~mm}$ respectively.

2.0.4 Glasshouse Conditions

The glasshouse was made to ensure that the average temperature was maintained at $20^{\circ} \mathrm{C}$ day and $18^{\circ} \mathrm{C}$ night (Figure 2.1). The plants were supplemented with available light (400 W SONT lamps), photoperiod was set at 03:00-19:00 hrs to ensure photosynthesis. The plants were also maintained under reliable controlled internal environment, containing air handling and drainage for the enhancement of natural light penetration, and reduced pest control.

Figure 2.1: Phytobiology Facility, Glasshouse, The University of Warwick, UK

2.0.5 Experimental Design

A Completely Randomised Design (CRD) was applied in three replications (Figures 2.2 \& 2.3), control and treated plants were paired. The plants were adequately watered throughout the experiment.

	C07094-Salt	C07094-Ctr\|	C13013-Ctrl	C13013-Salt	C07007-Ctrl	C07007-Sat 1	C07060-Ctrl	C07060-Salt	C10025S-Salt	C10025-Ctrl
	C07019-Salt	C07019-Ctrl	C07079A-Ctr	C07079A-Salt	DHLS150-Ctr\|	DHLS150-Salt	DHLS150-Ctr\|	DHLS150-Salt	C07094-Salt	C07094-Ctrl
	C07060-Salt	C07060-Ctrl	C10121-Ctrl	C10121-Salt	C07019-Ctrl	C07019-Salt	C07019-Ctrl	C07019-Salt	C10128-Salt	C10128-Ctrl
REP 1	C13013-Salt	C13013-Ctr	C10025-Ctrl	C10025-Salt	C07079A-Ctr\|	C07079A-Salt	C13001-Ctrl	C13001-Salt	C10121-Salt	C10121-Ctrl
	C10025-Salt	C10025-Ctrl	C10128-Ctrl	C10128-Salt	C07060-Ctrl	C07060-Salt	C10121-Ctrl	C10121-Salt	C13001-Salt	C13001-Ctrl
	C10128-Salt	C10128-Ctr\|	C07007-Ctrl	C07007-Salt	C10121-Ctrl	C10121-Salt	C07094-Ctrl	C07094-Salt	C07019-5alt	c07019-Ctrl
	C13001-Salt	C13001-Ctrl	DHLS150-Ctr	DHLS150-Salt	C07094-Ctrl	C07094-Salt	C07007-Ctrl	C07007-Salt	C07007-Salt	C07007-CtrI
	C07079A-Sal	C07079A-Ctrl	C07094-Ctrl	C07094-Salt	C10128-Ctrl	C10128-Salt	C10128-Ctrl	C10128-Salt	C07079A-Salt	C07079A-Ctrl
	C07007-Salt	C07007-Ctrl	C07019-Ctrl	C07019-Salt	C13013-Ctrl	C13013-Salt	C10025-Ctrl	C10025-Salt	DHLS150-Salt	DHLS150-Ctrl
	DHLS150-Sal	DHLS150-Ctrl	C13001-Ctrl	C13001-Salt	C10025-Ctrl	C10025-Salt	C07079A-Ctrl	C07079A-Salt	C13013-Salt	C13013-Ctrl
	C10121-Salt	C10121-Ctr\|	C07060-Ctrl	C07060-Salt	C13001-Ctrl	C13001-Salt	C13013-Ctrl	C13013-Salt	C07060-Salt	C07060-Ctrl
	C13001-Ctr\|	C13001-Salt	C07007-Salt	C07007-Ctrl	C10025-Ctrl	C10025-Salt	C10128-Salt	C10128-Ctr\|	c07019-Ctrl	c07019-Salt
	C07060-Ctr\|	C07060-Salt	C07079A-Sal	C07079A-Ctrl	C07094-Ctrl	C07094-Salt	DHLS150-Salt	DHLS150-Ctrl	C07007-Ctrl	C07007-Salt
	C07079A-Ctr	C07079A-Salt	C07094-Salt	C07094-Ctrl	C10128-Ctrl	C10128-Salt	C13013-Salt	C13013-Ctrl	C13013-Ctrl	C13013-Salt
	C10121-Ctr	C10121-Salt	C13001-Salt	C13001-Ctrl	C07079A-Ctrl	C07079A-Salt	C07007-Salt	C07007-Ctrl	C10121-Ctrl	C10121-Salt
REP2	C13013-Ctr	C13013-Salt	C07060-Salt	C07060-Ctrl	C13013-Ctrl	C13013-Salt	C07079A-Salt	C07079A-Ctrl	DHLS150-Ctr\|	DHLS150-Salt
	C07094-Ctrl	C07094-Salt	DHLS150-Sal	DHLS150-Ctr\|	C10121-Ctrl	C10121-Salt	C07019-Salt	C07019-Ctrl	C07094-Ctrl	C07094-Salt
	C10025-Ctr\|	C10025-Salt	C10025-Salt	C10025-Ctrl	C07019-Ctrl	C07019-Salt	C10025-Salt	C10025-Ctrl	C10128-Ctrl	C10128-Salt
	C10128-Ctr\|	C10128-Salt	C07019-Salt	C07019-Ctrl	C07060-Ctrl	C07060-Salt	C07060-Salt	C07060-Ctrl	C10025-Ctrl	C10025-Salt
	c07019-Ctr\|	C07019-Salt	C10128-Salt	C10128-Ctr\|	c07007-Ctrl	C07007-Salt	C10121-Salt	C10121-Ctr\|	C07079A-Ctrl	C07079A-Salt
	C07007-Ctrl	C07007-Salt	C10121-Salt	C10121-Ctrl	DHLS150-Ctr\|	DHLS150-Salt	C13001-Salt	C13001-Ctrl	C13001-Ctrl	C13001-Salt
	C07019-Salt	C07019-Ctr\|	C07060-Ctrl	C07060-Salt	C13013-Salt	C13013-Ctrl	C07019-Ctrl	C07019-Salt	C07060-Salt	C07060-Ctrl
	C13013-Salt	C13013-Ctrl	C07007-Ctrl	C07007-Salt	DHLS150-Salt	DHLS150-Ctrl	C13001-Ctrl	C13001-Salt	DHLS150-Sal	DHLS150-Ctrl
	C10128-Salt	C10128-Ctr	C10121-Ctrl	C10121-Salt	C07079A-Salt	C07079A-Ctrl	C10128-Ctrl	C10128-Salt	C07007-Salt	C07007-Ctrl
	C10121-Slat	C10121-Ctr	C13013-Ctrl	C13013-Salt	C07060-Salt	C07060-Ctrl	C13013-Ctrl	C13013-Salt	C07094-Salt	C07094-Ctrl
REP3	C07060-Salt	C07060-Ctrl	C10128-Ctrl	C10128-Salt	C10121-Salt	C10121-Ctrl	C07060-Ctrl	C07060-Salt	C10128-Salt	C10128-Ctrl
	C10025-Salt	C10025-Ctr	C10025-Ctrl	C10025-Salt	C07007-Salt	C07007-Ctrl	C10025-Ctrl	C10025-Salt	C07079A-Salt	C07079A-Ctrl
	C07079A-Sal	C07079A-Ctrl	C07094-Ctrl	C07094-Salt	C07019-Salt	C07019-Ctrl	DHLS150-Ctr\|	DHLS150-Salt	C10025-Salt	C10025-Ctrl
	DHLS150-Sal	DHLS150-Ctrl	C07019-Ctrl	C07019-Salt	C13001-Salt	C13001-Ctrl	C07079A-Ctrl	C07079A-Salt	C13013-Salt	C13013-Ctrl
	C07094-Salt	C07094-Ctrl	DHLS150-Ctr	DHLS150-Salt	C07094-Salt	C07094-CtrI	C07007-Ctrl	C07007-Salt	C10121-Salt	C10121-Ctrl
	C07007-Salt	C07007-Ctr\|	C07079A-Ctr	C07079A-Salt	C10025-Salt	C10025-Ctrl	C07094-Ctrl	C07094-Salt	C13001-Salt	C13001-Ctrl
	C13001-Salt	C13001_Ctrl	C13001-Ctrl	C13001-Salt	C10128-Salt	C10128-Ctrl	C10121-Ctrl	C10121-Salt	C07019-Salt	C07019-Ctrl

Figure 2.2: A completely randomised design salt stress experiment. Different colours used to represent individual lines. Control and treated are paired and distributed in 4×4 square meter $\left(\mathrm{m}^{2}\right)$ space.

Figure 2.3: A completely randomised design and well-spaced salt shock experiment used to Induced Salt tress on B. oleracea plants.

2.0.6 Seed germination

The seed germination was monitored 6-7 days after seeds were sown and subsequently on a daily basis for three weeks (Figure 2.4). Lines with early germination were noted; likewise, those with late germination for proper placement into the experimental design as according to the age of the plant and number of leaves counted. After four weeks, healthy plants were selected and transplanted into bigger pots. The poorly growing plants were allowed two additional weeks before being selected.

Figure 2.4: A set of 7 days germinated DHSL150 Brassica oleracea lines in a 4×10 tray setting one-week after sowing.

2.0.7 Plant growth

Plants growth was monitored for two additional weeks following transplantation for standard and rapid growth before a final selection at six weeks ($4^{\text {th }}-5^{\text {th }}$ leaf appeared) (Figure $2.5 \& 2.6$) those at an appropriate stage of growth and the lines with sufficient germination were divided into three reps each both for control and treated for the experiment. Unselected plants were transferred to Wellesbourne Campus as spare for seed generation.

Figure 2.5: Young growing sets of DHSL150 Brassica oleracea genotypes. A)
2 week old B) 4 weeks old and C) transplanted DHLS150 into bigger pots.

2.1 Methods

2.1.2 Salt Shock Induction

This was carried out when the plants were at week six (6) of growth (i.e., at least each plant had five full expanded leaves). This was done using a freshly prepared 250 mM NaCl , and treated plants were fed with an equivalent of 200 mL using a 500 mL measuring cylinder. The control plants were supplied with an equivalent of 200 mL of running tap water. Note: A plastic span was put under each pot to prevent water leakages and possible salt leaking, and this was allowed till the end of the experiment.

Figure 2.6: The growing B. oleracea selected wild S1, DHSL150 and doubled haploid lines set up for salt induction at six weeks old.

2.1.2 Sample Collection and Storage of Plant Material

Samples were collected twenty-four hours (24 hr) after the salt shock induction for both RNA extraction and mineral analysis. For RNA extraction, a disc-shaped portion of leaf four (4) was taken from both treated and control in an Eppendorf tube, flash frozen in liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$. For mineral analysis, a more substantial portion of the same leaf (\#4) ($\sim 0.5 \mathrm{~g}$) was stored in well-labelled paper bags and oven dried overnight at $80^{\circ} \mathrm{C}$ for 12 hours at Crop Centre, Wellesbourne Campus.

Note: Sample collection was also repeated at these other stages of the experiment:

1) Two-weeks post-salt shock induction (8 weeks old); (leaf 5 collected)
2) A second salt shock was carried out a day after (1) above and induction procedure was as same as the first induction and sample collected 24 hours (leaf 6 collected) and finally;
3) Two-weeks post second induction (10 weeks old) (leaf 7 collected)

All samples were kept under the same condition until analyses.

2.1.3 Plant height

Plant height was measured at weekly intervals after the plants were salty shocked. The measurement was done using a flexible measuring tape, so as to make sure bent plants were measured correctly from an upper edge of the pot serves as the baseline to maintain an equal starting point, and measurement was done from the baseline to the tip of the stem for each experimental plant in centimetre (cm).

2.1.4 Plant fresh/dry weight

Plant fresh weight was determined at collection, i.e., at tenth weeks. The whole plant (flowers, stems, and leaves) were collected, harvested using scissors from a position above the compost soil and carefully folded and placed in a pre-labelled paper bags for each plant
(i.e., one each of the three control and same for three treated) and stored in the cold room temporarily. The harvested plants in paper bags were subsequently moved to Crop Centre at Wellesbourne and oven dried at $80^{\circ} \mathrm{C}$ for 12 hrs . The dry weight was measured using a digital weighing balance set at grams (g) position, an empty paper bag used to zero the machine and finally weighing the plants' materials.

2.1.5 Leaf fresh/dry weight

To measure the fresh weight, true leaf seven (leaf \#7) was collected at the tenth week of the experiment. The leaves were taken by incision from the petiole, at a point of attachment to the stem. The individual leaves were packed in a paper bag, pre-labelled, and measured, kept in cold room before being moved to Wellesbourne where they were oven dried at 80^{0} C for 12 hrs and dry weight measured in grams (g).

2.1.6 Leaf Area

Leaf seven (\#7) collected was carefully photographed using a Canon camera in the darkroom, the camera adjusted to about 50 cm above the base where the leaf was put down on a white A4 paper as a background and a meter rule used for scale included. The zoom of the camera and focus were carefully maintained, and paired control and treated leaves were photographed for the three reps. The pictures were used to calculates the leaf area using a publicly available software Image \mathbf{J} set at cm^{2} unit.

Figure 2.7: Morphological differences between the parent and their derived DH B. oleracea genotypes. A) B. bourgaei-S1 (B) DHSL150, (C) DH (C10025-DH), and D) DH (C10027-DH).

2.1.7 Mineral Analysis

2.1.7.1 Material

Plant tissue used (dried leaves) (see Section 2.2.2)

2.1.7.2 Chemicals

Nitric acid 67\% HNO_{3} (w/w): Plasma PURE, 250-039-171 (SCP SCIENCE). Multielement standard ($\mathrm{Ca} 99.1 \pm 0.8 \mu \mathrm{~g} / \mathrm{ml}, \mathrm{K} 100.3 \pm 0.9 \mu \mathrm{~g} / \mathrm{ml}$, and $\mathrm{Na} 101.2 \pm 1.0 \mu \mathrm{~g} / \mathrm{ml}$) and Matrix of $5.0 \% \mathrm{HNO}_{3}$ (ICP - AES), Cat Number: AQ0-053-621, (SCP SCIENCE)

2.1.7.3 Sample Handling and Preparations

Before analysis, samples were first dried overnight (12 hr) at $80^{\circ} \mathrm{C}$, and processed according to the modified procedure of Campbell and Plank (1992). A dried tissue sample ($\sim 0.5 \mathrm{~g}$) was ground into smaller pieces to increase digestion efficiency. The dried tissue samples were placed into standard 50 mL PTFE digestion tubes to which 2 mL of $67 \% \mathrm{HNO}_{3}(\mathrm{w} / \mathrm{w})$ added and mixed for about 10 sec before loading the containers into microwave digestion system (MARS 5 CEM Corporation, USA). The microwave MARSX (Figure 2.8) digestion machine was set up using programme heating cycles for 34 minutes as presented in Table
2.2.

Table 2.2: A microwave digestion system set-up programmed heating cycles.

Cycle	Initial Temp $\left({ }^{0} \mathrm{C}\right)$	Time Interval(min)	Final Temp $\left({ }^{0} \mathrm{C}\right)$	Hold time (min)
1	0	3	100	2
2	100	1	120	1
3	120	3	160	2
4	160	2	180	20

After the digestion, the tubes were allowed for 30 min of cooling time, and 48 mL of deionised water added to each vessel. (Note: sample filtration was performed on the partially digested sample to remove any undigested plant material).

Figure 2.8: MARSX microwave digestion system, Warwick Crop Centre, Wellesbourne, UK.

2.1.7.4 Sample dilution

Following successful digestion, samples were further diluted 1:20 using a 20 -fold dilution factor (i.e., 1 mL in 19 mL of deionized water), this was to bring closer the matrix of the sample and that of the standard while running in ICP - MS, as recommended by the Chemistry Dept. The University of Warwick, where the samples were run.

2.1.7.5 Preparation of Standard Curve Solution

A standard solution was prepared from the multi-element standard (Ref: Number: AQ0-053-621, SCP Science) in order to establish a standard curve from which the unknown sample concentrations could be extrapolated. Serial dilution of the stock to make the standard curve included a concentration range from $0.00,0.039,0.078,0.156 \ldots . .10 \mathrm{ppm}$ were prepared and run under the programme listed in Table 2.3. Note: standard curve (see Appendix III) was prepared freshly and established on daily basis to ascertained
reproducibility before running the samples. The samples were analysed using an Agilent ICP - MS in the Department of chemistry, University of Warwick, the UK in 2017.

2.1.7.6 Sample Running

After the establishment of the standard curve, samples were run by using the machine conditions outlined in Table 2.3 below and Figure 2.9.

Table 2.3: ICP-MS Agilent 7500 series programme for sample injection during mineral analysis

Figure 2.9: Already set up Agilent Technologies ICP-MS 7500 series for determination of leaf mineral content in B. oleracea leaves. Department of Chemistry, University of Warwick, UK.

2.1.8 qPCR

2.1.8.1 RNA Extraction and Purification

RNA extraction was carried out using an RNeasy Plant mini kit (Qiagen). Firstly, leaf tissue (see Section 2.2.2) of disc shape (1 cm size) was thoroughly ground into a fine powder in liquid nitrogen using a cleaned, sterilised and cooled mortar and pestle. The grounded leaf material was carefully decanted into 2 mL Eppendorf, and $450 \mu \mathrm{l}$ (RLT buffer) was added, which was vortexed vigorously. The lysate was transferred into a (QIAshredder) spin column and placed into newly 2 mL collection tube. The tube was centrifuged at 14000 xg for 2 min (Eppendorf microcentrifuge) and the supernatant was carefully transferred into a newly Eppendorf (care was taken not to disturb the lysate). A 0.5 volume of ethanol (96$100 \%$) was added to the cleared lysate and gently mixed. The mixture was then transferred onto an RNeasy mini spin column and centrifuged at $8000 \mathrm{x} g$ for 15 sec and the flowthrough was discarded. A $700 \mu \mathrm{l}$ (RW1 buffer) was then added into the RNeasy spin column, centrifugation was repeated and the flow-through discarded. A $500 \mu \mathrm{l}$ (RPE buffer) was then added onto the RNeasy spin column and centrifuged at $8000 \mathrm{x} g$ for 2 min . The RNeasy spin column was then transferred into a 2 ml collection tube, which was centrifuged at maximum speed to remove any remaining buffer from the column membrane. And finally, the RNA was eluted by using $25 \mu \mathrm{l}$ of RNase-free water.

2.1.8.2 cDNA Synthesis Protocol

Prior to the cDNA synthesis, water bath and block air incubator were pre-heated and maintained at $65^{\circ} \mathrm{C}$ and $42^{\circ} \mathrm{C}$ respectively. An equivalent volume representing $2.5 \mu \mathrm{~g}$ of the extracted mRNA was used for cDNA synthesis.

Two masters mixed were prepared; the first one was made in a 1.5 ml Eppendorf tube which contained an equivalent of $2.5 \mu \mathrm{~g}$ total $\mathrm{mRNA}, 1 \mu \mathrm{l}$ oligo (dT) primer (20 mM) and molecular water used to make up the volume to 20μ l. The content was mixed and centrifuged briefly and incubated at $65^{\circ} \mathrm{C}$ for 5 min . The second master-mixed was prepared using $10.0 \mu \mathrm{l}$ xRT buffer, $5.0 \mu \mathrm{LTT}(20 \mathrm{mM}), 1.0 \mu \mathrm{l}$ of premixed dNTPs and $0.5 \mu \mathrm{l}$ RT Superscript II respectively. The tubes were placed on ice for 2 min before being placed in the water bath at $65^{\circ} \mathrm{C}$. A $16.5 \mu \mathrm{l}$ of the second prepared master-mixed was pipetted into each tube, and the final volume brought up $50 \mu \mathrm{l}$ with molecular water and mixed. The tubes were then incubated at $42^{\circ} \mathrm{C}$ for 1 hr after which the cDNA synthesised was diluted with $200 \mu \mathrm{l}$ of molecular water and kept at $-20^{\circ} \mathrm{C}$ until required.

2.1.8.3 List of Genes, Primer design and Testing

These are selected ion membrane transporter transcripts that showed significant variation in differential expression in both tolerant and susceptible lines obtained from RNA-Seq data were chosen for qPCR validation (Table 2.5).

Transcript-specific primers were designed to amplify a specific cDNA sequence of the transcripts in our samples. The sequences of mRNAs of the transcripts of interest by using their individual transcripts IDs were downloaded from (https://plants.ensembl.org/Brassica_oleracea) and further
(https://www.ncbi.nlm.nih.gov/blast/) to use for primer design. The primers were designed using DNASTAR (Lasergene 14) software. The parameters were used as follows: $\mathrm{Tm}, 55^{\circ} \mathrm{C}$ to $62^{\circ} \mathrm{C}$, differences not $>2^{\circ} \mathrm{C}$ between the primers in a pair was insured; primer length, 1924 bp ; GC content, 45-55\%; amplicon length, 100-150 bp. Whenever possible, primers were designed to span introns and insured that only primers yielding a single product in conventional PCR and qPCR were used in the validation (Table 2.4).

Table 2.4: List of genes and their mRNA primer sequence used for qPCR validation Analysis

Gene stable ID	Gene name	Gene description	Forward Sequence	Reverse Sequence
Bolg022080	KT	Potassium transporter	TGGCGGAAAGGGTAGAAACAT	TGGATGAAGAAGCTACTAAG
Bolg158860	V-type G	V-type proton ATPase subunitG	CCAGCAGAGGAGGAGGAGGTG	TTCGATTTTGGCATCAGTCTCTTG
Bo2g024320	V-typea	V-type proton ATPase subunita	AATGGCTCCACTGCAACTTCTC	GITTTCATTTTCACTTTTATCGCT
Bo4g012670	KTg	Potassium transporter 9	TGGTGTTCTGTCTTTCGTTTTCTG	TGATAACGGAGAAGGTGGGACT
Bo4g039050	KUP11	K+ uptake permease 11	ACAATGGGTGGTGGTGGTGA	TATGGATGAAGAAGCTGGTCGG
Bo4g145930	V-type a	V-type proton ATPase subunita	GGTGGTGGTGGTGGTGGTT	TGCTCATCTCACCGTCTCTTACCT
Bo5g131740	CAX3	cation exchanger 3	AGATGTCCAAACCCGCCGTCAG	GATTCTCCTCGGCGCAGCGTT
B08g030800	V-CLC	Voltage-gated chloride channel family protein	TCTTGCTACGAGCTCTCCAGTCCT	AACGGCGAGGTTGTTGGTGAAA
Bogg003910	ECA2	ER-type Ca2+-ATPase 2	GAAGTCTTTATCTCCGTGGTCGTG	GATGTCCAAACCCGCCGTCAG
Bogg010200	NHX1	$\mathrm{Na}+\mathrm{H}+$ antiporter	TCGITTTTGGATTCTTTCGTAT	GTATTGTCATTGGCCATCTCTTGG
LI61-qRNA-Btub	B-tubulin	Housekeeping Gene	TCATGGATCTGGAGCCTGGAAC	GGAATGGCAAACCTGAAACCC
TIP41	TIP41	Housekeeping Gene	CACCGGAAGCCTCTGACTGAT	TGATGGTGTGCTTATGAGGTTGAG

2.1.8.4 Primer Testing, PCR and Gel running

Conventional PCR using touch-down procedure was carried out to test the primers to ensure that only the required sequence was produced for a pair of primers and the required amplicon length. The PCR was carried out using the setup procedure; a master mix of $12.5 \mu \mathrm{l}$ RedTag, $5.5 \mu \mathrm{l} \mathrm{DH}_{2} \mathrm{O}$ and $5.0 \mu \mathrm{l}$ cDNA ($23 \mu \mathrm{l}$ total) was prepared for individual genes and $1 \mu \mathrm{l}$ each for a pair of forward and reverse primers were added to make the total amplicon $25 \mu \mathrm{l}$. PCR thermocycling was set using the parameters; denatured temperature, $95^{\circ} \mathrm{C}$ for 5 min ; annealing temperatures, $62^{\circ}-55^{\circ} \mathrm{C}$ for 1.0 min and $72^{\circ} \mathrm{C}$ for 30 sec and x 30 cycles; and hold at 4^{0} for 5 min . The product was run 1% agarose gel as shown in Figure 2.10.

Figure 2.10: Analysis of quality assay results. A $5.0 \mu \mathrm{l}$ of each PCR products were electrophoresed on a 1% agarose gel/RedTag gel in 2XTAE buffer following 40 cycles of qPCR. Lane M: 100 bp DNA Ladder size marker, $\mathbf{A}-\mathbf{H}$ indicate the bands at 100 bp , representing the $3^{\prime}-5^{\prime}$ fragments of a primer pair of one of the candidate gene. $\mathbf{A}-\mathbf{D}=$ non-treated control and $\mathbf{E}-\mathbf{H}=$ treated samples.

2.1.8.5 Sanger sequencing

The PCR amplified product was further cleaned up using a QIAGEN quick PCR purification kit and the procedure followed was based on the manufacturer's guidelines. After the cleanup, $5 \mu \mathrm{l}$ of $\mu \mathrm{M}$ each of forward and reverse primers were premixed in separate 1.5 Eppendorf's tubes containing $5 \mu \mathrm{l}$ of template were sent for GATC sequencing (https://warwick.ac.uk/fac/sci/lifesci/intranet/staffpg/support/...sequencing.../gatc/). Note: only forward and reverse primers that produced correct clean sequences were used for qPCR validation.

2.1.8.6 Plate preparation and $q P C R$ running

$5.0 \mu \mathrm{cDNA}$ samples prepared from the total RNA extracted from three biological replicates of the experimental plants were required. A master mix was prepared using $10.0 \mu \mathrm{l}$ SYBGREEN as a detection probe and $2.5 \mu \mathrm{l}$ each of primer pair (Forward and Reverse). Plate set-up was prepared using a randomised design (Figure 2.11), each colour code represents control and treated samples replicated in randomly, each sample was included three-times per primer pair or with the two housekeeping primer genes (β-Tubulin and TIP41).

	1	2	3	4	5	6	7	8
A	A1CLC	C3CLC	E5CLC	A7Bt	C9Bt	E11Bt	E171P41	H2OITP41
B	A1CLC	C3CLC	E5CLC	A7Bt	C9Bt	E11Bt	E17ITP41	
C	A1CLC	C3CLC	E5CLC	A7Bt	C9Bt	E11Bt	E171P41	
D	B2CLC	D4CLC	F6CLC	B8Bt	D10Bt	F12Bt	F18ITP41	
E	B2CLC	D4CLC	F6CLC	B8Bt	D10Bt	F12Bt	F18ITP41	
F	B2CLC	D4CLC	F6CLC	B8Bt	D10Bt	F12Bt	F18ITP41	
G	A13ITP41	A131TP41	A131TP41	C15ITP41	C151TP41	C151TP41	H2OCLC	
H	B141TP41	B14ITP41	B14ITP41	D161TP41	D161TP41	D161TP41	H2OBt	

Figure 2.11: A randomise qPCR design. Colour code indicates a particular primer pair position.

Figure 2.12: A schematic representation (a) a dissociation curve by using V-CLC primer pair listed on Table 2.4 at different cDNA concentration to ensure the working cDNA is free from contamination and the primer pair amplify only product of interest (b) an amplification curve at different cDNA concentration: cDNA was prepared in 10 -fold serial dilutions to establish the amplification curve to further confirm the workability of the probe used (SYBGREEN).

2.1.9 Genotyping by sequencing

2.1.9.1 Sample Collection

A disc of leaf sample of approximate size of $1 \mathrm{~cm}^{2}$ was collected from ninety-six (96) B. oleracea accession from the C genome diversity set from true leaf seven when the plants were approx. 2 months old. (http://www2.warwick.ac.uk/fac/sci/lifesci/research/vegin/brassica/bcgdffs/bcgdfslinessu mm.pdf) by Hussien Gherli (Ph.D.), under VeGIN project, Warwick Crop Centre, Wellesbourne.

2.1.9.2 GBS protocol

For the GBS protocol using next-generation sequencing (NGS), an equivalent of 300 ng and a concentration of $10-50 \mathrm{ng} / \mu \mathrm{l}$ was used. This was of high molecular and RNA free DNA. A restriction enzyme (ApeKI) with an insertion size of $\sim 130 \mathrm{bp}$ was used for the digestion and insertion of adaptors including the barcodes. The sequencing mode was 1 x 75 bp single-end reads, 290 million reads and ~ 3 million read pairs per sample.

2.2.10 Data Analysis

2.2.10.1 Morphological traits

The analysis of the morphological traits measured was performed using Excel (2016), where Mean, SD and SEM were calculated and compared between the treated and control plants performed using a Student's t-test, to test the level of significant variation was considered at $\mathrm{p} \leq 0.05$, and 0.001 . The comparison was performed within the lines only not between the lines, 1.e. treated A vs control A and not vice versa. Correlation analysis between different morphological traits was also carried out to the identified level of correlation under salt stress conditions.

2.2.10.2 Physiological traits

The concentration of $\mathrm{Na}^{+}, \mathrm{K}^{+}$, and Ca^{2+} were determined by averaging the mean, SD , and SEM of three replicates per line, $\mathrm{K}^{+} / \mathrm{Na}^{+}, \mathrm{Ca}^{2+} / \mathrm{Na}^{+}$ratio were determined. Student's t -test analysis was conducted to determine the level of statistically significant, which were considered at $\mathrm{p} \leq 0.05$ and 0.001 . And linear regression analysis carried out between parameters to test the level of relationship in R. Principal component analysis (PCA) and Clustering analysis between the morphological and physiological traits under salt stress.

2.2.10.3 RNA-Seq Reprocessing

The reprocessing was done according to Finotello et al. (2014), the raw reads were preprocessed using some short common line tools (FASTX-Toolkit 0.0.13.2) (see Appendix VII for the scripts). The overall reads quality was inspected using the quality reports generated with FastQC. Pre-processed reads were mapped with TopHat (Kim et al., 2013) on the B. oleracea (To1000) (Boleracea.v2.1) genome, downloaded from the http://brassicadb.org/brad/. Gene coordinates file help also to map the reads spanning splices junctions (TopHat option '-G'). Reads multi-mapped were removed from the final results, together with those reads sharing less than 95% identity with reference.

In the identification of differentially expressed genes, the raw counts (BAM file) were used as input using the SeqMonk software (1.40.1) downloaded from https://www.bioinformatics.babraham.ac.uk/projects/seqmonk/. In the analysis workflow, SeqMonk (version 1.40.1 Babraham Institute, 2009). This is compatible and have an R language inbuilt, and pipeline for BAM files processing, generated from TopHat and can run simultaneous analyses for DSeq2 and EdgeR (v.3.8.6) Bioconductor packages were used. The software was set up to process the BAM files, and map to the sequence of B. oleracea genome (To1000) (Boleracea.v2.1) and scores for quality probe set at 50%. The
probes were filtered by using this inbuilt system and via the use of quality score filters, DESeq2 pipeline and EdgeR statistical analyses were conducted to obtain the differentially expressed genes using a FDR set at 0.05 for significant genes.

Table 2.5: List of membrane ion transporters identified from RNA-Seq that show differential expression 24 hour post salt shock in B. oleracea DH lines

Gene stable ID	Transcript ID	Chr.	start (bp)	end (bp)	Strand Gene name	Gene description
B019022080	B019022080.1	C1	8072815	8076088	1 KT	Potassium transporter
Bo19158860	Bo1g158860.1	C1	43713959	43714450	-1 V-type G	V-type proton ATPase subunitG
B029024320	B02g024320.1	C2	6673393	6676356	-1 V-type a	V-type proton ATPase subunita
B049012670	B049012670.1	C4	1353531	1360063	1 KTg	Potassium transporter9
B049039050	B040039050.1	C4	8527051	8530274	1 KUP11	K+ uptake permease 11
B049145930	B04g145930.1	C4	39931384	39935961	1 V -type a	V-type proton ATPase subunita
Bo59131740	B05g131740.1	C5	40620196	40622124	1 CAX3	cation exchanger 3
B089030800	B089030800. 1	C8	10024031	10027008	1 V-CLC	Voltage-gated chloride channel family protein
Boga003910	B09g003910.1	C9	514674	519143	1 ECA2	ER-type Ca2+-ATPase 2
Bogg010200	Bo9g010200.1	C9	2940449	2943704	1 NHX1	$\mathrm{Na}+\mathrm{H}+$ antiporter

* Note: the table shows the transcript ID as it correspond to B. oleracea C genome (To1000), their chromosomes (Chr.), start and end nucleotide sequence positions in each chromosome, chromosome strand, a gene name of each transcripts and gene description using conventional names.

2.2.10.4 qPCR data

Samples were run and analysis conducted using a Mx3005P multiplex quantitative PCR system (Agilent Stratagene). The housekeeping genes (β-Tubulin and TIP41) were used for data normalisation. Genotype-specific $C t$ values for each gene and control were calculated using baseline-corrected, ROX-normalised parameters. Three technical replicates included in each plate, and the average $C t$ value for each genotype was normalised within the plate housekeeping genes by a method of Livak and Schmittgen (2001). The average $C t$ values from the three biological replicates were analysed by Microsoft Excel (2016) to calculate the Mean, standard deviation (SD), \% Coefficient of variance (\%CV), SEM and $\log _{2}$ Fold change (FC) was determined for relative expression of genes. An ANOVA analysis conducted using F-test to test for significant variation between different time points.

2.2.10.5 GBS Data Sorting

The raw GBS read obtained were subjected to bioinformatic analysis and aligned to the reference genome sequence (B. oleracea To1000). The analysis generated, mapping rate, the total number of SNPs and sample allele frequency scored both at 5% and 10%. Sorting was done first, by selection of all variants sheet with 0.05 score, unidentified corresponding alleles after mapping were cleaned. Homozygous parental data was generated separately and DH lines with related homozygous parental scored to the parental type. NOTE: Sorting based on this format was to enable identify introgression, inversion, polymorphism and or genetic imprint of alleles in a different position of chromosomes that corresponded to our transcripts positions.

CHAPTER THREE

Morphological Variation in B. oleracea genotypes in Response to Salt Stress

3.0 Introduction

It is hypothesised that wild relative species have greater genetic diversity than their related cultivated varieties due to genetic drift, and therefore could be a source of genetic material for widening the gene pool. This would mean greater allelic diversity that can be exploited by plant breeders in order to develop improved crop species to ensure global food security for a growing world population.

This chapter investigates the morphological variation in response to salt stress in B. oleracea cultivated rapid cycling DHSL150, wild DFFS (S1) lines and DH lines derived from the F1hybrids material. An attempt has been made to make these lines more available for trait screening through the development of the Diversity Fixed Foundation Set (DFFS) by the DEFRA funded VeGIN project (Pink et al., 2008; Walley et al., 2012). The formation of which was described in the introductory chapter (Chapter 1). The DHs derivatives are products of crosses between the wild S1 parent lines and a cultivated B. oleracea DH line (DHLS150) (see Table 2.1) and subsequently developed using a tissue culture (Microspore technique). The significance here is that two genetically diverse B. oleracea with different genetic background and genetic recombination have been pooled together to generate the DHs lines. This makes them an ideal collection to explore the genetic differences involved with the response to salt shock and to establish the associated pathways.

The chapter aims to investigate the extent of morphological variation in response to salt stress in B. oleracea cultivated rapid cycling DHSL150, wild DFFS (S1) lines and DH lines derived from the F1-hybrids material of the crosses between DHSL150 x main founder of S1 line (BolDFS).

The objective is to establish phenotypic differences by exposing the wild S1, DHSL150 and doubled haploid B. oleracea genotypes to salt shock stress.

This chapter will present the results of the two consecutive but separate salt stress screening experiments carried out in 2015 and 2017. The two results will be presented simultaneously to enable comparison between observed morphological variation.

3.1 Results

3.1.1 First Salt Stress Screening

3.1.1.1 Plant Height

Generally, plants response to salt stress by adapting some morphological and physiological response thereby causing significant changes in their different tissues, organs and nutrients requirements. Therefore, an effort was made to monitor plant growth was by measuring the plant height on weekly basis for three weeks after the salt stress was induced. Figure 3.1, presents some of the observed morphological variation in plant height among different B. oleracea genotypes.

Figure 3.1: The effects of salt stress on growth of some B. oleracea genotypes 21 days after salt treatment from left to right: DH lines; A) C10121-DH; B) B. oleracea (C07079A-S1); C) C13013-DH \& D) B. oleracea (C07060-S1).

The result presented in (Figure 3.2a) shows a degree of variation between and within the lines in different traits. The average growth difference between control and treatment B. oleracea genotypes (salt treated - untreated control), which was converted into a percent (\%) and used to describe an increase or decrease in plant growth in relation to the untreated control lines. A comparison between lines was only used to described the effects of salt stress observed between parent lines; DHSL150 and wild S1 with DH lines. The percent growth difference between control and treated B. oleracea genotypes showed variation between genotypes as observed in C13013-DH (-1.48\%), and its related wild S1 B. hilarionis line (C07019-S1) (-14.96\%) and DHSL150 (-11.74\%). This differences between the parental lines and DH lines was also observed in DHSL150 (-11.74\%), B. bourgaei-S1 (C07007) (-5.15\%), and its two related DH lines; C10025-DH and C10027-DH which showed percent difference of between -5.79% to -11.24% respectively compared to the control plant. As presented in (Figure 3.2a), the cultivated line B. oleracea (DHLS150), the DH lines; C10025-DH and C10027-DH have shown a significant reduction in plant growth in response to salt treatment ($\mathrm{p}<0.05 \& \mathrm{p}<0.001$). This shows that the cultivated line (DHLS150) and doubled haploids lines; C10025-DH and C10027-DH were more affected in plant growth than their related wildtype S1 B. bourgaei-S1 (C07007), which showed an improved growth compared to the untreated control plant. This indicates a significant morphological response between the parent DHLS150 line, the related wild S1 (C07007), and derived doubled haploid C10025-DH and C10027-DH lines under salt stress. This variation in morphological response could be due to their genetic differences / or allelic recombination effects, which have shown to influenced genotype-environment interactions.

Figure 3.2a : Morphological variation in average plant growth in response to salt stress in B. oleracea genotypes. Note: $\mathbf{A}=$ the main founder rapid cycling line (DHLS150), $\mathbf{B}=$ B. bourgaei (C07007-S1), $\mathbf{C}=\mathrm{C} 10025-\mathrm{DH} ; \mathbf{D}=\mathrm{C} 10027-\mathrm{DH} ; \mathbf{E}=$ B. oleracea-S1 $(\mathrm{C} 07060) ; \mathbf{F}=\mathrm{C} 10125-$ $\mathrm{DH} ; \mathbf{G}=\mathrm{C} 10128-\mathrm{DH} ; \mathbf{H}=$ B. incana-S1 (C07094); $\mathbf{I}=\mathrm{C} 13012-\mathrm{DH} ; \mathbf{J}=\mathrm{C} 13013-\mathrm{DH} ; \mathbf{K}=\mathrm{B}$. hilarionis-S1 (C07019); $\mathbf{L}=\mathrm{C} 13001-\mathrm{DH} ; \mathbf{M}=$ B. oleracea-S1 (C07069); $\mathbf{N}=\mathrm{C} 10132-\mathrm{DH} ; \mathbf{O}=$ C10139-DH; $\mathbf{P}=$ B. oleracea-S1 (C07079A); and $\mathbf{Q}=\mathrm{C} 10121-\mathrm{DH}$. Data represent mean $(\mathrm{n}=6)$ and error bars show the standard error of the mean (SEM). Significant different by comparing the mean of untreated control plant vs treated determine using paired one-tailed Students t-test as indicated by an asterisk $(*=\mathrm{p}<0.05 ; * *=0.001)$. Different colours represent; black $=$ control DHSL150; light brown = treated DHSL150, dark red $=$ treated wild S1 lines, blue $=$ control wild S1s, yellow = treated DH lines and navy blue = control DH lines respectively. Note: the DH lines are placed next to their related wild S1 lines for easy follow-up while the DHSL150 remain the main parental line.

Also observed from the result (Figure 3.2a) was an improved growth by the DH lines C10312-DH and C13013-DH when compared against their untreated control, although this was not statistically significant ($\mathrm{p}>0.05$). The cultivated line DHSL150 and wild S1 (C07094-S1) showed a significant reduction in growth as compared to their untreated control lines ($\mathrm{p}<0.05$). In addition, this could indicates intraspecific variation between DH lines that shared a common origin, for example, C10125-DH that showed significant growth reduction as compared to the untreated control line ($\mathrm{p}<0.05$) and C10128-DH which showed non-significant difference to the control line ($\mathrm{p}<0.05$). The general observation from the result was that three DH lines; C10312-DH; C13013-DH and C10128-DH have shown an improved growth as against the control untreated lines. The same observation was made in two of the wild S1lines; B. bourgaei (C07007-S1), and B. oleracea-S1 (C07069). The DHSL150 line has shown to be affected by salt stress that led to its significant reduction in plant height ($\mathrm{p}<0.05$). This result indicates morphological effects of salt stress on growth of different B. oleracea genotypes as compared to the untreated plants. Their response due salt stress conditions observed could be attributed to the differences in genetic background. A good mapping populations could be derived from these lines that show different genetic background for plant breeding in salt tolerant.

Furthermore, inquest to study more on the effects of salt stress on B. oleracea genotypes, second salt stress experiment was carried out using the same B. oleracea (see Table 2.1b) between May-August 2017. This aims to further compare the significant variation in salt stress effects already observed between lines. As described in Chapter 2, the second salt stress experiment exposed the plants to salt treatment twice i.e., at week six (6 wk) and at week eight (8 wk) of plant growth (i.e., two-weeks intervals). The result (Figure 3.2b), shows that plant height was affected with a significant reduction observed in two of the DH
lines; C10121-DH and C13001 ($\mathrm{p}<0.05$). This observation corroborated with initial salt stress screening in these DH lines, which showed a reduction in plant growth as compared to the control untreated lines. Also, a reduction in plant growth was observed in the parent lines, the cultivated DHSL150, and wild related S1 lines; B. oleracea genotypes (C07060 $\& C 07079 A)$ respectively $(\mathrm{p}<0.05) . \mathrm{C} 100025-\mathrm{DH}$ showed a non-significant growth reduction in the second screening as compared to initial salt screening that revealed a significant reduction compared to the untreated control (see Figure 3.2a). This observation was attributed to the fact that in the second salt stress experiment plants were exposed twice to salt treatment in a two-weeks interval, which could suggests more enhanced response from the earlier exposure of salt treatment might cause. A comparative analysis conducted to compare the effects of salt stress on plant growth between the two experiments showed no significant difference between the treated lines $(\mathrm{F}=0.283)$.

Figure 3.2b : Morphological variation in average plant growth in response to salt stress in B. oleracea genotypes. Note: $\mathbf{A}=$ the main founder rapid cycling line (DHLS150), $\mathbf{B}=$ B. bourgaei (C07007-S1), $\mathbf{C}=\mathrm{C} 10025-\mathrm{DH} ; \mathbf{E}=$ B. oleracea-S1 (C07060); $\mathbf{G}=\mathrm{C} 10128-\mathrm{DH} ; \mathbf{J}=\mathrm{C} 13013-$ $\mathrm{DH} ; \mathbf{L}=\mathrm{C} 13001-\mathrm{DH} ; \mathbf{P}=$ B. oleracea-S1 (C07079A); and $\mathbf{Q}=\mathrm{C} 10121-\mathrm{DH}$. Data represent mean $(\mathrm{n}=3)$ and error bars show the standard error of the mean (SEM). Significant different by comparing the mean of untreated control plant vs treated determine using paired one-tailed Students t-test as indicated by an asterisk ($*=\mathrm{p}<0.05 ; * *=0.001$). Different colours represent; black $=$ control DHSL150; light brown $=$ treated DHSL150, dark red $=$ treated wild S1 lines, blue $=$ untreated control wild S1s, yellow $=$ treated DH lines and navy blue $=$ untreated control DH lines respectively.

3.1.1.2 Effects of Salt Stress on Plant's Biomass Accumulation

Salt stress affect the accumulation of biomass in plants, therefore, an increase in plant's biomass accumulation could be attributed to resilience to salt stress. On this note, two indicators of biomass accumulation in plants i.e., plant fresh and dry weights, were measured at the end of the experiment period that lasted for nine weeks (9 weeks). From the two results obtained, it was observed that plant fresh weight decreased as a result of salt shock stress (Figure 3.3). Although there are morphological differences between the doubled haploids and wildtype S 1 , some relative inhibition of biomass accumulation was observed. The wildtype S1 parental, the founder, rapid cyclic line (DHLS150) and doubled haploids lines have their fresh weight decreased with an average percent between -2.67% in B. bourgaei-S1(C07007) to highest -18.99\% observed in C13013-DH. This indicates a clear variation between B. oleracea genotypes. An increase in plant fresh weight under salinity conditions could be a good indicator for salt tolerance as it indicates growth. The wild S1 lines showed a relative improvement in fresh weight as compared to the untreated control lines (Figure 3.3). The doubled haploids lines response more similar to the founder line (DHLS150) an effects attributed to allelic introgression. As expected both parental lines; i.e., the cultivated founder line and wild S1 lines have shown a reduction in plant fresh weight. The observed average percent decreased was between -20.14% in the main founder line (DHLS150), -2.67% to -21.87% in the wild S1 lines, and while the DH lines reduced by -12.42% and 18.99% respectively.

Figure 3.3: Plant fresh weight 14 days after receiving salt treatment B. oleracea genotypes. Note: $\mathbf{A}=$ the main founder rapid cycling line (DHLS150), $\mathbf{B}=$ B. bourgaei $($ C07007-S1), $\mathbf{C}=\mathrm{C} 10025-$ $\mathrm{DH} ; \mathbf{D}=\mathrm{C} 10027-\mathrm{DH} ; \mathbf{E}=$ B. oleracea-S1(C07060); $\mathbf{F}=\mathrm{C} 10125-\mathrm{DH} ; \mathbf{G}=\mathrm{C} 10128-\mathrm{DH} ; \mathbf{H}=B$. incana-S1 (C07094); I = C13012-DH; J = C13013-DH; $\mathbf{K}=$ B. hilarionis-S1 (C07019); $\mathbf{L}=$ C13001-DH; $\mathbf{M}=$ B. oleracea-S1 (C07069); $\mathbf{N}=\mathrm{C} 10132-\mathrm{DH} ; \mathbf{O}=\mathrm{C} 10139-\mathrm{DH} ; \mathbf{P}=$ B. oleraceaS1 (C07079A); and $\mathbf{Q}=\mathrm{C} 10121-\mathrm{DH}$. Data represent mean $(\mathrm{n}=6)$ and error bars show the standard error of the mean (SEM). Significant different by comparing the mean of untreated control plant vs treated determine using paired one-tailed Students t-test as indicated by an asterisk ($*=\mathrm{p}<0.05 ; * *=0.001$). Different colours represent; black = control DHSL150; light brown $=$ treated DHSL150, dark red $=$ treated wild S1 lines, blue $=$ control wild S1s, yellow $=$ treated DH lines and navy blue $=$ control DH lines respectively. Note: the DH lines are placed next to their related wild S1 lines for easy follow-up while the DHSL150 is the main founder line.

The result of analysis on plant dry weight showed to be reduced in all the B. oleracea genotypes in response salt stress with a statistically significant reduction in B. bourgaei$\mathrm{S} 1(\mathrm{C} 07007)$ and B. hilarionis-S1 (C07019) $(\mathrm{p}<0.05)$ (Figure 3.4). The doubled haploid lines; C13012-DH, C13013-DH, and C10128-DH showed to be affected by the imposed salt stress, which was non-significant as compared to the untreated control ($\mathrm{p}>0.05$). The calculated average percent difference indicates that plant dry weight has shown an increased by 0.12% in C10128-DH however, this was non-significant as compared to the control (p >0.05). This particular doubled haploid line has recorded a non-significant reduction in the measured parameters; plant height, plant fresh weight and dry weight as compared to the
untreated control line thus indicating its resilient to salt stress as compared to the control untreated plant (Figure 3.4). Also, the average percent reduction observed in other DH lines was ranged between -28.52% to -12.42%, wild S 1 lines -32.92% to -2.15% and finally, the cultivated founder line DHLS150-20.14\%. This analysis indicates differences between the parental lines and derived doubled haploid (DH) lines which could be due to genetics and allelic introgressions in the DH lines.

Figure 3.4: Variation in whole plant dry weight 14 days after receiving salt treatment in B. oleracea genotypes and oven dried at $80^{\circ} \mathrm{C}$ for 12 hr . Note: $\mathbf{A}=$ the main founder rapid cycling line (DHLS150), $\mathbf{B}=$ B. bourgaei (C07007-S1), $\mathbf{C}=\mathrm{C} 10025-\mathrm{DH} ; \mathbf{D}=\mathrm{C} 10027-\mathrm{DH} ; \mathbf{E}=B$. oleracea-S1(C07060); $\mathbf{F}=\mathrm{C} 10125-\mathrm{DH} ; \mathbf{G}=\mathrm{C} 10128-\mathrm{DH} ; \mathbf{H}=$ B. incana-S1 (C07094); $\mathbf{I}=$ C13012-DH; $\mathbf{J}=\mathrm{C} 13013-\mathrm{DH} ; \mathbf{K}=B$. hilarionis-S1 (C07019); $\mathbf{L}=\mathrm{C} 13001-\mathrm{DH} ; \mathbf{M}=B$. oleracea-S1 (C07069); $\mathbf{N}=\mathrm{C} 10132-\mathrm{DH} ; \mathbf{O}=\mathrm{C} 10139-\mathrm{DH} ; \mathbf{P}=$ B. oleracea-S1 (C07079A); and $\mathbf{Q}=$ C10121-DH. Data represent mean $(\mathrm{n}=6)$ and error bars show the standard error of the mean (SEM). Significant different by comparing the mean of untreated control plant vs treated determine using paired one-tailed Students t-test as indicated by an asterisk ($*=\mathrm{p}<0.05$; ** $=$ 0.001). Different colours represent; black = control DHSL150; light brown $=$ treated DHSL150, dark red $=$ treated wild S1 lines, blue $=$ control wild S1, yellow $=$ treated DH lines and navy blue = control DH lines respectively. Note: the DH lines are placed next to their related wild S1 lines for easy follow-up while the DHSL150 is the main founder line.

3.1.1.3 Effects of Salt Stress on Leaf Morphology

Morphology of the leaves differed between the B. oleracea genotypes, the wild S1 parental lines, cultivated founder line (DHLS150) and doubled haploid lines (Figure 3.5). Leaf fresh and dry weights (Figure 3.6a \& 3.6b) showed a non-significant reduction except in B. oleracea-S1(C07094 and C07079A) and a DH line C13001-DH which showed a significant reduction as compared to the untreated control plants ($\mathrm{p}<0.05$). Contrary, an improved leaf fresh weight was observed in C10121-DH in response to salt stress as compared to the untreated line. Generally, the parental lines have shown an average percent reduction in leaf fresh weight of between -22.85% and -16.79% in wild S1 lines. While a percent increase in leaf fresh weight of 17.55% was observed in C10121-DH line respectively. This differences in leaf fresh between the B. oleracea lines could be due to interspecific differences / possible allelic effects that could influenced their internal mechanisms in response to any environmental stress, in this context the salt stress induced.

Contrary to what was observed in 2015 salt stress screening, B. oleracea genotypes showed an improved leaf fresh weight (Figure 3.6b) in all the genotypes in 2017 salt screening, with significant increase observed in the cultivated rapid cycling DHSL150 ($\mathrm{p}<0.05$) suggesting the plant's ability to respond differently after being exposed to salt treatment twice. As presented in Figure 3.5, different lines were observed to have developed shiny, thicker leaf surfaces, thicker petioles, and succulent leaves further suggesting improved water uptake, more photosynthesis, and more growth. Indications that suggests further changes in plant's biochemical and physiological mechanisms. This could also be used to explain the improved plant growth earlier reported in Figure 3.2b, where lines showed to have non-significant growth difference as compared to the untreated control lines.

Figure 3.5: Morphological variation on leaf surface area on treated B. oleracea species 14 days post-treatment. a) C10121-DH b) C13001-DH c) C07079A-S1 d) C07060-S1 e) C07007-S1 and f) C10128-DH. The pink tag represents treated lines and blue tag represents control. A Canon camera was set and stationed at 50 cm position from the base and set at candescent light (2017).

Figure 3.6a: Average Leaf fresh weight 14 days after receiving salt treatment. Note: $\mathbf{A}=$ the main founder rapid cycling line (DHLS150), $\mathbf{B}=$ B. bourgaei $($ C07007-S1), $\mathbf{C}=\mathrm{C} 10025-\mathrm{DH} ; \mathbf{D}$ $=$ C10027-DH; $\mathbf{E}=$ B. oleracea-S1(C07060); $\mathbf{F}=\mathrm{C} 10125-\mathrm{DH} ; \mathbf{G}=\mathrm{C} 10128-\mathrm{DH} ; \mathbf{H}=$ B. incanaS1 (C07094); $\mathbf{I}=$ C13012-DH; $\mathbf{J}=\mathrm{C} 13013-\mathrm{DH} ; \mathbf{K}=$ B. hilarionis-S1 (C07019); $\mathbf{L}=\mathrm{C} 13001-$ DH; $\mathbf{M}=$ B. oleracea-S1 (C07069); $\mathbf{N}=\mathrm{C} 10132-\mathrm{DH} ; \mathbf{O}=\mathrm{C} 10139-\mathrm{DH} ; \mathbf{P}=$ B. oleracea-S1 (C07079A); and $\mathbf{Q}=$ C10121-DH. Data represent mean $(\mathrm{n}=6)$ and error bars show the standard error of the mean (SEM). Significant different by comparing the mean of untreated control plant vs treated determine using paired one-tailed Students t-test as indicated by an asterisk ($*=\mathrm{p}<$ $0.05 ; * *=0.001)$. Different colours represent; black $=$ control DHSL150; light brown $=$ treated DHSL150, dark red = treated wild S1 lines, blue = control wild S1, yellow =treated DH lines and navy blue = control DH lines respectively. Note: the DH lines are placed next to their related wild S1 lines for easy follow-up while the DHSL150 is the main founder line.

Figure 3.6b: Leaf fresh weight 21 days after receiving salt treatment in B. oleracea genotypes. Note: $\mathbf{A}=$ the main founder rapid cycling line (DHLS150), $\mathbf{B}=$ B. bourgaei $(\mathrm{C} 07007-\mathrm{S} 1), \mathbf{C}=$ $\mathrm{C} 10025-\mathrm{DH} ; \mathbf{E}=$ B. oleracea-S1 (C07060); $\mathbf{G}=\mathrm{C} 10128-\mathrm{DH} ; \mathbf{J}=\mathrm{C} 13013-\mathrm{DH} ; \mathbf{L}=\mathrm{C} 13001-\mathrm{DH}$; $\mathbf{P}=$ B. oleracea $-\mathrm{S} 1(\mathrm{C} 07079 \mathrm{~A})$; and $\mathbf{Q}=\mathrm{C} 10121-\mathrm{DH}$. Data represent mean $(\mathrm{n}=3)$ and error bars show the standard error of the mean (SEM). Significant different by comparing the mean of untreated control plant vs treated determine using paired one-tailed Students t-test as indicated by an asterisk $(*=\mathrm{p}<0.05 ; * *=0.001)$. Different colours represent; black $=$ control DHSL150; light brown $=$ treated DHSL150, dark red $=$ treated wild S1 lines, blue $=$ untreated control wild S1s, yellow = treated DH lines and navy blue $=$ untreated control DH lines respectively.

Leaf dry weight in 2017 salt screening showed a significant increase as compared to 2015 screening, where few lines indicate an increase (Figure 3.7a). A specific increase was observed in the cultivated founder rapid cycling DHSL150 parent line ($\mathrm{p}<0.05$) in both the screening (Figure 3.7a \& Figure 3.7b) and a non-significant increase in the DH line C13013-DH, which recorded a decrease in leaf fresh weight (Figure 3.7b). The reasons for the improved leaf dry weight observed could be due to possible accumulated salt that causes changes in plant's leaf morphology.

Figure 3.7a: Average Leaf dry weight 14 days after receiving salt treatment and oven dried at $80^{\circ} \mathrm{C}$ for 12 hr . Note: $\mathbf{A}=$ the main founder rapid cycling line (DHLS150), $\mathbf{B}=$ B. bourgaei (C07007-S1), $\mathbf{C}=\mathrm{C} 10025-\mathrm{DH} ; \mathbf{D}=\mathrm{C} 10027-\mathrm{DH} ; \mathbf{E}=$ B. oleracea-S1 $(\mathrm{C} 07060) ; \mathbf{F}=\mathrm{C} 10125-$ $\mathrm{DH} ; \mathbf{G}=\mathrm{C} 10128-\mathrm{DH} ; \mathbf{H}=$ B. incana-S1 (C07094); $\mathbf{I}=\mathrm{C} 13012-\mathrm{DH} ; \mathbf{J}=\mathrm{C} 13013-\mathrm{DH} ; \mathbf{K}=B$. hilarionis-S1 (C07019); $\mathbf{L}=\mathrm{C} 13001-\mathrm{DH} ; \mathbf{M}=$ B. oleracea-S1 (C07069); $\mathbf{N}=\mathrm{C} 10132-\mathrm{DH} ; \mathbf{O}=$ C10139-DH; $\mathbf{P}=$ B. oleracea-S1 (C07079A); and $\mathbf{Q}=$ C10121-DH. Data represent mean $(\mathrm{n}=6)$ and error bars show the standard error of the mean (SEM). Significant different by comparing the mean of untreated control plant vs treated determine using paired one-tailed Students t -test as indicated by an asterisk ($*=\mathrm{p}<0.05 ; * *=0.001$). Different colours represent; black $=$ control DHSL150; light brown $=$ treated DHSL150, dark red $=$ treated wild S1 lines, blue $=$ control wild S1, yellow = treated DH lines and navy blue = control DH lines respectively. Note: the DH lines are placed next to their related wild S1 lines for easy follow-up while the DHSL150 is the main founder line.

Figure 3.7b: Average Leaf dry weight 21 days after receiving salt treatment and oven dried at $80^{\circ} \mathrm{C}$ for 12 hr . Note: $\mathbf{A}=$ the main founder rapid cycling line (DHLS150), $\mathbf{B}=$ B. bourgaei (C07007-S1), C = C10025-DH; $\mathbf{E}=$ B. oleracea-S1 (C07060); $\mathbf{G}=\mathrm{C} 10128-\mathrm{DH} ; \mathbf{J}=\mathrm{C} 13013-$ $\mathrm{DH} ; \mathbf{L}=\mathrm{C} 13001-\mathrm{DH} ; \mathbf{P}=$ B. oleracea-S1 (C07079A); and $\mathbf{Q}=\mathrm{C} 10121-\mathrm{DH}$. Data represent mean $(\mathrm{n}=3)$ and error bars show the standard error of the mean (SEM). Significant different by comparing the mean of untreated control plant vs treated determine using paired one-tailed Students t-test as indicated by an asterisk ($*=\mathrm{p}<0.05 ; * *=0.001$). Different colours represent; black $=$ control DHSL150; light brown $=$ treated DHSL150, dark red $=$ treated wild S1 lines, blue $=$ untreated control wild S1s, yellow $=$ treated DH lines and navy blue $=$ untreated control DH lines respectively.

3.1.1.4 Leaf Surface Area

The result obtained and presented in Figure 3.8a, shows that cultivated founder line (DHLS150) had a reduced leaf surface area ($\mathrm{p}<0.05$) compared against the untreated control. This was also observed in some of the wild S1 parent lines such as genotypes (C07094, C07060 and C07079A), which are all B. oleracea-S1 genotypes, and one of the B. hilarionis-S1 (C07019) genotype. This indicates that the effects are not genotype specific. There is also similarities between the DH lines that showed a significant reduction in leaf surface areas such as $\mathrm{C} 13001-\mathrm{DH}$ and $\mathrm{C} 10125-\mathrm{DH}$. In addition, response similarity between B. bourgaei-S1(C07007) and its two related doubled haploids lines; C10025-DH and C10027-DH (Figure 3.8a) could suggests good heredity transfer from the wild species. A similar observation was also made between B. oleracea- $\mathrm{S} 1(\mathrm{C} 07060)$ and the cultivated founder line DHLS150, both showed a significant reduction in leaf surface area ($\mathrm{p}<0.05$). In contrast the derived DH line $\mathrm{C} 10128-\mathrm{DH}$, showed a non-significant reduction as against the salt untreated control. Indicating interspecific variation within the same genotype.

Figure 3.8a: Genotypic variation in leaf surface area 14 days after receiving salt treatment in B. oleracea genotypes. Note: $\mathbf{A}=$ the main founder rapid cycling line (DHLS150), $\mathbf{B}=$ B. bourgaei (C07007-S1), $\mathbf{C}=\mathrm{C} 10025-\mathrm{DH} ; \mathbf{D}=\mathrm{C} 10027-\mathrm{DH} ; \mathbf{E}=$ B. oleracea $-\mathrm{S} 1(\mathrm{C} 07060) ; \mathbf{F}=\mathrm{C} 10125-$ $\mathrm{DH} ; \mathbf{G}=\mathrm{C} 10128-\mathrm{DH} ; \mathbf{H}=$ B. incana-S1 (C07094); $\mathbf{I}=\mathrm{C} 13012-\mathrm{DH} ; \mathbf{J}=\mathrm{C} 13013-\mathrm{DH} ; \mathbf{K}=B$. hilarionis-S1 (C07019); $\mathbf{L}=\mathrm{C} 13001-\mathrm{DH} ; \mathbf{M}=$ B. oleracea-S1 (C07069); $\mathbf{N}=\mathrm{C} 10132-\mathrm{DH} ; \mathbf{O}=$ C10139-DH; $\mathbf{P}=$ B. oleracea-S1 (C07079A); and $\mathbf{Q}=\mathrm{C} 10121-\mathrm{DH}$. Data represent mean $(\mathrm{n}=6)$ and error bars show the standard error of the mean (SEM). Significant different by comparing the mean of untreated control plant vs treated determine using paired one-tailed Students t-test as indicated by an asterisk ($*=\mathrm{p}<0.05 ;{ }^{* *}=0.001$). Different colours represent; black $=$ control DHSL150; light brown = treated DHSL150, dark red $=$ treated wild S1 lines, blue $=$ control wild S 1 s , yellow $=$ treated DH lines and navy blue $=$ control DH lines respectively. Note: the DH lines are placed next to their related wild S1 lines for easy follow-up while the DHSL150 is the main founder line.

Finally, leaf area measured in 2017 screening in all the genotypes has shown an improvement as compared to 2015's single dose salt screening (Figure 3.8b). The improved leaf surface area observed could be related to an improved leaf fresh and dry weights
(Figures 3.6b \& 3.7b). This was further attributed to a possible increase accumulation in the compatible solutes and photosynthesis. An F-test analysis conducted reveals significant variation between the two experiments $(\mathrm{F}=0.0067)$.

Figure 3.8b: Average Leaf surface area 21 days following salt treatment showing genotypic variation in B. oleracea lines. Note: $\mathbf{A}=$ the main founder rapid cycling line (DHLS150), $\mathbf{B}=B$. bourgaei (C07007-S1), C = C10025-DH; E=B. oleracea-S1 (C07060); G = C10128-DH; J = C13013-DH; $\mathbf{L}=\mathrm{C} 13001-\mathrm{DH} ; \mathbf{P}=$ B. oleracea-S1 (C07079A); and $\mathbf{Q}=\mathrm{C} 10121-\mathrm{DH}$. Data represent mean $(\mathrm{n}=3)$ and error bars show the standard error of the mean (SEM). Significant different by comparing the mean of untreated control plant vs treated determine using paired one-tailed Students t -test as indicated by an asterisk ($*=\mathrm{p}<0.05 ; * *=0.001$). Different colours represent; black $=$ control DHSL150; light brown $=$ treated DHSL150, dark red $=$ treated wild S1 lines, blue $=$ untreated control wild S1s, yellow $=$ treated DH lines and navy blue $=$ untreated control DH lines respectively.

3.1.1.5 Comparison of Morphological Traits

Results from correlation analysis conducted to elucidate the relationship between different phenotypic parameters measured (Figure 3.9), shows that plant height and plant fresh weight correlate positively in the following lines; the cultivated founder line B. oleracea (DHLS150), wild S1 line B. bourgaei-S1(C07007), and their derived doubled haploids (DHs) lines; C10025-DH and C10027-DH respectively. The correlation values were range from weak positive $(\mathrm{r}=0.3135)$ in cultivated founder line (DHLS150) and C10025-DH (r $=0.3530)$, to strong positive correlation in wildtype S 1, B. bourgaei-S1 $(\mathrm{C} 07007)(\mathrm{r}=$ 0.99987) and derived DH line, C10027-DH $(\mathrm{r}=0.9979)$, thus, indicating significant variation between the DH lines and parents toward salt stress response. Other parameters that showed positive correlation values presented in (Figure 3.9) could further suggest similar mechanisms. Contrary to earlier observation between the founder line (DHLS150) and C10025-DH that showed positive correlation against plant height and fresh weight, dry weight and plant height correlate negatively in the DH line; C10025-DH $(\mathrm{r}=-0.4947)$ while in cultivated founder DHLS150 $(\mathrm{r}=0.7843)$ was positive. Plant height and leaf area showed variation between the parental lines and the DH line, $\mathrm{C} 10025-\mathrm{DH}(\mathrm{r}=-0.5294)$ and the founder line (DHSL150) ($\mathrm{r}=0.4772$). The observed variation could be attributed to the effects of allelic variation that determine their responses to salt stress.

The DH line, C13013-DH showed positive correlation between leaf area and plant height (r $=0.8580)$, leaf area/fresh weight $(\mathrm{r}=0.9839)$, leaf area/dry weight $(\mathrm{r}=0.9626)$ and leaf area/leaf fresh weight $(r=0.9875)$ respectively. In addition, a clear differences between the wildtype S1 parent line; B. incana-S1(C07094) and their derived DH C13013-DH, could suggests better performance by the DH line in response to salt stress against the control.

B. bourgaei (C07007-S1)								
LA								LA
LDw						1	0.82445689 L	LDw
LFW					1	0.9026279	0.99505377 L	
PDW				1	0.98843936	0.51026742	0.99056729 P	
PFW			1	0.99396071	0.99780631	0.81242115	0.99375974 P	
PH		1	0.99987612	0.994441078	0.99813448	0.80948064	0.99537499 P	
	PH		PFW	PDW	LFW	LDW	LA	
C10027-DH								
LA								LA
LDW						1	0.33036498 L	LDW
LFW					1	0.35255064	0.99825976	
PDW				1	0.97525768	-0.4520939	0.97775577 P	
PFW			1	0.978654663	0.99921552	0.30008662	0.99976117 P	
PH		1	0.99796014	0.981657735	0.99479906	0.21354336	0.99891873 P	
	PH		PFW	PDW	LFW	LDW	LA	
C10128-DH								
LA								LA
LDw						1	0.77298668	LDW
LFW					1	0.7444743	0.7292954	
PDW				1	0.86145363	0.78478698	0.98969426	PDW
PFW			1	0.943697782	0.99560073	0.99732921	0.80735159 P	PFW
PH		1	0.99603685	0.902176715	0.77381121	0.80470275	0.73627522 P	
	PH		PFW	PDW	LFW	LDW	LA	
C13012-DH								
LA								LA
LDw						1	0.22313207 L	LDW
LFW					1	0.99768841	-0.1759442	
PDW				1	0.5338028	0.76286158	-0.0744456 P	PDW
PFW			1	0.579348618	0.96176488	-0.1866087	0.03624641 P	PFW
PH		1	0.69810021	0.562599561	0.74614451	0.41066426	0.18176574 P	
	PH		PFW	PDW	LFW	LDW	LA	
B. hilarionis-S1 (C07019)								
LA								LA
LDW						1	0.41780616 L	LDW
LFW					1	0.63152001	0.47809297 L	LFW
PDW				1	-0.2842878	0.61231916	0.61685874	PDW
PFW			1	0.180088828	-0.3247955	0.41659629	0.50660529 P	
PH		1	0.48284658	-0.980238114	-1	0.71736676	-0.2773501 P	
	PH		PFW	PDW	LFW	LDW	LA	
C13001-DH								
LA								LA
LDw						1	-0.0659074	LDw
LFW					1	-0.0266146	-0.0234892	LFW
PDW				1	0.37101515	-0.8363293	0.68366492	PDW
PFW			1	-0.4486276	-0.1874888	0.1286139	0.1286139 P	PFW
PH		1	-0.5405013	-0.540056782	0.62264129	0.52975281	0.40075139 P	PH
	PH		PFW	PDW	LFW	LDW	LA	
C10132-DH								
LA								LA
LDw						1	-0.4106811	LDw
LFW					1	-0.1616811	-0.6470649	LFW
PDW				1	0.09544542	0.63324306	0.7376821 P	PDW
PFW			1	-0.592955929	-0.378304	-0.4121074	0.20659839 P	PFW
PH		1	-0.5150158	-0.682912547	0.31441633	0.88287289	0.53881587 P	
	PH		PFW	PDW	LFW	LDW	LA	

C10139-DH								
LA								
LDw						1	$\begin{array}{\|c\|c\|} \hline 1 & \text { LA } \\ \hline 1 & -0.7593068 \text { LDW } \\ \hline \end{array}$	
LFW					1	0.7376821	-0.75930681	LFW
PDW				1	-0.2499804	-0.072799	-0.2571779	PDW
PFW			1	-0.5780865	0.49798121	0.53881587	0.53881587	$\begin{aligned} & 7 \mathrm{PFW} \\ & 7 \mathrm{PH} \end{aligned}$
PH		1	-0.150848428	-0.1337515	-0.3357536	0.02470723	0.29657797	
	PH		PFW	PDW	LFW	LDW	LA	
C10121-DH								
LA								LA
LDw						1	-0.2571779	LDw
LFW					1	-0.1644789	0.53881587	LFW
PDW				1	-0.6782735	-0.2869775	0.29657797	
PFW			1	-0.4786818	-0.4786818	0.23485033	0.8221613	PFW
PH		1	0.206074709	0.3466572	0.1065458	-0.6047663	0.52146479	
	PH		PFW	PDW	LFW	LDW	LA	

Figure 3.9: A heat map of Pearson correlation analysis between phenotypic parameters in B. oleracea genotypes in response to salt shock. Colour Key: Green = perfect correlation, light-green to yellow = good positive correlation and light-red to dark-red = negative correlation. LA = leaf area, LDW = leaf dry weight, LFW = leaf fresh weight, PDW = plant dry weight, PFW = plant fresh weight and $\mathrm{PH}=$ plant height.

3.2 Discussion

3.2.1 Plant Growth

The response of B. oleracea genotypes under salt stress conditions was investigated. Plant height was shown to be affected by salt stress in some of the B. oleracea genotypes indicating significant variation. More effects in plant growth were observed in parent lines such includes; the cultivated founder line, B. oleracea (DHLS150), wildtype S1 parent lines, B. incana (C07094-S1) and B. oleracea (C07079A-S1) showed a significant reduction as compared to the untreated control ($\mathrm{p}<0.05$) (Figure 3.2a). Also, salt stress causes a significant reduction in the growth of some of the doubled haploid lines; (C10121-DH), $(\mathrm{C} 10025-\mathrm{DH})$ as compared to control. A reduction in plant growth due to salt stress has also been reported in different plant species (Essa, 2002; Cicek and Cakirlar, 2002; Li et al., 2006, Kusvuran et al., 2007; Tunçtürk et al., 2008). Salt stress has shown to provoked osmotic potential, which interfered with root cells ability to obtain the required water from the soil (Mer et al., 2000). Thereby restricting plants uptake of some dissolved mineral nutrients in the water. Thus, growth and development of plants are both inhibited due to the occurring defect in metabolism under salt stress (Mer et al., 2000). Also, researchers thought that the growth reduction due to salinity stress could be the consequences of ion accumulation through changing of membrane permeability (Cramer et al., 1985; Grieve and Fujiyama, 1987). Most crops exposed to the saline conditions showed a reduction in growth. The deleterious effects of salinity could further be suggested as a result of water stress, ion toxicities, ion imbalance, and or a combination of all these factors (Kurth et al., 1986). An improve plant growth was also observed in some of the wild S 1 parent lines; B. bourgaei (C07007-S1) B. oleracea-S1 (C07060-S1) and doubled haploid (DH) lines; (C10128-DH) and (C13013-DH), which showed a non-significant reduction against the untreated control plants (Figure 3.2a). An improve plant growth under salinity conditions could be attributed
to the ability of the plant to adjust their water uptake system, which would further their photosynthesis and accumulation of growth hormones (Mer et al., 2000).

3.2.2 Biomass accumulation

Plant fresh and dry weights of treated B. oleracea genotypes were reduced following salt treatment. A significant reduction was observed in the cultivated founder line DHSL150, wild S1 parent lines; B. oleracea (C07060-S1, C07069-S1 and C07079A-S1), and B. incana (C07094-S1) and derived doubled haploid lines; (C10125-DH \& C10139-DH), (C10121DH), (C10025-DH \& C10027-DH), and (C13012-DH \& C13013-DH), and finally (C13001DH) as compared to the untreated control plants. Siddiqui et al. (2009) have reported a reduction in plant fresh weight in a combined drought and salt-stressed treatments on B. napus genotypes but with a considerable increase in dry weight. It has been suggested that both applications of drought and salt stress significantly affect the water status of the soil; as a result, the water uptake becomes affected leading to fresh weight reduction. An increase in biomass accumulation under salt stress was also reported by Jones and Turner (1980); Munns and Weir (1981) and the studies by Jamil et al. (2007b) on radish plants (Kyllinigia peruviana L.), and Memon et al. (2010) on Brassica campestris L reported an increase in biomass accumulation in salt stress conditions.

Plant leaf, an essential organ that plays a critical role in photosynthesis, photorespiration, and transpiration for healthy growth of any plant. B. oleracea genotypes have shown an improved leaf fresh and dry weights. However, a significant reduction was observed in the wild S1 lines; B. incana (C07094-S1), B. oleracea (C07079A-S1) and doubled haploid lines; (C10121-DH), (C10132-DH) and (C13001-DH). The difference observed could be attributed to the effects of salinity stress and variation in plant's ability to accumulate
biomass, which is essential and pre-requisite for the accusation of osmotic solutes (soluble carbohydrate, protein, and total free amino acids). Accordingly, plant salt tolerance could be genotype dependent and because it involves a complex mechanisms thus affect water retention and synthesis of osmotically active metabolites (Azooz, 2009; Sarwat and ElSherif, 2007).

3.2.3 Leaf surface area

An improved leaf area under abiotic stress has been described as indicator of plant growth, which could be affected by different stresses including salinity stress. The B. oleracea genotypes showed variation in leaf area following salt treatment as compared to the untreated control. A significant decrease in leaf area was observed in the cultivated rapid cycling lines DHSL150, B. oleracea-S1 (C07094-S1), B. hilarionis-S1 (C07019-S1), and B. oleracea-S1 (C07079A-S1) (Figure 3.8a). Also reduction in leaf area was observed among the DH lines; C10312-DH, and C10125-DH as against to untreated control (Figure 3.8a). Studies have implicated salt stress in plant leaf area reduction observed in moth bean plant (Vigna aconitifolia L.) (Mathur et al., 2006); sugar cane (Beta vulgaris) (Jamil et al., 2007). Other supporting research includes those of Zhao et al. (2007) on oat (Avena sativa L.); Yilmaz and Kina (2008) on Fragaria x anassa (L.), both found that exposure to salinity leads to a reduction in leaf area. A decrease in leaf area has been attributed to an adverse effect of excess salt on photosynthetic elements that lead to a reduction in chlorophyll content, reduced plant growth and consequently leaf area (Netonda et al., 2004). Likewise, a decrease in leaf area has been attributed to the stomatal closure due to the effect of salt stress to minimize water loss via transpiration (Alarcón et al., 2006) and finally, a study by Nima and Mahmoud (2017) reported a reduction in leaf area in B. napus L genotypes in response to salt stress.

Others that showed an improved leaf area, were mainly doubled haploid lines (Figure 3.8b) and one of the wild S1 line, B. oleracea (C07069-S1) as compared to the untreated control lines. An increase in leaf area was attributed to leaf expansion, a critical mechanism employed by plants to improve their leaf surface area, thus reduce the effects of accumulated salt on homeostasis, nutrients acquisition and enhanced photosynthesis (Marschner, 2002).

3.3 Summary

The chapter reported the effects of salt stress on plant's morphology in B. oleracea genotypes in two salt stress experiments using the same genotypes. It aims to study the morphological variation in prompt response to salt stress in B. oleracea genotypes. These genotypes are related genetically, where the cultivated founder rapid cycling line DHSL150 is the main parent line to DH lines and wild S1 lines representing the founder wild DFS parent lines, which were not included in the screening. The chapter also reported significant variation among B. oleracea genotypes in all the morphological traits measured. Indicating variability which can be linked to their recombinant genetic differences. Different parameters for salt stress resilient such as plant growth has shown to be affected most significantly as against the untreated controls in some parents; DHSL150, wild S1 lines; C07094-S1, C07019-S1, C07060-S1, C07019-S1, and C07079A-S1. This significant reduction in plant height was also reported in some DH lines; C10025-DH, C10027-DH, C13001-DH, C10125-DH, C10132-DH, C10139-DH and C10121-DH against their control. This indicates that the DH lines might have inherited the same trait from the parent lines. Also reported in this chapter are a non-significant reduction in plant height as against the control in some wild S1 and DH lines respectively. Such wild S1 are C07007-S1 and C07069-S1, and the DH lines; C13012-DH, C13013-DH, and C10128-DH. Other traits reported that show significant variability as against the salt untreated control are; whole plant fresh weight, whole dry weight, leaf fresh weight, leaf dry weight, and leaf area. Based on these traits investigated under two separate salt stress screenings, we can draw an inconclusive argument that some of the wild S1 and DH lines have shown more salt stress resilience than the cultivated founder DHSL150 as compared to the untreated control plants. However, further work is recommended to substantiate our observation.

CHAPTER FOUR

Variation in Mineral Content in B. oleracea genotypes in Response to Salt Stress

4.0 Introduction

Under salt stress conditions, plants are forced to regulate their water and nutrients uptake. Salt stress changes ion composition and ion concentrations within the plants (Munns and Tester 2008). An Increase in dissolved salts in the soil causes reduction in the water energy gradient thus making it more difficult for water and nutrients to shuttle through root membranes and into the plant. This is due to the fact that movement of water and solutes from soil into the plant is guided by osmotic potentials on root membranes. Essential elements that are involved include potassium $\left(\mathrm{K}^{+}\right)$, calcium $\left(\mathrm{Ca}^{2+}\right)$ and in salinity conditions, the presence of sodium $\left(\mathrm{Na}^{+}\right)$ions. Potassium and calcium ions are critical and most important for the maintenance of water potential, cell turgor, and overall cell integrity. Calcium was shown to play a crucial role in the formation of intermolecular linkages, which is significant for integrity and structure of plasma membranes and also used as a second messenger in the propagation of signal down many of biological pathways (Hanson, 1984; Bush, 1995). Potassium, on the other hand, is vital in plants-water relation, maintenance of water potential and play complementation of many enzymes reactions and serve as osmoticum in cell vacuole. Sodium ions may not be that essential in most plants, especially glycophytes. Many plants have been shown to be stimulated using low Na^{+}concentrations, and, sodium has been identified as being critical for halophytes. C4 and other halophytes require high levels of Na^{+}for maximum growth (Flowers et al., 1977).

The response of plants to salinity has been summarised into two main phases. The shoot ion-independent response that occurs within minutes to days, and thought to be related to Na^{+}sensing and signalling (Gilroy et al., 2016; Roy et al., 2014) and the ion-dependent response, which has shown to develop over a more extended period. It involves a build-up of ions in the shoot inflicting toxicity affecting mainly old leaves, causing premature senescence of leaves and ultimately reduced growth and yield (Munns and Tester, 2008).

Salt tolerance as proposed by Munns and Tester (2008) is related to the plant's ability to exclude ion to avoid being accumulated to a toxic level. Tissue tolerance often is associated with compartmentalization of toxic ions into specific tissues, cells and subcellular organelles. Shoot ion-independent tolerance, requires the maintenance of growth and water uptake in the face of Na^{+}accumulation. The difference in a plant's response and tolerance to a given level of salt stress is dependent upon the concentration, composition of ions and as well as the genotype (reviewed: Thomas and Ralph 2018).

The chapter aims to study the variation in leaf mineral content in each of the B. oleracea genotypes that were exposed to salt stress as compared to salt untreated control. The objective is to determine the level of $\mathrm{Na}^{+}, \mathrm{K}^{+}$, and Ca^{2+} in the leaves of B. oleracea genotypes following exposure to salt stress.

4.1 Results

4.1.1 Variation in Mineral Content First Salt Stress Screening

The effects of 250 mM NaCl salt treatment on B. oleracea genotypes cause a significant increase in Na^{+}content twenty-four hours post-treatment (Figure 4.1). According to the result, the nutrients content of treated plants showed an increased Na^{+}content which could affects the K^{+}ion level. This was statistically significant ($\mathrm{p}<0.05$) although the Ca^{2+} level remained unchanged. A comparison between the two different time points of data collection i.e., twenty-four hours and two-week post-treatment, showed significant variation in the level of Na^{+}ion within the B. oleracea leaves. Two-weeks post-treatment, the Na^{+}ion levels was observed to reduce significantly across the lines and the ability to reduce it can be used as a marker for salt tolerance. The DH line, $\mathrm{C} 10128-\mathrm{DH}$ has shown an increase in Na^{+}level and reduction in K^{+}twenty-four post-treatment as compared to two-weeks post-treatment ($\mathrm{p}<0.05$) and Ca^{2+} level remain relative unchanged $($ Figure 4.1).

Figure 4.1: The effects of 250 mM NaCl salt treatment on mineral content, which caused a significant increase in Na^{+}ion twenty-four hours post-treatment and the ability of the plants to reduce the Na^{+}ion, improved their K^{+}while Ca^{2+} level unchanged. The values are Mean $(\mathrm{n}=4)$, error bars are SEM and asterisk ($*=\mathrm{p}<0.05$; ${ }^{* *}=\mathrm{p}<0.001$). Legend: $24 \mathrm{hrpt}=24 \mathrm{hr}$ posttreatment (Orange colour), $2 \mathrm{wkpt}=2$ weeks post-treatment (dark cyan colour). Note: $\mathrm{A}=$ the main founder rapid cycling line (DHLS150), $\mathrm{C}=\mathrm{C} 10025-\mathrm{DH} ; \mathrm{I}=\mathrm{C} 13001-\mathrm{DH} ; \mathrm{L}=\mathrm{C} 10128$ DH , and $\mathrm{Q}=\mathrm{C} 10121-\mathrm{DH}$. And further note: This comparisons was only done on the salt treated plants as no salt untreated control were included in the mineral analysis in 2015 salt screening. So, we compared mineral content in leaf 24 hr post-treatment and 2 week post-treatment.

The relationship between Na^{+}ion, K^{+}and Ca^{2+} were tested using a general linear model, and the regression value $\left(\mathrm{R}^{2}\right)$ was determined 24 hr post-treatment (Figure 3.2). The result showed $\mathrm{Na}^{+}, \mathrm{K}^{+}$and Ca^{2+} were positively correlated with regression values of $R^{2}=0.097$ and 0.680 respectively (Figure 4.2). which is weaker as compared to two-week posttreatment with regression values between $\left(R^{2}=0.973 \& 0.908\right)$ respectively. Na^{+} interference with both K^{+}and Ca^{2+} reported in some studies could be dependent upon length of exposure and could further show the efficiency of the mechanisms involved in B. oleracea genotypes have been compromised by excess Na^{+}.

Figure 4.2: Regression analysis showing the relationship between $\mathrm{Na}^{+}, \mathrm{K}^{+}$, and Ca^{2+} following application of 250 mM NaCl to B. oleracea genotypes at 24 hr post-treatment and two-week post-treatment for five B. oleracea lines, i.e., DHLS150, C10025-DH; C13001-DH; C10128-DH, and C10121-DH.

It becomes evident that the B. oleracea genotypes in this study respond similarly averting salt accumulation and improving K^{+}ion uptake while keeping Ca^{2+} ion level relatively unchanged. Ca^{2+} plays a critical role as secondary messenger, and growth enhancer factor and therefore changes in its concentration can be critical.

4.2.2 $\mathrm{Na}^{+} / \mathrm{K}^{+}$Ratio (first salt screening)

Generally, the level of salt-tolerance or susceptibility as a result of salt treatment was determined by calculating ratios of $\mathrm{K}^{+} / \mathrm{Na}^{+}, \mathrm{Ca}^{2+} / \mathrm{Na}^{+}$, and $\mathrm{K}^{+} / \mathrm{Ca}^{2+}$ by using the two-point data, and comparison carried out to determine the level of tolerant or otherwise and result presented in Table 4.1.

Table 4.1: Ratios of nutrient content in B. oleracea genotypes following Salt Treatment

Sample ID	$\mathrm{Na}(\mathrm{mg} / \mathrm{L})$	SEM	K (mg/L)	SEM	Ca (mg/L)	SEM	K+/Na+ ratio	Ca2+/Na+ ratio	K+/Ca2+ ratio
DSLH 150-24hr	1.770	0.953	3.083	0.640	7.227	0.485	1.742	4.084	0.427
C10025-24hr	1.758	1.076	2.903	0.619	7.401	0.359	1.651	4.209	0.392
C10121-24hr	1.334	0.764	3.109	0.752	6.871	0.705	2.331	5.153	0.452
C10128-24hr	1.667	0.822	3.346	0.665	7.404	0.621	2.007	4.442	0.452
C13001-24rh	1.527	0.937	3.783	1.011	6.849	0.677	2.477	4.484	0.552
DSLH $150-2 \mathrm{wk} \mathrm{pt}$	0.554	0.343	8.333	0.735	6.700	0.352	15.035	12.089	1.244
C10025-2 wk pt	0.565	0.363	9.443	0.831	6.266	0.358	16.728	11.100	1.507
C10121-2 wkpt	0.670	0.440	12.353	0.982	7.337	0.422	18.450	10.958	1.684
C10128-2 wkpt	0.384	0.190	4.988	1.231	2.921	0.641	13.002	7.614	1.708
C13001-2 wkpt	0.578	0.356	9.838	0.832	5.877	0.452	17.029	10.172	1.674

Note: $24 \mathrm{hr}=24 \mathrm{hr}$ post-treatment and $2 \mathrm{wk} \mathrm{pt}=$ two-weeks post-treatment, red colour indicates significant reduction in $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio and light-green to dark-green indicate an improved $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio.

From the result, it was observed that both the founder parent line (DHLS150) and DH lines showed an improve $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio two-weeks post-treatment, which indicates improve resilience as compared to the $\mathrm{K}^{+} / \mathrm{Na}^{+} 24 \mathrm{hr}$ post-treatment (Table 4.1).

4.2.3 Variation in Mineral Content: Second Salt Stress Experiment

The experiment was repeated in 2017 by adapting same design and with same number of DH lines but in this case, the wild S1 lines were added as described in Chapter 2. This was to enable observation of greater potential physiological variability among the parent lines and DH lines. Note: an additional salt induction was carried out at two-weeks post first induction i.e., at week-eight of plants growth as stated in Chapter 2.

From the result, Na^{+}level increased twenty-four hours post-treatment in all the B. oleracea genotypes as indicated (Figure 4.3). This was statistical significance in the founder parental line, B. oleracea DHLS150, C10121-DH, C10025-DH, C13013-DH and C13001-DH (p < 0.001). While the wild S1 parental lines; B. bourgaei-S1 (C07007-S1), AB. oleracea-S1 (C07079A-S1), and B. oleracea-S1 (C07060-S1) and doubled haploid line, C10128-DH have shown a non-significant increase in the level of Na^{+}ions twenty-four hours posttreatment.

Figure 4.3: Mineral contents of B. oleracea genotypes twenty-four hours post-treatment. Note: $\mathbf{A}=$ the main founder rapid cycling line (DHLS150), $\mathbf{B}=$ B. bourgaei (C07007-S1), $\mathbf{C}=\mathrm{C} 10025-$ DH; $\mathbf{G}=\mathrm{C} 13013-\mathrm{DH} ; \mathrm{I}=\mathrm{C} 13001-\mathrm{DH} ; \mathbf{J}=$ B. oleracea-S1(C07060); $\mathbf{L}=\mathrm{C} 10128-\mathrm{DH} ; \mathbf{P}=B$. oleracea-S1 (C07079A); and $\mathbf{Q}=$ C10121-DH. Data represent mean $(\mathrm{n}=3)$ and error bars show the standard error of the mean (SEM). Significant different by comparing the mean of untreated control plant vs treated determine using paired one-tailed Students t-test as indicated by an asterisk ($*=\mathrm{p}<0.05 ; * *=0.001$). Different colours represent; black = control DHSL150; light brown $=$ treated DHSL150, dark red $=$ treated wild S1 lines, blue $=$ untreated control wild S1s, yellow $=$ treated DH lines and navy blue $=$ untreated control DH lines respectively.

The potassium $\left(\mathrm{K}^{+}\right)$ion level remained significantly unchanged following salt treatment 24 hr post-treatment in B. oleracea genotypes, which signifies that an increase in Na^{+}ion level might have no effect on K^{+}accumulation twenty-four hours post-treatment and calcium ion as demonstrated in Figure 4.3.

Two-weeks post-treatment, the result indicates a higher Na^{+}level in all the salt treated B. oleracea genotypes as compared to untreated control (Figure 4.4). Although the potassium ion level between treated and control shows non-significant differences ($\mathrm{p}>0.05$), a significant reduction was observed in both the founder parent line; DHLS150 and a doubled haploid line; C13013-DH. In addition, two of the wild S1 lines; B. bourgaei-S1 (C07007),
and B. oleracea-S1(C07060) and DH line; $\mathrm{C} 10128-\mathrm{DH}$ were shown to retain higher potassium levels two-weeks post-treatment as compared to other lines (Figure 4.4)

Figure 4.4: Variation in leaf mineral content of $\mathrm{Na}^{+}, \mathrm{K}^{+}$and Ca^{2+} two-week post salt treatment in B. oleracea genotypes. Note: $\mathrm{A}=$ the main founder rapid cycling line (DHLS150), $\mathrm{B}=B$. bourgaei (C07007-S1), C = C10025-DH; G $=$ C13013-DH; $\mathrm{I}=\mathrm{C} 13001-\mathrm{DH} ; \mathrm{J}=$ B. oleraceaS1(C07060); L = C10128-DH; $\mathrm{P}=$ B. oleracea-S1 (C07079A); and $\mathrm{Q}=\mathrm{C} 10121-\mathrm{DH}$. Data represent mean $(\mathrm{n}=3)$ and error bars show the standard error of the mean (SEM). Significant different by comparing the mean of untreated control plant vs treated determine using paired one-tailed Students t -test as indicated by an asterisk ($*=\mathrm{p}<0.05 ; * *=0.001$). Different colours represent; black $=$ control DHSL150; light brown $=$ treated DHSL150, dark red $=$ treated wild S1 lines, blue $=$ untreated control wild S1s, yellow $=$ treated DH lines and navy blue $=$ untreated control DH lines respectively.

In a bid to explore further possible physiological variation in B. oleracea genotypes, an additional salt treatment was carried out at week-eight of plants growth i.e., a two-weeks post earlier salt treatment (see chapter 2). Leaves samples were collected twenty-four hours post-treatment. The result obtained (Figure 4.5) shows higher level of Na^{+}level in all the treated DH lines and the founder DHSL150 as compared to the two other wild S1 lines; C07060-S1 and C07079A respectively. A significant increase in Na^{+}was noted in the wild S1; C07007 compared to its control. It is of interest that the K^{+}level remained significantly
higher despite excess salt. This could indicate a mechanism employed by these genotypes to counteract the Na^{+}effects through maintenance of high K^{+}. Calcium level remains relatively unchanged as compared between lines and untreated plants.

Figure 4.5: Difference in $\mathrm{Na}^{+}, \mathrm{K}^{+}$and Ca^{2+} level in B. oleracea genotypes 24 hr post-salt treatment. Note: $\mathbf{A}=$ the main founder rapid cycling line (DHLS150), B $=$ B. bourgaei (C07007S1), C $=$ C10025-DH; $\mathbf{G}=$ C13013-DH; $\mathbf{I}=$ C13001-DH; $\mathbf{J}=$ B. oleracea-S1 $(C 07060) ; \mathbf{L}=$ C10128-DH; $\mathrm{P}=$ B. oleracea-S1 (C07079A); and $\mathbf{Q}=\mathrm{C} 10121-\mathrm{DH}$. Data represent mean $(\mathrm{n}=3)$ and error bars show the standard error of the mean (SEM). Significant different by comparing the mean of untreated control plant vs treated determine using paired one-tailed Students t-test as indicated by an asterisk ($*=\mathrm{p}<0.05 ; * *=0.001$). Different colours represent; black $=$ control DHSL150; light brown $=$ treated DHSL150, dark red $=$ treated wild S1 lines, blue $=$ untreated control wild S1s, yellow $=$ treated DH lines and navy blue $=$ untreated control DH lines respectively.

Two weeks treatment, the Na^{+}level was significantly reduced in some DH lines as compared to the parents; DHSL150 and the wild S1 line C07007 which both retained high Na^{+}concentrations within the leaves (Figure 4.6). The reduction in Na^{+}level could be through compartmentalisation or exclusion processes via activation of non-selection cation channels (NSCCs) such as out-right rectifiers channels, $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporter proteins (NHX)
otherwise known as SOS1 in the salt overly sensitive pathway that operates in the root cells of the plants.

Figure 4.6: Genotypic variation in leaf content of $\mathrm{Na}^{+}, \mathrm{K}^{+}$and Ca^{2+} two-weeks after salt treatment in B. oleracea genotypes. Note: $\mathbf{A}=$ the main founder rapid cycling line (DHLS150), $\mathbf{B}=B$. bourgaei (C07007-S1), $\mathbf{C}=\mathrm{C} 10025-\mathrm{DH} ; \mathbf{G}=\mathrm{C} 13013-\mathrm{DH} ; \mathbf{I}=\mathrm{C} 13001-\mathrm{DH} ; \mathbf{J}=\mathrm{B}$. oleraceaS1 (C07060); $\mathbf{L}=$ C10128-DH; $\mathbf{P}=$ B. oleracea-S1 (C07079A); and $\mathbf{Q}=$ C10121-DH. Data represent mean $(\mathrm{n}=3)$ and error bars show the standard error of the mean (SEM). Significant different by comparing the mean of untreated control plant vs treated determine using paired one-tailed Students t-test as indicated by an asterisk ($*=\mathrm{p}<0.05 ; * *=0.001$). Different colours represent; black = control DHSL150; light brown = treated DHSL150, dark red = treated wild S1 lines, blue $=$ untreated control wild S1s, yellow $=$ treated DH lines and navy blue $=$ untreated control DH lines respectively.

The plants were allowed to grow for two additional weeks post the two-week treatment and harvested at week-ten of growth $(10 \mathrm{wk})$ after regular watering at three-days interval, (i.e., twice in a week). The results (Figure 4.7) revealed that the B. oleracea genotypes were better able to reduce the level of Na^{+}ion as compared with their first treatment at week-six. This indicates that the B. oleracea genotypes activate mechanisms to forestall the effect of excess Na^{+}ion on the essential functions such as photosynthesis.

The DH line C10121-DH showed a significant increase in K^{+}level ($\mathrm{p}<0.05$). This further demonstrates the presence of unique mechanisms that enable it to take Na^{+}, retained more K^{+}as well as Ca^{2+} levels after salt treatment. Moreover, this would also explain the gradual reduction of Na^{+}and improving K^{+}level two weeks post-treatment in all the genotypes
(Figure 4.7).

Figure 4.7: A comparison of $\mathrm{Na}^{+}, \mathrm{K}^{+}$and Ca^{2+} level between 2 weeks post initial salt treatment and 2 weeks post second salt treatment in B. oleracea genotypes. Legend: black bars $=2$ weeks post initial salt treatment and navy blue $=2$ weeks post second salt treatment on the same genotypes. Data represents mean $(\mathrm{n}=3)$ and error bars show the standard error of the mean (SEM). Significant different by comparing the mean of untreated control plant vs treated determine using paired one-tailed Students t-test as indicated by an asterisk ($*=\mathrm{p}<0.05$; ** $=$ 0.001). Note: $\mathrm{A}=$ the main founder rapid cycling line (DHLS150), $\mathrm{B}=$ B. bourgaei-S1 (C07007$\mathrm{S} 1), \mathrm{C}=\mathrm{C} 10025-\mathrm{DH} ; \mathrm{G}=\mathrm{C} 13013-\mathrm{DH} ; \mathrm{I}=\mathrm{C} 13001-\mathrm{DH} ; \mathrm{J}=$ B. oleracea-S1(C07060); $\mathrm{L}=$ C10128-DH; $\mathrm{P}=$ B. oleracea-S1 (C07079A); and $\mathrm{Q}=\mathrm{C} 10121-\mathrm{DH}$.

To correctly follow and understand the physiological variation in B. oleracea genotypes exposed to salt treatment at different stages and time, Figure 4.8 was put together using all the time-points. It shows that the wildtype S 1 , cultivated founder DHLS150, and DH B. oleracea genotypes displayed similar physiological mechanism in response to salt stress. However, such mechanism becomes compromised in the presence of excess Na^{+}as a result of salt treatment. The treated plants have shown to have a significant increase in Na^{+}twentyfour hours post-treatment. Both parental lines; i.e., the wildtype S1, and founder DHLS150 and including some of the doubled haploid lines have shown to retained Na^{+}, as a result, K^{+} observed to be affected as compared to control untreated plants.

Figure 4.8: A summary of physiological variation observed in B. oleracea genotypes in response to salt shock stress at using four time-points data. Legend: black bars with dots $=24 \mathrm{hr}$ posttreatment, red bars $=2$ weeks post-treatment, dark grey $=24 \mathrm{hr}$ post second treatment and brown $=2$ weeks post second treatment. bars are means ($\mathrm{n}=3$) and error bars are standard error of the mean (SEM).

The Ca^{2+} level remained relatively unchanged despite salt treatment. This could suggest that $\mathrm{Na}^{+}-\mathrm{Ca}^{2+}$ interaction does not affect Ca^{2+} level in B. oleracea genotypes under salt stress. C10121-DH, was shown to have higher both Na^{+}and K^{+}ions level also maintaining Ca^{2+} level. The possible mechanism employed by this DH line has shown to differ from the parent lines where K^{+}level dropped in detriment to Na^{+}two-weeks post-treatment.

4.2.4 $\mathrm{Na}^{+} / \mathrm{K}^{+}$Ratio (second salt screening)

Other important indicators for salt stress tolerance evaluated are $\mathrm{K}^{+} / \mathrm{Na}^{+}$and $\mathrm{Ca}^{2+} / \mathrm{Na}^{+}$ratios. Salt stress generally has shown to affect $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio due to an increased influx of Na^{+}, however, in B. oleracea genotypes $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio remain high twenty-four hours after salt treatment as presented in Table 4.2. The highest $\mathrm{K}^{+} / \mathrm{Na}^{+}$values observed was from parental wildtype S1 line B. oleracea-S1(C07060-S1) with 9.55 followed by a doubled haploid line C10128-DH genotype. This could suggest that these B. oleracea lines were able to cushion the effects associated with excess salt by high K^{+}within the plant cell systems.

Two-weeks post-treatment, due to the effects of salt stress on ion homeostasis $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio has shown to be affected by increasing Na^{+}level against K^{+}thereby reducing the $\mathrm{K}^{+} / \mathrm{Na}^{+}$ ratio (Table 4.2) indicating susceptibility to salt stress.

Table 4.2: Comparison between $\mathrm{K}^{+} / \mathrm{Na}^{+}$, and $\mathrm{Ca}^{2+} / \mathrm{Na}^{+}$Ratio 24 hrs and two-weeks posttreatments using 250 mM NaCl in B. oleracea genotypes

GenoID	Species	24hrpt_K:Na	24hrpt_Ca:Na	2wkpt_K:Na	2wkpt_Ca:Na	Response
C10001	B. ole(DHSL150)	4.019	1.000	0.453	0.472	Susceptible
C13013-DH		5.241	0.934	2.471	0.879	Susceptible
C10025-DH		3.315	0.625	2.064	0.797	Susceptible
C10121-DH		4.782	0.844	0.798	0.341	Susceptible
C13001-DH		4.547	1.055	1.476	0.644	Susceptible
C07079A	B. oleracea-S1	3.191	1.604	1.408	0.794	Susceptible
C07060	B. oleracea-S1	9.554	1.389	3.755	0.644	Susceptible
C07007	B. bourgaei-S1	3.444	1.956	1.103	0.513	Susceptible
C10128-DH		6.608	1.525	2.169	0.923	Susceptible

Note: $24 \mathrm{hr} \mathrm{pt}=$ ratios 24 hr of post salt treatment and $2 \mathrm{wk} \mathrm{pt}=$ ratios 2 weeks post-treatment.

Following the second salt treatment at week-eight of growth, the B. oleracea genotypes were shown to improve their salt resilience by improving their $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio (Table 4.3), when compared to earlier $8 \mathrm{wk} 24 \mathrm{hr}^{+} / \mathrm{Na}^{+}$and 10 wk K : Na ratios presented (Table 4.3). The $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio improved in most of the B. oleracea genotypes two-weeks post-treatment. An indication which could suggest activation of defence mechanisms to mitigate excess Na^{+} effects. Such improvements are observed in the wildtype S1 lines; B. oleracea-S1 (C07060)
from 3.450 to 12.061, and B. bourgaei-S1 (C07007-S1) from 1.122 to 1.516 respectively, while in the founder line DHLS150 reduced from 1.083 to 0.604 and B. oleracea$\mathrm{S} 1(\mathrm{C} 07079 \mathrm{~A}-\mathrm{S} 1) 11.119$ to 8.728 . Also, an improvement in $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio have been observed among the doubled haploid lines; C10128-DH from 1.57 - 3.146, C10025-DH from 1.595-3.014, C13013-DH from 1.988-2.895, C10121-DH from 1.636-1.759, and finally C13001-DH, which shows a decrease from 2.819-1.871.

Table 4.3: A comparison between $\mathrm{K}^{+} / \mathrm{Na}^{+}$and $\mathrm{Ca}^{2+} / \mathrm{Na}^{+}$Ratios after second salt treatment.

GenoID	Species	8wk24hrpt_K:Na	8wk24hrpt_Ca:Na	10wk_K:Na	10wk_Ca:Na	Response
C10001	B. ole(DHSL150)	1.083	0.393	0.604	0.659	Susceptible
C13013-DH	1.988	0.596	2.895	2.187	Tolerant	
C10025-DH	1.595	0.549	3.014	2.294	Tolerant	
C10121-DH	1.636	0.722	1.759	0.269	Mildly Toleran	
C13001-DH		2.819	0.811	1.871	1.531	Mildly Suscep1
C07079A	B. oleracea-S1	11.119	3.853	8.728	6.676	Tolerant
C07060	B. oleracea-S1	3.450	0.802	12.061	5.784	Tolerant
C07007	B. bourgaei-S1	1.122	0.410	1.516	1.009	Mildly Toleran
C10128-DH		1.572	0.426	3.146	0.590	Tolerant

- Note: $8 \mathrm{wk} 24 \mathrm{hr}=24 \mathrm{hr}$ post-treatment at 8 weeks and $10 \mathrm{wk}=$ two-weeks post-treatment.

The $\mathrm{Ca}^{2+} / \mathrm{Na}^{+}$ratio remains unchanged. Generally, B. oleracea genotypes used have shown the ability to retain Ca^{2+} level despite excess salt. This could suggest the key role plays by calcium to ameliorate the effects of salt thereby improving salt tolerance in B. oleracea lines and also coupled to its function as a secondary messenger for growth and hormones activities.

4.2.5 Comparison between Morphological and Physiological Traits

Following the analyses of both morphological and physiological traits, significant variation between B. oleracea genotypes in response to salt stress was observed. An effort has been made to compare the two measurements with the view to unravel possible relationships
based on the observed variation. Therefore, a Pearson correlation analysis was conducted between the two traits in all the individual B. oleracea lines. The strength of the correlation (R^{2}) will be used to compare with between and the observed phenotype and to speculate possible mechanistic relations. Parents line and their derived DH lines will also be compared so as to derive any shared physiological mechanism between the parents and DH lines respectively.

From the analysis, the cultivated rapid cycling DHLS150 line was shown to be weakly correlated in plant height, leaf fresh weight and strong in dry weight in relation to $\mathrm{Na}^{+}, \mathrm{K}^{+}$ ($R^{2}=0.273,0.639 \& 0.937$), and negatively corelated with respect to leaf area (Table 4.4). We observed an increase in both leaf fresh and dry weights in DHSL150. In contrast, leaf area correlates negatively $\left(R^{2}=-0.0761\right)$ and that could be as a result of high salt $(\mathrm{Na}+)$ absorbed as it affects cell expansion and stomatal closure. In one of the DH line; C13013DH derived from the DHSL150, has shown positive correlation in both plant height and fresh weight with respect to Na^{+}level $\left(R^{2}=0.318 \& 0.784\right)$ and had also correlated negatively to K^{+}level. This could explain the differences observed between the parent line DHSL150 and the DH line.

Table 4.4: A Pearson correlation between morphological and physiological traits in the cultivated DHSL150 and DH line C13013-DH

DHLS150	24 hr _ Na	29 hr K	24hr_Ca	2wk, Na	2wi_K	2wk_Ca	8wk24hr Na	8wk24hr K	8wk24hr_Ca	10wk_Na	10wk_K	10wk Ca	Plant_height	Leaf_fresh_weigh	Leaf_dr_weight	Leaf area
24 hr _Na	1.0000	0.5711	0.8247	0.9730	-0.8728	-0.1540	-0.9921	-0.7112	0.5419	0.6852	0.8730	0.3812	0.2736	0.6398	0.9377	-0.0761
24 hr -K		1.0000	0.0066	0.3662	0.9380	0.2760	-0.6839	-0.9583	-0.7028	-0.3368	0.3354	0.7399	0.9458	-0.5127	-0.8234	0.9065
24 hr _ Ca			1.0000	0.9329	$0.4864{ }^{\prime \prime}$	0.1420	-0.9737	0.4117	0.9345	0.9761	-0.1318	0.9386	-0.3184	0.7697	-0.9612	0.9881
2 wk _Na				1.0000	-0.9941	0.1538	-0.6147	-0.9603	-0.9507	-0.9773	-0.5077	-0.5273	0.0442	-0.1834	-0.9804	0.9103
2wk_K					1.0000	0.9949	-0.4656	0.8956	0.6059	0.3603	0.6022	0.5530	-0.9195	0.7123	0.9527	-0.9981
2 wk _ca						1.0000	0.2193	-0.3533	-0.7595	0.6938	0.9835	-0.0349	-0.9925	-0.5383	-0.9112	0.7968
8wk24hr_Na							1.0000	0.8487	0.3274	-0.9999	-0.1307	0.6249	-0.9230	-0.2565	-0.9997	0.9221
8wk24hr_K								1.0000	0.6105	-0.3793	-0.6293	-0.2819	-0.9195	0.7123	0.9527	-0.9981
8wk24hr_Ca									1.0000	0.0631	-0.2211	0.9245	-0.9925	-0.5383	-0.9112	0.7968
10wk_Na										1.0000	-0.2467	-0.8792	-0.9093	-0.8508	-0.8486	0.9540
10wk_K											1.0000	0.1062	0.6275	0.4976	0.7684	-0.6495
10wk_Ca												1.0000	-0.7076	-0.8514	-1.0000	0.8322
Plant_height													1.0000	-0.2751	-0.1887	0.9874
Leaf_fresh_weigh														1.0000	-0.3949	0.9600
Leaf_dry_welght															1.0000	0.9878
Leaf area																1.0000
C13013-DH	24 hr - Na	29 hr K	$2 \mathrm{Shr}_{-\mathrm{Ca}}$	2wk, Na	2wk, K	2wk_Ca	8wk24hs Na	8 wk24hr K	$8 w k 24 \mathrm{hr}$ Ca	10 wk Na	10wk K	10wk Ca	Plant_height	Leat_fresh_weigh	Lea_dry_weight	Leaf area
24 hr _Na	1.0000	-0.0240	-0.0951	-0.2352	0.9537	0.8389	0.9794	0.9472	-0.6678	-0.5166	0.9717	-0.9120	0.3188	0.7844	-0.3804	0.1977
24 hr -K		1.0000	-0.5052	-0.5997	-0.9494	0.1723	0.1891	-0.2556	-0.1978	0.1393	-0.3382	-0.8690	-0.8130	0.0797	-1.0000	0.9914
24 hr _Ca			1.0000	-0.3876	0.2087	0.1542	0.9796	0.6648	-0.9299	-0.5916	0.9942	-0.6173	0.9132	0.0614	-0.3794	0.6564
2wk_Na				1.0000	$0.068{ }^{\prime}$	-0.5975	-0.9198	-0.5509	0.9955	0.8124	-0.9997	-0.8806	0.8463	-0.5201	0.5562	-0.7577
2wk_K					1.0000	1.0000	$0.7387^{\prime \prime}$	0.2998	0.3822	0.9067	0.9490	-0.8522	0.5891	0.9956	-0.1856	-0.1272
2wk_Ca							1.0000	-0.6228	0.7265	0.5827	-0.9380	-0.9040	0.9990	-0.0840	0.6288	-0.8363
8wk24hr_Na								1.0000	-0.8174	-0.9065	0.2641	0.9953	-0.9951	-0.1962	-0.8389	0.9015
Swk24hr_K									1.0000	-0.9213	-0.9245	0.8480	0.6307	-0.2884	-0.9989	-0.8904
8wk24hr_Ca										1.0000	0.9942	-0.6173	-0.9738	-0.6290	-0.5964	-0.1217
10wk_Na											-0.9997	-0.5393	0.9351	0.6585	-0.9946	0.7413
10wk_K											1.0000	0.5601	-0.8028	0.5540	-0.1192	-0.9151
10wk_Ca												1.0000	-0.8028	0.5540	-0.1192	-0.9151
Plant_height													1.0000	-0.1887	0.9874	-0.9452
Leat_fresh_weigh														1.0000	-1.0000	0.9769
Leat_dry_weight															1.0000	-0.7778
Leaf area																1.0000

Key: Morphological Traits: PH = Plant Height, LFW = Leaf Fresh Weight, LDW = Leaf Dry weight, LA = Leaf Area. Physiological Traits: 24hr_Na = Na ${ }^{+} 24 \mathrm{hr}$ post $1^{\text {st }}$ salt treatment, $24 \mathrm{hr} _\mathrm{K}=\mathrm{K}^{+} 24 \mathrm{hr}$ post $1^{\text {st }}$ salt treatment, $24 \mathrm{hr} _\mathrm{Ca}=\mathrm{Ca}^{2+} 24 \mathrm{hr}$ post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} \mathrm{Na}=\mathrm{Na}^{+} 2$ weeks post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} \mathrm{K}=\mathrm{K}^{+} 2 \mathrm{weeks}$ post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} _\mathrm{Ca}=\mathrm{Ca}^{2+} 2$ weeks post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} 24 \mathrm{hr} _\mathrm{Na}=\mathrm{Na}^{+} 24 \mathrm{hr}$ post $2^{\text {nd }}$ salt treatment, $8 \mathrm{wk} 24 \mathrm{hr} _\mathrm{K}=\mathrm{K}^{+} 24 \mathrm{hr}$ post $2^{\text {nd }}$ salt treatment, $8 \mathrm{wk} 24 \mathrm{hr} _\mathrm{Ca}=\mathrm{Ca}^{2+} 24 \mathrm{hr}$ post $2^{\text {nd }}$ salt treatment, $10 \mathrm{wk}_{-} \mathrm{Na}^{+}=2$ weeks post $2^{\text {nd }}$ salt treatment, $10 \mathrm{wk} _\mathrm{K}=\mathrm{K}^{+} 2$ weeks post $2^{\text {nd }}$ salt treatment, $10 \mathrm{wk} _\mathrm{Ca}_{-}=\mathrm{Ca}^{2+} 2 \mathrm{weeks}^{-}$post $2^{\text {nd }}$ salt treatment .

Similarly, the wild S1 line; B. bourgaei-S1 (C07007) has shown a positive correlation between plant height, leaf fresh and $\mathrm{Na}^{+}, \mathrm{K}^{+}$, and Ca^{2+} (Table 4.5) but correlates negatively in leaf dry weight and leaf area. This is in contrast to what was observed in the DHSL150, which shows a positive relation in Na^{+}level and reduction in plant height. The wild S 1 C07007 has shown an improved growth against its control line. This may further suggest clear differences in both physiology and morphological mechanisms employed by the parents' lines to handle excess Na^{+}and at the same time improved growth. One of their derived DH line; C10025-DH that shows susceptibility in growth has shown a negative correlation between Na^{+}and plant height and had reduced leaf dry weight and leaf area, both correlate positively with the level of Na^{+}and K^{+}. This corroborates our argument that the DH lines may show similar mechanisms in both morphological and physiology, however, differ to some certain extent due to possible allelic recombination and introgression.

Table 4.5: A Pearson correlation between morphological and physiological traits in the wild S1 B. bourgaei-S1 (C07007) and DH line C10025-DH

C07007-S1	24hr_Na	24hr_K	24hr_Ca	2wk_Na	2wk_K	2wk_Ca	8wk24hr_Na	8wk24hr_K	8wk24hr_Ca	10wk_Na	10wk_K	10wk Ca	Plant_height	Leat_fresh_meigh	Leat_dry_weight	Leafarea
24 hr _ Na	1.0000	0.9995	0.9927	-0.9879	-0.3412	0.5402	0.0377	-0.7827	-0.8174	-0.9065	0.2641	0.9953	0.5026	0.9703	-0.5435	-0.3744
24hr_K		1.0000	0.9886	-0.9828	-0.3694	0.8999	-0.9999	-0.7608	-0.3202	0.3576	0.4571	0.3482	0.5285	0.9772	-0.9017	-0.4022
24hr_Ca			1.0000	-0.9994	-0.2251	-0.2366	0.7295	0.9375	0.1559	0.7534	0.8962	0.7977	0.3945	0.9341	\% ${ }^{\prime} \quad 0.2404$	F -0.2596
2wk_Na				1.0000	0.1915	-0.2840	0.0701	-0.7371	$0.4378{ }^{\prime \prime}$	0.0561	0.9846	0.9143	-0.3627	-0.9212	0.2802	\% 0.2262
2wk_K					1.0000	-0.4874	0.8858	0.8834	0.0151	0.8431	0.8986	0.8509	-0.9841	-0.5583	-1.0000	0.9994
2wk_ca						1.0000	$0.2908{ }^{\prime \prime}$	-0.5984	0.5220	-0.1863	-0.5111	0.9789	0.6346	0.9965	-0.8840	-0.5181
8 8k24lr_Na							1.0000	-0.7371	0.4378	0.0561	0.9846	0.9143	-0.2964	-0.8917	0.9924	0.1574
8wk24kr_K								1.0000	0.0151	0.8431	0.8986	0.8509	0.8639	0.9632	0.3240	-0.7834
8wk24hr_Ca									1.0000	-0.6780	-0.9690	-0.9569	0.5167	-0.2543	0.7819	-0.6333
10 wk _Na										1.0000	-0.0037	0.5838	0.9240	0.3693	0.9035	-0.9690
10wk_K											1.0000	0.9994	0.8429 '	0.2011	0.9997	-0.9109
10 wk _Ca												1.0000	0.9999	0.6857	0.9207	-0.9918
Plant_height													1.0000	0.6967	-0.9923	-0.9898
Leat_fresh_weigh														1.0000	0.0270	-0.5874
Leat_dry_weight															1.0000	-0.8249
Leafarea																1.0000
C10025-DH	24hr Na	24 hr - K	24 hr Ca	2 wk , Na	2wk_K	2 wk _a	8wk24hr Na	8wk24hr ${ }^{\text {K }}$	8wk24hr_Ca	10 wk Na	10wk. ${ }^{\text {K }}$	10 wk Ca	Plamt height	Leaf fresh_ weigh	Leaf_dry, weight	Leaf area
2 Ahr _Na	1.0000	-0.3469	-0.7430	-0.8869	-0.9747	0.2557	-0.5239	0.8424	0.4088	0.6021	0.9964	0.9989	-0.9741	-0.9976	0.1670	0.9301
24hr_K		1.0000	-0.3699	-0.5335	0.3336	0.8828	0.8847	0.9339	0.9974	0.8780	0.9391	0.0298	0.1258	0.2810	0.9964	-0.1884
2 Ahr _ca			1.0000	-0.8533	-0.9845	-0.9986	-0.7597	-0.5802	-0.2212	-0.2302	0.4831	-0.6040	0.8751	0.7877	-0.6037	-0.9887
2wk_Na				1.0000	-0.3045	0.6708	-0.9621	-0.3178	0.9838	0.9881	0.9653 "	0.3606	0.8085	0.8913	0.9882	0.5788
2wk_K					1.0000	0.8082	$0.9549^{\prime \prime}$	0.9123	0.9587	-0.6681	-0.7278"	0.9115	-0.7576	-0.6449	-0.7723	-0.3121
2wk_ca						1.0000	-0.6965	-0.4054	$0.664{ }^{\prime \prime}$	$0.8526^{\prime \prime}$	0.4885	0.9296	-0.3622	-0.2103	-0.3871	0.0482
8wk24he_Na							$1.000{ }^{\prime \prime}$	0.7042	0.6198	-0.7165	-0.9182	-1.0000	$0.6337{ }^{\prime}$	0.5035	0.6527	70.6717
8wk24ke_k								1.0000	0.9974	0.8780	0.9391	0.0298	0.9435	0.9840	0.9073	0.4534
8wk24k_Ca									1.0000	0.0211	-0.7993	-0.8664	0.4538	0.9943	0.9979	0.7321
10 wk _Na										1.0000	0.0775	-0.6478	0.9005	0.1273	$0.1248{ }^{\prime}$	0.5454
10wk_K											1.0000	0.0298	-0.9345	-0.9790	-0.8367	-0.9745
10 wk _Ca												1.0000	0.3279	0.1745	0.1882	0.5025
Plant_height													1.0000	0.9874	-0.9452	0.2512
Leat_fresh_weigh														1.0000	0.4714	-0.9945
Leaf_dry_weight															1.0000	-0.0184
Leaf area																1.0000

Key: Morphological Traits: PH = Plant Height, LFW = Leaf Fresh Weight, LDW = Leaf Dry weight, LA = Leaf Area. Physiological Traits: $24 \mathrm{hr} _\mathrm{Na}^{2}=\mathrm{Na}^{+} 24 \mathrm{hr}$ post $1^{\text {st }}$ salt treatment, $24 \mathrm{hr} _\mathrm{K}=\mathrm{K}^{+} 24 \mathrm{hr}$ post $1^{\text {st }}$ salt treatment, $24 \mathrm{hr} _\mathrm{Ca}=\mathrm{Ca}^{2+} 24 \mathrm{hr}$ post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} _\mathrm{Na}=\mathrm{Na}^{+} 2$ weeks post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} _\mathrm{K}=\mathrm{K}^{+} 2 \mathrm{weeks}$ post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} _\mathrm{Ca}=\mathrm{Ca}^{2+} 2$ weeks post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} 24 \mathrm{hr} _\mathrm{Na}=\mathrm{Na}^{+} 24 \mathrm{hr}$ post $2^{\text {nd }}$ salt treatment, $8 \mathrm{wk} 24 \mathrm{hr} _\mathrm{K}=\mathrm{K}^{+} 24 \mathrm{hr}$ post $2^{- \text {nd }}$ salt treatment, $8 \mathrm{wk} 24 \mathrm{hr} _\mathrm{Ca}=\mathrm{Ca}^{2+} 24 \mathrm{hr}$ post $2^{\text {nd }}$ salt treatment, $10 \mathrm{wk} _\mathrm{Na}^{+}=2$ weeks post $2^{\text {nd }}$ salt treatment, $10 \mathrm{wk} _\mathrm{K}=\mathrm{K}^{+} 2$ weeks post $2^{\text {nd }}$ salt treatment, $10 \mathrm{wk} _\mathrm{Ca}=\mathrm{Ca}^{2+} 2 \mathrm{weeks}$ post $2^{\text {nd }}$ salt treatment.

The wild S1 B. oleracea-S1 (C07060) also showed a reduction in plant height and leaf area that correlated negatively with $\mathrm{Na}^{+}, \mathrm{K}^{+}$, and Ca^{2+} (Table 4.7), This differ compared to its DH line, C10128-DH which showed a positive correlation in both plant height and leaf dry weight. Both the parent line and DH line gave a negative correlation between leaf area which corroborates with morphological effects observed in the reduction of leaf area associated with excess salt.

Table 4.6: A Pearson correlation between morphological and physiological traits in the wild S1 B. oleracea (C07079A) and DH line C10121-DH

C07079A-S1	24hr_Na	24hr_K	24hr_Ca	2wk_Na	2wk_K	2wk_Ca	8wk24hr_Na	8wk24hr_K	8wk24hr_Ca	10wk_Na	10wk_K	10wk_Ca	Plant_height	Leaf_fresh_weigh	Leaf_dry_weight	Leaf area
24hr_Na	1.0000	0.4955	-0.8802	-0.9957	-0.3045	0.6708	-0.9621	-0.3178	0.9838	0.9881	0.9653	0.3606	0.9952	0.3889	0.6862	-0.9993
24hr_K		1.0000	-0.0240	0.7640	0.9447	-0.8027	-0.2333	0.3696	0.3928	0.9307	0.9681	0.2819	0.4082	0.2073	-0.9937	0.9875
24hr_Ca			1.0000	-0.9455	-0.6561	-0.9504	-0.6965	-0.4054	0.6646	0.8526	0.4885	0.9296	-0.9224	-0.4728	-0.9019	-0.6986
2wk_Na				1.0000	0.7610	0.6818	-0.9881	0.7042	0.6198	-0.7165	-0.9182	-1.0000	0.4043	-0.9952	-0.9916	0.6598
2wk_K					1.0000	-0.8027	-0.2333	0.3696	0.3928	0.9307	0.9681	0.2819	-0.5751	-0.0572	0.9972	-0.2632
2wk_Ca						1.0000	-0.9986	-0.3301	-0.6960	-0.8706	-0.8714	-0.9998	0.9495	0.9842	0.4381	0.7838
8wk24hr_Na							1.0000	0.5513	0.9758	0.9999	-0.7932	0.9817	-0.9648	-0.4923	-0.9504	-0.3769
8wk24hr_K								1.0000	0.3928	0.9307	0.9681	0.2819	-0.7513	-0.2900	-0.9537	0.8630
8wk24hr_Ca									1.0000	-0.8706	-0.8714	-0.9998	-0.9020	-0.6201	-0.9986	0.7280
10wk_Na										1.0000	-0.7932	0.9817	0.9977	- 0.1554	0.9974	0.4363
10wk_K											1.0000	0.2819	-0.8327	-0.0358	0.9496	-0.5470
10wk_Ca												1.0000	0.2965	0.6221	0.9659	-0.7756
Plant_height													1.0000	0.4513	0.9263	-0.8745
Leaf_fresh_weigh														1.0000	-1.0000	-1.0000
Leaf_dry_weight															1.0000	0.8571
Leaf area																1.0000
C10121-DH	24hr_Na	24hr_K	24hr_Ca	2wk_Na	2wk_K	2wk_Ca	8wk24hr_Na	8wk24hr_K	8wk24hr_Ca	10wk_Na	10wk_K	10wk_Ca	Plant_height	Leaf_fresh_weigh	Leaf_dry_weight	Leaf area
24hr_Na	1.0000	0.9886	0.5928	0.6844	-0.9941	-0.7423	0.1065	-0.9406	-0.0549	-0.2283	-0.3114	0.0096	0.9317	0.9995	-0.9156	-0.9969
24hr_K		1.0000	0.9930	-0.0638	0.9156	0.9983	0.7895	0.9541	1.0000	0.9138	-0.7749	-0.3879	0.3724	-0.9436	0.3564	-0.6360
24hr_Ca			1.0000	-0.1815	-0.1565	0.2043	-0.4729	-0.8990	0.8204	0.9817	-0.7684	-0.4511	0.2599	0.0808	-0.8089	-0.8673
2wk_Na				1.0000	0.9880	0.9909	0.5826	0.6784	0.7750	0.8908	-0.2935	-0.9978	0.9024	-0.9971	0.4103	-0.0285
2wk_K					1.0000	0.9995	0.9975	0.1601	0.3706	0.0914	0.9493	-0.2454	0.9366	0.9930	0.8846	0.8139
2wk_Ca						1.0000	0.2618	0.6510	-0.1833	-0.9245	0.0694	0.7256	0.5022	-0.6403	0.9914	0.9236
8wk24hr_Na							1.0000	-0.1061	0.4893	0.7857	0.3777	0.5175	0.5245	0.9120	0.8880	0.9797
8wk24hr_K								1.0000	0.9745	0.9999	0.9976	0.9996	-0.9954	0.9892	0.6328	0.8790
8wk24hr_Ca									1.0000	0.9817	-0.7684	-0.4511	-0.9916	0.9906	0.5774	0.8644
10wk_Na										1.0000	0.9568	-0.7114	-0.9487	-0.6737	0.4683	0.7934
10wk_K											1.0000	0.9996	-0.9996	-0.9986	0.3964	0.9842
10wk_Ca												1.0000	-1.0000	0.9837	0.2147	0.9784
Plant_height													1.0000	0.9429	0.3473	-0.6247
Leaf_fresh_weigh														1.0000	-1.0000	1.0000
Leaf_dry_weight															1.0000	0.4670
Leaf area																1.0000

Key: Morphological Traits: PH = Plant Height, LFW = Leaf Fresh Weight, LDW = Leaf Dry weight, LA = Leaf Area. Physiological Traits: $24 \mathrm{hr}_{-} \mathrm{Na}=\mathrm{Na}^{+} 24 \mathrm{hr}$ post $1^{\text {st }}$ salt treatment, $24 \mathrm{hr} _\mathrm{K}=\mathrm{K}^{+} 24 \mathrm{hr}$ post $1^{\text {st }}$ salt treatment, $24 \mathrm{hr} _\mathrm{Ca}=\mathrm{Ca}^{2+} 24 \mathrm{hr}$ post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} \mathrm{Na}=\mathrm{Na}^{+} 2$ weeks post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} \mathrm{K}=\mathrm{K}^{+} 2 \mathrm{weeks}$ post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} _\mathrm{Ca}=\mathrm{Ca}^{2+} 2$ weeks post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} 24 \mathrm{hr} _\mathrm{Na}=\mathrm{Na}^{+} 24 \mathrm{hr}$ post $2^{\text {nd }}$ salt treatment, $8 \mathrm{wk} 24 \mathrm{hr} _\mathrm{K}=\mathrm{K}^{+} 24 \mathrm{hr}$ post $2^{- \text {nd }}$ salt treatment,
 $2^{\text {nd }}$ salt treatment

Table 4.7: A Pearson correlation between morphological and physiological traits in the wild S1 B. oleracea-Sl(C07060) and DH line $\mathrm{C} 10128-\mathrm{DH}$

c07060-51	24 hr Na	24 kr , K	24hr Ca	2 wk , Na	2wk_K	2 wk ca	8wiz24hy Na	8wk24hr_K	8wk24hr Ca	10wk, Na	10 wk_K	10wk.ca	Plant height	Leat_frest_weigh	Leat_dry_weight	Leafaca
24 hr - Na	1.0000	0.3984	0.4542	0.6084	$0.5743^{\prime \prime}$	0.8082	0.9549	0.9123	0.9587	-0.6681 ${ }^{\prime}$	-0.7278	0.9115	-0.4778	0.3354	-0.5674	-0.9185
$24 \mathrm{hr} \mathrm{C}_{\mathrm{K}}$		1.0000	0.9981	0.9876	$0.9757^{\prime \prime}$	0.8155	0.9579	$0.9415^{\prime \prime}$	0.5354	-0.7168	-0.8819	-0.3155	-0.9961	-0.4053	-0.9775	-0.7286
24hr_Ca			1.0000	-0.9734	$0.7610^{\prime \prime}$	0.6818	-0.9881	0.7042 "	$0.6198{ }^{\prime \prime}$	-0.7165	-0.9182	-1.0000	-0.9996	-0.5435	-1.0000	-0.7694
2wk_Na				$1.0000^{\prime \prime}$	0.3183 "	0.8294	$0.7208{ }^{\prime \prime}$	$0.2730^{\prime \prime}$	0.9977	$0.965{ }^{\text {' }}$	-0.6780	$0.6740^{\prime \prime}$	\% -0.5987	' 0.1860	-0.6732	-0.9657
2wk_k					$1.0000^{\prime \prime}$	0.8155	0.9579 "	$0.9415^{\prime \prime}$	0.5354	-0.7168	-0.8819	-0.3155 ${ }^{\prime \prime}$	\% 0.5687	0.7031	-0.9978	-0.0612
2wk_ca						1.0000	-0.0077^{\prime}	$0.4298{ }^{\prime \prime}$	0.9659	0.9832	0.9074	$0.7713^{\prime \prime}$	- -0.0122	0.4693	-0.9170	-0.6275
8 wk 24 hr _Na							$1.0000^{\prime \prime}$	$0.273{ }^{\prime \prime}$	0.9977	0.9652	-0.6780	$0.674{ }^{\prime \prime}$	-0.9998	-0.5957	-0.9890	-0.7737
8wk24hr_k								1.0000 "	0.5354	-0.7168	-0.8819	-0.3155 ${ }^{\prime \prime}$	-0.2538	-0.5401	-0.9932	0.3982
8wk24h_Ca									1.0000	0.9832	0.9074	0.7713	-0.9528	-0.1997	0.8211	-0.5615
10wk_Na										$1.000{ }^{\prime}$	-0.6780	$0.6740^{\prime \prime}$	-0.8815	-0.5930	0.9966	-0.4013
10wk_k											1.0000	-0.3155	0.9447	0.1951	0.7901	0.9454
10wk_Ca												1.0000	-0.6093	-1.0000	0.9891	0.0111
Plant_height													1.0000	0.0999	0.9593	0.7862
Leat_frest_weigh														1.0000	-1.0000	-0.1946
Lex_dry_weight															1.0000	-0.8667
Leafarea																1.0000
C10128-DH	24hr_Na	24kr_K	24hr_Ca	2wk_Na	2wk_K	2wk_Ca	8wizahr_Na	8wk24hr_K	8wk24ht_Ca	10wk_Na	10wk_K	10wk_Ca	Plant_height	Leat_fresh_weiph	Leaf_dry_weight	Leafrea
$24 \mathrm{hr} \mathrm{Na}^{\text {a }}$	1.0000	0.5150	0.5516	0.9920	0.7367	-0.7657	0.2618	0.6510	-0.1833	-0.9245	0.0694	$0.725{ }^{\prime}$	0.9635	-0.9231	0.9337	-0.9134
$24 \mathrm{hr} \mathrm{C}_{\mathrm{K}}$		1.0000	0.9991	-0.9501	-0.8239	-0.9470	-0.4905	-0.8975	-0.2133	1.0000	0.5877	-0.5346 ${ }^{\prime \prime}$	0.7256	-0.8051	0.1738	-0.8194
24hr_Ca			1.0000	0.6818	-0.9881'	0.7042	$0.6198{ }^{\text {" }}$	-0.7165	-0.9182	-1.0000	0.1418	$0.0158^{\prime \prime}$	0.7547	-0.8299	0.2162	-0.8434
2wk_Na				1.0000	-0.9501'	-0.8239	-0.9470'	-0.4905	-0.8975	-0.2133	1.0000	$0.5877^{\prime \prime}$	0.9221	-0.7327	0.9714	-0.8548
2wk_k					1.0000'	-0.4197	$0.9013{ }^{\prime \prime}$	-0.8949	-0.9879	0.3354 "	0.5829	-1.0000	-0.7555	" 0.7015	-0.9970	0.6503
2 wk _ca						1.0000	-0.5276 ${ }^{\prime}$	-0.5263	-0.8270	-0.8722	-0.7457	-0.3936	0.9117	" 0.4884	0.4884	-0.9625
8wk24h_Na							1.0000	-0.9901	-0.8998	0.6502	-0.9914	-0.9978 ${ }^{\prime \prime}$	\% -0.1321	" 0.7895	0.4836	0.2772
8wk24hr_k								1.0000	0.1393	-0.3382	-0.8690	-0.9131	0.9286	0.9937	0.5256	-0.9733
8wk24h_Ca									1.0000	-0.9997	-0.9894	-0.6419	-0.8597	0.9258	-0.3871	0.9258
10wk_Na										1.0000	0.9955	0.9617^{\prime}	0.5000	$1.000{ }^{\prime \prime}$	-0.1134	-0.6226
10wk_K											1.0000	-0.5473	0.5000	-0.6031	-0.1134	-0.6226
10wk_Ca												$1.0000^{\prime \prime}$	-0.5000	$0.6031^{\prime \prime}$	0.1134	\% 0.6226
Plant_height													1.0000	-0.9923	0.8038	-0.9890
Leat_fresh_weigh														1.0000	-0.7241	0.9997
Leat_dry_weight															1.0000	-0.7070
Leafrea																1.0000

Key: Morphological Traits: PH = Plant Height, LFW = Leaf Fresh Weight, LDW = Leaf Dry weight, LA = Leaf Area. Physiological Traits: 24 hr _Na $=\mathrm{Na}^{+} 24 \mathrm{hr}$ post $1^{\text {st }}$ salt treatment, $24 \mathrm{hr} _\mathrm{K}=\mathrm{K}^{+} 24 \mathrm{hr}$ post $1^{\text {st }}$ salt treatment, $24 \mathrm{hr} _\mathrm{Ca}=\mathrm{Ca}^{2+} 24 \mathrm{hr}$ post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} \mathrm{Na}=\mathrm{Na}^{+} 2$ weeks post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk}-\mathrm{K}=\mathrm{K}^{+} 2 \mathrm{weeks}$ post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} _\mathrm{Ca}=\mathrm{Ca}^{2+} 2$ weeks post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} 24 \mathrm{hr} _\mathrm{Na}=\mathrm{Na}^{+} 24 \mathrm{hr}$ post $2^{\text {nd }}$ salt treatment, $8 \mathrm{wk} 24 \mathrm{hr} _\mathrm{K}=\mathrm{K}^{+} 24 \mathrm{hr}$ post $2^{-\overline{\text { nd }}}$ salt treatment, $8 \mathrm{wk} 24 \mathrm{hr} _\mathrm{Ca}=\mathrm{Ca}^{2+} 24 \mathrm{hr}$ post $2^{\text {nd }}$ salt treatment, $10 \mathrm{wk}_{-} \mathrm{Na}^{+}=2$ weeks post $2^{\text {nd }}$ salt treatment, $10 \mathrm{wk} _\mathrm{K}=\mathrm{K}^{+} 2$ weeks post $2^{\text {nd }}$ salt treatment, $10 \mathrm{wk} _\mathrm{Ca}_{-}=\mathrm{Ca}^{2+} 2 \mathrm{weeks}^{2}$ post $2^{\text {nd }}$ salt treatment.

The morphological and physiological traits comparisons were combined to produce a comparative outlook with the view to establish a clear picture on how the data correlates with different traits as presented in Figure 4.9.

Figure 4.9: A general correlation outlook using the whole data representing relationship between morphological and physiological traits in B. oleracea genotypes following salt treatment at different physiological stages of plant growth. Legend: +1 to -1 represent perfect positive correlation to negative correlation. Key: Morphological Traits: PH = Plant Height, LFW = Leaf Fresh Weight, LDW = Leaf Dry weight, LA = Leaf Area. Physiological Traits: 24hr_Na = Na^{+} 24 hr post $1^{\text {st }}$ salt treatment, $24 \mathrm{hr}_{-} \mathrm{K}=\mathrm{K}^{+} 24 \mathrm{hr}$ post $1^{\text {st }}$ salt treatment, $24 \mathrm{hr} \mathrm{Ca}_{-}=\mathrm{Ca}^{2+} 24 \mathrm{hr}$ post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} _\mathrm{Na}=\mathrm{Na}^{+} 2$ weeks post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} _\mathrm{K}=\mathrm{K}^{+} 2$ weeks post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} _\mathrm{Ca}_{-}^{-}=\mathrm{Ca}^{2+} 2$ weeks post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} 24 \mathrm{hr}_{-} \mathrm{Na}=\mathrm{Na}^{+} 24 \mathrm{hr}$ post $2^{\text {nd }}$ salt treatment, $8 \mathrm{wk} 24 \mathrm{hr}_{-} \mathrm{K}=\mathrm{K}^{+} 24 \mathrm{hr}$ post $2^{\text {nd }}$ salt treatment, $8 \mathrm{wk} 24 \mathrm{hr}-\mathrm{Ca}=\mathrm{Ca}^{2+} 24 \mathrm{hr}$ post $2^{\text {nd }}$ salt treatment, $10 \mathrm{wk}_{-} \mathrm{Na}^{-+}=2$ weeks post $2^{\text {nd }}$ salt treatment, $10 \mathrm{wk} _\mathrm{K}=\mathrm{K}^{+} 2$ weeks post $2^{\text {nd }}$ salt treatment, $10 \mathrm{wk}-\mathrm{Ca}^{-}=\mathrm{Ca}^{2+} 2$ weeks post $2^{\text {nd }}$ salt treatment.

Principal component (PC) analysis was carried out on the data to determine the proportion of variances retained by the principal components. This was done by extracting the eigenvalues, which correspond to the amount of the variation explained by each principal component as presented in Figure 4.10.

Figure 4.10: A plot of eigenvalues and variance associated with components generated from the data.

Figure 4.11: The strength of variables contribution in the formation of PC plot. Legend: light blue to dark blue indicate variable contribution from higher to lower. Key: Morphological Traits: PH = Plant Height, LFW = Leaf Fresh Weight, LDW = Leaf Dry weight, LA = Leaf Area. Physiological Traits: $24 \mathrm{hr} \mathrm{Na}=\mathrm{Na}^{+} 24 \mathrm{hr}$ post $1^{\text {st }}$ salt treatment, $24 \mathrm{hr} _\mathrm{K}=\mathrm{K}^{+} 24 \mathrm{hr}$ post $1^{\text {st }}$ salt treatment, $24 \mathrm{hr} _\mathrm{Ca}=\mathrm{Ca}^{2 \overline{+}} 24 \mathrm{hr}$ post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} _\mathrm{Na}=\overline{\mathrm{Na}}^{+} 2$ weeks post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} _\overline{\mathrm{K}}=\mathrm{K}^{+} 2$ weeks post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} _\mathrm{Ca}=\mathrm{Ca}^{2+} 2$ weeks post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} 24 \mathrm{hr} _\mathrm{Na}=\mathrm{Na}^{+} 24 \mathrm{hr}$ post $2^{\text {nd }}$ salt treatment, $8 \mathrm{wk} 24 \mathrm{hr} _\mathrm{K}=\mathrm{K}^{+} 24 \mathrm{hr}$ post $2^{\text {nd }}$ salt treatment, $8 \mathrm{wk} 24 \mathrm{hr}_{-}^{-} \mathrm{Ca}=\mathrm{Ca}^{2+} 24 \mathrm{hr}$ post $2^{\text {nd }}$ salt treatment, $10 \mathrm{wk} \mathrm{Na}^{+}=2$ weeks post $2^{\text {nd }}$ salt treatment, $10 \mathrm{wk} \mathrm{K}^{-}=\mathrm{K}^{+} 2$ weeks post $2^{\text {nd }}$ salt treatment, $10 \mathrm{wk}_{-} \mathrm{Ca}^{-}=\mathrm{Ca}^{2+} 2$ weeks post $2^{\text {nd }}$ salt treatment.

A biplot was also plotted to group the variables measured (the morphological and physiological traits) together with B. oleracea lines to enable draw relationships between the B. oleracea lines based on variables. Figure 4.12.

Figure 4.12: A biplot of variables and individual B. oleracea genotypes. Note: $\mathbf{1}=$ the founder rapid cycling line DHSL150, $2=$ B. bourgaei-S1 (C07007), $\mathbf{3}=\mathrm{C} 10025-\mathrm{DH}, \mathbf{4}=\mathrm{C} 13013-\mathrm{DH}$, $5=$ C13001-DH, $6=$ B. oleracea-S1 (C07060), $7=$ C10128-DH, $8=$ B. oleracea-S1 (C07079A) and $\mathbf{9}=$ C10121-DH. Key: Morphological Traits: PH = Plant Height, LFW = Leaf Fresh Weight, LDW = Leaf Dry weight, LA = Leaf Area. Physiological Traits: $24 \mathrm{hr} _\mathrm{Na}=\mathrm{Na}^{+} 24 \mathrm{hr}$ post $1^{\text {st }}$ salt treatment, $24 \mathrm{hr} _\mathrm{K}=\mathrm{K}^{+} 24 \mathrm{hr}$ post $1^{\text {st }}$ salt treatment, $24 \mathrm{hr}_{-} \mathrm{Ca}=\mathrm{Ca}^{2+} 24 \mathrm{hr}$ post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} \mathrm{Na}_{-}=\mathrm{Na}^{+} 2$ weeks post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk}-\mathrm{K}=\mathrm{K}^{+} 2$ weeks post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk}-\mathrm{Ca}=\mathrm{Ca}^{2+} 2$ weeks post $1^{\text {st }}$ salt treatment, $8 \mathrm{wk} 2 \overline{\mathrm{~h}} \mathrm{~K} _\mathrm{Na}=\mathrm{Na}^{+} 24 \mathrm{hr}$ post $2^{\text {nd }}$ salt treatment, $8 \mathrm{wk} \overline{2} 4 \mathrm{hr}_{-} \mathrm{K}=\mathrm{K}^{+} 24 \mathrm{hr}$ post $2^{\text {nd }}$ salt treatment, $8 \mathrm{wk} 24 \mathrm{hr}_{-}-\mathrm{Ca}=\mathrm{Ca}^{2+} 24 \mathrm{hr}$ post $2^{\text {nd }}$ salt treatment, $10 \mathrm{wk}_{-} \mathrm{Na}^{-}=2$ weeks post $2^{\text {nd }}$ salt treatment, $10 \mathrm{wk}_{-} \overline{\mathrm{K}}=\mathrm{K}^{+} 2$ weeks post $2^{\text {nd }}$ salt treatment, $10 \mathrm{wk}_{-} \mathrm{Ca}=\mathrm{Ca}^{2+} 2$ weeks post $2^{\text {nd }}$ salt treatment.

4.3 Discussion

Plants exposed to higher salt experience stress, both hyper-ionic and hyperosmotic through an accumulation of Na^{+}and Cl^{-}ions, which causes membrane damage, nutrient imbalance, enzymatic inhibition, metabolic dysfunction, etc. The quick and basic response of plants exposed to higher salt has been K^{+}efflux from the cells caused by excess Na^{+}(Nedjimi and Daoud, 2009; Anschutz et al., 2014; Bose et al., 2014b). The huge Na^{+}influx in the plant growth medium creates a plasma membrane depolarisation which further activates membrane-bound cation channels, the guard cell outward rectifying potassium channels (GORK), that stimulate Na^{+}diffusion into the cell, and K^{+}efflux and thereby increasing Na^{+}content (Blumwald et al., 2000; Demidchik and Tester, 2002). Salt-induced stress creates disruption of the $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio (Simaei et al., 2012) and interferes with K^{+} homeostasis (Tuņ̧türk et al., 2008).

From our result, we observed that salt stress-induced causes an increase in Na^{+}leaf content twenty-four hours post-treatment within the B. oleracea genotypes. Increase in Na^{+}leaf content following salt stress has been reported in many studies by Essa (2002); Yasar et al. (2006); Kusvuran et al. (2007) and work on canola genotypes by Tuņtürk et al. (2011). The level of potassium was affected by two-weeks post-treatment. Reduction in potassium level due salt stress has been widely reported e.g., studies by Essa (2002); Ashraf and McNeilly (2004); Li et al. (2006); Yasar et al. (2006); Bandeh-Hagh et al. (2008); Rahman et al. (2016). Potassium plays a critical role in the neutralisation reactions of anion and regulates cell membrane polarisation, osmoregulation, likewise being an important factor in the activity of enzymes involved in many metabolic pathways (Very et al., 2014). The reduction of potassium level was attributed to the entry of the higher amount of $\mathrm{Na}+$ into plant roots cell by non-selective cation channels (NSCC) that cause K^{+}efflux or leakage through guard
cell outward rectifying potassium channel (GORK) and stellar K^{+}outward rectifying channel (SKOR) (Rahman et al., 2016). Other potassium transporters that might be implicated are membrane-bound protein channels actively involved in transportation of potassium like Shaker K^{+}channel, High affinity potassium (HAK), potassium uptake (KUP), potassium transporter (KT) and high affinity potassium transporter (HKT) amongst others (Wang and Wu, 2013; Very et al., 2014; Shabala and Pottosin, 2014).

Higher Na^{+}accumulation was observed two-weeks post-treatment leading to a reduction of $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio, which might be as a result of disruption of ion homeostasis. The Na^{+}influx and K^{+}efflux have been associated with increased ROS production that could lead to the activation of NSCC (Maathius, 2006). A similar report showed that higher Na+ lead to the disruption of ion homeostasis under salt stress conditions (Tunşürk et al., 2008; Wu and Wang, 2012). From our result, Ca^{2+} level showed to be relatively unaffected in Brassica oleracea genotypes despite higher Na^{+}in the growth medium. Moreover, it has been reported that exogenous calcium promotes membrane stability, thus ameliorating salt toxicity by decreasing Na^{+}influx through NSCC and indirectly inhibiting K^{+}efflux through GORK channel in plants (Cramer et al., 1985; Essa et al., 2003; Shabala et al., 2006; Nedjimi and Daoud, 2009; Shabala and Pottosin, 2014). More so, exogenous calcium has shown to cause a reduction in the uptake and transport of Na^{+}and further preventing it from binding to the cell wall (Kurth et al., 1986; Rubio et al., 2003). Other functions of cellular and vacuolar calcium include blockage of the fast vacuole (FV) channel in a voltage-dependent and independent reaction preventing Na^{+}from being leak back into vacuole and ultimately their transport into the cell (Tikhonova et al., 1997; Shabala, 2013).

Improved Ca^{2+} level observed in B. oleracea genotypes might be the cause of improved K^{+} level observed after the plants were salt stress for the second time thus, leading to higher $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio. Although an increase in Na^{+}leaf content was observed, the B. oleracea genotypes were able to improve and retained their Ca^{2+} level unaffected. Ca^{2+} ion, in optimum concentrations, has been shown to play crucial roles in many physiological processes of plants and shown to increase plant resistance to abiotic stresses (Watkin et al., 2000). In addition, it has been suggested that Ca^{2+} participates in the regulatory mechanism of plants' adjustment to adverse conditions; high temperature, cold injury, drought stress and salt stress (Arora and Palta, 1989; Bowler and Fluhr, 2000; Mozafari et al., 2008; Joshi et al., 2012). It was reported also that higher extracellular $\mathrm{Ca}^{2+} / \mathrm{Na}^{+}$ratio causes a reduction in Na^{+}influx (Rengel, 1992).

4.4 Summary

Salt stress triggers a plant's physiological and morphological response for adaptation and growth. This chapter investigates the physiological variation in B. oleracea genotypes exposed to salt stress using 250 mM NaCl . The result demonstrates significant variation between the parent lines; DHSL150, the wild S1, and their derived DH lines. The level of different nutrients content; $\mathrm{Na}^{+}, \mathrm{K}^{+}$, and Ca^{2+} analysed have shown significant variation. Leaf Na^{+}content rises 24 hr post-treatment in all the B. oleracea lines, indicating physiological response related to an osmotic phase of salt stress whereby $\mathrm{Na}+$ influxes causes cell-water imbalances. It also shows a delay in activation of Na^{+}exclusion channels that shown to recycle Na^{+}in and out, so as to reduce its accumulation in the plant cell further preventing it from reaching the important plant organs such as leaves. Furthermore, it is an indication that the B. oleracea lines share similar biochemical response in handling $\mathrm{Na}^{+} 24$ hr post-treatment. Potassium $\left(\mathrm{K}^{+}\right)$, an osmotically important element in plant cell plays a critical role in both structure and maintenance of cell turgor has shown to be relatively unaffected 24 hr post-treatment, so also the Ca^{2+} level, which remains unchanged. This chapter also reported the deteriorating effects of excess salt two-weeks post-treatment on K^{+}level, an indication of homeostasis effects of Na^{+}against K^{+}, which is widely reported in many reviews that Na^{+}competes with K^{+}thereby displaces it to get into the cell especially through non-selective cation channels (SNCCs) and other low affinity K^{+}channels such as K^{+}outward-rectifying (KOR) channels and inward-rectifying (KIR) channels as a result of membrane depolarisation by excess Na^{+}, which led to movement of Na^{+}and reduction of K^{+}. These processes could be the cause of K^{+}reduction and increase Na^{+}observed in the B . oleracea lines. Although significant variation observed between genotypes, a statistical significant reduction was observed in the cultivated rapid cycling DHSL150 and a DH line (C13013) as against their untreated control lines while in wild S1 lines, and four other DH
lines have shown non-significant reduction as compared to their control lines. This could also be one of the reasons of high $\mathrm{Na}^{+} / \mathrm{K}^{+}$ratio observed in these lines and high cellular $\mathrm{Na}^{+} / \mathrm{K}^{+}$ratio is attributed salt resilience in many plants especially the salt tolerant ones. Different correlation analysis have been conducted to establish a relationship between the observed morphological variation and physiological response, different traits have shown both strong positive and negative correlation based on individual lines and this was further corroborated when the data was put together to creates to general outlook which confirms the individual correlations that the morphological variation observed is connected to physiological response. Principal component analysis conducted further group the lines based on the quality of variable contribution in PC generation and how it relates to individual lines where some DH lines were put together with the wild S 1 parent in one quadrant of PC biplot. Signifies good morphological and physiological relationship in response to salt stress in these B. oleracea lines and both wild S 1 and some DH lines have shown better performance to salt stress than the cultivated rapid cycling DHSL150. However, more work is recommended to enable their further classification based on salt resilience.

CHAPTER FIVE

Relative Gene Expression of Ion Membrane Transporters in B. oleracea genotypes in Response to Salt Stress

5.0 Introduction

As described in Chapter One, salt tolerance within plants involves reduction of excess $\mathrm{Na}+$ and retention of K^{+}ions in the cytosol. This has been attributed to be regulated by the membrane ion transporters. This are involved in either removing the added $\mathrm{Na}+$ from cells through a membrane-bound $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporter, and or via sequestration of excess Na^{+}in vacuoles through the NHX or $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporter in the vacuole membrane (Blumwald and Pool, 1985; Zhu, 2003; Bassil et al., 2012). These membrane transporters are also involved in K^{+}sequestration within the vacuole. Both types are ubiquitous membrane proteins that catalyse the electroneutral exchange of Na^{+}and or H^{+}across membrane, thereby playing essential roles in cellular $\mathrm{Na}^{+} / \mathrm{K}^{+}$and pH homeostasis (Rodriguez-Rosales et al., 2008; Leidi et al., 2010; Barragan et al., 2012). The calcium-permeable nonselective cation channels (NSCC) contribute both directly and indirectly to the Na^{+}entry into the cell. The influx of Na^{+}through these channels stimulates depolarisation of the plasma membrane, activating K^{+}outward-rectifying channels (KOR) and thus reducing net passive K^{+}uptake through the inward-rectifying K^{+}channels (KIR) (Demidchik et al., 2003; Shabala and Cuin, 2008; Demidchik, 2014). Accumulation of cGMP suppresses influx of Na^{+}by deactivation process via NSCC and allow the apoplastic Ca^{2+} into the cell cytoplasm through CNGC. Enhanced cytoplasmic Ca^{2+} typically indicates stresses (including; salt stress), and consequent triggers cascade reactions via activation of cytosolic calcium induces calmodulin (CaM)-dependent kinases, which further leads to activation of other plasma membrane H^{+}-ATPases (Bose et al., 2014a). Variations in transcript levels of genes related to ion-transportation, photosynthesis, respiration, and other critical metabolic roles have been reported under saline conditions (Ozgur et al., 2013; Bose et al., 2014a,b). Thus, restoring membrane voltage and inhibiting depolarisation-activated NSCC and process that lead to the reduction
of Na^{+}influx into the cell and efflux of K^{+}, improve plant tolerance to salt stress have been considered to be important response mechanisms.

Investigation of these transporters with the aim of developing salt-tolerant plants has been widely reported. For example, High-Affinity Potassium Transporters (HKTs), which perform functions of $\mathrm{Na}^{+} / \mathrm{K}^{+}$symporter and Na^{+}uniporter present in the plasma membrane of different plant crops including wheat, rice, and Arabidopsis (Waters et al., 2013). These transporters have been shown to play a critical role in sodium recirculation in Arabidopsis from the shoots to roots by loading Na^{+}from the shoot into the phloem and unloading it back into the roots (Berthomieu et al., 2003). HKT1;4 isolated from a salt-tolerant durum wheat cultivar gene expressed in Xenopus oocytes has also been shown to exhibit high Na^{+} selectivity (Amar et al., 2014). Studies by Sunarpi et al., (2005) indicated the localisation of HKTs to the plasma membrane of xylem parenchyma cells and linked it to salinity tolerance in Arabidopsis. It has also been shown that overexpression of HKT in Arabidopsis HKT1;1 in the root stele causes reduction by $37-64 \%$ in resilient phenotype. In addition Salt overly sensitive transporters (see Chapter 1, Section 1.2.7.4 \& Figure 1.5) such as (SOS1) have been shown to be involved in the transportation of Na^{+}as indicated by studies carried out on mutant yeast that lacks Na^{+}-ATPases and $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporter activity (Shi et al., 2002a). Further studies indicated that $\mathrm{AtSOS1}$ transporters work as anti-porters in long-distance of Na^{+}transport in Arabidopsis plants (Shi et al., 2002a,b). Overexpression of the SOS1 gene isolated from a halophyte Salicornia brachiate has shown to improved salt tolerance in tobacco (Yadav et al., 2012).

An initial RNA-Seq study on RNA collected from four B. oleracea lines from my experiment; i.e., DHSL150, DH lines; C13013-DH, C10128-DH, and C13001-DH (see Chapters 1) provided a list of genes thought to vary in response to salt stress. The aim of
this chapter was to establish the variation in relative gene expression of a number of salt stress specific ion membrane transporters in B. oleracea genotypes identified from this list.

The chapter is set to achieve this by measuring the relative gene expression on the individual transcripts using sequence-specific primers designed to transcribe a short segment of transcript sequence and amplify using qPCR and normalised against specific housekeeping genes.

5.2 Results

5.2.1 Differentially Expressed Genes (DEGs)

During the analysis of RNA-Seq data, quality reads obtained from two of the doubled haploid lines; C13013-DH and C13001-DH that were mapped to the genome of To1000 B. oleracea and passed the DESeq2 statistics pipeline showed that ion membrane transporters were among the differential expressed genes 24 hr post-treatment. Figure $\mathbf{5 . 1}$ shows expression of six plasma membrane-bound ion transporters within C13013-DH. One of these was the $\mathrm{Na}^{+} / \mathrm{H}^{+}$ion exchanger isoform 1 (NHXI) (ID: Bo9g010200), which is involved in Na^{+}ion compartmentalisation and exclusion from the root cells. The NHXI genes have shown higher relative expression in salt-treated line as compared to the untreated control. Another important electrochemical gradient proton generator that accomplishes the operation of tonoplast-bound NHX proteins; the vacuolar H^{+}-ATPase (ID: Bo3g048430) was showed to have lower expression in the treated line compared to the untreated control. This contrasts to the expression of two calcium-transporting ATPase (CaTATPase) (ID: Bo8g091730 \& Bo6g072820) located in chromosome 3 \& 4 (Chr. 3 and Chr.4) which exhibited higher expression as compared to the control plants (Figure 4.4). Our result further showed differential expression of vacuolar cation/proton exchanger (V-CAX) (ID: Bo4g145580) and Voltage-gated chloride channel ($V-C L C$) (ID: Bo4g145580) located in a chromosome, (Chr. 3 and Chr.2) to be higher compared to the control lines. The activities of all these transporters have been associated with a plant's ability to reduce the effects of excess Na^{+}and chloride ions within the cell cytoplasm (Natasha and Stephen, 2010).

Figure 5.1: The ratio of differentially expressed genes related to $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporter ($\mathrm{NHX1}$), and Ca^{2+} homeostasis (CaTATPase), proton gradient (H-ATPase), vacuolar cation exchanger (V $C A X)$, and voltage-gated chloride channel ($V-C L C$) under salt stress in salt-treated B. oleracea DH genotype as against the salt untreated control. The values represent the ratio between control and treated $(\mathrm{n}=3)$. Error bars are standard error of the mean (SEM).

The Figure $\mathbf{5 . 1}$ shows the ratio of differential gene expression of these six ion membranebound transporters selected based on differential expression in treated plants as against the salt untreated control plants. The $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporter (NHXI) showed 1.18 -fold higher while the two isoforms of Ca^{2+}-ATPases exhibited respectively lower expression of 0.30 and 0.80 fold reduction as compared to untreated control (Figure 5.1). The H^{+}-ATPase antiporters that are involved in cation exchange and regulation of electrochemical gradient were found to be suppressed by -12.93 -fold in treated plants compared to control. The vacuolar cation exchanger ($V-C A X$) and voltage-gated chloride channel (V-CLC) were shown be expressed in treated by 0.51 and 0.24 folds less as compared to control untreated line.

Figure 5.2 shows a membrane ion transporters identified as being differential expressed in the C13001-DH genotype. This line varies in both morphological and physiological traits from the C13013-DH genotype (Chapters 3 and 4). The membrane channels that showed
differential expression in C13001-DH genotype are mainly tonoplast-bound protons generators that drive the electrochemical gradient and specifically vacuolar-type proton ATPases. The result showed up-regulation of these vacuolar ATPases in particular of different sub-units. Two G subunits, d2 and ATPase 116 kDa subunit-a, that perform similar role in the maintenance of pH by creating avenues for proton-driven accompanied by other critical transporters (Natasha and Stephen 2010). The expression was significant higher in all the following ion transporters: H^{+}-ATPase (Bo9g027480), V-type proton subunit-G (Bo3g055180) and V-type subunit-a (Bo4g070380), which are showed to be located in chromosomes (Chr. 8, \& Chr. 9) respectively. Two were shown to have lower expression compared to control, the V-type proton ATPase subunit-a (Bo7g091490) and G-subunit (Bo7g109030) both located on chromosome (Chr. 1).

Figure 5.2: Ratio of differentially expressed genes related to vacuolar-type proton pumps ATPases (V-type d2, G subunits and 116 kDa subunit an isoform), and proton pump (H-ATPase), under salt stress in salt-treated B. oleracea DH genotype as against the salt untreated control. The values represent the ratio between control and treated $(\mathrm{n}=3)$. Error bars are standard error of the mean (SEM).

Similarly, the ratio of differentially expressed genes indicates the fold of expressed genes in treated plant as compared to the untreated control plant is presented in Figure 5.2, the expression of vacuolar-type proton pumps was highly expressed in treated plants, i.e., Vtype proton ATPase subunit G was 1.28 expressed compared to the control plant. While the two other isoforms of V-type subunit d2 and G showed 0.56 and 0.80 lower expression as compared to the control, which indicates the significant variability of these proton pumps under salt stress condition.

5.2.2 qPCR Analysis

5.2.2.1 Relative expression of Ion membrane transporters genes in twentyfour hours and two-weeks post-salt treatment B. oleracea genotypes

Following salt treatment, samples collected 24 hr post-treatment (24 hrpt) and 2 weeks posttreatment (2 wkpt) and qPCR analysis including normalisation of genes against the housekeeping (β-Tubulin) was carried out for both treated and untreated control plants. The results revealed significant physiological and biochemical variations between 24 hrpt and 2 wkpt between the B. oleracea genotypes. As expected, some of the membrane ion transporters; $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporters (NHX1), Ca^{2+}-ATPases, H^{+}-ATPases, CAX3, V-CLC, Vtype proton subunit-G, and V-type subunit-a that were shown to be differentially expressed in the RNA-Seq analysis were also shown to be differentially expressed using qPCR. In this segment of the result, membrane-bound such as $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporters (NHXI), calcium-cation exchanger (CAX3), and a family member of Ca^{2+}-ATPase (ECA2) are presented in Figures 5.3, 5.4.\& 5.5.

5.2.2.1.1 $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporter (NHX1)

The analysis of NHX1 genes showed significant expression pattern variation between the wild S1 parental lines; B. oleracea (C07060-S1), B. oleracea (C07079A-S1) and the cultivated rapid cycle founder line DHLS150. The NHX1 I genes showed low expression 24 hrpt in DHLS150 genotype while the wild S1 genotypes, especially B. oleracea (C07060S1) and B. oleracea (C07079A-S1) showed higher relative expression when compared to the untreated line (Figure 5.3). The doubled haploid genotypes; C13013-DH and C10121DH both have similar expression of NHXI as the parental lines.

Two-weeks post-treatment (2 wk pt), the level of expression of $N H X 1$ genes were shown to be reduced, this was observed in all the B. oleracea genotypes which could further indicates possession of a similar response in relative induction of $\mathrm{NHX1}$ genes to salt stress conditions in these B. oleracea lines. However, C13001-DH genotype showed differences from the other DH genotypes of B. oleracea wild S1 extraction. The variation could be as a result of genotype differences and possible effects of allelic recombination that affects the physiological response. The differences in relative gene expression of $N H X 1$ observed in some B. oleracea wild S1 and founder DHLS150 24 hrpt and 2 wkpt could be attributed to high sodium (salt stress) in the growing medium and 2 wkpt could suggests plant's ability to exclude the excess Na^{+}might have been reduce (excluded) or properly compartmentalised in the vacuole, which could lead to the lower the expression of NHXI (Figure 5.3).

Figure 5.3: Relative expression of $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporter (NHX1) genes involved in compartmentalisation of excess Na^{+}in response to salt stress in B. oleracea lines. Data are expressed as relative gene expression as against the untreated control. Error bars are \pm SEM of three biological replicates and nine technical replicates. Legend: Red bars $=24 \mathrm{hr}$ post-salt treatment and Orange bars $=$ two-weeks post-salt treatment.

5.2.2.1.2 Calcium-cation exchanger (CAX3) and Ca^{2+}-ATPases (ECA2)

A family of $\mathrm{Ca}^{2+} / \mathrm{H}^{+}$exchanger genes are involved in $\mathrm{Na}^{+} / \mathrm{H}^{+}$shuttling between the cytoplasm and the vacuole and play a critical role in ensuring the optimal cytoplasmic pH for normal enzymatic reactions. From the result (Figure 5.4), CAX3 showed positive relative expression compared to the untreated control line with significant expression observed in DHLS150, wild S1; B. oleracea (C07060-S1 and C07079A-S1) and one of DH line (C13013-DH). The other two DH lines; (C10121-DH) and (C13001-DH), show relative low $C A X 3$ genes expression. Variation in CAX3 genes expressional pattern between the parental lines; DHLS150, C07079A-S1 and their derived doubled haploid line C10121DH could be due to recombination differences. At 24 hrpt , both parent lines showed relative high positive expression when compared to the DH lines as against their controls. Twoweeks post-treatment, the pattern of expression reversed and the parental lines showed lower expression of the CAX3 genes compared to the DH genotypes except in line C13013-DH, which showed similarities with its parent line (Figure 5.4).

Also relative gene expression of an endoplasmic reticulum-bound member of the sub-group of Ca^{2+}-ATPases (ECA2) (Figure 5.4) investigated showed that ECA2 genes were highly expressed as against the untreated control 24 hr post-treatment (24 hrpt) in all the B. oleracea genotypes with exception of one DH line; C10121-DH, which shows lower expression of $E C A 2$ and $C A X 3$ genes. The relative expression of the $E C A 2$ genes showed to remained low two-weeks post-treatment in all the lines in respect to the control.

Figure 5.4: Early responses in relative gene expression 24 hr and two-weeks post-salt stress in B. oleracea genotypes for calcium-cation exchanger (CAX3) involved in $\mathrm{Na}^{+} / \mathrm{H}^{+}$ shuttling between the cytoplasm and the vacuole and endoplasmic reticulum-bound Ca^{2+} ATPases (ECA2). Data are expressed as relative gene expression as normalised against the control. Error bars are \pm SEM of three biological replicates and nine technical replicates. Legend: Red bars $=24 \mathrm{hr}$ post-salt treatment and Orange bars $=$ two-weeks post-salt treatment.

5.2.2.1.3 High-affinity Potassium Transporter family (KT9, KUP11, and $K T)$

The high-affinity potassium transporter family $\left(\mathrm{K}^{+} / \mathrm{Na}^{+} \mathrm{HKT}\right)$ proteins are bound to plasma membrane, i.e., potassium transporter, $(K T 9 \& K T)$ and potassium uptake ($K U P 11$). These were investigated and result obtained showed that the $K T 9$ gene was highly expressed in the wild S1 parental lines B. oleracea (C07060-S1and C07079A-S1) respectively 24 hrpt in respect to the control untreated lines (Figure 5.5). Furthermore a similar pattern of expression was observed in the KUP11 gene within the same wild S1 lines (C07060-S1 and C07079A-S1) suggesting both are involved in the response (Figure 5.5). The expression fell two-weeks post-treatment. The DHLS150 and DH lines showed low relative expression of KT9 \& KUP11 genes at both time-points, apart from C13001-DH in which the KUP11 gene was highly expressed with respect to the control. Figure 5.5 revealed that the relative expression of $K T$ genes was lower in respect to the control in the S 1 lines and DH lines. These lines; C07060-S1 and C07079A-S1were showed to have an appreciable level of $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio 2 wkpt . Expression of these genes could be one of the reasons of the observed higher $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio in these lines (Chapter 4).

Figure 5.5: Relative expression of genes involved in homeostasis of potassium highaffinity $\mathrm{K}^{+} / \mathrm{Na}^{+}$transporter in salt stress in B. oleracea genotypes. Data are expressed as relative gene expression as normalised against the control. Error bars are \pm SEM of three biological replicates and nine technical replicates. Legend: Red bars $=24 \mathrm{hr}$ post-salt treatment and Orange bars = two-weeks post-salt treatment.

5.2.2.1.4 V-type ATPases (V-type-a1 and G subunits)

In salt stress conditions, active transport of solutes between the cytoplasm and the vacuole remains critical and depend upon the efficiency of proton pumps. Following salt treatment, the expression of V-type ATPases genes in B. oleracea genotypes was investigated. The result (Figure 5.6) showed relative expression of the V-type-al genes was reduced in all the lines. The DH lines and the cultivated rapid cycling parent line DHLS150 showed lower relative expression of V-type-G 24 hrpt ., C07060-S1, C07079A-S1 also showed a lower relative expression of V-type- $G 2$ wkpt as compared to the control. In contrast the expression of the V-type- G subunit was higher in wild S1 C07060-S1, and C07079A-S when compared to the untreated control. This suggests that this gene varies and could regulate the salt response in these lines.

Figure 5.6: Relative expression of vacuolar ATPases a and G subunits that involved in the inward proton gradient that derived $\mathrm{Na}^{+} / \mathrm{H}^{+}$for compartmentalisation in vacuole in response to salt stress. Data are expressed as relative gene expression as normalised against the control. Error bars are \pm SEM of three biological replicates and nine technical replicates. Legend: Red bars $=24 \mathrm{hr}$ post-salt treatment (24 hrpt) and Orange bars $=$ twoweeks post-salt treatment (2 wkpt).

5.2.2.1.5 Voltage-gated Chloride Channels (V-CLC)

Voltage-gated chloride channels are important channels that regulate the movement of anions and play a critical role in preventing excess chloride from reaching toxic levels in the cytoplasm of a cell. Figure 5.7 shows the relative expression of the $V-C L C$ gene was highly expressed in the wild S1 B. oleracea (C07060-S1) and slightly increased expression in the two DH lines; C10121-DH and C13013-DH with respect to the control 24 hrpt. C13001-DH and the other wild S1 B. oleracea (C07079A-S1 showed the expression of V $C L C$ genes 24 hrpt to be reduced at this time point. Two-weeks post-treatment, the V-CLC gene expression was lower than the control in all the genotypes.

Figure 5.7: Variation in the expression of voltage-gated chloride channels genes that involved for anion transporters and contributes to Cl - movement within plants during salt stress. Data are expressed as relative gene expression as normalised against the control. Error bars are \pm SEM of three biological replicates and nine technical replicates. Legend: Red bars $=24 \mathrm{hr}$ post-salt treatment and Orange bars $=$ two-weeks post-salt treatment.

5.3 Discussion

A number of potential salt tolerance genes have been identified, and their function to salt tolerance have been monitored through experiments looking at; the control of salt uptake from roots, regulation pattern of cell influx, long-distance transport mediated through xylem to phloem and compartmentation by plants membrane ion transporters at both cellular as well as tissue levels (Fowler and Colmer 2008). The difference classes relevant to salt tolerance are discussed below.

5.3.1 $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporter (NHX1) and V-type-a1 and G subunits

From our results, the level of relative gene expression of the selected plant membrane ion transporters, especially the tonoplast-bound $\mathrm{Na}^{+} / \mathrm{H}^{+}$exchangers, NHXI genes has shown to be highly expressed in some B. oleracea genotypes that were shown to have high $\mathrm{K}^{+} / \mathrm{Na}^{+}$ ratio and less expressed in others that show low $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio. Many studies have described the vacuolar NHXI proteins as group of integral membrane antiporters that catalyse the exchange of cations across tonoplast membrane under the influence of electrochemical gradient generated by the activities of other vacuolar H^{+}-ATPases and other proton pumps (Blumwald et al., 2000; Yao et al., 2012; Wang et al., 2013b). In Arabidopsis, different isoforms of $\mathrm{Na}^{+} / \mathrm{H}^{+}$exchanger (NHX) i.e., NHXI-4 have been identified to involve in $\mathrm{K}^{+} / \mathrm{Na}^{+}$exchange, for H^{+}in the vacuole (Bassil et al., 2012; Barragan et al., 2012; McCubbin et al., 2014). Regulation of cytoplasmic pH is critical to plant cell under salinity stress, several studies involving E. coli, yeast, plants and animal have suggested that NHX-type antiporters act mechanistically to leak protons in order to fine-tune the luminal pH of specific intracellular compartments (Reguera et al., 2014). High expression of these genes; NHX1 and V-type-ATPases in B. oleracea genotypes 24 hrpt may be a result of excesses of Na^{+}and other protons. This could lead to significant membrane depolarisation thus causing
transport of excess ions to the vacuole under an electrochemical gradient established by V-type-ATPases, i.e., V-type-a and G proteins whose genes were shown to be highly expressed in some B. oleracea genotypes in response to salt stress. Another important role played by NHX1 genes, in addition to sequestration, has been associated with cytosolic K^{+}uptake into the cell vacuole, as reported by studies of nhxl/nhx2 knockout (Bassil et al., 2011; Barragan et al., 2012). These observations were further elaborated by work of Liu et al., (2014), which showed that overexpression of NXHI genes in transgenic soybean led to a reduction of Na^{+} in the shoots and more of K^{+}in both roots and shoots, suggesting its role in K^{+}homeostasis. Under salt stress conditions, maintaining an appreciable $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio is critical to the plants' survival. Kobayashi et al. (2012), have shown in transgenic rice that lines that showed high expression of NHXI^{2} genes exhibits higher K^{+}content in shoots under salt environment. Importantly, some of our B. oleracea genotypes used showed high expression of NHXI genes and improved $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio two-weeks post-treatment.

5.3.2 High-affinity Potassium Transporter family (KT9, KUP11, and KT)

High-affinity potassium transporter family are proteins which act both as $\mathrm{Na}^{+} / \mathrm{K}^{+}$symporter or uniporter. Studies have proven their presence in the plasma membrane in different plants cell membrane, viz. include wheat, rice, and Arabidopsis for its role in salinity tolerance (Waters et al., 2013). Analysis of our result shows that $K T 9$ and $K U P 11$ were both expressed twenty-four hours post-salt treatment in some B. oleracea genotypes. Potassium transporter genes are classified into a three-member family in plants, namely Shakers K^{+} channel, HAK (High-Affinity K)/KUP (K Uptake)/KT (K Transporter) and HKT (Highaffinity K Transporter) and are active at the plasma membrane (Wang and Wu, 2013; Very et al., 2014; Shabala and Pottosin, 2014). Under salt stress conditions, plants struggle to
maintain certain level of potassium concentrations to counterbalance the effects of excess sodium to ensure their osmotic potential (Su et al., 2001; Shabala and Pottosin, 2014). Potassium plays a critical role in enzymes activities as a cofactor and in regulation of water movement into the cell to maintain cell turgor. Positive expression of $K T$ and $K U P 11$ in some B. oleracea genotypes used could be a counter mechanism to reduce the effects of excess sodium, particularly important in $\mathrm{K}^{+}-\mathrm{Na}^{+}$homeostasis. Studies indicate that $A K T 1$ in P. tenuiflora (PutAKT1) was up-regulated under both excess/deficient potassium conditions and under salt conditions, which signify the role of the genes in potassium homeostasis (Ardie et al., 2010). Also, its overexpression has shown to improved salt tolerance in Arabidopsis through an increase K^{+}uptake (Ardie et al., 2010). The expression of these genes by B. oleracea genotypes could be the reason of their improved $\mathrm{Na}^{+} / \mathrm{K}^{+}$ratio twoweeks post-treatment.

5.3.3 $\mathrm{Ca}^{2+} / \mathrm{H}^{+}$- exchangers (CAX3) and Ca^{2+}-ATPases (ECA2)

Plants Ca^{2+} - ATPases are of two classes; IIA and IIB: i.e., Type IIA are endoplasmic reticulum forms (ECA as ER-type Ca^{2+}-ATPase) and type IIB, autoinhibited Ca^{2+} - ATPase (ACA) (Baxter et al., 2003). The endoplasmic reticulum-bound ECA2 isoform showed lower relative expression following salt stress in all B. oleracea genotypes used. Although no report is available to suggests the key role of ECA2 genes to salt tolerance, some studies have suggest its possible involvement in potassium and calcium transport (Edelist et al., 2009). For example, using constitutive expression studies, genes related to $K T 1, K T 2$, and ECA1 have shown to be associated with SOS1 genes that regulates both potassium and calcium transport in the halophyte H. paradoxus (Edelist et al., 2009).

5.3.4 Voltage-gated Chloride Channels (V-CLC)

Plants under salinity stress suffer from the effects of excess anions especially chloride $\left(\mathrm{Cl}^{-}\right.$). Voltage-gated dependant chloride channels were reported to be located in thylakoids membrane in Arabidopsis which function to fine-tune the proton motive force (PMF) and enable plants to adjust variability of light during photosynthesis (Andrei et al., 2015). Under salt stress conditions, excess Cl^{-}anions tend to affect membrane polarisation and the electrochemical gradient thus, affecting the cytoplasmic pH . Most of the critical enzymes present in thylakoids are of photosynthetic importance, for example, ribulose -1,5bisphosphate carboxylase/oxygenase (Rubisco), an important regulatory enzyme in Calvin Cycle, was reported to be affected by salinity stress (Bose et al., 2017). Our result showed the relative expression of V-CLC genes to be high in some B. oleracea genotypes 24 hrpt and lowered expression two-weeks post-treatment. This could suggest its significance in safeguarding the chloroplasts from deleterious effects of excess Cl^{-}ion under salt stress in these B. oleracea genotypes (Bose et al., 2017).

5.4 Summary

Plants salt tolerance has most focussed on selectivity between Na^{+}and K^{+}to maintain favourable $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratios, which require transport systems that involve combinations of membrane transporters that act in different plant parts from roots to shoots. This Chapter reports an investigation which involves validation of some selected ion membrane transporters that are salt stress specific and showed to be expressed 24 hr post-treatment in RNA-Seq data. The study succeeded in the validation of these transporters using qPCR where it shows the relative expression of these genes in different B. oleracea genotypes under salt stress at two time-points; 24 hr post-treatment and two-weeks post-treatment. The relative expression of these genes showed variability at different time-points and between genotypes in respect to their untreated control. The data was normalised against housekeeping genes (β-Tubulin and T1P41 see Appendix V). The validation involves the expression of NHX1, CAX3, V-CLC, ECA2, ATPases- $a \& G$ subunits and $K T 9, K T$ and KUP11 genes. The variation between B. oleracea genotypes in the expression of these genes could be as a result of their differences in allelic combination in different segments of DNA and polymorphisms (SNPs). They also form part of active and regulatory sites of different genes and consequently affect responses. Further work is now needed to establish more information on the genetic control and to determine the allelic variation that could be responsible for the observed variation in relative gene expression.

CHAPTER SIX

Allelic Variation and level of Gene Introgression between the \boldsymbol{B}. oleracea Genotypes

6.0 Introduction

Natural selection has been the key process responsible for the development of the niches developed between organisms and its environment. In plants breeding, successful selection of genetically superior plants has been associated with the occurrence of genetic variability (Allard, 1960). Genetical variability has been a consequence of the presence of contrasting loci in the genetic constituent under study (Fu et al., 2014). In genetic term, loci are described as either homozygous or heterozygous (Fehr, 1987). Presence of heterozygous loci generally has been implicated as an important factor within breeding programs (Ramalho et al., 2013). This factor was exploited in hybrid progeny that exhibited an enhanced agronomic performance relative to inbred lines. The potential of wildtype species as a source for genetic variation to bring about crop improvement has been known since the early twentieth century (Zamir, 2001; McCouch, 2004). Difficulties related to interspecific breeding, which is associated with cross-incompatibility between the wildtype species and cultivated crop have been suggested. For example, problems like F1-hybrid sterility; infertility of the segregating generations may affect recombination between the chromosomes of the two species; and transfer of trait of interest (reviewed: Alisdair et al., 2006). Wild introgression breeding has been shown to contribute significantly to modernday varieties despite some challenges (Zamir, 2001). Introgression involves the transfer of one or a number of genes or gene complexes from the plant genetic materials (Haussman et al., 2004).

The level of gene expression can be affected by DNA variation and thus quantitative variants can be detected. For example, naturally occurring allelic diversity in plants has been suggested to be an important cause of phenotypic variation (Doebley and Lukens, 1998; Buckler and Thornsberry, 2002). Induced mutations that eliminate or cause a reduction in gene function, naturally occurring allelic variation modulates gene products and function
and could be an underlying mechanism for quantitative trait variation (Tanksley, 1993; Yano and Sasaki, 1997; Mackay, 2001). Data generated from DNA sequencing has revealed that nucleotide sequence variation is common. For instance, the genome of maize (Zea mays) has a higher level of DNA sequence polymorphism than that of humans (Sunyaev et al., 2002; Bucker and Thornsberry, 2002; Ching et al., 2002). The types of allelic variants could be of different, e.g., single nucleotide polymorphisms (SNPs), insertion/deletions (InDels), to large variants runs to several kilobases of DNA fragments (Fu and Dooner, 2002). Such allelic variants are shown to play an important role in gene regulation and affect the expression level. The complex nature and lack of efficient methodology to unravel the relationship of allelic expression differences from changes in a regulatory region that can affect the resultant phenotype have been widely reviewed (Cowles et al., 2002; Glazier et al., 2002).

This chapter aims to investigate allelic variation in the parent B. oleracea lines and their derived DH lines and try to determine the level of allelic introgression in the DH lines that could be responsible for the phenotypic variation observed among the B. oleracea parental and DH lines in response to salt stress.

This will be achieved by identifying and observing variation within the genes examined in chapter five under salt stress in B. oleracea by using data generated by genotype-bysequencing (GBS).

6.2 Results

6.2.1 Allelic Variation

Following salt stress treatment, transcriptomic profiling performed 24 hr post-treatment has shown the expression of some membrane ion transporters in selected DH lines (Figures 5.1\& 5.2; Chapter 5). This was followed by further validation by using qPCR (Chapter 5). The genetic variability observed between the parental and DH lines in relative gene expression (Chapter 5) and relative abundance (Appendix VIII) as in respect to the untreated control, which was normalised against house-keeping gene (β-Tubulin). The total DNA of the parents and some DH lines was extracted and analysed using genotype-by-sequencing analysis (GBS). From the GBS analysis, comparison between the parent lines and DH lines showed allelic differences. For example, a close comparisons between some segments of chromosomes in the cultivated founder DHSL150 and that of wild S1 (C07060-S1) (Appendix II Table S2), revealed that the arrangement of nucleotide sequence varies in various positions in the same chromosome and within all the chromosomes (Chr. 1 to Chr . 9) respectively. Different positions observed have shown substitution, for instance, multiple positions where T/T, alleles appeared in particular position of chromosome in the DHSL150 same alleles was substituted in the wild S1 B. oleracea (C07060) with C/C, and this was observed in multiple places where alleles $\mathrm{A} / \mathrm{A}>\mathrm{C} / \mathrm{C}$, and vice versa. This indicates clear variability in the alleles combination of the parent lines that can affect both morphological and physiological response in response to salt stress reported (Chapters 3 and 4) and their genes expression (Chapter 5). Further comparison between the cultivated rapid cycling DHSL150 and wild S1 B. bourgaei (C07007-S1) showed differences in variants alleles and such differences appeared repeatedly in multiple positions differentiating C07007-S1 from the DHSL150 parent line (Appendix III Table S3). An attempt was also made to compare positions in both parent lines, for example, in chromosome 1 (Chr.1), position of 1,019,546
showed that in cultivated rapid cycling line DHSL150 alleles A/A was substituted in both wild S1 (C07060-S1 and C07007-S1) by C/C alleles. This example was repeated in Chr. 2 position 675,339 A/A alleles in DHSL150 substituted in wild S1 C07060 with T/T alleles while in C07007-S1 position closed to that 675,361 showed C / C variants alleles. These comparisons and examples appeared in many positions in chromosomes (Chr. 1 to Chr. 9) clear indications that alleles recombinational differences could be behind the observed responses between the parent lines and the DH lines.

6.2.2 Introgression in the DH lines

The level of allelic introgression between the cultivated rapid cycling DHSL150 and DH line (C13001) was investigated where positions in the chromosomes were compared in both DHSL150 and C13001-DH (Table 6.1). The result showed that significant allelic contribution (Chr.1, 2, 8 and 9) in C13001-DH have been donated by the DHSL150 and was due to a significant introgression that is possibly shared in other wildtype parent lines were observed in chromosomes Chr. 6 and 7 respectively. Table 6.1, also showed single nucleotide substitution (SNPs) (in brown colour text), observed repeatedly in different chromosome positions, introgression from other wild parent lines (yellow colour) and the uncoloured segments represent contribution from DHSL150. Likewise, the blue colour indicates monomorphic alleles being introgressed into the same chromosome segments from parent lines into the DH line. This could be the underlying factor for the observed similarities in some responses salt stress.

We also compared allelic variants at specific transcripts positions by combining RNA-Seq data that show start- to end- nucleotide base positions of each transcripts and chromosome number its located and GBS data that showed variants alleles in some positions in all the
chromosomes. A comparisons of the positions where transcripts were showed to be located revealed the presence of allelic variants that differed between cultivated rapid cycling DHSL150, and wild S1 (C07060-S1 and C07007-S1) as presented in Table 6.2. This suggests possible allelic effects and variation observed in relative gene expression between lines and few positions of allele introgressions at transcripts level were identified in the C13001-DH line Table 6.2

Table 6.1: A comparisons of Alleles Introgression in the DH line C13001-DH from the Cultivated DHSL150 and other S1 parent lines

Chr.	Position	DHSL15	SC130		Position		Chr.	Position			Chr.	Position		Chr	Position			Chr.	Position				Position			Chr.	sition			osition	
C1	12,778,128	T/T	T/T	C2	C/C	c/c	C3	525,697	C/T T	T/T	C4	2,290,503 T/T	T/T	c5	1,139,9	/G	A/A	c6	668,916	C/T	c/c	C7	1,178,931	T/G	T/G	C8	1,452,146 T/T	T/C	c9	2,157,116 c/C	左
C1	12,778,144		T/T	C2	1,519,773 T/T	c/c	с3	525,720 T/	T/C	c/c	C4	2,290,520 T/T	T/T	c5	1,150,273	6/6	T/T	c6	5,550,498	T/T	T/T	c7	1,178,956	C/T	C/T	c8	1,452,151 T/T	T/T	c9	9,954,476 T/A	T/A
c1	12,808,630		T/T	c2	1,570,016 T/T	c/c	с3	525,740 T/		T/G	C4	2,314,923 T/T	T/T	c5	1,150,279		A/A	c6	5,550,585	T/T	T/T	c7	1,178,972	A/C	A/C	c8	1,452,164 T/T	T/C	c9	9,954,487 T/C	c / C
C1	12,919,117 T	T/T	T/T	c2	1,570,143 c/c	c/c	с3	525,767 G	6/C	6/C	C4	2,326,724 T/T	T/T	c5	1,150,782	c/c	T/T	c6	5,550,590	T/T	T/T	C7	1,178,991	A/T	A/T	c8	1,452,165 T/T	T/C	с9	9,954,522 G/T	6/6
C1	13,244,706 A	A/C	A/C	c2	1,658,484 A/A	6/6	с3	1,727,968 A	A/G	6/6	C4	2,357,158 T/T	T/T	c5	1,150,830	6/G	A/A	c6	11,516,161	c/	T/T	C7	7,752,294	T/T	T/T	c8	7,917,220 T/C	c / c	c9	9,954,536 C/T	C / T
c1	13,244,719 A	A/G	A/G	C2	1,658,488 A/A	c / c	С3	1,743,337 cic	c/c	c/c	C4	4,989,297 G/A	G/A	c5	1,150,977	T/T	A/A	c6	11,516,171	c/c	A/A	C7	7,752,384	T/T	T/T	C8	37,654,684 G/G	6/C	c9	38,522,964 C/A	C/A
C1	13,244,734 T	T/G	T/G	C2	1,658,509 G/G	6/6	С3	1,743,678 T	T/T	T/T	C4	4,989,307 G/A	G/A	c5	1,173,909	A/A	T/T	c6	11,516,200	T/T	c/c	C7	7,784,954	T/T	T/T	C8	37,654,696 A/A	6/A	c9	38,522,978 G/T	G/T
c1	13,392,095 C	CT	c/T	c2	1,663,064 T/T	c/c	с3	1,853,124 A/	A/A A/	A/A	C4	4,989,358 C/G	c/G	c5	1,175,959		c/c	c6	12,850,536	C/A	c/c	c7	10,786,161	c/c	c/c	c8	37,654,726 A/A	A/G	c9	47,910,542 C/C	c/c
C1	14,230,334 T	T/T	T/T	c2	1,675,215 T/T	c/c	с3	1,853,129 T/	T/T	T/T	C4	5,027,007 c/C	c/c	c5	1,248,191	c/c	T/T	c6	13,930,631	C/T	c/c	c7	10,786,184	c/c	c/c	c8	40,607,704 G/G	6/6	c9	47,929,614 G/G	6/6
C1	14,230,337		T/T	c2	1,678,594 c/c	c/c	с3	1,853,153 T/	T/T	T/T	C4	5,057,711 T/T	C/T	c5	1,464,888	C/A	c/c	c6	18,452,501		C/T	C7	10,792,499	c/c	c/c	c8	40,607,829 G/G	6/6	c9	47,929,642 T/T	T/T
C1	14,230,353 T	T/T	T/T	c2	1,689,290 G/G	T/T	с3	1,869,050 T/	T/T	T/T	C4	5,057,714 T/T	T/C	C5	1,464,894	A/G	A/A	c6	31,840,368	A/G	A/A	C7	10,810,089	c/c	c/c	c8	40,675,250 G/6	6/6	c9	47,929,644 A/A	A/A
c1	14,230,363		T/T	c2	1,689,311 T/T	c/c	с3	1,912,212 cic	c/c	T/T	C4	5,108,928 T/T	T/T	c5	1,464,906		c/c	c6	33,616,485	C/G	c/G	C7	10,810,101	T/C	T/C	C8	40,675,322 A/A	A/A	c9	47,945,582 c/c	c/c
C1	14,565,988	c/c	c/c	C2	1,689,350 A/A	T/T	с3	2,976,415 G	6/6	c/c	C4	18,146,220 c/A	C/A	C5	1,464,912	6/A	6/6	c6	33,617,212	A/G	A/G	C7	17,622,547	A/T	A/A	C8	40,677,578 T/T	T/T	c9	47,977,854 c/C	c/c
C1	14,566,117 c		c/c	C2	1,806,627 T/T	T/T	С3	2,976,600 cic		c/c	C4	18,249,575 A/G	A/G	c5	1,882,439	T/T	T/T	c6	38,490,202		A/A	C7	20,455,749		c/c	C8	40,726,097 T/T	T/T		47,977,859 A/A	A/A
C1	14,566,133 T	T/T	T/T	c2	1,806,639 G/G	T/T	C3	3,036,810 G	6/6 T	T/T	C4	19,787,101 G/A	6/G	C5	1,886,551	T/T	T/T	c6	38,490,225		T/T	C7	35,143,830	C/T	c/T	c8	40,726,137 T/T	T/T	c9	47,984,281 A/A	A/A
C1	14,570,527 T/	T/T	T/T	C2	1,806,713 c/c	T/T	с3	3,047,975 T/		T/T	C4	19,802,244 G/T	6/T	C5	1,886,561	T/T	T/T	c6	38,493,446		c/c	C7	35,143,839		c/G	C8	40,726,209 c/c	c/c	c9	47,984,299 c/C	c/c
C1	14,570,577 T/	T/T	T/T	C2	1,809,217 G/G	c/c	с3	3,048,030 T/	T/T T	T/T	C4	19,802,255 C/A	C/A	C5	1,886,566	T/T	T/T	c6	38,493,540	c/c	c/c	C7	35,143,842	6/A	G/A	C8	40,726,227 A/A	A/A	c9	48,011,262 c/c	c/c
c1	14,570,637 c	c/c	c/c	c2	1,809,293 A/A	T/T	сз	3,050,304 G		T/T	C4	19,888,677 A/A	A/A	C5	3,358,619		6/6	c6	38,493,636		T/T	C7	35,143,854		T/C	c8	40,726,293 A/A	A/A	c9	48,011,278 T/T	T/T
c1	14,570,662 c	c/c	c/c	c2	1,826,117 A/A	A/A	сз	3,050,345 G/	6/G A	A/A	C4	19,916,780 T/T	T/T	c5	3,358,628	A/C	A/A	c6	38,499,410	c/c	c/c	c7	42,057,564	6/6	A/A	c8	40,726,455 T/T	T/T	c9	48,089,796 T/T	T/T
C1	14,690,287	6/6	6/6	C2	1,860,888 C/C	6/6	с3	3,050,441 T/		A/A	C4	20,064,456 A/A	A/A	C5	4,027,925	c / C	c/c	c6	38,499,440		6/6	C7	42,139,168	6/6	A/A	C8	40,733,163 G/G	6/6	c9	48,089,817 T/T	T/T
C1	14,775,420 T/		T/T	c2	1,931,177 c/C	c/c	с3	3,547,025 T/	T/T	c/c	C4	20,175,960 C/T	C/T	c5	4,027,961	c/C	c/c	c6	38,527,168	A/A	6/6	C7	42,139,213	6/6	A/A	c8	40,733,188 c/c	c/c	c9	48,089,844 T/T	T/T
C1	14,775,426 T/	T/T	T/T	c2	1,931,195 T/T	c/c	с3	3,575,147 T/	T/T T/	T/T	C4	20,175,973 C/T	C/T	c5	4,027,970	c/c	c/c	c6	38,578,260		6/6	C7	42,139,264		c/c	C8	40,733,193 G/6	6/6	c9	48,153,478 c/c	c/c
C1	14,887,712 T/		T/T	c2	034,504 c/c	c/c	сз	3,581,417			C4	20,177,640 C/T	C/T	c5	028,575	c/c	c/c	c6	38,578,297		A/A	C7	42,139,305		G/G	C8	40,733,214 c/c	c/c	c9	48,155,731 C/C	c/c
C1	14,897,514 T		T/T	C2	4,062,700 c/c	c/c	${ }^{\text {c3 }}$	3,581,429		T/T	C4	20,317,039 A/G	A/G	C5	9,032,865	A/G	A/G	c6	38,584,827	T/T	T/T	C7	42,304,467		c/c	C8	40,776,265 G/G	G/G	c9	48,229,808 c/c	c / c
C1	14,900,379 c		c/c	C2	4,062,730 T/T	c/c	${ }^{\text {c3 }}$	3,581,453		T/T	C4	20,317,079 C/T	C/T	C5	9,032,890	C/T	C/T	c6	38,584,828	A/A	A/A	C7	42,322,943		G/G	C8	40,776,269 G/G	6/G	c9	48,282,752 c/c	c / c
C1	14,928,901 A		A/A	c2	4,067,421 T/T	T/T	с3	26,436,020 ${ }^{\text {T/ }}$		T/T	C4	20,798,837 A/T	A/A	C5	9,137,773	G/T	G/T	c6	38,600,672		c/c	C7	42,412,976	A/A	c/c	c8	40,780,307 G/6	6/6	c9	51,305,490 T/T	T/T
C1	14,928,994	C/T	C/T	C2	5,376,130 c/c	c/c	с3	26,436,459		T/T	C4	26,375,457 A/G	6/6	C5	16,247,592	T/T	T/T	c6	38,601,265		A/A	C7	42,413,112		T/T	c8	40,780,310 T/T	T/T	c9	51,355,492 A/A	A/A
C1	14,988,999 T	T/C	T/C	C2	5,376,137 c/C	c/c	с3	26,436,488 T	T/T	T/T	c4	26,375,472 c/6	6/6	C5	16,247,603	T/T	T/T	c6	38,601,516	6/6	A/A	C7	42,587,471	A/A	T/T	C8	40,780,337 T/T	T/T	c9	51,323,388 T/T	T/T
C1	18,176,385	c/c	c/c	C2	5,376,168 c/c	c/c	с3	26,437,539 T/		T/T	C4	28,611,739 T/T	T/T	c5	16,248,743	T/T	T/T	c6	38,601,576		6/G	C7	42,587,537		c/c	C8	40,782,341 G/6		с9	51,323,404 T/T	T/T
c1	18,177,422 c	c/c	c/c	C2	5,376,189 G/6	A/A	сз	26,438,277 T/	T/T	T/T	C4	28,630,315 T/T	T/T	c5	16,292,336	T/T	T/T	c6	38,601,577	A/A	6/6	C7	42,598,382		T/T	c8	41,392,747 C/T	C/T	c9	51,323,557 T/T	T/T
C1	18,184,466 c	c/c	c/c	C2	5,376,280 T/T	T/T	сз	26,438,315 c/	c / c	c/c	C4	28,646,133 T/T	T/T	C5	16,292,413	T/T	T/T	c6	38,601,594		A/A	C7	42,602,533		T/T	c8	41,392,753 G/A	G/A	c9	51,342,443 T/T	T/T
C1	18,234,998 c		c/c	C2	5,376,304 T/T	c/c	с3	26,438,438 T/	T/T T	T/T	C4	28,651,848 T/T	T/T	C5	20,263,167	C/A	c/c	c6	38,601,607		c/c	C7	42,603,503		T/T	C8	41,392,843 G/A	G/A	c9	51,342,477 T/T	T/T
C1	25,591,595	c/T	c/T	C2	5,382,474 A/A	A/A	с3	26,467,345 T/	T/T T	T/T	C4	28,651,927 T/T	T/T	c5	29,200,864	C/T	T/T	c6	38,601,620		A/A	C7	42,603,523		T/T	C8	41,392,891 C/A	C/A	c9	51,342,522 c/c	c/c
C1	25,591,601 c		C/T	C2	5,382,527 T/T	T/T	C3	26,597,168 A		A/G	C4	28,770,467 T/T	T/T	C5	32,948,404		C/T	c6	38,611,726		c/c	C7	42,692,956			C8	41,392,906 T/A	T/T	c9	51,342,563 T/T	T/T
C1	25,899,042 T	T/C	T/C	C2	5,384,780 G/G	G/G	с3	26,597,189 A	A/T A	A/T	C4	42,956,967 T/T	c/T	C5	32,949,529	G/G	6/6	c6	38,617,419		c/c	C7	42,708,380		G/G	C8	41,419,201 C/C	c/c	c9	51,358,271 T/T	T/T
C1	25,952,193 T	T/A	T/T	C2	5,385,535 T/T	T/T	сз	26,597,195 c/	C/T	C/T	C4	45,904,240 T/C	T/T	C5	32,949,539		A/G	c6	38,618,373		c/c	c7	42,708,449		G/G	c8	41,419,220 c/c	c/c	с9	51,374,427 c/C	c/c
c1	26,151,205 T	T/T	T/T	C2	5,385,568 T/T	T/T	с3	29,105,463 c/	c/c	$\mathrm{c} /{ }^{\text {c }}$	C4	45,904,261 C/A	C/A	c5	32,950,709	T/C	T/C	c6	38,704,916		A/A	C7	42,876,601		c / C	C8	41,446,514 c/C	c / c	c9	51,374,430 T/T	T/T
C1	26,153,682 T/	T/T	T/T	c2	5,385,577 T/T	T/T	с3	29,118,241 C/C	c/c	c/c	C4	45,904,274 c/c	C/T	c5	35,305,466	T/T	T/T	c6	38,772,600		T/T	C7	42,876,607		c/c	c8	41,446,547 C/C	c/c	с9	51,374,673 G/6	6/6
C1	26,198,341 T	T/T	T/T	c2	5,385,599 T/T	T/T	сз	29,118,279 C/C	c / c	c/c	C4	45,904,277 A/C	A/C	c5	35,306,159	T/T	T/T	c6	38,929,073	6/6	T/T	C7	42,876,635	c/c	A/A	c8	41,448,274 A/A	A/A	с9	51,374,757 c/C	c/c
C1	26,238,845 T/	T/T	T/T	C2	35,020,957 G/A	6/A	сз	29,118,280 c/c	c/c	c / c	C4	51,365,287 T/T	T/T	C5	35,306,180	T/T	T/T	c6	38,929,206		T/T	C7	42,877,087		T/T	C8	41,448,343 T/T	T/T	с9	51,375,364 T/T	T/T
C1	26,268,633 A	A/A	A/A	C2	35,021,030 G/C	G/C	сз	29,118,312 C/	c/c	c/c	C4	51,365,300 T/T	T/T	C5	35,306,221	c / C	c/c	c6	38,929,229	T/T	6/6	c7	42,956,756	T/T	c/c	c8	41,488,387 c/C	c/c	c9	51,394,053 A/A	A/A
C1	26,294,791 c	c/c	c/c	C2	35,021,050 A/C	A/C	с3	36,227,866 A	A/A	6/6	C4	51,419,212 T/T	T/T	C5	35,438,889	T/T	T/T	c6	38,929,230		6/6	C7	43,058,058		c/c	C8	41,472,840 T/T	T/T	c9	51,394,061 G/6	6/6
C1	26,294,799 c	c/c	c/c	C2	35,021,072 T/C	T/C	с3	36,232,546 T/	T/T	6/G	C4	51,419,237 T/T	T/T	C5	35,438,895	T/T	T/T	c6	38,970,934		T/T	C7	43,094,963	c/c	T/T	c8	41,546,990 T/T	T/T	c9	51,394,103 A/A	A/A
C1	26,310,705 c		c/c	C2	35,021,077 c/c	c/C	с3	36,262,131 C/	c/c	c/c	C4	53,152,867 c/c	c/c	C5	35,438,917	c/c	c/c	c6	38,970,937		A/A	C7	43,112,066		c / c	C8	41,547,018 C/C	C/A	c9	51,394,152 c/c	c/c
C1	26,310,725 c	c/c	c/c	C2	35,021,139 A/G	A/G	с3	36,284,025 T/	T/T	c/c	C4	53,152,924 c/c	c/c	C5	37,354,668	6/6	6/A	c6	39,111,099	A/A	c/c	C7	43,208,571	A/A	6/6	C8	41,573,158 c/c	c/c	c9	51,394,161 G/G	6/6
C1	28,167,458 T	T/T	T/T	C2	35,021,213 c/G	c/G	с3	36,284,735 T/T	T/T T	T/T	C4	53,170,355 c/c	c/c	C5	45,532,877	c/c	C/G	c6	39,131,913		6/G	C7	43,325,356		c/c	C8	41,582,233 c/C	c/c	с9	51,414,125 G/G	6/6
C1	28,167,467 T/	T/T	T/T	C2	35,021,371 C/T	c/T	${ }^{\text {c3 }}$	36,339,035 c/	c/c	T/T	C4	53,662,248 T/T	T/C	c5	4,532,886		C/A	c6	39,175,263		c / c	c7	43,451,522		T/T	C8	41,643,297 c/c	c/c	c9	51,423,421 A/A	A/A
C1	28,167,523 T	T/T	T/T	C2	41,426,901 T/T	T/T	${ }^{\text {c3 }}$	36,341,089 A	A/A	T/T	C4	53,710,145 T/C	T/C	c5	45,532,907		A/C	c6	39,175,266	c/c	6/G	C7	43,486,046	T/T	G/G	C8	41,645,605 T/T	T/T	c9	51,425,250 A/A	A/A
C1	28,168,466 T	T/T	T/T	C2	41,432,536 T/T	T/T	${ }^{\text {c3 }}$	36,341,211 T/	T/T	c/c	C4	53,710,165 c/c	c/c	C5	45,545,213		T/A	c6	39,175,281	A/A	c/c	c7	43,489,902	6/G	A/A	C8	41,645,614 c/c	c/c	c9	51,429,048 T/T	T/T
C1	28,168,481 T	T/T	T/T	C2	41,432,553 T/T	T/T	${ }^{\text {c3 }}$	36,344,421 T/	T/T	T/T	C4	53,710,196 T/T	T/T	C5	45,545,225	T/T	T/C					C7	43,517,964	A/A	6/G	C8	41,645,618 T/T	T/T	c9	51,429,070 G/G	6/6
C1	28,173,876 T		T/C	c2	43,381,025 c/c	c/c	сз	36,349,634 T/	T/T	c/c	C4	53,714,094 G/6	6/6	c5	45,545,228	c / c	C/A					c7	43,532,861	c/c	A/A	c8	41,701,994 G/6	6/6	c9	51,438,152 G/A	G/A
c1	28,173,897 T	T/C	T/C	c2	43,381,031 c/c	c/c	с3	36,369,710 A	A/A	c/c																c8	41,709,890 A/A	A/A	c9	51,438,166 G/A	

Note: Yellow colour represents introgression from wild parent line, Brown colour text is single nucleotide substitution (SNPs), blue colour indicates junk of the same alleles from DHSL150 introgressed into DH line at same positions of chromosome in the DH line and the uncoloured segments represent DHSL1 50 portion of the DNA being introgressed into the DH line.

Table 6.2: Differences in nucleotides at various transcripts position and introgression in DH line from the wild parent line

* Note: colours used indicate differences in nucleotide base at different chromosome positions where the genes are located. We observed two introgression positions in the DH line Chr. 7 for V-type- G and CAX3 transcripts.

6.2.3 Discussion

The allelic variation between the B. oleracea cultivated DHSL150, wild S1, and introgressed DH lines have been investigated and from the results, it becomes clear that allele variants occur in both parental lines and a DH line. The presence of allelic variants have been shown to play a critical role in gene regulation and could affect the level of gene expression or the proteins produced (Mackay, 2001). The sequence data studied reveals the existence of variants insertion, inversion, and substitutions of a particular allele, in close proximity in the parental chromosomes. This indicates genetic diversity between them and could be the source of the observed differences in response to salt shock treatment and gene expression and regulation as allelic variation has been shown to modulates gene response and its relative abundance (Mackay, 2001).

Hybridisation between two plant species is known to affect gene expression due to genetic variation (Adam, 2007). Up- and downregulation of gene expression in hybrids compared to their parents have been reported in interspecific and intraspecific hybridisation between cultivars in diploid and triploid maize hybrids (Hegarty et al., 2005; Auger et al., 2005; Guo et al., 2006; Stupar and Springer, 2006; Meyer et al., 2007). Furthermore, hybridisation has shown to affect allele frequencies which can modulate gene expression. Allele-specific regulation in response to environment and abiotic stress in maize hybrids have shown the un-equivalent function of the parental alleles in the hybrid (Guo et al., 2004). This suggests that variation between the parents and hybrids DH lines observed could be as a result of the un-equivalent function of the parental alleles and linkage disequilibrium could affect the level of introgression, and functionally of important variants (Knight, 2004).

Variation in nucleotide bases (substitutions) at various DNA positions and at different positions of genes in the chromosomes could be attributed to the variation in relative gene expression, morphological and physiological responses between the parent lines and DH lines. Studies on how parent-of-origin affect gene expression by using reciprocal crosses between two different maize lines showed that some genes were expressed differently exhibiting parental effects on gene expression (Stupar and Springer, 2006). Hybridisation has been suggested to be a source of loss of genetic imprint. A study by Josefsson et al. (2006), reported a loss of imprinting of two genes and attributed that to the effects of hybridisation between tetraploid A. thaliana and diploid A. arenosa.

6.2.4 Summary

This chapter studied allelic variation and defined introgression between the parent lines and the DH lines. The aim was to unravel the relationships and to establish linkages in the observed response to salt stress in B. oleracea. The chapter utilises information obtained from RNA-Seq and that of genotype-by-sequencing to specifically compare variants allele positions in the chromosome. A comparison between the parent lines; DHSL150 and Wild S1 lines has shown clear differences existed. Regions that are not conserved could be responsible for the observed morphological, physiological and gene expressional responses. Specific introgression from the wildtype material can be introgressed into DH lines. Integration and expression of these traits by the DH lines show good genetic background in the lines that enable expression. Further work to establish the number of SNPs and their positions especially between the parent lines; DHLS150 and wild S1 and positions could lead to identification of more introgression, which is good for breeding diversity into B. oleracea vegetables.

CHAPTER SEVEN

General Discussion And Future Work

7.0 General Discussion

Food security remains of global concern and is on the concurrent list of concerns of many developed and developing countries. A report from the Food and Agriculture Organisation (FAO) highlighted significant challenges in the areas of production, indicating 70% more food would be needed to feed 2.3 billion additional population by the year 2050. Brassicas are essential sources of food and form a major part of the human diet and are ranked third after cereals and legumes. Apart from the oilseeds (mustard seed, oilseed rape), the brassicas are grown for food; such crops includes kohlrabi, turnips, cauliflower, broccoli, cabbages, and Brussels sprout. Brassica vegetables remain a source of essential bioorganic elements that have both nutritional and medicinal properties (Beecher, 1994; Carvalhoa et al., 2006). They are rich in soluble fibers and vitamins (Divisi et al., 2006). Members are also good sources of anticancer elements such as 3, 3' diindolylmethane, sulforaphane, and selenium (Finley et al., 2005; Banerjee et al., 2012). The decline in food productivity can be attributed to various environmental abiotic factors. For example, salinity stress is one of the major factors that affect plants growth and productivity. Efforts toward improving crops tolerance to salt stress utilizing both conventional and advance genetic breeding program have so far made significant progress. In part, this is due to the genetic complexity of salt tolerance which makes the task more challenging and research driven.

Therefore, the aim of this thesis was to investigate salt resilience using Brassica genetic resources, including wild B. oleracea C-genome genotypes and a cultivated accession DHSL150, Wild S1 and doubled haploid lines derived from a cross between wild and domesticated lines were also used. All lines were exposed to salt shock stress. It is believed that this study will increase our understanding and capacity to breed for improved response to salinity stress. Furthermore, the objective has been to find the level of natural variation
and gene flow between the parental and doubled haploid lines conveying tolerance to a salt stress environment. This was achieved by combining evaluation of some phenotypic traits including plant growth, plant fresh/dry weights, leaf fresh/dry weights and leaf area, and physiological through the estimation of leaf mineral content, with transcriptomic profiles and a specific focus on membrane ion transporters, qPCR and genotype-by-sequencing to understand the cause of variation in response to salt stress.

Growth analysis is a fundamental characteristic to study plant's response to environmental stress (Mane et al., 2010). The effects of salt stress on plant growth was investigated in Chapter 3 and the phenotypic traits measured have shown significant variation among the B. oleracea genotypes tested. The physiology and morphological responses to salt stress vary among plants such have been exhibited by halophytes and less tolerant plants (Flower, 2004, Mane et al., 2010). The current study has illustrated that salt tolerance among the B. oleracea genotypes varies, the cultivated founder DHSL150 has shown to be more susceptibility in morphological traits as those the wild S1 parents (Figures 3.2a; 3.3 and 3.4). Some of the wild $S 1$ and the doubled haploid lines have shown improve plant height, plant fresh and dry weights and leaf area (Figures 3.2a; 3.3; $\mathbf{3 . 4}$ and 3.8a) For example, salt stress causes plant growth reduction by affecting cell expansion, stomatal closure and photosynthesis, these are the important biochemical pathways by which plants obtain food material for growth (Kojo, 2004). Also, oxidative stress due to the excess salt has shown to contribute to the deleterious effects of salt and causes significant growth reductions in plants (Hemandez et al., 1999). Furthermore, the effects of salt stress reduce water concentrations of leaves and shoot thus causing a reduction in biomass accumulation. In the current study, it has been shown that leaf area is an important indicator for improved net CO_{2} assimilation and an increase in leaf thickness was observed in wild S 1 and doubled haploid lines. This
perhaps indicates allelic flow between the parents and derived double haploid lines from the F1-hybrids materials.

Similarly, salinity stress has shown to effects ion homeostasis and causes an increase in Na^{+} level. Sodium competes with K^{+}thereby decreasing the availability of K^{+}for optimal cell turgor and enzymatic reactions. In Chapter 4, the effects of salt stress on mineral content in B. oleracea genotypes, wild S1, DHSL150 and doubled haploid lines was investigated. The result demonstrates that leaf Na^{+}content increased following salt stress 24 hr post-salt treatment and this is supported by a study of Rezaei et al. (2017), which shows significant differences in B. napus L. cultivars. Increasing Na^{+}content in brassica cultivars has been reported by studies of Rameeh et al. (2004) and Tanveer et al. (2002). The observed variation in leaf Na^{+}content among the B. oleracea genotypes could be attributed to the differences in physiology and molecular mechanisms which are subject to genetic control. The current study also shows that the B. oleracea genotypes were able to reduce the level of leaf Na^{+}content two-weeks post-treatment. Zhu (2003), reported that $\mathrm{Na}+$ cytotoxicity led to a replacement of K^{+}by $\mathrm{Na}+$ in the biochemical process and disturbed amino acids positions and their protein function. Moreover, Na^{+}led to an imbalance in metabolic, osmotic stress and nutritional deficiency. It was observed that the wild S1 and doubled haploid B. oleracea genotypes effectively exclude Na^{+}through exclusion mechanism and some show their ability to compartmentalise Na^{+}, making them more effective under salty conditions through the management of Na^{+}ions in their leaves or shoots so they could grow. The current study also reported the $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratios as it relates to salt stress in B. oleracea genotypes, which shows a reduction in $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio 24 hr post-salt treatment. This observation is corroborated by a study on B. napus L. genotypes under salt stress, which also reported $\mathrm{K}^{+} / \mathrm{Na}^{+}$reduction following salt stress (Rezaei et al., 2017). Reduction in
$\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio was earlier reported in brassica cultivars (Ashraf, 2004), green bean (Yasar et al., 2006), wheat (Hu et al., 2006) and legumes (Amador et al., 2007). An improvement in $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio has been associated with salt tolerance in plants (Maathius and Amtmann, 1999).

Ionic stress is perhaps the most serious components of salt stress and brought about by excess Na^{+}accumulation in especially at the aerial parts of plants (Munns and Tester 2008). Na^{+}ions interfere with K^{+}homeostasis and given its involvement in a number of metabolic processes, thereby hinders the plant's ability to maintain a balanced cytosolic $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio, which is more important to salt tolerance mechanism. To achieve balance homeostasis, it requires the activity of K^{+}transporters and/or channels. The observed differences between B. oleracea genotypes against salt stress could be a result of differences in both structural and functional proteins that act as enzymes and membrane channels responsible for these processes.

In Chapter 5, relative gene expression of some selected ion membrane transporters involved in Na^{+}and K^{+}homeostasis were investigated to further understand the responses between the wild S1, DHSL150 and doubled haploids in salt stress conditions. In salt stress, maintenance of stable membrane potentials is critical for salt stress tolerance as excess Na^{+} induces depolarization of the membrane causing electrolytes to shift. In addition, novel regulators of ion membrane transporters such as $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporters (NHX1) genes, vacuolar proton pumps that create an electrochemical gradient, V-type and H^{+}-ATPases and highaffinity potassium transporter family (HAK) such as KUP11 and KT9 were investigated. The B. oleracea genotypes have shown variation in the expression of these ion membrane transporters under salt stress. It was reported in chapter 4 (Table 4.3) that wild S1 lines have an improved $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio which could be related to possibly their high relative expression
of these membrane transporters such as $N H X 1, K T 9$, and $K U P 11$ as demonstrated in chapter 5 (Figures 5.3 \& 5.5). This was observed in the wild S1 B. oleracea (C06070-S1 \& C07079A-S1) (Figures 5.3 \& 5.5) and less relative expression in C13013-DH and C10121DH which showed a relative increase in $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio two-weeks post-salt treatment as indicated in chapter 4 (Table 4.3). However, the relative gene expression of the genes significant vary, with some showed high expression values such in the wild S1 lines as compared to the DH lines (Figures 5.3 \& 5.5). The relative gene expression in the cultivated DHSL150 and a DH line C13001-DH have been relatively lower as compared to the untreated control and both showed lower $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio two-weeks post-salt treatment as also indicated in chapter 4 (Table 4.3) and chapter 5 (Figures 5.3 \& 5.5). Other transporters investigated showed similar expression pattern between the wild $\mathrm{S} 1, \mathrm{DH}$ and cultivated DHSL150 (Figures 5.6 \& 5.7).

Chapter six investigates the effects of allelic variation and polymorphism on the regulation of gene activity and expression which have been suggested by many researchers (Guo et al., 2004). More so, intra- and interspecific hybridisation is known to affect the expression and regulation of transcript between inbreed parents and F1-hybrids because of variation in their genetic background. Therefore, we wanted to understand the observed variation in gene regulation, expression and relative abundance in salt-treated B. oleracea genotypes could be due to allelic variation. The result has shown the presence of variants in many positions on the chromosomes and transcripts positions. Differences in nucleotide sequence observed at the same chromosomal positions where these genes are located could possibly be associated with the variation in gene expression and physiological response between DHSL150, wild S1 parents lines, and DH lines.

The results so far, revealed variation in the response of B. oleracea genotypes to salt stress but due to time constraint, an effort to map out and linked these specific phenotypes (QTLs) with different positions and segment of chromosomes could not be achieved. This can be achieved by using marker-assisted selection and other interesting analyses that could lead to a successful breeding break-through. This was frustrating and thus highlights the problem that can be surmountable. Meanwhile, further work can be suggested, which include interesting steps which might lead to the development of enhanced research genetic resources for B. oleracea C -genome that can be used in breeding for salt tolerant brassica vegetables in future. Indeed, such developments will benefit both the production of brassica vegetables and enhance quality of food production generally salvaging millions of lives at the same time improving the economic status of the world.

7.1 Future work

From the current study, it was made clear the existence of variation between the cultivated founder DHSL150, wild S1 parent and doubled haploid B. oleracea genotypes in response to salt stress. However, the degree of variation attributable to genetics or environment was not totally deciphered because plant materials collected in this study were from one source of replicate i.e., leaves. Therefore, other plant materials such as roots and shoots could also be looked at. By further analysis of these plant materials, a better understanding of the level variation and interactions at different stages between the plants and the environment could be obtained. Apart from direct phenotype measurements, further studies on other critical indicators such as chlorophyll content (chlorophyll a \& b) (Rezaei et al., 2017), antioxidants and phenolic compounds could be measured. Ronald et al. (2005), suggested spectrophotometric and HPLC methods could be added because salt stress tolerance is a
complex phenomenon and there is crosstalk between many pathways. Furthermore, structural genes are involved in membrane stability and these could also be investigated by using qPCR to look at the changes in gene expression encoding these structural proteins required to maintain membrane stability under salt stress conditions. Different analytical approaches could also be applied to analyse the component of variance by using maximum likelihood analysis, which provides an unbiased estimation of different variation.

Many plant transporters that have been successfully linked to salt tolerance have been found through functional genetic analysis and were mapped out using QTL analysis. For example, QTLs for shoot K^{+}content (SKC1), Nax1 and Nax2 genes mapped to locus involves in $\mathrm{Na}+$ removal from the xylem in the roots and QTLs for H^{+}monovalent cation exchanger family (CHX) (Lin et al., 2004; James et al., 2006; Byrt et al., 2007). Therefore, identification of locus positions and possible alleles associated could be of significant where genetic map using molecular markers can be used to identify close proximity as it relates to quantitative traits. This could be the first critical step to fine map the candidate genes and genomic regions, which could be followed by marker-assisted selection (MAS). Furthermore, a backcross especially between the wild S1 and doubled haploid, can be applied and desired genotypes in resulting segregating populations could be used to map out superior genotypes with introgressed regions being broken down further. Such genetic resources can be used for gene identification. Alternatively, association studies could be carried out to identify those alleles that could be beneficial for the breeding program (Callow et al., 1997; Henry, 2001; Newbury, 2003).

References

References

Adams, K. L. (2007) Evolution of duplicate gene expression in polyploid and hybrid plants. Journal of Heredity. 98; 136-141.
Agarwal, P., Agarwal, P. K., Nair, S., Sopary, S. K., and Reddy, M. K. (2007) Stressinducible DREB2 transcription factor from pennisetum glancum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity. Journal of Molecular Genetics and Genomics 277; 189-198.
Akbarimoghaddam, H., Galavi, M., Ghabari, A., Panjehkeh, N. (2011) Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia Journal of Science 9(1):43-50.
Alarcón, J. J., Morales, M. A., Ferrández, T., Sánchez-Blanco, m. J. (2006) Effects of water and salt stresses on growth, water relations and gas exchange in Rosmarinus offficinalis. Journal of Horticulture Science and Biotechnology, 81; 845-853.

Albert, R. (1975) Salt regulation in halophytes. Oecologia, 21(1); 57-71.
Alisdair, R. F., Tadmor, Y., and Zamir, D. (2006) Natural genetic variation for improving crop quality. Current Opinion in Plant Biology. 9; 196-202.

Allard, R. W. (1960) Principles of plant breeding. 3. Ed. Nova York: J. Wiley. p. 485.
Allen, J. A., Chambers, J. L., \& Stine, M. (1994) Prospects for increasing the salt tolerance of forest trees: a review. Tree Physiology, 14(7-8-9); 843-853.

Amar, B. S., Brini, F., Sentenae, H., Masmoudi, K. and Anne-Alienor, V. (2014) Functional characterization in Xenopus oocytes of $\mathrm{Na}+$ transport systems from durum wheat reveals diversity among two HKT1;4 transporters. Journal of Experimental Botany. 65(1); 213-222.

Andrei, A., Michael, S. R., Andreea, B., Cristian, C., Vasile, M., Artur, I., et al. (2015) Contrasting taxonomic stratification of microbial communities in two hypersaline meromictic lakes. The ISME Journal of Multidisciplinary Journal of Microbial Ecology. 9; 2642-2656.
Anschutz, U., Becker, D., and Shabala, S. (2014) Going beyond nutrition: regulation of potassium homeostasis as a common denominator of plant adaptive responses to environment. Journal of Plant Physiology. 171, 670-687.

Apse, M. P., Aharon, G. S., Snedden, W. A., \& Blumwald, E. (1999) Salt tolerance conferred by overexpression of a vacuolar $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiport in Arabidopsis. Science, 285(5431); 1256-1258.

Ardie, S. W., Xie, L., Takahashi, R., Liu, S., Takano, T. (2009) Cloning of a high-affinity K+ transporter gene PutHKT2;1 from Puccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis. Journal of Experimental Botany. 60; 3491-3502.

Arora, R., Palta, J.P. (1989) Perturbation of Membrane Calcium as a Molecular Mechanism of Freezing Injury. In: Cherry J.H. (eds) Environmental Stress in Plants. NATO ASI Series (Series G: Ecological Sciences), vol. (19). Springer, Berlin, Heidelberg.

Ashraf, M. (1994) Breeding for salinity tolerance in plants. Critical Reviews of Plant Science. 13; 17-42.
Ashraf, M. (2004) Some important physiological selection criteria for salt tolerance in plants. Journal Flora. 199; 361-376.

Ashraf, M., and Foolad, M. R. (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2); 206-216.

Ashraf, M., and McNeilly, T. (2004) Salinity tolerance in Brassica oilseeds. Critical Reviews of Plant Science. 23; 157-174.
Ashraf, M., McNeilly, T., and Nazir, M. (2001) Comparative salt tolerance of amphidiploid and diploid Brassica species. Journal of Plant Science. 160; 683-689.
Asins, M. (2002). Present and future of quantitative trait locus analysis in plant breeding. Journal of Plant Breeding. 121; 280-91.

Auger, D. L., Gray, A. D., Ream, T. S., Kato, A., Coe, Jr. E. H. et al., (2005) Nonadditive gene expression in diploid and triploid hybrids of maize. Genetics. 169; 389-397.

Azooz, M. M. (2009) Salt Stress mitigation by seed priming with salicylic acid in two fava bean genotypes differing in salt tolerance. International Journal of Agriculture and Biology. 11; 343-350.

Babula, D., Kaczmarek, M., Ziólkowski, P. A., and Sadowski, J (2007) Brassica oleracea. Genome mapping and molecular breeding in plants, Volume 5 Vegetables, C. Kole (Ed.) © Springer-Verlag Berlin Heidelberg Pp.227-285.

Bair, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., et al., (2008) Rapid SNP discovery and genetic mapping using sequence RAD markers. PLoS ONE 3: 3376.

Bandeh-Hang, A., Toorchi, M., Mohammadi, A., Chaparzadeh, N., Salekdeh, G. H., Kazemnia, H. (2008) Growth and osmotic adjustment of canola genotypes in response to salinity. Journal Food Agriculture and Environment. 6(2); 201-208.

Barragán, V., Leidi, E. O., Andrés, Z., Rubio, L., De Luca, A., Fernández, J. A., et al. (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24; 11271142.

Bassil, E., Coku, A., Blumwald, E. (2012) Cellular ion homeostasis: emerging roles of intracellular NHX Na $+/ \mathrm{H}^{+}$antiporters in plant growth and development. Journal of Experimental Botany. 63; 5727-5740.

Bassil, E., Tajima, H., Liang, Y.-C., Ohto, M.-A., Ushijima, K., Nakano, R., et al. (2011) The Arabidopsis $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporters NHX1 and NHX2 control vacuolar pH and K^{+}homeostasis to regulate growth, flower development, and reproduction. Journal of Plant Cell 23; 3482-3497.
Baxter, I., Tchieu, J., Sussman, M. R., Boutry, M., Palmgren, M. G., Gribskov, M., Harper, J. F., and Axelsen, K. B. (2003) Genomic Comparison of P-Type ATPase Ion Pumps in Arabidopsis and Rice. Plant Physiology. 138(3); 1807.

Beck, M. A., Nelson, H. K., Shi, Q, et al. (2001) Selenium deficiency increases the pathology of an influenza virus infection. FASEB Journal. 15;1481-1483.

Beissinger, T. M., Hirsch, C. N., Sekhon, R. S., Foerster, J. M., Johnson, J. M., Muttoni, G., et al., (2013) Marker density and read depth for genotyping populations using genotyping-by-sequencing. Genetics 193; 1073-1081.

Berthomieu, P., Conéjéro, G., Nubalat, A., Brackenbury, W., Lambert, C., Savio, C., et al. (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na^{+}recirculation by the phloem is crucial for salt tolerance. EMBO Journal. 22, 2004-2014.

Blumwald E, Poole, R. J. (1987) Salt tolerance in suspension cultures of sugar beet. Induction of $\mathrm{Na}+/ \mathrm{H}+$ antiport activity at the tonoplast by growth in salt. Plant Physiology. 83; 884-887.

Blumwald, E., Aharon, G. S., Apse, M. P. (2000) Sodium transport in plant cells. BBA Biomembrane. 1465; 140-151.

Blumwald, E., and Poole, R. I. (1985) $\mathrm{Na}+/ \mathrm{H}+$ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris. Plant Physiology. 78; 163-167.
Bohnert, H. J., and Jensen, R. G. (1996) Metabolic engineering for increased salt tolerance - the next step. Australian Journal of Plant Physiology. 23; 661-666.

Bose, J., Munns, R., Shabala, S., Gilliham, M., Pogson, B., Tyerman, S. D. (2017) Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes. Journal of Experimental Botany, 68(12); 3143.

Bose, J., Rodrigo-Moreno, A., Shabala, S. (2014a) ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany. 66; 12411257.

Bose, J., Shabala, L., Pottosin, I., Zeng, F., Velarde-Buendía, A.M., Massart, A., Poschenrieder, C., Hariadi, Y., Shabala, S. (2014b) Kinetics of xylem loading, membrane potential maintenance, and sensitivity of $K(+)$-permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley. Plant Cell Environment. 37; 589-600.

Bowler, C. and Fluhr, R. (2000) The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Science. 5(6); 241-6.

Bowman, J. L., Floyd, S. K. and Sakakibara, K. (2007) Green genes - comparative genomics of the green branch of life. Cell 129:229-234.

Brenner, S., Johnson, M., Bridgham, J., Golda, G., et al., (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nature Biotechnology 18; 630-634.

Buckler, E. S., and Thornsberry, J. M. (2002) Plant molecular diversity and applications to genomics. Current Opinion of Plant Biology. 5; 107-111.

Bush, D. S. (1995) Calcium regulation in plant cells and its role in signalling. Annual Review of Plant Physiology and Plant Molecular Biology 46; 95-122

Byrt, C. S., Zhao, M., Kourghi, M., Bose, J., Henderson, S. W., et al. (2017). Non-selective cation channel activity of aquaporin AtPIP2; 1 regulated by $\mathrm{Ca} 2^{+}$and pH . Plant Cell Environment. 40, 802-815.

Carillo, P., Mastrolonardo, G., Nacca, F., Parisi, D., Verlotta, A., \& Fuggi, A. (2008) Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine. Functional Plant Biology, 35(5); 412-426.

Chasapis, C. T., Loutsidou, A. C., Spiliopoulou, C. A., Stefanidou, M. E. (2012) Zinc and human health: an update. Arch Toxicology. 86; 521-534.
Chen, Z. H., Zhou, M. X., Newman, I. A., Mendham, N. J., Zhang, G. P., Shabala, S. N. (2007) Potassium and sodium relations in salinized barley tissues as a basis of differential salt tolerance. Functional. Plant Biology 34; 150-162.

Ching, A., Caldwell, K. S., Jung, M., Dolan, M., Smith, O. S., Tingey, S., Morgante, M., and Rafalski, A. J. (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genetics. 3;19.

Chinnusamy, V., Schumaker, K., Zhu, J. K. (2004) Molecular genetic perspectives on crosstalk and specificity in abiotic stress signalling in plants. Journal of Experimental Botany. 55; 225-236.

Cicek, N., and Cakirlar, H. (2002) The Effect of salinity on some physiological parameters in two maize cultivars. Bulg. Journal of Plant Physiology. 28(1-2); 66-74.

Cowles, C. R., Hirschhorn, J. N., Altshuler, D. and Lander, E. S. (2002) Detection of regulatory variation in mouse genes. Nature Genetics. 32; 432-437.

Cramer, G. R., Läuchli, A., Polito, V. S. (1985) Displacement of Ca^{2+} by Na+ from the plasma lemma of root cells. Plant Physiology. 79; 207-211.

Davenport, R. J., Munoz-Mayor, A., Jha, D., Essah, P. A., Rus, A. N. A., Tester, M. (2007) The $\mathrm{Na}+$ transporter AtHKT1;1 controls retrieval of $\mathrm{Na}+$ from the xylem in Arabidopsis. Plant Cell Environment. 30; 497-507.

Davenport, R., James, R., Zakrisson-Plogander, A., Tester, M., \& Munns, R. (2005) Control of Sodium Transport in Durum Wheat. Plant Physiology, 137; 807-818.

Davey, J. W., Hohenlohe, P. A., Etter, P. D., Boone, J. Q., Catchen, J. M., and Blaxter, M. L. (2011) Genome-wide genetic marker discovery and genotyping using nextgeneration sequencing. Nature Review Genetics. 12; 299-510.

Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., and Schroeder, J. I. (2014) Plant salt-tolerance mechanisms. Trends Plant Science. 19; 371-379.

Demidchik, V. (2014) Mechanisms and physiological roles of K^{+}efflux from root cells. Journal of Plant Physiology. 171; 696-707.

Demidchik, V., and Tester, M. (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiology. 128; 379-387.

Demidchik, V., Shabala, S. N., Coutts, K.B., Tester, M. A., Davies, J. M. (2003) Free oxygen radicals regulate plasma membrane Ca^{2+} and K^{+}-permeable channels in plant root cells. Journal of Cell Science 116; 81-88.

Doebley, J., and Lukens, L. (1998). Transcriptional regulators and the evolution of plant form. Plant Cell 10; 1075-1082.

Donaldson, L., Ludidi, N., Knight, M. R., Gehring, C., Denby, K. (2004) Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Letters 569; 317-320.

Douglas, E., Bassett, Jr., Michael, B. E. and Mark, S. B. (1999) Gene expression informatics - it's all in your mine. Nature Genetics 21; 51-53.

Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P. and Trent, J. (1999) Expression profiling using cDNA microarrays. Nature Genetics. 2:10-14.

Edelist, C., Raffoux, X., Falque, M., Dillmann, C., Sicard, D., Rieseberg, L. H., Karrenberg, S. (2009) Differential expression of candidate salt-tolerance genes in the halophyte helianthus paradoxus and its glycophyte progenitors H. annuus and H. petiolaris (Asteraceae). American Journal of Botany. 96; 1830-1838.

Egawa, C., Kobayashi, F., Ishibashi, M., Nakamura, T., Nakamura, C., Takumi, S. (2006) Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genetic Systems 81: 77-91.

Elshire, R. J., Glaubizt, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., et al., (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6; e19379.

Essah, T.A. (2002) Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. Journal of Agronomic Crop Science. 188; 86-93.

Essah, P. A., Davenport, R., Tester, M. (2003) Sodium influx and accumulation in Arabidopsis. Plant Physiology. 133; 307-318.

FAO, (2009) High level expert forum - how to feed the world in 2050. Economic and Social Development Department, Food and Agricultural Organization of the United Nations, Rome

FAOSTAT (2015) [FAO statistics database] http://faostat3.fao.org/

Fehr, W. R. (1987) Principle of Cultivars Development. Macmillan publishing company. A division of Macmillan Inc. New York pp.1; 1-465.
Finotello, F., Lavezza, E., Bianco, L., Barzon, L., Mazzon, P., Fontana, P., et al. (2014) Reducing bias in RNA sequencing data: a novel approach to compute counts. $B M C$ Bioinformatics 15(1):S7.

Flowers, T. I., and Colmer, T. D. (2008) Salinity tolerance in halophytes. New Phytology. 179; 945-963.

Flowers, T. J. (2004) Improving crop salt tolerance. Journal of experimental Botany, 55(396):307-319.
Flowers, T. J., Troke, P. F., \& Yeo, A. R. (1977) Mechanism of Salt Tolerance in Halophytes. Annual Review of Plant Physiology and Plant Molecular Biology, 28; 89-121.

Flowers, T. J., Yeo, A. R. (1986) Ion relations of plants under drought and salinity. Australian Journal of Plant Physiology 13; 75-91
Food and Agriculture Organization of the United Nations (2017) The future of food and agriculture- Trends and challenges. Rome: Food and Agriculture Organization of the United Nations.
Fricke, W. (2004) Rapid and tissue-specific accumulation of solutes in the growth zone of barley leaves in response to salinity. Planta 219; 515.

Fu, H., and Dooner, H. K. (2002) Intraspecific violation of genetic collinearity and its implications in maize. Proceedings National Academic Science. USA 99; 95739578.

Fu, Y. B., Cheng, B., and Peterson, G. W.(2014) Genetic diversity analysis of yellow mustard (Sinapis alba L.) germplasm based on genotyping by sequencing. Genet. Resource. Crop Evolution. 61; 579-594.
Gerhard, D. S., et al., (2004) The status, quality, and expression of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Research 14; 2121-2127.

Gilroy, S., Bialasek, M., Suzuki, N., Gôrecka, M., derireddy, A. R., Karpiriski, S., and Mittler, R. (2016) ROS, calcium, and electric signals: key mediators of rapid systemic signalling in plants. Plant Physiology. 171(3); 1606-1615.

Glazier, A. M., Nadeau, J. H., and Aitman, T. J. (2002) Finding genes that underlie complex traits. Science 298; 2345-2349.

Gómez-Campo and Maria, E. T. (1974) The taxonomic and evolutionary significance of Somme juvenile characters in the Brassicaceae. Botanical Review, 10(3); 125-186

Gómez-Campo, C. (1999) Taxonomy in Biology of Brassica coenospecies, Gómez-Campo, C., (eds) Amsterdam: Elservier pp 3-32 Chap 1.

Gómez-Campo, C., Aguinagalde, I., Arus, P., Jimenez-Aguilar, C., Lazaro, A., MartinClemente, J. P., Parra-Quijano, M., Sanchez-Yelamo, M. D., Simonetti, E., Torres, E., Torcal, L., Tortosa, M. E. (2007) Geographical distribution and conservation status of Brassica montana in NE Spain. Cruciferae News 127; 32-34.

Gómez-Campo, C., Aguinagalde, I., Ceresuela, J., Lazaro, A., Martinez-Laborde, J. (2006) Erosion of genetic resources within seed gene banks: the role of seed containers: Seed Science Research. 16; 291-294.

Gómez-Campo, C., Gustafsson, M. (1991) Germplasm of wild n=9 Mediterranean Brassica species. Botany and Chronicles. 10; 429-434.

Gorham, J. Wyn Jones, R. G. (2002) Genetics of salinity responses and plant breeding. In: Läuchli A, Lüttge, U, eds. Salinity: Environment - Plants - Molecules. Dordrecht, the Netherlands: Kluwer, 451-489.

Gorham, J., Britol, A., Young, E. M., and Wyn Jones, R. G. (1991) The presence of the enhanced K/Na discrimination trait in diploid Triticum species. Theoretical and Applied Genetics. 82; 729-736.

Grattana, S. R., \& Grieveb, C. M. (1999) Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78; 127-157.

Gray, A. R. (1982) Taxonomy and evolution of broccoli (Brassica oleracea var. italica). Econ Bot 36:397-410.

Greenway, H., and Munns, R. (1980) Mechanism of salt tolerance in non-halophytes. Annual Review Plant Physiology. 31; 149-190.

Grieve, C. M., and Fujiyama, H. (1987) The response of two rice cultivars to external $\mathrm{Na}^{+} / \mathrm{Ca}^{2+}$ ratio. Plant Soil. 103: 245-250.

Guo, M., Rupe, M. A., Zinselmeier, C., Habben, J., Bowen, B. A. et al., (2004). Allelic variation of gene expression in maize hybrids. Plant Cell. 16; 1707-1716.
Gupta B. and Huang B. (2014) Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics. 2014(1); 701596.

Gustafsson, M. and Lannér-Herrera, C. (1997) Overview of the Brassica oleracea complex: their distribution and ecological specificities. Bocconea 7; 27-37.

Halkier, B. A. and Gershenzon, J. (2006) Biology and biochemistry of glucosinolates. Annual Review of Plant Biology 57:303-333.

Hanson, J.B. (1984) The functions of calcium in plant nutrition. In Advances in Plant Nutrition, P.B. Tinker and A. Lauchli, eds (New York: Praeger Publishers), pp. 149-208.

Harris, W. S. (2008) Linoleic acid and coronary heart disease. Prostaglandins Leukot Essent Fatty Acids. 79; 169-71.

Hasegawa, P. M., Bressan, R. A., Zhu, J. K., \& Bohnert, H. J. (2000) Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology. 51; 463-499.

Hasegawa, P.M., Bressan, R.A., and Pardo, J.M. (2000a) The dawn of plant salt to tolerance genetics. Trends in Plant Sci. 5; 317-319.

Hauser, F., and Horie, T. (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high $\mathrm{K}^{+} / \mathrm{Na}^{+}$ratio in leaves during salinity stress. Plant Cell Environment. 33; 552-565.

Haussmann, B. I. G., Hess, D. E., Omanya, G., Folkertsma, R. T., et al., (2004) Genomic region influencing resistance to parasitic weed Striga hermonthca in two recombinant inbred populations of Sorghum. Theoretical and Applied Genetics. 109(5); 1005-16.

He, J., Zhao, X., Laroche, A., Lu, z., Liu, H. and Li, Z. (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Frontiers in Plant Science. 5; 484.

He, T., and Cramer, G. R. (1992) Growth and mineral nutrition of six rapid-cycling Brassica species in response to sea water salinity. Plant Soil 139; 285-294.

Hegarty, M. J., and Hiscock, S. J. (2005) Hybrid speciation in plants: new insights from molecular studies. New Phytol. 165; 411-423.

Hernandez, J., Olmos, E., Corpas, F., Sevilla, F., Del Rio, L. (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Science 105; 151-67.

Hirschi, K. (2001) Vacuolar H+/Ca2+ transport: who's directing the traffic? Trends in Plant Science 6; 100-04.

Hong, S. Y., Kim, O. K., Kim, S. G., Yang, M. S, Park, C. M. (2011) Nuclear import and DNA binding of the ZHD5 transcription factor is modulated by a competitive peptide inhibitor in Arabidopsis. J Biology and Chemistry. 286: 1659-1668.

Horie, T., Costa, A., Kim, T. H., Han, M. J., Horie, R., Leung, H. Y., et al. (2007) Rice OsHKT2;1 transporter mediates large $\mathrm{Na}+$ influx component into $\mathrm{K}+$ - starved roots for growth. EMBO Journal. 26;3003.

Horst, L., and Wenzel, G. (2007) Molecular Marker Systems in Plant Breeding and Crop Improvement: Biotechnology in Agriculture and Forestry, Vol. 55. Berlin: Springer.

Hu, Y., Schidhalter, U. (2002) Limitation of salt stress to plant growth. In: Hock, B., Elsner, C. F. (Eds.), Plant Taxicology. Marcel Dekker Inc., New York, pp. 91-224.

Hu, Z., Killion, P. J. and Lyer, V. R. (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nature Genetics 39(5); 683-7.

Huang, S., Spielmeyer, W., Lagudah, E. S., James, R. A., Platten, J. D., Dennis, E. S., Munns, R. (2006) A sodium transporter (HKT7) is a candidate for Naxl, a gene for salt tolerance in durum wheat. Plant Physiology. 142; 1718-1727.

Ilangumaran, G., Smith, D. L. (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Frontiers of Plant Science. 8:1768.

James, R. A., von Caemmerer, S., Condon, A. G., Zwart, A. B., \& Munns, R. (2008) Genetic variation in tolerance to the osmotic stress component of salinity stress in durum wheat. Functional Plant Biology. 35(2); 111-123.

James, R., Davenport, R., \& Munns, R. (2006) Physiological Characterization of Two Genes for Na^{+}Exclusion in Durum Wheat, Naxl and Nax2. Plant Physiology. 142(4); 1537-1547.

Jamil, M., Rehman, S.U., Lee, K.J., Kim, J.M., Rha, H.K. (2007b) Salinity reduced growth ps2 photochemistry and chlorophyll content in radish. Science and Agriculture. 64 (2); 111-118.

Jeannette, R., Eddy, B., Jing-Zong, L., Tim, B., Sydney, B., Ben, B., Michael, K. and Rick, W. (2001) Massively parallelly signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms. Briefings in functional Genomics and Proteomics. 1:95-104.

Jin-Shui, P., Mei-Zhu, H. and Jian-Lin, R. (2009) Reactive oxygen species: A double-edge sword in oncogenesis. World Journal of Gastroenterology. 15(14): 1702-1707.

Jones, M. M., and Turner, N. C. (1980) Osmatic adjustment in expanding and fully expanded leaves of sunflower in response to water deficits. Australian Journal of Plant Physiology. 7(2); 181-192.

Josefsson, C., Dilkes, B., and Comai, L. (2006) Parent-dependent loss genetic silencing during interspecies hybridization. Current Biology. 16; 1322-1328.

Joshi, M., Mishra, A., and Jha, B. (2012) NaCl plays a key role for in vitro micropropagation of Salicornia brachiata, an extreme halophyte. Indian Journal of Crops Production. 35, 313-316.
Jung, J. K., McCouch, S. (2013) Getting to the roots of it: genetic and hormonal control of root architecture. Frontiers of Plant Science. 4:186.

Katuby-Amacher, J., Koenig, K., \& Kitchen, B. (2000) Salinity and plant tolerance. Archived Publications. AG-SO 3; 1-8.

Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraith, D., Bohnert, H. J. (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell. 13; 889-905.

Khwaja, F. S., Wynne, S., Posey, I. and Djakiew, D. (2009) 3,3'-diindolylmethane induction of p75NTR-dependent cell death via the p38 mitogen-activated protein kinase pathway in prostate cancer cells. Cancer Preview Research. 2; 566-571.

Kiegle, E., Moore, C. A, Haseloff, J. Tester, M. A., Knight, M. R. (2000) Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. The Plant Journal 23; 267-278.

Knight, H., Trewavas, A., Knight, M. (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity. The Plant Journal 12; 1067-1078.
Knight, J. C. (2004) Allele-specific gene expression uncovered. Trends Genetics. 20; 113116.

Kobayashi, S., Abe, N., Yoshida, K. T. et al. (2012) Molecular cloning and characterization of plasma membrane-and vacuolar-type $\mathrm{Na}+/ \mathrm{H}+$ antiporters of an alkaline-salttolerant monocot, Puccinellia tenuiflora. Journal of Plant Research. 125; 587.
Koch, M. A. and Mummenhoff, K. (2006) Editorial: Evolution and phylogeny of the Brassicaceae. Plant Systems Evolution 259:81-83.

Koch, M., Al-Shebaz, I. A., Mummenhoff, K. (2003) Molecular systematics, evolution, and population biology of the mustard family (Brassicaceae). Annals of the Missouri Botanical Garden. 90:151-171.

Kodzius, R., Kojima, M., Nishiyori, H., et al., (2006) CAGE: cap analysis of gene expression. Nature Methods. 3; 211-222.

Kopsell, D. A. and Kopsell, D. E. (2006) Accumulation and bioavailability of dietary carotenoids in vegetable crops. Trends Plant Science 11:499-507.

Krebs, M., Beyhl, D., Görlich, E., Al-Rasheid, K.A.S., Marten, I., Stierhof, Y.-D., Hedrich, R., Schumacher, K. (2010) Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. National Academy of Sciences USA. 107; 3251-3256.

Kumar, D. (1995) Salt tolerance in oilseed brassicas-present status and future prospects. Plant Breeding Abstract. 65; 1438-1447.

Kumar, M. (2013) Crop plants and abiotic stresses. Journal Biomolecular Research and Therapeutics. 3; 25.

Kurth, E., Cramer, G. R., Lauchli, A., Epstein, E. (1986). Effects of NaCl and CaCl 2 on cell enlargement and cell production in cotton roots. Plant Physiology. 82; 1102-1106.

Kusvuran S, Yasar F, Ellialtioglu, S., Abak, K. (2007) Utilizing some of screening methods in order to determine of tolerance of salt stress in the melon (Cucumis melo L.). Research Journal of Agriculture and Biological Sciences. 3(1); 40-45.
Lan T-H, Delmonte, T. A., Reischmann, K. P., Hyman, J., Kowalski, S. P., Mcferson, J., Kresovich, S., Paterson, A. H. (2000) An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Research. 10:776-788.

Laurie, S., Feeney, K. A., Maathuis, F. J., Heard, P. J., Brown, S. J., and Leigh, R. A. (2002) A role for HKT1 in sodium uptake by wheat roots. Plant Journal. 32; 139-149.

Leckie, D., Astley, D., Crute, I. r., Ellis, P. R., pink, D. A. C., Boukema, I., Monteiro, A. A., Dias, S. (1996) The location and exploitation of genes for pest and disease resistance in European gene bank collections of horticulture brassicas. Acta Horticulture 407; 95-101.

Leidi, E. O., Barragán, V., Rubio, L., El-Hamdaoui, A., Ruiz, M. T., Cubero, B., et al. (2010) The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant Journal. 61; 495-506.

Li, X., An, P., Inanaga, S., Eneji, A. E., Tanabe, K. (2006) Salinity and defoliation effects on soybean growth. Journal of Plant Nutrition. 29; 1499-1508.

Liu, J., Zhang, S., Dong, L., Chu, J. (2014) Incorporation of $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporter gene from Aeluropus littoralis confers salt tolerance in soybean (Glycine max L.). Indian Journal of Biochemistry and Biophysics. 51, 58-65.
Liu, S., Liu, Y., Yang, X., Tong, C., et al., (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploids genomes. Nature Communications 5; 3930.

Long, S. P., Marshall-Colon, A. and Zhu, X. G. (2015) Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell. 161:56-66.

Lukens, L. N., Quijada, P. A., Udall, J., Pires, C., Schranz, E. M., and Osborn, T. C. (2004) Genome redundancy and plasticity within ancient and recent Brassica crop species. Biological Journal of Linnaen Society. 82; 665-674.
Maathius, F. J. M. (2006) Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. Journal of Experimental Botany. 57(4): 791-800.

Mackay, T. F. C. (2001) Quantitative trait loci in Drosophila. Nature Review Genetics. 2; 11-20.

Makela, P., Kontturi, M., Pehu, E., and Somersalo, S. (1999) Photosynthetic response of drought - and salt-stressed tomato and turnip rape plants to foliar applied glycinebetaine. Plant Physiology 105; 45-50.
Malik, R. S. (1990) Prospects for Brassica carinata as an oilseed crop in India. Experimental Agriculture. 26; 125-129.

Marschner, H. (1995) mineral nutrition of higher plants. $2^{\text {nd }}$ edition. Academic press, San Diego. Pp. 888.

Marschner, H. (2002) Mineral nutrition of higher plants. Academic Press, (2 ${ }^{\text {nd }}$ eds.), New York. Pp 889.
Mäser, P., Hosoo, Y., Goshima, S., Horie, T., Eckelman, B., Yamada, K., et al. (2002) Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proceedings of the National. Academy of Sciences. U.S.A. 99, 6428-6433.

McCouch, S. (2004) Diversity selection in plant breeding. PLoS Biology. 2: e347.
McCubbin, T., Bassil, E., Zhang, S. and Blumwald, E. (2014) Vacuolar Na+/H+ NHX-Type antiporters are required for cellular $\mathrm{K}+$ homeostasis, microtubule organization and directional root growth. Plants. 3; 409-426.

McNaughton, I. H. (1995a) Turnip and relatives. Brassica napus (Cruciferae). In: Smartt J, Simmonds, NW (eds) Evolution of crop plants, Chap 17. Longman, London, pp 62-68.
Memon, S.A., Hou, X., Wang, L.J. (2010) Morphological analysis of salt stress response of pak Choi. EJEAF Che 9 (1); 248-254.

Mer, R. K., Prajith, P. K., Pandya, D. H., Pandey, A. N. (2000) Effect of salts on germination of seeds and growth of young plants of hordeum vulgare, triticum aestivum, cicer arietinum and brassica juncea. Journal of Agronomy and Crop Science. 185; 209217.

Metternicht, G. I., Zinck, J. A. (2003) Remote sensing of soil salinity: potentials and constraints. Remove Sens. Environment 85:1-20.

Meyer, S., Pospisil, H. and Scholten, S. (2007) Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and over dominant pattern. Plant Molecular Biology. 63; 381-391.
Mikiko, L. K., Aurora, L., Robert, M. D. K., Timothy, J. F. and Anthony, R. Y. (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiology 125(1):406-422.
Miller, G. A. D., Suzuki, N., Ciftci-Yilmaz, S., \& Mittler, R. O. N. (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell \& Environment, 33(4); 453-467.

Mittler, R., Van derauwera, S., Suzuki, N., Miller, G., Tognetti, V. B., Vandepoele, K., Gollery, M., Shulaev, V., Van Breusegem, F. (2011) ROS signalling: the new wave? Trends Plant Science. 16(6); 300-9.

Møller, I. S., Gilliham, M., Jha, D., Mayo, G. M., Roy, S. J., Coates, J. C., et al. (2009) Shoot Na^{+}exclusion and increased salinity tolerance engineered by cell typespecific alteration of Na^{+}transport in Arabidopsis. Plant Cell. 21; 2163-2178.

Munns, R. (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ. 16; 15-24.
Munns, R. (2002) Comparative physiology of salt and water stress. Plant, Cell \& Environment. 25(2); 239-250.
Munns, R. (2005) Genes and salt tolerance: bringing them together. New Physiology 167:645-663.

Munns, R. and Weir, R. (1981) Contribution of sugars to osmotic adjustment in elongating and expanded zones of wheat leaves during moderate water deficits at two light levels. Australian Journal of Plant Physiology. 8; 93-105
Munns, R., \& Tester, M. (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59; 651-681.

Munns, R., James, R. A., Xu, B., Athman, A., Conn, S. J., Jordans, C., Byrt, C. S., Hare, R. A., Tyerman, S. D., Tester, M., et al. (2012) Wheat grain yield on saline soils is improved by an ancestral $\mathrm{Na}+$ transporter gene. Nature Biotechnology. 30; 360364.

Munns, R., Schachtman, D., \& Condon, A. (1995) The significance of a two-phase growth response to salinity in wheat and barley. Functional Plant Biology, 22(4), 561-569.

Nakashima, K., Ito, Y., and Yamaguchi-Shinozaki, K. (2009) Transcriptional regulatory networks in responses to abiotic stresses in Arabidopsis and Grasses. Plant Physiology 88-95.

Nedjimi, B., and Daoud, Y. (2009) Ameliorative effect of CaCl 2 on growth, membrane permeability and nutrient uptake in Atriplex halimus subsp. schweinfurthii grown at high (NaCl) salinity. Desalination. 249, 163-166.

Netonda, G. W., Onyango, J. C., Beck, E. (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Science 44:806811.

Nima, D. and Mahmoud, T. (2017) Rapeseed (Brassica napus L). genotypes response to NaCl salinity. Journal of Biodiversity and Environmental Science. 10(1); 265-270.

Ortega, A., Varela, L. M., Bermudez, b., Lopez, S., Abia, R., Muriana, F. J. (2012) Dietary fatty acids linking postprandial metabolic response and chronic diseases. Food Function. 3:22-7.

Ozgur, R., Uzilday, B., Sekmen, A. H., Turkan, I. (2013) Reactive oxygen species regulation and antioxidant defense in halophytes. Functional Plant Biology. 40; 832-847.
Padilla, G., Cartea, M. E., Rodriguez, V. M, Ordas, A. (2005) Genetic diversity in a germplasm collection of Brassica rapa subsp. Rapa L. from north-western Spain. Euphytica 145; 171-180.

Parkin, I. A., Sharp, A. G., Lydiate, D. J. (2003) Patterns of genome duplication within the Brassica napus genome. Genome 46(2):291-303.

Parkin, I. A., Sharpe, A. G., Lydiate, D. J. (2003) Patterns of genome duplication within the Brassica napus genome. Genome 46: 291-303.
Paterson, A. H., Lan, T. H., Amasino, R., Osborn, T. C., Quiros, C. (2001) Brassica genomics a complement to, and early beneficiary of, the Arabidopsis sequence. Genome Biology 2:1339-1347.

Peiffer, J. A., (2008) A spatial dissection of the Arabidopsis floral transcriptome by MPSS. BMC Plant Biology. 8; 43.

Pink, D.; Bailey, L.; McClement, S.; Hand, P.; Mathas, E.; Buchanan-Wollaston, V.; Astley, D.; King, G.; Teakle, G. (2008) Double haploids, markers and QTL analysis in vegetable brassicas. Euphytica 164, 509-514.

Plett, C. D. and Moller, I. S. (2010) Na (+) transport in glycophytic plants: what we know and would like to know. Plant Cell and Environment. 33(4): 612-26.

Poland, J. A., Brown, P. J., Sorrells, M. E., and Jannink, J. L. (2012a) Development of highdensity genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253.
Pradhan, A. K., Prakash, S., Mukhopadhyay, A., Pental, D. (1992) Phylogeny of Brassica and allied genera based on variation in chloroplast and mitochondrial DNA patterns. Molecular and taxonomic classifications are incongruous. Theoretical and Applied Genetics. 85; 331-340.
Prakash, S. and Hinata, K. (1980) Taxonomy, cytogenetics and origin of Brassica, a review. Opera Botany. 55, 1-57.
Prasad, I. G., Rao, G., Anil, R. C., Shrvan, K., Nikam, V. R., et al. (2016) Morphophysiological traits imparting salinity tolerance in maize (Zea mays L.) hybrids under saline water irrigation in vartisols. Journal Communication in Soil Science and Plant Analysis. 47:16.
Purty, R. .S., Kumar, G., Singla-Pareek, S. L. and Pareek, A. (2008) Towards salinity tolerance in Brassica: an overview. Physiology and Molecular Biology Plants 14; 39-49.

Qui, Q.-S., Guo, Y., Dietrich, M. A., Schumaker, K. S., \& Zhu, J.-K. (2002) Regulation of SOS1, a plasma membrane $\mathrm{Na}^{+} / \mathrm{H}^{+}$exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences. 99(12); 8436-8441.
Quintero, F. J., Martinez-Atienza, J., Villalta, I., Jiang, X., Kim, W.-Y., Ali, Z., Fujii, H., Mendoza, I., Yun, D.-J., Zhu, J.-K., \& Pardo, J. M. (2011) Activation of the plasma
membrane $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences. 108(6), 2611-2616.

Rahman, A., Nahar, K., Hasanuzzaman, M., and Fujita, M. (2016) Calcium supplementation improves $\mathrm{Na}+/ \mathrm{K}+$ ratio, antioxidant defence and glyoxalase systems in saltstressed rice seedlings. Frontiers in Plant Science. 7; 609.
Rajendran, K., Tester, M., \& Roy, S. J. (2009) Quantifying the three main components of salinity tolerance in cereals. Plant, Cell \& Environment. 32(3), 237-249.

Ram,S. P., Kumar, G., Singla-Pareek, S. L. and Ashwani, P. (2008) Towards salinity tolerance in Brassica: an overview. Physiology Molecular Biology Plants. 14; 1-2.

Ramalho, M. A. P., Carvalho, B. L., and Nunes, J. A. R. (2013) "Perspective for the use of quantitative genetics in breeding of autogamous plants" ISRN Genetics. 2013; 6.

Ray, D. K., Mueller, N. D., West, P. C. and Foley, J. A. (2013) Yield trends are insufficient to double global crop production by 2050. PLoS one. 8.e66428.

Rayman, M. P. (2012) Selenium and human health. Lancet. 379; 1256-1268.
Reguera, M., Bassil, E. and Blumwald, E. (2014) Intracellular NHX-type cation/H+ antiporters in plants. Molecular Plant 7, 261-263.

Reinnartz, J., Bruyns, E., Lin, J. Z., Burcham, T., Brenner, S., Bowen, B., Kramer, M., Woychik, R. (2002) Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms. Brief Functional Genomic Proteomic 1:95-104.

Ren, Z. H., Goa, J. P., Li, L. G., Cai, X. L., Huang, W., Choa, D. Y., Zhu, M. Z., Wang, Z. Y., Luan, S., Lin, H. X. (2005) A rice quantitative locus for salt tolerance encodes a sodium transporter. Nature Genetics. 37; 1141-1146.

Rengel, Z. (1992): The role of calcium in salt toxicity. Plant, Cell and Environment, 15: 625-632.

Renu, T. and Norendra, T. (2004) Serial analysis of gene expression (SAGE): Unravelling the bioinformatics tools. Wiley Interscience, BioEssays. 26:916-922.

Richards, C. L., White, S. N., McGuire, M. A., Franks, S. J., Donovan, L. A., Mauricio, R. (2010) Plasticity, not adaptation to salt level, explains variation along a salinity gradient in a salt marsh perennial. Estuaries and Coasts. 33:840-852.

Robinson, M. F, Very, A. A, Sanders, D., Mansfield, T. A. (1997) How can stomata contribute to salt tolerance? Annals of Botany. 80: 387-393.

Rodriguez-Rosales, M. P., Jiang, X. Y., Gálvez, F. J., Aranda, M. N., Cubero, B., Venema, K. (2008) Overexpression of the tomato $\mathrm{K}+/ \mathrm{H}+$ antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization. New Phytology. 179; 366-377.

Roy, S. J., Negrão, S., Tester, M. (2014) Salt resistant crop plants. Current Opinion in Biotechnology, 26: 115-124.

Rubio, F., Flores, P., Navarro, J. M., Martinez, V. (2003) Effect of Ca^{2+}, K^{+}and cGMP on Na^{+}uptake in pepper plants. Plant Science. 165; 1043-1049.

Rubio, F., Gassman, W., Schroeder, J. I. (1995) Sodium-driven potassium uptake by the plant potassium transport HKT1 and mutations conferring salt tolerance. Science. 270; 1660-1663.

Rus, A., Baxer, I., Muthukumar, B., Gustin, J., Lahner, B., Yakubova, E., Salt, D. E. (2006) Natural variants of AtHKT1 enhance Na^{+}accumulation in two wild populations of Arabidopsis. PLoS Genetics. 2; 1964-1973.

Russel, J. C., Kadry, L., \& Hanna, A. B. (1965) Sodic soils in Iraq. Agrokomia ES Talajtan.Tom 14(Suppl.): 91-97.
Sadiq, M., Jamil, M., Mehdi, S. M., Sarfarz, M., and Hassan, G. (2002) Comparative performance of Brassica varieties/ lines under saline sodic condition. Asian Journal Plant Science. 2; 77-78.

Sairam, R. K., \& Tyagi, A. (2004) Physiology and molecular biology of salinity stress tolerance in plants. Current Science. 86(3); 407-421.

Sakamoto, A., \& Murata, N. (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell and Environment. 25(2); 163171.

Salekdeh, G. H., Siopongco, J., Wade, L. J., Ghareyazie, B., and Bennett, J. (2002) A proteomic approach to analysing drought- and salt-responsiveness in rice. Field Crops Research. 76; 199-219.

Sanders, D., Pelloux, J., Brownlee, C., Harper, J. F. (2002) Calcium at the crossroads of signalling. Plant Cell 14; S401-S417.
Sarwat, M. I., El-Sherif, M. H. (2007) Increasing salt tolerance in some barley genotypes (Hordeum vulgare) by using kinetin and benzyladenin. World. Journal of Agricultural Science. 3(5); 617-629.

Schachtman, D. P., Schroeder, J. I. (1994) Structure and transport mechanism of a highaffinity potassium uptake transporter from higher-plants. Nature 370:655-58.

Schilling, R. K., Marschner, P., Shaurukov, Y., Berger, B., Tester, M., Roy, S. J., Plett, D. C. (2013) Expression of the Arabidopsis vacuolar $\mathrm{H}+$ - pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in saline field. Plant Biotechnology Journal. 12(3); 378-86.

Schmidt, R., Acarkan, A. and Biovin, K. (2001) Comparative structural genotics in the Brassicaceae family. Plant Physiology and Biochemistry. 39:253-262.

Schmidt, R., Mieulet, D., Hubberten, H, et al. (2013) Salt-Responsive ERF1 regulates reactive oxygen species-dependent signalling during the initial response to salt stress rice. Plant cell. 25(6); 2115-31.
Schranz, M. E., Song, B. H., Windsor, A. J., Mitchell-Olds, T. (2007) Comparative genomics in the Brassicaceae: a family-wide perspective. Current Opinion Plant Biology 10(2):168-175.

Shabala, S., and Pottosin, I. (2014) Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiology of Plant. 151, 257-279.

Shabala, S., Cuin, T. A. (2008) Potassium transport and plant salt tolerance. Journal of Plant Physiology 133; 651-669.
Shabala, S., Demidchick, V., Shabala, L., Cuin, T. A., Smith, S. J., Miller, A. J., et al. (2006) Extracellular Ca^{2+} ameliorates NaCl -induced K^{+}loss from Arabidopsis root and leaf cells by controlling plasma membrane K^{+}-permeable channels. Journal of Plant Physiology. 141, 1653-1665.

Shi, H. Z., Quintero, F. J., Pardo, J. M., and Zhu, J. K. (2002a) The putative plasma membrane $\mathrm{Na}+/ \mathrm{H}+$ antiporter SOS 1 controls long-distance $\mathrm{Na}+$ transport in plants. The Plant Cell Online 14; 465-477.

Shi, H., Wu, S. J., and Zhu, J. K. (2002b) Role of SOS1 as a plasma membrane Na+/H+ antiporter improves salt tolerance in Arabidopsis. Nature Biotechnology 21; 81-85.

Shiraki, T., Kondo, S., Katayama, S., Waki, K., et al., (2003) Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proceeding of National Academy of Science, USA 100;1577615781.

Siddiqui, M. H., Mohammad, F., Khan, M. N. (2009) Morphological and physiobiochemical characterization of Brassica juncea L. Czern. \& Coss. genotypes under salt stress. Journal of Plant International. 4; 67-80.

Simaei, M., Khavari-Nejad, R. A and Bernard, F. (2012) Exogenous application of salicylic acid and nitric oxide on the ionic contents and enzymatic activities in NaCl -stressed soybean plants. American Journal of Plant Science. 3; 1495-1503.

Singh, K. N., \& Chatrath, R. (2001) Salinity tolerance. In Eds., M. P. Reynolds, J. J. OrtizMonasterio \& A. McNab (Eds.), Application of physiology in wheat breeding. Mexico: CIMMYT. pp.101-110.

Snogerup, S. (1980) The wild forms of the Brassica oleracea group and their possible relations to the cultivated ones. In: Gomez-Campo, C., Hinata, K., Tsunoda, S. (eds.) Brassica Crops and Wild Allies: Biology and Breeding. Japan Societies, Tokyo, pp 121-132.

Snogerup, S., Gustafsson, M. and von Bothmer, R. (1990) Brassica (Brassicaceae) L. Taxonomy and variation. Willdenowia, 19; 217-365.

Sonah, H., Batien, M., Iquira, E., Tardivel, A., Legare, G., Boyle, B., et al., (2013) An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE 8:e54603.

Song, K. M., Osborn, T. C., Williams, P. H. (1988b) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs) 2. Preliminary analysis of subspecies within B. rapa (syn. Campestris) and B. oleracea. Theoretical Applied Genetics. 76; 593-600.

Song, K. M., Osborn, T. C., Williams, P. H. (1990) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs) 3. Genome relationships in Brassica and related genera and origin of B. oleracea and B. rapa (syn. Campestris). Theoretical Applied Genetics. 79; 497-506.

Stupar, R. M., and Springer, N. M. (2006) Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics 173; 2199-2210.

Su, H., Golldack, D., Katsuhara, M., Zhao, C., Bohnert, H. J. (2001) Expression and stressdependent induction of potassium channel transcripts in the common ice plant. Plant Physiology. 125; 604-614.

Sunarpi, H. T., Motoda, J., Kubo, M., Yang, H., Yoda, K., Horie, R., Chan, W. Y., Leung, H. Y., Hattori, K. (2005) Enhanced salt tolerance mediated by AtHKT1 transporterinduced Na^{+}unloading from xylem vessels to xylem parenchyma cells. Plant Journal. 44 928-938.

Sunyaev, S. R., Lathe, W. C., III, Ramensky, V. E., and Bork, P. (2000) SNP frequencies in human genes: an excess of rare alleles and differing modes of selection. Trends in Genetics. 16; 335-337.

Sze, H., Liang, F., Hwang, I., Curran, A. C., Harper, J. F. (2000) Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. Annual Review of Plant Biology 51; 433-462.

Takasaki, H., Maruyama, K., Kidokoro, S., Ito, Y., Fujita, Y., Shinozaki, K., YamaguchiShinozaki, K., Nakashima, K. (2010) The biotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Molecular Genetics and Genomics. 284; 1743-1754.

Tang, H., Bowers, J. E., Wang, X., Ming, R., Alam, M., Paterson, A. H. (2008) Synteny and collinearity in plant genomes. Science. 320(5875):486-488.

Tang, H., Wang, X., Bowers J. E., Ming, R., Alam M., et al. (2008) Unravelling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Research. 18: 1944-1954.

Tanksley, S. (1993) Mapping polygenes. Annual. Review Genetics. 27; 205-233.
Tester, M., and Davenport, R. (2003) Na+ tolerance and $\mathrm{Na}+$ transport in plants. Annals Botany. 91; 503-527.

Thomas, D. and Ralph, H. (2018) Biotic and abiotic stress responses in crop plants. Agronomy. 8; 267.

Tikhonova, L. I., Potossin, I. I., Dietz, K., and Schonknecht, G. (1997) Fast activating cation channel in barley mesophyll vacuoles inhibition by calcium. Plant Journal. 11, 1059-1070.

Toxopeous, H. E., Oost, G. R. (1984) Eucarpia Crusciferae News 9:55.
Tunçtürk, M., Tunçtürk, R., and Yaar, F. (2008) Changes in micronutrients, dry weight and plant growth of soybean (Glycine max L. Merrill) cultivars under salt stress. African Journal of Biotechnology. 7(11); 1650-1654.

Tuncturk, M., Tuncturk, R., Yildirim, B. and Ciftci, V. (2011) Effect of salinity stress on plant fresh weight and nutrient composition of some Canola (Brassica napus L.) cultivars. African Journal Biotechnology. 10;1827-1832.

Tuteja, R, Tuteja, N. (2004) Serial Analysis of Gene Expression (SAGE): Applications in Malaria Parasite, Yeast, Plant and Animal Studies. J Biomed Biotech (in press).

Undurraga, S. F., Santos, M. P., Paez-Valencia, J., Yang, H., Helper, P. K., Facanha, A. R., Hirschi, K. O., Gaxiola, R. A. (2012) Arabidopsis sodium dependent and
independent phenotypes triggered by $\mathrm{H}+$-PPase up-regulation are SOS1 dependent. Plant Science. 183; 96-105.
Uozumi, N., Kim, E. J., Rubio, F., Yamaguchi, T., Muto, S., Tsuboi, A., Bakker, E. P., Nakamura, T., Schroeder, J. I. (2000) The Arabidopsis HKT gene homolog mediates inward $\mathrm{Na}(+$) currents in Xenupus Laevis oocytes and $\mathrm{Na}(+)$ uptake in saccharomyces cerevisiae. Plant Physiology. 122; 1249-1259.

Velculescu, V. E, Vogelstein, B., Kinzler, K. W. (2000) Analysing uncharted transcriptomes with SAGE. Trends Genet 16:423-425.

Velculescu, V. E., Zhang, L., Vogelstein, B., Kinzler, K. W. (1995) Serial analysis of gene expression. Science 270; 484-487.

Very, A. A., Nieves-Cordones, M., Daly, M., Khan, I., Fizames, C., and Sentenac, H. (2014) Molecular biology of $\mathrm{K}+$ transport across the plant cell membrane: what do we learn from comparison between plant species? Journal of Plant Physiology. 171; 748-769.

Villalta, I., Bernet, G. P., Carbonell, E. A., Asins, M. J. (2007) Comparative QTL analysis of salinity tolerance in terms of fruit yield using two Solanum populations of F7 lines. Theoretical Applied Genetics 114:1001-1017.

Vision, T. J., Brown, D. G., Tanksley, S. D. (2000) The origins of genomic duplications in Arabidopsis. Science 290(5499):2114-2117.

Walley, P. G. and Buchannan-Wollaston, V. (2011) Chapter 5 - Brassica; in: Health promoting properties of fruit and vegetables. Edited by Terry L. CABI UK. ISBN13:9781845935283.

Walley, P. G., Carder, J. C., Skipper, E., Mathas, E., Lynn, J., Pink, D., BuchananWollaston, V. (2012) A new framework broccoli x broccoli genetic map: better for complex trait analysis. Theoretical Applied Genetics. 124(3); 467-484.

Wang, X. et al., (2011) The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics. 43; 1035-1039.

Wang, X., Yang, R., Wang, B., Liu, G., Yang, C., Cheng, Y. (2011) Functional characterization of a plasma membrane $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporter from alkali grass (Puccinellia tenuiflora). Molecular Biology and Reproduction 38; 4122-4813.
Wang, Y., and Wu, W.H. (2013) Potassium transport and signalling in higher plants. Annual Review Plant Biology. 64; 451-476.

Wang, Y., Jin, S., Wang, M., Zhu, L., Zhang, X. (2013b). Isolation and characterization of a conserved domain in the eremophyte H+-PPase family. PLoS One. 8(7); e70099.
Warwick, S. L. and Black, L. D. (1991) Molecular systematics of Brassica and allied genera (Subtribe Brassicinae Brassicae) chloroplast genome and cytodeme congruence. Theoretical and Applied Genetics. 82; 81-92.

Waters, S., Gilliham, M., and Hrmova, M. (2013) Plant high-affinity potassium (HKT) transporters involved in salinity tolerance: Structural insights to probe differences in ion selectivity. International Journal of Molecular Sciences. 14; 7660-7680.
Watkin, E. L. J., O'Hara, G.W., Howieson, J.G., Glenn, A. R. (2000) Identification of tolerance to soil acidity in inoculant strains of Rhizobium leguminosarum bv trifolii. Soil Biology \& Biochemistry. 32; 1393-1403.
White, P. J. (2000) Calcium channels in higher plants. Biochimica et Biophysica Acta 1465; 171-189.

White, P. J., and Broadley, M. R. (2003) Calcium in Plants. Annals of Botany 92;487-511.
Williams, P. H. and Hill, C. B. (1986) Rapid-cycling populations of Brassica. Science 232: 1385-1389.

Wu, G. Q., and Wang, S. M. (2012) Calcium regulates $\mathrm{K}+/ \mathrm{Na}+$ homeostasis in rice (Oryza sativa L.) under saline conditions. Plant Soil Environment. 58; 121-127.

Xiong, L., and Yang, Y. (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell. 15; 745-759.

Xue, G., Lu, L. M., Yang, T. Z., Li, X. H., Xing, X. X., and Xu, S. X. (2016) Enhanced tolerance to low $\mathrm{K}+$ stress in tobacco plants, that ectopically express the CBLinteracting protein kinase CIPK23 gene. Czech Journal of Genetics and Plant Breeding. 52; 77-82.
Xue, Y., Zhou, Y., Hong, S., Xia, Z., Cui, D., Guo, J., et al. (2013) Functional characterization of a wheat NHX antiporter gene TaNHX2 that encodes a $\mathrm{K}+/ \mathrm{H}+$ exchanger. PLoS ONE 8; 78098.

Yadav, N., Shukla, P., Jha, A., Agarwal, P., Jha, B. (2012) The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na^{+}loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biology. 12; 1-18.

Yamaguchi, T., Hamamota, S. and Uozumi, N. (2013) Sodium transport system in plant cells. Frontiers in Plant Science. 4;410.

Yang, T. J., Kim, J. S., Kwon, S. J., Lim, K. B., Choi, B. S., Kim, J. A., Jin, M., Park, J. Y., Lim, M. H., Kim, H. I., et al. (2006) Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. The Plant Cell 18:1339-1347.

Yang, Y. W., Lai, K. N., Tai, P. Y., Li, W. H. (1999) Rates of nucleotide substitution in between Brassica and other angiosperm lineages. Journal of Molecular Evolution. 48(5): 597-604.

Yang, Y. W., Lai, K. N., Tai, P. Y., Ma, D. P. and Li, W. H. (1999) Molecular phylogenetic studies of Brassica, Rorippa, Arabidopsis and allied genera based on the internal transcribed spacer region of 18S-25S rDNA. Molecular Phylogenetic Evolution 13:455-462.

Yano, M., and Sasaki, T. (1997) Genetic and molecular dissection of quantitative traits in rice. Plant Molecular Biology. 35; 145-153.

Yao, M., Zeng, Y., Liu, L., Huang, Y., Zhao, E., Zhang, F. (2012) Overexpression of the halophyte Kalidium foliatum $\mathrm{H}+$-pyrophosphatase gene confers salt and drought tolerance in Arabidopsis thaliana. Molecular Biology and Reproduction. 39; 79897996.

Yasar, F., Kusvuran, S., Ellialtıolu, S. (2006) Determination of anti-oxidant activities in some melon (Cucumis melo L.) varieties and cultivars under salt stress. Journal of Horticulture Science and Biotechnology. 81(4); 627-630.

Yilmaz, H. and Kina, A. (2008) The influence of NaCl salinity on some vegetative and chemical changes of strawberries (Fragaria x ananssa L.). African Journal Biotechnology. 7(18); 3299-3305.

Yoo, C.Y., Pence, H.E., Hasegawa, P.M., Mickelbart, M.V. (2009). Regulation of transpiration to improve crop water use. Critical Reviews in Plant Sciences 28; 410-431.

Zamir, D. (2001) Improving plant breeding with exotic genetic libraries. Nature Review in Genetics. 2; 983-989.

Zhang, H., \& Blumwald, E. (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology, 19(8); 765-768.

Zhang, L., Zhou, W., Velculescus, V. E. et al. (1997) Gene expression profiles in normal and cancer cells. Science. 276:1268-1272.

Zhao, C. M., Shono, M., Sun, A. Q., Yi, S. Y., Li, M. H., Liu, J. (2007) Constitutive expression of an endoplasmic reticulum small heat shock protein alleviates
endoplasmic reticulum stress in transgenic tomato. Journal of Plant Physiology. 164; 835-841.

Zhou, Y., Kalocsai, P., Chen, J. and Shams, S. (2000) Information processing issues and solutions associated with microarray technology, in microarray Biochip Technology, Schena, M. Ed., Biotechniques Books, Natick, MA, pp. 167-200.

Zhu, J. K. (2001) Plant tolerance. Trends of Plant Science 6:66-71.
Zhu, J. K. (2003) Salt and drought stress signal transduction in plants. Annual Review in Plant Biology. 53; 247-273.

Zhu, M., Shabala, L., Cuin, T. A., Huang, X., Zhou, M., Munns, R., et al. (2015) Nax loci affect SOS1-like $\mathrm{Na}+/ \mathrm{H}+$ exchanger expression and activity in wheat. Journal of Experimental Botany. 67; 835-844.

Appendices

Appendix I

Table S1: List of wild founder Parent lines (DFFS) Brasssica C genome DFFS founder lines

BCgDFS founder line
DFFS set No.
Species

BCgDFS_001	C04001	alboglabra
BCgDFS_002	C04002	atlantica
BCgDFS_003	C04003	atlantica
BCgDFS_004	C04005	balearica
BCgDFS_005	C04006	bourgaei
BCgDFS_006	C04007	cretica
BCgDFS_007	C04008	cretica
BCgDFS_008	C04009	cretica
BCgDFS_009	C04010	cretica
BCgDFS_010	C04011	cretica
BCgDFS_011	C04012	cretica
BCgDFS_012	C04013	cretica
BCgDFS_013	C04014	cretica
BCgDFS_014	C04015	hilarionis
BCgDFS_015	C04016	hilarionis
BCgDFS_016	C04017	hilarionis
BCgDFS_017	C04018	incana
BCgDFS_018	C04019	incana
BCgDFS_019	C04020	incana
BCgDFS_020	C04021	incana
BCgDFS_021	C04023	incana
BCgDFS_022	C04024	insularis
BCgDFS_023	C04027	insularis
BCgDFS_024	C04028	macrocarpa
BCgDFS_025	C04029	macrocarpa
BCgDFS_026	C04030	macrocarpa
BCgDFS_027	C04031	macrocarpa
BCgDFS_028	C04032	macrocarpa
BCgDFS_029	C04033	macrocarpa
BCgDFS_030	C04034	macrocarpa
BCgDFS_031	C04035	macrocarpa
BCgDFS_032	C04036	macrocarpa
BCgDFS_033	C04037	macrocarpa
BCgDFS_034	C04038	macrocarpa
BCgDFS_035	C04039	macrocarpa
BCgDFS_036	C04040	macrocarpa
BCgDFS_037	C04041	macrocarpa
BCgDFS_038	C04042	macrocarpa
BCgDFS_039	C04043	macrocarpa
BCgDFS_040	C04045	montana
BCgDFS_041	C04047	oleracea
BCgDFS_042	C04048	oleracea
BCgDFS_043	C04049	oleracea
BCgDFS_044	C04050	oleracea
BCgDFS_045	C04051	oleracea
BCgDFS_046	C04052	oleracea
BCgDFS_047	C04053	oleracea
BCgDFS_048	C04054	oleracea
BCgDFS_049	C04055	oleracea
BCgDFS_050	C04056	oleracea

Appendix I Cont.

Table S1: Cont.

Brasssica C genome DFFS founder lines

$B C$ DFF founder line	DFFS set No.	Species
BCgDFS_052	C04060	oleracea
BCgDFS_053	C04061	oleracea
BCgDFS_054	C04062	oleracea
BCgDFS_055	C04063	oleracea
BCgDFS_056	C04064	oleracea
BCgDFS_057	C04065	oleracea
BCgDFS_058	C04066	oleracea
BCgDFS_059	C04067	oleracea
BCgDFS_060	C04068	oleracea
BCgDFS_061	C04069	oleracea
BCgDFS_062	C04070	montana
BCgDFS_063	C04071	montana
BCgDFS_064	C04073	rupestris
BCgDFS_065	C04074	rupestris
BCgDFS_066	C04075	rupestris
BCgDFS_067	C04076	rupestris
BCgDFS_068	C04077	incana
BCgDFS_069	C04079	incana
BCgDFS_070	C04080	incana
BCgDFS_071	C04081	incana
BCgDFS_072	C04082	incana
BCgDFS_073	C04083	villosa
BCgDFS_074	C04084	villosa
BCgDFS_075	C04085	villosa
BCgDFS_076	C04086	villosa
BCgDFS_077	C04087	villosa
BCgDFS_078	C04088	villosa
BCgDFS_079	C04089	villosa
BCgDFS_080	C04090	villosa
BCgDFS_081	C04091	villosa
BCgDFS_082	C04092	villosa
BCgDFS_083	C04093	villosa
BCgDFS_084	C04094	villosa
BCgDFS_085	C04095	villosa
BCgDFS_086	C04096	oleracea
BCgDFS_087	C04097	oleracea
BCgDFS_088	C04098	oleracea

Appendix I Cont.

Table S2: List of wild S1 parent lines used in 2015 salt screening experiment.

Brasssica C genome DFFS lines

1 Geno ID	Name	Type
2 A12DHd	B. oleracea	DH
3 C 04099	DHSL150 (C01001)	DH
4 C 07007	B. bourgaei	S1
5 C 07010	B. cretica	S1
6 C 07011	B. cretica	S1
$7 \mathrm{C07012}$	B. cretica	S1
8 C 07014	B. cretica	S1
9 C 07015	B. cretica	S1
$10 \mathrm{C07017}$	B. cretica	S1
$11 \mathrm{C07018}$	B. cretica	S1
$12 \mathrm{C07019}$	B. hilarionis	S1
13 C 07020	B. hilarionis	S1
$14 \mathrm{C07023}$	B. incana	S1
15 C 07024	B. incana	S1
16 C 07026	B. incana	S1
$17 \mathrm{C07030}$	B. insularis	S1
$18 \mathrm{C07031}$	B. macrocarpa	S1
$19 \mathrm{C07037}$	B. macrocarpa	S1
$20 \mathrm{C07039}$	B. macrocarpa	S1
$21 \mathrm{C07045}$	B. macrocarpa	S1
$22 \mathrm{C07046}$	B. macrocarpa	S1
$23 \mathrm{C07047}$	B. macrocarpa	S1
$24 \mathrm{C07049}$	B. macrocarpa	S1
$25 \mathrm{C07051}$	B. montana	S1
$26 \mathrm{C07059}$	B. oleracea	S1
$27 \mathrm{C07060}$	B. oleracea	S1
28 C 07062	B. oleracea	S1
$29 \mathrm{C07067}$	B. oleracea	S1
$30 \mathrm{C07069}$	B. oleracea	S1
$31 \mathrm{C07069A}$	B. oleracea	S1
$32 \mathrm{C07071}$	B. oleracea	S1
$33 \mathrm{C07073}$	B. oleracea	S1
$34 \mathrm{C07075}$	B. oleracea	S1
35 C 07077	B. oleracea	S1
36 C 07078	B. oleracea	S1
$37 \mathrm{C07079}$	B. oleracea	S1
38 C 07079 A	B. oleracea	S1
39 C 07080	B. montana	S1
40 C 07086	B. rupestris	S1
$41 \mathrm{C07089}$	B. rupestris	S1
42 C 07091	B. incana (listed	S1
$43 \mathrm{C07093}$	B. incana	S1
44 C07094	B. incana	S1
45 C 07095	B. incana	S1
46 C 07103	B. villosa bivonia	S1
$47 \mathrm{C07104}$	B. villosa bivonia	S1
$48 \mathrm{C07113}$	B. villosa tinei	S1
49 C07123	B. oleracea capita	S1
50 Early Bi	B. oleracea	DH
51 GDDH33	B. oleracea	DH
52 HRIGRU00	B. oleracea	
53 MarDH34	B. oleracea	DH

Appendix II
Table S2: Differences in Allelic variants at various chromosomes positions in parent lines; the cultivated rapid cycling DHSL150 and C07060.

cl	$38,213 \mathrm{~T} / \mathrm{T}$	c/c	${ }^{\text {c2 }}$	201,853 T / T	a/A	c2	47,958,970 $/$ /	6/6	c3	29,031,900 c/c	6/6	c4	24,881,517 6/6	I/T	${ }^{\text {c5 }}$	5,268,307 6/6	I/T	c5	41,36,151 6/6	c/c	c6	36,104,457 A / A	6/6	c1	42,708,499 T / T	6/G	c8	33,946,711 A / A	6/6	c9	20,272,188 6/6	
${ }^{1}$	50,312 6/G	T/T	${ }^{\text {c2 }}$	211,730 6/6	a/A	c2	47,959,067 c/c	I/T	c3	29,031,925 6/6	c/c	c4	24,934,932 A / A	6/6	c5	5,289,69 I/r	c/c	cs	41,376,199 6/6	A/A	${ }^{6} 6$	36,104,476/7	a/a	c1	42,834,2997/r	c/c	c8	33,946,718 I / T	c/c	c9	20,212,22 A/A	c/c
c1	315,877 $1 / \mathrm{A}$	6/6	c^{2}	241,356 //7	A/A	C2	47,982,206 $/$ /h	6/6	c3	29,060,210 G/6	A/A	c4	25,32, $584 \mathrm{~T} / \mathrm{T}$	6/6	${ }^{\text {c }}$	5,290,256 G/6	A/A	${ }^{\text {c }}$	41, $382,029 \mathrm{~T} / \mathrm{T}$	c/c	${ }^{6}$	36,112,515 c/c	T/r	${ }^{1}$	42,876,601 T / T	c/c	c8	33,98,252 G/C	c/c	c9	20,272,135 c/c	T/T
c1	442,858 A/4	6/6	c2	255,727 c/c	I/T	c2	48,081,107 c/c	I/T	${ }^{3}$	29,105,463 c/C	T/r	c4	25,32, 590 A/A	c/c	${ }^{5}$	5,345,56 A/A	6/G	cs	41,382,032 6/6	A/A	${ }^{6} 6$	36,148,763 A/	6/6	c1	42,876,635	1/4	c8	33,948,337 c/a	I/T	c9	20,439,511 c/	1/4
c1	442,876 c/c	T / T	c2	255,754/c	I/T	c2	48,13, 962 c/C	I/T	${ }^{\circ}$	29,149,1736/6	A/A	c4	25,352,624 A/	6/6	${ }^{\text {c }}$	5,355,115 6/6	I/T	c5	41,390,781 A / A	c/c	${ }^{6} 6$	36,249,115 a / A	6/G	${ }^{1}$	42,877,087 A/A	T/T	c8	33,968,282 $/ 1 / 6$	I/T	c9	20,542,127 G/6	c/c
c1	442,886 //T	6/6	c2	399,705 A/A	T/T	c2	48,13,975 a/A	6/G	c3	29,149,130 6/6	c/c	c4	25,428,238 \%/7	a/A	${ }^{\text {c }}$	5,367,105 6/6	a/A	${ }^{\text {c }}$	41,390,788 I/T	6/6	${ }^{\text {c } 6}$	36,341,116 c/c	6/6	c1	42,877,108 A / A	6/G	c8	33,968,319 A/a	6/6	c9	20,592,289 //	6/6
c1	467,057 6/6	a/a	${ }^{\text {c2 }}$	402,498 $6 / 6$	c / c	c2	48,195,834 $/$ //	6/6	c3	29,149,170 6/6	a/a	c4	25,466,901 1/8	c/c	${ }^{\text {c }}$	5,424,899/6	a/A	${ }^{5}$	$41,401,004 \mathrm{~A} / \mathrm{A}$	6/6	${ }^{6}$	36,31,888 6/6	T/T	c	42,887,875 c/c	1/4	c8	33,98,202 T/	c/c	c9	20,616,341 $/ \mathrm{L}$	6/6
${ }^{1}$	1,059	6/6	c2	2,527	c/c	c2	417,333	6/6	c3	29,173,179 c/c	I/r	c4	25,617,584 7/	c/c	${ }^{\text {c }}$	5139,089 I	a/A	cs	1,416,765 c	a/a	${ }^{6}$	36,341,812	I/T	c	43,058,037	6/G	c8	34,019,166 //	I/r	c9	20,66, 613	T/r
c1	$647,111 \mathrm{c} / \mathrm{c}$	I/T	${ }^{\text {c2 }}$	$525,532 \mathrm{c} / \mathrm{C}$	a/A	c2	48,63, 626 6/6	a/A	c3	29,21, 565 5 //7	6/6	c4	25,72, 507 A/A	T/T	${ }^{\text {c }}$	5,445,536 c/c	6/G	c5	41,153,273 6/6	A/A	${ }^{6} 6$	36,363,515 6/6	c/c	${ }^{1}$	43,058,058 \%/2	c/c	c8	34, $, 25,457 \mathrm{~A} / \mathrm{A}$	6/6	c9	20,705,54 C/	A/A
c1	856,311 $/$ /a	6/6	c2	527,017 $/ 6$	a/A	c2	48,639,718 A / A	6/6	c3	29,322,29 c/c	I/T	c4	25,743,25 A / A	6/6	c5	5,445,560 c/c	I/T	c5	$41,753,309 \mathrm{c} / \mathrm{c}$	I/T	${ }^{6}$	36,367,45 a/d	6/G	c 1	43,94,940 I/	6/6	${ }^{8}$	$34,25,712 \mathrm{c} /$	I/T	c9	20, $, 55,405 \mathrm{c}$	T/T
c1	1,019,546 //	c/c	${ }^{2}$	591,671 c/C	T/T	C2	48,639,815 a/a	c/c	${ }^{2}$	29,35, 173 A/4	6/G	c4	25,747,613 6/6	I/T	c5	5,480,312 C/C	I/T	${ }^{5}$	$41,774,258 \mathrm{~T} / \mathrm{T}$	c/c	${ }^{6}$	36,36,522 c/	6/6	c1	43,094,963	T/7	${ }^{8}$	34,048,200 T/	c/c	c9	20,755,466 C	6/6
c1	1,019,628 A/A	c/c	${ }^{2}$	$591,689 \mathrm{~T} / \mathrm{T}$	c/c	c2	48,639,830 $/ \mathrm{T}$	c/c	c3	29,357,209 7/7	a/A	c4	25,767,209 \%/7	6/6	c5	5,480,351 1/7	c/c	${ }^{\text {c }}$	$41,774,363 \mathrm{~T} / \mathrm{T}$	c/c	${ }^{6}$	36,367,544 T/	c/c	c1	43,281,999 6/6	T/r	${ }^{8}$	34,058,082 c/c	6/6	c9	20,75, $880 \mathrm{c/}$	6/G
c1	1,105,48 8/4	6/6	c2	594,580 c/c	I/T	c2	48,648,060 $/ \mathrm{T}$	6/6	c3	29,357,250 T/	6/6	c4	25,767,212 T / T	c/c	c5	5,496,74 6/6	c/c	cs	41,850,817 6/6	T/T	${ }^{6}$	36,367,591 c/	T/r	c1	43,282,052 $/ \mathrm{A}$	I/r	${ }^{88}$	34,058,136 c/c	6/6	c9	20,783,254 $/$	c/c
c1	1,105,55 c/c	T/T	${ }^{\text {c2 }}$	675,339 A / A	I/T	C2	48,677,626 c/c	I/T	c3	29,518,511 c/c	a/A	c4	25,815,437 c/c	I/T	${ }^{\text {c }}$	5,496,801 1/A	6/G	cs	$41,965,913 \mathrm{a} / \mathrm{A}$	T/T	${ }^{6}$	36,367,614 c/c	a/A	c1	43,333,400 c/	T/7	${ }^{8}$	34,072,393 6/6	a/A	c9	20,190,895 //	6/G
c1	1,138,452 A/A	6/6	C2	675,346 A/A	T/T	C2	48,907,302 $/ \mathrm{A}$	T/T	c3	29,519,209 I/T	6/6	c4	25,815,473 c/C	T/T	${ }^{\text {c }}$	5,497,36 A/4	c/c	${ }^{5}$	$42,043,042 \mathrm{~A} / \mathrm{A}$	c/c	${ }^{\text {c6 }}$	36,402,650 G/C	A/4	c1	43, $551,522 \mathrm{c} / \mathrm{c}$	T/T	c8	34,137,602 A/	T/T	c9	20,888,559 6/6	c/c
c1	1,242,142 6/G	T/T	${ }^{\text {c2 }}$	694,385 T / T	6/6	C2	48,90, $311 \mathrm{~T} / \mathrm{T}$	c/c	${ }^{\text {c3 }}$	29,519,210 T/7	c/c	c4	26,114,118 c/	6/6	c5	5,497,346/6	I/T	cs	42,144,830 A / A	T/T	${ }^{6}$	36,402,693 a/	6/6	c1	43,451,595 $/ 2$	A/4	${ }^{8}$	34,137,638 A/	c/c	c9	20,89, 299 a/a	6/G
c1	1,242,469 / $/$ A	6/G	c2	706,047 c/c	a/A	c2	48,907,328 6/6	T/T	c3	29,62, 889 //4	c/c	c4	26,171,845 T	a/A	${ }^{\text {c }}$	5,498,957/c	6/G	${ }^{5}$	$42,144,863 \mathrm{~T} / \mathrm{T}$	A/A	${ }^{6}$	36,410,50]	c/c	c1	43,451,672 6/6	c/c	${ }^{8}$	34,137,668 6/6	a/A	c9	21,03, 826 A/2	c/c
c1	1,242,511 A/A	T/T	c2	134,016 A//	6/G	C2	48,907,401 C/C	T/T	c3	29,62, 267 c c/c	a/A	c4	26,111,859 7/	6/G	c5	5,636,766/6	T/T	${ }^{5}$	2,152,432 c/	r/7	${ }^{\text {c6 }}$	36,572,712 c/c	T/T	c1	43,459,587 c/c	T/r	${ }^{8}$	34,262,311 T/	c/c	c9	21,175,299 6/6	a/a
c1	1,336,311 /7	6/6	${ }^{2}$	835,983 I / T	c/c	c2	48,907,415 c/c	T/T	c3	29,626,185 A/A	6/6	c4	26,171,863 \%/7	6/6	c5	5,644,36 c/c	I/T	${ }^{5}$	$42,204,939 \mathrm{c} / \mathrm{C}$	T/r	${ }^{6}$	36,730,766 //	a/4	c1	43,461,649 c/c	T/r	${ }^{8}$	$34,262,404$ G/6	a/A	c9	21,263,044 $/ 1$	c/c
c1	1,336,408 6/6	c/c	${ }^{\text {c2 }}$	943,534 c/c	T/T	c2	48,972,024 c/c	A/A	c	29,62, 174 c/c	T/T	c4	26,262,073 A/A	6/6	c5	5,662,949/6	a/A	${ }^{\text {c }}$	2,204,945 c/c	T/T	${ }^{6}$	36,150,902 6/6	a/a	c1	43,486,066 /1/	6/G	${ }^{8}$	34,262,488 //a	6/6	c9	21,265,587 I/7	A/A
c1	1,336,412 A/A	T/T	c2	943,5937/T7	a/A	C2	49,218,286 c/c	T/T	c3	29,62, 285 c/c	6/6	c4	26,262,091 1//	6/6	c5	5,662,979 //4	c/c	${ }^{5}$	42,205, $046 \mathrm{~T} / \mathrm{T}$	a/A	${ }^{6} 6$	36,766,431	c/c	c1	43,489,851 6/6	c/c	${ }^{8}$	34, $103,603 \mathrm{a} / \mathrm{A}$	T/T	c9	21,506,7416/6	A/4
c1	1,369,909 7/7	A/A	C2	943,595 A / A	I/T	C2	49,36, 130 7/7	c/c	c3	29,62, 186 A/	6/6	c4	26,262,190 6/G	a/A	c5	5,118,767 c/c	A/A	c5	42,206,339 A/A	c/c	${ }^{6}$	36,970,480 c/	6/6	c1	43,889,890 A / A	6/G	C8	34,410,244 a/	T/r	c9	21,532,139 A/4	T/1
c1	1,37, 974 c/c	T/T	${ }^{2}$	971, $392 \mathrm{~A} / \mathrm{A}$	6/G	c2	49,317,684 C/C	a/A		29,62, ,288 c/c	T/T	c4	26,262,897 G/6	a/A	${ }^{\text {c }}$	5,775,85 c/c	I/T	${ }^{\text {c }}$	42,206,462 A / A	c/c	${ }^{6}$	36,970,502	6/G	c1	43,489,902 6/G	1/4	${ }^{8}$	34,451,344 $\mathrm{T} /$	c/c	c9	21,532,823 /1/	c/c
c1	1,371,93 A / A	6/6	${ }^{2}$	999,767 c/c	I/T	c2	49,427,256 6/6	c/c	c3	29,62, $356 \mathrm{~T} / 7$	c/c	c4	26,262,906 T/	c/c	${ }^{\text {c }}$	5,775,881 $1 / \mathrm{T}$	c/c	5	42,206,490 //	I/T	${ }^{6}$	36,970,504	6/G	${ }^{7}$	43,532,861 c/c	1/4	c8	$34,451,362 \mathrm{~T}$	A/A	c9	21,537,127 T/	c / c
cl	1,371,998 I	c/c	c2	1,033,429	c/c	C2	49,58, $385 \mathrm{6} / \mathrm{G}$	T/T	${ }^{\text {c3 }}$	29,627,530 G/G	a/A	c4	26,263,514 6	c/c	${ }^{\text {c }}$, $782,246 \mathrm{a} / \mathrm{A}$	c/c	${ }^{5}$	2,209,187 c/c	T/r	${ }^{\text {c6 }}$	36,972,592 T/	a/a	c1	43,533,047 G/6	3/4	${ }^{8}$	34,451,399 T/	6/6	c9	21,551,24 A/2	6/6
c1	1,378,051 T/7	6/6	c2	1,104,244/c	6/6	c2	49,58, $885 \mathrm{~s} / \mathrm{6}$	c/c	${ }^{3}$	29,62, 597 G/G	I/T	c4	26,263,553 T/7	c/c	${ }^{\text {c }}$	5,782,278 c/c	I/T	cs	42,212,960 G/6	A/A	${ }^{6}$	36,983,143 /	c/c	c1	43, $224,963 \mathrm{a} / \mathrm{A}$	c/c	c8	34,452,644 c/	T/r	c9	21,551,340 6/6	A/A
c1	1,378,172 / /	c/c	c2	1,104,294 A / A	6/6	c2	49,698,532 c/c	I/T	${ }^{\text {c3 }}$	30,128,911 //C	I / T	c4	26,263,568 6/6	I/T	${ }^{\text {c }}$	5,844,116 A / A	I/T	cs	$42,221,926 \mathrm{~T} / \mathrm{T}$	c/c	${ }^{6}$	36,98, 1856	A/A	c 7	43,625,099	A/A	${ }^{8}$	34,45,646 T/	c/c	c9	21,947,26 $\mathrm{T} / 8$	A/a
cl	1,425,400 c/c	a/A	${ }^{2}$	1,106,862 6	a/A	C2	49,713,183 c/c	I/T	${ }^{\text {c3 }}$	129,012 c/c	A/A	c4	26,263,89	a/A	c5	5,84, 178 7/7	c/c	5	2,434,087 ci	T/T	${ }^{6} 6$	36,983,212	c/c	C	43,625,109	6/G	${ }^{8}$	34,585,379 6/6	a/A	c9	22,16,843 A/4	6/G
c1	1,425,76 8/4	c/c	c2	1,128,434 I/	c/c	c2	49, $13,303 \mathrm{c} / \mathrm{C}$	T/T	c3	30,129,072 c/c	T/T	c4	26,309,288	T/T	${ }^{\text {c }}$	5,848,684/6	c/c	${ }^{5}$	12,620,136 c/c	A/A	${ }^{6}$	36,984,235 $/ \mathrm{T}$	6/6	c1	43,625,642 T/	c/c	${ }^{8}$	34,635,140 c/c	T/r	c9	22,166,857 A/A	c/c
c1	1,43, $292 \mathrm{c} / \mathrm{C}$	T/T	c2	1,188,72 c/c	a/A	c2	49,794,994 6/6	c/c	${ }^{1}$	30,129,089 c/C	T/T	c4	26,352, $381 \mathrm{~T} / \mathrm{T}$	a/A	${ }^{\text {c }}$	5,848,26 c/c	a/A	${ }^{\text {cs }}$	42, 620,177 A/A	6/G	${ }^{6} 6$	36,984,246 G/6	a/a	c1	43,625,775 c/c	G/G	${ }^{\text {c }}$	34,641,302 7/T	c/c	c9	22,271,641 c/c	T/r
c1	1,450,645 c/C	6/6	C2	1,188,883/6	A/A	C2	50,052,361 T/T	A/A	c3	30,220,676 6/6	A/A	c4	26,353,929 //	c/c	c5	5,848,735 A / A	6/G	cs	42,650,547 I / T	c/c	${ }^{6}$	36,984,379 a/d	6/G	c1	43,625,850 c/c	T/T	${ }^{\text {c }}$	34,641,306 /1/	I/T	c9	22,271,663 A/4	T/T
${ }^{1}$	1,451,104 6/6	a/A	c2	1,264,601 I/	6/6	C2	50,052,409 c/c	I/T	c3	30,33, $1014 \mathrm{~T} / 7$	6/6	c4	26,367,368 7/r	c/c	${ }^{\text {c }}$	5,874,007 I/	6/6	c5	42,694,205 A / A	6/6	${ }^{6}$	36,984,394 T/	6/6	c1	43, 25 , 853 T / T	c/c	c8	34,692,826 6/6	I/r	c9	22,35,428 8/4	6/6
c1	1,687,775 c/c	T/T	C2	1,264,129 A / A	I/T	2	50,136,949 A / A	6/G	d	30,334,104 7/7	c/c	c	26,520,204 //	6/6	${ }^{5}$	5,968,823 c/c	I/T	cs	42, $994,235 \mathrm{c} / \mathrm{C}$	T/T	${ }^{6}$	36,991, $887 \mathrm{~A} / \mathrm{d}$	6/6	c1	43,160,423 A/A	6/G	c8	34,168,869 c/	I/r	c9	22,55, 192 T/1	c/c
c1	1,689,170 c/c	I/r	c2	1,382,60 \%/7	c/c	C2	50,137,372 I / T	6/G	${ }^{1}$	30,58, 462 T /7	c/c	c4	26,597,444	c/c	${ }^{\text {c }}$	5,968,811 6/6	A/A	cs	42,748,139 c/c	T/T	${ }^{6}$	36,991,538 6/6	a/a	c1	43,800,169 c/c	6/G	c8	34,76,878 A/4	6/6	c9	22,759,779 //	c/c
c1	1,827,96 c/c	a/A	c2	1,413,049/c	T/T	c2	50,164,645 //4	6/G	cs	30,60, ,39 6/6	I/T	c4	26,60,268 6/6	a/A	${ }^{\text {c }}$	6,065,411 1 /4	c/c	s	42,908,595 $/ \mathrm{A}$	c/c	${ }^{6}$	36,991,544 G/6	a/a	-	43,800,176 c/c	T/7	${ }^{8}$	34,993,546 //	c/c	c9	22,75,836 c/c	I/T
c1	1,86, $8181 / \mathrm{c}$	a/a	C2	1,413,12 A / A	I/T	c2	50,164,706 c/c	6/6	c3	30,63, 532 A/4	c/c	c4	26,605,271 G/6	I/T	c5	6,187,36 r/7	c/c	${ }^{\text {c }}$	42,910,351 1/T	3/A	${ }^{\text {c6 }}$	37,037,365 G/6	a/a	c1	43,800,223 c/c	T/T	${ }^{\text {c }}$	34,988,702 A/A	6/6	c9	22,159,857 c/c	T/r
c1	1,878,489/C	T/T	C2	1,413,142 //7	6/6	C2	50,380,674 A/A	6/G	c3	30,63, 551 1/4	6/6	c4	26,621,232 6/6	a/A	c5	6,187,412 T / T	c/c	cs	42,950,591 c/c	6/G	${ }^{6} 6$	37,068,547 A/	6/6	${ }^{1}$	43,801,117 c/c	6/6	${ }^{8}$	34,944,316 6/6	I/T	c9	22,765,566 //	A/a
c1	1,910,150 6/6	c/c	c2	1,413,269 //	6/6	c2	50,400,970 c/c	6/G	c3	30,611,221 c/C	T/T	c4	26,117,395 7/r	A/A	c5	6,438,122 A / A	c/c	${ }^{5}$	43,158,236 $/$ /r	c/c	${ }^{6} 6$	37,132,122 A/	6/6	c1	43,802,405 c/c	6/G	${ }^{8}$	34,944,379 a/	6/6	c9	22,782,391 T/4	c / c
c1	1,910,808 8/4	I/r	c2	1,413,551 //	c/c	C2	50,626,599 c/c	T/T	${ }^{\text {c3 }}$	30,982,284 7/7	6/6	c4	26,828,913 a / A	T/T	${ }^{\text {c5 }}$	6,491,379 M/4	c/c	${ }^{\text {c }}$	43,158,260 c/6	a/A	${ }^{6}$	37,136,670 G/C	T/r	c 1	43,803,996 $/$ / 4	6/6	c8	34,945,945 T / T	c/c	c9	22,783,140 / /	c/c
C1	1,936,157 T/7	c/c	c2	1,424,862 T/7	6/G	C2	50,963,196 // A	T/T	${ }^{\text {c3 }}$	31,114,409 6/6	T/T	c4	26,828,944 c/C	6/G	${ }^{\text {c }}$	6,491,616 c/c	I/T	${ }^{\text {c }}$	43,158,408 T / T	6/G	${ }^{\text {c6 }}$	37, 137,145 7/	6/6	c1	43,804,011 $6 / \mathrm{c}$	3/4	c8	35,013,203 c/c	a/A	c9	22,920,752 6/6	A/4
c1	1,936,763/c	T / T	c2	1,424,82 G/6	I/T	c2	50,963,199 $/ \mathrm{A}$	6/6	c3	31,121,94 6/6	T / T	c4	26,868,82 I/	6/6	c5	6,535,193 6/6	I/T	c5	43,222,597 c/6	A/A	c6	37,210,223 G/6	T/r	c7	43,804,083 A/	6/6	${ }^{8}$	35,139,944 c/c	I/T	c9	22,922,905 $/$ /	c / c
c1	1,936,769 7/7	c/c	c2	1,424,958 7/7	6/G	c2	50,987,182 A/A	6/G	c3	31,184,550 7/7	c/c	c4	26,990,613 c/c	6/G	c5	6,597,601 1/4	T/T	cs	43,233,406 // ${ }^{\text {a }}$	6/G	${ }^{6}$	37,210,724 c/C	T/r	c1	43,804,261 c/c	T/r	${ }^{8}$	35,139,973 A/	6/G	c9	22,922,936 c/c	T/r
c1	1,946,523 c/c	a/A	c2	1,433,637 6/6	a/A	c2	50,992,080 G/6	a/A	c3	31,314,111 6/6	r/r	c4	27,047,910 c/c	I/T	${ }^{\text {c }}$	6,600,800 A/A	6/G	cs	43,233,415 6/6	A/A	${ }^{6} 6$	37,222,753 6/6	T/T	C	43,837,187 6/6	A/A	${ }^{8}$	35,238,965 $/=$	a/A	c9	23,188,523 A/A	6/G
c1	1,988,209 c/c	I/T	c2	1,433,6967/7	a/A	c2	50,992,088 $6 / \mathrm{G}$	a/4	${ }^{\text {c3 }}$	31,39, 620 A/4	6/6	c4	27,093,491 $\mathrm{C/G}$	c/c	c5	6,622,023 c/c	I/T	c5	43,301,173 6/6	c/c	${ }^{6}$	37,223,608 \%/	6/6	c7	43,907,566 c/c	1/a	c8	35,239,841 $/$ /	c/c	c9	23,66, $3181 \mathrm{~T} / 4$	c/c
cl	1,988,32 T / T	c/c	C2	1,466,760 6/G	I/T	c2	50,992,097 6/6	A/A	c3	31,63, 815 c/c	A/A	c4	27,093,513 /7	c/c	${ }^{\text {c }}$	6,654,066 c/c	6/6	c5	43,304,403 7/T	c/c	${ }^{6}$	37,29,888 G/6	c/c	${ }^{1}$	43,907,587 6/6	c/c	c8	35,239,946//T	a/A	c9	23,90,827 7/C	T/1
c1	1,988,32 $\mathrm{T} / 7$	a/A	c2	1,466,73 ז/7	c/c	C2	50,994,569 I/T	6/G	c3	31,74, 829 6/6	c/c	c	27,05, 159 6/6	c/c	${ }^{\text {c }}$	6,654,281 c/c	I/T	cs	43,306,866 T / T	6/G	${ }^{6}$	37,25,271 c/c	6/6	C1	44,016,740 T / T	A/4	c8	35,247,085 A / A	6/6	c9	24,132,409 T / T	c/c
cl	1,988,96 7/7	c/c	c2	1,482,040 T / T	c/c	C2	51,076,996 6/6	c/c	c3	31,923,846 6/6	A/A	c4	27,269,652 A / A	6/6	${ }^{\text {c }}$	6,697,82 A / A	6/6	cs	43,306,912 T / T	c/c	${ }^{6}$	37,265,983 //a	6/6	c1	44,017,885 A / A	c/c	c8	35,292,130 $/$ /	I/T	c9	24,132,466 //	6/6
1	1,988,529 A/A	c/c	C2	1,519,704/6	a/A	c2	$51,463,430 \mathrm{~A} / \mathrm{A}$	6/G	c3	31,96, 548 c/c	I/r	c4	27,270,301 c/c	I/T	c5	6,761,336/6	c/c	${ }^{5}$	43,306,953 द/6	T/T	${ }^{\text {c6 }}$	37,280,504 6/6	a/a	c1	44,017,897 //	c/c	${ }^{\text {c }}$	35,292,194 c/c	I/T	c9	27,825,540 7/T	c/c
	1,962,192 T/7	A/4	c2	1,570,016 \%/7	c/c	c_{2}	51,463,466 6/6	I/T	c3	31,96, 515 6/6	A/A	c4	27,270,388 c/C	I/T	${ }^{5}$	6,773,900 G/6	a/4	${ }^{5}$	43,317,2836/6	1/ג	c6	37,280,593//7	c/c	c 1	44,018,025 T / r	c/c	c8	35,327,693 //	6/6	c9	27,976,266 c/c	T/T

 chromosomes.

Appendix II Cont.
Table S2: Cont. : Differences in Allelic variants at various chromosomes positions in parent lines; the cultivated rapid cycling DHSL150 and C07060

${ }^{1}$,008,839 c/c		C2				558,68					c4		6/6	c5				43,418,157 6/6									5,35, 114				
																6,819,285 c/c			43,418,185 $6 / 6$													
				1,929,688 //			51,782,62 6/6	//4	c3	32,021,886 6/6	A/A	c	27,291,604 4/4	1/2		6,04, 205 c						31,2	6/G	C	44,119,246	I/T		,443,			28,000,761 6/6	A/A
c1	2,067,679 6/	I/T	C2	1,929,703	c / c	C2	51,885,119 7/T	c/c	c3	2021	c/c	C4	27,318,425 c/c	a/A	c5	6,986,306 $\mathrm{T/2}$	a/A	${ }^{5}$	43,438,289 I/2	c / c	${ }^{6}$	37,233,244 a/	c/c	c	44, 199,407 c/	I/T	c8	35,561,433 I/	c / c	c9	28,207,220 c/	a/4
c1	2,067,119 c/c	6/G	C2	1,929,120 G/6	a/a	C2	51,885,128 c/c	I/T	c3	32,120,175 a / A	6/6	C4	27,399,693 c / c	6/6	${ }^{\text {c }}$	6,988,118 6/6	a/4	${ }^{5}$	43,438,852 c/c	I/r	${ }^{6}$	37,293,268 6/G	I/T	C7	44, $274,649 \mathrm{c/}$	a/8	c8	35,511,056 G/6	T/T	c9	28,207,293 4/4	T/r
cl	2,071,1936/6	A/A	C2	1,931,177 c/c	6/6	C^{2}	51,885,212 $/ 6$	a/a	C3	32,209,934 A / A	T/T	c4	27,445,670 $/ \mathrm{G}$	a/a	${ }^{5}$	6,988,128 6/6	A/A	${ }^{5}$	$43,438,876 \mathrm{c} / \mathrm{C}$	I/T	${ }_{6}$	37,233,682 A / A	6/6	c7	44,366,915 6	c / c	c	35,517,071 c/c	a/a	c9	28,335,493 $/$ /	c/c
C1	2,011,195 6/6	c/c	C2	1,933,200 G/6	I/r	C2	51,885,228 c/C	6/6	C3	32,226,270 T/	6/6	C4	27,495,764 A/d	6/6	cs	7,062,469 c/c	6/6	c5	$43,466,258 \mathrm{c} / \mathrm{c}$	6/6	${ }^{6}$	37,466,539 A/	6/6	C7	44,998,653 T/	c/c	c8	35,58,884 $\mathrm{T} /$	a/A	c9	28,378,245 a / L	6/6
C1	2,095,	a/4	C2	1,974,	a/d	C^{2}	52,046,	c/c	C3	32,2	I/T	c 4	27,495	6/6	c5	7,068,241 1 /a	c/c	c5	43,446,269 $6 / 6$	1/4	${ }^{6}$	3,570,	c/c	C7	44,988,697	c/c	c8	35,699,752 A/	r/T	c9	30 C	I/r
C1	2,096,077 A/	I/T	c2	1,974,614	c/c	C2	52,046,782 G/	c/c	c3	32,295,401	a/A	c4	27,495,797 A/4	c/c	cs	7,069,887 A/	I/T	5	43,412,729 c/c	I/T	${ }^{6}$	37,570,479 I/	c/c	C7	44,988,760 $/ 6$	I/T	c8	35,699,762	a/A	c9	28,594,733 a/	6/6
C1	2,096,086 4/4	6/6	C2	1,974,746 A/	c/c	C2	52,056,888 A/	c/c	c3	32,333,586 c/c	I/T	C4	27,509,184 c/c	I/T	cs	7,113,547 $7 / \mathrm{T}$	c/c	${ }^{5}$	43,498,082	I/r	${ }^{6}$	37,680,83 C	I/T	C7	44,498,79	I/T	c8	35,736,389 G/6	a/4	c9	28,59, 823	a/a
c1	2,10, $1166 / 6$	A/A	C2	1,991,113 c/c	T/T	C2	$52,110,476 \mathrm{~m} / \mathrm{T}$	c/c	C3	32,33,5988/6	1/4	C4	27,694,572 c/c	6/6	c5	7,115, $884 \mathrm{~T} / \mathrm{T}$	c/c	${ }^{5}$	43,563,458 //2	6/6	${ }_{6}$	37,880,491 c/c	I/T	C7	44,558,338 a/	I/T	c8	35,780,462 A/	I/T	c9	28,594,847 //	c
C1	2,165,570 6/6	A/A	C2	2,154,992 A / A	6/6	C2	52,271,094 //	c/c	c3	32,379,	I/T	C4	27,725,053 A/d	6/6	c5	7,181,790 $/$ /	c/c	c5	3,563,497	T/T	6	37,68,516 C	a/a	C7	44,647,788 6/6	a/A	c8	35,780,885 a/4	6/6	c9	28,662,383 A/4	6/6
C1	2,165,588 Cl	I/T	c2	2,160,128 C	I/T	C2	52,303,209 A / A	6/6	c3	32,39, 358 T	c/c	c4	27,868,868 7/2	6/6	cs	7,181,885 a/	I/T	c5	43,564,822	c/c	${ }^{6}$	37,17, 850 C	a/a	C7	44,647,197 T/	6/6	-	35,79,152 6/	I/T	c9	,130,082 $6 /$	a/a
c1	2,165,597 T/7	c/c	C2	2,169,934 c/c	I/r	C2	52,329,510	I/T	c3	32,379,410 A/	6/6	C4	27,888,907 c/c	I/T	cs	7,197,113 a / A	6/6	${ }^{5}$	43,56,878	3/4	${ }^{6}$	31,79, 344 C	a/a	C7	44,647,821 c/c	I/T	c8	35,811,711 A/d	I/r	c9	,130,692 T/	c/c
cl	2,170,819 $7 /$	c/c	c2	2,191,264 c/c	6/6	C2	52,33, 656 c	6/6	c3	32,514,	6/6	C4	27,869,006 c/c	I/T	${ }^{\text {c5 }}$	1,201,354 6/	c/c	${ }^{5}$	43,565,778	a/a	${ }^{6}$	37,830,079	6/G	C7	44,647,824	c/c	c8	35,811,902	a/A	c9	28,752,187	a/a
c1	2,17, 837 T /7	a/a	C2	2,191,267 //	c/c	C2	52,33, 676 6/6	a/a	c3	32,58,9	6/6	C4	27,894,059 6/6	c/c	${ }^{5}$	7,302,901 6/6	a/A	${ }^{5}$	43,544,475 c/c	a/a	${ }^{6}$	37,83,088 6	I/T	C7	44,648,801	I/T	c8	35,888,400	A/A	c9	28,799,046 6/	a/a
c1	2,170,870 A/	6/G	C2	2,191,291 6	a/4	C2	52,457,961 6/G	c/c	c3	32,71	a/A	C4	28,111,519 c/c	I/7	cs	7,382,702 C/6	I/7	c5	43,56,946	a/A	${ }^{6}$	37,927,157 A/	T/T	C7	44,679,341	A/A	c8	35,821,962 6		c9	28,944,637 6	//
C1	2,403,699/c	6/6	C2	2,193,128 6/	I/T	C2	52,621,453 7/T	c/c	C3	33,775,207	A/A	C4	28,123,763 //	c/c	${ }^{\text {c }}$	1,466,769 7/	c/c	c5	43,586,952 A/4	6/6	${ }^{6}$	37,955,134 T/	c/c	C7	44,788,912 c/c	6/6	-	35,856,399 T/	c/c	c9	29,261,427 G/6	c/c
c1	2,403,680 $/$	c/c	c2	2,217,502 G/G	c/c	C2	52,680,644 //	I/T	C3	33,85,412 T/	A/4	C4	28,314,049	I/T	${ }^{5}$	7,446,876 //	6/6	${ }^{5}$	43,586,961 A/A	6/6	${ }^{6}$	37,955,173 A/	I/T	C7	44,773,436 a/d	6/6	c8	35,905,876 a/d	I/T	c9	29,600,784 c/c	T/T
c1	2,404,325	6/G	C2	2,24,075 6	ז/7	C2	52,680,661 6/6	A/4	${ }^{\text {c3 }}$	33,865,44	T/T	C4	28,315,645	c/c	${ }^{5}$	7,460,966 6/6	a/A	${ }^{5}$	43,58,071 6	I/T	c6	37,955,399 T/	6/6	C7	44,773,474	a/A	c8	35,946,606	6/6	c9	29,99, $503 \mathrm{~B} / \mathrm{A}$	c/c
c1	2,405,411 $/$ /	6/6	C2	2,252,266 $/ 6$	ז/T	c3	349,244 A / A	I/T	c3	34,21]	c/c	c4	28,315,695	c/c	cs	7,495,973 6/6	c/c	c5	43,587,120 A/4	6/6	${ }^{6}$	37,955,388	I/T	c7	44,799,786	c/c	c8	36,018,097	c/c	c9	30,144,388 $/$ /	6/6
c1	2,405,495	6/6	C2	2,266	I/r	c3	399,246 c/c	6/G	c3	34,256,115 c/c	I/T	C4	28,322	I/T	cs	1,50,	a/a	c5	43,588,834 I/T	3/4	${ }^{6}$	37,975,	T/7	C7	44,8412	a/a	c8	36,11	c	c9	30,561,943 7/	/c
C1	2,889,091 1/7	6/6	C2	2,492,400 A	6/6	c3	399,399	a/a	c3	34,309	a/A	C4	28,460,048 c/c	I/T	${ }^{5}$	7,531,129	c/c	${ }^{5}$	43,588,909 cic	3/4	${ }^{6}$	38,40,024 T/	c/c	C7	44,889,309 a/d	6/6	c8	36,17,019 6	c/c	c9	30,593,182 c/c	6/6
c1	2,515,005 5/7	c/c	C2	2,492,875 6/6	1/a	c3	$424,601 \mathrm{ClC}$	T/T	c3	34,30,771 IT	c/c	C4	28,460,103 7/	c/c	${ }^{\text {c }}$	1,531,150 c/c	6/G	${ }^{5}$	43,59,296	/1/4	co	38,179,045 A	c / C	C7	44,889,365 c/6	a/a	c8	36,256,128	T/T	c9	30,788,883 $\mathrm{C/C}$	a/a
c1	2,515,071 6/6	a/a	C2	2,49,343 I/	c/c	c3	555,897/4	I/T	c3	34,344,088 C	I/T	c4	28,540,153 c/	T/r	${ }^{5}$	7,594,238 c / c	I/T	${ }^{5}$	43,608,978 C	a/a	${ }^{6}$	38,22,903 I/	A/A	c7	44,940,969 G/6	c/c	c8	36,292,930	T/T	c9	$30,870,370 \mathrm{~m} / \mathrm{T}$	c/c
cl	2,515,090 c/	I/T	C2	2,503,194	I/T	c3	555,911 C / G	a/A	c3	34,450,536 6/6	c/c	C4	29,073	I/T	cs	7,594,	I/T	c5	43,609,018 A / A	6/6	${ }^{6}$	38,298	c / c	C7	45,150,686 6/	T/T	c8	36,429,099	c/c	c9	32,613,367 6/	c/c
c1	2,586,742 I	c/c	c2	2,513,699 T / T	a/A	c3	555,994 c / C	I/T	c3	34,450,549 6/6	c/c	C4	29,074,5	c/c	cs	1,594,32 A / A	6/6	c5	43,618,767 A/	6/6	${ }^{6}$	38,36,497 cic	I/T	C7	45,16,516 C	6/6	c8	36,429,129	A/A	c9	,220	c/c
c1	2,606,590 6/6	a/a	C2	2,528,	A/A	c3	4,10	c/c	c3	34,450,	I/T	C4	29,086,535	T/7	cs	7,59, 252 I	A/A	${ }^{5}$	$43,619,160 \mathrm{~A}$	6/6	c6	38,36,543	1/4	C1	45,169,204 c/	I/T	c8	36,88,006 A/4	6/G	c9	33,188,467 6	c/c
cl	2,63, $117 \mathrm{6} / \mathrm{G}$	A/8	C2	2,536,936	c/c	-	576,418	6/6	c3	34,461,061 1	I/T	C4	29,086,814 c/c	a/a	${ }^{\text {c }}$	7,595,292 G/6	a/A	${ }^{5}$	43,619,283	T/r	${ }^{6}$	38,376,942 A	6/6	C7	45,24,098 c/	I/T	c8	36,687,700 6/6	c/c	c9	33,208,851 1/4	c/c
c1	2,740,40 A/h	6/6	C2	2,616,893 c/	T/r	c3	592,497 $6 / 6$	a/4	c3	34,47, 7416	A/a	C4	29,382,037 A / A	6/6	${ }^{\text {c5 }}$	7,595,313 6/6	a/4	c5	43,619,312 A / L	c/c	${ }^{6}$	38,371,067 I/	6/6	C7	45,247,116 6/	a/A	c8	36,70,481 I/	c/c	c9	33,253,850 c/c	//
1	2,768,880 I	c/c	C2	2,616,92	a/A	c3	8,702	I/T	c3	34,625,236 T / T	c/c	C4	29,382	1/A	cs	1,595	I/r	c5	43,767,559 T/	c/c	${ }^{6}$	38,371,100	6/6	c7	45,27,158 C/	r/p	c8	36,702,503 A	6/6	c9	,128	/r
c1	2,810,257	6/6	C2	2,630,222	6/6	c3	9,249	c/c	c3	34,74,7	a/A	,	29,602,230	c/c	${ }^{5}$	1,669,60	I/T	${ }^{5}$	43,810,418 C	T/r	c6	38,377,109 G/6	I/T	C7	45,247,212 $/$ /	c/c	c8	36,175,807 6/	a/A	c9	33,360,231 c/c	I/r
c1	2,810,286 A/ ${ }^{\text {a }}$	6/6	C2	2,633,305 $\mathrm{T} /$	c/c	c3	638,764	6/6	c3	34,74,822 G	c/c	C4	29,811,345 c/c	6/6	${ }^{5}$	7,669,726 6/6	a/A	${ }^{5}$	43, $, 18,424$ T	c/c	${ }^{6}$	38,411,239 A / A	6/6	C7	45,34,993 C	a/4	c8	36,779,730 c/c	T/T	c9	33,68,825 c/c	I/r
c1	2,825,672 c/c	I/T	c2	2,667,008 A / A	6/6	c3	638,785 c/c	1/1	c3	34,747,844 c/c	I/4	c 4	29,814,424 G/6	A/4	${ }^{\text {c5 }}$	7,689,208 T / T	A/4	${ }^{\text {c5 }}$	$43,872,478 \mathrm{c} / \mathrm{C}$	T/r	${ }_{6}$	38,493,446 T/	c/c	-	45,315,069 c/c	I/7	c8	36,179,774 T/	c/c	c9	34,106,046 $6 / \mathrm{C}$	a/a
cl	2,827,156 /c	a/a	C2	2,667,017 c/c	I/r	${ }^{\text {c3 }}$	638,991 c/0	6/6	c3	34,74,906	c/c	C4	29,814,501 //2	6/6	c5	7,769,866 c/c	I/T	c5	43,872,483 c/c	a/a	${ }^{6}$	38,493,540 c/	T/T	c7	45,315,079 a/d	c/c	c8	36,807,622 6/6	A/A	c9	34,106,088 c/	T/T
1	2,827,59 c/c	a/A	c2	2,667,077 A/	I/T	c3	696,684/G	a/a	c3	34,761,28	6/6	C4	29,814,504 c/c	a/a	c5	1,878,030 A/4	6/G	c5	44,032,66	T/T	${ }^{6}$	38,993,562 /	6/6	c7	45,324,946 c/	I/r	c8	36,812,004 A/	6/G	c9	34,184,757 T/	c/c
c1	2,843,842 A/	c/c	c2	2,99,676 c	A/4	c3	710,944	6/6	c3	34,781,226	I/7	c 4	29,814,539 cic	I/T	${ }^{5}$	7,879, 880 A	c/c	${ }^{5}$	44, $132,687 \mathrm{II}$	c/c	a	38,493,636 A/	I/T	C7	45, $355,830 \mathrm{a} / \mathrm{L}$	6/6	c8	36,812,010 G/	c/c	c9	34,218,079 I / T	c/c
c1	2,84, $854 \mathrm{~A} / \mathrm{A}$	6/6	C2	2,699,637 A/A	6/6	c	713,572 c/c	a/4	C3	34,84, 552 G	1/4	C4	29,937,496 c/c	T/T	${ }^{5}$	7,958,042 $/$ /	c/c	${ }^{5}$	44,033,099 6	a/a	${ }^{6} 6$	38,51, 381 G	I/T	C7	45,35,831 C/	6/6	c8	36,899,358 //	1/4	c9	36,26, 561 6 G/G	T/T
c1	2,843,99 7/7	6/6	C2	2,700,304 c/c	T/T	${ }^{\text {c3 }}$	718,230 //	I/T	c3	34,857,905 c/c	T/r	c4	29,940,413 T / T	c/c	${ }^{5}$	7,964,856 //	c/c	${ }^{5}$	44,033,132 T/	c/c	c6	38,510,469 a/	T/T	${ }^{7}$	45,356,653 a / A		c8	36,999,264 A/	T/T	c9	36,272,9946/6	T/T
cl	2,90, 543 6 6/6	a/a	C2	2,700,308 /	c/c	c3	718,252 c/c	I/T	c3	35,624,971 A / A	c/c	C4	29,940,881 //	6/6	c5	1,995,785 a/d	6/6	c5	44,218,002 T / T	6/6	${ }^{6}$	38,515,522 6/	T/T	C7	45,51,339	c/c	c8	37,09, 3976	I/T	c9	36,273,104 c/	寿
c1	2,90, 546 6 /7	c / c	C2	2,700,377/6	c/c	c3	718,258 //	c / c	C3	35,923,5116/6	T/T	c4	29,941,233 $6 / \mathrm{G}$	c/c	cs	8,002,056 A/	6/6	cs	$44,218,026 \mathrm{~A} / \mathrm{L}$	I/7	${ }^{6}$	38,515,620 G/G	a/a	C7	45,522,403 Cl	I/T	c8	37,092,397 I/	c/c	c9	36,336,540 6/6	$1 /$
c1	2,90, $060 \mathrm{c} / \mathrm{c}$	T/r	c2	2,700,399/6	a/	c3	736,686 T/	c/c	C3	36,06,855 C	I/r	C4	29,941,335 G / G	I/T	${ }^{5}$	8,002,092 c/c	I/T	c5	44,235,456 a/	c/c	co	38,515,623 A/	I/T	C7	45,522,409 T/	c/c	c8	37,093,747 /T	c/c	c9	36,36, 957 L A/	I/T
c1	2,901,618 8/a	6/6	C2	2,700,404 $/ \mathrm{A}$	I/r	c3	736,701 c/c	a/a	C3	36,111,227 G/6	I/7	C4	29,941,388 c / C	I/r	c5	8,002,148 c/c	A/A	c5	$44,288,700 \mathrm{~T} / \mathrm{T}$	6/6	c6	38,588,260 A / A	6/6	${ }^{7}$	45,538,728 6/	A/a	c8	37,097,121 T/2	c/c	c9	36,362,999 $/$ /	1/4
cı	2,901,60 T / T	c/c	C2	2, $, 110,066 \mathrm{~T} /$	c/c	c3	796,927 A/A	c/c	c3	36,227,866 a / A	6/G	c4	29,962,909 c/c	6/G	${ }^{5}$	8,025,024 T/7	c/c	cs	$44,248,743 \mathrm{~T} / \mathrm{T}$	a/a	c6	38,60,672 T/	c / c	${ }^{7}$	45,62, 017	c/c	c8	37,10,447 C/	T/T	c9	36,430,562 A	6/6
c1	2,906,36 4/4	6/6	c2	2,710,166 T/	c/c	c3	797,056 $6 / \mathrm{G}$	c/c	c3	36,232,546 T/	6/6	C4	30,428,706 6/6	a/A	cs	8,025,144 a/d	6/6	c5	44,248,746 I/	a/a	${ }^{6}$	38,601,265 7/2	a/a	C7	45,62, 065 c	I/T	c8	37,112,324 C	I/T	c9	, 513,135 c	6/6
c1	2,906,399/6	3/4	C2	2,732,999 A / A	I/r	c3	957,897 A / A	6/6	C3	36,236,924 G/6	T/T	C4	30,443,833 A / A	c/c	cs	8,028,349 //	6/6	c5	$44,288,923 \mathrm{~T} / \mathrm{T}$	6/6	${ }^{6}$	38,601,516 1	a/a	C7	45,29,096	c / c	c8	37,112,327 6/	A/A	c9	36,563,650 /	6/G
c1	2,937,85 A / A	6/6	c2	2,746,73 T / T	c/c	c3	957,908 c/c	I/T	C3	$36,284,735 \mathrm{~T} / \mathrm{T}$	c/c	C4	30,463,455 $/ \mathrm{A}$	c/c	c5	8,031,126 6/6	A/A	c5	44,280,470 A/A	T/r	c	38,60,576 c/C	6/6	${ }^{7}$	45,629,098 a/	T/r	c8	37,115,232 c/c	a/a	c9	36,56, $271 \mathrm{~A} / \mathrm{A}$	6/6
c1	2,937,815 6/6	A/4	C2	2,885,390 c	T/T	c3	957,916 //	c/c	c3	36,336,032 $/$ /7	6/G	c4	30,493,237 T / T	c/c	${ }_{5}$	8,031,239 G/6	A/A	cs	$44,280,471 \mathrm{c} / \mathrm{C}$	6/6	${ }_{6}$	38,601,571 1/	6/6	-	45,637,409 G/G	T/r	c8	37,115,310 $/ 6$	T/T	c9	36,565,248/6	A/4
c1	2,937,882 6/	c/c	C2	2,885,409 c	I/r	c3	911,700 c/c	6/6	c3	36,33,035 ci	I/r	c4	30,497,710 a / A	I/T	c5	8,031,264 c/c	6/6	c5	44,316,361 A / L	6/6	${ }^{6}$	38,601,594 6	a/a	${ }^{\text {c7 }}$	45,637,536 6/	a/2	c8	37,212, $750 \mathrm{~T} /$	c/c	c9	36,565,272 c/	6/6
c1	2,937,851 1/7	c/c	c2	2,840,087 A / A	c/c	c3	1,003,195 G / G	c/c	c3	36,339,206 T / T	1/A	C4	30,721,110 c/c	I/T	cs	8,031,298 A/4	6/G	c5	44,316,389 c/c	T/5	${ }^{6}$	38,601,607 G/C	c/c	C7	45,631,543 G/6	a/a	c8	37,23, 342 $\mathrm{T} /$	a/A	c9	36,565,308 A	c/c
C1	2,963,190 6/6	a/4	C2	2,920,72 A / A	I/r	C3	1,003,210 A/A	6/6	c3	36,341,089 A/4	I/r	C4	30,721,119 6/6	a/A	${ }^{5}$	8,031,302 6/6	c/c	cs	44,344,437 6/6	3/4	${ }^{6}$	38,601,620 G/G	a/a	${ }^{\text {c }}$	45,659,054 A / A	c/c	c8	37,233,456 6/6	T/T	c9	36,56, 3747 6/6	//a
	2,963,210 c/c	I/T	c2	2,990,318 A / A	6/6	c3	1,003,222 T / T	a/8	c3	36,341,211 $/$ / $/$	c/c	c 4	31,100,939 G/6	I/T	${ }^{5}$	8,039,080 I / T	c/c	c5	44, $313,161 \mathrm{~A} / \mathrm{A}$	I/T	c6	38,712, 623 6/6	A/A	${ }^{1}$	45,711,364 T / T	c/c	c8	37,233,459 \%/r	c/c	c9	36,565,451 A/A	6/6

chromosomes.

Appendix II Cont.
Table S2: Cont. : Differences in Allelic variants at various chromosomes positions in parent lines; the cultivated rapid cycling DHSL150 and C07060.

C1	2,963,283 A / A		C2	3,008,022 I / T	c/c	${ }^{\text {c }}$	1,004,5946/6	A/A	c3	36,344,421 $/$ /		C4		A/A	${ }^{\text {c }}$	8,03, 084 A/A	6/6	${ }^{\text {c5 }}$	44,562,968 $/$ /r	c/c	c6	38,929,073 6/6	T/T	C7	45,71, 370 T / T	c/c	c8	37,253,053 A/d		c9	36,619,935 6/G	
cl	2,988,196 \%/7	A/A	C2	3,025,537 G/G	I/T	c3	1,000,722 C/C	6/6	c3	$36,399,634 \mathrm{~T} / \mathrm{T}$	c/c	c4	31,572,201 //7	6/6	${ }^{\text {c }}$	8,039,120 c/c	A/A	${ }^{5}$	44,562,995 $/$ /	c/c	c6	38,29,229 I/	6/6	77	45,711,434 c/c	6/G	c8	37,264,033 I/	c/c	c9	36,62, 044 c/	//T
c1	,106/6	A/A	c2	3,025,695 c/c	a/4	c3	1,004,879 G/G	r/T	c3	36,365,707 G/G	c/c	C4	31,572,283 //	c/c	${ }^{\text {c }}$	042,937 c/c	I/T	${ }^{\text {c }}$	44,595,720 T / T	c/c	a	38,929,230 $/$ /	6/6	C7	45,712,542 $6 / 6$	A/A	c8	37,264,070 c/	I/T	c9	36,646,233 c/c	T/7
c1	3,020,704/6	a/A	C2	3,066,987 r / r	c/c	c3	1,037,668 c/c	a/4	C3	36,365,809 c/c	a/a	c 4	31,684,025 6/6	I/T	cs	8,043,021 C / G	a/a	c5	44,595,721 G/6	a/A	c6	38,961,195 6/6	c/c	C7	45,788,775 $/ \mathrm{A}$	I/T	c8	37,322,934 T/	a/a	c9	36,646,295 $/ \mathrm{A}$	c/c
cl	3,050,403 1/4	T/T	C2	3,066,993 T / T	c/c	c3	1,037,711 G/6	a/A	c3	36,365, 830 C/G	I/r	c4	31,687,920 T / T	6/6	cs	8,054,935 A / A	c/c	c5	44,595,768 I / T	6/6	${ }^{6}$	38,970,934 c/c	I/T	${ }^{7}$	45,869,400 A/A	6/6	c8	37,440,274 $\mathrm{T} /$	a/4	c9	36,976,355 $/ \mathrm{A}$	c/c
cl	3,085,266 G/6	T/T	C2	3,114,760 / A	I/T	c3	1,040,821 //	6/6	c3	36,369,710 a / A	c/c	c4	31,14,545 A / A	c/c	cs	8,055,064 c	a/a	c5	44,628,081 $/$ /	6/6	c6	38,970,937 I/	a/a	C7	45,902,609 T/	c/c	c8	37,40, $364 \mathrm{~A} /$	I/r	c9	37,06,043 $\mathrm{A} / 2$	6/6
cl	3,085,28	6/6	C2	3,138,452	6/6	c3	1,040,82	a/A	c3	36,369,711 / /	6/6	c4	31,823,278 //	6/6	cs	055,190 a/d	6/6	c5	44,723,672	T/T	c6	39,111,099 $\mathrm{a} /$	c/c	C7	45,902, 734 T	c/c	c8	37,466,502 6	c/c	c9	133,293 A/	6/6
cl	3,136	a/A	C2	3,152,627 A/A	I/r	c3	1,045,8	6/6	c3	36,36,744 c/c	a/A	C4	31,823,288 //7	c/c	5	080,343 6/6	c/c	${ }^{5}$	$44,832,965 \mathrm{a}$	6/6	c6	39,179,264 $/$ /	c/c	C7	45,922,786 6/6	a/A	c8	37,496,185 c/	T/7	c9	-269,758	I/T
c1	3,147,281 A/	c/c	C2	3,152,858	6/6	c3	1,05, 896	c/c	C3	36,374,770 I / T	a/A	C4	31,909,836 //	6/6	cs	190,120 A / A	6/6	c5	44,833,080 A / A	6/6	c6	39,179,268 A/	I/T	C7	45,911,331 C/C	I/1	c8	37,496,198 //C	T/7	c9	37,269,825 G/G	c/c
c1	3,216,979 I/	6/6	C2	3,161,907 c/c	a/A	c3	1,106,834 6/6	a/A	${ }^{3}$	36,374,844 G/6	a/a	c4	32,006,488 c/c	I/T	c5	.190,197 c/c	I/T	c5	44,833,095 $6 / \mathrm{G}$	c/c	c6	39,179,964 $/$ /	c/c	${ }^{7}$	45,922,757 //	6/6	C8	37,496,268 /6	a/a	c9	37,211,835 c/c	T/T
cl	3,371,471 1/4	6/6	C2	3,182,010 A/4	I/T	c3	1,106,923 T / T	6/6	C3	36,374,931 c/c	I/T	C4	32,603,913 c	T/r	cs	8,190,212 6/6	A/A	${ }^{5}$	44,846,179 c/c	6/6	c6	39,307,933 a/d	6/G	C7	46,005,669 //	6/6	c8	37,503,113 //	6/6	c9	37,345,382 T / r	c/c
cl	3,374,885 5/7	c/c	C2	3,182,025 A / A	6/G	c3	1,112,767 A/A	c/c	c3	36,374,940 $/ \mathrm{T}$	c/c	C4	32,618,358 6/6	c/c	cs	$8,276,22 \mathrm{G} / \mathrm{G}$	c/c	${ }^{5}$	44,868,355 T / T	6/6	c6	39,308,071 T/	c/c	C7	46,019,997 G/G	A/A	c8	37,503,630 A/	6/G	c9	37,43, $181 \mathrm{l} / \mathrm{C}$	A/A
cl	3,408,660 G/6	1/A	C2	3,182,082	A/A	c3	1,116,402 C	a/a	c3	36,395,077 c/c	6/6	C4	32,641,835 T / T	6/6	cs	8,370,086 T / T	c/c	${ }^{5}$	44, $869,642 \mathrm{~T} / \mathrm{T}$	c / C	${ }^{6} 6$	39,317,339 6/6	c/c	${ }^{7}$	46,020,002 c/c	T/r	c8	37,504,115 6/6	3/4	c9	37,43,794 c/c	I/r
c1	3,409,694 //	c/c	C2	3,368,330 $/ \mathrm{A}$	6/6	c3	1,111,	I/T	C3	36,	6/6	C4	32,867,332 C	T/T	cs	426,990 T/	c/c	c5	,928,813 C / C	I/r	${ }^{6} 6$	39,550,164 6/6	a/a	C7	46,020,022 c/	6/6	c8	37,519,184 I/	c/c	c9	37,43, 806 T/	c/c
cl	3,515,326 //	6/6	C2	3,368,366/6	a/a	c3	1,116,444 $/$ /	r/T	c3	36,514,510 G/6	a/a	C4	32,867,889 //	6/6	cs	8,457,889 c/c	T/r	c5	44,928,822 A/4	I/T	c6	39,407,586 6/6	a/a	C7	46,022,413 6/6	I/T	c8	37,519,244//7	c/c	c9	37,443,537 A / A	6/6
cl	3,630,197 I / M	6/6	C2	3,530,194 A/A	6/G	c3	1,116,528 G/6	r/T	C3	36,514,593 G/6	I/r	c4	32,920,992 //	6/6	cs	3,458,076 c/c	6/G	c5	44,963,587 c/c	I/T	c6	39,412,522 c/c	a/a	${ }^{7}$	46,022,542 6/6	a/A	c8	37,566,732 $/$ /a	6/6	c9	37,479,471 A/A	6/6
c1	3,630,999 G/G	c/c	C2	3,602,744/G	a/4	c3	1,116,690 A / A	T/T	c3	36,570,496 a/d	6/6	C4	32,955,076 6/6	A/4	c5	8,472,947	c/c	${ }^{5}$	44,963,637 A / A	6/6	${ }^{6} 6$	39,420,626 G/G	a/a	C7	46,049,939 G/6	a/A	c8	37,566,758 A/	6/G	c9	37,479,556 G/6	a/a
cl	3,630,92 A/4	c/c	C2	3,602,786 A / A	c/c	c3	1,128,764 c	r/r	c3	36,600,570 c/c	I/r	c	32,95,114 6	a/a	cs	,492,967	c/c	c5	45,015,144 c/c	a/4	c6	39,420,629 a/	6/6	${ }^{7}$	46,050,086 A / A	6/6	c8	37,566,711 A / A	6/6	c9	37,571,429 a/a	6/6
cl	3,630,994	c/c	C2	3,711,888 r / T	a/A	c3	1,224,759 6/	a/a	c3	36,60,	T/T	C4	33,32,051 C	I/T	cs	8,646,257 7/1	A/A	${ }^{5}$	45,015,173 C/C	I/T	${ }^{6} 6$	39,427,438 T/	c/c	C7	$46,106,063 \mathrm{c} / \mathrm{c}$	I/T	c8	37,566,809 c/	6/6	c9	37,571,437 T/	c/c
cl	3,633,006 61	c/c	C2	3,711	a/A	c3	1,271,839 c/c	I/r	c3	36,600,624 A/A	6/6	C4	33,	3/4	cs	8,689,030 6/6	I/r	cs	45,110,996 T / T	c/c	c6	39,450	c/c	C7	46,108	I/T	c8	37,649,187	6/G	c9	, 708,409 6	I/T
cl	3,632,575 A / A	6/6	C2	3,740,766/6	c/c	c3	1,292,528 6/6	a/a	C3	36,621,067 A/A	6/6	ct	33,843,314 T / T	c/c	cs	8,689,05 A / A	c/c	c5	45,307,412 C/C	I/T	c6	39,472,945 6 /6	T/r	C7	46,112,480 $/$ /	a/4	c8	37,654,538 m / m	6/6	c	37,708,556 c/c	I/T
cl	3,640,35 5/7	c/c	C2	3,740,811 1/4	I/r	c3	1,339,226 //	c / c	C3	36,621,070 G/6	a/a	c4	33,843,339 6/6	a/a	cs	8,689,069 c/c	T/r	c5	45,307,437 c/C	T/r	c6	39,594,005 c/c	T/r	C7	46,155,616 T / T	c/c	c8	37,687,660 G/6	a/a	c9	37,963,560 //	a/a
cl	3,678,799/C	6/6	C2	3,742,022 c/c	I/T	c3	1,339,289 c/c	I/T	C3	36,621,115 T / T	A/A	-	33,843,369 A/A	6/6	c5	8,689,075 ז/4	c/c	${ }^{5}$	45,342,879 T / T	a/a	c6	39,809,118 \%/2	6/6	C7	46,176,412 / /	c/c	c8	37,87,680 I/	c/c	c9	38,007,893 $\mathrm{G} / \mathrm{6}$	c/c
cl	3,678,856 G/6	a/A	C2	3,742,122 c/c	I/T	c3	1,339,906 T/	c/c	c3	36,629,103 c/c	A/A	C4	33,844,259 //	c/c	cs	$8,767,07 \mathrm{~A} / \mathrm{A}$	c/c	${ }^{5}$	45,356,292 A/A	6/G	${ }^{\text {c7 }}$	152,990 I/	a/a	C7	46,287,759 //	6/6	c8	37,687,686 I/	c / c	c9	38,012,201 A/d	c/c
cl	3,678,89	6/6	C2	3,742,149	a/a	c3	139,	I/T	C3	36,629,127	I/T	C4	33,96,208 C	6/6	cs	8,915,124 G/G	I/T	${ }^{5}$	45,356,325 T / T	c/c	C7	445,998 $/$ /c	6/6	C7	46,296,042 G/6	a/A	c8	37,689,626 c/a	c/c	c9	38,012,206	T/r
cl	3,685,6	6/6	C2	3,839	a/A	c3	1,339,999 A/4	6/6	C3	36,629,262 I/T	c/c	C4	33,992,285 c/c	T/T	cs	9,327,284 A / A	c / c	${ }^{\text {cs }}$	45, $489,496 \mathrm{c} / \mathrm{C}$	a/s	${ }^{\text {c }}$	922,130 $/ \mathrm{A}$	c/c	C 7	46,296,166	A/A	c8	25 A	T/T	c9	288	I/r
c1	3,685,72	c/c	C2	3,990,6	a/A	c3	1,339,880 $/ \mathrm{A}$	6/6	C3	36,7	I/r	c 4	34,035,	T/T	c5	,221,019 a/	6/6	c5	,494,689	a/A	${ }^{\text {c7 }}$	977,952 A/4	6/6	C7	46,296,176 $\mathrm{I} /$	c	c8	37,19,247 c/c	6/6	c9	38,110,773 T / T	c/c
cl	3,708,787 1/4	6/G	c2	4,034,504/C	a/4	${ }^{\text {c3 }}$	1,341,941 6	c/c	c3	36,761,520 A/4	c/c	C4	34,112,474 T/	6/6	cs	9,588,385 5/1	c/c	c5	45,545,136 A/A	6/6	C7	971,976 c/c	T/r	C7	46,298,925 T / T	6/G	c8	37,764,351 G/6	/1/	c9	38,110,775 r / r	1/4
cl	3,731,201 c/c	I/T	C2	4,075,833 A / A	6	c3	1,341,953 T/	c / C	c3	36,761,529 G/G	A/A	C4	34,241,598 c/	1/4	c5	9,588,393 c/c	A/A	c5	45,611,727 C/C	T/T	${ }^{\text {c }}$	1,092,216 c/c	T/r	c	46,301,123 $/$ /	a/4	c8	37,797,695 6/6	c	c9	38,110,917 //	c/c
cl	3,769,610 I / T	c/c	C2	4,107,38 8/a	6/6	c3	1,341,968 A/A	6/6	cs	36,762,133 6/6	/1/4	c	34,241,659 //	6/6	c5	9,588,406 r / T	c/c	cs	45,611,729 G/6	a/a	${ }^{7}$	1,208,722 T / L	c/c	${ }^{7}$	46,388,7396/6	a/4	c8	37,797,714 6/6	a/A	c9	38,128,143 c/C	I/T
cl	3,711,944 6/6	a/A	C2	4,110,312 6/6	a/4	c3	1,378,633 A/A	6/G	c3	36,765,984 T/T	/1/	C4	34,241,992 $6 / 6$	1/4	cs	9,595,661 C/C	T/r	c5	45,687,094 T / T	a/a	C7	1,248,275 c/c	I/T	C7	46,308,917 c/	a/A	c8	37,797,746 A/A	c/c	c9	38,153,542 A/	6/6
c1	4,019,528 //	6/6	C2	4,110,318 8/4	I/T	c3	1,476,79	I/T	c3	36,786,929 a/a	6/6	C4	34,596,615 6/6	c/c	cs	625,083 6/6	I/r	c5	45,801,810 A / A	6/G	C7	, 248,284 I/	c/c	C7	46,332,0036/	1/a	c8	37,835,753 A/	6/6	c9	38,155,044	I/r
cl	4,106,230 c/c	I/T	C2	4,110,42 G/6	a/A	c3	1,476,888 c/	6/6	c3	36,798,091 G / G	a/a	C4	34,597,125 T / T	6/6	c5	,632,050 //4	6/6	c5	45,801,869 c/c	6/6	C7	1,248,287 T / T	c/c	C7	46,332,038 //7	c/c	c8	37,840,014 c/c	a/A	c	38,256,615 c/c	I/T
C1	4,106,25 5/7	c/c	C2	4,113,881 $1 / \mathrm{A}$	6/G	c3	1,479,607 T/T	c/c	C3	36,798,138 c/c	T/r	C4	34,597,659 c/	6/6	c5	9,683,236 6/G	T/r	c5	45,854,939 I / T	c/c	C7	1,316,295 c/c	6/G	C7	46,584,458 7/T	c/c	c8	37,840,051 $\mathrm{C/G}$	a/A	c9	38,256,839 A / A	c/c
cl	4,267,69 A/A	6/6	C2	4,119,547 T / r	1/4	c3	1,479,637 A/A	6/6	c3	36,951,534 c/c	A/A	C4	34,621,511 //	6/6	c5	9,683,285 c/c	A/A	${ }^{5}$	45,854,982 G/6	a/a	C7	1,571,388 c/c	6/G	C7	46,665,719 c/c	6/6	c8	37,840,082 c/c	G/G	c9	38,399,367 c/c	T/T
c1	4,376,924/6	a/A	C2	4,130,974 T / m	c/c	c3	1,505,807 I	6/6	c3	38,111,295 T / T	a/a	c	34,631,498 6/6	c/c	c5	9,707,659 c/c	A/A	c5	45,854,983 A/4	6/6	c	1,611,424 T/	6/6	a	46,665,725 c/c	I/1	c8	37,840,826 //	c	c9	38,399,379 //	c/c
1	4,377,110 A / L	I/T	C2	4,238,899 c/c	I/T	c3	1,505,847	a/A	C3	38,228,226 c/G	c	C4	34,636,416 T / T	6/6	cs	9,707,689 I / I	6/6	${ }^{5}$	45,880,932 c/	6/G	C7	1,639,663 c/	T/r	C7	46,665,740 c/	d	C8	37,840,871 6/6	c/c	c9	38,32, 4 ,44 $\mathrm{A} /$	I/T
1	4,786,361 c/c	I/T	C2	4,298,168 /6	1/4	c3	1,516,971 c/C	I/T	C3	38,228,227 A/A	6/6	C4	34,636,422 T/2	a/a	c5	9,758,399 m / T	c/c	cs	45,989,953 6/6	a/ ${ }^{\text {a }}$	C7	1,817,490 I / L	a/4	C7	46,695,548 A	T/T	c8	37,882,537 6/	1/4	c9	38,329,460 c/	析
c1	4,786,385 //	T/T	C2	4,332,22 A / A	ז/ז	c3	1,678,096 A / A	6/6	C3	38,259,279 c/c	I/r	C4	34,636,618 6/G	I/T	c5	9,75, 503 s / A	6/6	${ }^{5}$	45,989,961 1/T	c/c	C7	1,893,626/6	A/A	C7	46,695,583 $/$ /7	c/c	c8	37,900,004 6/6	A/A	c	38,343,355 G/G	T/T
cl	5,007,775 5/8	1/A	C2	4,35,, $888 \mathrm{c} / \mathrm{c}$	T/7	c3	1,743,678 I / T	a/4	C3	38,366,986 //T	6/6	C4	34,695,068 c/c	/1/4	c5	9,765,927 c/c	T/r	c5	45,990,057 A / A	6/6	C7	1,912,709 //	c/c	C7	46,700,775 c/c	T/T	c8	38,136,097 A/A	c/c	c9	38,551,411 1 / ${ }^{\text {a }}$	6/G
cl	5,022,102 c/c	T/T	C2	4,353,934 A/	c/c	c3	1,853,124 A/A	6/G	c3	38,367,235 c/c	6/6	C4	34,784,114 6/6	a/a	c5	9,803,101 $1 / \mathrm{A}$	6/6	c5	46,22, 854 G/6	a/a		1,912,725 ${ }^{\text {a }}$	T/r	,	46,700,820 $/$ /T	c/c	c8	38,266,489 c/c	a/4	c9	38,373,812 $/$ /r	a/a
cl	5,267,96 c/c	6/G	C2	4,356,380 I / T	c/c	c3	1,855,129 $/$ /	c/c	c3	38,488,238 G/G	a/a	c 4	34,845,728 //	c/c	c5	9,803,829 m / r	c/c	c5	46,252,412 $/$ /	T/r	c	1,996,152 T / L	6/6	${ }^{7}$	46,700,897 //	a/4	c8	38,396,634 //a	6/G	c9	38,437,515 //T	c/c
cl	5,268,0046/6	I/T	C2	4,356,407 T / r	c/c	c3	1,853,153 //	c/c	c3	38,438,262 T/	c/c	C4	34,896,882 A / A	c/c	cs	9,832,092 A / A	T/r	c5	46,252,456 6/6	3/4	C	2,890,467 C/C	6/G	C 7	46,960,826 a/	6/6	C8	38,396,639 A/	c/c	c9	38,43, 133 B	6/6
c1	5,268,056 A/4	6/6	C2	4,356, $119 \mathrm{~T} / \mathrm{T}$	c/c	c3	1,911,212 C/C	T/T	C3	38,653,270 c/c	a/A	C4	35,007,815 c/c	T/r	cs	9,905,319 c/c	T/r	${ }^{5}$	46,252,457 I/	6/6	C7	2,916,699 6/6	c/c	C7	46,962,030 A/	6/6	c8	$38,396,731 \mathrm{c} / \mathrm{c}$	a/4	c9	38,43, 148 7/	c/c
c1	5,306,825/c	I/T	C2	4,372,116 c/c	I/1	c3	1,912,301 $1 / \mathrm{T}$	6/6	C3	38,724,247 T / T	6/G	C4	35,086,612 c/c	I/r	c5	9,90, $328 \mathrm{~m} / \mathrm{T}$	A/A	cs	46,255,733 1/r	c/c	C7	3,024,088 I / T	c/c	C7	46,962,167 C/C	I/T	c8	38,415,704 6/6	a/a	c9	38,539,245 c/c	I/T
cl	5,306,839 6/6	A/A	C2	4,372,134 $/$ /	I/7	c3	1,912,381 A / A	6/6	c3	38,854,27] G/6	a/a	c 4	35,118,974 A/A	I/r	${ }^{5}$	9,930,400 $/$ /	c/c	c5	46,26,026 $/$ /6	a/a	C7	3,215,858 \%/7	c/c	C7	46,991,615 c/c	I/T	c8	38,419,198 6/6	c/c	c9	38,662,162 T / r	c/c
	5,358,454 c/c	6/6	c2	4,377,216 c/c	I/T	${ }^{\text {c }}$	1,927,817 T/T	c/c	c_{3}	38,899,899/c	I/T	c4	$35,141,614 \mathrm{c} / \mathrm{c}$	I/r	${ }^{5}$	9,930,429 T / m	c/c	c5	46,260,569 $/ \mathrm{A}$	T / T	${ }^{7}$	3,391,658/4	6/G	${ }^{7}$	46,991,630 r / T	c/c	c8	38,429,417 7/	c/c	c9	38,662,281 G/G	A/A

chromosomes

Appendix II Cont．
Table S2：Cont．：Differences in Allelic variants at various chromosomes positions in parent lines；the cultivated rapid cycling DHSL150 and C07060

cl	5，740，050 A / A		C2	4，377，234 C／C	I／T	${ }^{\text {c3 }}$	1，227，838 A／A		${ }^{\text {c3 }}$	， $89,345 \mathrm{~A} / \mathrm{A}$	c／c	${ }^{\text {c }}$	35，226，183 T／T	c／c	${ }^{5}$	938，185 c／c	T／T	c5	$46,261,629 \mathrm{G} / \mathrm{C}$		${ }^{1}$	3，542，49 A / A	6／6	c1	46，999，703 A／A	ז／T	c8	38，429，505 6／6	／／A	c9	38，745，768 6／6	
c1	5，754，332 T / T	6／G	C2	4，377，237／／	6／G	c3	1，927，853 $/$／	6／G	${ }^{2}$	38，989，356 A／A	c／c	c4	35，227，972 c／c	${ }_{\text {T／r }}$	${ }^{\text {c5 }}$	9，956，272 A / A	c／c	${ }^{\text {c5 }}$	46，261，650／／	6／6	${ }^{7}$	3，701，357 6／	A／a	${ }^{\text {c }}$	47，003，790 6／6	A／4	c8	38，43，779 6／6	c／c	c9	38，751，225 a／	6／G
c1	5，754，464 7／r	6／G	C2	4，56， 2 286／6	A／A	c3	1，966，967 I／T	6／6	${ }^{3}$	38，989，376 c／	I／T	${ }^{4}$	35，288，251／／a	6／G	${ }^{\text {c5 }}$	9，956，895 A / A	c／c	c5	46， $261,113 \mathrm{c}$	I／T	${ }^{7}$	3，960，363 I／	c／c	c7	47，090，645 6／6	a／a	c8	38，436，222 C1	I／T	c9	38，751，	a／a
c1	5，54，508 G	T／T	c2	4，644，991 c／c	T／T	c3	1，980，831	I／7	${ }^{\text {c3 }}$	38，992，716 $\mathrm{C} /$	a／A	C4	35，248，271 A／d	6／G	${ }^{5}$	10，031，634 A／A	T／T	${ }^{\text {c }}$	46，325，625 c	1／4	${ }^{\text {c7 }}$	4，099，411 T／	c／c	c7	47，121，669 T／	1／A	c8	38，46，473 6／	T／r	c9	38，751，717 c／	／r
c1	5，754，518 c／c	T／r	C2	5，174，132／／	I／ף	c3	2，117，450 I / T	c／c	${ }^{13}$	39，037，597／T	c／c	${ }^{\text {c4 }}$	35，261，902／／7	c／c	${ }^{5}$	10，056，072 c／c	a／A	c5	46，354，554 T／	c／c	${ }^{\text {c7 }}$	4，531，455／／	c／c	${ }^{1}$	47，144，864 6／0	c／c	c8	38，46，512 6	c／c	c9	38，930，086 a／	I／r
c1	5，792，876 A／A	6／6	C2	5，174，150／／	c／c	c3	2，167，225 c／c	I／7	${ }^{3}$	42，277，079 A / A	6／6	C4	35，285，549 A／A	T／r	${ }^{5}$	10，061， $383 \mathrm{~T} / \mathrm{T}$	c／c	c5	46，354，564 c／c	T／r	${ }^{7}$	5，478，807 A／4	T／r	c 1	47，147，1146／	A／A	c8	38，50，458 6／	a／A	c9	8，932，054 A／	6／6
c1	5，992，880 A / A	6／6	C2	5，230，505 6／6	a／A	C3	2，167，228 c	I／ワ	${ }^{3}$	42，882，678 7／2	c／c	C4	35，28，606 T / T	6／6	${ }^{\text {cs }}$	10，314，582 6／	T／r	cs	46，476，747 A／A	6／6	${ }^{7}$	5，478，819 c	T／r	c	47，188，614	T／r	c8	38，507，566	c / c	c9	8，937，651	c／c
c1	5，794，717 A／A	T／T	C2	5，313，920／／	c／a	c3	2，213，323 6	a／a	${ }^{3}$	42， 882,6846	A／A	C4	35，292，615 T / T	c／c	${ }^{5}$	10，314，632 A／A	6／6	c5	46， $88,114 \mathrm{~A} / \mathrm{A}$	G／6	${ }^{7}$	5，884，892 I／	c／c	c7	47，188，626	6／6	c8	38，510，32 I	c／c	cя	39，171，970 I	a
c1	5，796，941 c／c	A／A	C2	5，314，220／／T	c／c	c3	2，251，575 c／	6／6	${ }^{3}$	43，621，334 T／	c／c	C4	35， $383,704 \mathrm{~A} / \mathrm{A}$	T／T	${ }^{\text {c }}$	10，315，863／／	c／c	${ }^{\text {c }}$	46，566，330 6／	c／c	${ }^{\text {c7 }}$	5，884，901 I／	A／A	c7	47，206，061	I／T	c8	38，522，923	6／6	c9	9，282，595	G／G
c1	5，797，457／6	c／c	C2	5，314，277 6／6	c／c	C3	2，272，459 a／d	I／7	${ }^{3}$	43，621，359 a／a	c／c	${ }^{4}$	35，503，195 6／6	c／c	${ }^{\text {cs }}$	10，380，351 c／c	A／A	cs	6，566，612 C／	T／r	${ }^{\text {c }}$	5，597，181 6／	a／a	${ }^{1}$	47，253，788	c／c	c8	38，52，，956 A	c／c	c9	9，325，884	6／6
c1	5，804，293 6／6	A／A	C2	5，348，053 c／C	T／n	c3	2，227，536／／	6／6	${ }^{3}$	43，625，558 c／c	I／T	C4	35，576，349 c／c	T／T	${ }^{\text {c }}$	10，444，511／／	A／A	c5	6，653，488 $/$	c／c	${ }^{\text {c7 }}$	5，687，286 c／c	a／a	${ }^{1}$	47，253，851	6／6	c8	38，52，，388	a／A	c9	9，325，541	I／r
c1	5，804，306 A／A	T／T	C2	5，376，189 6／6	A／A	c3	2，277，6036／6	a／4	${ }^{\text {c3 }}$	46，936，922 T／	A／A	C4	35，577，587 c／c	I／T	${ }^{\text {c5 }}$	10，458，603 T / T	c／c	c5	6，65， 351 6／6	T／r	${ }^{\text {c7 }}$	6，010，095 6／9	A／A	c 1	47，253，878	T／r	c8	38，523，050	A／4	c9	9，325，701	6／6
c1	5，810，960 $/ \mathrm{A}$	6／6	C2	5，387，068 8／6	A／A	C3	2，342，229 G／6	c／c	${ }^{3}$	49，93，819 I	c／c	C4	35，612，026 c／c	6／G	${ }^{\text {cs }}$	10，489，039 6／	A／A	cs	46，654，354 6／	a／a	${ }^{\circ}$	6，344，953 6	A／a	${ }^{1}$	47，253，884	c／c	c8	38，540，68 I	6／6	c9	9，325，766	6／6
c1	5，811，060 C / G	c／c	C2	5，387，150 c／	I／T	c3	2，447，850 T	6／G	${ }^{\text {c3 }}$	50，245，639 I／	c／c	C4	35，612，071／／A	6／6	${ }^{\text {c5 }}$	10，599，106 7／	c／c	${ }^{\text {c5 }}$	46，654，387 $/$	c／c	${ }^{\text {c7 }}$	6，414，574 c／	T／T	${ }^{1}$	47，288，286	c／c	c8	38，53， 788 6／	a／d	c9	9，327，652	I／T
c1	5，811，994 T / T	c／c	C2	5，471，353 I	c／c	c3	2，453，614	c／c	${ }^{3}$	50，430，761	c／c	${ }^{4}$	35，754，048／／	c／c	${ }^{\text {c }}$	10，706，910 6／	c／c	c6	$410,179 \mathrm{a} / 1$	6／6	${ }^{\text {c }}$	6，43， 3061	c／c	c 1	47，288，307	a／a	c8	38，54，687 A／	I／T	c9	9，327，866	c／c
c1	5，811，523 c／c	\％／	C2	5，452，334 I／	c／c	c3	2，508，636	T／7	${ }^{3}$	50，431，242 Cl	T／T	${ }^{4}$	35，754，061 A／d	G／	${ }^{\text {c5 }}$	10，72， 3737 m	c／c	c6	412， 675 s ／	G／6	${ }^{\text {c7 }}$	6，553，803 a／a	c／c	c7	47，288，427	T／T	c8	38，54，755 A／	I／T	c9	9，327，910 A	\％
c1	5，811，55 r／r	c／c	C2	5，609，425 A / A	c／c	C3	2，508，714 I／	a／a	${ }^{3}$	50，813，499 a／a	I／T	${ }^{4}$	36，087，457 c／c	6／6	${ }^{\text {cs }}$	10，830，338 A／A	T／T	c6	21，475／／4	6／6	${ }^{\text {c }}$	6，553，816 A／	T／T	c	47，425，896	a／a	c8	38，56，196 6／	a／d	c9	9，374，324 G／	c／c
c1	5，835，888 T / T	c／c	C2	5，609，924 A／A	c／c	c3	2，535，040 G	a／4	${ }^{\text {c3 }}$	50，876，231 6／	A／A	${ }^{\text {c4 }}$	36，156，570 A／4	6／G	${ }^{\text {c5 }}$	10，884，533 A／	π / π	c6	58，722 T／	a／8	${ }^{\text {c }}$	6，566，205 T／	c／c	c7	47，626，895	T／T	c8	38，574，895	／1／	c9	9，374，361	6／6
c1	5，835，920 $/$／n	c／c	C2	5，610，026 6／6	I／r	c3	2，584，834 A／	6／G	c3	50，876，263 T／2	c／c	C4	36，157，185 c／	T／r	${ }^{\text {c5 }}$	10，884，645 cic	T／r	c6	1，676 A	T／r	${ }^{\text {c7 }}$	6，566，231 c／	T／r	${ }^{1}$	47，630，049	6／6	c8	38，57， 8856	a／d	c9	9，481，410	I／T
c1	5，899，973 c	T／T	C2	5，890，303 c／c	I／T	c3	2，61，544	a／a	${ }^{3}$	50，96，，26 c	6／6	${ }^{4}$	36，157，293 $\mathrm{I} /$	A／A	${ }^{\text {cs }}$	0，890，797 A	c／c	c6	2，723	c／c	${ }^{\text {c }}$	6，62，，220	A／4	${ }^{1}$	47，630，058	a／a	c8	38，574，988	c／c	c9	9，944，038	6／6
c1	5，900，010	c／c	C2	5，890，3		c3	19，629	T／7	${ }^{\text {c3 }}$	50，965，639	A／4	${ }^{4}$	36，157，353 ז／	A／A	${ }^{\text {c5 }}$	，8891，500 6／6	A／A	c6	12，767 A		${ }^{\text {c }}$	6，654，266 6／	c／c	${ }^{1}$	47，630，128	cras	c8	38，63，，194 c／	6／6	c9	9，994，065	
c1	5，905，754 C	T／T	C2	5，80， 439	c／c	c3	2，49，29	I／T	${ }^{\text {c3 }}$	50，996，673	I／T	C4	36，157，805 $\mathrm{c} /$	A／A	${ }^{5}$	0，910， $398 \mathrm{~A} / \mathrm{A}$	6／6	c6	807，989		${ }^{\text {c7 }}$	7，581，806 6	c／c	c7	47，630，130	T／T	c8	38，63，222 A／	6／6	c9	9，495，100	a／a
c1	5，905，769	c／c	${ }^{2}$	5，90，824	a／d	c3	2，864，291	a／4	${ }^{\text {c3 }}$	$51,013,64 \mathrm{~A}$	6／6	C4	36，30，501 I／	6／6	c5	0，910，433	6／G	c6	，007，621		${ }^{17}$	1，581，812 A	T／T	c7	47，630，850	\％／n	c8	38，635，246 A	6／6	c9	9，688，159	6／6
c1	5，905，901 6／6	／r	c2	5，928，126 6／6	d	C3	2，866，116	a／a	${ }^{3}$	51，032，082 C	A／A	${ }^{4}$	36，30，504 $\mathrm{C} /$	T／T	cs	10，917，620 cic	6／6	c6	1，007，652 A／4	c／	${ }^{\text {c }}$	7，640，969	6／6	c	47，630，895	c／c	c8	38，643，155 c	6／6	ce	0，225，597	6／6
c1	5，905，907 A／A	6	C2	5，928，132／／	c／	c3	2，901，788	6／6	${ }^{3}$	51，09， 017	6／G	C4	36，43， 2426 6／	A／A	${ }^{\text {c }}$	10，947，608 I	a／A	c6	1，084，362	\％／r	${ }^{\text {c7 }}$	7，152，147	6／6	c1	47，695，542	T／T	c8	38，730，712	6／6	c9	0，335	6／6
c1	5，909，114 T	c／c	C2	5，966，526 A／A	I／T	c3	2，001，72 B	6／G	${ }^{\text {c3 }}$	51，199，219	c／c	C4	36，443，243	c／c	${ }^{\text {c5 }}$	1，070，077	A／A	c6	1，203，488	6／6	${ }^{\text {c7 }}$	1，752，294	c／c	C7	47，695，651	c／c	c8	38，750，168	6／6	c9	0，393，636	I／T
c1	5，976，141	6／6	C2	6，110，964 A／	6／6	c3	2，901，791	c／c	${ }^{\text {c3 }}$	51，199，299	A／A	${ }^{4}$	36，443，326	T／r	${ }^{\text {cs }}$	11，070，087 6	A／A	c6	1，203，501	a／a	${ }^{\text {c }}$	7，75， 384	A／a	c 1	48，061，752	a／a	c8	38，750，204	I／T	c9	0，339，653	a／a
c1	5，976，159	a／A	C2	6，182，3	c／c	c3	2，945，911	T／T	c3	51，199，261	A／A	C4	36，53， 588 A	6／G	${ }^{\text {c5 }}$	11，070，126 A／A	c／c	c6	1，203，507 I		${ }^{\text {c7 }}$	1，786，733	6／6	${ }^{1}$	48，073，603	a／A	c8	38，750，248	6／6	c9	0，393，726 c／	
c1	5，976，201 C	，	C2	6，182，405	／r	c3	2，968，29	I／T	c3	$51,317,413 \mathrm{~A}$	6／	${ }^{4}$	36，547，603	6／G	${ }^{\text {c }}$	11，085，101 A／A	I／T	c6	1，203，598		${ }^{\text {c }}$	1，943，597 A	6／6	C7	48，084，305	A／4	c8	38，756，019	a／a	ce	0，438，200 I／	cras
c1	5，971，839 A		C2	6，182，431	a／4	c3	2，971，950	a／${ }^{\text {a }}$	${ }^{\text {c3 }}$	51，317，419	A／A	${ }^{4}$	36，663，828	A／A	${ }^{\text {c5 }}$	11，114，829 a／a		c6	1，294，919	a／a	${ }^{17}$	8，000，453	T／T	${ }^{1}$	48，087，864	6／G	c8	38，758，146	T／r	c9	0，652，049	
c1	5，971，853 7／r	6／6	c2	6，307，157 c／C	6／6	c3	3，036，810	T／7	c3	51，33，371 C	I／T	${ }^{4}$	36，66，886 $\mathrm{T} /$	c／c	${ }^{\text {c5 }}$	11，114，872 A／A	6／6	c6	1，296，351	d	${ }^{\text {c7 }}$	8，084，879 6	A／4	c	48，087，886	a／4	c8	38，75，161 c	6／6	c9	40，817， $822 \mathrm{c} /$	a／A
c1	6，019，364 c／C	I／T	C2	6，307，175 6／	din	c3	3，050，304	I／7	c3	51，33， 388 m	c／c	${ }^{4}$	36，66， $740 \mathrm{~T} /$	c／c	${ }^{\text {c }}$	11，119，557	6／6	c6	1，296，352 I	6／6	${ }^{\text {c7 }}$	8，084，898 A	T／T	C7	48，089，611	6／6	c8	38，838，174 A	6／6	c9	0，871，872	cc
c1	6，045，864	6／6	C2	6，645，829	I／T	c3	3，050，345	a／4	c3	51，496，39	6／6	${ }^{4}$	36，665，929	6／G	${ }^{\text {c } 5}$	11，398，794	c／c	c6	1，296，950	6／6	${ }^{\text {c7 }}$	8，104，530 A／	6／6	C7	48，089，617	T／r	c8	38，838，261 6	c／c	c9	41，045，970 A／	6／G
c1	6，095，543	a／A	C2	6，182，085 6	A／A	c3	3，108，506 A	I／ワ	c3	51，80，047 c	1／1	${ }^{4}$	36，65，947 $\mathrm{C} /$	T／r	${ }^{\text {cs }}$	11，46，560／6	T／T	c6	1，322，654 A／	6／6	${ }^{\text {c }}$	8，143，111 T	a／a	c 7	48，123，142 A	6／6	c8	38，838，303	I／T	c9	11，046，065	6／6
cl	6，113，203	T／T	c2	6，892，880 IT	c／c	c3	3，108，507	c／c	c3	$51,80,400 \mathrm{~A}$	6	C4	36，65，971 A／	6／G	${ }^{\text {c }}$	11，483，266 A／	6／6	c6	1，323，095 6	a／a	${ }^{\text {c }}$	8，143，140 G／	A／	17	48，12， 115 B	c／c	c8	38，852，85 A	I／	9	1，203，576	／a
cl	6，122，993	6／6	C2	6，991，997	A／A	c3	3，108，660 A	6／6	c3	$51,800,412 \mathrm{~A} /$	6／G	C4	36，66， $118 \mathrm{c} /$	T／r	${ }^{5}$	11，488，794	c／c	c6	1，345，038 T	c／c	${ }^{\text {c }}$	8，32， 116	c／c	C7	48，123，170	c／c	c8	38，852，946	，	c9	11，210，010 I／	c
c1	6，154，271 T		C2	1，029，891 I／	6／6	c3	，142，500	a／4	c3	51，802，295	a／a	C4	36，79， 948 A	6／G	c5	11，510，5986／6	a／A	c6	1，345，101	A／	${ }^{\text {c7 }}$	8，416，000／／	$6 / 6$	C7	48，123，203	a／4	c8	38，86，696 6／	c／c	c9	1，215，500	相
c1	6，210，490 $/$／	6／6	c2	7，037，297 A / A	6／6	c3	3，203，629 T／	c／c	c3	51， 832,7306	c／c	${ }^{4}$	36，95，951 6／6	A／A	${ }^{5} 5$	11，608，299 a／a	T／r	c6	1，372，517	a／a	${ }^{7}$	8，515，682 $\mathrm{A} /$	c／c	${ }^{7}$	48，149，457	6／6	c8	38，86，529 A／	－	c9	41，215，502 6	a／a
cl	6，217，632 I	c／c	C2	7，038，010 A	I／T	c3	3，216，439	6／6	c3	51， 832,748 A／	c／c	${ }^{4}$	36，796，005 6／6	A／A	${ }^{\text {c }}$	11，708，471	c／c	c6	1，476，925	c／c	${ }^{\text {c7 }}$	8，874，706 T／	c／c	C7	48，149，573	A／4	c8	38，86， 532 A A	6／6	c9	1，386，260	a／a
c1	6，211，650 A／	6／6	c2	7，185，236 I／	6／G	c3	3，218，491 T／	a／4	c3	51，842，252 6／	a／4	${ }^{4}$	36，499，431 T／1	6／G	${ }^{\text {c } 5}$	11，708，512	T／r	c6	1，562，165	T／r	${ }^{\text {c7 }}$	9，004，2036	a／a	C	48，198，835	a／4	c8	38，897，877	c／c	c9	1，425，609 c／	a／a
c1	6，263，858 A	c／c	C2	7，185，261 0	I／T	c3	3，231，392 6	c／c	c3	51，882，940 A／	I／T	${ }^{4}$	36，945，731	A／A	${ }^{\text {c }}$	11，947，528 7／	c／c	c6	1，562，174 c	T／r	${ }^{\text {c }}$	9，206，213 c	T／r	C7	48，198，843	c／c	c8	3， $121,058 \mathrm{~A} /$	I／T	c9	41，426，775	c／c
c1	6，264，017	c／c	C2	7，263，547 c／	I／T	c3	231，413 A／	c／c	c3	52，179， 154 a	路	${ }^{4}$	36，94，, 34 c	1／1	${ }^{\text {c }}$	12，022，066 a／	，	c6	1，565，184 I／	d	${ }^{\text {c7 }}$	9，209，744 I／	6／6	－	48，204，291	A／A	c8	39，397，505	${ }^{6 / 6}$	c9	1，428，084 c／	／a
cl	6，264，042 A / A	T／T	C2	7，325，272 6／6	A／A	c3	3，231，491 6	a／4	c3	52，179，845 $\mathrm{I} /$	c／c	${ }^{4}$	37，122，900 A／	T／r	${ }^{\text {c }}$	12，040，322 6／	A／A	c6	1，566，040 A	6／6	${ }^{\text {c7 }}$	9，209，752 a	6／6	C7	48，212，545	A／4	c8	39，456，87	c／c	－	4，524，215 a	I／r
c1	6，266，310	T／r	c2	1，388，265	c／c	c3	3，258，678 G	a／4	c3	52，179，859 6／	A／A	${ }^{4}$	37，142，926 6／6	a／A	${ }^{5} 5$	12，040，420 c／c	T／r	c6	1，600，808 A／	6／6	${ }^{\text {c7 }}$	9，274，546 c／c	T／T	c7	48，213，65 6	T／T	c8	39，527，450	${ }^{6 / 6}$	9	1，524，416	c／c
c1	6，264，350 c／c	1／1	c2	7，388，316／6	A／A	c3	3，320，419 c／c	I／7	c3	52，179，974 6／6	A／4	${ }^{4}$	37，122，975 c／c	a／a	${ }^{5}$	12，040，422 6／	A／A	c6	1，604，021 I／	6／6	${ }^{7}$	9，590，433 a／a	6／G	c7	48，213，759	6／6	c8	39，54，, 65 A A	G	c9	41，566，573 a／	c／c
c1	6，625，276 c／c	T／T	C2	1，394，860 6／	A／A	c3	3，344，755	6／G	c3	52，179，992 6／	c／c	${ }^{4}$	37，191，600 T／2	c／c	${ }^{\text {c }}$	12，040，510 $/$	c／c	c6	1，685，563 A	T／r	${ }^{\text {c7 }}$	9，619，501 A	6／6	C7	48，213，762	6／6	c8	39，550，322	6／6	c9	1，593，515	a／a
c1	6，736，355 c／	T／r	${ }^{\text {c2 }}$	1，397，129 6／	A／A	c3	3，344，841 c	I／7	c3	52，316，816 C	6／G	C4	37，617，302 $\mathrm{T} /$	6／G	${ }^{\text {c5 }}$	12，112，563 A／	6／6	c6	1，685，599 A	6／6	${ }^{\text {c7 }}$	9，649，144 cic	T／1	c	48，216，688	a／A	c8	39，550，453	a／${ }^{\text {a }}$	c9	41，593，564	号
cl	6，764，781	c／c	C2	7，484，182 6	A／A	c3	3，436，255	ז／ז	c3	52，34， 882 T	c／c	${ }^{4}$	37，61，309 c／	A／A	cs	12，112，675 $/ 6$	A／A	c6	1，685，670 G／6	a／a	${ }^{7}$	9，654，218 a／	c／c	${ }^{7}$	48，218，526	c／c	c8	39，550，615	c／c	c9	41，620，509 I／	a／a
c1	6，828，745 7／T	c／c	C2	7，648，321 6／6	A／A	c3	3，436，285 6／6	T／7	c3	52，701，005 c／c	I／T	${ }^{4}$	37，617，461 1／a	6／G	${ }^{5}$	12，113，993 c / C	T／r	c6	1，724，733 G／6	A／a	${ }^{\text {c }}$	9，676，613 $6 / 6$	a／a	C7	48，218，557 $\mathrm{C} /$	T／1	c8	39，69，, 699 A	6／6	c9	${ }_{41,621,867}$ c／	I／r
c1	6，828，769 T／T	c／c	C_{2}	7，73，239 7／r	A／A	c3	3，436，380 $/$／	6／6	c3	52，888，874 6／	A／A	${ }^{\text {c }}$	37，618，659 c／c	T／T	${ }^{5} 5$	12，556，733 c／c	A／A	${ }^{\text {c6 }}$	1，736，422 A / A	6／G	${ }^{\text {c7 }}$	9，792，843／／	c／c	${ }^{7}$	48，218，566 c／	a／a	c8	39，71，110 $\mathrm{T} /$	c／c	c9	1，623，138 c／c	6／6
cl	7，028，95 A / A	c／c	c2	1，743，065 c／c	T／T	c3	3，456，204 6／6	c／c	c3	52，86，879 C	I／T	c4	37，618，662 c／c	T／T	${ }^{5}$	12，837，106 T／	6／G	c6	1，922，636 c／c	T／r	${ }^{7}$	9，847，998 $\mathrm{c/C}$	T／T	C	48，220，882	A／A	c8	39，11，116 $\mathrm{c} /$	6／G	c9	1，623，211 c／	I／T
cl	7，075，848 6／6	c／c	c2	8，088，382 A／4	6／6	c3	3，456，211 c／c	a／A	c3	52，965，590 T	c／c	${ }^{4}$	37，618，701 T／	c / c	${ }^{\text {c5 }}$	12，964，877 C／C	I／r	${ }^{\text {c6 }}$	1，949，627 A／A	6／6	${ }^{\text {c7 }}$	9，848，022 $6 / 6$	c／c	c	48，267，439 a／	c／c	c8	9，712，929 A／	c／c	c9	41，678，103 $\mathrm{I} /$	a／a
c1	7，206，307 c／c	T／7	c2	8，088，421 A / A	6／6	c3	3，456，227 6／6	A／A	c3	52，965，734 c／	6／6	C4	38，052，731 c / C	T／T	c5	13，229，922 A / A	6／6	c6	1，960，02 G／G	a／a	${ }^{1}$	9，947，059 c／c	T／T	c7	48，28，690 c／	A／A	c8	39，713，139 A／	6／G	c9	11，777，735 6／6	c／c
	7，206，3196／6	A／A	c2	8，341，731	6／6	c3	，56，246	A／A	c3	52，967，186	6／6	c4	8，112，542 C	6／6	${ }^{5}$	3，241，491 T	A／A	${ }^{6}$	2，393， 656 c	I／T	${ }^{1}$	，983，447 c／	I／T	c	48，313，751	c／c	c8	39，716，143	6／6	c9	41，74，570 I	6／6

chromosomes．

Appendix II Cont．

Table S2：Cont．：Differences in Allelic variants at various chromosomes positions in parent lines；the cultivated rapid cycling DHSL150 and C07060．

C1	235，221 A／4	6／G	C2	8，341，185／／C	I／T	c3	3，46，5991 $/$／4	c／c	C3	52，967，198 A / A	6／G	C4	38，112，561／／7	c／c	cs	13，308，754 T／	c／c	${ }^{6}$	2，396，335 I / T	a／a	C7	，988，462 A／A	6／6	C7	48，355，398 A / A	6／6	c8	39，716，176 6／6	a／a	c9	41，826，473 C／	T／T
C1	／c	I／T	C2	8，348，852 c／c	T／7	C3	1／17	c／c	${ }^{3}$	53，004，45 A / A	I／T	C4	38，139，174 G／G	a／a	c5	c／c	I／T	c6	2，402，67 I／7	c / c	C	，17 c／c	6／G	c8	199，847／T7	A／A	c8	39，716，207 $/ \mathrm{A}$	I／T	c9	I／7	a／A
Cl	1，590，658 c／c	I／T	C2	8，350，281 I / m	a／A	C3	3，489，312 I / T	c／c	${ }^{3}$	53，155，	6／G	C4	38，150，634 T / T	6／G	cs	13，358，874 c／c	I／T	c6	202，775 A / A	I／7	C	，985，034 7／	c／c	C8	，53 C／	I／T	C8	， 98	a／4	c9	$365 \mathrm{c} / \mathrm{c}$	a／A
C1	7，638，405 T / n	A／A	C2	8，350，331 A / A	I／T	c3	3，504，765 c／6	a／4	c3	53，168，027／	6／6	C4	38，178，375 6／6	8／a	${ }^{5}$	13，358，985 G／6	A／A	c6	2，481，011 $/ 1$	c／c	C7	10，01， 3288	I／T	c8	103，383 a／	6／6	c8	39，76， 608 C	c／c	c9	11，940，741 C	T / T
cl	1，128，50	1／4	C2	8，366，62	I／7	c3	3，546，923 A / A	c／c	c3	53，248，220	6／G	C4	38，178，387 $/$／	c／c	c5	13，366，035 c／c	I／T	c6	2，61，	a／4	C7	10，013，329 c／c	a／a	c8	403，409 a / A	6／6	c8	39，872	6／G	c9	11，940，816 c／c	a／a
C1	，746，104／／	6／6	C2	8，366，637 c／c	I／T	c3	，47，02	c／c	c3	53，428，095 T / T	6／6		38，196，664 c／c	6／G	cs	13，428，004 C / C	I／7	c6	2，672，000 c／c		7	10，385，118 c／c	I／7		103，410 $/$／	I／T	c8	39，872，503 G／	a／a	c9	42，061，557 c／c	A／A
C1	7，746，117 $/ \mathrm{A}$	c／c	C2	8，476，688 I / T	1／4	c3	3，575，177 T / T	c／c	c3	53，544，7136／6	a／A	C4	38，214，765 $/ 6$	a／A	c5	13，521，800 c／c	I／T	c6	2，747，981 1／1	6／G	C7	88 A	6／G	c8	416，653 C／C	I／T	c8	16	I／T	c9	936／6	A／A
Cl	1，746，149 T / m	a／A	C2	8，47	a／A	c3	3，585，288 I / T	6／G	c3	54，042，248 8／	T／T	C4	38，214，775 c／	a／A	c5	13，521，879 a／m	6／6	c6	2，844，806 c／	I／T	C7	10，434，210 C／	I／T	C8	6，656 A／d	6／6	c8	9，906，950 C／	r／T	c9	2，08， $888 \mathrm{~B} / \mathrm{A}$	G／G
C1	8，154，945 T / m	A／A	C2	8，510，105 A / A	6／6	c3	3，585，758 $/$／	6／6	c3	54，042，	c／c	C4	38，25，559	c／c	${ }^{\text {c }}$	13，522，306 A / A	6／6	c6	2，844，815 G／6	a／4	C7	10，43，218 G／	a／4	c8	416，737 G／	a／A	c8	39，90， $966 \mathrm{c} /$	r／T	c9	42，081，594 T / T	a／A
C1	8，155，032 A / A	6／G	C2	8，52，975 6／6	I／T	c3	， 585	a／4	C3	295，3	I／T	C4	38，270，051 c／c	I／T	c5	13，64	c／c	c6	2，911	I／7	C7	10，434，271 T / T	6／6		458，519 c／C	a／A	c8	39，964	c / c	c9	42，081，600 $/$／r	G／G
C1	8，155，987	6／G	C2	21，0	c／c	c3	3，18，265 $/ \mathrm{T}$	c／c	C3	54，325，517 C／C	T／T	C4	174，	I／T	${ }^{5}$	， $822,410 \mathrm{~A} / \mathrm{L}$	6／G	${ }^{6}$	3，067，641 1 ／	6／6	C7	10，601，477	c / c	C8	，743	I／T	c8	40，004，725 $/$／2	c／c	c9	42，081，633 T / T	c／c
C1	8，186，08	6／6	C2	8，540，0	c／c	c3	2，478	a／d	c3	103，845 T / T	c／c	C4	38，482，963	c / C	cs	， $312,598 \mathrm{a/}$	6／6	c6	，072，991 I／2	a／4	C7	10，612，303 6／	a／a	c8	，1766／6	A／A	c8	40，135，075 $6 / 6$	a／4	c9	2，085，588／／C	I／T
C1	8，276，217	T／T	C2	8，581，022 G／6	a／A	c3	3，963，328 $\mathrm{I} / \mathrm{1}$	a／A	C3	54，003，990／／	c／c	C4	38，511，586／／C	6／6	cs	A／A	c／c	${ }^{6}$	3，215，453 M / T	a／A	C7	10，612，369 A／	6／G	C8	1，499 6／6	c／c	c8	40，135，128 I / T	c／c	c9	2，131，22 a／a	c／c
C1	8，276，291	a／A	C2	8，581，	6／G	c3	3，971	c／c	c3	54，40， 0	c／c	C4	38，	I／T	c5	13，831	6／G	${ }^{6}$	3，215，611 $/$／	c／c	C7	10，612，	a／4	c8	$461,944 \mathrm{c} / \mathrm{C}$	a／A	c8	40，135，146 $1 /$	c／c	c9	42，420，885 $6 / 6$	A／4
C1	8，35，018 c / c	I／T	C2	8，612，789 c／c	a／d	c3	111，120	T／T	C3	， 619	c／c		38，692，508 6／6	a／a	${ }^{5}$	13，881，694 $/$／	c / C	c6	3，299，	a／4	C7	10，953	c / c		468，240 $/ \mathrm{A}$	I／T	c8	40，122	6／G	c9	42，421，432／／	6／G
C1	8，32， $899 \mathrm{~m} / \mathrm{T}$	6／6	C2	8，612，830 $/ \mathrm{A}$	c／c	c3	4，078，381 $6 / 6$	a／A	c3	55，027，956 c／c	I／T	C4	，025，8	c／c	cs	13，883， $731 \mathrm{1} / \mathrm{L}$	6／G	${ }^{6}$	3，553，036 $/$／2	c／c	C7	10，958，100 $/$	6／G	c8	3，92	I／T	c8	40，142，539 6／6	c／c	c9	42，421，485 $/$／4	6／G
C1	8，354，720 G／6	a／A	C2	8，620，0	I／T	c3	4，078，412	a／4	${ }^{3}$	55，027，996 G／6	a／A	C4	39，030，920 $/ \mathrm{A}$	6／G	cs	6／6	a／A	c6	C／	T／7	C7	11，508，072 6／6	a／a	c8	081 6／6	A／A	c8	40，23，102 T／	c／c	c9	2，550，068 6／G	a／a
C1	8，357，988 CG	c / c	C2	8，620，	T／T	c3	4，	1／4	C3	55，028	6／G	C4	39，051	1／4	cs	14，000，504 A / A	6／6	c6	3，653	c / c	C7	11，509，127 $7 / \mathrm{T}$	a／4	c8	996，129 G／6	a／A	c8	40，236，116 c／a	6／G	c9	42，587，589 a / A	I／T
C1	8，357，157 M／7	c／c	C2	8，620，0	6／6	c3	4，112，214	6／G	C3	55，088，046／／	6／G	C4	39，085，	6／G	cs	14，058，2	I／T	c6	3，728，888 A / A	6／6	C7	11，513，293 G／6	I／T	c8	24,77	c / C	c8	40，236，117 T／	c／c	c9	42，636，417 A / A	T／T
Cl	8，351，784／G	a／a	C2	8，620，092 A / A	6／6	c3	4，511，705 $\mathrm{m} /$	G／G	C3	55，089，392 c／c	I／T		39，126，526	I／T	${ }^{5}$	14，237，08	a／A	${ }^{6}$	3，734，066 A / A	6／0	C7	11，513，961	a／a	8	24，788 6／6	a／4	c8	40，302， $362 \mathrm{~A} / \mathrm{A}$	6／G	c9	42，637，020 I／2	6／G
Cl	8，357，899 c／c	T／T	C2	8，620，102 A / A	6／6	c3	511，70	6／6	C3	20，126 A／8	6／G		39，126，536 ז／7	c / c	${ }^{5}$	14，237，691 $1 / \mathrm{T}$	c / c	${ }^{6}$	3，829，212 c／c	I／T	C7	11，514，597 C／C	T／7	8	590，138 c／C	I／T	c8	40，30， $5506 / 6$	a／A	c9	42，648，594 A / A	6／G
C1	8，33	c／c	C2	8，627，988 c／c	T／T	c3	4，515，732 A / A	c／c	C3	55，789，071 c／c	T／T		39，126，538／／6	c／c	c5	14，325，237 $/$／	c／c	c6	3，82，294 G／G	c / c	C7	11，514，661 1／7	a／4	c8	663，150 $/$／T	c / C	c8	324，3336／6	c／c	c9	42，828，198 A / A	c／c
cl	8，360，755 c／c	6／G	C2	8，655，159 G／G	T／T	c3	4，516，851 A / A	6／6	C3	55，	6／G	C4	39，733，707 1／T	c／c	cs	6／6	c／c	c6	3，969，299／／	6／6	C7	11，534，944 c／C	I／T	C8	663，163 C／C	A／A	c8	40，326，135 T / T	a／d	c9	2，888，236 8／4	c／c
Cl	8，361，568 I / m	6／G	C2	8，655，2	6／6	c3	4，516，871 6	c／c	c3	56，616，124 c／c	a／4	C4	39，737，798 6／6	c／c	c5	14，381，634 $/$	c／c	c6	4，096，022 A / L	6／G	C7	11，536，176 c／c	6／6	C8	663，326／／	a／A	c8	40，326，186 T／	c／c	c9	42，866，992 $/ 6$	c／c
C1	8，361，595 A / A	6／G	C2	8，658，3，	a／A	c3	16，9	8／4	C3	57，137，	a／A	C4	39，827，816 T / T	c／c	cs	14，56	I／T	${ }^{6}$	，096，	a／4	C7	12，233， $354 \mathrm{~A} / \mathrm{A}$	I／T	c8	611，730 c／c	1／T	c8	40，326，	1／1	c9	2，866	A／4
C1	8，361，600 c／c	I／T	C2	8，65，408 8／4	T／T	c3	4，528，250 $/ 6$	A／A	c3	57，161，906 c／c	I／T	C4	39，836，018／／	c / c	cs	14，508，678 $/$／	c／c	${ }^{6}$	4，096，178 c／c	a／4	C7	12，239，433／／7	6／6	c8	1，235，590 $/ 6$	a／A	c8	40，328，271	a／a	c9	2869，545	I／r
cl	8，361	I／T	C2	8，658，46 A / A	6／6	c3	4，552，096／6	a／d	C3	57，241，520 c／c	T／T		39，836，036 6／6	a／a	${ }^{5}$	14，644，755 G／6	c / c	${ }^{6}$	4，123，436 m / n	6／6	C7	12，239，944 G／a	I／T	c8	1，246，113 A / A	c／c	c8	40，335，558 C	r／T	c9	2，870，122 G／6	a／a
C1	8，361，129 c／6	a／A	C2	源66，52 6／G	A／A	c3	4，596，108 A / A	6／6	C3	57，266，646／／	c / c	C4	39，854，139 I / T	6／6	${ }^{5}$	1，842， $340 \mathrm{G} / \mathrm{G}$	a／a	c6	256，436 $/$／2	6／0	C7	12，240，955 c／c	I／T	c8	1，26， $226 \mathrm{c} / \mathrm{c}$	a／A	c8	40，33， $550 \mathrm{G} / \mathrm{C}$	／${ }^{\text {a }}$	c9	2，933，619 G／6	a／a
C1	8，402，822	6／6	C2	8，739，2	a／A	c3	4，633，791	a／A	c3	57，392，433	I／T	C4	39，85，7	A／A	c5	14，842，361 $\mathrm{A} /$	6／6	c6	4，315，718 a / A	c／c	C7	12，257，822	6／6	c8	1，279，468	A／4	c8	40，336，371	c	c9	42，955，146 C／	G／G
cl	8，568，254 T / T	c／c	C2	8，05，111	c／c	c3	4， 36,473	6／G	${ }^{3}$	，630，333	I／T	C4	885，981	6／G	c5	209，220，	a／a	${ }^{6}$	4，315，922 A	6／G	C7	12，251，832 G／G	c／c	C8	1，279，477 T / T	c / c	c8	40，336，531	I／T	c9	42，955，	a／a
cl	8，658，4	I／T	C2	退， $4,784 \mathrm{6} / 6$	c／c	c3	，8， 392 I	6／6	${ }^{3}$	5，630，392 T／2	c / c	C4	39，886，084	A／A	cs	15，209，775 A / A	I／7	${ }^{6}$	4，739，896 A / A	I／T	C7	12，251，835 c／c	a／3	C8	1，279，504 6／6	A／A	c8	40，390，509 $/$／	G／G	c9	22，955，200 $/$／	c／c
C1	8，658，434 c／c	I／T	C2	9，246，694 A / A	6／6	c3	4，708，427 A／A	6／6	C3	51，926，687 A / A	6／6		39，920，355 G / G	c／c	cs	15，209，785 A / A	I／r	${ }^{6}$	4，749，751 T / T	A／A	C7	12，258，392 T／	c / c	C8	1，279，573 A／	6／6	c8	40，452，074	6／6	c9	42，95，257 T / T	c／c
Cl	8，742，500 c／c	I／T	C2	9，246，789 a / A	6／6	c3	4，714，786 $/$／a	6／6	${ }^{3}$	58，193，621 6／6	a／d	C4	39，920，430 $/ \mathrm{G}$	A／A	${ }^{5}$	15，209，844 A／4	6／G	${ }^{6} 6$	4，749，76 c／C	I／T	C7	12，283，411 A / A	6／6	c8	1，279，641 $/ 1 \mathrm{G}$	a／a	c8	40，452，090 $/ \mathrm{C}$	I／r	c9	42，96， $7173 \mathrm{a} / \mathrm{A}$	c／c
Cl	8，762，457 G／G	I／T	C2	9，246，793 c／c	a／4	c3	4，114，899 c／c	I／T	C3	58，250，115 a / A	6／6	C4	39，920，442 A / A	6／G	${ }^{5}$	15，47，607 c／c	A／A	${ }^{6}$	4，749，827 c／C	T／7	C7	12，887，513 a / A	c／c	C8	1，326，563 A／	6／6	c8	40，452，094 c	T／T	c9	42，983，756／／	G／G
C1	8，80， $2288 \mathrm{~A} / \mathrm{A}$	c / C	${ }^{2}$	246，880 c／c	a／A	c3	／14，871 1／8	I／r	${ }^{3}$	58，569，823／1／	6／G	C4	39，920，446 c／c	A／A	cs	15，571，194 A／4	6／G	${ }^{6}$	4，787，909 m / T	c / c	C7	12，887，550／／	6／6	C8	1，334，734c／c	I／r	c8	40，452，107 T／	／／a	c9	43，084，936 $/$／	6／G
C1	8，806，036 G／G	A／A	C2	9，246，996／G	A／A	c3	4，714，898 c／c	A／A	C3	58，569，824 T／T	a／a	C4	39，959，355 $/$／	6／G	cs	15，512，515 a / A	T／T	${ }^{6}$	5，144，183 I / T	a／a	C7	12，851，590 $/ 6$	a／4	C8	1，62，, $19 \mathrm{c} / \mathrm{c}$	6／6	c8	40，411，199 6／6	I／r	c9	3，084，988 6／6	a／a
C1	8，816，192 T / T	6／G	C2	，246，958 c／C	6／6	c3	4，751，032 c／c	I／T	${ }^{3}$	退，28，439	6／G	C4	39，968，323 $/$／7	d／G	${ }^{5}$	15，640，159 A／	c／c	${ }^{6}$	5，365，230 A / A	6／6	C7	12，851，603 $\mathrm{T} /$	c／c	C8	1，622，060／	a／A	c8	40，45，902 6	a／A	c9	43，185，898／／	6／G
Cl	8，972，169 G／G	A／A	C2	9，259，583 T / T	6／6	c3	4，766，337 c／c	1／4	${ }^{3}$	58，911，201 T / T	A／A	C4	39，968，362 I／T	6／G	${ }^{5}$	15，640，259 $/$／T	c／c	${ }^{6}$	5，398，858 T / T	c / c	C7	12，881，664 G／6	I／T	C8	1，857，001 ClC	6／6	c8	40，542，331 T / T	G／6	c9	43，196，362 c／c	I／T
Cl	9，051，366［／7	a／a	C2	9，259，833 c／c	I／T	c3	4，766，395 6／G	c / c	${ }^{3}$	59，219，713 A / A	c／c	C4	39，996，501 A／	6／6	${ }^{5}$	15，640，276 $/$／r	6／6	${ }^{6} 6$	5，448，269／／4	I／T	C7	13，320，274 T / T	c / c	C8	1，922，971 A / A	6／G	c8	40，542，346 $/$／2	c／c	c9	43，216，630 I / T	6／6
C1	9，36， $603 \mathrm{c} / \mathrm{c}$	T／T	C2	9，289，508 7／7	c / c	c3	4，790，800 c／c	I／T	c3	59，559，032 $/$／	I／T	C4	40，014，268 $/$／7	G／G	${ }^{5}$	15，693，875 G／G	T／T	${ }^{6}$	5，477，001 1／a	6／G	C7	13，409，186／T	c／c	C8	1，954，359 A／a	6／6	c8	40，552，903 T／	c／c	c9	43，216，717 C／C	a／a
C1	9，365，619 G／G	T／T	C^{2}	9，361，694 G／G	c / C	c3	4，799，307 A／a	I / T	c3	59，607，818 A / A	6／6		40，375，397 I / m	a／a	c5	15，69，074 A／A	6／6	${ }^{6}$	5，550，590 $/ \mathbf{1}$	6／6	C7	13，516，043 C / C	I／T	C8	1，954，389 T / m	a／8	c8	40，553，212 A / A	c／c	c9	43，25， 991 I ／／	a／a
Cl	9， $421,1413 \mathrm{G} / \mathrm{G}$	8／4	C2	9，364，014 I／7	c／c	c3	4，802，080／／c	I／7	c3	59，686，850 $/ \mathrm{A}$	6／6	c 4	40，375，424／6	I／7	${ }^{5}$	15，786，604 T / r	c／c	c6	5，550，644 c／c	I / T	C7	13，518，094 c／c	I／7	c8	1，954，401 1 ／h	c／c	c8	40，597，410 $6 / 6$	c／c	c9	43，296，019／／	c／c

[^0]
Appendix II Cont．

Table S2：Cont．：Differences in Allelic variants at various chromosomes positions in parent lines；the cultivated rapid cycling DHSL150 and C07060．

	9，489，962 c／c	r／r	C2	54，051 c／c	T／r	c3	T／T	／c	${ }^{\text {c3 }}$	59，23， 6	\％／r	c4	40，379，101 c／c	／r	c5	15，788，266 c／c	a／a	${ }^{\text {c6 }}$	5，63，507 A／A	6／6	${ }^{\text {c }}$	1，540，266		c8	1，960，191	r／r	c8	40，615，322 A／A			10，437 A／	
	9，490，001 A / A	c／c	c2	9，311，178／$/ \mathrm{c}$	I／T	${ }^{1}$		a／a		59，748	c／c	c4	40，413，160 I / T	6／6	c5	15，806，738 6／6	A／a	${ }^{6}$	5，73，719 A／A	6／6	a	13，651，810	T／T	，	1，994，897 A	6／6	${ }^{\text {c }}$	40，67，578 ז／	6／6	c9	3，310，532 I／	c／c
	9，511，838 A / A	T／r	c2		a／a	c3		a／a	c3		6／6	c4		A／a	c5	15，806，780 A / A	T／T	${ }^{\text {c6 }}$		A／A	${ }^{\text {c }}$		\％	c8		6／6	${ }^{\text {c8 }}$		r／T	c9		\％／6
	9，511，852 c／c	T／r	c2	9，391，994 A／A	6／6	c3	4，955，40	T／r	${ }^{\text {c3 }}$	60，099，187 c／c	T／T	c4	40，476，399 $\mathrm{a} /$	6／6	c5	15，888，505 T / T	c／c	${ }^{6}$	6，288，174	c／c	${ }^{\text {c }}$	13，870，555	6／6	c8	2，066，862 A	I／T	${ }^{\text {c8 }}$	40，73，214 c	I／T	c9	43，858，243 7／	a／a
	9，52，073 6／6	A／A	c^{2}	9，846，293 T / n	c／c	${ }^{\text {c }}$	5，066，086 c／c	T／r	${ }^{\text {c3 }}$	60，182，206 T／	c／c	${ }^{\text {c4 }}$	40，476，333 6／6	A／a	${ }^{\text {c5 }}$	15，904，375 7／3	6／6	${ }^{\text {c6 }}$	6，330，290 A／A	T／r	${ }^{\text {c7 }}$	13，870，606	c／c	c8	2，085，890 c	A／A	${ }^{\text {c }}$	40，780，307	A／a	c9	44，254，819 7／2	c／c
	9，524，37 A / A	6／6	c2	9，933，3	c／c	c3	5，066，088	6／6		60，189，670／／	c／c	c4	40，705，740 a／	6／6	${ }^{\text {c }}$	16，04， $858 \mathrm{~m} /$	A／a	c6	6，360，904 61	T／r	${ }^{\text {c7 }}$	13，912，769	a／a	－	2，085，999 T／	6／6	${ }^{\text {c }}$	40，780，310 I	，	－	44，359，776	T／r
	9，524，412	－	c2	10，079	d	c3	5，066	c／c	c3		T／r	c4		c／c	c5		c／c	${ }^{6}$	6，435	／a	${ }^{\text {c7 }}$		a／a	${ }^{8}$		\％／2	${ }^{\text {c }}$		c／c	c9		
	9，524，462	c／c	2	10，245，718	a／a	${ }^{\text {c }}$	5，067，999	6／6	c3	60，23， 906 a	6／6	c4	40，871，691 $\mathrm{A} /$	6／6	c5	16，10，469 c	T／T	c6	6，444，888	T／r	${ }^{\text {c7 }}$	13，926，285	6／6	c8	2，100，109	I／r	${ }^{\text {c }}$	40，875，431	A／a	c9	44，488，678 a	6／6
	9，638，680 6／6	T／r	c2	10，277，286／a	c／c	${ }^{\text {c }}$	5，070，201／	c／c	${ }^{\text {c3 }}$	60，474，786 6／6	c／c	c4	40，874，070 $\mathrm{a} /$	6／G	c5	16，105，4836／8	T／r	${ }^{\text {c6 }}$	6，445，442	r／r	${ }^{\text {c }}$	14，075，963	c／c	c8	2，113，590	6／6	${ }^{\text {c8 }}$	40，944，306	a／A	${ }^{\text {c }}$	44，488，887	a／a
	9，801，9919	6／6		10，277，22	T／2	c3	5，073，7	c／c	c3	60，518，901 A／	c／c	c4	40，87， 853 c	T／r	c5	16，24，592 I	6／6	${ }^{\text {c6 }}$	6，445，448	c／c	${ }^{\text {c }}$	14，278，053	T／7	c8	2，113，614	T／r	${ }^{\text {c8 }}$	40，939，92	c／c	${ }^{\text {c }}$	4，546，183	c／c
	10，181，30	6／6	c2	10，271，305 c／	A／4	${ }^{\text {c }}$	5，073，751	T／r		60，557，115 T	c／c	c4	41， $082,277 \mathrm{~A} /$	6／6	c5	16，247，603 T	c／c	${ }^{6}$	6，445，488	A／a	${ }^{\text {c7 }}$	14，278，064	a／a	c8	2，229，246	I／r	${ }^{\text {c }}$	40，944，425	A／a	c9	44，546，208 A	6／6
	10，294，107 I／T	A／A	${ }^{2}$	10，360，9386／6	c／c	${ }^{\text {c3 }}$	5，098，751 6／6	A／h	${ }^{\text {c3 }}$	60，557，177 cic	T／r	${ }^{\text {c }}$	$41,082,304 \mathrm{~T} / \mathrm{T}$	c／c	${ }^{\text {c5 }}$	16，248，743 $\mathrm{T} /$	c／c	${ }^{\text {c6 }}$	6，992，543 c	I／T	${ }^{\text {c7 }}$	14，637，668	A／A	${ }^{88}$	3，021，900	I／	${ }^{\text {c8 }}$	40，944，432	c／c	${ }^{\text {c9 }}$	44，59，4688	r／r
	10，512，076 c／C	T／r	${ }^{2}$	10，361，037 c／c	6／6	${ }^{\text {c }}$	5，098，830 6／	I／T		60，619，557 A／	6／6	c4	41，573，232 $\mathrm{I} /$	c／c	c5	16，292，336 T	A／a	${ }^{6}$	6，566，228	a／A	${ }^{\text {c }}$	16，947，925	c／c	${ }^{\text {c8 }}$	3，38， 306	A／A	${ }^{\text {c8 }}$	40，94，512	I／7	c9	44，850，124	c／c
	10，512	6／6	c2		a／4	${ }^{\text {c }}$		a／a	cor		d	c4			c5		c／c	c6		，	${ }^{\text {c }}$		\％／T	${ }^{\text {c8 }}$	3，373，	A／a	${ }^{\text {c8 }}$		A／4	c9		c／c
	10，512，136 c／	A／A	c2	10，392，722	I／T	${ }^{\text {c }}$	5，099，332 T	A／a	c3	60，61， 133 zr	c／c	c4	41，617，965 a／	6／6	${ }^{\text {c }}$	16，29， 4141 A	6／6	c6	6，118，530	a／A	${ }^{\text {c }}$	17，115，800	T／T	${ }^{\text {c8 }}$	3，412，352	I／r	${ }^{\text {c }}$	41，081，447	A／4	c9	44，984，162	
	10，543，999 6／6	A／A	${ }^{2}$	10，992，838	A／A	${ }^{\text {c }}$	5，099，356 A	6／6	${ }^{\text {c3 }}$	60，60， 707 G	A／4	${ }^{\text {c4 }}$	41，618，031 c / C	T／T	${ }^{\text {c5 }}$	16，32，442 c	T／r	${ }^{\text {c6 }}$	6，720，103	a／A	${ }^{\text {c }}$	17，134，765	c／c	c8	3，42， 9878	c／c	${ }^{\text {c8 }}$	41，089，700	T／T	c9	44，984，391	6／6
	10，584，62 T／	c／c		10，392，862	－	${ }^{\text {c }}$	5，099，369	c／c	${ }^{\text {c3 }}$	60，642，316 A／	T／r	${ }^{\text {c4 }}$	41，63， 206	A／	${ }^{\text {c5 }}$	16，32，，444 c	a／	${ }^{\text {c6 }}$	6，120，130	A／A	${ }^{\text {c7 }}$	17，295，485	T／7	c8	3，445，976 A	d	${ }^{\text {c8 }}$	41，089，766	a／a	${ }^{\text {c }}$	44，984，393	a／a
	10，595，145	\％／2	c2	10，400，922	c／c	${ }^{\text {c }}$	5，206，895	a／a	c3	60，642，501	c／c	c4	41，637，53	6／6	c5	16，321，481		${ }^{6}$	6，726，970	\％／r	${ }^{1}$	17，295，634	6／G	c8	3，545，00	c／c	${ }^{\text {c8 }}$	41，089，778	I／r	c9	45，143，	6／6
	10，595，148 6／6	a／a	C_{2}	10，58， $1010 \mathrm{G} /$	c／c	${ }^{\text {c }}$	5，206，918	I／r	${ }^{3}$	60，999，788	T／r	c4	41，707，163 I	c／c	cs	16，34，063 A	6／6	${ }^{6}$	6，931，401 c	T／r	${ }^{\text {c }}$	17，339，656	ז／T	c8	3，55，585	a／a	${ }^{\text {c8 }}$	41，101，119		${ }^{\text {c }}$	45，143，172	
	10，595，254 7／r	A／A	C_{2}	10，58， $661 \mathrm{c} /$	I／ธ	${ }^{\text {c }}$	5，22，470	6／6	${ }^{\text {c3 }}$	61，00，，588 c	T／r	c4	41， 1816,429 I／	c／c	cs	16，334，100 6／	ז／r	${ }^{\text {c6 }}$	7，044，936 6／	T／T	${ }^{\text {c }}$	17，449，193	\％	c8	3，55，441	A／A	c8	41，241，303	c／c	c9	5，143，199	c
	10，595，296	6／6	C_{2}	10，518，66	c／c	${ }^{\text {c }}$	5，230，181	a／a	${ }^{\text {c3 }}$	$61,001,074$	T／r	c4	41，816，471	c／c	c5	16，36， 8684 A		${ }^{6}$	7，091，182		${ }^{\text {c }}$	17，449，247	${ }^{6 / 6}$	c8	3，555，472	／	${ }^{\text {c8 }}$	41，241，993	I／r	c9	5，147，021	c／c
	10，595，494 C	I／r	C2	10，519，046	6／6	c3	5，230，202 6	a／a	${ }^{\text {c3 }}$	61，001，101	T／r	${ }^{\text {c4 }}$	41，816，471	6／6	cs	，431，763	6／6	${ }^{\text {c6 }}$	7，204，238 c	a／a	${ }^{\text {c7 }}$	17，482，582	ז／T	c8	3，555，516	I／r	${ }^{\text {c8 }}$	41，242，019	a／a	c9	55，222，015	6／6
	10，597，099 6	a／A	${ }^{2}$	10，676，298	T／r	${ }^{\text {c }}$	5，310，311 c／	1／4	${ }^{\text {c3 }}$	61，071，942 Cl	T／r	${ }^{\text {c }}$	41，839，863 T／	c／c	${ }^{\text {c5 }}$	16，678，896 6／7	T／r	${ }^{\text {c6 }}$	7，204，297 A	c／c	${ }^{\text {c }}$	18，323，602	A／A	c8	3，607，088	a／h	${ }^{\text {c }}$	41，242，081	6／6	${ }^{\text {c9 }}$	5，222，	
	10，597，23．	a／d	${ }^{2}$	10，757，838		${ }^{\text {c }}$	5，393，187 cic	T／r	${ }^{\text {c3 }}$	$61,011,972$	T／r	${ }^{\text {c }}$	$42,290,3$	A／A	${ }^{\text {c }}$	16，679，059 c	T／r	${ }^{\text {c6 }}$	1，204，		${ }^{\text {c }}$	18，389，	A／a	${ }^{\text {c8 }}$	3，648，252	A／A	${ }^{\text {c8 }}$	41，221， 88	6／6	c9	5，257，	I／r
	10，597，24	6／6	${ }^{2}$	11，092	I／r	c3	5，333，22	I／T	c3	61，071	T／r	${ }^{\text {c }}$	42,2	T／T	${ }^{\text {c }}$		A／A	${ }^{\text {c6 }}$	1，260，	c／c	${ }^{\text {c }}$	18，390	T／r	c8	3，698	c／c	${ }^{\text {c }}$	41，210	6／6	c9	45，262，021	a／a
	10，597，252	碞	${ }^{\text {c2 }}$	11，098，208	c／c	${ }^{\text {c3 }}$	5，525，794	c／c	${ }^{\text {c3 }}$	61，072，071 6	／${ }^{\text {／}}$	c4	42，422，052	A／	${ }^{\text {c5 }}$	16，812，585	6／6	${ }^{\text {c6 }}$	1，515，	6／6	${ }^{\text {c7 }}$	18，425，984			3，817，30	c／c	${ }^{\text {c8 }}$	41，396，963	a／3		5，304，	
	111，087，823	A／A	${ }^{\text {c2 }}$	11，122，009	硡	${ }^{\text {c3 }}$	5，526，018	A／A	${ }^{\text {c3 }}$	61，104，795	A／A	${ }^{\text {c }}$	42，508，207	A／／	${ }^{\text {c5 }}$	16，813，877	6／6	${ }^{\text {c6 }}$	1，544，192	a／a	${ }^{\text {c7 }}$	18，524，473	${ }^{\text {6／6 }}$	${ }^{\text {c8 }}$	3，817，304	A／／	${ }^{\text {c8 }}$	41，397，044		${ }^{\text {c9 }}$	5，522	
	11，101，901 6		${ }^{2}$	11，165，693	6／6	${ }^{\text {c }}$	5，52， 056	A／A	${ }^{\text {c3 }}$	61，104，807	T／r	${ }^{\text {c4 }}$	42，508，213	T／r	${ }^{\text {c }}$	16，867，642 c	6／6	${ }^{\text {c6 }}$	1，544，266	d	${ }^{\text {c7 }}$	18，524，508	A／a	c8	3，828，804		c8	41，419，201	6／6	${ }^{\text {c }}$	5，523，	析
	11，214，670	析	${ }^{2}$	11，294，944		${ }^{\text {c }}$	5，614，902	a／a	${ }^{\text {c }}$	$61,107,111$	T／r	${ }^{\text {c }}$	42，508，234	a／a	${ }^{\text {c }}$	16，867，64	c／c	${ }^{\text {c6 }}$	7，59，，142	a／a	${ }^{\text {c }}$	18，728，818	6／G	c8	3，854，86		${ }^{\text {c8 }}$	41，419，220	6／6	－	5，533，812	a／a
	11，216，197	6／G	${ }^{\text {c2 }}$	11，383，344		${ }^{\text {c }}$	5，658，031	T／r	${ }^{\text {c3 }}$	$61,107,139 \mathrm{~A}$	6／6	c4	42，508，327	c／c	${ }^{\text {c5 }}$	16，867， 338 A		${ }^{\text {c6 }}$	1，549，702		${ }^{\text {c }}$	18，728，953		c8	4，221，603 A	6／6	${ }^{\text {c }}$	41，546，990	a／a	c9	5，533，682	
	11，216，323	a／d	${ }^{\text {c2 }}$	11，383，423	6／6	c3	5，68，044	a／h	${ }^{\text {c3 }}$	61，107，162 6	a／a	c4	42，508，35	c／c	$\mathrm{cs}^{\text {c }}$	16，81，400 A	6／6	${ }^{6}$	7，599，766	c／c	${ }^{\text {c7 }}$	18，816，116	c／c	c8	4，40，，105	c／c	${ }^{\text {c8 }}$	41，547，016	a／a	c9	5，533，916	
	11，238，171	c／c	${ }^{\text {c2 }}$	11，38，43	a／a	${ }^{\text {c }}$	5，801，734	I／r	${ }^{\text {c3 }}$	$61,107,170$	a／a	${ }^{\text {c }}$	42,52	T／T	${ }^{\text {c }}$	1，178，870	A／a	${ }^{6}$	7，659，273	c／c	${ }^{\text {c }}$	18，816，170	\％／5	c8	4，401，	6／6	${ }^{\text {c8 }}$	41，547，018	a／a	c9	S59，	c／c
	11，40，542 C／	1／r	${ }^{2}$	11，387，857 c／c	a／a	${ }^{\text {c }}$	5，860，860 T	A／4	${ }^{\text {c3 }}$	$61,107,178 \mathrm{c}$	3／4	c4	42， $244,290 \mathrm{c} /$	a／a	${ }^{\text {c }}$	17，290，150 a／	6／6	${ }^{6}$	7，68，819	6／6	${ }^{\text {c }}$	19，344，240	ז／	c8	4，492，855	c／c	${ }^{\text {c8 }}$	41，50，155	6／6	c9	4，567，483	G／6
	11，461，633 $\mathrm{c} /$	A／A	${ }^{2}$	11，387，873 c	I／r	${ }^{\text {c }}$	5，861，367 A	6／6	${ }^{\text {c3 }}$	61，149，961 6	A／A	${ }^{\text {c }}$	42，946，221 I	c／c	${ }^{\text {c5 }}$	17，290，180 A	，	${ }^{\text {c6 }}$	7，687，828	，	${ }^{\text {c7 }}$	19，344，256	析	c8	4，61， 5 ，55	A／A	${ }^{\text {c }}$	41，643，297	A／4	c9	5，567，	
	11，461，22	a／d	c^{2}	11，37，8	I／n	c3	5，88，，54	6／6	${ }^{\text {c3 }}$	61，149，997	A／A	c4	42，946，324	T／T	${ }^{\text {c5 }}$	17，294，314	c／c	${ }^{\text {c6 }}$	1，687，	a／A	－	19，345，913	c／c	c8	4，619，582	d	${ }^{\text {c8 }}$	41，645，60	，	c	5，567，	6／6
	11，467，939	I／T	c_{2}	11，388，	I／T	${ }^{\text {c }}$	5，94，	cra	${ }^{\text {c3 }}$	61，191，	A／4	c4	42,9	c／c	${ }^{\text {c }}$	17，2	T／T	${ }^{\text {c6 }}$	7.81	a／d	${ }^{\text {c7 }}$	19，366，078	6／6	c8	4，783	c／c	${ }^{\text {c8 }}$	41，	I／T	c9	5，567，	t／r
	11，505，628	I／T	${ }^{2}$	11，478，240	6／6	${ }^{\text {c3 }}$	6，132，319	6／6	${ }^{\text {c3 }}$	61，192，696	A／A	C4	42，956，988	c／c	c5	17，299，087	T／T	${ }^{\text {c6 }}$	7，887，	a／a	${ }^{\text {c }}$	19，560，283	A／a	c8	4，783，	A／A	${ }^{\text {c8 }}$	${ }_{41,655,61}$	6／6	c9	5，567	
	11，517，36 A	1／2	c2	11，635，593	c／c	c3	6，132，324	6／6	${ }^{\text {c3 }}$	$61,192,76 \mathrm{a}$	6／6	c4	$43,072,924 \mathrm{~A}$	c／c	${ }^{\text {c5 }}$	17，46，210 6	T／r	${ }^{\text {c6 }}$	7，884，030	6／6	${ }^{\text {c }}$	19，996，043	ז／T	c8	4，823，841	T／T	${ }^{\text {c8 }}$	41，652，026	A／4	${ }^{\text {c9 }}$	5，568，	
	11，651，046	a／h	C_{2}	11，635，	c／c	${ }^{\text {c }}$	6，156，226	6／6	${ }^{\text {c3 }}$	61，192，7	c／c	c4	43，073，120	c／c	${ }^{\text {c }}$	17，469，252	I／r	${ }^{\text {c6 }}$	1，915，622	a／a	${ }^{\text {c }}$	19，996，045	a／a	c8	4，825，741	a／d	c8	41，652，035	I／r	c9	5，617，106	T／r
	11，651，59 c／	1／r	C2	11，635，78 a	d	c3	6，15， 2229	a／a	${ }^{\text {c3 }}$	$61,195,185$	1／4	c4	$43,073,150 \mathrm{~A}$	－	${ }^{\text {c }}$	17，47，370 A	6／6	${ }^{6}$	，915，737	a／a	${ }^{\text {c }}$	20，004，949		c	4，830，624	I／r	c8	41，652，120	－	c9	5，658，061	䢒
	11，651，121 1	硡	C	11，636，542	A／	${ }^{\text {c }}$	6，187，877	ch	${ }^{\text {c3 }}$	61，297，306 A	T／r	c4	$43,111,105 \mathrm{a}$	－	${ }^{\text {c5 }}$	17，470，400 A	，	${ }^{\text {c6 }}$	8，103，108 c	a／A	${ }^{\text {c7 }}$	20，663，792	析	${ }^{\text {c8 }}$	4，83， 8677	硡	${ }^{\text {c8 }}$	$41,655,224$	析	${ }^{\text {c9 }}$	5，088，019	
	11，656，121	c／c	${ }^{\text {c2 }}$	11，707，860	T／2	${ }^{\text {c3 }}$	$6,220,560 \mathrm{c}$	A／h	${ }^{\text {c3 }}$	61，297，358 cic	T／r	${ }^{\text {c }}$	43，268，284 I	c／c	${ }^{\text {c5 }}$	17，470， 224 A	c／c	${ }^{\text {c6 }}$	8，295，437	a／h	${ }^{\text {c7 }}$	20，736，703	T／T	${ }^{\text {c8 }}$	4，83，916	T／n	${ }^{\text {c8 }}$	41，611，138	6／6	${ }^{\text {c9 }}$	5，658，1336／	a／a
${ }^{1}$	11，660，366	I／r	${ }^{2}$	11，707，971	a／a	${ }^{\text {c }}$	6，274，080	T／r	${ }^{\text {c3 }}$	61，34，3	6／6	${ }^{\text {c4 }}$	43， 33 ，	A／4	${ }^{\text {c5 }}$	17，496，	T／r	${ }^{\text {c6 }}$	8，337，	${ }^{\text {c／c }}$	${ }^{\text {c7 }}$	20，737	c／c	c8	4，836	T／T	${ }^{\text {c8 }}$	41	T／r	${ }^{9}$	5，698，957 A／	T／r
	11，66，365 cic	左	${ }^{\text {c2 }}$	11，701，994	－	c3	6，274，098	，	${ }^{\text {c3 }}$	$61,304,222$	c／c	${ }^{\text {c4 }}$	43，45，916	c／c	${ }^{\text {c5 }}$	17，525，65	，	${ }^{\text {c6 }}$	8，35，904		${ }^{\text {c7 }}$	21，271，174	析	c8	5，711，646	c／c	${ }^{\text {c }}$	41，701，994	c／c	${ }^{\text {c9 }}$	5，808，87	
	11，705，934 6／	A／A	${ }^{\text {c2 }}$	11，708，0	c／c	c3	6，295，940	6／6	${ }^{\text {c3 }}$	61，304，433	6／6	${ }^{\text {c4 }}$	43，455，955	A／a	${ }^{\text {c5 }}$	17，525，669	c／c	${ }^{\text {c6 }}$	8，411，079	6／6	${ }^{\text {c }}$	22，380，350		c8	5，251，823	A／a	${ }^{\text {c }}$	41，709，890	\％	c9		
	11，72， 3111 c	a／a	${ }^{2}$	11，717，6	6／6	${ }^{\text {c }}$	6，295，9	6／6	${ }^{\text {c3 }}$	61，321，750	6／6	${ }^{\text {c4 }}$	43，584，629	A／a	${ }^{\text {c5 }}$	17，527，946	T／r	${ }^{\text {c6 }}$	8，62，042	A／A	${ }^{\text {c7 }}$	22，438，663	cand	c8	5，257，882	6／6	${ }^{\text {c }}$	41，712，171	6／6	c9	5，810，186	
	11，724，526	6／6	c2	11，117，6	c／c	c3	6，295，9	c／c	${ }^{\text {c3 }}$	61，401，492	c／c	c4	43，741，629	T／T	c5	17，796，05	6／6	${ }^{\text {c6 }}$	8，64， 860	I／T	${ }^{1}$	22，420，	，	c8	5，268，74	\％	－	256，373	－	－	$46,066,238$	／6
	11，740，874 c／0	d	c2	11，717，730 c／	，	${ }^{\text {c }}$	6，302，288	A／h	${ }^{\text {c3 }}$	61，48，209 61	T／r	c4	44，04，546 T	6／6	c5	18，52，709 6	A／h	${ }^{6}$	8，683，188 A	／rs	${ }^{\text {c }}$	22，514，576	，	c8	5，31，595	$1 /$	c9	257，657	6	c9	46，066，253	
	11，746，731	3／a	${ }^{2}$	11，718，711	6／6	${ }^{\text {c }}$	6，317，642	I／r	${ }^{\text {c3 }}$	$61,480,231$	c／c	c4	44，04， 659 A	6／6	${ }^{\text {c }}$	18，92， 888 s	T／r	${ }^{6}$	8，69，645	6／6	${ }^{\text {c }}$	22，688，589	6／6	c8	5，348，352	a／a	c9	267，449	a／a	c9	6，066，360	A
	11，746，737	I／r	c2	11，718，876	c／c	c3	6，31，530	a／a	${ }^{\text {c3 }}$	$61,881,193$	6／6	c4	44，011，034	c／c	${ }^{\text {c }}$	19，014，684	c／c	${ }^{6}$	8，756，897	a／A	${ }^{\text {c }}$	23，588，286	c／c	c8	5，348，499		c9	267，522	6／6	c9	46，106，419 A	c／c
	11，769，213	c／c	C_{2}	11，869，33 a	dras	c3	6，319，557	6／6	${ }^{\text {c3 }}$	61，481，212	a／a	c4	44，01，，40 0	A／4	${ }^{\text {c }}$	19，016，118 T	d	${ }^{6}$	8，880，045	／n	${ }^{\text {c }}$	23，591，150	ז／T	c8	5，348，540	I／r	c9	271，299	c／c	c	46，106，433 a／	6／6
	11，789，216 T／7	c／c	${ }^{\text {c2 }}$	11，902，416	T／2	${ }^{\text {c3 }}$	6，319，565	A／h	${ }^{\text {c3 }}$	$61,481,245 \mathrm{~T}$	A／4	${ }^{\text {c }}$	44，011，053	1／4	${ }^{c}$	19，170，784 c／a	6／6	${ }^{\text {c6 }}$	8，888，512 6／6	A／A	${ }^{\text {c7 }}$	23，615，590	A／A	c8	5，443，1936	a／a	c9	274，429	6／6		46，106，119	
	11，78，267 A／d	T／r	${ }^{2}$	11，913，254	6／6	c3	6，320，005 C	I／r	${ }^{\text {c3 }}$	62，94，637 m	3／4	c4	44，011，199 C	6／6	c^{5}	19，170，850 a／	c／c	${ }^{6}$	8，905，631 c／c	I／T	${ }^{\text {c }}$	23，675，744	6／6	c8	5，45，472 A	6／6	c9	274，442	I／ז	c9	46，106，758 7	c／c
	11，806，15	a／a	c_{2}	11，913，	－	${ }^{\text {c }}$		a／a		62,1	c／c	c4		c／c	${ }^{\text {c }}$	19，195，966／／	6／6	${ }^{6}$		c／c	${ }^{\text {c }}$			c8		6／6	c9		I／r	c9	46，188，140／／	
	11，811，433 6	／a	C2	11，913，388	6／6	${ }^{\text {c }}$	6，32，，388	I／	${ }^{\text {c3 }}$	62，108，980	c／c	c4	44，06，365 A	d	c5	19，844，021	A／a	${ }^{6}$	8，999，064	A／A	c7	23，801，219		c8	5，467，134	A／A	c9	288，700	I／T	c9	66，158，	
	11，811，470 c	6／6	${ }^{2}$	12，40， 735 a	6／6	c3	6，321，289	a／A	${ }^{\text {c3 }}$	62，197，384 6	A／A	${ }^{\text {c4 }}$	44，081，433 I	A／	${ }^{\text {c5 }}$	9，927，241	c／c	${ }^{\text {c6 }}$	8，983，521	a／a	${ }^{\text {c }}$	23，939，702	c／c	c8	5，467，878	c／c	c9	316，11	1	c9	6，158	
	12，585，235	c／c	${ }^{2}$	12，404，786		c3	6，340，116	a／a	${ }^{\text {c3 }}$	62，22， 5174	A／4	c4	44，244，533		cs	20，108，576		co	㖪		c7	23，951，6		c8		A／A	c9		6／6	c9		
	${ }_{\text {12，} 587,166}$	I／r		12，452， 74	A／a	${ }^{\text {c3 }}$	6，369，187	T／r	${ }_{\text {c }}$	62，235，294	c／c	，	44，422， $357 \mathrm{~A} / \mathrm{A}$	6／6	${ }^{\text {c }}$	20，113，619	T／r	${ }^{6}$	${ }_{8,985,992 \mathrm{~A}}$	碞	${ }^{\text {c }}$	23，956，016	c／c	－	5，640，627	6／6	c9	${ }_{336,222}$	A／a	c9	46，329，31	

 chromosomes．

Appendix II Cont.
Table S2: Cont. : Differences in Allelic variants at various chromosomes positions in parent lines; the cultivated rapid cycling DHSL150 and C07060.

chromosomes

Appendix II Cont.

Table S2: Cont. : Differences in Allelic variants at various chromosomes positions in parent lines; the cultivated rapid cycling DHSL150 and C07060

18,820,281 $/$ /C	T/T		14,949,115 //C	A/4	c3	7,926,048 8/a	c/c	c3	64,843,534 C/C	I/T	C4	46,982,241 6/6	d/A	c5	22,689,139 G/6	d/a	${ }^{6} 6$	12,331,670 I / T	c/c	C	28,086,085 c/c	T/1	C8	9,86, $662 \mathrm{~T} / \mathrm{T}$	c/c	c9	1,693,283 6/G	a/d		48,263,502 $6 / \mathrm{G}$	A/A
18,820,313 C/C	6/G	C2	15,108,804 7/	c/c	c3	1,926,057 c/c	6/G	c3		c/c	C4		T/T	c5	22,855,911 C/C	1/A	c6	13,052,175 6/6	I/7	C		6/G	C8		c / C	c9	1,719,708 $\mathrm{T} /$	c/c		48,282,752 C/C	G/G
18,874,538 G/6	a/4	C2	15,10	I/7	c3		I/T	c3	64,860,	a/A	C4		A/A	c5		/c	c6	13,052,205 $\mathrm{A} /$	c/a	C			C8	9,920, $332 \mathrm{~A} / \mathrm{L}$	6/6	c9		a/d		48,282,899 A/	c
18,874,561 1/T	c/c	C2	15,108,903 /	6/G	c3	1,942,296 a/d		C4	27,432 6/	a/4	C4	47,344,949 a/	6/6	c5	2, 2 ,	/7/	${ }^{6}$		a/a	C7	20,851,275		C8	10,314,816 6/			1,4,4,512		c		a/a
18,898,227 G/6	a/4	C2	15,327,513 A / A	6/6	c3	1,942,322 A/4		c	199,266 I/	6/6	c4	47,484,010 C/		c5	22,855,961	A/A	${ }^{6}$	13,237,487 G7	a/4	c7	28,851, 281 /	G/G	c8	10,314,864 A		c9	1,798,887 c		c	88,516,429	c/c
18,969,935 c/c	a/4	C2	16,03,	6/G	c3	7,942,339 $/$ /	6/6	C4	19,569 G/6	c/c	c4	47,484,156 A / A		cs	22,860,033 a/	6/G	c6	13,237,507 T/	c/c	C7	28,851,380 A/4	6/G	C8	10,533,030 $/$	6/6	c9	1,798,396 I/	c / C	c9	48,516,432 A/	
18,971,174 A/4	c/C	C2	16,338,856 //T	c/c	c3	7,942,410 $/$ /r	c/c	C4	504,584 T / T	a/A	C4	47,484,195 $/ 6$	a/a	c5	22,864,351 G/G	I/T	c6	13,237,617 $/$ /	6/G	C7	29,179,574 $/$	a/4	C8	10,533,049 6/6	c/c	c9	1,802,799 A / A	I/T	c9	48,520,429 m / I	c/c
19,085,549 $/ \mathrm{A}$	T/7	C2	16,338,871 / /	c/c	c3	1,959,361 $6 / 6$	A/A	C4	650,967 A/A	6/G	C4	47,484,268 //	c/c	c5	22,864,317 A/A	6/G	c6	13,502,210 G/6	A/A	C7	29,179,575 c/	T/7	C8	10,542,362 G/G	I/2	c9	1,803,866 c/C	a/4	c9	48,520,487 G/6	c
19,	6/G	C2	16,	6/G	c3	8,041,912 G/6	T/2	C4	651,022 A/A	6/G	C4	47,510,906 c/c	a/a	c5	22,811,865 c/c	T/T	c6	13,544,449 G/6	c/c	C7	29,188,333 6/6	T/1	C8	10,616,709 A/	6/6	c9	1,876,103 A/	6/G	c9	48,520,495 G/6	a/a
19,131,832 A / A	6/6	C2	16,342,924 G/G	a/4	c3	$8,551,024 \mathrm{~T} / \mathrm{T}$		c4	193,456 G/6	A/A	c4	47,631,477 A / A	6/6	cs	22,945,117 T		${ }^{6} 6$	14,017,162 G/G	d/A	1	29,188,341 C/		C8	10,855,615 $/$	G	c9	1,881,32 ${ }^{\text {a/ }}$	G/0		8,520,538 C/	
19,131,838 G/6	T/T	C2	16,3	T/T	c3	8,151,066 A / A	6/G	C4	464 A/	T/7	C4	47,631,510 $/$	c	c5	22,947, 889 al	c/c	${ }^{6}$	14,039, $734 \mathrm{c/7}$		C7	29,188,363		c8	10,855,681 1	c/c	c9	1,915,146/	a/d		,334,132 G	A/A
19,146,597 A/	6/G	C2	16,34,	c/c	c3	8,206,956 $6 / \mathrm{C}$	A/A	C4	3,595	c	C4	, 100	6/6	cs	22,960,109 7	c	c6	14,039,770 I/	$6 / 6$	C7	29,212,254		C8	10,855,692 T/	c/a	c9	1,915,745 T/			595,825	
1, 146	a/A	C2	16,44,	I/T	c3	8,686,324 G/6	a/A	c4	693,623 A/	I/T	c4	47,776,313 $/$	a/a	cs	22,912,288 A/	6/G	c6	14,054,298 C/C	6/6	7	29,275,116		c8	10,855,194 c/		c9	2,099,411	c/c	c9	48,595,827 A	
46,	T/R	C2	16,472,455 c/C	A/4	C3	8,693,826 A/A	c / c	C4	693,627 A/A	6/G	C4	47,717,792 A/4	6/G	cs	22,978,933 $/$ /	c/c	c6	14,054,302 $/ 1 /$	6/6	C7	29,275,127 A/		C8	10,936,128	c/c	c9	2,099,460 G/	a/d	c9	48,760,563 T/	
19,158,373 A / A	T/17	C2	16,610,522 A / A	I/T	C3	8,876,369/c	I/T	c4	694,016 $6 / \mathrm{G}$	c/c	c4	47,718,803 7/2	c/c	${ }^{5}$	22,978,968 //	6/G	${ }^{6}$	14,349,148 8/4	c	C7	29,275,235 a / d	G/G	C8	11,102,535 /	6/6	c9	2,099,559 $\mathrm{T} /$	c/c	c9	48,760,581 //	
19,186,631 1/T	6/6	C2	16,76	c / c	C3	8,876,312 c/c	6/6	c4	1,354,904 A/A	6/6	C4	47,779,078 6/6	r/T	cs	22,990,459 $/$ /	c/c	c6	14,349,215 T / T	c/c	C7	29,275,282 G/	A/A	C8	11,141,461 G / G	a/A	c9	2,119,396 c/	T/2	c9	48,782,476 A/L	6/G
86,6	A/4	C2	16,851,25	6/G	C3	8,883,9	a/A	c4	9,488	G/G	C4	47,899,315 c/	r/T	cs	22,990,462 c/c	r/T	c6	14,403,413 $/$ /	I/T	C7	29,280,478	6/G	C8	11,141,647 A / A	6/6	c9	2126,	6/6	c9	48,820,416 T/	6/G
19,	1/4	C2	16,85	a/4	C3	9,317	6/6	C4	1,569,461 A / A	I/T	C4	47,899,420 c/c	6/G	cs	23,120, $852 \mathrm{~A} / \mathrm{A}$	6/G	c6	14,437, 323 c/6	I/7	C7	343,016	r/3	C8	11,155,615 G/6	a/A	c9	2,127,200 G/	c/c	c9	8,857,017 C/	r/T
19,192,940 c/c	A/A	C2	16,8	6/G	c3	9,318,129 c/6	a/A	c4	1,621,409 A / A	G/G	C4	47,988,478 6/6	r/T	c5	23,120,862 c/c	I/T	c6	14,438,203 G/6	c/c	C7	29,382,544 A	c/c	c8	11,182,445 T	a/d	c9	,183,903 a/	r/T		4,868,167 6	A/A
19,225,050 c/c	a/A	c2	16,851,473 A/	c/c	c3	9,318,132 T / T	/c	C4	1,655,059 c/c	//	C4	47,948,887 $/$ /	/G	cs	23,205,916 G/6	d/a	c6	,455,232 $\mathrm{A} /$		C7	29,41,173		c8	11,476,781 T			292,004 A			,868,2136	A/2
19,225,052 I / T	a/a	C2	16,853,120 A / h	c / c	c3	9,360,699 $/$ /	6/G	c	1,695,981 G/G	//A	C4	48,098,581 $6 /$	d/A	cs	23,273,201 G/G	r/T	${ }^{6}$	14,446,981 $/$ //		C7	29,837,871 C/	6/a	c8	11,572,514	cocc	c9	2,304,505 $6 /$	c/a		900,593 G	
19,334,165 A / A	c/c	C2	16,994,975 cic	r/T	c3	9,38	I/T	C 4	1,772,665 $\mathrm{T} /$		c4	48,170,826 c/	G/G	c5	23,274,315 G / G	A/A	c6	14,466,995 $\mathrm{a/}$	/c	C7	29,888,537	c/a	c8	11,573,225 6	a/4	c9	2,430,734 T/	a/h		909,596	6/6
19,427,234 T/T	c/c	C2	16,99	c/c	c3	9,467,102	6/6	C4	1,712,667 G	c/c	C4	48,170	6/G	c5	,355	c/c	c6	497,180	6/6	C7	,212,798	6/9	C8	1,622,	c/a	c9	2,481,085			8,909,705	A/A
19,496,756	c/c	C2	16,98	6/G	c3	9,467,222	A/A	c4	1,824,02	a/A	c4	110	/6	c5	3,400,445		${ }_{6} 6$	14,497,159 G/		C7	30,27, 892		c8	11,820,642	c	c9	281,	G/6	9	, 85,4086	a/a
21,159,895 a / A	T/r	C2	16,988,625 $/$	c	c3	9,467,253 $/ \mathrm{A}$		c4	1,824,065	16	c 4	48,181,006 C/C		cs	23,438,994 $/$	c	c6	15,770,888 $\mathrm{m} /$	\%	C7	30,274,913 a / d	G	C8	11,8	a/4	c9	, 491,008	/c	c9	48,952,429 A/	c/c
21,159,888 c/c	I/r	C2	16,998,636 c/	a/4	C3	9,527,888 c/c	I/T	C4	1,82,, $011 \mathrm{G} / \mathrm{G}$	a/A	c4	48,183,914 T/7	c	cs	23,498,203 A / A	c/c	c6	16,422,776 $\mathrm{T} /$	A/A	C	30,276,319 m/	cor	c8	11,886,847	a/A	c9	2,516,240 a/	6/6	c9	48,952,439 c	I/T
21,235,067 A/	I/r	C2	17,044,040 $/$	I/T	c3	9,527,986 G/6	I/T	c4	1,824,088 c/c	I/T	c4	48,199,496 $/$ /	6/G	cs	23,858,245 $/ \mathrm{T}$	6/6	c6	16,803,664 T/	a/4	C7	30,363,990 $/$ /	6/6	C8	11,918,426 A / L	6/6	c9	2,516,311 c/	T/2	c9	19,002,800 G/6	I/T
$21,235,104 \mathrm{~A} / \mathrm{A}$	6/6	C2	17,044,043 //	I/T	c3	9,551,488 c/c	T/T	c 4	2,012,180 $/$ /	8/4	c4	48,200,823 //	6/G	cs	2,892,817 7/1	A/A	c6	16,821,537 $/$ /2	c/c	C7	30,373,325 c/	I/1	C8	11,958,099 a/	6/G	c9	2,682,128 A/	T/2	c9	,098,183 G/	a/a
21,244,075 6/6	$\mathrm{T}^{1 / \mathrm{T}}$	C2	17,066,430 //	c/c	c3	9,551,513 //1	r/T	C4	2,033,285 A / A	6/G	c 4	48,235,393 c / c	6/G	cs	23,953,073 c/c	G/G	${ }^{6}$	6,821,652 A / L	c/c	C7	30,373,330 G/	a/4	C8	11,958,126 c/	T/7	c9	2,712,281 G/	a/4	c9	,123,435 6	
21,241,096 $/$ /	c / c	C2	17,206,879 / /	I/T	c3	9,551,595 //	I/T	c4	2,033,372 6	a/d	c4	48,237,288 $/ \mathrm{c}$	A/A	cs	, 78,	6/6	${ }^{6}$	16,888,854 G/	c	C7	30,520,133	a/4	C8	1258,134	I/T	c9	2,717,082 A	cos		,123,459	
21,244,182 G/G	1/4	C2	17,26	I/T	c3	9,576,15		c	2,033,577 c/c		c4	,237,23		c5	,985,832 $/ 6$	/r	${ }_{6}$			C7	520,162		C8	12,002,883			2,78, 388			123,462	
2244,120	T/7	C2	17,20,	c/c	c3	9,647,110	a/A	c	2,041,788	/6	c4	48,295,366		${ }^{5}$,995	a/4	c6	1,009,		C7	30,581,959		C8	12,007,39 A		9	266,			26	
2,49,	c / C	C2	17,262	r/T	c3	9,647,13	c/c	c4	,41,8,	c	c4	,350,	/1/	${ }^{5}$,995,	发	c 6	17,009,598		C7	30,581,962		C8	12,00,4	c/c	c9	,,902,063			9,130,930	
21,499,815 c/c	T/7	C2	17,277,306 A/A	6/G	c3	9,650,987 G/6	a/4	c4	, 80,58	6/G	c4	48,378,736	$6 / 6$	${ }^{5}$,998,051	c	${ }^{6}$,128,509	/6	C7	30,605,46		C8	12,091,	c	c9	220,		c9	9,130,954 A	6/G
,499,	I/T	C2	17,271,42	a/4	c3	9,652,78	a/A	c4	2,326,724 T/	6/G	c4	,532,715	A/A	c5	, 1885	a/A	${ }^{6}$	17,183,202	c	C7	605,858	c/	C8	12,100,	c/c	c9	,051,	I/2	c9	9,130,966	6/6
1,499,959	6/G	C2	17,271,440 1	c / c	c3	,996,463 c	6/6	C4		I/T	c4	48,532,766 //	/G	c5	2,085,399	a/a	${ }^{6}$	17,183,231	c/c	C7	30,60,895	c/c	C8	12,109,504 A/	I/T	c9	1,051,305	a/4	c9	9,134,358	6/6
21,567,883 G/6	a/4	C2	17,569,005	c / c	c3	9,753,739	c/c	C4	,486,740 c/c	I/r	c4	48,533,134 6/6	//A	cs	2,159,653 $\mathrm{I} /$	G/G	c6	17,292,243	c/c	C7	30,63,971 6	a/a	C8	12,150,751 6/	a/4	c9	3,088,721	c/c	c9	,134,406 C	I/T
, $622,861 \mathrm{~A} / \mathrm{d}$	6/6	C2	17,569,910 a/	I/T	c3	9,155,754 6	a/d	C4	,16,882	c/c	C4	48,533,248 6/6	a/a	c5	,159,668 8/4	c/c	c6	17,300,154 G/	c/c	C7	30,63,974 A	6/6	C8	12,38,396 c/	I/T	c9	3,088,745	6/6	c9	,134,417	a/4
21,647,501/2	a/a	C2	17,574,930 A	I/T	c3	,55,83	a/a	C4	,	I/r	c4	48,549,015	G/G	${ }^{5}$	24,242,243	I/T	${ }^{6}$	1363,0036/	A/A	C7	30,60, 12	c/c	C8	12,36, 605	6/G	c9	,088,751	c/c	c9	135,202	A/A
21,041,535	6/6	C2	17,574,932	c/c	c3	, 75,9	1/4	C4	,217,009 1	c/c	C4	48,549,034 T/	c/c	c5	,242,217	I/r	c6	1,363,168 1	r/ص	C7	30,622,875 $/$	6/G	c8	12,368,997	I/T	c9	,088,859	6/6	c9	退138,874	T/7
21,647,817 A / A	6/G	C2	17,179,534	A/4	c3	9,817,87	\%	4	2,617,683 G/6	a/4	C4	48,716,392	I/T	c5	2, $2122,382 \mathrm{~T} /$	a/a	${ }^{6}$	17,33,160 G6	I/7	C7	30,833,616	,	C8	12,391,364	6/6	c9	98,886	G/6	c9	38,871	a/a
21,649,915 c	6/G	C2	17,786,422 A	6/6	c3	9,819,958 A/	6/6	c	2, $, 34,213$	I/T	c4	48,116,401 7/	a/ 1	cs	24,253,284 A/A	6/G	${ }^{6}$	17,535,769 G/6	a/a	C7	30,887,359 I/	6/6	c8	12,391,373 6/	c / C	c9	3,199,009 $\mathrm{T} /$	1/a	c9	9,138,889 C1	a/a
2,588,489 G/G	a/a	C2	11,791,3919/4	6/6	c3	9,896,712 T / T	6/6	C4	2,787,57 G/6	A/a	C4	48,116,431 $/ \mathrm{C}$	a/A	c5	, 25, $213 \mathrm{c} / \mathrm{c}$	I/7	c6	17,618,809 G/6	a/3	C7	30,85,030 C/		C8	12,391, $380 \mathrm{c} / \mathrm{c}$	6/G	c9	3,367,023 ${ }^{\text {a/ }}$	6/6	c9	9,152,896 c/	r/T
21,678,664 T/T	c/c		17,791,976 T / T	c/c	c3	9,898,299 T / T	A/4	c4	2,787,632 A	6/G	c4	48,887,192 A / A	c/c	${ }^{5}$	24,330,955 //	c / C	c6	17,618,824 6/6	1/A	C7	30,857,055 $/$ /2	c / c	c8	12,403,097 6/	a/A		3,367,059 $/$ /	6/6	c9	49,229,014	

 chromosomes.

Appendix II Cont．

Table S2：Cont．：Differences in Allelic variants at various chromosomes positions in parent lines；the cultivated rapid cycling DHSL150 and C07060．

cl	21，678，746 A／ A	T／T	c2	17，792，083 6／6	c／c	${ }^{\text {c3 }}$	9，89，580 I／T	c／c	c4	2，879，915 6／6	c／c	c4	48，899，984 A／A	6／6	c5	2，345，711 c／c	T／T	c6	17，681，265	c／c	c7	30，857，076 A／A	c／c	c8	12，403，114 A／2	T／T	c9	3，367，074 A／d	6／G	c9	，30，395 $\mathrm{T} /$	
c1	21，68，967 T／7	c／c	c2	18，300，245 c／c	T／T	c3	9，94， $110 \mathrm{c} / \mathrm{c}$	ז／T	c4	2，879，920 $/$／7	c／c	${ }^{4} 4$	48，929，920 c／c	I／T	${ }^{\text {c5 }}$	24，345，716 r / r	6／6	${ }^{\text {c6 }}$	17，681，454 6／	A／A	${ }^{\text {c }}$	31，022，187 6／6	T／T	c8	12，407，509 C／	ז／T	c9	3，378，5076／	A／A	c9	9，245，582	
	21，680，940 c／c	T／7	c2	18，388，509 6／6	c／	c3	9，944，122 $1 / 2$	a／h	c 4	2，893，974 T / T	A／A	c4	49，061，073 A／A	6／6	c5	24，387，628 I／7	c／c	c6	17，681，563 6	a／a	${ }^{7}$	31，041，72	r／T	c8	12，423，569	a／a	c9	3，378，518 6	A／A	c9	49，261，829 c	A／4
c1	21，680，952 c／C	I／7	c2	18，388，544／Tr	c／c	c3	9，980，664 c／	I／T	c 4	2，894，531 A / A	T／r	c4	49，061，077 c／c	T／r	${ }^{5}$	24，387，637 $\mathrm{C} /$	6／6	c6	17， 1212,857	6／6	${ }^{1}$	31，041，835	6／6	c8	12，492，728 c	a／a	c9	3，389，36	A／A	c9	49，261，838	c／c
c1	21，713，5936／6	a／a	c2	18，506，749／／	6／6	c3	10，325，406 $/$	I／7	c 4	2，894，588 6／9	a／A	C4	49，06，103 $\mathrm{T} /$	c／c	c5	24，43，6816／9	a／4	${ }^{6}$	17，888，658 a／	T／r	${ }^{7}$	31，98，453 6	A／A	c8	12，517，097	6／G	c9	3，43，138	c／c	c9	9，377，551	r／r
c1	21，978，966 $/ \mathrm{T}$	c／c	c2	18，506，750 T／	A／4	c3	10，418，778 c／	A／A	c4	2，946，035 c／C	A／A	c4	49，153，871 c／c	T／r	c5	24，433，979 6／6	A／4	c6	17，808，667 A／	T／T	${ }^{1}$	32，46， 1356	T／T	c8	12，579，422 c	T／r	－	3，434，171 6	a／a	c9	49，33，159	c／c
${ }^{1}$	21，978，970 A／	6／6	c2	18，508，867 A／A	T／T	c3	10，418，779 T／	c／c	c4	2，949，735 6／6	A／A	c4	49，153，874 A／A	6／6	c5	24，521，882 A／A	6／6	c6	17，830，129 T／	6／6	${ }^{1}$	32，46， $3636 \mathrm{C} /$	／	c8	12，612，132	a／A	c9	3，43， 180 C	6／6		9，474，336	a／a
c1	22，067，080 A / A	6／6	c2	18，509，703 6／6	a／	c3	10，422，479 a／	c／c	c4	3，002，878／／	c／c	c4	49，174，707 A／d	T／r	${ }^{\text {c5 }}$	24，540，235 a／d	6／6	${ }^{6}$	17，876，820 c／	T／T	${ }^{1}$	32，462，405 $\mathrm{A} /$	6／6	c8	12，612，205	6／6	c9	3，434，217 c	T／T	c9	49， 174,7496	a／a
c1	22，100，238 c／c	T／7	${ }^{2}$	18，520，916／／a	T／T		10，449，659 a／d	ז／ז	c4	3，402，751 6	T／r	c4	49，19， $927 \mathrm{c} / \mathrm{C}$	6／6	cs	24，724，808 $\mathrm{I} /$	A／A	c6	18，259，712 T／	a／a	${ }^{7}$	32，47，536 6	A／A	c8	12，623，655	I／T		3，43， 289 c	T／		9，474，824 A	6／6
c1	22，110，300 $/$	a／a	C2	18，555，285 c／c	T／7	c3	10，49，678 A／	c／c	c4	3，402，799／／	6／G	c4	49，191，975 A / d	6／6	c5	2，424，750 $/$	c / c	c6	18，259，837 A／	T／r	${ }^{7}$	32，62， 853 s ／	c／c	c8	12，733，948	I／7	c9	3，470，658	c／c	c9	9，474，857	a／a
	22，160，961 6	c／c	${ }^{2}$	18，555，360／Tr	d／a		10，75，224 c／	I／T	c 4	3，535，281／／	G／G	c4	49，191，984 T / I	6／6	cs	26，022，942	c	c6	18，260，801 A／	\％／6	c7	32，832，123	a／a	c8	12，736，056	a／a		3，470，67	a／a		，488，618 A	
c1	22，161，496 6	a／a	${ }^{2}$	18，800，929 6／6	I／	c3	10，75，316 $\mathrm{I} /$	c／c	c4	3，566，714 A／	6／6	c4	49，192，016 6／6	A／A	cs	6，129，158	I／7	c6	18，261，219 A／	6／6	c	32，857，129	r／T	c8	12，814，675	I／T	c9	3，479，407 6	A／4	－	49，88， 627 A	c／c
	22，161，520 A	c	${ }^{2}$	18，945，695 6／6			10，751，419 a／	6／G	c 4	3，604，335／／	c／c	c4	49，36， $446 \mathrm{~A} / \mathrm{A}$	T／r	${ }^{5}$	6，129，763 A／	6／6	${ }^{6}$	18，261，222 A／a	6／6	c7	32，857，135	60	c8	12，814，692		c9	3，479，4336			， 45	
c1	22，202，938	c／c	c2	18，96， $363 \mathrm{~T} /$		c3	10，751，277	6／6	c4	3，611，303	c／c	c4	49，369，449	T／T	cs	6，131，510 A	6／6	${ }^{6}$	18，310，100 A	c／c	${ }^{\text {c }}$	32，857，153		c8	12，854，329	c／c	－	3，513，461	6／	c9	6，491，986	c
	22，249，109 6／	T／r	${ }^{\text {c2 }}$	18，968，438 $\mathrm{T} /$	d／	c3	10，751，4936／	c／c	${ }^{\text {c4 }}$	3，700，993 6／	a／a	${ }^{\text {c }}$	49，369，470 a／	Q	${ }^{\text {c5 }}$	26，169，243 c／	A／A	${ }^{\text {c6 }}$	18，394，650 c		C 7	32，857，176		${ }^{1} 8$	12，940，234	6／6	c9	3，520，433			9，492，787	
c1	22，249，150 A		c2	19，703，884		c3	10，76， 8	a／a	${ }^{\text {c }}$	1，0		c4	49，381，479	c／c	${ }^{\text {c5 }}$	2169，275	6／6	${ }^{\text {c6 }}$	3，452，501		${ }^{\text {c }}$	32，857，276		${ }^{\text {c }}$	12，940，25	A／A	c9	3，633，554	c／c	c9	49，492，979 a	c／c
c1	22，351，509 A／	6／6	${ }^{\text {c2 }}$	19，990，551		${ }^{\text {c3 }}$	10，885，445	c／c	${ }^{\text {c4 }}$	3，891，280 T／	c／c	${ }^{\text {c }}$	49，424，307 6	a／a	${ }^{\text {c5 }}$	26，169，295	a／a	${ }^{\text {c6 }}$	18，502，359 a	6／6	${ }^{\text {c }}$	32，888，486	A／d	${ }^{18}$	12，941，028	a／h	c9	3，74，295	T／n		9，494，962 cic	6／6
	22，410，358		${ }^{2}$	20，650，378 A／		c3	11，219，414		${ }^{4}$	3，891，316 A／		c4	49，689，691	A／A	${ }^{\text {c5 }}$	6，389，529	6／6	${ }^{\text {c6 }}$	18，611，303 c	A／A	c	32，888，502	6／6	c8	12，941，048	A／4	c9	，744，357	T／7	c9	49，495，162	6／6
	22，410，391 I		c2	20，709，703 6／		c3	11，303，616	6／G	${ }^{\text {c }}$	3，907，265 6／	A／A	${ }^{\text {c }}$	49，692，865	6／6	${ }^{5}$	26，389，541	T／T	${ }^{\text {c6 }}$	${ }^{18,626,671 ~ 6 / 8}$	A／${ }^{\text {a }}$	${ }^{\text {c }}$	32，888，511	a／d	${ }^{18}$	12，941，061	7／r	c9	3，744，439	T／		49，496，079	a／a
c1	22，410，433	d	c2	21，28，314 A／	G／G	c3	11，335，488	c／c	c4	3，975，773 a／	6／G	c4	49，708，246	T／r	cs	26，391，512	硡	c6	18，881，212 c	n／	${ }^{\text {c }}$	32，983，191 Cl	a／a	${ }^{\text {c }}$	12，965，173	c／c	c9	3，751，516	T／7		9，496，101	1／a
cl	22，535，615 A	${ }_{6} / 6$	${ }^{\text {c2 }}$	22，162，100 $/ 6$	a／	c3	11，39，133 6	A／A	${ }^{4}$	3，976，029 I／	c／c	c4	49，708，256 T／	c／c	${ }^{\text {c5 }}$	26，525，768 C	T／T	${ }^{\text {c6 }}$	18，881，290 a	${ }^{\text {6／6 }}$	${ }^{\text {c }}$	32，984，233	6／6	${ }^{18}$	12，965，198	d	c9	3，958，042 A	${ }^{\text {c／c }}$	${ }^{\text {c }}$	49，550，885	
	22，535，758 c	T／T	C2	22，174，901 6／	c／c	c3	11，411，296	A／A	c4	3，981，041 IT	A／a	c4	49，70，321 6／	A／A	${ }^{\text {c5 }}$	26，52，8，88		c6	18，882，441	T／T	${ }^{1}$	33，14，121 G	a／a	c8	12，990，866		c9	4，011，984 c			49，550，966	
c1	22，607，654	A／4	c2	22，175，065 6／6	c／c	c3	11，423，42 I	6／6	c4	3，981，272 A／	6／6	c4	49，710，149 c／c	T／T	c5	26，52， 906 r	c／c	${ }^{6}$	18，954，396	A／A	${ }^{\text {c }}$	33，143，247	6／6	${ }^{\text {c }}$	12，995，366	6／6	c9	4，042，682	c／c	c9	49，550，87	c
	22，607，675	6／6	c2	22，175，097	c／c	c3	11，461，66］	6／6	${ }^{\text {c }}$	4，104，108 T	a／A	c4	49，710，284 $6 /$	a／A	${ }^{5}$	2，525，945	a／4	${ }^{\text {c6 }}$	18，954，398 c	T／T	${ }^{\text {c）}}$	33，149，054	T／T	c8	13，132，067	a／	c9	4，165，824	a／4		3，592，214	
c1	22，687，644	1	c2	22，189，304／／	d	c3	11，650，257	c／c	${ }^{\text {c4 }}$	4，106，533	Ir	C4	49，710，304	a／A	${ }^{5}$	26，525，966	c／c	${ }^{\text {c6 }}$	19，128，946 T／	dra	${ }^{\text {c }}$	33，183，484	A／A	c8	14，131，801	a／a	c9	4，165，871	T／T	c9	49，592，232 A	6
	22，788，062	$\pi /$		22，189，317 c／	6／6	c3	11，651，517	G	${ }^{\text {c }}$	4，106，627 G	a／4	${ }^{\text {c }}$	49，888，887	c／c	${ }^{\text {c5 }}$	6，549，517	T／T	${ }^{6}$	19，128，967 व	1／4	${ }^{\text {c）}}$	33，183，544	c／c	c8	14，180，526	ז／T	c9	，165，878			9，599，235 a	6／6
c1	22，79， 794	，	C^{2}	22，18，，37	A／A	c3	11，668，36 $\mathrm{I} /$	左	c 4	4，108，046 6／	／h	c4	49，85，523 A／	1／2	cs	26，733，503	1／1	${ }^{6}$	19，128，970 A	c／c	a	33，184，159	T／T	cor	14，312，018	6／6	cg	，167，609	c／c	c9	49，593，815	I／T
	22，903，092	a／h	${ }^{\text {c2 }}$	$22,247,122 \mathrm{c}$		c3	11，668，322 I	c／c	${ }^{\text {c }}$	4，108，058 A / l	6／G	${ }^{\text {c4 }}$	49，863，583 A／	6／6	${ }^{\text {cs }}$	26，779，879 $\mathrm{A} /$	6／G	${ }^{\text {c6 }}$	19，128，991 c	6／6	${ }^{\text {c］}}$	33，208，616	${ }^{\text {a／a }}$	${ }^{\text {c8 }}$	14，341，473	6／6	－	4，175，216 A			9，593，817	
c1	24，241，050	／a	c2	22，247，226		c3	11，66，，38 6	3／4	c4	4，110，876 A／	c／c	c4	49，86， $182 \mathrm{C} /$	／r	${ }^{\text {c5 }}$	26，828，977		c6	19，129，032 A	c／c	${ }^{7}$	33，324，524		${ }^{\text {c8 }}$	14，363，100	－	c9	，193，385	6／6	c9	9，593，845	T／r
	24，451，849		${ }^{\text {c2 }}$	22，320，236		${ }^{\text {c3 }}$	11，675，016 c	T／T	${ }^{\text {c4 }}$	4，131，802 A／d	6／6	${ }^{\text {c }}$	49，887，516 c／	A／a	${ }^{\text {c5 }}$	26，901，430	6／6	${ }^{\text {c6 }}$	19，276，888 A	T／7	${ }^{\text {c }}$	33，324，551	T／5	${ }^{\text {c8 }}$	14，363，107	a／h	c9	4，218，183	／a	${ }^{\text {c }}$	49，614，588	
	24，493，9	$6 / 6$	C2	22，398，35 a		c3	11，675，107	，	${ }^{4}$	4，140，691	A／4	C4	50，040，844	，	${ }^{\text {c5 }}$	27，007，057	a／4	${ }^{6}$	19，442，683	T／r	c	33，324，563		${ }^{\text {c8 }}$	14，410，946	T／7	c9	4，226，933	6／G	c9	49，680，324	T／r
	24，94， 044 am		c2	22，403，50 I		c3	11，715，529	6／G	${ }^{\text {c4 }}$	4，140，824 C	T／n	${ }^{\text {c }}$	50，175，434	T／T	${ }^{\text {c }}$	27，33，522	a／h	${ }^{\text {c6 }}$	19，528，334 6	T／T	${ }^{\text {c7 }}$	33，324，611	左	${ }^{\text {c8 }}$	14，739，727	c／c	c9	4，273，871	${ }^{6 / 6}$	c9	49，680，335	
c1	24，500，753 A	－	C2	22，403，688	6／6	c3	11，711，544	6／6	c4	4，140，830 c	1／r	C4	50，260，181 I	c／c	${ }^{5}$	27，33，534 c	I／T	c6	19，528，396	a／a	${ }^{7}$	33，324，629	c／c	${ }^{\text {c8 }}$	14，790，384	T／T	c9	4，273，893	6／6	c9	49，680，426	a／a
	24，500，825 6	a／A	C2	22，56，790 c／	T／T	c3	11，914，188	A／4	${ }^{4}$	4，151，054 c	／1／4	C4	50，464，178 C	A／A	${ }^{\text {c5 }}$	27，467，080 A	c／c	${ }^{\text {c6 }}$	19，581，006	6／6	${ }^{\text {c }}$	33，32， 61711	T／1	c8	14，790，471	A／	－	，273，995		，	9，704，064	／
	24，53，186 c		c2	22，711，883		c3	11，982，636	A／A	${ }^{4}$	4，159，751	I／7	C4	50，540，636 A	6／G	${ }^{\text {c5 }}$	2，467，093	T／T	${ }^{\text {c6 }}$	19，63，196	T／T	${ }^{\text {c }}$	33，325，592		${ }^{\text {c8 }}$	15，08，	6／G	c9	4，274，054	c／c	c9	9，70，070	G／G
	24，535，695 A	c／c	c2	22，711，490	c／c	c3	12，070，849	c／c	${ }^{\text {c4 }}$	4，159，772 c	T／r	${ }^{\text {c }}$	50，599，174	T／r	${ }^{\text {c5 }}$	27，563，999	T／T	${ }^{\text {c6 }}$	9，897，999	6／6	${ }^{\text {c }}$	33，325，619	c / c	${ }^{\text {c8 }}$	15，364，440	6／6	c9	4，362，991	T／T	c9	9，704，024 6	A／A
c1	24，601，760	A／A	c_{2}	22，715，061	a／a	c3	12，118，416	a／a	c4	4，165，893 6	I／T	c4	50，59， 186 A	／1／	cs	2，563，987	c	c6	19，898，047 c	I／T	${ }^{7}$	33，513，567	T／2	${ }^{\text {c }}$	15，453，424	a／d	c9	4，362，992	1／4	c9	，726，280	r／p
	24，614，402 C	T／T	${ }^{\text {c2 }}$	22，88， 792	a／h	c3	12，118，435	E／G	${ }^{\text {c4 }}$	4，165，948 a／	c / c	${ }^{\text {c4 }}$	50，599，201 6	A／A	${ }^{\text {c5 }}$	27，50， 459 c	a／4	${ }^{\text {c6 }}$	19，898，103 I	${ }^{\text {c／c }}$	${ }^{\text {c }}$	33，520，033 A	／rs	${ }^{\text {c8 }}$	15，699，627	I／r	c	4，362，523	6／6	－	9，126，282	a／h
	24，614，546	c／c	c2	23，460，033	A／A	c3	12，159，462	c／c	c 4	4，288，526 a／	6／6	c4	50，602，518	c／c	cs	2，602，465	c／c	c6	19，942，337 A／	c／c	${ }^{7}$	33，531，731	a／a	c8	15，837，881	I／T	cg	4，362，618	，	c9	退，134，226	a／a
${ }^{1}$	24，649，285 6	T／T	${ }^{2} 2$	23，58，142 Cl	$1 / 1$	c3	12，369，268	I／T	c4	4，276，894 $\mathrm{T} /$	c／c	C4	50，62，596 c／	T／T	cs	27，602，473 I	6／6	c6	19，990，186 A／	c／c	${ }^{7}$	33，603，154	a／a	${ }^{\text {c }}$	16，061，369	6／6	c9	4，394，058	T／T	c9	9，760，039	
	24，55，934	a／A	c2	23，67， 117 T T／	c／c	c3	12，575，191	c／c	a	4，315，939 IT	d	c4	50，679，260 c／	A／A	cs	7，158，178	a／a	${ }^{6}$	19，996，490 I	a／a	${ }^{1}$	33，603，536	c／c	c8	16，112，300	a／a	c9	4，394，112	a／a	c9	9，815，507	I／r
1	$24,782,129 \mathrm{~A}$	6／6	c2	23，78，001	A／4	c3	12，88，234 G／	c／c	c4	4，368，757 c／	A／A	c4	50，67，299 6／6	c／c	c5	27，758，241	A／A	c6	19，996，533 I	c／c	${ }^{1}$	33，784，037	cras	${ }^{\text {c }}$	16，164，945	6／6	c9	4，88，897 A	T／T	c9	99，871，208	A／a
c1	24，78，208	I／T	c2	23，785，093	I／T	c3	12，812，075	a／a	c4	4，368，844 $/$	A／A	c4	50，68，886 A／	I／T	c5	2，779，662 IT	a／a	c6	19，996，888 A／	6／6	${ }^{1}$	3， $3,93,335 \mathrm{~A} /$	c／c	${ }^{\text {c8 }}$	16，542，161	a／a	c9	4，516，647	，	c9	9，871， 663 A	${ }_{6 / 6}$
${ }^{1}$	24，962，438	c／c	C^{2}	23，18，002 c／	a／a	c3	12，812，077	I／T	c 4	4，472，340／／	c／c	c4	50，12，578 6／	A／A	cs	27，787，982	a／a	c6	20，081，331	a／a	C	33，93， 3 ，34 c	I／	${ }^{\text {c8 }}$	16，721，166	a／4	c9	4，518，618	6／6	c9	99，876，016	a／a
1	25，054，761	A／A	c2	23，823，231	a／A	c3	13，020，743	a／h	${ }^{\text {c }}$	4，505，086	c / C	${ }^{\text {c4 }}$	50，723，614	c／c	${ }^{\text {cs }}$	2，788，000	A／A	${ }^{\text {c6 }}$	20，081，374	A／A	${ }^{\text {c］}}$	33，934，706	a／8	${ }^{\text {c8 }}$	16，721，175	I／r	${ }^{\text {c9 }}$	4，544，908	T／r	${ }^{\text {c }}$	9，877，497	T／r
c1	25，05，774	r／T	c2	23，828，414	I／T	c3	13，021，533	I／7	c4	4，511，184 C	c／c	c4	50，738，119	c／c	${ }^{5}$	27，791，233	a／a	${ }^{6}$	20，211，135	a／a	${ }^{7}$	33，970，218	T／5	c8	16，721，199	c／c	－	4，718，152	T／7	c9	0，871，552	
c1	25，122，985	I／r	c2	23，828，479	6／6	c3	13，075，568	T／r	${ }^{4}$	4，513，233	T／r	${ }^{\text {c4 }}$	50，738，133	T／T	${ }^{5}$	，791，261	c／c	${ }^{\text {c6 }}$	20，211， 156	a／	${ }^{\text {c }}$	33，970，418	6／6	${ }^{\text {c8 }}$	16，721，295	a／a	c9	4，775，650	A／4	${ }^{\text {c9 }}$	，885，729	6／6
	25，182， 430	a／a	c2	23，960，595	a／a	c3	13，087，934	6／6	c 4	4，577，019	I／r	c4	50，738，175	c／c	${ }^{5}$	2，791，274	T／7	${ }^{6}$	20，211，256	c／c	${ }^{1}$	34，029，117	a／a	c8	16，721，313		c9	4，903，490 A		c	，914，133	a／a
c1	25，210，651	c／c	c2	23，965，186 c	I／T	c3	13，087，937	c／c	${ }^{\text {c4 }}$	4，599，486 cic	T／r	${ }^{\text {c4 }}$	50，755，272 $\mathrm{T} /$	c / C	${ }^{\text {c5 }}$	27，795，439	c／c	${ }^{\text {c6 }}$	20，438，635	${ }^{6 / 6}$	${ }^{\text {c }}$	34，150，102 T／	A／a	${ }^{\text {c8 }}$	17，120，194	6／6	c9	4，906，304	6／6	c9	9，941，159	T／T
c1	25，210，695	6／6	c2	24，485，775	a／h	c3	13，087，953	6／6	c 4	4，598，298 6	c／c	c4	50，797，237 $\mathrm{I} /$	6／6	cs	27，816，736	A／A	c6	20，47，563	6／6	${ }^{1}$	34，238，851 A／	c／c	${ }^{\text {c8 }}$	17，120，214	6／6	c9	4，906，307	6／6	－	，917，916	a／a
c1	25，246，264	A／A	c2	24，4888	I／T	c3	13，134，001	c／c	${ }^{\text {c }}$	4，598，310 A	6／G	c4	50，797，239	A／A	${ }^{\text {c5 }}$	1，821，722 T／	c／c	${ }^{\text {c6 }}$	，595，597	T／T	${ }^{\text {c }}$	34，300，604 c／C	T／1	${ }^{\text {c8 }}$	17，128，70	c／c	c9	12，695	T／T	c9	006，569	1
	25，33，685	c／c	c2	24，525，847	c／c	c3	13，143，66［	c／c	a	4，599，863 T / T	6／6	c4	51，149，560 $6 / 6$	A／A	${ }^{5}$	27，823，763 c／c	T／T	c6	20，874，235 A / A	6／6	c	34，300，625 c／c	6／6	c8	17，128，705	ז／T	c9	4，942，568 $/$／	c / c	c9	0，020，638 6／6	a／a
	25，336，556 A／A	r／r	c2	24，525，849	6／6	c3	13，230，633 c／c	6／6	c 4	4，640，154 6／	I／T	c4	51，195，493 c／c	6／6	cs	27，835，806 A／4	6／6	c6	20，878，039 c	A／A	c	3， 3 ，31，508 8／4	6／6	c8	17，130，969	c／c	c9	4，965，999	c／c	c9	50，021，400	c／c

 chromosomes

Appendix II Cont.

Table S2: Cont. : Differences in Allelic variants at various chromosomes positions in parent lines; the cultivated rapid cycling DHSL150 and C07060.

C1	25,497,605 N / T	6/6	C2	24,526,006 6/6	A/A	C3	13,230,665 T / T	c/c	${ }^{4}$	4,798,867 A/A	6/G	C4	51,195,596 A/A	6/G	c5	27,862,370 6/6	A/A	c6	21,056,309 c/c	A/A	C7	34,311,512 I/T	c/c	c	17,142,807 T / T	A/4	c9	4,987,592 I/T	c/c	c9	50,068,595 $\mathrm{G/G}$	/r
c1	25,497,601	I/T	C2	24,52	A/A	c3	13,232	c / c	c4	4,96	A/A	C4	51,195,600 $/ \mathrm{A}$	c/c	${ }^{5}$	27,911,912 6/6	1/4	${ }^{6}$	21,55,400 c/	6/6	${ }^{1}$	34,	a/a	c8	17,143,236 A/	c/c	c9	1999,655 6/	A/A	c9	50,110,114 6/	I/T
C1	25,503,912 G/6	1/A	C2	24,566,863 G/6	a/a	c3	13,463,220	1/A	c4	, 965,	T/r	C4	51,22, 103	c/c	${ }^{5}$	27,911,973 c/c	1/4	${ }_{6}$	21,216,979 //	c/c	${ }^{7}$	34,39, $316 \mathrm{c} /$	T/T	c8	17,270,614 6	c/c	c9	5,002,649 c	T/T	c9	50,110,173	a/a
cr	25,503,933 6/6	I/T	C2	24,993,054 T/	a/a	c3	13,517,1336/6	c/c	C4	5,108,928 I / T	A/A	C4	51,222,204 T / T	a/A	c5	27,912,007 c/c	a/a	${ }^{6}$	21,566,940 c/c	T/T	C7	34,381,001 $6 / \mathrm{C}$	a/A	C8	17,270,748 c/C	6/6	c9	5,002,716 T / T	a/A	c9	50,123,766 //	r/T
c1	25,542,314 T / T	6/6	C2	24,993,087 C/C	T/T	C3	13,517,279 6/6	A/A	c4	5,111,009 6/6	T/T	c 4	51,2	A/A	c5	27,915,667 A/A	c/c	${ }^{6}$	21,693,876 G/6	c/c	c7	34,395,218 6/6	T/T	C8	17,274,333 //	6/G	c9	5,006,095 T / T	c/c	c9	50,247,213 c / C	I/T
c1	25,569,853 A/A	I/T	C2	25,005,630 $/$ /T	c / c	c3	13,530,086 //7	6/G	c	5,111,014 c/c	6/6	C4	51,222,455 $/$ /	c/c	c5	27,915,686 6/6	I/T	${ }^{6}$	21,694,399 A/A	6/G	C7	34,395, $224 \mathrm{~T} / \mathrm{T}$	c / c	C8	17,360,429 c/C	I/r	c9	5,043,650 A / A	6/G	c9	50,270,867 A/	I/T
c1	25,569,872 G/G	a/A	C2	25,005,645 T / T	c/c	c3	13,530,132 6/6	c/c	c4	5,115,629 G/6	I/T	C4	51,225,463 T / T	c/c	c5	27,915,780 $/$ /r	c/c	${ }^{\text {c6 }}$	21,694,642 G/G	1/4	C1	34,445,7516/6	a/a	C8	17,487,192 c/C	I/T	c9	5,062,210 A/4	6/G	c9	50,355,915 //	c/c
c1	,660,365	a/A	C2	25,109,023	c/c	c3	13,530,174 A/A	I/T	c	5,15,755	1/A	c 4	51,225,555	c/c	c5	27,915,840 //	c/c	c6	21,744,378 //	6/6	C1	4,44,	a/A	C8	17,487,331	A/4	c9	5,062,220 c/	I/T	c9	50,451,120 G/6	a/A
c1	25,675,031 A/	c/c	C2	25,10,056 T	A/A	C3	13,536,	A/A	C4	5,115,904	T/T	C4	51,225,641	a/A	c5	27,915,953 A / A	6/6	c6	22,744,4276/6	a/4	c1	34,45	I/T	C8	17,521,810	6/6	c9	5,082,420	I/T	c9	50,45	a/A
c1	25,756,023 6/6	I/T	C2	25,264,181	a/A	C3	13,536,	I/T	C4	5,382,10	T/T	C4	51,279	T/T	c5	27,958,946 c/c	I/T	${ }^{6}$	2,819,	c/c	C7	34,468,	c / c	C8	17,625,74	I/T	c9	5,083	6/6	c9	50,484,993 6	I/T
c1	25,756,047 c/c	T/T	C2	25,26, 8	a/A	c3	13,537,10	a/A	C4	5,382,115	T/r	C4	51,365,287	c/c	c5	, $958,982 \mathrm{~A} /$	6/6	c6	21,819,784	6/6	C1	34,53,	c/c	C8	17,625,817	c/c	c9	5,094,242	c/c	c9	0,485,010	a/A
C1	25,767,652 1/T	c/c	C2	25,264,	T/T	c3	13,5	A/A	C4	5,405,2	I/T	c 4	51,365	6/G	c5	,95 A	6/G	c6	21,895,607 //	c/c	C7	34,583	a/A	C8	17,625,831	a/A	c9	5,094,248	r/1	c9	50,485,041 6/6	I/T
c1	25,927,27	T/T	C2	.275,16	c/c	c3	564,0	T/T	C4	5,415,043	c/c	C4	51,419,212	c/c	c5	2,011,422	T/T	c6	,,55,320	c/c	C1	34,63, 128	a/A	C8	17,813,208	6/6	c9	5,114,108 I / T	a/A	c9	,485,0	a/4
c1	26,009,641 $/ 6$	a/A	C2	25,461,861	a/A	c3	13,567,91.	c/c	C4	5,615,139	c/c	C4	51,419,2	c/c	c5	001,643	1/A	${ }^{6}$	21,95, 343	6/6	C1	34,697,753 $\mathrm{I} /$	6/6	C8	17,856,00	6/6	c9	5,114,309	6/6	c9	50,485,106	a/4
c1	26,022,32	6/G	C2	25,567,114	6/6	c3	13,761,59	6/G	C4	5,648,831 /G	a/A	C4	51,533	a/A	c5	28,114,307 $6 / 6$	c/c	c6	21,970,583 A/A	c/c	C1	34,697,876 //	c/c	C8	18,338,	T/T	c9	5,134,526 T / T	a/A	c9	50,500,333 c / C	r/T
c1	26,067,2	T/T	C2	25,581,142 C/C	a/A	c3	13,761,6446/6	I/T	C4	5,648,834 A/4	c/c	C4	51,533,645 A / A	6/G	c5	28,165,395 $/ \mathrm{m}$	6/6	${ }^{6} 6$	21,970,589 /	6/6	C7	34,119,340 c/a	6/6	C8	18,69,447	6/6	c9	5,134,538 A	6/9	c9	50,50, 310 T/	a/a
C1	26,151,205	c/c	C2	27,390,	c/c	c3	761,	1/A	c4	5,754,329 c/C	T/T	C4	51,533,672 c/C	a/A	c5	28,210,922 G/G	c/c	${ }^{6}$	21,970,597 A/	c/c	C7	34,740,550 c/c	I/T	C8	18,751	c/c	c9	5,134,581	c / C	c9	50,50, 3816	c/c
c1	26,153,	a/A	C2	27,562,361 6/6	I/T	c3	13,762,449 //	6/6	c4	6,042,715 T/7	c/c	C4	51,540,314 A/A	I/T	c5	28,210,990 c/c	a/A	${ }^{6}$	22,392,657 c/c	6/6	C7	34,74	I/T	C8	18,7	a/A	c9	5,370,153 c	a/A	c9	50,559,815	a/a
C1	26,	6/6	C2	27,696,466 c/C	T/T	C3	13,768,044 A/4	6/6	C4	6,042,721 G/G	I/T	C4	51,564	a/A	c5	28,212,8346/6	A/A	${ }^{6}$	22,399,168 G/6	c/c	C7	34,74,	a/4	C8	19,021	c/c	c9	5,370,182 C	T/1	c9	5,593	a/a
C1	$26,28,633 \mathrm{~A}$	6/G	C2	27,698,821	a/A	C3	13,768,110	A/A	C4	6,044,438	a/A	C4	51,600,968	c/c	c5	28,215,654 6/6	a/A	${ }^{6}$	22,399,201	c/c	C	34,788,595	I/7	C8	19,02, 54	6/6	c9	5,372,03	a/4	c9	50,593,368	c/c
C1	26,310,705 $/$	I/T	C2	27,956,167	I/T	C3	13,85,766	A/A	c 4	6,152,836	I/T	C4	51,601,099	1/A	c5	926,939	I/T	${ }^{6}$	22,434,009 A/A	6/6	C1	34,769,375	a/8	C8	19,026,	6/6	c9	5,372,111	6/G	c9	0,613,	6/6
C1	26,310,725 c/c	A/A	C2	27,962,311 1/7	A/A	c3	13,993,	A/A	C4	6,152,851	c/c	c4	51,601,061	6/6	c5	28,949,780	6/6	c6	22,434,161	T/7	C1	34,769,408	a/A	C8	19,031,912	a/A	c9	5,312,133	c/c	c9	50,613,215	a/a
c1	$26,310,7$	1/4	C2	27,962,50	6/6	c3	13,993,832 c/	I/T	C4	6,194,375	I/7	C4	699	6/6	c5	28,94,884 6	1/1	c6	22,434,185	c/	c	34,773,029 A	c/c	c8	19,010	6/6	c9	5,372,01	T/	c9	50,613,229	c/c
c1	26,487,947 //	6/6	C2	27,96, 236 A	I/T	c3	13,994,061	I/T	C4	6,194,433	r/r	C4	51,699,975	I/T	c5	2,949,894	6/G	c6	22,434,	c/c	C1	34,828,	c/	C8	19,034,515	I/T	c9	5,378,898	6/9	c9	50,724,328	a/4
c1	26,501,464 T / T	c/c	C2	28,272,010	c/c	c3	14,069,2	a/A	C4	6,19,476	I/r	C4	51,700,0	I/T	c5	,949,915	c/c	${ }^{6}$	22,434,2336/6	a/ ${ }^{\text {a }}$	C1	34,828,	6/6	C8	19,041,888	c/c	c9	5,379,792	a/A	c9	50,780,119	I/T
c1	590,	a/4	C2	28,413,869 G/6	a/A	C3	14,069,281 $1 / \mathrm{T}$	a/A	C4	6,194,519 G/G	A/A	C4	51,700	6/6	c5	28,953,191 $/$ /T	c/c	${ }^{6}$	22,641,437 A / A	c/c	C1	35,13	c / c	C8	19,061,	T/T	c9	5,396,316 T/	6/0	c9	50,780,	6/6
C1	26,590,223 I / T	6/6	C2	28,463,859 T/T	A/A	C3	14,083,611 6/6	a/A	C4	6,203,704 c/c	T/T	C4	51,700,182 c/C	6/6	c5	28,953,1986/6	I/T	${ }^{\text {c6 }}$	22,611,446 c/c	I/7	C7	35,144,643 $/$ /	a/4	C8	19,165,813 7/	c/c	c9	5,396,427 A/	c/c	c9	50,780,293 6/	c/c
c1	26,620,883 T / T	c/c	C2	28,474,758 A / A	6/G	c3	14,178,085 //a	c/c	c4	6,243,688 c/c	6/6	C4	51,700	T/T	c5	28,953,236 c/c	I/T	${ }^{6}$	23,256,321 A/A	I/T	C1	35,144,708 c/c	T/T	C8	19,165,865 A/L	T/T	c9	5,396,436 $/$ /	6/G	c9	50,780,296 6/6	a/A
cl	26,691,287 $/$ /	6/G	C2	28,515,552 G/6	a/A	c3	14,178,867 G/6	a/A	C4	6,295,251 $1 / \mathrm{A}$	c/c	C4	51,700,233 c/c	I/T	c5	28,953,250 $/ \mathrm{A}$	6/G	c6	23,268,161 T/	A/A	C1	35,178,966 c/C	T/T	C8	19,305,965 c/c	T/T	c9	5,396,451 1	a/A	c9	50,781,865 a/d	6/6
c1	26,706,491	6/6	C2	28,515,511 A / A	c/c	c3	14,437,818 6/6	c/c	C4	6,351,117 6/6	a/A	C4	51,700,248	a/A	c5	28,953,259 A / A	6/6	c6	23,299,877 c/C	a/3	C1	35,42	c/c	C8	19,305	6/G	c9	5,398,059 A/	T/1	c9	50,793,146 c/	6/6
c1	26,877,731	c/c	C2	28,633,	c/c	c3	14,522	a/A	c4	6,535,058 A/A	6/6	C4	51,700,293 6	a/A	c5	29,003,658	a/a	c6	23,301,501 A/		C7	35,451	T/3	C8	20,231	6/6	c9	5,454,300		c9	50,793,261 A	I/T
C1	26,877,743 A / A	c/c	C2	28,633,310	I/T	c3	15,215,178	6/6	C4	6,571,438	c/c	C4	$51,700,56 \mathrm{~A}$	6/6	c5	29,206,410	1/A	c6	23,301,608	I/7	C1	35,451,427	c / C	C8	20,244,28	6/6	c9	5,455,039	a/4	c9	50,813,656	6/6
1	27,053,962 c/c	I/T	C2	28,633,87	a/A	c3	15,41,755	6/6	C4	6,671,836	T/T	C4	51,700,	6/G	c5	206,	6/G	c6	23,309,883	c/c	C1	35,451,597	c/c	C8	20,270,093	1/A	c9	5,411,52	T/	c9	50,890,379	c/c
c1	27,054,085 c/c	I/T	C2	634,071	I/T	c3	15,441,76	a/a	C4	677, $852 \mathrm{~A} / \mathrm{A}$	6/6	C4	51,780,966	T/T	c5	29,200,640 c/c	I/7	${ }^{6}$	23,409,382	I/7	C1	35,610,752	c/c	C8	20,371,253	6/6	c9	5,471		c9	50,913,275	a/a
cl	27,243,137 T / T	c/c	C2	28,809,956	a/A	C3	15,547,	c/c	C4	6,677,940 I	c/c	C4	51,88,27	c/c	c5	29,380,278 A / A	T/T	${ }_{6}$	23,480,529	I/T	C7	35,120,709 6/	I/T	C8	20,678,077 G	T/T	c9	5,47,247	a/h	c9	50,931,679	I/T
c1	27,525,788 //	6/6	C2	28,810,057 c	T/T	c3	15,547,936	6/6	C4	6,671,956	c/c	C4	52,026,097	6/6	c5	29,41,802 T / T	c/c	${ }^{6}$	23,680,951 6/6	a/a	C	35, $126,388 \mathrm{I} /$	c/c	C8	20,870,519 A / L	c/c	c9	5,475,273 6	a/4	c9	50,99,555	a/a
c1	27,582,913 A/A	6/6	C2	28,824,377 T/2	c/c	c3	15,585,578	6/G	c4	6,738,905 c/c	T/T	C4	52,039,658 $/$	6/G	c5	29,419,861 6	1/4	c6	23,680,960	a/h	c)	35,762,590	a/4	C8	$20,912,163 \mathrm{~A}$	T/r	c9	5,475,274 G	a/4	c9	50,979,561	T/7
c1	27,582,	I/T	C2	28,824,404 A/A	6/6	c3	15,799,554 A/	I/T	c4	6,784,708 6/6	a/A	C4	52,063,517 6	a/4	c5	29,501,449 a/d	c / C	${ }^{6}$	49,121	T/	C7	35,813,850 G/	c/c	c8	20,992,870	a/A	c9	566,	I/	c9	51,104,444 T/	6/6
C1	27,582,900	6/6	C2	367,050	T/T	c3	15,891,962 A/A	6/6	c4	6,84,71	A/A	C4	52,063,550 A/	6/G	c5	29,531,698 m / T	c/c	c6	23,816,685 T / I	c/c	C7	35,824,937 6/C	a/A	C8	20,992,913 6/	A/4	c9	5,730,887 c/	T/T	c9	51,111,317 I/	a/a
C1	27,58,991	a/A	C2	29,418,2	I/T	c3	, 892,	I/T	c4	6331,	a/a	C4	52,183,040 c / C	a/a	c5	29,556,336 6/6	c/c	c6	23,816,700 G/	I/T	C7	35,826,801 A / A	c / c	C8	20,993,041	T/T	c9	5,730	c / C	c9	$51,112,826$ G/	A/A
c1	2,691,339	I/T	C2	29,437,566 c/c	I/T	c3	15,902,045 T / T	c/c	c4	6,833,075 c/c	I/T	C4	233,	6/6	c5	29,556,405 //	c/c	c6	16,717	I/T	C1	35,826	a/4	C8	20,993,056	c/c	c9	5,730,949 $\mathrm{T} /$	a/4	c9	,162,038	6/6
c1	128,326	I/T	C2	29,442,051 G/6	T/T	c3	5,902,13	c/c	C4	6,862,705	6/6	C4	,233	a/A	c5	10,5	I/T	c6	2,819,317	6/6	C7	35,826,911	6/6	c8	20,993,068	a/4	c9	5,751,018 A/4	c/c	c9	192,41	6/6
c1	27,128,327 T/T	c/c	C2	29,442,062 c/c	I/T	c3	15,986,115 //	6/6	C4	6,86, ,13 A/4	6/6	C4	52,23, 453 c/c	I/T	c5	29,602,962 c/c	I/7	c6	23,835,747 //	I/T	C1	35,844,951 T/	c/c	C8	20,999,883 7/	6/G	c9	5,753,660 A	6/G	c9	51,20,802	c/c
c1	27,730,083 6/6	a/A	C2	29,476,573 c/	6/6	c3	16,296,008 c/c	A/A	C4	6,88, $233 \mathrm{~B} / \mathrm{A}$	6/G	C4	52,237,465 6/6	a/A	c5	29,602,986 A/	c / C	c6	23,835,764 A/	6/G	C1	35,844,991 A / L	c/c	C8	20,999,885	c/c	c9	5,753,666 /	6/6	c9	51,202,826	a/a
c1	29,082,929 A / A	I/r	C2	29,479,840 A/4	c/c	c3	16,349,417 c	A/A	c4	7,315,197 7/	c/c	C4	52,280,580 A/	I/T	c5	60,925	a/4	${ }^{6} 6$	33,887,580	6/6	C1	35,855,571	T/1	c8	21,052,	1/4	c9	5,53,685	T/1	c9	51,300,433	c/c
	29,093,7436/6	I/T	c2	29,479,900	I/T	c3	16,625,290 c/c	I/T	C4	7,354,470 c/c	6/6	c 4	52,290,476 6/6	a/4	c5	29,675,437 6/6	A/A	c6	23,887,598 A / A	I/T	C7	35,888,108 A/A	T/T	c8	21,052, $858 \mathrm{~A} / \mathrm{A}$	I/T	c9	5,755,404 c/C	A/4	c9	51,305, 492 A/A	6/9

 chromosomes

Appendix II Cont.

Table S2: Cont. : Differences in Allelic variants at various chromosomes positions in parent lines; the cultivated rapid cycling DHSL150 and C07060.

c1	29,286,506 $/$ /T	6/6	c2	29,582,860 I/T	c / C	${ }^{\text {c3 }}$	16,625,307 A / A	c / C	c4	7,354,725 A / A	c/c	C4	52,292,154 6/6	I/T	${ }^{\text {c5 }}$	29,685,817 A / A	6/6	c6	23,888,254 T / T	6/6	${ }^{\text {c }}$	35,894,703 6/6	T/r	c8	21,090,988 6/6	I/T	${ }^{\text {c9 }}$	6,016,509 $6 / 6$	A/A	c9	51,323,388 I / T	6/6
c1	29,289,137 G/6	A/A	c2	29,594,110 6/6	c/c	c3	16,625,308 I / T	6/6	c4	7,35,726 \%/7	c/c	c4	52,292, $252 \mathrm{~A} / \mathrm{A}$	6/6	${ }^{5}$	29,763,811 A / A	c/c	${ }^{6}$	23,889,209 //A	T/T	${ }^{\text {c }}$	35,906,207 6/6	c/c	c8	21,131,4004/a	c/c	c9	6,016,652 c/c	I/T	c9	51,374,430 $/$ /	6/6
c1	29,28, $313 \mathrm{c} / \mathrm{G}$	I/T	c2	29,679,960 c/c	T/T	c3	16,637,882 A / A	6/6	c4	7,356,081 I / T	c/c	C4	52,434,009 G/6	a/a	c5	30,134,341 c/c	T/r	${ }^{\text {c6 }}$	23,889,257 A/	c/c	${ }^{1}$	35,96, 268 T / T	6/G	${ }^{18}$	21,133,174 6/G	a/a	c9	6,016,667 $/$ /	c/c	c9	51,374,673 6/6	a/a
c1	29,29,318 6/6	T/T	c2	29,761,345 6/6	A/A	c3	16,637,904 A/A	6/6	c4	7,358,765 c/c	6/6	c4	52,653,014 6/6	a/a	c5	30,473,559/4	6/6	c6	24,037,314 c/c	I/T	${ }^{\text {c }}$	35,920,760 //	6/6	c8	21,143,071 c/c	a/a	c9	6,017,706 //T	6/6	c9	51,34, ,57 c/c	T/r
c1	29,53, ,709 6/6	A/A	c2	29,761,375 r / T	6/6	c3	16,717,778 6/6	A/4	c4	7,382,421 A/4	6/6	c4	52,653,989 $/$ /T	6/6	c5	30,547,779 $\mathrm{A/a}$	c/c	${ }^{6}$	24,037, $363 \mathrm{~T} / \mathrm{T}$	c/c	${ }^{1}$	35,932,239 c/c	I/r	c8	21,228,496 $/$ /	c/c	c9	6,017,223 6/6	a/a	c9	51,394,161 6 /6	T/r
c1	30,096,261 G/G	A/A	c2	29,918,525 c/c	T/T	c3	16,767,635 A / A	c/c	c4	7,38,522 G/6	c/c	C4	52,680,114 //	6/G	c5	30,857,435 c/c	A/a	c6	24,037,401 6/6	A/a	${ }^{\text {c }}$	35,932,269 //a	6/6	c8	21,399,260 A / A	T/r	c9	6,017,757 //	r/r	c9	51,425,250 $/ \mathrm{A}$	6/6
c1	30,53, 595 c/c	A/A	c2	29,918,543 T / m	a/A	c3	17,006,470 $/$ /r	c/c	c4	7,382,556 T / T	c/c	C4	52,761,978 A/A	6/6	${ }^{\text {c5 }}$	30,867,821 c/c	A/A	${ }^{6}$	24,164,6946/6	I/T	${ }^{1}$	35,934,293 A / A	6/6	c8	21,370,893 6/6	a/4	c9	6,081,633 A / A	6/6	c9	51,429,088 T / m	d/c
	30,531,008 c/c	A/A	${ }^{2}$	29,918,544 //	T/T	c3	17,006,992 $/ 6$	A/a	c4	7,540,399 7 /	c/c	c4	52,763,880 //6	c/c	${ }^{5}$	30,884,019 6/6	A/a	c6	24,224,690 $/$ /	6/6	${ }^{\text {c }}$	35,935,552 7/T	c/c	c8	21,373,840 //a	T/T	c9	6,081,652 $6 / 6$	a/a	c9	51,438,178 6/6	a/a
c1	30,796,171 6/6	c/c	c2	29,920,010 6/6	A/A	c3	17,150,609 6/6	A/a	c4	7,884,905 c/c	I/T	c4	52,883,168 //T	c/c	${ }^{5}$	30,932,277 $6 / 6$	T/T	c6	24,224,777 c/c	6/6	c7	35,937,940 6/6	a/a	c8	21,374,031 A / A	T/T	c9	6,279,923 A / A	r/r	c9	51,459,288 6/6	T/r
c1	30,98, 194 6/6	A/A	c2	29,957,621 c/c	A/A	c3	17,150,62 A/A	6/G	c4	7,88,922 I/7	c/c	c4	52,892,337 T/T	c/c	${ }^{5}$	30,932,354 A / A	T/r	${ }^{6}$	24,240,121 $1 / \mathrm{T}$	a/a	${ }^{1}$	35,988,3926/6	I/r	c8	21,433,231 A / A	6/6	c9	6,280,076 //	c/c	c9	51,459,292 A / A	T/r
c1	30,98, 202 c/c	A/A	c2	29,957,770 A / A	c/c	${ }^{3}$	17,169,189 A/A	c/c	c4	7,884,937 6/6	A/A	c4	52,892,436 6/6	c/c	${ }^{\text {cs }}$	30,946,185 6/6	a/a	c6	24,290,966 c/c	I/T	${ }^{7}$	35,938,413 6/6	a/h	c8	21,188,806 6/6	c/c	c9	6,280,082 $/$ /7	a/a	c9	51,470,109 a / A	6/6
c1	30,918,232 I / T	c/c	c2	29,986,937 c/C	a/a	c3	17,238,051 c/c	6/G	${ }^{\text {c4 }}$	7,885,067 1/4	6/6	C4	52,905,413 6/6	a/A	${ }^{\text {c5 }}$	30,946,206 c/c	A/8	${ }^{6}$	24,347,749 c/c	a/a	${ }^{\text {c }}$	35,938,422 6/6	A/h	c8	21,484,873 c/c	6/6	c9	6,288,513 6/6	1/8	c9	51,470,333 a/h	6/6
c1	31,556,646 T / T	c/c	c2	29,986,955 c/c	6/G	c3	17,401,219 G/6	c/c	c4	7,943,236 6/6	a/A	C4	52,905,431 c/c	a/a	${ }^{\text {cs }}$	30,946,238 7/r	c/c	${ }^{\text {c6 }}$	24,347,765 //	6/6	${ }^{\text {c }}$	35,951,559 6/6	A/4	c8	21,610,152 c/c	T/r	c9	6,286,681 $/ \mathrm{A}$	6/6	c9	51,471,084 c/C	T/r
c1	31,85, 119 6/6	T/T	c2	30,152,341 1/7	c/c	c3	17,440,784 T / T	c/c	c4	7,983,977 c/c	I/T	c4	52,905,440 6/6	T/r	${ }^{\text {c5 }}$	30,946,405 c/c	T/r	${ }^{\text {c6 }}$	24,347,778 T / T	6/6	${ }^{\text {c }}$	35,951,512 6/6	a/a	c8	21,778,000 T/	c/c	c9	6,333,155 A / A	6/6	c9	51,553,184 6/6	a/a
	32,02, $329 \mathrm{c} / \mathrm{c}$	T/T		30,169,855 c/c	T/r		17,996,62 T / r	6/6	c4	7,98,787 A/A	I/T	${ }^{\text {c4 }}$	52,985,74 A/A	c/c	${ }^{\text {c5 }}$	31,031,763 7/r	A/A	${ }^{6}$	24,522,109 a / A	6/6	${ }^{\text {c }}$	35,962,026 6/6	a/	c8	21,778,036 c/c	T/r	c9	6,364,148 6/6	a/a		51,626,428 A/A	6/6
c1	32,054,268 7/7	c/c	c2	30,282,279 A/A	6/6	c3	17,796,653 a/a	c/c	c4	8,086,720 I/T	6/6	c4	53,001,634 T / T	A/A	${ }^{\text {cs }}$	31,031,772 6/6	A/A	${ }^{6}$	24,536,414 6/6	I/T	${ }^{\text {c }}$	35,968,982 c/d	a/	c8	21,885,500 6/6	a/A	c9	6,408,102 T / T	c/c	c9	51,685,740 c/c	T/r
c1	32,054,642 A/4	6/G	c2	30,349,372 6/6	a/A	c3	17,796,731 c/c	1/4	${ }^{\text {c4 }}$	8,242,346 a/h	6/6	C4	53,004,465 6/6	A/A	${ }^{\text {c5 }}$	31,140,538 c/c	6/6	${ }^{\text {c6 }}$	24,592,981 $6 / 6$	A/4	${ }^{\text {c }}$	36,054,962 6/6	c/c	c8	21,885,636 6/6	a/8	c9	6,488,707 A/A	6/6	c9	51,685,764 7/r	
	32,055,912 A / A	6/6	c2	30,349,414 6/6	a/A	c3	17,796,765 G/6	a/h	C4	8,291,052 I/r	6/6	c4	53,125,729 c/c	T/r	${ }^{\text {cs }}$	31,454,732 6/6	T/r	${ }^{\text {c6 }}$	24,642,631 $1 / 6$	T/r	${ }^{\text {c }}$	36,088,388 //	A/4	c8	21,885,663 6/6	c/c	c9	6,488,744 c/c	a/a	c9	51,61,635 6/6	a/a
c1	32,12, 843 7/7	c/c	c2	30,762,412 6/6	A/A	c3	17,806,820 A/A	r/7	c4	8,29,067 6/6	a/A	c4	53,125,756 6/6	T/r	${ }^{\text {c5 }}$	31,454,762 A/A	6/6	${ }^{\text {c6 }}$	24,647,019 G/6	a/a	${ }^{\text {c }}$	36,098,399 c/c	T/r	c8	21,913,863 6/6	a/a	c9	6,507,170 6/6	a/a	c9	51,691,638 A / A	c/c
	32,13, 987 7 /7	c/c		30,762,426 6/6	a/A		17,898,850 6/6	a/	c4	8,291,090 6/6	A/A	c4	53,12, 768 7/7	c/c	${ }^{\text {c5 }}$	31,454,788 // A	6/6	${ }^{6}$	24,704, 544 c/c	T/r	${ }^{\text {c }}$	36,162,429 c/c	T/r	c8	21,913,920 6/6	a/a	c9	6,507,173 6/6	a/a	c9	51,695,531 I / T	c/c
c1	32,16,094 c/c	6/6	c2	30,762,495 T / m	c/c	c3	17,913,352 $6 / 6$	T/r	c4	8,29,657 A/a	c/c	c4	53,126,701 $/$ /r	6/6	${ }^{\text {cs }}$	31, $545,823 \mathrm{~T} / \mathrm{m}$	c/c	${ }^{6}$	24,726,283 6/6	a/a	${ }^{\text {c7 }}$	36,162,459 a/a	6/6	c8	21,914,092 A/	6/6	c9	6,599,147 A/a	6/6	c9	51,65,537 T / T	c/c
c1	32,165,513 6/6	c/c	c2	30,783,992 c/c	A/A	c3	17,930,155 c/c	T/T	c4	8,299,688 8/4	6/6	c4	53,127,274 7/7	c/c	${ }^{\text {c5 }}$	31,658,458 A/A	6/6	${ }^{\text {c6 }}$	24,791,469 G/6	A/4	${ }^{\text {c }}$	36,162,485 a/a	6/6	c8	22,443,110 A / A	6/6	c9	6,560,437 C/6	1/4	c9	51,695,651 T/T	d/c
c1	32,227,656 a/a	c/c	c2	30,783,993 A / A	6/6	c3	17,994,796 c/c	6/6	C4	8,299,693 A/	c/c	${ }^{\text {c }}$	53,132,309 6/6	a/a	${ }^{5}$	31,658,459 7/r	6/6	c6	24,818,007 c/c	a/a	${ }^{7}$	36,169,156 //	6/6	c8	22,452,340 //T	a/a	c9	6,560,4976/6	T/r	c9	51,115,857 c/c	ז/T
c1	32,752,455 A/A	6/G	c2	31,230,130 T / T	c/c	c3	18,149, $711 \mathrm{c} / \mathrm{C}$	T/7	c4	8,31,453 C / C	A/A	c4	53,132,348 $\mathrm{c/c}$	6/6	${ }^{\text {c5 }}$	31,746,545 $6 / 6$	c/c	c6	24,818,026 c/c	T/r	${ }^{\text {c }}$	36,169,203 //	6/6	c8	22,452,409 T/	c/c	c9	6,590,802 A / A	T/r	c9	51,991,042 A/a	6/6
c1	32,757,960 G/6	I/r	c2	31,230,162 6/6	a/a	c3	18,431,333 A / A	6/G	${ }^{\text {c }}$	8,34,896 A/4	6/G	${ }^{\text {c4 }}$	53,170,432 A/A	T/r	${ }^{\text {c5 }}$	31,837,703 T / T	c/c	${ }^{6}$	24,953,272 A/A	T/r	${ }^{\text {c7 }}$	36,239,137 //	6/6	c8	22,452,435 //r	c/c	c9	6,590,804 $\mathrm{c/C}$	r/r	c9	51,791,308 6/6	T/r
c1	33,081,235 A / A	c/c	c2	31,230,169 6/6	A/A	c3	18,458,392 6/6	a/a	c4	8,46,275 A/A	6/6	c4	53,180,631 A/A	6/6	${ }^{\text {cs }}$	31,837,781 A / A	6/6	${ }^{6}$	24,956,494 c/c	T/r	${ }^{\text {c }}$	36,343,051 A/A	6/6	c8	22,462,622 6/6	a/a	c9	6,647,958 A/a	6/6	c9	51,807,336 A / A	T/r
c1	33,143,060 c/c	6/6	c2	31,230,250 6/6	c/c	c3	18,488,010 c/C	T/T	c4	8,472,599 c/c	A/4	c4	53,180,636 [/T	A/A	${ }^{\text {c5 }}$	31,837,8046/6	c/c	${ }^{\text {c6 }}$	25,116,608 6/6	T/r	${ }^{\text {c7 }}$	36,343,078 c/c	6/6	c8	22,462,644 A/A	6/6	c9	6,659,357 I/T	c/c	c9	51,807,423 A/A	c/c
c1	33,157,769 T / T	6/6	c2	31,282,994 c/c	A/A	c3	18,488,022 c/c	T/T	c4	8,472,695 A / A	I/T	c4	53,180,650 6/6	a/a	${ }^{5}$	31,885,460 c/c	A/A	c6	25,116,947 //	6/6	${ }^{1}$	36,33,085 6/6	c/c	c8	22,722,139 6/6	a/a	c9	6,659,375 c/c	6/6	c9	51,877,611 c/c	6/6
c1	33,366,353 I / T	6/6	c2	31, $383,328 \mathrm{~T} / \mathrm{T}$	c / C	c3	18,527,316 6/6	A/A	c4	8,472,7456/6	A/A	c4	53,318,446 6/6	T/r	${ }^{\text {c5 }}$	31,99,510 6/6	T/r	${ }^{\text {c6 }}$	25,117,751 //T	c/c	${ }^{\text {c }}$	36,343,154 G/6	A/4	c8	22,75, 757 c/c	T/r	c9	6,659,489 7/T	6/6	c9	51,981,299 c/c	T/r
c1	33,399,147 T / T	A/A		31,887,481 c/c	A/A	${ }^{\text {c3 }}$	18,565,765 c/c	6/G	c4	$8,73,732 \mathrm{~T} / \mathrm{T}$	a/A	c4	53,31, 544 A/A	6/6	${ }^{5}$	32,094,554 6/6	T/r	c6	25,297,716 //	6/6	${ }^{1}$	36,349,860 c/c	A/h	c8	23,020,908 $6 / \mathrm{G}$	T/r	c9	6,684,758 c/c	6/6	c9	52,004,464 A/A	c/c
c1	33,433,767 G/6	A/A	c2	31,412,382 A / A	T/r	c3	18,728,937 c/c	6/G	c4	8,47, 816 A/A	6/6	c4	53,381,179 6/G	A/A	${ }^{\text {cs }}$	32,094,556 6/6	c/c	${ }^{6}$	25,297,982 G/6	a/a	${ }^{\text {c7 }}$	36,349,865 c/d	T/r	c8	23,396,601 c/c	a/a	c9	6,684,818 //	a/4	c9	52,023,736 T / T	c/c
c1	33,43,904 6/6	T/T	c2	31,412,485 c/c	T/r	c3	18,737,699 c/c	6/G	c4	8,47,828 6/6	A/4	C4	53,381,189 c/c	1/A	${ }^{\text {c5 }}$	32,127,255 T / T	c/c	${ }^{\text {c6 }}$	25,421,457 G/6	A/4	${ }^{\text {c }}$	36,350,038 6/6	A/4	c8	23,396,614 c/c	T/r	c9	6,684,826 //T	1/4	c9	52,023,739 a/A	6/6
c1	33,480,843 I / T	c/c	c2	31,605,963 c/c	T/T	c3	18,737,817 c/c	6/6	c4	8,528,513 c/c	I/T	c4	53,381,194 6/6	T/r	c5	32,127,288 $\mathrm{A/a}$	6/6	c6	25,488,519 c/c	6/6	${ }^{1}$	36,354,8436/6	A/a	c8	23,366,743 7/T	c/c	c9	6,684,887 A / A	c/c	c9	52,144,500 $/ \mathrm{A}$	6/6
c1	33,496,161 $/ \mathrm{c}$	T/r	${ }^{\text {c2 }}$	31,764,710 //r	A/A	${ }^{\text {c3 }}$	18,759,546 c/c	I/T	${ }^{\text {c }}$	8,529,098 $\mathrm{c/C}$	I/r	${ }^{\text {c4 }}$	53,381,287 c/c	${ }^{6 / 6}$	${ }^{\text {c5 }}$	32,208,906 6/6	T/r	${ }^{\text {c6 }}$	25,559,300 //T	c/c	${ }^{\text {c7 }}$	36,358,018 7/	c/c	${ }^{\text {c8 }}$	23,411,114 $\mathrm{T} / \mathrm{/}$	${ }^{\text {a/a }}$	c9	6,749,577 c/C	6/6	c9	52,144,763 c/c	7/r
	33,521,122 c/c	6/6	c2	31,764,7326/6	A/A	c3	18,796,299 c/c	T/T	${ }^{\text {c }}$	8,529,129 c/c	T/r	${ }^{\text {c4 }}$	53,381,310 A/	6/6	${ }^{\text {c5 }}$	32,208,956 T / T	A/A	${ }^{\text {c6 }}$	25,559,339 A/	6/6	${ }^{\text {c] }}$	36,358,021 T/	A/h	${ }^{\text {c8 }}$	23,411,131 T/3	${ }^{\text {c/c }}$	c9	6,880,291 T/	6/6	c9	$52,152,077 \mathrm{~T} / \mathrm{/}$	c / c
c1	33,521,308/7/	A/A	${ }_{c} 2$	31,932,9836/6	A/A	${ }_{c}^{\text {c3 }}$	$18,943,770 \mathrm{c} / \mathrm{G}$ $18,950,118 \mathrm{cc}$	${ }_{6 / \mathrm{T}}^{\text {T/ }}$	${ }_{\text {c }}{ }_{4}$	${ }^{8,529,1317 / 7}$	${ }_{6 / 6}^{c / c}$	${ }_{C 4}^{c 4}$	53,381,3416/G	N/	${ }_{c}^{\text {c5 }}$	32,301,825 6/6	A/a	${ }_{\text {c6 }}{ }^{\text {c }}$	25,650,566//7	A/A	${ }_{c}^{C 7}$		${ }_{6}^{\text {T/T/ }}$	${ }_{c 8}^{c 8}$	23,411,147 $/$ /	${ }_{\text {c/c }}^{\text {c/ }}$	${ }^{c 9}$	-6,966,947 $1 / \mathrm{A}$	T/T	c9		c/c
${ }_{\text {c1 }}$	33,541,256 C/C $33,541,267 \mathrm{G} / \mathrm{G}$	$\begin{gathered} \text { A/A } \\ A / A \end{gathered}$	${ }_{c}^{C 2}$	32,022,459 c/c	$\begin{aligned} & \text { A/A } \\ & \mathrm{T} / \mathrm{T} \end{aligned}$		$18,987,546 \mathrm{G} / \mathrm{G}$	$\begin{gathered} \text { 6/6/ } \\ \hline \end{gathered}$	${ }_{\text {c4 }}^{\text {c4 }}$	8,552,082 A/A 8,557,680 c/C	$\begin{aligned} & \text { 6/G } \\ & T / T \end{aligned}$	$\begin{aligned} & c 4 \\ & c 4 \\ & \hline \end{aligned}$	53,410,018 G/G	$\begin{aligned} & \mathrm{T} / \mathrm{T} \\ & c / \mathrm{c} \end{aligned}$	${ }_{\text {c5 }}$	32,347,002 I / T 32,537,168 A/A	$\begin{aligned} & c / c \\ & c / c \end{aligned}$	$\begin{aligned} & \text { c6 } \\ & \text { c6 } \end{aligned}$	25,842,094 A/A	$\begin{aligned} & \mathrm{A} / \mathrm{A} \\ & 6 / \mathrm{G} \end{aligned}$	$\begin{aligned} & c 7 \\ & c 7 \end{aligned}$	$36,473,755 \mathrm{~A} / \mathrm{A}$ $36,565,767 \mathrm{~A} / \mathrm{A}$	$\begin{aligned} & \text { 6/6 } \\ & \text { 6/G } \end{aligned}$	$\begin{aligned} & c 8 \\ & c 8 \\ & c \end{aligned}$	23,438,114 A/A $23,438,892 \mathrm{G} / \mathrm{G}$			6,971,714 4/6	I/		${ }_{5}^{52,219,623 \mathrm{c} / \mathrm{c}} 5$	\%/
${ }_{\text {c1 }}$	3, $3541,114 \mathrm{G}$	A/A	${ }^{2}$	32,183,365	T/T	${ }^{\text {c3 }}$	${ }^{18,987} 18,724 \mathrm{~A}$	6/6	c4	${ }^{8,622,918} \mathrm{c/C}$	6/6	${ }_{4}$	55,410,123 6/6	a/h	${ }_{\text {cs }}$	${ }^{32,537,262 ~} \mathrm{~T} / \mathrm{T}$	a/h	${ }_{6}$	25,842,153 T/T	c/c	${ }_{c}$	36,550,009 G/G	T/T	${ }^{\text {c8 }}$	23,438,988	T/T	c9	6,987,891 A / L	c/c	c9	52,359,493 ¢/6	/c
c1	33,869,072 T/T	c/c	${ }^{2}$	32,289,609 c/c	A/A	c3	19,139,582 $\mathrm{G/G}$	A/a	c4	8,751,985 c/c	I/r	c4	53,410,139 c/C	6/6	c5	32,591,284 c/c	T/r	${ }^{6}$	25,913,452 c/c	A/a	${ }^{\text {c }}$	36,605,964 A / A	T/r	c8	23,438,992 c/c	T/r	c9	7,055,152 A/A	c/c	c9	52,372,311 c/c	6/6
c1	34,062,994 c/c	I/T	c2	32,289,610 A/A	T/r	c3	19,139,618 c/c	T/T	c4	8,783,577 $/ \mathrm{T}$	c/c	c4	53,410,160 //r	6/6	${ }^{\text {c5 }}$	32,612,311 / /	a/a	c6	25,913,500 c/c	T/r	${ }^{7}$	36,771,827 A/a	c/c	c8	23,620,813 c/c	T/r	c9	7,055,260 c/c	6/6	c9	52,378,521 6/6	c/c
c1	34,062,999 c/6	a/A	c2	32,738,921 A/A	c/c	c3	19,139,627 $7 / \mathrm{T}$	c/c	c4	9,092, $262 \mathrm{~T} / \mathrm{T}$	6/6	c4	53,426,238 T / T	c/c	${ }^{5}$	32,712,495 6/6	c/c	c6	25,942,688 T / T	c/c	${ }^{\text {c }}$	36,77, 828 7/T	6/6	c8	23,662,219 6/6	a/4	c9	7,056,928 T / T	c/c	c9	52,386,215 ז/T	c/c
c1	34,063,038 I / T	c/c	c2	32,739,020 6/6	T/T	c3	19,152,986 /T	c/c	c4	9,092,286 $/$ /r	a/a	${ }^{\text {c }}$	53,535,941 $/ 6$	a/a	${ }^{5}$	32,712,500 6/6	c/c	c6	25,942,694/T	c/c	${ }^{1}$	36,882,519 //a	T/r	c8	23,78,884 6/6	T/r	c9	7,056,937 //	c/c	c9	52,445,936 /T	6/6
c1	34,111,325 6/6	T/r	${ }^{\text {c2 }}$	32,745,941 $1 / \mathrm{A}$	c / c	${ }^{\text {c3 }}$	19,388,090 c/c	6/6	${ }^{\text {c }}$	9,092,391 A / A	6/6	${ }^{\text {c4 }}$	53,50,088 6/6	I/r	${ }^{\text {c5 }}$	32,756,265 A/A	6/6	${ }^{\text {c6 }}$	25,942,718 $\mathrm{c/C}$	T/T	${ }^{\text {c7 }}$	36,961,423 A / A	c / c	${ }^{\text {c8 }}$	23,789,134 A/h	${ }^{\text {6/6 }}$	${ }^{\text {c }}$	7,056,958 7/7	${ }^{\text {c/c }}$	${ }^{\text {c }}$	52,513,545 $\mathrm{c/C}$	T/
c1	34,154,692 c/c	A/A	c2	32,746,070 c/c	7/r	${ }^{\text {c3 }}$	19,388,215 T / T	c/c	c 4	9,096,960 $/$ /r	6/6	${ }^{\text {c4 }}$	53,671,922 A/A	T/r	${ }^{\text {c5 }}$	32,756,329 6/6	A/A	${ }^{\text {c6 }}$	25,942,766 6/6	a/A	${ }^{\text {c }}$	36,965,508 c/c	T/r	${ }^{\text {c8 }}$	23,789,166 A/	T/T	c9	7,002,603 7/	c/c	c9	52,513,7916/6	/r
c1		${ }_{6}^{6 / 6}$	${ }_{C 2}^{C 2}$	32,766,811//	c/c	${ }_{c}^{\text {c3 }}$	19,447,019 6/6	A/a	${ }^{\text {c4 }}$	9,216,703 $/ \mathrm{c}$	A/A	${ }_{C 4}^{c 4}$	$53,691,409 \mathrm{~T} / \mathrm{T}$ $53,61,439$	N/	${ }_{\text {c5 }}^{\text {c5 }}$	${ }^{32,858,8006 / 6}$	N/	${ }_{\text {c }} 6$	25,921,835 6	A/a	${ }_{c}^{C 7}$		${ }_{\text {c/ }}^{6 / \mathrm{G}}$	${ }_{c 8}^{c 8}$	$23,78,175 \mathrm{~A} / \mathrm{L}$ $23,831,0096 / 6$	T/T/	${ }^{\text {c9 }}$	1,073,799 7/7	c/c	${ }^{\text {c }}$		a/a
${ }_{\text {c1 }}$	34,322,188 7/7	${ }^{\text {c/c }}$	c2	32,746,820 $/$ /	T/T	${ }^{\text {c3 }}$	19,465,084 T / T	${ }^{\text {c/c }}$	${ }^{\text {c } 4}$	9,216,713 1/T	${ }^{6 / 6}$	${ }^{\text {c4 }}$	53,691,439 c/C	T/r	${ }^{\text {c5 }}$	32,975,366 A/A	T/T	${ }^{\text {c6 }}$	25,942, 847 A/A	6/6	${ }^{\text {c }}$	36,955,521 c/c	T/T	${ }^{\text {c8 }}$	23,831,009 6/6		c9	7,089,943 c/C	I/r	c9	$52,543,765 \mathrm{a} / \mathrm{A}$	6/G
${ }_{\text {c1 }}^{\text {c1 }}$	$34,415,323 \mathrm{~A} / \mathrm{A}$ $34,63,3136 / 6$	c/a	${ }_{c}{ }^{2}$	32,813,719 c/c	A/A	${ }_{\text {c3 }}^{\text {c3 }}$	${ }_{\text {19, }}^{19,468,178} 196 / 6$	$\begin{aligned} & \text { A/A } \\ & c / C \end{aligned}$	${ }_{\text {c4 }}^{\text {c4 }}$	${ }^{9} 9256,3666 / \mathrm{C}$	\%/T	${ }_{\text {c4 }}^{\text {c4 }}$	53,760,247/T	A/A	${ }_{\text {c5 }}{ }^{\text {c5 }}$	32,975,417 $\begin{aligned} & \text { 6/6 } \\ & 32,98,499 \mathrm{~A} / \mathrm{A}\end{aligned}$	A/A	${ }_{\text {c }}^{\text {c }}$	$25,94,8596$ $25,942,925$	c/a	${ }_{\text {c7 }}{ }^{\text {c7 }}$	${ }^{36,955,6046}$	a/A	${ }_{\text {c8 }} \mathrm{C8}$	$23,881,030 \mathrm{c}$ $23,988,55 \mathrm{c}$	${ }_{\text {c/G }}^{6 / 6}$	${ }_{\text {c9 }} 9$	$7,177,296$ $7,349,467$ 1,18	c/c	c9	$52,591,723 \mathrm{~T} / \mathrm{T}$ $52,888,488 / 6$	A/A
	34,673,815 c/c	6/G	${ }^{2} 2$	32,887,071/4	A/A	${ }^{\text {c3 }}$	19,476,996 c/C	T/T	${ }^{\text {c }}$	9,256,420 I / T	A/A	c4	53,71, $519096 \mathrm{G/G}$	A/4	${ }^{\text {c5 }}$	33,053,900 c/c	6/6	${ }_{\text {c }}$	25,94,556 6/6	1/a	${ }^{\text {c }}$	36,976,133 T / T	c/c	c8	24,041,870 //a	6/6	c9	7,431,363 a/a	c/c	${ }^{\text {c9 }}$	52,808,9989/6	T/r
	34,953,160 $/$ /	c/c	c2	32,926,795 c/c	6/6	c3	19,476,129 $/$ /	c/c	c4	9,265,276 c/c	I/ף	cs	32,048 6/G	T/r	cs	33,116,511 c/c	A/a	c6	25,94,569 G/6	T/T	${ }^{\text {c }}$	36,979,433 6/6	T/r	c8	24,338,978 //7	c/c	c9	7,431,425 A / A	I/r	c9	52,808,539 6/6	a/a
	34,95, 180 A/	c/c	c2	33,034,189 A / A	6/6	${ }^{\text {c3 }}$	19,644,935 r/7	6/6	${ }^{\text {c4 }}$	9,265,369 c/c	I/r	${ }^{\text {c5 }}$	48,489 6/6	c/c	${ }^{\text {c5 }}$	33,121,732 ז/T	A/4	${ }^{\text {c } 6}$	25,944,56 A/A	6/6	${ }^{\text {c }}$	36,981, 318 8/	6/6	c8	24,661,658 A/a	T/r	c9	7,526,154 A/A	6/6	c9	52,809,619 a/	6/G
	,41,766/c	A/A		33,050,689 6/6	A/4	c3	649,989 6/6	I/T	c4	9,311,3376/6	N/		48,605 c/c	I/T	cs	33,134,800 c/c	\%/G	c6	25,988,3868/6	A/A		7,034,080 $\mathrm{I} /$	c/c		24,696,610	6/6		7,544,119	6/6	c9	52,813,806	

Appendix II Cont.

Table S2: Cont. : Differences in Allelic variants at various chromosomes positions in parent lines; the cultivated rapid cycling DHSL150 and C07060.

C1	35,049,212	c/c	C2	33,061,888 T / T	c/c	C3	20,311,462 A / A	6/G	C4	9,32, $808 \mathrm{c} / \mathrm{c}$	I/T	c5	6,033 $/$ /T	c/c	c5	33,134,825 c/c	a/A	c6	25,997,59 A / A	6/G	C7	37,144,840 $/ \mathrm{T}$	c/c	c8	24,794,541 C/C	6/G	c9	7,582,988 A / L	6/G	c9	52,838,300	a/d
C1	35,110,638 6/6	A/A	C2	33,061,888 T / T	c/c	c3	20,311,411 A / A	6/6	c4	324,881 $1 / \mathrm{A}$	c/c	c5	5,667 6/G	a/a	c5	33,310,511 T/T	c/c	c6	25,997,566 /T	a/a	C7	37,144,845 A / A	c/c	c8	24,938,411 C/C	I/T	c9	1,583,072 I/	c/c	c9	52,888,306 6/6	a/a
C1	35,110,645 T / T	c/c	C2	33,158,192 6/6	I/T	c3	c/c	6/6	c4	9,336,04 T / T	a/a	${ }^{5}$, 5556	A/A	${ }^{5}$	33,452,993 c/c	I/T	${ }^{6}$	26,047,2386/6	a/A	C7	37,146,652 A/	6/6	c8	25,23.	c/c	c9	1,583	r/T	c9	52,860,350 A/	r/T
cl	35,110,657 I/	6/G	C2	33,226,552 $/$ /	a/a	c3	20,312,102 $/ 6$	I/T	C4	9,336,611 c/c	I/T	c5	85,759 6/6	c/c	${ }^{5}$	33,477,955 c/c	6/6	c 6	26,212,672 $/$ /	6/6	C7	37,146,703 A/	6/6	C8	25,23, 2128	a/A	c9	1,58	6/6	c9	52,908,900 I/	c/c
C1	35,110,838 I / T	A/A	C2	33,226,588 G / C	a/A	c3	20,317,867 A/A	6/G	C4	9,480,497 c/C	A/A	c5	85,769 A/A	6/G	c5	33,471,980 //	c/c	${ }^{6}$	26,273,409 C/	T/T	C7	37,146,743 $/$	a/4	c8	25,233,824 c/	r/T	c9	1,585,554 c/	r/T	c9	52,98,918 ${ }^{\text {/ }}$	c/c
C1	35,201,996 c/c	T/r	C2	33,283,544 6/6	I/T	c3	20,371,879 8/4	c/c	C4	9,597,105 6/6	a/a	c5	100,224 T/T	6/G	c5	34,140,466 A/	I/T	c6	26,461,872 $6 / 6$	a/4	C7	37,146,788	6/6	c8	25,289,229 6/	A/A	c9	1,591,711 A/	6/6	c9	$52,988,951 \mathrm{~T}$	c/c
C1	35,55,405 A / A	T/r	C2	33,359,248 /	6/6	c3	20,425,	c/c	C4	9,597,112 c/C	I/T	c5	364,936 /T	a/a	c5	34,140	c/c	${ }^{6}$	26,461,940	6/6	C7	37,226,115	a/ ${ }^{\text {a }}$	c8	25,312,339	/6	c9	1,591	c/c	c9	52,98, 966 ch	I/T
C1	35,555,424/6	A/A	C2	33,78,837	a/A	c3	20,492,51	T/T	C4	9,615,981 $6 / \mathrm{C}$	c/c	c5	408,243 A/A	T/T	${ }^{\text {c }}$	34,140	I/T	c6	26,518,611	I/T	C7	37,287,731	c/c	c8	25,312,818	//	c9	1,609,	c/c	c9	52,98, 983 A	T/T
C1	35,55,554 7/7	6/G	C2	33,943,714 6/	a/A	c3	20,492,5	a/a	C4	9,616,238	I/T	${ }^{5}$	409,891	I/T	c5	34,122,	6/G	${ }^{6}$	26,600,879 G/6	a/A		37,288,313	I/T	c8	25,33, 4056	c/c	c9	1,664,652	a/A	c9	52,908,984 6/	I/T
C1	35,575,628 I / T	c/c	C2	33,943,736 A/4	6/6	c3	20,492,6	a/a	C4	9,778,955 c/C	a/A	c5	109,902 $6 / 6$	a/4	c5	34,322,691 c/c	a/A	${ }^{6}$	26,633,169 G/6	a/a	C	37,30,411 C	T/T	c8	25,451,545 6/6	I/T	c9	1,664,654 A/	I/T	c9	52,909,074 T/	6/6
cl	35,575,655 6/6	a/4	C2	34,034,	6/G	c3	20,868,550 A/4	c/c	c4	179,084	6/6	c5	217 T/	c/c	${ }^{5}$	34,322,587 c/c	6/6	c6	26,63, $899 \mathrm{~T} / \mathrm{T}$	/c		1,304,932	/1/1	c8	25,451,835	co	c9	7,670,794 $/$ /			, 58	c
C1	35,634,901	I/T	C2	34,095,	6/G	c3	20,904,015 a / A	I/T	c	81,5	r/1	c5	420,2411/7	co	c5	34,343,6836/6	A/A	c6	26,633,947 C/C	6/6		304,		c8	25,55,5	/r	c9	1,614,556/			, 88	
C1	35,634,92	a/A	C2	34,096,028 //	A/A	c3	20,904,046 6/6	A/A	c4	81,5	c	${ }^{5}$	18 C	ת/1	${ }^{5}$	34,343,686 A/	T/1	${ }^{6}$,698,790	/a		,305,		c8	25,59,536	G	c9	1,674,966 $/ 6$			92	c
C1	35,635,8	c/c	C2	105, 0	a/a	c3	,	c/c	c4	,860,567 A/A	6/G	c5	,2086/6	//A	${ }^{5}$	34,343,719 m / L	c/c	c6	,698,822 G	c		7,305,114 A	/6	c8	25,71, 590 A	6/G	c9	1,689,117	/4	c9	, $45,961 \mathrm{~A}$	/G
C1	35,666,36	6/G	C2	34,105,067 A/	6/G	c3	20,906,623 6/6	a/A	c4	9,860,584	6/G	c5	,202	c/c	c5	34,347,467 6	A/A	c6	26,698,828 c/c	a/A	C7	37,32, 788	/1/	C8	25,67,638 A/	c/c	c9	1,689,723	6/6	c9	5,045,970	a/a
C1	35,110,	I/T	C2	119	T/T	c3	,10,	I/T	c 4	,860,615 T/	c/c	c5	59,102 //	c/c	c5	34,347,504 c/c	a/A	${ }^{6}$,698,871	a/a	C7	37,326,836 A/	6/G	c8	26,073,137 A/	c/c	c9	1,703,279 c/	T/T	c9	,005,991 $6 / 6$	a/a
C1	$35,711,142 \mathrm{~A} /$	c / c	C2	34,185,2	a/A	c3	994,	6/6	c	9,878,011 6/6	a/A	c5	56, $116 \mathrm{~A} / 1$	I/T	c5	,414	a/A	c6	, 698,881	6/6	C7	37,38,582 A	6/6	C8	26,243,162 c/	I/7	c9	7,157,987 6	a/4	c9	53,046,036 //r	a/a
C1	35,711,165 1/7	6/G	C2	34,220,849 a/	6/G	c3	058,	a/A	C4	9,878,022 G/6	a/A	c5	593,768 A/4	6/6	c5	34,414,949	a/a	c6	6,978,61 G/6	a/a	C7	37,406,726 A/	6/G	C8	26,246,090 I/	6/6	c9	1,835,783 c/	T/T	c9	53,053,948 / A	6/6
cl	$35,760,400 \mathrm{G} /$	A/A	C2	34,451,245 a/	6/6	c3	21,079,247 c	I/T	C4	10,189,060 G/6	c/c	cs	594,205 $\mathrm{T} / 7$	c/c	c5	34,414,988 A/L	I/T	c6	27,022,624	6/6	C7	37,562,861 6	a/a	C8	26,289,893 6/	a/A	c9	7,858,095	6/6	c9	53,053,963 A/	I/T
C1	35,764,064 6/6	T/r	C2	34,451,305 T / T	a/A	c3	21,146,811 A / L	I/T	C4	10,189,070 C/	6/6	cs	595,102 C/	1/7	c5	34,454,335 A / A	I/T	c6	27,078,828 G	c/c	C7	37,56, 885 5	a/a	C8	26,611,539 I/	c/c	c9	7,895,462 A/	6/6	c9	53,053,975 A / A	I/T
C1	35,888,391 6	A/A	C2	34,648,759 c	I/r	c3	21,222,932 G/6	a/a	C4	10,222,423	G/6	cs	595,106	c/c	c5	34,459,1116/6	1/4	c6	27,081,549	a/a	C7	37,562,936	a/a	c8	26,692,118 6/	c / c	c9	7,896,617 c/		c9	53,062,087 c/c	I/T
C1	$36,354,173 \mathrm{c} / \mathrm{C}$	A/A	c2	34,704,700 1/8	a/a	c3	21,226,604 6/6	a/a	C4	10, $354,410 \mathrm{~A} / \mathrm{A}$	c/c	cs	651,626 G/G	//T	c5	34,470,832 6/9	I/T	c6	27,085,881	a/a	C7	31,588,777	A/A	C8	26,734,647 C/		c9	8,327,124 A/		c9	53,261,214 G/	a/a
C1	36,354,272 c/C	T/r	C2	34,704,709 T/	c / c	c3	21,226,862 c	a/a	C4	10,35,614	a/A	c5	651,716 $6 / 6$	c / c	c5	34,470,860 A/4	I/T	c6	2,091,147	6/6	C7	31,578,921		c8	26,792,610 6/	c/c	c9	8,413,272 6/		c9	$53,661,312 \mathrm{~T}$	c/c
1	36,56,324 c/c	T/R	C2	35,085,506 c/	6/G	c3	21,232,913 A	6/G	C4	10,355,640	I/T	c5	651,1886/G	a/a	c5	34,553,4	6/G	c6	21,103,657/c	T/r	C7	31,578,951	c/c	c8	26,792,653 A/	1/r	c9	8,413,123		c9	53,266,711	c/c
C1	36,552,104 6/6	A/4	C2	35,105,884	a/A	c3	21,234,	6/G	C4	10,35,	c/c	c5	651,809 c/c	a/a	c5	34,553	6/G	c6	27,103,62 A/4	6/6	C7	37,622,31	I/T	c8	26,792,669 A/	c/c	c9	8,414,			$53,271,123$	a/a
cl	36,594,164 c/c	T/T	C2	35,106,941	a/a	c3	21,259,	I/T	C4	10,413,996	1/4	c5	697,074 //T	6/G	c5	34,737,	c/c	c6	7,126,094 T / T	c/c	C7 31	31,622,318	a/a		26,825,659 A/	I/T	c9	8,495,687		c9	53,420,110 G/6	r/T
cl	36,61, 582 6 /6	a/a	C2	35,216,	6/6	c3	21,262,	c/c	C4	10,414,000 $/ \mathrm{A}$	I/T	c5	697,098 a / A	6/6	c5	34,737,742 6/6	I/T	${ }^{6}$	21,126,126 c/c	a/d	C7	37,22,366 1	a/a	c8	26,82, 888 A	6/G	c9	8,495,693 I/		c9	53,487,859 a/	/1/
c1	36,614,585 A / A	6/6	C2	35,339,2	a/A	c3	21,311,	6/G	C4	10,52,	/c	c5	426 C	a/a	c5	34,731,760 c/	a/a	c6	522,256	a/A	C7	37,63,536 A		c8	26,932,085	a/a	c9	3,495,735 c/		c9	,550,950	
cl	36,617,56	r/T	C2	35,	r/T	c3	137,	6/G	C4	10,	6/G	c5	141,4376/6	a/a	${ }^{5}$	34,751,618 6/6	a/A	${ }^{6}$	1,522,478	c/c	C	7,633,5	T/1	c8	26,932,240		c9	,495,759 a		c9	55,548	
cl	37,223,2	I/T	C2	35,	//A	c3	21,470,163 7/	c/c	C4	10,	6/G	c5	560 c/	6/G	c5	34,862,265 A/4	c/c	c6	1,80,901	I/I	C7	1,63,55		c8	26,932,265	/a	c9	,506,54 A/		c9	5,551	//A
cl	37,223,602 $\mathrm{C/G}$	a/A	C2	35,629,296 c/c	G/G	C3	21,533,289 C/C	T/T	C4	10,521	I/T	c5	,608 A/A	c/c	c5	6/6	d/A	c6	22	a/A	7	,635,499	6/6	c8	26,932,266	A/A	c9	, 506,758 c/	6/6	c9	51	
C1	37,224,361	I/r	C2	35,62	a/a	c3	21,664,997 C/C	I/R	C4	10,562,	c/c	c5	307,548 A/A	I/T	${ }^{\text {c5 }}$	34,866,878 c	A/A	${ }^{\text {c } 6}$	36,838 A	6/6	C1	37,636,151 6	a/a	C8	26,981,080 IT	${ }^{6 / 6}$	c9	8,655,283 6/	T//	c9	3,971,611 C	6/6
1	37,224,471 1/T	6/G	C2	35,663,	a/A	c3	21,664,810 G/6	c / C	C4	10,562,92	c/c	c5	807,665 c/c	//a	c5	34,866,881 1/6	a/A	c6	36,888	6/6	C7	37,73,966 G/	a/ ${ }^{\text {a }}$	C8	26,981,302	I/T	c9	8,656,351 c/	I/T	c9	3,973,654	c/c
cl	37,225,170 6/6	A/a	C2	35,667,702 c/	a/A	c3	21,664,	6/6	C4	10,574	6/6	c5	830,213 a/d	G/G	c5	34,930,50	1/A	${ }^{6}$	2,055,683	a/a	C7	37, 173,9716	a/a	c8	26,982,005 6	c/c	c9	8,807,717 a/1	6/G	c9	53,986,235 c/c	I/T
C1	37,225,194 c/c	T/r	-	35,668,570 c	a/4	C3	21,690,721 $\mathrm{a} /$	6/6	C4	10,594,293	I/7	cs	873,434	a/a	c5	34,947,628 6/6	1/4	${ }^{6}$	2,055,694	c / c	C7	37,758,126 //	c / C	c8	26,98,076	6/G	c9	8,809,867 A/	6/6	,	53,986,251 6 /6	a/a
1	37,225,341 A/A	6/G	C2	35,668,623 T/	a/A	C3	21,690,816 T / T	c/c	C4	10,54, $226 \mathrm{c} /$	I/T	cs	813,541 6/6	I/T	c5	35,303,693 A/	I/T	c6	28,140,658	c/c	C7	37,158,159 c/	6/6	C8	26,98,097	c/c	c9	8,809,892 6/6	a/a	c9	54,023,144 6/6	a/a
C1	37,225,392 T/T	6/G	C2	35,672,920 A/	6/G	C3	21,690,821 6	c/c	C4	10,59,461 6	1/4	cs	901,562 $6 / 6$	c/c	c5	35,305,466 T/	c/c	c6	28,185,695	a/a	C7	37,758,190 $/$ /	c/c	c8	27,032,1936	I/T	c9	8,826,711	c/c	c9	54,08,4536/	I/T
C1	37,370,044 c/c	T/r	C2	35,672,925 6/6	I/T	C3	21,698,249 T / T	2/a	C4	10,594,476 / $/ \mathrm{A}$	T/T	c5	930,595 a / A	c/c	c5	35,306,221 c/	I/T	c6	28,196,921 T/	c/c	C7	37,158,232 I/	6/6	C8	27,033,279 A/	c/c	c9	8,886,034 A/	6/G	c9	54, $188,540 \mathrm{~A} / \mathrm{A}$	6/6
C1	37,30,053 C / C	I/7	C_{2}	35,76,429 7/	a/4	C3	21,700,020 I / T	c/c	C4	10,983,212 A/A	6/6	c5	954,76 ${ }^{\text {a }}$	6/G	c	35,43,889	c/c	${ }^{6}$	28,196,960 /	T/T	C7	37,158,466 c/	6/6	C8	27,033,291	c/c	c9	8,881,993	a/a	c9	54,88,574 A/2	I/T
C1	37,388,060 c/c	T/r	C2	35,776,531 6/	c / c	${ }^{3}$	21,704,721 A/A	I/T	C4	11,068,137 A/A	c/c	c5	1,008,216 6/6	c / c	${ }^{\text {c5 }}$	35,438,899 T / L	6/6	c6	28,197,018 6/6	c/c	C7	37,158,496	c/c	C8	27,033,294 c/	6/6	c9	8,899,430 c/	T/T	c9	54,086,583 A/	6/G
C1	37,38,097 6/6	A/A	C2	35,776,585 //	c / c	c3	21,871,988 A	c/c	C4	11,068,4036/6	I/7	cs	1,008,228 A / A	I/T	c5	35,489,855 T	a/A	c6	28,197,064 A/4	c/c	C7	37,184,362 G/	a/a	C8	27,196,355	6/G	c9	8,986,159 a/	c/c	c9	54,147,992 A/A	6/G
C1	37,394,1036/6	A/A	C2	35,811,899 6/	a/A	${ }^{3}$	$21,884,863 \mathrm{C}$	2/a	C4	11,140,464 A/A	6/6	cs	1,032,887 c/c	T/T	c5	35,661,767 T/	6/G	c6	28,270,649 7/4	a/a	C7	37,80,041	T/T	c8	27,198,078 c	T/T	c9	8,986,258 I/	a/A	c9	54,155,979 A/d	6/G
C1	37,857,135 1/4	6/G	C2	36,031,629 I/	c / c	${ }^{3}$	22,076,898 A	T/7	C4	11,140,411	c/c	c5	1,032,843 6/G	c/c	c5	35,867,227 c/c	6/6	c6	28,270,676 c/C	I/T	C7	37,80, ,631	6/G	C8	27,388,47 A/4	c/c	c9	9,036,82 T / L	c/c	c9	54,156,657 A/A	6/6
C1	38,040,619 $/$ /7	A/ ${ }^{\text {a }}$	C2	36,078,35 A / A	6/6	c3	22,104,494 6/6	a/a	C4	11,303,459 6/6	a/A	c5	1,033,586 //T	6/6	cs	36,167,381 C/C	I/T	c6	28,270,677 c/c	a/4	C7	37,808,401 c/c	I/T	c8	27,390,206 A/A	6/6	c9	9,036,890 A/	c/c	c9	54,156,705 c/C	I/T
1	8,04	I/T	C2	6,078,3	c/c	c3	22,23	a/A	c4	11,401,259 $/$ /7	A/A	c5	1,033	I/T	c5	36,278,787 c	I/T	c6	3,80	I/7	C7	37,873,312 T / T	A/A	c8	27,426,217 T/T	A/A	c9	9,036,892 $6 / 6$	A/A	c9	54,272,102 $/$ //	6/G

 chromosomes.

Appendix II Cont.

Table S2: Cont. : Differences in Allelic variants at various chromosomes positions in parent lines; the cultivated rapid cycling DHSL150 and C07060.

cl	38,040,704 7/T	c/c	${ }^{\text {c2 }}$	36,170,82 A / A	6/6	${ }^{\text {c3 }}$	22,235,860 c/c	T/r	${ }^{\text {c }}$	11,403,517 //A	6/G	c5	1,113, $781 \mathrm{~L} / \mathrm{A}$	${ }^{6 / 6}$	c5	36,293,599 //	c/c	${ }^{\text {c6 }}$	28,598,160 A/4	\%/G	${ }^{\text {c7 }}$	37,875,232 A / A	\%/G	${ }^{\text {c8 }}$	27,458,30 6/6	a/a	c9	9,038,429 I / T	6/G	${ }^{\text {c9 }}$	54,272,240 $/$ /r	c/c
c1	38,040,709 7/7	a/a	${ }^{2}$	36,253,835 c/c	6/6	c3	22,259,779 //	6/G	${ }^{4}$	11,403,536 c/	I/T	cs	1,116, $139 \mathrm{~T} / \mathrm{m}$	A/A	${ }^{5}$	36,573,04 I / r	c / c	${ }^{\text {c }}$	28,58, 191 c/c	I/T	${ }^{7}$	37,907,516 c/c	I/T	c8	27,596,59 \%/7	c/c	c9	9,072,22 a / A	c/c	c9	54,388,981 A / A	6/6
${ }^{1}$	38,06, ,22 c/c	I/r	c2	36,331,434 ז/	6/6	c3	22,264,796 A/	6/6	c4	11,403,595 n / m	6/6	${ }^{\text {c }}$	1,116,340 c/c	A/A	${ }^{5}$	36,533,926/6	A/A	${ }^{6}$	28,719,707 6/G	A/A	c	37,911,389 T / T	6/6	c8	27,606,395 A / A	c/c	c9	9,072,747/r	A/A	c9	54,418,685 A/A	6/6
c1	38,06, 8,812/c	T/r	c2	36,395,021 c/c	6/6	c3	22,273,601 G/6	A/4	c 4	11,654,591 T / T	c/c	cs	1,122,106 A/4	6/G	${ }^{5}$	36,840,688 r / r	A/A	${ }^{\text {c }}$	28,72, ,45 c/c	T/T	c	37,912,008 $/ \mathrm{T}$	6/6	c8	27,608,414 6/6	c/c	c9	9,169,036 G/6	a/a	c9	54,435,212 T / T	a/A
cl^{1}	38,120,612 c/c	1/A	c2	36,395,035 6/6	a/4	${ }^{\text {c3 }}$	22,338,432 c/c	T/r	c4	11,756,988 T / I	c/c	${ }^{5}$	1,122,217 G/6	T/r	${ }^{5}$	36,884,738 c/c	T/T	${ }^{\text {c6 }}$	28,736,688 c/c	6/6	C7	37,912,050 G/6	A/a	c8	27,600,658 6/6	a/4	c9	9,249,817 C/C	I/T	c9	54,435,299 $/ \mathrm{m}$	a/A
${ }^{1}$	38,121,2106/G	7/r	c2	36,464,885 c/c	T/r	c3	22,489,737 A/A	T/r	c 4	11,770,139 c/c	T/T	${ }^{\text {c }}$	1,138,192 $/$ /r	A/A	${ }^{5}$	36,928,803 r / n	A/A	${ }^{\text {c6 }}$	28,736,720 6/G	T/7	c	37,976,975 A / A	6/6	c8	27,606,688 G/G	c/c	c9	9,259,700 A/	6/6	c9	54,520,882 G/6	a/a
c1	38,121,324 6/6	a/A	c2	36,694,247 6/6	a/4	c3	22,490,022 T / T	c/c	${ }^{4}$	11,835,659 m / T	6/6	cs	1,138,411 A/4	6/G	${ }^{5}$	36,932,811 //	c/c	${ }^{6}$	28,961,704 \%/7	6/6	C7	37,96,984 c/C	A/a	c8	27,60,749 c/c	I/7	c9	9,259,749/6	c/c	c9	54,537,389 c/c	6/6
c1	38,306,900 c/	T/r	${ }^{2}$	36,694,273 c/c	a/a	c3	22,490,057 T / T	c/c	${ }^{4}$	11,835,704 T / T	c/c	cs	1,139,902 6/6	A/A	${ }^{5}$	37,099,919 A / A	6/G	${ }^{6}$	28,961,811 A / A	6/6	c7	37,96,994 $/$ /	c/c	c8	27,608,330 $/ 6$	a/a	c9	9,286,159 6/6	I/7	c9	54,537,454 A/A	c/c
c1	38,327,83 c/c	a/A	c2	36,694,306 T / r	c/c	c3	22,495,174 ז/T	c/c	c4	11,862,060 $/ \mathrm{m}$	c/c	c5	1,248,191 c/c	T/r	${ }^{\text {c5 }}$	37,115,099 I / r	c / c	${ }^{\text {c6 }}$	28,961,907 G/G	1/4	C7	37,971,095 //	c/c	c8	27,651,001 1/6	c/c	c9	9,286,524 T / r	a/4	c9	54,539,951 c/c	I/T
c1	38,327,88 7/7	c/c	c2	36,872,331 1/4	6/6	${ }^{\text {c3 }}$	22,495,182 G/6	1/4	${ }^{4}$	11,862,067 1/4	c/c	${ }^{5}$	1,289,119 c/c	T/r	${ }^{\text {c5 }}$	37,300,758 A/A	6/G	${ }^{\text {cb }}$	28,961,934 ז/7	6/G	c 7	37,971,247 //	T/T	c8	27,73, 106	6/G	c9	9,286,536 1/4	T/7	c9	54,546,555 6/6	I/T
c1	38,412,46 c/c	A/A	C2	36,812,401 1/ 1	c/c	${ }^{13}$	22,495,299 T / r	c/c	c4	11,862,121 C/C	T/T	${ }^{5}$	1,311,152 c/c	T/r	${ }^{5}$	37,329,454 c/c	A/A	${ }^{\text {c6 }}$	28,974,127 A/4	c/c	C7	37,989,237 $/ 6$	T/T	c8	27,739,594 c/c	I/T	c9	9,287,057 A / A	c/c	c9	54,570,288 A/A	I/T
c1	38,599,61 c/c	a/A	C2	36,891,888 6/6	c/c	c3	22,495, $303 \mathrm{~A} / \mathrm{A}$	6/6	c 4	11,914,577/	c/c	c^{5}	1,35,811 $/$ /	c/c	${ }^{5}$	37,329,457/c	T/T	${ }^{\text {c }}$	28,974,189 c/c	T/7	${ }^{1}$	38,030,209 6/6	A/4	c8	27,747,355 //a	6/6	c9	9,329,620 A/ A	6/6	c9	54,50,300 6 /6	a/a
c1	38,713,707 c/c	T/r	${ }^{2}$	36,891,502 G/6	a/A	c3	22,495,327 A/A	c/c	${ }^{4}$	11,940,566 c/c	T/T	c^{5}	1,35,844 A/A	T/T	${ }^{5}$	37,343,081 c/c	6/G	${ }^{6}$	28,976,069 c/c	1/4	${ }^{7}$	38,030,211 //a	T/T	c8	27,781,499 //a	I/T	c	9,329,633 c/c	I/T	c9	54,628,263 G/G	c/c
c1	38,896,384/4	6/G	c2	36,891,510 c/c	r/r	${ }^{\text {c3 }}$	22,495,333 G/6	A/4	${ }^{4}$	12,298,157 7/n	c/c	${ }^{\text {c5 }}$	1,372, 115 6/6	I/r	c5	37,343,137 I / r	A/A	${ }^{\text {c6 }}$	29,232,839 A/A	c/c	${ }^{\text {c }}$	38,031,692 G/6	A/4	c8	27,845,358 c/6	A/4	c9	9,329,69 3/4	c/c	c9	54,638,117 I / T	3/4
c1	38,896,45 c/c	I/	C2	36,968,788 A / A	6/6	${ }^{\text {c3 }}$	22,495,415 c/c	/r	${ }^{4}$	12,341,997/C	a/A	c^{5}	1,332, 151 I/n	c/c	cs	37,343,199 T / n	c / C	${ }^{\text {cb }}$	29,24, ,75 A / A	6/6	${ }^{\text {c }}$	38,038, $558 \mathrm{r} / \mathrm{T}$	A/4	c8	27,880,62 T / I	a/4	c9	9,381,118 7/ת	c/c	c9	54,638,123 c/c	6/6
c1	39,03, 5 ,55 c/c	I/r	c2	36,971,76 r / r	c/c	${ }^{\text {c3 }}$	22,496,140 //r	c/c	${ }^{4}$	12,421,200 c/c	a/A	c_{5}	1,383,596 c/c	T/r	cs	37,344,988/6	c/c	${ }^{\text {cb }}$	29,24, $335 \mathrm{c} / \mathrm{c}$	1/4	C7	38,038, 414 A/A	T/T	c8	27,880,736 //	c/c	c9	9,531,819 T / r	c/c			
c1	39,033,621 A / A	6/G	C2	37,143,743 T / r	6/6	c3	22,527,041 $/$ /r	c/c	c4	12,465,618 I / I	6/G	${ }^{5}$	1,386,634 A/A	c / c	${ }^{5}$	37,345,060 G/G	A/A	${ }^{\text {c }}$	29,311,633 6/G	/4	C7	38,081,421 c/c	T/T	c8	27,880,803 T / r	a/4	c9	9,532,088 I / r	c/c			
c1	39,033,93 7/7	c/c	C2	37,263,116 c/6	I/r	c3	22,527,092 A/A	T/1	c4	12,465,669 3/A	6/G	${ }^{5}$	1,386,646 c/c	T/T	${ }^{5}$	37,482,416 r / r	c/c	${ }^{\text {c }}$	29,311,556 6/G	1/4	C7	38,081,853 6/6	c/c	c8	27,909,705 c/6	a/4	c9	9,532,133 I / r	A/4			
c1	39,033,66 7/7	6/G	c2	37,295,50 T / r	6/6	${ }^{\text {c3 }}$	22,604,101 1/r	c/c	${ }^{4}$	12,465,673 1/4	6/G	${ }^{5}$	1,549,661 6/G	A/A	${ }^{\text {c }}$	37,583,383 c/c	T/r	${ }^{\text {cb }}$	29,317,988 c/c	T/7	C7	38,086,261 1/T	6/6	c8	27,918,129 c/G	a/4	c9	9,542,509 //4	6/G			
C1	39,033,189 6/6	I/r	c2	37,295,614 6/6	a/a	${ }^{\text {c3 }}$	22,633,930 $/ \mathrm{A}$	T/r	${ }^{4}$	12,492,042 T / T	c/c	${ }^{\text {c }}$	1,549,688 6/6	T/r	cs	37,583,411 1/ת	6/G	${ }^{\text {cb }}$	29,379,014 1/T	c/c	${ }^{4}$	38,097,808 1/4	c/c	c8	27,918,145 A / A	6/G	c9	9,551,26 6/6	T/T			
c1	39,034,059 7/7	c/c	c2	37,295,616 T / r	a/A	,	22,633,932 G/G	T/1	${ }^{4}$	12,492,180 C/G	a/A	${ }^{\text {c5 }}$	1,549,694 c/c	A/A	${ }^{\text {c }}$	37,583,688 $\mathrm{r} / \mathrm{\square}$	c / c	${ }^{\text {cb }}$	29,393,197 G/G	1/4	${ }^{1}$	38,098,223 A/4	6/6	c8	27,929,479 T / n	6/G	c9	9,887,536 1/4	6/6			
c1	39,034,065 A / A	6/G	C2	37,399,699 A / A	6/G	c3	22,648,299 r / r	c/c	c4	12,492,846 a/	6/G	${ }^{5}$	1,69,389 A/A	T/T	${ }^{5}$	37,583,809 c/c	T/T	${ }^{\text {c6 }}$	29,813,889 c/c	T/7	C7	38,136,069 c/c	6/6	c8	28,054,122 A/A	6/6	c9	9,887,52 A / A	6/6			
cl^{1}	39,034,125 5/7	c/c	c2	37,498,782 T / T	a/A	c3	22,660,390 $/ \mathrm{T}$	1/4	c4	12,492,945 T / T	c/c	${ }^{5}$	1,69,523 6/6	A/A	${ }^{5}$	37,586,718 c/c	T/T	${ }^{\text {c6 }}$	29,855,482 c/c	1/4	${ }^{\text {c }}$	38,179,906 T / T	c/c	c8	28,054,133 A / A	6/6	c9	9,869,237 1 / ${ }^{\text {a }}$	T/T			
c1	39,034,134 c/c	T/r	c2	37,543,283 c/c	I/T	c3	22,680,269 m / T	c/c	c4	12,492,956 A/A	c/c	cs	1,24,433 $/ 6$	A/A	${ }^{5}$	37,586,802 6/6	A/A	${ }^{6}$	29,90, 900 A/A	c/c	${ }^{1}$	38,179,953 //7	c/c	c8	28,516,908 c / G	a/a	c9	9,869,274 I / R	6/6			
c1	39,248,288/6	A/A	${ }^{2}$	37,549,403 x / T	c/c	c3	22,681,403 A / A	6/6	c4	12,496,135 c/c	I/T	c^{5}	1,126,6996/6	A/A	${ }^{5}$	37,586,861 c/c	T/T	${ }^{6}$	29,903,953 a / A	6/6	C7	38,197,229 c/C	T/T	c8	28,516,945 $/ \mathrm{A}$	6/6	c	10,014,761 T / r	c/c			
C1	39,248,33 8/4	6/G	C2	37,590,078 6/6	a/A	${ }^{\text {c3 }}$	22,843,323 A / A	6/6	c4	12,665,458 A/A	6/G	${ }^{5}$	1,135,535 T / T	6/G	${ }^{5}$	37,927,132 I / r	c/c	${ }^{\text {c }}$	29,917,314 T / T	6/6	C7	38,252,101 c/c	T/T	${ }^{\text {c }}$	28,620,200 $/ \mathrm{G}$	I/T	c9	10,015,913 A / A	6/6			
c1	39,288,562 6/G	I/r	C2	37,618,477 c/c	T/r	${ }^{\text {c3 }}$	22,963,955 c/c	6/6	${ }^{4}$	12,763,533 1/4	6/6	${ }^{\text {c5 }}$	1,888,471 I/	c/c	cs	38,154,4888/6	A/A	${ }^{\text {cb }}$	30,342,102 A/A	6/6	${ }^{\text {c }}$	38,252,310 I / T	c/c	C8	28,842,603 G/G	T/T	c9	10,20, $219 \mathrm{al} / \mathrm{A}$	6/G			
c1	39,37, 874 4/7	c/c	c2	37,621,999 c/G	T/r	${ }^{\text {c3 }}$	22,963,963 A/4	T/1	${ }^{4}$	13,148,818 /6	a/A	c^{5}	1,886,551 I/7	A/A	${ }^{\text {c }}$	38,198,538 A/A	6/G	${ }^{\text {cb }}$	30,397,185 5/7	c/c	C7	38,277,667 A/A	c/c	C8	28,861,85 A / A	c/c	c9	10,293,600 T / R	6/G			
c1	39,37, 891 1/7	c/c	C2	38,128,102 6/6	c/c	c3	22,963,973 G/6	1/4	c 4	13,217,154 A/A	6/6	${ }^{5}$	1,886,561 //7	c/c	${ }^{5}$	38,198,541 c/c	6/G	${ }^{\text {c6 }}$	30,411,588 8/4	6/6	C7	38,281,074 c/C	6/6	C8	28,880,495 c / G	T/T	c9	10,293,705 c/c	T/7			
c1	39,379,55 A / A	T/r	C2	38,402,146 A/A	6/6	c3	23,075,897 T / T	c/c	c 4	13,231,377 c/c	a/A	cs	1,88,566 $/$ /	c/c	${ }^{\text {c }}$	38,208,323 A/4	6/G	${ }^{\text {c }}$	30,411,728 \%/7	A/4	c 1	38,281,084 A / A	6/6	C8	28,928,765 T / T	c/c	c9	10,296,966 A/	6/6			
c1	39,441,121 T/7	c/c	C2	38,577,600 c/	c/c	c3	23,122,939 c/c	T/r	c4	13,232,142 c/c	T/T	${ }^{5}$	1,90,846 c/c	T/T	${ }^{5}$	38,208,366 c/	6/G	${ }^{\text {c6 }}$	30,48, ,53 7/7	c/c	${ }^{\text {c }}$	38,434,411 $/$ /	c/c	C8	29,036,167 c/c	6/6	$c 9$	10,297,127 A/A	c/c			
c1	39,441,158 8/4	6/6	C2	38,517,709 c/c	T/r	${ }^{\text {c3 }}$	23,356,680 c/c	I/	${ }^{4} 4$	13,233,119 A / A	6/G	${ }^{\text {c5 }}$	1,925,663 7/n	A/A	cs	38,291,509 G/G	c/c	${ }^{\text {cb }}$	30,512,673 A/4	6/6	${ }^{\text {c }}$	38,434,442 T / T	c/c	c8	29,063,059 m / r	c/c	c9	10,409,146 //	6/6			
c1	39,490,316 6/6	a/A	c2	38,590,100 c/c	T/r	${ }^{\text {c3 }}$	23,412,314 6/6	c/c	${ }^{4}$	13,553,104 c/6	c/c	${ }^{\text {c5 }}$	1,925,666 c/c	T/r	cs	38,291,617 c/c	T/r	${ }^{\text {cb }}$	30,662,123 A/A	c/c	${ }^{\text {c }}$	38,434,528 $\mathrm{C/G}$	c/c	c8	29,063,105 c/G	a/4	c9	10,409,208 r / r	c/c			
${ }^{1}$	39,505,296 6/6	a/A	C2	38,590,126 A/A	I/r	${ }^{\text {c3 }}$	23,412,322 c/c	T/r	${ }^{4}$	13,512,949 c/c	a/A	${ }^{\text {c }}$	1,925,687 6/6	A/A	c5	38,291,620 I/ $/$	c/c	${ }^{\text {c }}$	30,655,420 A/4	6/6	${ }^{\text {c }}$	38,434,618 r / T	c/c	${ }^{1} 8$	29,063,162 T / h	a/d	c9	10,409,243 6/6	a/a			
c1	39,592,96 8/4	6/G	C2	38,621,907 A / A	c/c	c3	23,412,366 c/c	6/6	c4	13,630,205 n / r	A/A	${ }^{5}$	1,925,758 c/c	A/A	${ }^{5}$	38,669,513 c/c	T/T	${ }^{\text {c }}$	30,65, $229 \mathrm{a} / \mathrm{A}$	6/G	C7	38,438,186 c/c	T/T	C8	29,419,058 A / A	6/6	$c 9$	10,409,300 G/6	a/4			
c1	39,615,771 A / A	T/r	c2	38,712,958 A / A	6/G	${ }^{\text {c3 }}$	23,465,764 c/c	A/4	${ }^{4}$	13,630,238 A/A	c/c	${ }^{\text {c5 }}$	1,925,762 c/c	T/r	${ }^{\text {c }}$	38,669,609 c/c	A/A	c6	30,695,488 7/7	c/c	${ }^{\text {c }}$	38,438,187 A/A	c/c	c8	29,485,488 //	T/7	c9	10,409,312 T / r	a/4			
C1	39,681,452 c/	A/A	${ }^{2}$	38,894,235 c/c	I/T	c3	23,496,017 6	1/4	${ }^{4}$	13,769,593 c/c	a/a	c^{5}	1,926,943 T / n	c/c	${ }^{5}$	38,669,650 m / T	A/A	${ }^{6}$	30,80, 096 c/c	1/4	${ }^{7}$	38,455,399 //	c/c	C8	29,885,466 $/$ /r	c/c	c9	10,568,955 m / T	6/6			
c1	39,681,67 7/4	T/r	C2	38,894,248 T / T	c/c	c3	23,996,023 c/c	1/4	c4	13,769,719 c/c	T/T	cs^{5}	1,96,381 6/6	A/A	${ }^{5}$	38,670,14 I / r	A/A	${ }^{\text {c6 }}$	30,994,740 c/c	T/T	C7	38,455,420 $/$ /	A/	C8	29,753,179 c/6	T/7	c9	10,569,600 //	6/6			
c_{1}	39,681,824 A/A	6/G	C2	39,230,601 G / G	a/A	${ }^{\text {c3 }}$	23,496,203 c/c	A/4	${ }^{4}$	13,930,051 1/4	6/G	${ }^{5}$	1,96,432 /6	T/r	${ }^{5}$	38,678,067 6/6	A/A	${ }^{\text {c6 }}$	31,169,801 T/工	c/c	${ }^{\text {c7 }}$	38, 455, $450 \mathrm{~T} / \mathrm{T}$	c/c	${ }^{\text {c }}$	29,875,987 T / R	c/c	c9	10,569,137 c/c	a/a			
Cl^{1}	39,681,931 //7	c/c	C2	40,506,920 G/6	c/c	c3	23,555,028 //r	6/6	c4	13,930,175 c/c	I/T	${ }^{5}$	1,96, 886 6 /7	c/c	${ }^{5}$	38,697,253 6/G	T/T	${ }^{\text {c6 }}$	31,211,122 6/6	1/4	C7	38,461,420 6/6	T/T	C8	29,876,028 A/A	c/c	c9	10,569,794 A/4	T/T			
c1	39,714,003 8/4	c/c	C2	40,549,284 7/	c/c	${ }^{\text {c3 }}$	23,723,486 c/c	1/4	${ }^{4}$	13,449,761 c/c	6/6	c5	1,969,618 A/A	6/6	cs	38,697,255 5/n	A/A	${ }^{\text {c6 }}$	31,215,005 c/c	T/T	${ }^{\text {c }}$	38,461,564 A/A	6/6	c8	29,975,970 c/c	T/T	c9	10,605,553 A / A	6/G			
c1	39,715,121 c/c	a/A	C2	40,558,818 6/6	c/c	c3	23,723,566 A/A	6/6	c 4	14,239,414 A/A	T/T	c5	2,185,530 I / T	A/A	${ }^{5}$	38,706,926/6	A/A	${ }^{\text {c }}$	31,247,221 $1 / \mathrm{A}$	6/6	c 1	38,463,166 $/$ /	A/a	C8	29,975,972 A / A	6/6	c9	10,605,563 r / R	c/c			
cl^{1}	39,737,006 6/6	c/c	C2	40,558,952 T / r	c/c	c3	23,744,639 c/c	T/r	c4	14,250,712 c/c	a/a	cs^{5}	2,186,103 c/c	T/T	${ }^{5}$	38,710,256/6	T/T	${ }^{\text {c6 }}$	31,247,233 5/T	1/4	C7	38,471,133 $/ 1 \mathrm{C}$	6/6	${ }^{2} 8$	30,041,623 T / T	d/c	$c 9$	10,605,631 C / s	a/4			
c1	39,775,888 7/7	a/A	C2	40,594,505 T / T	6/6	${ }^{\text {c3 }}$	23,895,202 A / A	6/6	${ }^{4}$	14,280,156 c/c	T/r	c5	2,186,181 6/6	A/A	cs	38,710,303 7/	c / c	${ }^{\text {c6 }}$	31,29,662 c/c	6/6	${ }^{\text {c7 }}$	38,484,883 c/c	a/4	c8	30,330,922 I/r	a/4	c9	10,814,555 6/6	a/4			
c1	39,775,850 T/7	c/c	c2	40,594,652 G / G	a/A	${ }^{\text {c3 }}$	23,895,210 c/c	6/6	c4	14,280,171 T/	c/c	c^{5}	2,186,302 6/6	A/A	${ }^{\text {cs }}$	38,710,388 A / A	6/G	${ }^{\text {c6 }}$	31,46, 247 ¢/G	1/4	${ }^{\text {c }}$	38,487,106 T / T	1/4	C8	30,445,464/6	c/c	c9	10,892,547 T / r	c/c			
C1	39,779,405 5/7	6/6	C2	40,594,646 6/6	a/A	${ }^{\text {c3 }}$	23,895,250 c/c	T/	c4	14,326,437 c/c	T/r	c5	2,211,873 c/c	T/r	${ }^{\text {c }}$	38,735,650 \%/	A/A	${ }^{\text {c6 }}$	31,592,654 c/c	T/T	${ }^{4}$	38,492,855 6/6	c/c	c8	30,463,256 //	c/c	c9	11,049,290 $/$ /	6/6			
Cl^{1}	39,942,145 6/6	a/A	C2	40,662,288 G/6	c/c	${ }^{\text {c3 }}$	23,911,318 G / G	1/4	c 4	14,326,452 A / A	I/r	cs^{5}	2,220,919 T / T	6/G	${ }^{5}$	38,735,656/6	A/A	${ }^{\text {c6 }}$	31,615,455 c/c	1/4	C7	38,492,906 T / T	c/c	${ }^{2}$	30,489,247 c/c	6/6	c9	11,168,762 T / r	6/6			
C1	40,036,65 c/c	T/r	c2	40,720,461 1/8	6/G	${ }^{\text {c3 }}$	24,073,117 c/6	T/r	${ }^{4}$	14,326,490 m / n	a/a	c5	2,329, $113 \mathrm{x} / \mathrm{n}$	6/6	cs	38,735,835 5/7	c/c	${ }^{\text {c6 }}$	31,628,547 1/7	c/c	${ }^{\text {c7 }}$	38,514,760 c/6	T/T	c8	30,557,258 A/A	c/c	c9	11,168,72 c/c	6/G			
c1	40,036,719 c/C	I/r	c2	40,720,499 c/c	T/r	${ }^{\text {c3 }}$	$24,073,196 \mathrm{~A} / \mathrm{A}$	T/r	${ }^{4} 4$	14,375,721 1/ת	c/c	c5	2,332, 847 1/4	T/r	cs	38,756,170 G/G	A/A	${ }^{\text {cb }}$	31,628,628 8/4	c/c	${ }^{\text {c7 }}$	38,559,900 c/c	T/T	c8	30,601,654 6/6	c/c	c9	11,252,820 6/6	T/T			
${ }^{\text {c1 }}$	40,054,415 6/G	c/c	C2	40,843,582 c / c	6/G	${ }^{\text {c3 }}$	$24,074,108 \mathrm{~A} / \mathrm{A}$	T/r	${ }^{\text {c }}$	14,375,735 c/c	A/A	c5	2,486,617 c/c	A/A	${ }^{5}$	38,756,235 c/c	6/G	${ }^{\text {c6 }}$	31,629,404 6/6	1/4	${ }^{\text {c }}$	38,560,236 c/c	T/T	c8	30,601,666 //r	c/c	c9	11,252,86 A / A	T/7			
c1	40,128,222 c/c	T/r	c2	40,844,811 G/6	T/r	${ }^{\text {c3 }}$	24,074,256 c/c	T/	${ }^{4}$	14,478,932 6/G	T/r	c5	2,524,115 T / n	A/A	${ }^{5}$	38,756,252 6/6	c/c	${ }^{\text {c6 }}$	31,722,392 I / T	c/c	${ }^{\text {c }}$	38,655,722 A/A	6/6	c8	30,601,715 //r	c/c	c9	11,293,711 $/$ /	a/a			
	T/r	A/A	c2	40,861,942 A / A	6/6	c3	0,312	a/A	c4	14,478,954 /6	c/c	c5	2,555,823 1/1	A/ ${ }^{\text {a }}$	c5	38,756,264 4/6	A/A	${ }^{6} 6$	31,850,673 c/c	A/4	${ }^{1}$	38,652,755 6/6	c/c	c8	30,602,	c/c	c9	11,33, 142 A	6/6			

chromosomes.

Appendix II Cont.
Table S2: Cont. : Differences in Allelic variants at various chromosomes positions in parent lines; the cultivated rapid cycling DHSL150 and C07060.

C1	40,259,216 G/G	c/c	C2	40,862,050 C/C	T/T	C3	24,196,547 A / A	c/c	C4	14,504,173 C / C	T/T	${ }^{\text {c5 }}$	2,652,767 I/T	c/c	${ }^{\text {c5 }}$	38,756,341 1 /T	G/G	c6	32,150,560 m / T	A/A	C1	38,691,315 m / T	c / c	C8	30,604,043 T / T	G/G	c9	11,336,649	G/G
C1	, $59,988 \mathrm{I} / \mathrm{m}$	c/c	C2	41,301,306 T / T	c/c	C3	24,196,565 c/c	6/G	C4	I/T	A/A	${ }^{5}$	2,663,244/C	a/A	c5	38,756,386 A/4	c/c	C6	32,150,588 c/c	T/T	C7	38,697,485 G/6	I/T	C8	30,643,171 A / A	c/c	c9	15,39 A / A	c/c
C1	40,278,920	6/G	C2	41,301,	A/A	c3	24,32	c/c	C4	14,541	I/T	cs	2,663,282 c/c	T/T	C5	6/9	a/A	c6	32,164,273 $/ \mathrm{C}$	c/C	C7	38,697,503 A / A	6/G	C8	30,643,174 T/	A/A	c9	11,499,383 A / A	c/c
C1	40,322,882 I / T	A/A	C2	41,580,822 c/c	6/G	C3	24,389,965 c/c	6/G	C4	14,604,076 T/T	c/c	cs	2,713,712 T / T	6/G	C5	38,790,210 A / A	6/G	C6	32,254,163 G / G	c / C	C7	38,773,041 C/C	6/G	C8	30,643,198 T/	a/A	c9	11,499,421 A / L	c/c
C1	40,474,735 C / G	I/T	C2	41,580,896 G / G	I/T	C3	24,390,022 c / C	T/T	C4	14,604,095 $6 / 6$	a/A	c5	2,816,010 A / A	c/c	c5	38,794,775 A / A	6/G	c6	32,316,939 c/c	T/T	C7	38,826,119 c/c	T/T	c8	30,646,491 $/ \mathrm{C}$	T/T	c9	11,499,425 T/	G/G
C1	40,495,110 C/C	T/T	C2	41,625,120 G/G	c/c	C3	$24,447,923 \mathrm{c} / \mathrm{c}$	T/T	C4	14,611,1	T/T	c5	2,816,	c/c	C5	38,794,940 c/C	a/a	c6	32,426,711 c/c	T/I	C7	38,826,140 G/C	c/c	C8	30,646,514 T/2	c/c	c9	11,514,474 C/C	T/T
C1	40,542,660 c/c	6/G	C2	41,625,127 T/T	c/c	C3	24,526,675 G/G	I/T	C4	14,611,175 T/T	6/G	cs	2,816,	c/c	c5	38,915,602 G / G	A/A	c6	32,427,222 T/T	c / C	C7	38,854,502 G/G	T/T	C8	30,685,417 G/G	a/A	c9	11,514,568 A/A	6/G
C1	40,722,7	c/c	C2	41,625,13	a/a	C3	24,526,732	6/G	C4	1,887,403 G/G	A/A	c5	2,816,05 c/c	A/A	C5	38,951,768 c/c	A/A	c6	32,581,136 A / A	6/G	C7	,855,486 $/ 6$	A/A	C8	30,690,376 T / T	c/c	c9	,50,291 A/A	6/G
C1	40,765,905	c/c	C2	41,625,188	6/G	c3	24,776,748 G / G	c/C	C4	,904,480	T/T	c5	2,816,126 T	A/A	C5	38,951,805 T / T	A/A	c6	32,602,756 c/c	a/A	c	38,855,498 G/6	a/A	C8	30,690,381 T / T	A/A	c9	11,50,309 G/6	A/A
C1	40,768,546 A/A	G/G	C2	41,700,619 a / A	c/c	C3	24,802,802 T / T	c/c	C4	14,915,794 $/ \mathrm{C}$	A/A	c5	2,893,159 G / G	a/A	C5	38,951,912 T / T	G/G	c6	32,635,499 $/$ /	6/G	C7	38,862,327 T/	a/a	C8	30,728,250 T / T	6/G	c9	11,570,444 c/c	A/A
C1	40,824,790 c/c	T/T	C2	41,701,135 G / G	I/T	C3	24,802,837 c/c	T/T	C4	15,364,148 T / T	6/G	c5	2,893,174 A / A	6/G	c5	38,952,153 c/c	a/a	c6	32,716,603 c/c	T/T	C7	38,862,114 $6 / 6$	a/ ${ }^{\text {a }}$	C8	30,937,104 A / d	6/G	c9	11,570,637 c/c	r/T
C1	40,916,156 c/c	I/T	C2	41,701,141 I / T	a/a	C3	24,841,255	I/T	C4	15,590,917 G/6	c/c	c5	2,893,178 A / A	c/c	c5	38,952,584 G/6	A/A	${ }^{6} 6$	32,771,992 c/c	6/G	C	39,094,162 C/	T/T	C8	31,069,978 I/7	c/c	c9	11,661,935 c/c	r/T
C1	40,911,411 C/C	I/T	C2	41,701,199	c/c	C3	24,843,2	6/6	C4	15,603,356 //T	c/c	c5	2,893,312 c/c	T/T	c5	38,952,657 A/ A	I/T	${ }^{6} 6$	32,778,675 G / G	a/A	C7	39,094,226	a/A	C8	31,078,021 T/T	a/ ${ }^{\text {a }}$	c9	11,661,989 G/G	T/T
C1	40,911,82 I / T	a/A	C2	41,701,200 G / G	a/A	C3	24,898,414 c/C	T/T	C4	15,603,396 c/c	G/G	cs	2,925,177 $6 / \mathrm{G}$	a/a	C5	38,952,889 a/a	6/G	c6	32,810,626 T / T	6/G	C	39,239,117 c/c	T/T	C8	31,08, $1096 \mathrm{G} / \mathrm{G}$	A/A	c9	12,434,276 T / T	c/c
C1	40,91, $511 \mathrm{~T} / \mathrm{T}$	c/c	C2	41,832,873 G / G	a/a	c3	24,898,461 c/c	T/T	C4	15,630,322 T / T	G/G	cs	2,930,649 G/G	I/T	c5	38,953,107 c/c	I/T	${ }^{6}$	32,810,752 T / T	c / c	C7	39,305,624 A / A	6/G	C8	31,206,415 G/G	T/T	c9	12,450,351 G / G	A/A
C1	41,006,800 T / T	c/c	C2	41,834,087 T / T	6/G	c3	24,899,586 c/c	I/T	C4	15,709,489 $/$ /T	6/G	c5	2,930,703 I / T	c/c	c5	38,953,773 a / A	T/T	${ }^{6}$	32,810,910 $/$ /	c/c	C7	39,340,455 $/ \mathrm{G}$	A/A	C8	$31,351,701 \mathrm{c} / \mathrm{c}$	A/A	c9	12,450,487 G/G	A/a
C1	41,012,675 G/G	a/a	C2	41,835,838 G	I/T	C3	24,912,207	T/T	C4	15,709,507 c/c	6/G	c5	2,956,549 c/c	T/T	c5	38,987,082 G/G	a/A	c6	33,017,770 $/$ /T	c/c	C	39,340,566 c/c	T/T	C8	31,471,869 c/c	T/T	c9	12,458,770 G/G	a/a
C1	41,021,883 A / A	G/G	C2	42,240,693 G / G	c / c	c3	24,912,28	A/A	C4	15,729,560 $/$ /r	c	cs	2,956,569 $/$ /T	//4	c5	38,987,146 G / G	A/A	c6	33,017,782 c/c	T/T	c	39,396,581 A/A	T/T	c8	31,557,221 G/6	a/a	c9	12,660,143 A / A	6/G
C1	41,129,237 I / T	6/G	C2	42,340,999	6/6	C3	24,925,264	6/G	C4	15,729,589 G/G	a/a	cs	2,959,940 G / G	c/c	c5	38,989,531 $\mathrm{G/G}$	c/c	${ }^{6}$	33,019,640 A / A	6/G	${ }^{4}$	39,396,590 c/c	T/T	C8	31,613,406 T / T	c/c	c9	13,327,205 C / C	6/G
C1	41,129,552 C/C	I/T	C2	42,340,983 T / T	c/c	c3	24,950,764 T/T	c/c	C4	15,729,628 a / A	G/G	c5	3,020,649 c/c	I/T	c5	38,989,625 T / T	c/c	${ }^{6}$	33,031,563 c/c	a/a	C7	39,396,676 A / A	c / c	C8	31,613,427 A/A	6/G	c9	13,408,403 G / G	T/T
C1	41,38, 2 ,95 G/G	a/4	C2	42,345,754 c/c	a/a	C3	24,950,791 $1 / \mathrm{T}$	c / c	c4	15,730,046 $/$ /r	c/c	cs	3,121,043 c/c	I/T	c5	38,989,663 T / T	6/6	c6	33,086,692 G/G	a/a	C7	39,397,099 m / T	a/k	C8	$31,613,42 \mathrm{G} / \mathrm{G}$	T/T	c9	13,642,380 c/c	A/A
C1	41,399,195 A / A	6/G	C2	42,345,762 T / T	A/A	C3	24,961,808 c/c	1/a	C4	15,730,069 T / T	A/A	c5	3,123,732 c/c	6/G	c5	39,017,301 //T	c/c	c6	33,086,885 c/c	A/A	C7	39,419,556 c/c	I/T	C8	31,616,251 A / A	6/G	c9	13,679,900 c/c	T/T
C1	41,392,495 A	6/G	C2	42,60	A/A	C3	24,	c/c	C4	15,808,937 G/G	a/A	c5	T/T	6/G	c5	104,134 G/6	c/c	c6	56 A / A	6/G	C7	39,419,577 G/6	T/T	C8	31,616,264 G/G	a/A	c9	13,69,499 c/c	6/G
C1	41,414,562	c/c	C2	42,608,847	A/A	C3	24,961,8	a/a	C4	15,812,372 G/G	a/A	cs	3,186,622 c/C	a/4	C5	$39,104,145 \mathrm{~T} / \mathrm{T}$	c/c	${ }^{6}$	33,194,364 6/6	a/ ${ }^{\text {a }}$	C7	39,480,957 $/$ /r	a/ ${ }^{\text {a }}$	C8	31,655,387 c/c	A/A	c9	13,752,617 G/G	A/A
C1	41,414,604 c/c	T/T	C2	42,647,466 A / A	I/T	C3	24,963,199 $/$ /T	a/A	C4	16,103,359 c/c	T/T	c5	3,186,637 A / A	I/T	C5	39,104,733 a / A	6/6	c6	33,456,761 T / T	6/G	C	39,530,721 A / A	T / T	C8	31,655,426 A / A	6/G	c9	13,802,026 A / A	6/G
C1	41,414,13 G/G	A/A	C2	42,750,659 c/c	a/a	C3	24,963,277 G / G	a/a	C4	16,142,813 T / T	6/G	c5	3,275,253 c / c	a/a	c5	39,122,417 I / T	c/c	${ }^{6}$	33,499,558 G/6	a/a	C7	39,759,056 c/c	T/T	C8	31,69, $357 \mathrm{~A} / \mathrm{A}$	6/G	c9	13,826,968 c/c	T/T
C1	41,48,299 c/c	I/T	C2	43,177,062 G/6	T/T	C3	24,972,779 //	6/G	c4	16,159,114 a / A	G/G	cs	3,275,270 G / G	a/a	c5	39,125,417 $/$ /T	c/c	${ }^{6}$	33,525,385 a / A	6/6	C7	39,782,802 c/c	T/1	C8	31,69, $365 \mathrm{c} / \mathrm{c}$	I/T	c9	13,826,985 A / A	6/G
Cl	41,498,334 A / A	6/G	C2	43,220,504 T / T	A/A	C3	$24,972,833 \mathrm{a} / \mathrm{A}$	I/T	C4	16,268,543 c/c	G/G	c5	3,318,677 A / A	c/c	c5	39,125,442 c/c	T/T	c6	33,678,557 G/G	A/A	C7	39,797,842 A / A	6/G	C8	31,704,195 c/c	I/T	c9	13,827,003 a / A	c/c
C1	41,498,45	I/T	C2	43,231,600	c/c	C3	24,	6/G	c4	16,372,	c/c	c5	I/T	c/c	C5	39,125,844 T/T	c/c	c6	33,826,415 A / A	c/c	C7	39,797,854 A / A	I/T	C8	31,70, $218 \mathrm{~T} / \mathrm{T}$	c/c	c9	13,935,936 A / A	6/G
C1	41,498,479 A	c/c	C2	43,328,636	G/G	c3	24,984,115	A/A	C4	16,527,270 6	c/c	cs	3,341,833 I / m	c/c	c5	39,125,883 T / T	c/c	${ }^{6}$	34,021,107 c/c	I/T	C7	39,878,744 T / T	c / c	C8	31,704,304 T / T	6/G	c9	$13,951,010 \mathrm{I} / \mathrm{T}$	6/G
C1	41,498,522 G/G	I/T	C2	43,381,025 c/c	A/A	C3	24,985,887 G/G	A/4	C4	16,680,692 c/c	6/G	c5	3,358,601 A / A	T/T	c5	39,125,907 T / T	c / c	c6	34,021,127 A / A	6/6	C	39,912,180 T / T	6/G	C8	31,704,318 A/A	G/G	c9	13,951,012 T / T	c/c
C1	41,504,108 T / T	c/c	C2	43,381,031 c / c	I/T	C3	24,986,045 a / A	I/T	C4	16,689,965 c/c	I/T	c5	3,358,616 A / A	6/G	c5	39,134,529 G / G	a/a	${ }^{6}$	34,046,259 c/c	T/T	C7	39,912,188 6/6	a/k	C8	31,848,773 A / A	c/c	c9	13,975,859 $/$ /	6/G
C1	41,563,021 6/	A/A	C2	43,381,065 c/c	a/a	c3	24,986,084 G	a/a	C4	16,690,031 c/c	6/G	c5	3,458,927 A / A	c/c	c5	39,135,148 G / G	c/c	${ }^{6}$	34,046,324 A / A	6/6	C7	40,042,042 A / A	6/G	C8	31,874,202 T / T	c / c	c9	13,979,893 A / A	T/T
C1	41,563,022 G/G	a/a	C2	43,381,083 A / A	6/6	C3	25,007,821 T / T	a/a	C4	16,749,384 G/G	a/a	c5	3,554,602 G / G	a/A	c5	39,135,167 G/G	a/a	${ }^{\text {c6 }}$	34,046,336 a / A	6/G	${ }^{\text {c7 }}$	40,352,226 A / A	6/G	C8	$31,874,230 \mathrm{~T} / \mathrm{T}$	6/G	c9	14,025,530 G/G	A/A
C1	41,563,085 $/$ /7	c/c	C2	43,382,407 A/A	6/G	C3	25,007,830 T / T	a/A	c4	16,749,544 a / A	G/G	c5	3,554,605 G / G	//A	c5	39,139,373 A / A	c / c	${ }^{6}$	34,057,117 A / A	6/G	C7	40,393,232 c/c	T/T	C8	31,985,924 c/c	I/T	c9	14,131,650 c/c	A/a
C1	41,563,126 G/6	c/c	C2	43,382,420 A / A	G/G	c3	25,007,880 G/G	a/a	C4	$16,781,826 \mathrm{~A} / \mathrm{A}$	6/G	c5	3,574,901 c/c	G/G	c5	39,139,393 c/c	a/a	${ }^{6}$	34,057,132 a / A	6/G	${ }^{\text {c7 }}$	40,458,663 A / A	T/T	C8	32,02, $411 \mathrm{c} / \mathrm{c}$	T/T	c9	14,260,838 I / T	c / c
C1	41,564,289 G/G	A/A	C2	43,476,076 c/c	A/A	c3	25,007,893 c/c	A/A	C4	$16,825,813 \mathrm{~A} / \mathrm{A}$	T/T	c5	3,585,892 G/G	I/r	c5	39,153,631 A / A	G/G	${ }^{6}$	34,057,145 c/c	6/G	C7	40,461,702 A / A	c / c	c8	$32,023,432 \mathrm{G} / \mathrm{G}$	a/4	c9	14,260,859 G / G	A/a
C1	41,564,398 T / T	a/A	C2	43,476,888 T / T	c/c	c3	25,008,490 G / G	T/T	C4	16,888,677 A / A	c/c	c5	3,585,995 $6 / \mathrm{G}$	T/T	c5	39,153,690 T / T	6/G	c6	34,057,183 c/c	T/T	C7	40,612,015 G / G	a/h	C8	32,310,084 T / T	c/c	c9	14,260,878 T / T	a/a
C1	41,565,018 6/6	A/A	C2	43,498,939 c/c	I/T	c3	25,043,818 G / G	c / c	C4	16,956,730 //T	c / c	cs	3,631,693 A / A	6/G	c5	39,154,393 A / A	T/T	c6	34,057,285 G/G	A/4	C7	40,776,583 //T	a/h	C8	32,399,407 $6 / \mathrm{G}$	A/4	c9	14,337,817 G/G	A/a
C1	41,68,599 G/G	A/A	C2	43,498,965 c/c	T/T	c3	25,043,824 G/6	c/c	C4	17,281,127 A / A	6/G	cs	3,704,559 c/c	T/T	c5	39,196,046 G / G	T/T	c6	34,057,363 m / T	A/A	${ }^{\text {c7 }}$	40,810,454 A / A	6/G	C8	32,349,410 c/c	A/ ${ }^{\text {a }}$	C9	14,489,459 T / T	c/c
C1	41,68,605 G/G	A/A	C2	43,48, $966 \mathrm{c} / \mathrm{G}$	A/A	C3	25,043,842 A / A	c/c	C4	17,351,589 $/$ /	6/G	c5	3,70, $683 \mathrm{~T} / \mathrm{T}$	c/c	c5	39,373,283 A / A	6/G	${ }^{6}$	34,084,437 // A	6/G	C7	40,871,538 G/G	c/c	C8	32,39, $434 \mathrm{~A} / \mathrm{A}$	6/G	c9	14,596,419 A / A	T/r
C1	41,868,125 6/6	a/A	C2	43,499,011 T / T	a/a	c3	25,118,131 $/$ / A	6/G	C4	17,351,600 A / A	c/c	c5	3,704,691 I/r	c/c	c5	39,444,488 G / G	A/A	c6	34,094,513 T / T	c/c	C7	40,912,460 c/C	I/T	C8	32,399,470 c/c	T/T	c9	14,659,131 I / T	c / C
C1	41,868,172 $/$ /	c/c	C2	43,526,967 T / T	G/G	C3	25,144,152 C/C	I/T	C4	17,490,138 G/G	a/a	c5	3,753,171 G / G	a/a	c5	39,488,536 A/A	6/G	c6	34,094,603 A / A	6/G	C7	41,166,756 a / A	c/c	C8	32,349,647 G/G	c/c	c9	14,683,554 c/c	\%/7
C1	41,908,246 A / A	c/c	C2	43,526,968 I / T	c/c	C3	25,296,023 6/G	T/T	C4	17,52, 572 c/c	I/T	C5	3,754,233 T / T	6/G		39,48, $604 \mathrm{c} / \mathrm{G}$	A/A	${ }^{6}$	34,094,620 G/G	A/A	C7	41,175,040 I / T	c/c	c8	32,377,604 c/c	G/G	c9	14,684,899 T / T	c/c

 chromosomes.

Appendix II Cont.

Table S2: Cont. : Differences in Allelic variants at various chromosomes positions in parent lines; the cultivated rapid cycling DHSL150 and C07060.

${ }^{\text {c1 }}$	41,932,605 T / T	c/c	c2	43,537,340 T/T	A/A	c3	25,307,890 6/6	A/A	c4	18,002,431 I / T	c/c	c5	3,754,245 6/6	A/A	c5	39,554,883 6/6	I/T	${ }^{\text {c }}$	34,097,416 6/6	T/T	c 7	41,180,016 c/c	T/T	c8	32,435,737 G/6	A/A	c9	14,684,938 A / A	T/T
${ }^{1}$	42,103,028 A/A	6/6	C2	43,547,349 $/ \mathrm{A}$	6/6	c3	25,354,841 // A	6/6	c4	18,002,523 c/c	6/6	c5	3,754,285 6/6	I/T	c5	39,650,791 T / T	c/c	${ }^{6}$	34,38, $153 \mathrm{r} / \mathrm{T}$	6/6	${ }^{7}$	41,181,152 T / T	A/h	c8	32,444,343 7/	c/c	c9	14,817,926 //	6/6
c1	42,103,069 c/c	T/r	C2	43,654,302 A/A	c/c	c3	25,355,406 T / T	6/6	c4	18,092,687 A / A	6/G	c5	3,754,362 c/c	A/4	c5	39,653,125 c/c	A/A	${ }^{\text {c6 }}$	34,38, $204 \mathrm{c/c}$	I/r	${ }^{\text {c }}$	41,181,208 6/6	A/h	c8	32,444,375 c/c	A/A	c9	15,095,254 c/c	T/T
c1	42,103,137 ז/T	c/c	C2	43,769,436 6/6	a/a	c3	25,421,524 G/6	c/c	c4	18,440,987 T / T	A/a	c5	3,754,377 6/6	A/a	cs	39,653,176 6/6	A/A	c6	34,315,438 T / T	c/c	${ }^{\text {c }}$	$41,181,212 \mathrm{c} / \mathrm{C}$	6/G	c8	32,593,295 A/A	G/G	c9	15,332,589 I/7	6/6
${ }^{1}$	42,248,858 6/6	A/A	C2	43,794,034 A / A	6/G	c3	25,458,009 A / A	6/6	c4	18,741,108 7/r	A/a	c5	3,815,747 G/6	c/c	c5	39,653,201 c/c	I/T	${ }^{6}$	34,329,343 T / T	c/c	${ }^{7}$	41,181,238 6/6	A/h	c8	32,642,148 T / T	c/c	c9	15,363,747 6/6	A/a
c1	42,257,377 6/6	A/A	C2	43,932,381 $/$ /	6/6	c3	25,498,048 c/c	6/6	c4	18,791,618 //a	6/6	c5	3,857,858 A/A	6/6	cs	39,653,981 A / A	c/c	c6	34,502,347 A / A	c / c	${ }^{\text {c }}$	41,200,507 c/c	a/a	c8	32,72, $330 \mathrm{G} / \mathrm{6}$	c/c	c9	15,642,294 c/c	a/a
${ }^{1}$	42,361,150 G/6	A/A	C2	44,044,281 $/$ /T	c/c	c3	25,685,686 T / T	A/A	c4	19,281,036 c/c	T/T	c5	3,857,864 A/	6/6	c5	39,654,024 6/6	I/T	${ }^{6}$	34,521,883 T/	c/c	${ }^{\text {c7 }}$	41,203,213 \%/T	6/G	c8	32,722,457 A / A	6/G	c9	15,666,244 6/6	A/a
c1	42,362,847 G/6	A/A	C2	44,044,283 T / T	c/c	c3	26,101,543 T / T	c/c	c4	19,318,950 T / T	c/c	c5	3,857,873 c/c	I/T	c5	39,660,500 6/6	c/c	${ }^{\text {c }}$	34,711,347 T/T	c/c	c 7	41,290,901 A / A	ז/r	c8	32,72,905 T / x	c/c	c9	15,666,253 A/A	6/6
c1	42,36, 853 G/6	A/A	C2	44,044,408 T / T	A/A	c3	26,101,546 c/c	T/T	c4	19,385,313 A / A	6/G	c5	3,941,565 A / A	6/6	c5	39,660,656 6/6	T/T	${ }^{\text {c6 }}$	34,713,559 c/c	T/r	${ }^{\text {c }}$	41,290,913 T/T	A/4	c8	32,775,830 c/c	T/T	c9	15,673,755 6/6	A/4
c1	42,416,410 c/c	6/6	C2	44,044,836 c/c	A/A	c3	26,150,434 A / A	I/T	c4	19,386,930 A/A	c/c	c5	3,977,194 7/T	c/c	c5	39,665,138 7/	c/c	${ }^{\text {c6 }}$	34,713,601 A/A	6/G	${ }^{\text {c }}$	41,297,469 c/c	T/r	c8	32,818,900 c/c	T/r	c9	15,687,033 A/A	c/c
${ }^{1}$	42,429,060 c/6	A/A	C2	44,044,864 T/T	c/c	с3	26,294,815 G/6	A/A	c4	19,569,437 T / T	c/c	c5	3,977,228 c/c	a/a	cs	39,665,252 6/6	I/T	${ }^{6}$	34,713,919 G/6	A/A	${ }^{7}$	41,297,845 T / T	6/G	c8	32,897,224 G/c	T/T	c9	15,687,064 c / C	6/6
c1	42,429,203 T / T	c/c	C2	44,276,255 c/c	T/r	c3	26,436,488 T / T	6/6	c4	19,699,506 T/T	6/G	c5	4,021,431 c/c	A/4	cs	39,665,361 $\mathrm{G/G}$	A/A	c6	34,713,958 A / A	6/G	${ }^{\text {c }}$	41,352,445 A / A	c/c	c8	32,912,786 c/c	G/G	c9	15,704,226 6/6	a/a
c1	42,578,236 A/A	6/6	c2	44,318,368 6/6	c/c	c3	26,437,539 T / T	c/c	c4	19,699,743 A / A	6/6	c5	4,027,104 6/6	I/T	c5	39,665,363 7/	c/c	${ }^{6}$	34,714,204 c/c	T/T	${ }^{7}$	41, $352,452 \mathrm{~T} / \mathrm{T}$	c/c	c8	33,388,366 A/A	6/6	c9	15,706,691 c/c	6/6
c1	42,602,512 c/c	6/6	C2	44,318,377 T/T	c/c	c3	26,438,277 T/T	A/A	c4	19,699,759 c/c	a/a	c5	4,027,136 T / T	c/c	cs	39,668,258 T/T	6/6	${ }^{\text {c } 6}$	34,714,228 T/T	c/c	${ }^{\text {c }}$	41,352,488 T/T	A/a	c8	33,383,297 A/A	6/6	c9	16,499,357 T/	c/c
c1	42,604,799 6/6	c/c	C2	44,720,126 A/A	c/c	${ }^{\text {c3 }}$	26,438,315 c/c	T/7	c4	19,888,677 A / A	6/G	c5	4,027,139 6/6	A/4	c5	39,668,305 A / A	6/G	${ }^{\text {c6 }}$	34,714,237 G/6	A/A	${ }^{\text {c }}$	41,356,951 c/c	6/G	c8	33,383,345 T/7	a/A	c9	16,526,070 6/6	A/a
c1	42,604,784 c/c	6/6	C2	44,720,138 $/$ /T	6/6	c3	26,438,438 T / T	c/c	c4	20,066,456 A/A	c/c	c5	4,027,190 $/$ /	6/6	cs	39,677,888 6/6	c/c	${ }^{\text {c6 }}$	34,722,690 7/	c/c	${ }^{\text {c }}$	41,488,911 c/c	A/a	c8	33,432,076 6/c	a/a	c9	16,544,971 I/7	c/c
c1	42,604,901 A / A	6/6	${ }^{2}$	44,781,325 c/c	T/r	c3	26,438,599 9 /T	A/A	${ }^{\text {c4 }}$	20,39, $754 \mathrm{c/c}$	T/T	${ }^{\text {c5 }}$	4,027,205 5/7	6/6	${ }^{\text {c5 }}$	39,677,904 c/c	a/h	${ }^{\text {c6 }}$	34,872,843 A / A	6/6	${ }^{\text {c }}$	41,489,078 A / A	${ }^{6 / 6}$	${ }^{\text {c8 }}$	33,433,246 c/c	A/A	c9	16,544,974 T / T	${ }^{c / c}$
c1	42,604,921 c/c	T/T	C2	44,884,648 T/T	c/c	c3	26,896,422 c/c	I/T	c4	20,401,455 A / A	6/G	c5	4,027,292 6 /6	A/4	cs	39,677,928 6/6	A/A	${ }^{\text {c } 6}$	34,872,826 G/G	a/A	${ }^{\text {c }}$	41,522,002 $6 / \mathrm{G}$	A/a	c8	33,550,993 A/d	c/c	c9	16,552,494 A/A	6/6
c1	42,605,505 A / A	I/T	C2	45,007,831 c/c	T/T	c3	27,032,945 a / A	6/6	c4	20,401,554 A/A	6/6	c5	4,027,925 c/c	a/a	c5	39,678,018 A / A	6/6	${ }^{6}$	34,88,495 ¢/6	c/c	${ }^{7}$	41,551,570 A/A	6/G	c8	33,719,780 6/6	c/c	c9	16,628,479 c/c	6/6
c1	42,605,24 ¢/6	A/A	c2	45,007,844 T/T	c/c	c3	27,032,963 G/6	A/A	c4	20,472,645 T / T	c/c	c5	4,027,961 c/c	I/T	c5	39,681,948 T / T	c/c	${ }^{\text {c6 }}$	34,98, 504 A/A	c/c	${ }^{\text {c }}$	41,551,594 A / A	6/G	c8	33,720,492 6/6	c/c	c9	16,637,494 c/c	T/T
c^{1}	42,627,652 A/A	c/c	C2	45,007,862 T/T	c/c	c3	27,064,347 A/A	c/c	c4	20,638,804 T/T	c/c	${ }^{\text {c }}$	4,028,575 c/c	硡	cs	39,882,126 A / A	$6 / 6$	${ }^{\text {c6 }}$	34,888,510 c/c	A/a	${ }^{\text {c }}$	41,551,671 6/6	A/A	c8	33,720,523 A/d	c/c	c9	16,637,522 c/c	6/6
c1	42,647,083 c/c	6/6	${ }^{\text {c2 }}$	45,007,911 A / A	T/r	${ }^{\text {c3 }}$	27,115,382 A / A	6/6	c4	20,770,427 c/c	6/G	${ }^{\text {c5 }}$	4,028,623 A / A	c/c	${ }^{\text {c5 }}$	39,882,142 A / A	6/G	${ }^{\text {c6 }}$	34,898,540 A / A	6/6	${ }^{\text {c7 }}$	41,551,784 A/A	6/G	${ }^{\text {c8 }}$	33,801,082 c/c	T/r	c9	16,732,052 c/c	T/T
c1	42,701,903 G/6		c2	45,406,154 A/A	6/6	c3	27,245,571 G/6	/	c4	20,776,603 \%/r	a/a	c5	4,029,541 $/$ /T	c/c	c5	39,882,181 $6 / 6$	a/a	${ }^{6}$	35,040,823 I / T	6/6	c7	41,636,985 $/$ /r	c/c	c8	33,801,090 A/	G/G	c9	16,762,920 G/6	c/c
${ }^{1}$	42,72, 473 A / A	6/6	C2	45,415,054 6/G	A/A	c3	27,245,587 T / T	A/A	c4	20,776,604 T / T	E/G	${ }^{\text {c5 }}$	4,029,559 c/c	T/T	${ }^{\text {c5 }}$	39,882,199 T / r	a/A	${ }^{\text {c6 }}$	35,040,855 c/c	T/r	${ }^{\text {c }}$	41,637,182 6/6	A/4	c8	33,803,708 c/c	T/r	c9	16,808,072 6/6	A/4
c1	42,702,54 T / T	6/6	C2	45,453,860 G/G	c/c	c3	27,245,588 A / A	c/c	c 4	20,841,300 G/G	a/a	c5	4,066,845 T / T	c/c	cs	39,882,226 A/A	6/6	${ }^{\text {c } 6}$	35,117,634 A/A	6/G	${ }^{\text {c }}$	41,637,795 $\mathrm{6} / \mathrm{G}$	c/c	c8	33,803,739 A/A	c/c	c9	16,838,973 c/c	T/T
${ }^{1}$	42,702,615 T/T	A/A	C2	45,501,169 T/T	c/c	c3	27,371,369 A / A	c/c	c4	21,438,679 T / T	6/6	c5	4,170,881 c/c	I/T	c5	40,048,748 c/c	a/a	${ }^{6}$	35,138,025 $6 / \mathrm{c}$	a/a	${ }^{7}$	41,681,508 A / A	ז/7	c8	33,804,700 c/	G/G	c9	16,867,781 6/6	T/T
c1	42,730,114 T / T	A/A	C2	45,502,636 A/A	6/6	c3	27,373,475 G/6	c/c	c4	21,521,374 A/a	E/G	${ }^{\text {c5 }}$	4,238,322 c/c	6/G	c5	40,130,616 c/c	a/A	${ }^{\text {c6 }}$	35,235,300 T/T	c/c	${ }^{\text {c7 }}$	41,847,676 T / T	c/c	c8	33,804,788 c/C	T/r	c9	16,869,041 6/6	A/h
c^{1}	42,763,380 c/c	T/T	C2	45,689,894 6/G	a/a	c3	27,373,494 T/T	c	c 4	21,769,771 c/c	A/a	c5	4,248,705 c/c	I/T	cs	40,143,120 T / T	6/6	${ }^{\text {c } 6}$	35,386,444 a / A	c/c	${ }^{\text {c }}$	41,854,104 6/6	A/a	c8	33,804,823 A/d	T/r	c9	16,879,041 $/ \mathrm{C}$	T/T
${ }^{\text {c1 }}$	42,763,428 c/c	T/r	c2	45,830,121 6/6	A/A	${ }^{\text {c3 }}$	27,375,701 1/T	c/c	c4	21,909,763 6/6	c/c	${ }^{\text {c5 }}$	4,248,749 c/c	T/T	${ }^{\text {c5 }}$	40,150,406 6/6	a/h	${ }^{\text {c6 }}$	35,386,465 6/6	c / c	${ }^{\text {c }}$	41,854,136 A/A	6/6	c8	33,804,888 c/c	T/r	c9	16,905,245 A / A	6/6
c1	42,800,307 A/A	6/6	C2	45,830,241 $/$ /r	a/a	c3	27,381,895 T/7	c/c	c4	21,971,713 $/$ /	T/T	c5	4,387,981 c/c	I/T	c5	40,150,499 6/6	A/A	${ }^{6}$	35,454,592 T/	A/A	${ }^{7}$	41,854,186 c/c	A/h	c8	33,807,181 6/	A/A	c9	17,014,113 A/a	6/6
c1	42,800,34 A/A	T/T	C2	45,967,534 A/A	T/T	c3	27,428,236 6/6	c/c	c4	21,971,789 $/$ /a	T/7	c5	4,429,293 c/c	I/T	cs	40,150,516 //r	c/c	${ }^{\text {c } 6}$	35,454,645 $6 / \mathrm{G}$	I/r	${ }^{\text {c }}$	41,888,148 A / A	ז/r	c8	33,807,280 6/6	c/c	c9	17,166,109 T/T	6/6
c1	42,869,926 G/6	A/A	C2	45,967,560 c/c	T/r	c3	27,428,268 T / T	c/c	c4	22,035,522 G/G	A/h	c5	4,468,147 6/6	T/T	c5	40,157,502 A / A	T/T	${ }^{\text {c6 }}$	35,58, $750 \mathrm{c} / \mathrm{c}$	T/r	${ }^{\text {c }}$	41,975,577 c/c	\%/r	c8	33,831,660 A/h	T/r	c9	17,246,666 //	6/G
${ }^{1}$	42,869,983 6/6	c/c	C2	46,200,191 c/c	6/6	c3	27,428,306 $/$ /	I/T	c4	22,084,782 c/c	A/a	c_{5}	4,468,174 A/A	6/6	cs	40,213,566 A / A	6/6	${ }^{6}$	35,600,312 A/A	6/6	${ }^{7}$	41,983,988 T / T	c/c	c8	33,833,099 T/	c/c	c9	17,355,750 c/c	T/T
${ }^{1}$	42,912,404 A / A	6/6	C2	46,366,234 A/A	6/6	c3	27,841,199 c/c	T/T	c4	22,211,422 I/T	c/c	${ }^{\text {c5 }}$	4,994,323 6/G	c/c	c5	40,293,720 c/c	T/T	${ }^{\text {c6 }}$	35,697,567 ¢/G	A/A	${ }^{\text {c }}$	41,992,082 A/A	6/G	c8	33,83, $185 \mathrm{~A} / \mathrm{A}$	6/G	c9	17,306,377 A / A	6/G
c1	42,944,591 A	6/6	c2	46,366,322 6/6	A/A	c3	27,841,202 G/6	cos	c4	22,356,776 G/6	c/c	c5	4,994,327 G/G	A/4	c5	40,303,949 T / T	c/c	${ }^{6}$	35,702,458 c/d	6/6	${ }^{7}$	$42,043,473 \mathrm{~m} / \mathrm{T}$	6/G	c8	33,833,261 A/	G/G	c9	17,366,392 $/$ /r	c/c
${ }^{\text {c1 }}$	43,038,968 r / T	6/6	C2	46,366,304 A/A	6/6	${ }^{\text {c3 }}$	27,855,855 a/a	6/6	c4	22,356,717 T / T	A/4	c5	4,994,365 c/c	I/T	c5	40,396,437 c/c	6/G	${ }^{\text {c6 }}$	35,702,532 c/c	T/r	${ }^{\text {c }}$	42,054, 883 A/A	6/G	c8	33,833,361 A/2	6/6	c9	17,306,422 6/6	a/4
c1	43,051,951 6 /6	A/A	C2	46,429,696 c/c	T/T	c3	27,866,882 G/6	I/T	c4	22,949,090 6/6	c/c	c5	4,503,217 T/T	a/4	cs	40,451,925 T / T	6/6	${ }^{6}$	35,736,681 c/c	I/r	${ }^{7}$	42,057,564 G/G	a/a	c8	33,837,275 6/c	A/A	c9	17,368,172 $/$ /7	6/6
ci	43,052,092 A / A	6/6	c2	46,827,854 T / T	c/c	с3	27,866,483 A / A	I/T	c4	22,949,156 $/$ /	c/c	${ }^{5}$	4,503,253 $6 / \mathrm{G}$	I/T	c5	40,570,121 c/c	I/T	${ }^{6}$	35,736,722 A/A	c/c	${ }^{7}$	$42,072,650 \mathrm{c} / \mathrm{c}$	T/T	c8	33,877,338 6/6	c/c	c9	17,368,181 A / A	6/6
d	43,057,045 c/c	6/6	C2	46,998,180 G/6	A/A	c3	27,887,304 6/6	c/c	c4	23,028,988 c/c	6/6	c5	4,503,256 c/c	6/6	cs	40,662,868 c/c	I/T	${ }^{6}$	35,841,767 c/d	I/T	${ }^{7}$	42,139,168 6/6	A/A	c8	33,863,621 $/ 6$	T/T	c9	17,392,905 c/c	T/T
${ }^{1}$	43,095,016 T/T	A/A	C2	47,135,874 c/c	a/a	c3	27,887,330 A / A	6/6	c4	23,067,898 //	T/T	c5	4,503,303 A/A	6/6	cs	40,740,511 A/a	c/c	${ }^{6}$	35,888,638 c/d	T/T	${ }^{7}$	42,139,264 T/T	c/c	c8	33,863,655 A/	c/c	c9	17,392,926 c/c	A/a
${ }^{\text {c1 }}$	43,095,018 A / A	6/6	${ }^{\text {c2 }}$	47,135,879 c/C	T/r	${ }^{\text {c3 }}$	28,633,217 c/c	T/T	c4	23,300,607 c/c	A/h	${ }^{\text {c5 }}$	4,766,927 6/6	c/c	${ }^{\text {c5 }}$	40,916,776 6/6	T/T	${ }^{\text {c6 }}$	35,898,673 A/A	c/c	${ }^{\text {c7 }}$	42,139,305 A / A	6/6	${ }^{\text {c8 }}$	33,869,918 6/6	A/A	c9	17,736,712 T / T	c/c
c1	43,095,121 G/6	c/c	c2	47,387,515 a / A	6/G	c3	28,694,804 T/7	6/6	c4	23,651,269 G/6	a/a	c5	4,766,973 $/$ /T	c/c	c5	41,041,731 c/c	I/T	${ }^{6}$	35,888,674 c/d	G/G	${ }^{7}$	42,322,943 c/c	6/G	c8	33,870,586 c/c	T/r	c9	17,736,957 $/$ /r	A/a
${ }^{\text {cl }}$	43,113,224 T / T	A/A	c2	47,450,163 T / T	6/6	c3	28,695,159 G/G	c/c	c4	23,728,001 A / A	6/G	c5	4,837,775 c/c	A/4	c5	41,041,743 A / A	6/6	${ }^{\text {c6 }}$	35,911,927 G/G	c/c	${ }^{\text {c }}$	42,330,134 6/6	T/r	c8	33,870,966 T/	c/c	c9	17,737,496 c/c	T/T
${ }^{1}$	43,244,766 A/A	6/6	C2	47,450,774 T/T	A/A	c3	28,695,258 c/6	A/A	c4	23,844,029 T/T	c/c	c5	4,857,884 6/6	A/A	cs	41,084,271 A / A	6/6	${ }^{6}$	35,911,933 G/G	c/c	${ }^{\text {c }}$	42,330,188 6/6	A/a	c8	33,896,235 $\mathrm{T} / 7$	a/a	c9	17,739,358 6/6	A/a
c1	43,24, 830 c/c	6/6	c2	47,523,197 c/c	T/T	c3	28,695,364 T / T	6/6	c4	23,907,844 T / r	6/6	c5	4,903,835 A / A	6/6	c5	41,237,624 G/G	A/A	${ }^{6}$	35,923,121 G / G	A/A	${ }^{7}$	42,330,210 $/$ /T	c/c	c8	33,927,994 A/s	T/T	c9	17,739,368 //a	T/T
c1	43,399,244 $/ \mathrm{T}$	c/c	C2	47,523,372 6/6	T/T	c3	28,695,375 T / T	c/c	c4	23,961,658 c/c	T/T	c5	4,903,920 $/$ /T	c/c	c5	41,324,920 A / A	c/c	${ }^{6}$	35,923,155 c/d	6/6	${ }^{7}$	42,338,830 c/c	ז/7	c8	33,928,195 6/c	A/A	c9	17,756,104 c/c	A/4
${ }^{1}$	43,405,06 ¢/T	c/c	C2	47,566,124 T/T	c/c	c3	28,710,001 6/6	T/T	c4	24,231,466 //	6/6	c5	5,014,196 c/c	6/6	c5	41,324,926 A / A	I/7	c6	35,923,165 c/c	T/r	${ }^{\text {c }}$	42,429,988 6/6	A/A	c8	33,928,676 c/c	G/G	c9	17,801,121 A / A	T/T
cl^{1}	43,480,389 6/6	A/A	${ }^{\text {c2 }}$	47,666,697 A / A	6/6	${ }^{\text {c3 }}$	28,813,920 T / T	c/c	c4	24,248,278 T / T	c/c	${ }^{\text {c5 }}$	5,128,398 c/c	T/T	${ }^{\text {c5 }}$	41,324,932 c/c	T/T	${ }^{\text {c6 }}$	35,923,236 c/c	A/a	${ }^{\text {c7 }}$	$42,603,503 \mathrm{G/G}$	T/r	${ }^{\text {c8 }}$	33,928,711 6/C	a/A	c9	18,083, 242 6/6	T/T
c1	43,668,806 c/c	A/A	C2	47,673,000 T / T	c/c	c3	28,813,992 G/6	c/c	c4	24,306,935 6/6	c/c	c5	5,128,407 T/T	c/c	cs	41,341,435 A / A	6/6	${ }^{6}$	35,923,277 A / A	c/c	${ }^{7}$	42,603,523 A / A	\%/r	c8	33,928,817 $6 / 6$	a/a	c9	18,109,251 A/A	c/c
${ }^{1}$	43,668,821 T/T	c/c	${ }^{2}$	47,940,266 T / T	A/A	${ }^{\text {c3 }}$	28,814,016 d/	I/7	c4	24,459,524 T / T	c/c	c5	5,141,467 c/c	A/A	c5	41,367,54 7/T	A/A	${ }^{\text {c6 }}$	35,949,374 6/6	c/c	${ }^{\text {c }}$	42,610,662 c/c	T/r	c8	33,928,864 c/c	T/r	c9	18,109,380 c/c	T/7
${ }^{1}$	43,668,828 A/A	T/T	c2	47,940,284 c/c	T/r	c3	29,031,876 $/$ /	6/6	c4	24,576,113 $/$ /	I/7	c5	5,141,468 6/6	c/c	c5	41,367,610 c/c	6/6	${ }^{6}$	36,096,816 6/6	A/A	${ }^{7}$	42,666,101 $/$ /	c/c	c8	33,928,888 c/c	\%/r	c9	18,344,444 $/$ /	6/6
	43,722,251 c/c	T/r	c2	47,940,295 6/6	A/A	c3	31,	6/6	c4	863,	r/T	cs	5,186,309	6/6	cs	370,435 m / T	6/6	c6	36,104,428 T/T	c/c	c7	,708,380	6/G	c8	33,942,895 6	A/A	c9	19,919,78	T/r

* Note: Yellow colour indicates variants sequence of the cultivated rapid cycling DHSL150 line and Ash colour indicates that of wild S1 C07060 line showing differences in allelic variant in their chromosomes.

Appendix III

Table S3：Differences in Allelic variants at various chromosomes positions in parent lines；the cultivated rapid cycling DHSL150 and C07007．

${ }^{c} 1$	${ }^{238,942}$	${ }^{\text {A／A }}$	${ }_{\text {cre }}$	${ }^{\mathrm{c} 2}$	${ }^{654788}$	AA	$\stackrel{\text { cic }}{ }$	${ }^{\text {c2 }}$	45，415，054	${ }^{616}$	AA	${ }^{\text {c3 }}$	26，294	${ }^{\text {c／a }}$	AA	${ }^{\text {c4 }}$	16,678	${ }^{\text {c／a }}$		cs	${ }^{8.025,017}$	тT	${ }^{\text {g／6 }}$	c	7，600，61	тп	AA	cr	22114	cr	тп	${ }^{\text {c8 }}$	$1{ }^{\text {ascos }}$	${ }^{\text {тT }}$	${ }^{\text {c／C }}$	${ }^{\text {cs }}$	182	a	${ }^{\text {a／f }}$	${ }^{\text {c9 }}$ 50，9097，561	－	тT
	943	${ }_{6} 16$	тп	${ }^{\text {c2 }}$	65，997	an	тт	c2	45，453．	${ }_{6} 18$	с）	${ }^{\text {c3 }}$	26,29	c／c	т	c4 1	19，680，92	c／c	\％16	${ }^{\text {cs }}$	8，05，444	a／a	ه16	${ }^{6}$	84	${ }_{6} 18$	c／c	cr 2	21，271，174	тп	cic	c8 10	10，85，794	c10	тт	c9 2	．384	a／a	c／a	c9 51，13，063	${ }_{6} / 6$	тп
c_{1}	032	616	AA	${ }^{\text {c2 }}$	65，519	an	aic	c2	45，501，	тт	cic	${ }^{\text {c }}$	26，30，5	c／c	тп	c4	16，689，965	cic	тп	cs	8，031，	${ }_{6} 18$	cic	${ }^{\text {c6 }}$	7，700	${ }_{6} 16$	AA	cr 2	21，271，242	${ }_{6}$	π	${ }_{\text {c }}$	10，83， 3,39	AA	тп	cs 2	2，49，078	ir	cic	c9 51，20，802	${ }_{6} 16$	cic
	728	тт	${ }_{0}$	c_{2}	88，295	cic	т	c2	45，52，638	AA	ө木	${ }^{\text {c3 }}$	26，39，13	${ }_{6} 6$	AA	c_{4}	16，690，31	c／0	¢i6	cs	8．042，	тп	AA	c6	7，844，0	${ }_{6}$	AA	cr 2	21，271，248	${ }_{6} 16$	cic	c8	11，035，058	тп	${ }_{6}$	cs 2	2．516，	c／a	тт	c9 51，23，456	a ${ }^{\text {a }}$	cic
c1	285，766	ब16	AA	${ }^{\text {c2 }}$	92，240	an	gic	c2	4，535，525	AA	ө木	${ }^{\text {c3 }}$	26，438，277	тт	AA	c_{4}	16，749，34	${ }_{6}$	AA	cs	8，043，21	${ }_{6}$	AA	${ }^{6}$	7，847，422	тп	AA	cr 2	${ }^{21,229,4}$	тп	c／0	c8	11，102，53	тп	ө木	cs 2	2，570，9	a／a	${ }_{6}$	c9 51，23，48	${ }_{6} 6$	aA
c^{1}	467，022	AA	${ }^{1 / 8}$	${ }^{\text {c2 }}$	${ }^{92,267}$	AA	cic	c2	45，55，3，56	AA	ө6	${ }^{\text {c3 }}$	26，438，315	c／a	т	${ }^{\text {c }}$	16，749，544	AA	${ }_{6}$	c5	8，046，599	${ }_{6} 1$	AA	${ }^{\text {c6 }}$	7，847，77	${ }^{1 / 8}$	AA		21，292，	AA	cic	с8	11，276，	c／c	т	cs 2	2，682，7	AA	т	c9 51，22	тт	c
${ }^{4}$	467，057	${ }_{6} 16$	AA	${ }^{\text {c2 }}$	${ }^{2,3939}$	${ }_{\text {als }}$	AA	${ }^{\text {c2 }}$	45，542，43	${ }^{616}$	тп	${ }^{\text {c3 }}$	26，43，579	тт	AA	$\mathrm{C}_{4} 2$	$20.472,645$	тт	cic	${ }^{\text {cs }}$	$8.046,51$	c／0	AA	${ }^{\text {c6 }}$	7，86，50	${ }^{1 / 8}$	AA	cr 2	21，554，12	c／0	т	c8	$11.276,36$	т	${ }^{1 / 8}$	cs	2，682，	${ }^{1 / 8}$	AA	c9 51，32， 2	тт	AA
c1	802	c／c	AA	${ }^{\text {c2 }}$	32，424	at	析	c2	45，54，5	，	ac	c3	2596，04	AA	\％／8	c4	20，42，	c／c		c5	8.052	тr	，	c6	7，884	a ${ }^{\text {a }}$	\％／6	cr 2	21，554，	тт	a／6	с8		c／0	тт	c9	2，685	a	10	c9 51，34	Ir	cic
${ }^{1}$	647，11	c／c	тп	c_{2}	209，49	c／c	AA	c2	45，937，159	тп	AA	c3	27，032，945	AA	\％16	c4	22，713，4	тт	c／c	cs	8，055，172	${ }_{6} 16$	AA	${ }^{6}$	7，912，5	${ }_{6} 18$	c／c	cr 2	21，554，151	${ }_{6} / 6$	c／c	c8	11，30，7	${ }_{6} 16$	at	cs	2，712，	${ }^{616}$	AA	c9 51，34，423	c／0	gis
c1	10，19，546	AA	c）	c_{2}	209，455	cic	AA	${ }^{2}$	45，96，956	AA	тп	${ }^{\text {c3 }}$	27，037，929	c／c	тт	c4 2	22，949，990	${ }_{6}$	，	cs	8．080，3	${ }_{6} 16$	cic	${ }^{6}$	2，915，20，	${ }_{6} 18$	AA	cr 2	21，58，178	AA	cic	${ }^{\text {c8 }}$	11，35，43	c／0	өi6	${ }^{\text {cs }}$	2，715，01	AA	тп	c9 51，374，430	тп	я析
	1，009，628	AA	cic	${ }^{\text {c2 }}$	211，618	тт	cic	c_{2}	45，967，534	AA	тт	c3	27，064，134	cı	т	c4 22	22，949，156	тт	cic	cs	8，190，120	AA	\％18	${ }^{\text {c6 }}$	7，915，73	cic	AA	cr 2	${ }^{21,584,216}$	a	${ }_{6}$	с8	11，373，46	тт	AA	cs	2，715，04	c／c	тт	c9 51，37，673	${ }_{6}$	AA
${ }^{4}$	1，024．562	616	тт	c_{2}	211，440	тт	gic	c^{2}	45，97，560	c／0	тт	${ }^{\text {c }}$	27，04，33	c／a	тт	c4 2	2，3，32，6	${ }_{6}$	AA	cs	8，90，1	c10	тп	${ }^{6}$	8，602，0，2	${ }_{6}$	AA	cr 2	21，76，9		a	${ }^{\text {c8 }}$	11，476，7	тп	${ }_{6}$	cs	2，717，	тп	cic	c9 51，374，	cic	тт
	1，024，565	тт	cic	${ }^{\text {c2 }}$	222，160	я16	AA	c2	45，971，96	тт	cic	${ }^{\text {c3 }}$	27，06，3，	AA	cic	c4 2	24，33，64	ata	т	cs	8，190，212	${ }_{6}$	AA	${ }^{\text {c6 }}$	8，46，86	cic	тт	cr 2	21，769，17	т	cic	${ }^{\text {c8 }}$	11，572，5	${ }_{6}$	тт	c9	2，771，0	AA	cic	cs 51，394，5	a	\％18
${ }^{1}$	1，105，988	AA	gic	c2	222，300	an	¢16	c2	46，083，21	c／c	тп	${ }^{\text {c3 }}$	27，07，27	AA	тт	c4 2	24，426，994	at	${ }_{6}$	cs	8，27，620	${ }_{6} 18$	cic	${ }^{\text {c6 }}$	8，66，32	AA	${ }_{6} / 6$	cr 2	21，769，2	${ }_{6} 16$	тп	${ }^{\text {c8 }}$	1，1，12，26	${ }_{6} 6$	a	c9 2	2，27，	${ }_{6} 18$	AA	c9 51，39，00	${ }_{6} 18$	at
c1	1，10：	cı	т	${ }^{\text {c2 }}$	222，302	cic	tr	${ }^{\text {c2 }}$	46，120，971	cic	тп	${ }^{\text {c }}$	27，08，338	व1c		c4	24，426，	an	${ }_{6}$	cs	8，45，	c10	ald	${ }^{6}$	8，683	AA	тт	cr 2	21，769	cı	${ }_{6} 16$	c8 1	11，612	c／	т！		2，727	${ }_{6} 6$	AA	51，394	c／	тп
${ }^{\text {c1 }}$	1，24，777	${ }^{616}$	тп	${ }^{\text {c2 }}$	${ }^{24,1,366}$	т	AA	${ }^{\text {c2 }}$	46，121，009	${ }^{\text {a／a }}$	cic	${ }^{\text {c3 }}$	27，299，022	т斤	A／A	${ }^{\text {c4 }}$	24，435，503	т	AA	${ }^{\text {c5 }}$	8，492，967	AA	cic	${ }^{\text {c6 }}$	$8.898,64$	AA	${ }_{616}$	cr 2	21，76，2	${ }^{16}$	AA	${ }^{\text {c8 }}$	11，621，9	тт	cic	с9	2，87，	${ }_{6} 16$	AA	c9 51，483，	${ }_{6} 6$	AA
${ }^{1}$	1，242，106	тт	${ }_{6}$	${ }^{\text {c2 }}$	33，671	cic	тп	c2	46，12，000	\％16	тп	${ }^{\text {c }}$	27，219，03	6	aA	ca	24，45，5，524	тп	cic	cs	8.93,	cic	т	${ }^{\text {c6 }}$	8，756	cic	AA	cr 2	21，813，50	${ }_{6}$	cic	${ }^{\text {c8 }}$	11，621，	AA	at	c9 2	2，809	AA	${ }_{6}$	c9 51，459，288	${ }_{6}$	тл
	1，242，142	${ }^{616}$	тт	${ }^{\text {c2 }}$	33，845	\％ic	cic	c2	46，366，234	AA	өic	${ }^{\text {c }}$	220，39	${ }^{16}$	тT	$\mathrm{c}_{4} 2$	24，543，763	aA	${ }_{6}$	c5	8，646，257	тт	AA	${ }^{\text {c6 }}$	$8,902,782$	${ }_{6}$	AA	cr 2	21，813，65	${ }_{616}$	т	${ }^{\text {c8 }}$	11，829，	тт	a	c9	2，809，920	${ }_{6}$	т	c9 51，45，292	a	тт
${ }^{\text {c1 }}$	1，242，469	aA	${ }_{6} 16$	${ }^{\text {c2 }}$	333，488	cic	¢if	c2	46，36，302	${ }_{6}$	AA	${ }^{\text {c }}$	27，24，5	${ }_{6} 16$	AA	c4	24，45，575	тп	an	cs	8，689，30	${ }_{6}$	тт	${ }^{\text {c6 }}$	9，977，00	${ }_{6}$	c／0	cr 2	2，1，31，6	тп	c10	${ }^{\text {c8 }}$	11，918，26	AA	ө木	${ }^{\text {cs }}$	2．862，	${ }^{16}$	AA	cs 51，40，	AA	बis
	1，242，511	AA	т	${ }^{\text {c2 }}$	395，705	an	זT	${ }^{\text {c2 }}$	46，36， 30	AA	gis	${ }^{\text {c3 }}$	2245,58	т	AA	$\mathrm{c}_{4} 2$	24，889，981	${ }^{16}$	AA	${ }^{\text {c5 }}$	8.689 .045	AA	cic	${ }^{\text {c6 }}$	0，965，34	т	cic	cr 2	$21,94,2$	${ }_{6} 16$	cic	${ }^{\text {c8 }}$	11，956，09	AA	ө木	${ }^{\text {cs }}$	2，862，70	т	cic	cs 51，47，3，33	AA	ตו
${ }^{1} 1$	1，369，909	тп	AA	${ }^{\text {c2 }}$	414,178	cic	тп	c2	4， $6,87,8$	тп	со	${ }^{\text {c }}$	245，58	AA	c／0	c4 2	25，46，901	AA	cic	${ }^{\text {c5 }}$	8，689，63	тп	AA	${ }^{\text {c6 }}$	9，400，02	тп	${ }_{6} 6$	cr 22	22，02，	cr	AA	${ }^{\text {c8 }}$	11，985，	c／0	тт	${ }^{\text {cs }}$	2，864	c／1	тп	cs 51，471	c／0	тп
${ }^{1} 1$	1，377，974	cı	тт	${ }^{\text {c2 }}$	${ }^{414,487}$	cic	AA	${ }^{\text {c2 }}$	46，32，	cic	Tr	a	235，7	тп		c4	25，729，52	AA		cs	8 8，68，06	c／0	тт	${ }^{6}$	9．612，2	тп	${ }_{6}$		22，03，	тп	c／c	${ }^{\text {c8 }}$	12，049	тп	AA	cs	2，902	AA	${ }_{6}$	c9 51，53	${ }_{6}$	AA
	1，377，993	AA	${ }_{6} 16$	${ }^{\text {c2 }}$	525，575	an	¢16	${ }^{2}$	46，87，622	AA	gic	c3	，631，48	\％16	cic	c4 2	25，74，4，	т	${ }_{6} 16$	${ }^{\text {c5 }}$	888，0	тт	cic	${ }^{66}$	9，695，623	AA	т	cr 22	22，109，	a／a	cic	${ }^{\text {c8 }}$	12，09，5	тт	cic	¢	2，92，	тт	${ }_{6}$	cs 51，715	cı	
${ }^{\text {c1 }}$	1，377，988	тт	cic	${ }^{\text {c2 }}$	527，050	тп	AA		46，876，	a	\％	os	27，707，	an	cic	ca	25，67，209		${ }_{6}$	cs	8，767，0	AA	ca	${ }^{\text {c6 }}$	9，96，173	，	тт	cr 22	22，109	т	cic	d	12，391，	c／0	тт		2，902，20120	\％／8	тт	c9 51，715	cı	тт
	1，378，51	тT	${ }_{6} 16$	${ }^{\text {c2 }}$	591，889	т	cic	${ }^{\text {c2 }}$	46，92，54	${ }_{6} 16$	cic	${ }^{\text {c }}$	27，707，89	AA	т	${ }^{\text {c4 }}$	26，77，845	т	AA	${ }^{\text {c5 }}$	8，915，015	AA	\％16	${ }^{\text {c6 }}$	9，695，18	${ }_{6} 6$	тп	Cr^{22}	22，380，3	${ }^{\text {c／a }}$	тт	${ }^{\text {c8 }}$	12，403，	${ }^{616}$	cic	c9	2，902，	${ }_{6} 6$	${ }^{10}$	c9 51，791	AA	gic
	1，378，172	AA	cic	${ }^{\text {c2 }}$	591，759	\％18	cic	c2	46，948，835	co	a	c3	27，70， 81	－	cic		26，77，7，55	Tr	\％	cs	8 8，93，02	т	cic	${ }^{\text {c6 }}$	9，96，21	cı		cr 22	22，438	${ }_{6} 6$	cic	\％	12，40，	cic	тт	cos	2，920，6	AA	тт	c9 51，791，308	${ }_{6}$	tr
${ }^{1} 1$	1，425，40	cr	AA	${ }^{\text {c2 }}$	${ }^{620,517}$	AA	т	${ }^{\text {c2 }}$	46，99，180	${ }_{6} 16$	AA	${ }^{\text {c }}$	27，70，78	cı	al6	${ }^{\text {c }}$	26，771，68	т	${ }^{\text {¢16 }}$	${ }^{\text {c5 }}$	9，172，93	${ }^{616}$	тт	${ }^{66}$	9，699，35	тT	AA	C7 22	22，422	${ }^{16}$	AA	${ }^{\text {c8 }}$	12，73，	cic	т	${ }^{\text {cs }}$	2，335，2	${ }^{10}$	т！	c9 51，003，073	т	gis
	1，425，76	AA	co	${ }^{\text {c2 }}$	666，637	π	AA	c2	47，07，0	ata	${ }_{\text {gic }}$	${ }^{\text {c3 }}$	712，3	${ }_{6} 16$	AA	C4 2	26，262，091	тт	я10	cs	9，183，6	тп	AA	${ }^{6}$	9，75，	${ }_{6} 18$	AA	cr 22	22，474，	c／	AA	${ }^{\text {c8 }}$	12，96，	c10	тт	${ }^{\text {c9 }}$	3，06，	cı	тп	c9 51，807，	AA	тп
	1，443，929	c／c	тт	${ }^{\text {c2 }}$	666，663	cic	тп	${ }^{\text {c2 }}$	47，128，8	тт	өя	c3	27，85，8	AA	\％	c4 2	26，35，042	т	cic	cs	9，198，3	AA	\％18	${ }^{6}$	9，337，	cic	${ }_{6}$	cr 22	22，507，	${ }_{6} 16$	AA	${ }^{\text {c8 }}$	12，964，	${ }^{6 / 8}$	AA	${ }^{\text {cs }}$	3，069，483	\％18	тт	c9 51，835	cic	AA
${ }^{\text {c1 }}$	1，451，1／2	\％18	AA	${ }^{\text {c2 }}$	675，361	an	cic	c2	47，198，48	${ }_{6} 16$	AA	c3	2866，4	${ }_{6}$	тп	c4	26，836，142	${ }^{16}$	т	cs	9，199，97	тп	AA	${ }^{6}$	9，738，	AA	cic	cr 22	22，514	${ }^{1 / 8}$	a A	${ }^{\text {c8 }}$	12，95，36	тп	at	c9	3．071，	\％／8	тт	c9 51，877	cı	өis
	1.649	тп	AA	${ }^{\text {c2 }}$	675，366	cic	AA	c2	47，387，5	AA	do	cs	886，4	a	тт	c4 26	26，86，826	1	${ }_{6} 16$	${ }^{\text {c5 }}$	9，200，904	${ }_{6}$	AA	${ }^{\text {c6 }}$	9，738，	AA	${ }_{6} 16$	${ }^{1}$	22，629	AA	${ }_{6}$	cs	14，131	${ }^{6 / 8}$	at	c9	3，074，6	тт	cic	c9 51，98	cic	тп
	1，687，73	cr	т	${ }^{\text {c2 }}$	675，383	т	${ }_{\text {cc }}$	${ }^{\text {c2 }}$	47，53，4，49	${ }^{\text {c／a }}$	тт	${ }^{\text {c3 }}$	27，887，3	AA	${ }^{16}$	${ }^{\text {c4 }}$	26，93，${ }^{6}$	A／A	${ }_{\text {c }}$	${ }^{\text {c5 }}$	9，327，284	AA	cr	${ }^{\text {c6 }}$	9，738，1，	AA	т		22，629，	${ }^{616}$	AA	${ }^{\text {c8 }}$	14，480，56	${ }^{616}$	тт	c9	3，084，3	${ }^{16}$	AA	${ }^{\text {c9 }}$ 52，023	тT	cic
${ }^{1}$	1．689，10	cic	тт	${ }^{\text {c2 }}$	678，978	an	cic	c2	47，523，32	\％18	т	cs	996，5	－	cic	c4	26，93，99	AA	${ }_{\text {\％16 }}$	c5	9，478，30	т	do	${ }^{6}$	9，788，5	${ }_{6}$	AA	cr 22	22，688，	AA	${ }^{16}$	cs	14，312	AA	өis	c9 ${ }^{3}$	3，242，	c／c	AA	c9 52，02	AA	\％19
	1，843，703	тп	${ }^{10}$	${ }^{\text {c2 }}$	69，385	т	${ }^{616}$	${ }^{2}$	47，56，122	тт	cic	${ }^{\text {c }}$	28，076，13	${ }^{616}$	т	${ }^{\text {c4 }}$	27，138，688	тт	${ }_{6} 6$	${ }^{\text {c5 }}$	9，588，365	тт	c／c	${ }^{66}$	9，78，77	AA	т		22，73，	AA	${ }^{616}$	${ }^{\text {c8 }}$	14，34，	AA	at	${ }^{\text {c9}}$	3，367，02	AA	${ }_{6} 16$	c9 52，037，02	т	${ }^{616}$
c1	1，88，375	c／c	тп	${ }^{\text {c2 }}$	706，047	с10	an	c2	47，66，6	AA	aic	${ }^{\text {c3 }}$	28，76，59	c／0	тп	c4	27，44，67	${ }_{6}$	ata	cs	9，588，39	c／c	AA	${ }^{6}$	9，78，79	c／c	IT	cr 22	22，73，5	AA	${ }_{6} 16$	${ }^{\text {c8 }}$	14，363，	${ }^{16}$	at	c9	3，378，	a	AA	c9 52， 4 ，	AA	яis
	1，910，750	${ }_{6}$	cic	${ }^{\text {c2 }}$	${ }^{733}$	¢16	AA	${ }^{2}$	47，673，0	тп	cic	${ }^{\text {c3 }}$	114，85	т	cic	210	27，99，764	aA	¢18	c5	9，588，406	т	cic	${ }^{6}$	0，819，5	AA	cic	cr 22	22，744，76	cic	тт	${ }^{\text {c8 }}$	14，363，1	${ }^{1 / 8}$	AA	${ }^{\text {c9 }}$	3，378，5	${ }^{16}$	AA	cs 52，14，	cic	тт
${ }^{1}$	1，901，808	AA	тт	${ }^{\text {c2 }}$	734，016	AA	${ }_{6} 6$	c2	47，94，003	${ }_{6} 6$	AA	c3	122，22	тт	${ }_{6}$	c4	27，49，783	cic	яic	cs	9．625，083	${ }_{6}$	тт	${ }^{\text {c6 }}$	9，823，7	${ }^{\text {of }}$	тп	cr 22	22，74，909	cic	тт	${ }^{\text {c8 }}$	14，410，2	AA	ө木	c9	3，389，3	яic	AA	cs 52，18，212	＋	cic
cr	1，941，2	${ }_{6} 6$	AA	${ }^{\text {c2 }}$	736，45	cic	тп	${ }^{\text {c2 }}$	47，94，07	AA	ब16	${ }^{\text {c }}$	28，64，922	${ }_{6} 6$		${ }^{\text {c } 4}$	27，495，797	AA	cic	${ }^{\text {c5 }}$	9，682，050	AA	G6	${ }^{\text {c6 }}$	0，23，75	cic		cr 22	22，867，2	c／0	AA	${ }^{\text {c }}$	14，790，3	co	т	，	3，344，	a	cic	c9 52，36	${ }^{\text {¢1／}}$	cic
c1	1．941，239	${ }^{616}$	AA	${ }^{\text {c2 }}$	${ }^{82,307}$	${ }^{616}$	AA	${ }^{\text {c2 }}$	47，914，076	${ }^{616}$	AA	${ }^{\text {c3 }}$	28，64，933	${ }^{\text {A／A }}$	${ }^{616}$	${ }^{4}$	27，509，184	${ }^{\text {c／a }}$	тT	${ }^{\text {c5 }}$	9．673，293	${ }^{616}$	AA	${ }^{\text {c6 }}$	9，965，37	${ }^{\text {тT}}$	c／a		23，427，4	c10	тT	${ }^{\text {c8 }}$	14，790，4	${ }^{616}$	AA	${ }^{\text {cs }}$	3，434，	${ }^{616}$	AA	${ }^{\text {c9 }} 582,37$	${ }^{\text {c／}}$	
	${ }_{\text {l }}^{1,9464,5823}$	c10	${ }_{\text {AT }}^{\text {A }}$	${ }_{\text {c2 }}^{\text {c2 }}$	822,313 835,93	${ }^{\text {c／a }}$	cic	${ }_{\text {c2 }}^{\text {c2 }}$	47，940，2	${ }_{\text {c／}}^{\text {cic }}$	AA	${ }^{\text {c3 }}$	${ }_{\text {2 }}^{28,665,00}$	${ }^{618}$	a／	c_{4}	27，64，53	AA	${ }_{\text {\％16 }}^{616}$	${ }_{\text {c5 }}^{\text {c5 }}$	707，	${ }_{\text {A／}}^{\text {A／}}$	${ }_{\text {AIA }}$	${ }_{\text {c6 }}^{\text {c6 }}$	10,32 10,36	${ }_{\text {ald }}^{616}$	AA			${ }_{\text {cic }}^{\text {A／}}$	${ }_{\text {\％}}^{\text {\％}}$	${ }_{\text {c8 }}^{\text {c8 }}$	15,08 15,36	${ }_{\text {cic }}^{\text {T／}}$	ө木			${ }_{c}^{\text {cic }}$	¢т	${ }_{52,38}$	${ }_{16}$	
c1	1，988，324	тт	${ }_{\text {cic }}$	${ }^{\text {c2 }}$	993，534	cic	тт	${ }^{\text {c2 }}$	4，990，28	cic	т	${ }^{\text {c }}$	165，11	AA	тт	c_{4}	28，11，519	${ }^{1 / 8}$	тп	c5	9，707，68	тт	\％16	${ }^{6}$	10，480，24	AA	${ }_{6} 16$	cr^{23}	23，582，26	${ }_{6}$	c	${ }^{\text {c8 }}$	15，562，	тп	AA	${ }^{\text {cs }}$	3，434，	cı	тп	c9 52，45，${ }^{\text {a }}$	тп	cic
${ }^{1}$	1，948，34	т	AA	${ }^{\text {c2 }}$	${ }^{943,59}$	т	AA	${ }^{\text {c2 }}$	47，900，2	${ }^{616}$	AA	${ }^{\text {c }}$	1155，1	${ }^{616}$	AA	${ }^{4} 4$	28，12，76	π	cic	${ }^{\text {c5 }}$	9，75，39	т	cic	${ }^{\text {c6 }}$	10，480，2	т	cic	${ }^{\text {ct }}$	23，59，	${ }_{6} 16$	π	${ }^{\text {c8 }}$	15，582，0	тп	cic	cs ${ }^{\text {a }}$	3，470，	т	cic	c9 52，45，901	c／c	тт
c^{1}	1，948，996	тт	cic	${ }^{\text {c2 }}$	943，995	ata	тт	c2	47，98，97	AA	${ }_{\text {\％／}}$	c3	165，18	${ }_{6}$	cic	c4	28，314，04	cic	тт	cs	9，78，50	AA	яis	${ }^{\text {c6 }}$	10．58，7	${ }_{6}$	AA	cr 23	23，67，		cic	${ }^{\text {c8 }}$	15，98，08	${ }^{16}$	AA	c9	3，470，6		AA	cs 52，45，98		ө木
${ }^{1}$	1．948，52	AA	cic	${ }^{\text {c2 }}$	997，6	cic	т	${ }^{\text {c2 }}$	47，959，0	cic	тт	${ }^{\text {c3 }}$	2，165，13	${ }_{6} 16$	AA	C4 2	$28.315,64$	т	cic	cs	9，765，92	cic	тт	${ }^{\text {c6 }}$	1.516	cic	\％	${ }^{\text {ct }}$	23.675	тт	AA	c8	15，609，2	cic	AA	c9	3，479，	я	AA	cs 52，513，	${ }^{\text {c／}}$	тт
	1．951，60	AA	¢16	${ }^{\text {c2 }}$	1，033，45	т	cic	${ }^{2}$	47，982，20	AA	of	c3	．165，20	${ }_{6} 16$	AA	c4	28，315，69	${ }_{6} 16$	cic	${ }^{\text {c5 }}$	9，003，101	an	\％18	${ }^{66}$	1.516	cic	AA	ct	23，675，	AA	${ }_{6} 16$	${ }^{\text {c8 }}$	15，609，2	\％	cic	c9	3，479，	${ }_{6} 16$	т	cs 52，513，		gis
c1	2，008，83	cic	тт	${ }^{\text {c2 }}$	${ }^{1,000,176}$	a ${ }^{\text {a }}$	${ }_{\text {c }}$	c2	48，47，36	${ }^{\text {c／a }}$	${ }_{6} 6$	${ }^{\text {c }}$	571，3	${ }^{\text {c／a }}$	AA	${ }^{4} 2$	28，32，970	cic	т	cs	9，00，88	тT	cic	${ }^{\text {c6 }}$	516，2	т	cic	${ }^{\text {ct }}$	746	AA	${ }_{6} 16$	cs	15，69，3，	${ }^{\text {a／a }}$	aic	cs ${ }^{\text {a }}$	3，513，	cic	${ }_{6} 16$	52，513	${ }^{616}$	тт
cr	2008，9	AA	т！	${ }^{\text {c2 }}$	1，104，063	cic	тп	${ }^{\text {c2 }}$	48，481，4	cic	тп	${ }^{\text {c }}$	28，63，22	т	AA	${ }^{\text {c }}{ }^{2}$	${ }^{28,466,048}$	cic	тп	${ }^{\text {c5 }}$	9，832，92	AA	т	${ }^{\text {c6 }}$	12，63，392	cic	т	${ }^{\text {ct }}$	2，746，20	cic	${ }^{616}$	${ }^{\text {c8 }}$	15，695	${ }_{6} 16$	тt	cs ${ }^{\text {a }}$	3，527，	AA	тт	c9 52，513，796	cı	AA
	2．044，	т	AA	${ }^{\text {c2 }}$	1，104，244	cic	aic	${ }^{2}$	48，39， 26	${ }_{6} 16$	AA	${ }^{\text {c3 }}$	28，694，8	т	\％18	${ }^{4} 2$	${ }^{28,466,103}$	т	cic	${ }^{\text {c5 }}$	9，33，400	т	cic	${ }^{\text {c6 }}$		a	${ }^{16}$	ct 2	2，746	т	cic	c8	15，751	т	${ }_{16}$	cs ${ }^{3}$	3，527	AA	т	c9 52，543，765	AA	¢if
${ }^{1}$	2，044，942	cic	тт	${ }^{\text {c2 }}$	1，128，434	т	${ }_{\text {cic }}$	c2	48，639，7	AA	916	${ }^{\text {c3 }}$	28，99， 159	${ }_{6}^{616}$	cic	${ }^{4} 2$	28，50，	c／0	т	${ }^{5}$	9，930，	тп	${ }_{\text {cic }}$	${ }^{66}$	13，052，75	${ }^{616}$	тт	c7 ${ }^{2}$	${ }^{23,746,41}$	c／0	${ }^{16}$	c8	15，061	AA	${ }_{6} 6$	cs 3	${ }^{3.633}$	tr	cic	cs 52，54，807	aA	${ }^{616}$
	2，067，799	${ }^{616}$	т	${ }^{\text {c2 }}$	1，151，451	${ }^{\text {AA }}$	${ }_{\text {gic }}$	${ }^{\text {c2 }}$	48，639，815	${ }^{\text {A／A }}$	${ }^{\text {c／a }}$	${ }^{\text {c3 }}$	28，695，258	${ }^{616}$	AA	${ }^{\text {c4 }}$	28，770，	${ }^{\text {tr }}$	cic	${ }^{\text {c5 }}$	9，938，185	${ }^{\text {c／a }}$	тт	${ }^{66}$	${ }^{13,0522205}$	${ }^{\text {A／A }}$	c10	${ }^{\text {c7 }} 23$	2，00，20	${ }^{616}$	${ }^{\text {c／a }}$	${ }^{\text {c8 }}$	16，12，30	${ }^{616}$	AA	${ }^{\text {c9 }}$	3，74，23			c9 32，93，380	${ }_{6} 16$	
	2．07，193	616	AA	${ }^{\text {c2 }}$	1，188，82	cic	AA	${ }^{\text {c2 }}$	48，688，60	тп	ब6			${ }_{\text {Tr }}^{\text {тT }}$	${ }_{6} 16$	${ }^{\text {c4 }}$	28，95，523	${ }_{\text {¢TI }}^{\text {a／}}$	${ }_{\text {ali }}^{\text {AA }}$	${ }_{\text {c5 }}$	9，9，96，8，	${ }_{\text {a }}^{\text {a }}$ A	c／c	${ }_{\text {c6 }}$	13，237，000	${ }_{610}^{\text {\％／}}$	AA	${ }^{\text {c7 }}$	23，55，6，64	c／0	тп	с8	16，169，945	${ }_{6} 16$	AA	${ }^{\text {cs }}$	3，744，4，379	${ }_{\text {A }}^{\text {A }}$ A	тт	c9 52，93，973	c／0	${ }_{\text {A／}}^{\text {a／}}$
	2.071 .195	g／6	cic	c2	1，188，883	a／6	AA	${ }^{\text {c2 }}$	49．042，963	\％18	тт	c3	28，695，375	тT	c／c	c4 2	29，073，729	c10	тт	c5	10．031，634	AA	тт	${ }_{\text {c6 }}$	13，277，438	c／c	AA	${ }^{7} \quad 23$	23，56．016	${ }_{6}$	c／c	с8	16，522．712	c／c	тT	cs	3，956．042	AA	cı	c9 52，81，006		

 chromosomes．

Appendix III

Table S3：Cont．：Differences in Allelic variants at various chromosomes positions in parent lines；the cultivated rapid cycling DHSL150 and C07007．

ar．Posstion	Dhstis）	\％ovo	chr．	．Position	Dhstiso	corot		Possion	OHSLI5	相		Posstion	ohstis	促			dhsis	\％	，	Position	Dhstiso	coroor	cir			右		Postion				Position	drs			Posstion				Postlon		
2，093，928	AA	$\theta 16$	C2	1，242，066	AA	GIG	c2	243，008	тп	AA	c3	28，813，20	тп	c／c	C4	20，74，	тп	cic	c5	10，056，072	c／c	AA	c6	13，237	616	AA	${ }^{\text {c7 }}$	23，95，053	AA	${ }_{6} 6$	c8 16	1542，210	616	тт	c9	401，${ }^{\text {，}}$ ， 4	cic	тп	c9	2238，300	6／6	AA
2，12	тп	AA	C2	1,26	тп	G6	C2	49，043，014	cic	тт	cs	28，813，	${ }_{6} 16$	c／c	c4	29，08，52	c／c	AA	c5	10，061，3	т斤	cic	c6	13，237，507	тT	cic	C7	23，95，14	AA	cic	c8	16，565	т	cic	c9	4，042	тп	cic	c9	52，88，306	G／6	AA
c1 2，22，532	тп	AA	c2	1，264，729	AA	тп	c2	49，043，26	AA	${ }_{6} 16$	C3 2	28，84，00	AA	тп	C4	29，08，53	AA	тп	${ }^{\text {c5 }}$	10，34，522	${ }_{6} / 6$	тп	c6	1237，67	тп	${ }_{6} / 6$	${ }^{\text {c7 }}$	23，956，21	AA	616	C8	16，56，139	c／c	тT	c9	4，053，	AA	cic	c9 5	52，88，888	тT	cic
2，40，688	тп	cic	c2	1，294，	AA	${ }_{16}$	c2	49，269，047	cic	тп	C_{3}	28，90，401	cic	тт	c4	20，066，	cic	AA	c5	10，34，	AA	${ }_{6} 16$	$\mathrm{cb}^{\text {c }}$	13，544，49	616	cic	${ }^{\text {c7 }}$	23，966，	AA	${ }_{616}$	c8 16	16,57	${ }_{616}$	AA	c9	4，167，609	тп	cic	c9	52，85，908	${ }_{616}$	AA
2，405，995	тп	${ }_{616}$	c^{2}	1，365，621	${ }_{616}$	тт	c2	49，269，087	cic	т斤	C3 2	28，940，421	AA	${ }_{616}$	C_{4}	29，382，037	AA	gic	c5	10，315，8	тп	cic	c6	13，701，398	6／6	AA	c7	24，093，37	т	AA	c8 16	16，50，540	AA	тা	c9	4，17，216	a ${ }^{\text {a }}$	т斤	c9 5	52，864，89	cic	AA
2，408，342	AA	${ }_{16} 16$	C2	1，413，49	c／c	тт	c2	867，130	тп	cic	c3	28，962，590	AA	σ_{16}	c4	29，382，808	cic	AA	C5	10，44，5	тп	AA	c6	201，423	${ }_{6} / 6$	AA	Cl^{2}	24，16， 2	916	AA	c8	16，580	c／c	т	c9	4，19	тп	cic	c9 5	52,088	тп	cic
2，412，36	тп	cic	C2	1，413，107	cic	тп	c2	88，532	c／c	тп	C3 2	31，876	т斤	$6 / 6$	c4	29，602，230	${ }^{616}$	cic	${ }^{\text {c5 }}$	10，656，263	c／c	AA	c6	13，714，495	AA	G／6	${ }^{\text {c7 }}$	24，165，284	זп	cic	c8	16，50，588	cic	т	cs	4，193，399	тп	cic	c9 5	52，08，966	cic	
c1 2，48，077	c／c	тт	C2	1，413，142	тп	916	c2	49，713，183	cic	тп	C3 2	29，03，1882	AA	G16	c4	29，	c／c	${ }_{6} / 6$	c5	10，890，97	AA	cic	c6	13，721，45	т斤	AA	${ }^{\text {c7 }}$	24，269，78	cic	тт	C8	16，60，388	т斤	AA		4，193，385	AA	96	c9 52	52，909，074	тT	616
c1 2，489，01	тп	${ }_{6} 16$	C2	1，413，269	AA	916	c2	49，713，303	cic	т斤	c3 2	29，03，, ，	c／c	${ }_{6} / 6$	c4	29，814，	${ }_{6} / 6$	AA	c5	10，89	${ }_{6} / 6$	AA	c6	13，864，566	AA	тп	c7	24，20，	т	cic	c8	16，61	т斤	cic	c9	4，195，273	clc	${ }_{6} 6$	c9	52，944，26	cic	тT
2，49	тп	${ }_{616}$	C2	1，413，551	т	cic	c^{2}	49，8	т	cic	${ }^{\text {c }} 2$	29，0	${ }_{616}$	cic	c4	29，814，5	т	$g 10$	c5	11，070，	cic	AA	c6	13，864，839	тп	cic	c7	24，269，76	cic	т斤	c8 16	16，65	${ }_{616}$	тп	c9	4，22	cic	${ }_{6} 16$	c9	52，92	тп	${ }_{\text {A }}$
c1 2，56， 530	тп	${ }_{6} 16$	c2	1，422	тп	${ }_{16}$	c2	49，819，503	cic	${ }_{16}$	c3 2	29，10，2	610	AA	C_{4}	29，814，504	cic	AA	c5	11，070，87	${ }_{616}$	AA	$\mathrm{cc}^{\text {c }}$	017，162	${ }_{6} 16$	AA	${ }^{\text {c7 }}$	24，269，986	т	cic	с8 16	16，66	cic	${ }_{616}$	c9	4，362	${ }_{616}$	тт	c9	52，931	cic	т
c1 2 2，56，5，53	тп	cic	c2	1，424，892	${ }_{616}$	тп	c2	49，819，51	${ }_{616}$	AA	c3 2	29，00，4	cic	тт	c4	29，84，539	cic	π	cs	11，07，12	AA	cic	$\mathrm{cf}^{\text {c }}$	\％39，67	6／6	тт	c7	24，292，70	${ }_{6} 6$	AA	c8 1	16，721，166	916	AA	c9	4，362，492	σ_{16}	AA	c9 52	52，96，568	AA	тп
c1 2，56，742	т	cic	C2	1，424，958	т	Gic	c^{2}	49，821，25	${ }_{\text {ata }}$	${ }_{6} 16$	${ }^{\text {c }}$	29，118，29	cic	тп	${ }^{4} 4$	29，3	cic	тт	c5	11，085，101	AA	тп	c6	14，039，734	cic	тт	c7	24，405，246	θ	AA	C8 10	16，721，175	cic	тп	c9	4，362，523	AA	616	c9 5	52，96，592	тп	cic
c1 2，006，590	${ }_{6} / 6$	AA	C2	1，43，637	${ }_{6 / 6}$	AA	c2	49，82，，302	${ }_{6} / 6$	cic	c3	29，118，312	cic	AA	c4	29，	т斤	cic	c5	11，1414，29	AA	cic	c6	14，03，770	т	${ }_{6} 16$	${ }^{\text {c7 }}$	24，405，314	c／c	тт	c8	16，721，199	AA	cic		4，362，618	cic	тт	c9 5	53，045，946	${ }^{\text {a／G }}$	${ }^{\text {A／A }}$
c1 2，63，717	${ }_{6} / 6$	AA	C2	1，433，996	тп	AA	C2	50，026，194	AA	т斤	c3	29，357，173	AA	6／6	C_{4}	29，	AA	Gi6	c5	11，114，872	$A A$	616	c6	14，039，810	т斤	AA	c＞	24，406，30	${ }_{6} / 6$	AA	C8	16，721，295	тп	AA		4，39，058	clc	тт	c9 5	53，45，961	AA	${ }_{\text {G／G }}$
2，76	AA	${ }_{6} 16$	c2	1，466，773	т	cic	c2	50，052，409	cic	т	c3 2	29，51，5	cic	AA	c4	29，	6／G	cic	c5	11，119，	cic	${ }_{616}$	c6	14，057，512	т	gic	Cl^{2}	24，406，45	G／G	cic	c8	16，721，313	тп	cic	c9	4，394，12	тп	AA	c9	53，44，970	${ }_{6} 16$	AA
2，7	${ }_{616}$	cic	c2	1，48，040	т	cic	C^{2}	\％，	a ${ }^{\text {a }}$	${ }_{16}$	${ }^{\text {c }}$	29，519，209	т	${ }_{616}$	C_{4}	29，9	${ }_{616}$	тт	${ }^{\text {c5 }}$	11，232，40	${ }_{6 / 6}$	AA	c6	14，331，313	${ }_{616}$	AA	${ }^{\text {c7 }}$	24，406，596	cic	т斤	c8 10	16，731，984	${ }_{616}$	cic	c9	4，414，326	${ }_{6} 6$	AA	c9	53，045，91	g／6	${ }_{\text {AA }}$
c1 2，76，917	AA	${ }_{16} 6$	c2	1，658，844	AA	${ }_{6} 16$	${ }^{2} 2$	50，	${ }_{16}$	AA	c3 2	29，519，210	т	cic	c_{4}	29，941，3	c／c	тп	${ }^{\text {cs }}$	11,2	cic	${ }_{6} 16$	c6	14，399，188	AA	cic	${ }^{\text {c7 }}$	24，406，607	т	cic	c8 1	17，120，152	AA	т斤		4，46，897	${ }_{\text {a }}$	тт	c9	53，05，948	AA	gic
${ }_{\text {c1 }}$ 2，810，286	AA	Gis	c_{2}	1，65，488	AA	cic	c2	50，62，560	AA	Gis	${ }^{\circ} 2$	29，62，889	AA	c／c	${ }^{4} 4$	29,96	cic	gis	c5	11，265，418	cic	AA	c6	14，438，218	AA	${ }_{616}$	C	34，5	ब16	cic	c8 17	17，120，153	זT	cic		4，516，64	AA	т	c9 5	53，053，66	A／A	
${ }_{\text {c1 }} 2.884,842$	AA	${ }_{\text {c }}$	c_{2}	1，65，509	${ }_{6 / 6}$	AA	C2	50，62，597	тп	AA	${ }^{\text {c }}$	29，626，185	${ }_{\text {A }}$	${ }_{616}$	c4	30，433	AA	cic	c5	11，27，114	cic	AA	c6	14，442，90	cic	gis	c7	24，434，590	${ }_{\text {a }}$	$6 / 6$	c8	17，12，194	AA			4．518，61	тп	${ }_{6} 16$	c9 5	53，05，975	AA	
203，54	AA	${ }_{16}$	C2	1，663，064	тп	cic	c2	50，62，609	тп	cic	c3	29，626，274	cic	π	c4	30，463	AA	co	cs	11，35，64	c1c	${ }_{6} / 6$	c6	14，44，23	AA	cic	c7	24，434，64	G／G	AA	c8 11	17，120，24			c9	4，54，908	${ }_{1 / c}$		c9 5	53，06，449	G／a	
2.8	cic	т	${ }^{\text {c2 }}$	1，68，300	AA	т	C2	50，637，567	AA	${ }^{16}$	c3	29，626，25	cic	616	ca	30，	т	c 10	c5	11，55，213	т	cic	c6	14，445，325	AA	тт	c7	24，434，63	π	cic	c8 1	17，128，72	AA	cic	c9	4，718，15	c／c	тп	c9 530，	092，	c10	тт
c1 2，84，510	тп	AA	C2	1，690，493	AA	G6	c2	50，964，534	т	θ	c3 2	29，62，286	AA	${ }_{616}$	c4	30，	AA	тт	${ }^{\text {c5 }}$	11，55，331	${ }_{6} 16$	тт	c6	14，46，995	AA	cic	${ }^{\text {c7 }}$	24，435，601	${ }_{6} / 6$	тп	c8 1	17，128，705	AA	тт	c9	4，775，602	c／c	тп	c9 5	53，092，488	т	cic
${ }_{\text {c1 }}$ 2，850，100	${ }_{616}$	AA	c2	1，90，996	${ }_{616}$	AA	C2	50，992，061	cic	AA	${ }^{\circ} 3$	29，627，36	тT	c_{10}	c4	30	c／c	тп	c5	11，37，618	${ }_{616}$	тт	c6	14，497，145	AA	${ }^{16}$	${ }^{\text {c7 }}$	24，435，26	cic	т	c8 1	17，130，969	AA	cic	c9	4，77	${ }_{616}$	AA	c9	53，092，525	AA	${ }_{616}$
2，8	AA	cic	c2	1，006，600	${ }_{6} 6$	AA	c2	50，9	${ }_{616}$	AA		29，627，59	${ }^{616}$	тт	C_{4}	30，721，119	${ }^{616}$	AA	${ }^{\text {c5 }}$	11，396，093	${ }_{616}$	AA	c_{6}	14，497，	${ }_{616}$	тт	${ }^{\text {c7 }}$	24，435，93	AA	${ }_{6} 16$	c8 17	17，142，807	тা	AA	c9	4，77	${ }_{6 / 6}$	AA	c9	53，022，615	cic	т
2，850，12	${ }_{616}$	aA	C2	1，800，627	тп	AA	C2	50，9	${ }_{616}$	AA	c3	29，737，74	${ }_{616}$	cic	C4	31,	616		${ }^{\text {c }}$	11，39	т	cic	c6			cic	c7	24，436，052	AA	${ }_{616}$	c8 1	17，43，2	A／A			4，942	AA		c9 5	53，09， 557	AA	${ }_{616}$
2，901，543	${ }_{6} / 6$	AA	C2	1，006，639	${ }_{616}$	тT	C2	50，994，702	тT	cic	c3	29，75，390	AA	cic	c4	31，201，30	${ }_{6} 6$	AA	cs 1	11，46	$6 / 6$	тп	c6	15，065，885	AA	${ }_{6} 16$	C7 2	24，452，259	G16	тT	c8 1	17，27，61	${ }_{\text {a }} 16$		c9	4，942，5	тп	a	c9 5	53，09，663	${ }_{616}$	
2，901，546	тп	cic	C2	1，806，713	cic	זT	c2	51，283，42	AA	тT	c3	29，860，956	т	c／c	c4	31.	cic	AA	cs 1	11，483，266	AA	${ }_{6} / 6$	c6	15，065，72	${ }_{6 / 6}$	тп	c7	24，452，365		cic	c8 1	17，274，3	a A	616	c9	4，942，5	AA	${ }_{6} 16$	c9 5	53，093，927	${ }^{16}$	π
c1 2，914，998	AA	${ }_{6} 6$	c2	1，809，217	gic	cic	c2	51，791，86	тT	cic	c3	29，860，960	cic	тп	c_{4}	31，20，370	${ }^{\text {cic }}$	тт	c5 1	11，488，74	тп	${ }_{\text {cic }}$	c6	15，103，208	т	${ }_{6} 16$	c7 2	24，489，999	т	AA	c8 1	17，36，42	cic	тп	c9	4，960，88	т	cic	c9 53	242	cic	тп
c1 2，922，57	тп	cic	c2	1，092，23	AA	тп	C2	51，791，873	cic	тп	c3	30，120	cic	тп	C4	31，20，38	${ }^{616}$	AA	${ }^{\text {cs }}$	11，510，54	c／c	тт	c6	15，179，104	c／c	AA	${ }^{\text {c7 }}$	A89，	${ }^{1 / 6}$	тп	c8 1	17，457，400	cic	тт	c9	4，96	тт	AA	c9 5	5.261	6ic	AA
2，922，59	AA	${ }_{16}$	c2	1，826，11	AA	${ }_{6} 6$	C_{2}	51，885，119	т	cic	${ }^{\circ} 3$	30，12，012	cic	AA	C4	31，37，30．	тT	cic	${ }^{\text {c5 }}$	510，5	${ }_{616}$	AA	c6	15，217，365	тп	c^{\prime}	Cl	2．53，33	т	cic	c8 1	17，489，	т	${ }_{616}$	c9	4，987	тп	cic	c9	53，27，	тп	${ }_{\text {A }}{ }^{\text {a }}$
${ }^{2,922,63}$	${ }_{616}$	AA	c2	2，002，36	${ }_{616}$	тп	C2	51，885，128	c／c	тп	c3	30，129，07	cic	тт	C_{4}	31，420，62	AA	σ_{6}	${ }^{\text {cs }}$	11，831，999	${ }_{616}$	AA	$\mathrm{cb}^{\text {c }}$	5217，4	cic	${ }_{6} 6$	${ }^{\text {c7 }}$	24，53，391	G16	${ }^{1 / c}$	${ }^{\text {c8 }}$	17，521，8	cic	${ }_{616}$	c9	4，99，	${ }_{616}$	NA	c9 5	53，27，185	cic	AA
2，296，63	${ }_{616}$	AA	C2	2，154，92	AA	${ }_{1} 16$	C2	，	Gis	A／A	c3	129，89	cic	тп	c4	31，43，294	616	AA	c5	11，82，	${ }_{616}$	AA	c6	15，21，298	ata	Gig	Cr^{2}	，	AA	cic	c8 18	18，40，	${ }_{6} / 6$	AA	c9 5	5．04，650	AA	${ }_{6} 16$	c9 5	53，29	$\theta 16$	A／A
2，926，72	${ }_{6} 16$	cic	C2	0，128	c／c	тп	C2	5，22	cic	${ }_{6} 16$	c3	220，676	\％／6	AA	c4	31，572，20	тп	${ }_{\text {GIG }}$	c5	11，94	тп	cic	c6	15，235，518	AA	${ }_{6} 16$	c7	2533，51	cic	т	c8 18	18，44	тп	Gis	c9	5，094，24	тп	cic	c9 5	53，300	cic	
2，97，165	тT	${ }_{16}$	c2	2，169，34	cra	тп	C2	，	AA	cic	c3	34，014	т！	${ }_{6} 6$	c4	31，572，28	AA	cic	c5	11，95，	т	${ }_{616}$	c6	15，338，95	${ }_{616}$	т	c7	24，53，8， 12	${ }_{6} 16$	AA	c8 18	18，96， 4	cic	${ }_{6} 6$	c9 5	5，094	${ }_{6} 16$	т	c9	3，322，	AA	${ }_{6} 16$
2，927，286	тп	${ }_{616}$	c2	2，19，264	cic	${ }_{6} 16$	c2		${ }_{\text {gI }}$	cic	c3	34，00	тT	cic	c4	31，82，278	тп	${ }_{6} 6$	c5	11，91，9，0，	c／c	${ }_{6} 16$	c6	15，399，536	cic	тп	c7	2533，823	Tr	cic	${ }^{\text {c8 }}$	1．713，0	т	${ }_{616}$	c9	114，1010	тп	AA	c9	53，322，40	616	A／A
2，90	${ }_{616}$	AA	c2	2，19，267	тп	cic	${ }^{2} 2$	52，110，46	т	cic	${ }^{\text {c3 }}$	30，60，703	${ }_{6} 6$	тп	c4	31，823，288	тп	cic	c5	12，040，20	c／c	тт	c6	15，456，24	AA	тп	c7	2，60， 80	AA	${ }_{6} 16$	c8	18，713，110	AA	${ }_{6} 6$	c9 5	5，14，309	тп	${ }_{6} 16$	c9 5	53,42	616	тп
2,9	cic	тT	c2	2，19，29	${ }_{6 / 6}$	AA	c2	52，206，160	${ }_{6} / 6$	AA	${ }^{\text {c3 }}$	30，607，3	${ }_{6} 16$	тп	c4	31，00，83	AA	${ }_{6}$ G	${ }^{\text {c5 }}$	1212，	AA	${ }_{616}$	c6	156，	тп	c^{c}	${ }^{\text {c7 }}$	24，72，2，	тп	${ }^{1 / c}$	c8	18，713，1210	AA	$\theta 16$	c9	5，33，	AA	тп	c9	53，487	AA	тп
2，963，2	AA	тп	c2	2，19	${ }_{616}$	тп	C_{2}	52，20	cic	тп	${ }^{\text {c3 }}$	30，611，008	тп	cic	c4	32，006，	cic	тт	${ }^{\text {c5 }}$	12，112，570	тп	A／A	ct	15，48，077	AA	cic	c7	．725，	cic	тп	${ }^{\text {c8 }}$	18，711	${ }_{6 / 6}$	AA	c9	5，370，13	cic	AA	c9 53	53，50	тп	cic
3，202，006	тп	cic	c2	2，196，61	cic	тп	C_{2}	52，299，830	т	cic	${ }^{3}$	30，61，94	тп	cic	c4	322，218，30	${ }^{\text {AIA }}$	cic	c5	12，112，6	616	AA	c6	5，488，11	${ }_{16}$	AA	${ }^{\text {c7 }}$	24，730，6	${ }_{\text {GIG }}$	AA	${ }^{\text {c8 }}$	18，734，075	c／c	т！	c9	5，370	cic	т！	c9 53	53，671，	AA	cic
3，02，935	тп	cic	c2	2，24，517	AA	GIG	c2	52，271，094	זT	cic	c3	21，848	тп	cic	c4	32，218，367	AA	Gis	CF^{1}	12，113，993	c／c	тп	c6	488，27	AA	${ }_{6} 16$	C7	24，903，060	тп	cic	c8	18，734，08	тп	cic	c9	5，372	${ }_{6} / 6$	AA	c9 5	53，75，751	т π	cic
44，544	тп	AA	c2	2，249，8	${ }_{6} 6$	тп	c2	52，303，209	AA	${ }_{6} 16$	c3	121，860	A／A	616	c4	32，437，376	AA	c	c5	12，14，0	cic	AA	c6	15，55，994	AA	тп	c7	24，95，38	AA	т	c8 18	18，34，	cic	т	c9	5，32， 1	AA	${ }_{6} 16$	c9	53，85，6	cic	тп
，979	тп	${ }_{616}$	c2	2，2，26	${ }_{616}$	т	${ }^{2}$	52，07，403	a ${ }^{\text {a }}$	GI6	${ }^{\text {c3 }}$	21，884	AA	тт	c4	32，527，079	AA	gic	${ }^{5}$	12171，05	${ }_{6} / 1$	AA	c6	51560，728	cic	${ }_{6} 6$	${ }^{\text {c7 }}$	25，157，61	cic	${ }_{610}$	c8	19，031，9	тп	AA	c9	5，32，13	тп	cic	c9 5	53，85，725	AA	cic
3，305，369	${ }_{6 / 6}$	тт	c2	2，267，023	cic	π	c2	52，39，96	π	6,6		31，156，168	тп	AA	c4	32，52，092	π	G／6	c5	12，771，101	т	cic	$\mathrm{cb}^{\text {c }}$	15，77，888	T π	${ }^{616}$	c7	25，246，035	${ }^{\text {a }}$	${ }_{6} 6$	c8	19，04，479	c／a	AA	c9 5	5，372，7	cic	т	c9 5	54，023，144	${ }^{6 / 6}$	${ }^{\text {A／A }}$
3，336，271	616	AA	c2	2．267，799	616	AA	c^{2}	52，45，961	Gis	cic	${ }^{\text {c }}$	31，162，37	6／G	AA	c4	32，57，122	${ }_{6} 16$	AA	c5	12，71，240	616	AA	${ }^{6}$	15，78，8，85	cic	616	${ }^{\text {c7 }}$	25，417，46	G16	cic	${ }^{88}$	19，04， 855	cic	тז	c9	5．378．988	AA	${ }_{6} 16$	c9 5	54，023，158	AA	cic

Note：Yellow colour indicates variants sequence of the cultivated rapid cycling DHSL150 line and grey colour indicates that of wild S1 C07007 line showing differences in allelic variant in their
chromosomes

Appendix III Cont.
Table S3: Cont. : Differences in Allelic variants at various chromosomes positions in parent lines; the cultivated rapid cycling DHSL150 and C07007

* Note: Yellow colour indicates variants sequence of the cultivated rapid cycling DHSL150 line and grey colour indicates that of wild S1 C07007 line showing differences in allelic variant in their
chromosomes

Appendix III Cont.

Table S3: Cont. : Differences in Allelic variants at various chromosomes positions in parent lines; the cultivated rapid cycling DHSL150 and C07007.

	Position	HSL1	7007	chr	Postion	DHSLI50	67007	chr	Postion	phsul	0700	chr.	Postion	DHSLI	60007	chr	Postion	ohsL	coroor	$\mathrm{ch}^{\text {ct }}$	Postion	ohsus	c07007	cri	Postition	Hsu	60707	chr	Postion	DHSLIS	070		Posstion	ohsl150	c0700	ca	Postion		
${ }^{\text {c1 }}$	4,815,	cic	${ }_{6} 6$	${ }^{\text {c2 }}$	3,94	AA	c/c		1,112,767	A/A	cic	${ }^{\text {c3 }}$	36,33,035	${ }^{\text {c/a }}$	тт	c4	36,89,431	тт	${ }_{6} 16$		16,32,481	A/A	${ }^{16}$	${ }^{\text {c6 }}$	19,98, 103	тт	co	${ }^{\text {c7 }}$	63	${ }^{16}$	тT	c8	509	AA	тт		975	c_{c}	
${ }^{\text {c1 }}$	5,007,75	тп	AA	c2	4,390,335	AA	тп	c3	116,402	c/c	AA	${ }^{\text {c3 }}$	36,341,089	A/A	тт	c4	36,95,73	тп	A/A	c5	18,334,06	A / A	${ }_{6} 6$	${ }^{\text {c6 }}$	19,942,3	AA	c/c	c7	29,245,988	т!	AA	c8	21,082,594	${ }^{1 / 8}$	AA	c9	,816,976	6	A/A
${ }^{\text {c1 }}$	5,022,102	cic	тп	c2	4,390,372	c/c	тT	${ }^{\text {c3 }}$	1,116,44	c/c	тт	${ }^{\text {c3 }}$	341,	c/c	A/A	c4	36,945,	c/c	тт	c5	16,364,8	AA	cic	${ }^{\text {c } 6}$	19,990	AA	cic	c7	29,275	cic	тт	c8	21,09	gic	AA	c9	6,936,94	A/A	тп
${ }^{\text {c1 }}$	5,032,189	AA	${ }_{6} / 6$	c2	44,99	c	тT	${ }^{\text {c3 }}$	16,44	AA	тп	c3	.341,21	тп	c/c	c4	37,028,71	cic	6	cs	16,43,7	тп	${ }_{6} / 1$	${ }^{\text {c6 }}$	19,90,	${ }_{6} / 6$	AA	c7	29,25,12	AA	c/c	c8	1,094,817	c/c	${ }_{6} / 1$	c9	971,7	${ }_{6} / 6$	AA
${ }^{1}$	5,038,79	c/c	σ_{16}	c2	109,64	c/c	A/A	${ }^{\text {c3 }}$	16,5	${ }^{616}$	тт	${ }^{\text {c3 }}$,344,	тп	c/c	c4	37,03,9	AA	${ }_{6} / 6$	c5	16,436,0	${ }_{6} 16$	AA	${ }^{\text {c } 6}$	996	тт	AA	c7	275,2	AA	${ }_{6} 16$	c8	131,3	cic	тт	c9	881,2	${ }_{6} 16$	тп
${ }^{\text {c1 }}$	5,038,9	G/6	A/A	c2	5,16,379	тп	A/A	с3	1,116,990	A/A	тт	${ }^{\text {c3 }}$	36,39,634	тп	c/	c4	37,142,926	${ }_{6}$	A/A	cs	16,679,059	c 10	тт	c6	19,996,53	тT	c/c	${ }^{1}$	29,275,2	${ }^{1 / 8}$	A/A	c8	2,131,40,	a/a	cic	${ }^{\text {c9 }}$	${ }_{6,98,874}$	AA	тп
${ }^{\text {c1 }}$	5,038,98	тп	cic	c2	4,28	cı	тп	${ }^{\text {c3 }}$	1,128,764	c/c	тп	${ }^{\text {c3 }}$	365,	${ }_{6} / 6$	c/c	c4	37,12,99	тп	AA	cs	16,724,647	${ }^{616}$	A/A	${ }^{\text {c } 6}$	19,996,84	A/A	G/6	${ }^{\text {c7 }}$	29,280,	AA	G/G	c8	21,13	als	AA	${ }^{\text {cs }}$	6,98,991	AA	c/c
${ }^{\text {c1 }}$	5,26,004	616	тт	c2	6,137	cic	AA	${ }^{\text {c3 }}$	1,218,26	cic	тт	${ }^{\text {c3 }}$.365,80	cic	AA	c4	37,19,60	тп	c/c	${ }^{\text {c5 }}$	812	AA	¢/6	${ }^{\text {c } 6}$. 081	${ }_{\text {c }}$	AA	c7	29,343,	AA	тт	c8	21,14	AIA	¢/G	c9	6,987	т	c
${ }^{\text {c1 }}$	6,095,543	тт	AA	c2	67,168	cic	AA	с3	224,55	${ }_{6} 16$	AA	c3	36,36,83	${ }_{6} 6$	тт	c4	37,287,20	A/A	c/c	c5	16,813,	A A	${ }^{616}$	c6	20,081,35	AA	GIG	c7	29,382,	c/c	AA	c8	21,272,21	c/c	тп	${ }^{\text {c9 }}$,169,65	${ }^{10}$	${ }_{6} / 6$
${ }^{1}$	6,362,79	G/6	тт	c2	5,376,189	${ }_{\text {a }}$	AIA	${ }^{\text {c }}$, 22,41	тп	c/c	${ }^{\text {c3 }}$	36,369,70	A/A	c/c	c4	11,3	тп	c/c	c5	887,	cı	${ }_{6} 16$	${ }^{\text {c6 }}$,081	тп	AA	c7	,	a	c/c	c8	298,6	gic	тп	${ }^{\text {c9 }}$	177,2	alc	c/c
${ }^{\text {c1 }}$	6,362,95	тп	σ_{16}	c2	5,37,304	тп	c/c	с3	, 0,96	c/c	тп	${ }^{\text {c3 }}$	369,7	тт	gic	c4	346,2	тп	c/c	cs	867	A/A	c/c	c6	,.438	AA	${ }_{6} 16$	c7	29,408,	c 1	AA	c8	329,2	a ${ }^{\text {a }}$	тп	${ }^{\text {c9 }}$	1349,4	A A	${ }_{6} 6$
${ }^{\text {c1 }}$	6,370,6	AA	ald	c2	2,4,4	AA	G/G	${ }^{\text {c3 }}$	1,339,26	тт	cic	${ }^{\text {c3 }}$	369,74	c/c	AA	c4	346,22	тт	A/A	c5	16,867,73	A/A	тT	c6	20,47,53	G/6	A/A	ст	29,417,27	тп	A/A	c8	21,329,	व/c	тп	c9	143,3	AA	c/c
${ }^{\text {c1 }}$	6,411,38	cı	тт	c2	5,37,049	6/6	AA	${ }^{\text {c3 }}$	1,367,517	cı	тт	${ }^{\text {c3 }}$	374,7	тп	AA	c4	351,5	${ }_{6} 16$	AA	c5	16,916,441	тп	c/c	${ }^{6}$	21,485,54	${ }_{6}$	тт	${ }^{\text {c7 }}$	29,490,173	cic	тт	c8	21,370	a	AA	cs	7,43,425	AA	тп
${ }^{\text {c1 }}$	6,457,359	616	AA	c2	5,387,150	c/c	тп	c3	1,367,51	cı	AA	${ }^{\text {c3 }}$	36,374,844	6/6	AA	c4	37,359,6	AA	тт	c5	16,916,	A/A	${ }_{6} 16$	c6	21,67,92	тт	c/c	c7	29,490	at	6/6	c8	21,373,84	AA	тп	c9	7,526,7	AA	${ }_{6} 16$
${ }^{\text {c1 }}$	6,625,276	cı	тп	c2	5,387,189	тп	c	${ }^{\text {c3 }}$	8,58	AA	Gic	c3	374,9	c/c	тп	c4	59,4	тп	c/c	cs	17,043,472	тп	cic	c6	,675,	${ }_{6} / 1$	A/A	ct	29,89,53	тп	c/c	c8	1,374,	AA	тт	${ }^{\text {cs }}$	7,544,11	AA	G16
${ }^{1}$	6,639,65	тп	AA	c2	5,387,86	тп	c/c	${ }^{\text {c3 }}$	1,378,614	AA	¢16	${ }^{\text {c3 }}$	36,374,940	тп	c/c	c4	37,55, 63	A/A	616	c5	17,045,73	тп	\%/6	${ }^{6}$	22,14,3	a	AA	c7	30,136,80	cic	тт	c8	21,433,23	at	${ }_{6} 16$	${ }^{\text {c9 }}$	7,582,98	AA	a
${ }^{\text {c1 }}$	6,668,36	cı	тт	c2	5,582,180	тп	10	${ }^{\text {c3 }}$	1,378,63	AA	GI6	c3	.448,9	A/A	G19	c4	817,3	,	G/	c5	178.	c/c	AA	c6	22,155	c 10	тп	c7	274,	Tr	c/c	c8	21,49,08	G	тп	cs	7,583,07	тп	c/0
${ }^{\text {c1 }}$	6,764,7	тт	c/c	ca	59,423	AA	c	${ }^{\text {c3 }}$,76,7	cı	тп	${ }^{\text {c3 }}$	36,453,	AA	cic	c4	37,617,3	c/c	AA	c5	17,268	c/c	тт	${ }^{\text {c } 6}$	22,399,	${ }_{6} / 1$	c 1	${ }^{\text {c7 }}$	30,274,	AA	${ }_{6} / 6$	c8	21,499,	cras	${ }_{6 / 6}$	c9	7,583,0	A/A	тп
${ }^{\text {c1 }}$	6,99,08	c 10	я6	c2	5,60,924	AA	c/c	${ }^{\text {c3 }}$	1,476,86	${ }^{6}$	A/A	${ }^{\text {c3 }}$	36,453	c/c	AA	c4	37,	AA	6		17,24,3	tr	cı	${ }^{\text {c6 }}$	22,39,	тт	c/c	c7	30,276	a/c	A/A	c8	21,48	A	c/c	cs	7,584	c/c	${ }_{6} 16$
${ }^{\text {c1 }}$	6,949,67	AA	тт	c2	10,026	${ }_{\text {G/G }}$	тT	${ }^{\text {c3 }}$	1,478,865	AA	\%/6	${ }^{\text {c3 }}$	36,45	т!	cic	c4	37,618,659	cic	тт	c5	17,296,587	AA	тп	${ }^{6}$	22,43,	AIA	${ }_{6} 16$	c7	30,441,58	AA	${ }^{1 / 6}$	c8	21,4	cic	AA	c9	7,585,54	cic	тп
c1	6,966,	AA	c/c	c2	5,631,364	AA	тп	c3	1,479,607	тп	c,	${ }^{\text {c3 }}$	36,514,510	616	AA	c4	37,618,66	cı	тп	c5	17,298,37	AA	6/6	${ }^{\text {c } 6}$	22,43,16	c/c	тт	c7	30,44,59	cic	тт	c8	21,488,51	cic	AA	c9	7,591,7	AA	a
${ }^{\text {c1 }}$	6,966,73	A/A	gic	c2	5,651,38	AA	c 10	c3	1,505,807	тп	\%/6	${ }^{\text {c3 }}$	36,514,59	${ }^{616}$	тп	c4	37,618,70	тп	cic	${ }^{\text {cs }}$	17,299,08	A A	\%	6	22,434,	тп	c/c	c7	30,44,58	a	AA	c8	21,993,5	gic	тп	c9	7,591	тт	c
${ }^{\text {c1 }}$	6,96,793	cic	тп	c2	,	тп	AA	c3	1,663,259	AA	тп	${ }^{\text {c3 }}$	36,50,4	AA	gic	c4	37,96,0	AA	G/	c5	17,496,32	c/c	тт	${ }^{\text {c6 }}$	22,434	тп	c/c	c7	30,44,	a	AA	c8	21,503,	тп	c/0	${ }^{\text {cs }}$	7,609,13	тп	cic
${ }^{\text {c1 }}$	6,966,42	616	cic	c2	退51,36	cic	т	${ }^{\text {c3 }}$	1,655,43	тп	cı	${ }^{\text {c3 }}$	36,60,5	c/c	тт	c4	37,906,0	G/6	AIA	c5	17,525,	тT	c 10	${ }^{\text {c } 6}$	22,434	${ }_{6} 16$	AA	c7	30,441,20	gic	AA	c8	21,573,	ar	тп	${ }^{\text {cs }}$	7,664,	${ }_{6} 16$	A/A
${ }^{\text {c1 }}$	6,96, 961	616	AA	c_{2}	87,10	${ }_{6} 16$	A/A	c3	1,678,99	A/A	g/6	${ }^{\text {c }}$	36,600,5	cic	тт	c4	37,906,20	cic	616	c5	17,525	тT	cic	${ }^{\text {c6 }}$	22,56	${ }^{6 / 6}$	тт	${ }^{\text {ct }}$	5,520,	Tr	AA	c8	21,610,	cic	тт	cs	7,664	AA	тT
c1	6,967,6	${ }_{6} / 6$	AA	c2	5,64,776	cıc	тт	${ }^{\text {c3 }}$	1,678,110	cic	тт	${ }^{\text {c3 }}$	36,600,62	A ${ }^{\text {a }}$	616	c4	38,112,54	cı	616	c5	17,527,94	cı	тт	c6	22,660,09	${ }_{6} / 6$	тт	ct	30,520,10	cic	тп	c8	21,77,00	тп	c/c	c9	7,689,7	${ }_{6} 16$	A A
${ }^{\text {c1 }}$	6,967,7	A/A	${ }^{16}$	c2	5,674,338	AA	\%/6	${ }^{\text {c3 }}$	1,721,286	A/A	cic	c3	36,620,993	тт	cic	c4	38,112,56	тп	cı	c5	17,974,33	${ }_{6} 16$	A/A	${ }^{\text {c6 }}$	23,03,33	cla	тT	c7	30,581,99	AA	cic	c8	21,778,08	cic	тп	${ }^{\text {c9 }}$	7,689,72	cic	G16
${ }^{\text {c1 }}$	7,156,4	π	AA	${ }^{2}$	5,675,030	π	AA	${ }^{\text {c3 }}$	1,869,05	тп	cic	c3	36,621,067	A/A	G/6	c4	38,139,172	${ }_{6} 16$	A/A	c5	18,057,88	тп	G/6	c6	23,25,3	${ }^{\text {A/A }}$	тп	c7	581,	AA	тп	${ }^{\circ}$	21,885,	gic	AA		703	cras	тп
${ }^{\text {c1 }}$	7,206,307	cic	左	c2	5,675,057	${ }_{6 / 6}$	AA	${ }^{\text {c3 }}$	1,869,06	c/c	¢/G	${ }^{\text {c3 }}$	621,0	${ }_{6} / 6$	AA	c4	38,139,22		cic	cs	, 100	тT	,	${ }^{\text {c } 6}$	23,256,	${ }^{\text {A/A }}$	616	c7	.672,	cic	${ }_{6 / 6}$	c8	21,885,	a	AA	${ }^{\text {cs }}$	7,761	${ }_{6} 16$	a
${ }^{\text {c1 }}$	7,206,319	616	AA	${ }^{2}$		тп	cic	${ }^{\text {c3 }}$	-,4\%,	cic	AA	c3	36,76,	тT	AA	c4	38,148,	${ }^{616}$	AIA	c5	18,113,2	тT	cac	${ }^{\text {c6 }}$	301	A/A	тт	${ }^{\text {ct }}$	837,	тп	${ }_{6} / 6$	c8	21,885,	gic	c/c		7,785,	AA	тT
${ }^{\text {c1 }}$	7,235,221	AA	a	c2	87,7	A/A	6/6	${ }^{\text {c3 }}$	1,890,8	${ }_{6} 16$	AA	с3	36,78,92	AA	916	c4	38,150,6	тп	616	c5	18,113,	AA	GIG	6	23,30,	alc	AA	c7	0,857,03	cic	тп	c8	21,923,3	тп	${ }_{616}$	${ }^{\text {c9 }}$	789,	a	тп
${ }^{\text {c1 }}$	7,347,5	c/c	π	c2	5,677,81	c/c	тт	${ }^{\text {c3 }}$	1,912,212	cic	тт	c3	951,54	c/c	AA	c4	38,178,37	${ }^{16}$	A/A	c5	18,407	c/c	тT	${ }^{6}$	23,30,	cic	тT	${ }^{\text {ct }}$	0,857,0	тп	cid	c8	22,246,4	AA	cic	${ }^{\text {c9 }}$.789,7	cic	
${ }^{\text {c1 }}$	7,746,104	AA	6	c2	5,678,197	AA	тт	${ }^{\text {c3 }}$	1,912,30	c/c	π	c3	37,017,12	${ }_{6}$	AA	c4	78,	тп	cic	cs	18,407,20	cı	AA	${ }^{\text {c } 6}$	2,480	cic	тт	c7	30,557,	AA	cı	c8	22,24,43	cic	${ }_{6} / 6$		7,895,	AA	
c1	7,746,17	AA	cic	C2	5,678,205	AA	$6 / 6$	${ }^{\text {c3 }}$	12,36	AA	616	${ }^{\text {c3 }}$	37,20,6	тп	cı	c4	38,196,64	c/c	616	cs	18,414,	cı	тп	${ }^{\text {c } 6}$	23,680	${ }_{6} / 6$	AA	${ }^{\text {c7 }}$	31,90,88	alc	A/A	c8	22,42,90	cic	тп	${ }^{\text {cs }}$	7,995	AA	${ }_{6} 16$
${ }^{\text {c1 }}$	7,746,149	тт	AA	${ }^{\text {c2 }}$	5,700,46	${ }_{6 / 6}$	AA	${ }^{\text {c3 }}$,21,7,	AA	тT	${ }^{\text {c3 }}$	37,210,7	тT	cic	c4	38,214,	cic	616	c5	18,668,53	тT	g/6	c6	23,680,	${ }_{6} / 6$	AA	${ }^{\text {c7 }}$,090,	a	${ }^{616}$	c8	22,45,4	тT	cic	cs	7,896,	c/c	тT
${ }^{\text {c1 }}$	7,766,784	cı	G/6	c2	5,70, 37	cıc	т	${ }^{\text {c3 }}$	21,7	cic	тт	${ }^{\text {c3 }}$	37,761,6	A/A	тT	c4	38,245,	т	cic	c5	18,827,17	cic	тт	6	3,749,2	cic	тт	${ }^{\text {ct }}$,111,	gic	A/A	c8	22,713,	cic	тт	c9	014,	c	A/A
${ }^{\text {c1 }}$	7,770,67	A/A	a	c2	5,\%o,4	AIA	$6 / 6$	${ }^{\text {c3 }}$	1,927,8	тп	c/c	${ }^{\text {c3 }}$	37,825,312	тп	c/c	c4	38,24,93	${ }^{1 / 1}$	A/A	c5	20,108,	тт	AA	c6	23,887	cic	${ }_{6} 16$	${ }^{\text {ct }}$	111,	cic	тт	c8	22,72,1,	gic	AA	${ }^{\text {c9 }}$	8.014,72	тt	cic
${ }^{\text {c1 }}$	7,772,602	cı	тT	c2	88,43	${ }_{6} / 6$	AA	c3	1,927,8	AA	c	c3	,326,2	A/A	616	c4	38,257,63	c/c	A/A	cs	20,113,	c/c	тп	${ }^{\text {c6 }}$	23,887,	AA	тп	${ }^{\text {c7 }}$	31,112,0	,	cic	${ }^{\text {c }}$	22,737,03	тT	cic	c9	.016,	${ }^{616}$	c/c
c1	7,772,671	616	π	C_{2}	5,708,528	AA	6/6	c3	1,927,85	AA	\%/6	${ }^{\text {c3 }}$	37,26,260	тп	c/c	c4	38,28,80	${ }_{6} / 6$	AA	c5	20,12,	тп	${ }_{6} / 6$	${ }^{\text {c6 }}$	23,88,	AA	тп	c7	3,1,130,72	cic	AA	c8	22,75,75	cic	тп	${ }^{\text {c9 }}$	8,016,	cr	тп
${ }^{\text {c1 }}$	7,791,159	π	AIA	c2	5,90,18	${ }_{6} 6$	c	${ }^{\text {c3 }}$	1,880,83	${ }_{6} 6$	тT	${ }^{\text {c3 }}$	37,826,30	c/c	тT	c4	474,7	cic	тт	c5	20,130,2	A/A		${ }^{\text {c6 }}$	23,889,2	AA	c/c	${ }^{\text {c7 }}$	31,514,	a	cic	c8	22,792,48	AA	c/c	${ }^{\text {c9 }}$	8,017,	тT	A/A
${ }^{\text {c1 }}$	8,003,59	${ }_{6 / 6}$	тт	c2	00,2	cic	¢/G	${ }^{\text {c3 }}$	888,3	${ }^{616}$	AA	c3	171,2	${ }_{6} 16$	cic	c4	38,48,96	AA	cic	c5	20,130,	тT	a	${ }^{66}$	24,051,3	${ }^{616}$	tr	${ }^{\text {c7 }}$	31,514,6	cı	gic	c8	22,853,3	tп	cic	c9	.017,	cic	6/6
${ }^{\text {c1 }}$	154,6	c/c	G/6	c2	5,890,303	c/c	тп	${ }^{\text {c3 }}$	2,088,4	AA	тп	${ }^{\text {c3 }}$	38,171,29	тп	AA	c4	39,18,93	c/c	тп	c5	,158,	${ }_{616}$	cic	${ }^{\text {c } 6}$	28,164	${ }_{6} 6$	тT	${ }^{\text {c7 }}$	31,518,60	gic	AA	c8	22,953	тT	cic	${ }^{\text {c9 }}$	8,017,1	${ }^{616}$	AA
cr	8,154,7	тт	AA	${ }^{\text {c2 }}$	5,890,455	c/	тт	${ }^{\text {c3 }}$	96,22	AA	тт	${ }^{\text {c3 }}$	228,22	${ }_{6} 16$	cic	c4	,	c/c	AA	cs	20,158,150	AIA	${ }_{\text {c/a }}$	${ }^{\text {c6 }}$	24,347	${ }^{\text {c/a }}$	AA	${ }^{\text {c7 }}$,	тT	c/c	c8	22,967,9	616	тт	c9	327,	AA	\%
	8,154,941	cic	AA	${ }^{\text {c2 }}$	5,928,126	\%/6	c/c	${ }^{\text {c3 }}$	2,117,450	тп	c/c	${ }^{\text {c3 }}$	38,228,22	AA	G/6	c4	3,280,85	${ }^{6 / 6}$	тт	cs	20,16,6,36	${ }_{6} 6$	AA	${ }^{\text {c6 }}$	24,347,	AA	616	cr	${ }^{31,810,36}$	AA	${ }_{6} 6$	c8	22,967,96		cr	${ }^{\text {c9 }}$	8,413,25	ir	a
	8,154,953	тт	cic	${ }^{2}$	5,928,132	тп	cı	c3	2,213,32	${ }_{616}$	AA	${ }^{\text {c3 }}$	38,346,98	тт	616	c4	39,280,88	т	cic	c5	20,474,18	т!	¢/G	c6	24,347,7	т	616	c7	${ }^{3,825,73}$	gic	c	c8	22,987,42	G/1	тт	${ }^{\text {c9 }}$	8,413,22	${ }_{6} 16$	cic
${ }^{\text {c1 }}$	8,154,99	c/c	тт	c2	66,52	AAA	тт	${ }^{\text {c3 }}$	2,277,5	AA	тт	${ }^{\text {c3 }}$	38,48,26	тп	c/c	c4	39,28,8	тп	A/A		20,524,	c/c	тT	c6	24,423	тт	cic	c7	31,94,4	cic	тт	c8	22,98,4	тп	${ }^{6 / 6}$	c9	A13	c/c	тп
${ }^{1}$	8,155,016	${ }_{6 / 6}$	AA	c2	10,96	AA	616	${ }^{\text {c3 }}$	2,277,536	тт	${ }_{616}$	${ }^{\text {c3 }}$	38,457,793	AA	616	${ }^{4} 4$	39,484,18	${ }_{616}$	c/c	cs	20,525,246	тT	AA	c6	24,704,54	cic	тт	${ }^{\text {c7 }}$	31,98,099	cic	тT	c8	23,020,85	тт	c/c	${ }^{\text {c9 }}$	8,413,5	т	cic
	8,276,217	c,	тт	c^{2}	6,191,344	AA	c/c	c3	2.2	\%/6	AA	${ }^{\text {c3 }}$	38,457,	c/c	тт	c4	39,493,266	т!	c,	c5	20,525,20	т!	AA	${ }^{6}$	24,791,	${ }_{6} 16$	AA	c7	31,986,17	G/6	тт	c8	23,020,98	6	тT	c9	8,413,	${ }_{616}$	

* Note: Yellow colour indicates variants sequence of the cultivated rapid cycling DHSL150 line and grey colour indicates that of wild S1 C07007 line showing differences in allelic variant in their
chromosomes

Appendix III Cont．

Table S3：Cont．：Differences in Allelic variants at various chromosomes positions in parent lines；the cultivated rapid cycling DHSL150 and C07007．

hr．	Postion	DHSL150	coroor	chr．	Postion	DHSL150	coroor	chr．	Position	DHSL150	coroor	chr．	Postion	DHSLI	00700	chr．	Postion	DHSL	07700	chr．	Postion	DHSL5	coroor	chr	Position	DHSL	co7007		Postion	DHSL	coroor	chr．	Postion	DHSL1	coroor	chr	Position	DHSL1	coro
${ }^{\text {c1 }}$	276，291		AA	${ }^{\text {c2 }}$	6，307，157	cic	916	${ }^{\text {c3 }}$	2，508，553	cic	тп	${ }^{\text {c3 }}$	38，65，270	c／c	AA	c4	39，493，27	g／	cic		20.55		c／c	${ }^{\text {c } 6}$	24，953，272	AA			32，08，，82				23，20，829	\％16	cic		8，413，641	cı	AA
${ }^{\text {c1 }}$	25，018	cic	т斤	C2	6，307，175	\％／6	AA	${ }^{\text {c3 }}$	2，508，59	${ }_{6} 16$	c／c	c3	38，724，447	тп	\％／6	c4	39，50，	тп	¢／6	c5	2．60，	${ }_{6} 6$	тп	${ }^{\text {c } 6}$	24，95，278	c／c	${ }_{6} / 6$	c7	32，314，714	6／6	тт	c8	23，34，，442	${ }_{6} / 6$	AA	${ }^{\text {c9 }}$	8，413，650	c／c	AA
${ }^{1}$	8，32，899	тп	Gis	c2	54，79	AA	${ }_{6} / 6$	${ }^{\text {c }}$	2.5	c／c	тп	${ }^{\text {c3 }}$	38，55，27	${ }_{6} / 6$	AA	c4	62，${ }^{\text {a }}$	c／c	тп	c5	．711，0	cı	т	${ }^{\text {c } 6}$	203，	тт	cic	c7	3，439，	c／c	тт	c8	，396，	c／c	AA	${ }^{\text {cs }}$	413，23	c／c	тт
${ }^{1}$	544，7	${ }_{6 / 6}$	AA	c_{2}	645，8，	тп	c／c	${ }^{\text {c3 }}$	2.5	тп	${ }_{6} / 6$	${ }^{\text {c3 }}$	38，999，89	c／c	тп	c4	39，622，94	${ }^{1 / c}$	тт	c5	20，711，24	${ }_{6} / 6$	AA	c6	25，203，25	${ }^{6 / 6}$	AA	c7	32，462	${ }_{6} / 6$	тт	c8	396	c／c	тт	c9	8，414，09	c／1	тп
${ }^{1}$	8，37，698	G／6	c／c	c2	6，68，898	\％／6	тт	${ }^{\text {c3 }}$	2，584，334	AA	G／6	c3	38，989，34	A／A	c／c	c4	39，697，213	тп	c／c	c5	20，71，26	AA	$6 / 6$	${ }^{\text {c6 }}$	25，297，98	G／6	AA	c7	32，462，36	${ }_{6} / 6$	тп	c8	23，396，74	тп	cic	c9	8，43，75	${ }_{6} 16$	A／A
${ }^{1}$	7，75	тп	c／c	c2	6，94，932	AA	G／6	${ }^{\text {c3 }}$	2，74，293	c／c	тт	${ }^{\text {c3 }}$	92，76	c／c	A／A	c4	39，724，28	AA	тт	c5	20，711，308	c／c	тт	${ }^{\text {c6 }}$	25，559，336	AA	${ }_{6} / 6$	${ }^{\text {c7 }}$	，462	AIA	${ }_{6} 16$	c8	23，407，10	${ }_{6} 16$	тT	${ }^{\text {c9 }}$	467	AA	GIC
${ }^{1}$	7，784	\％／6	A／A	c2	6，99，997	c／c	AA	c3	2，776，112	AA	\％$/ 6$	${ }^{\text {c3 }}$	3，0，37，5	тп	c／c	c4	39，724，301	тт	c／c	c5	20，75，30	A／A	c／c	${ }^{\text {c6 }}$	25，559，368	c／c	тт	c7	32，47，522	AA	${ }_{6} / 6$	с8	23，697	${ }^{1 / 8}$	A／A	${ }^{\text {cs }}$	8，656	${ }^{6 / 6}$	тт
${ }^{\text {c1 }}$	8，357，849	cic	т	c2	7，02，991	тт	6／6	${ }^{\text {c3 }}$	2，776，116	тт	916	${ }^{\text {c3 }}$	39，215，39	${ }_{6} 16$	т	C4	39，724，31	c／c	тп	c5	．852，	cic	тп	${ }^{\text {c6 }}$	25，49，782	AA	G／6	c7	32，478，5	${ }^{1 / 8}$	AA	c8	23，7	AA	${ }_{6} 16$	c9	8，656	cic	тп
${ }^{1}$	8，357，863	A／A	cic	c2	1．34，262	A／A	sic	${ }^{\text {c3 }}$	2，866，1	π	AA	${ }^{2}$	15，48	${ }_{6} 6$	AA	c4	3，737，79	${ }^{1 / 6}$	c／c	c5	，109，	c／c	тп	${ }^{\text {c6 }}$	，621，2	c／c	A／A	c7	32，495，0	c／c	тп	c8	3，779，80	AA	c／c	${ }^{\text {c9 }}$	8，682，	AA	c／c
${ }^{\text {c1 }}$	8，42，822	AA	gic	${ }^{\text {c2 }}$	37，2	A A	σ_{6}	${ }^{\text {c }}$	2，901，7	π	G／6	${ }^{\text {c }}$	25，83	c／c	тп	c4	827，	тr	c／c	c5	21，109，75	זT	c／c	${ }^{\text {c6 }}$	25，62，3，	AA	${ }^{16}$	${ }^{\text {c7 }}$	，622	т斤	c／c	${ }^{\text {c8 }}$	23，97，3	${ }_{6} 16$	c／c	c9	8，89，	тп	AIA
${ }^{\text {c1 }}$	，${ }^{2}$	A／A	тп	c2	7，111，971	тп	${ }_{6 / 6}$	${ }^{\text {c3 }}$	2，901，72	AA	${ }_{6} 16$	${ }^{\text {c3 }}$	39，689，19	тп	c／c	C4	39，83，00	A／A	c／c	c5	21，166，4	\％／6	A／A	c6	25，734	c／c	тT	${ }^{\text {c7 }}$	32，724	тT	cic	c8	23，988，65	${ }^{\text {c／}}$	${ }_{6} / 6$	c9	881，	т	AA
${ }^{\text {c1 }}$	8，430，25	c／c	A／A	c2	7，11，978	AA	cı	${ }^{\text {c3 }}$	2，901，791	тт	c／c	${ }^{\text {c3 }}$	39，689，219	${ }_{6} / 6$	тT	c4	39，83，03	${ }_{6} 16$	AA	c5	21，480，74	${ }^{6 / 6}$	AA	${ }^{\text {c6 }}$	25，734，57	${ }^{\text {IIG }}$	AA	c7	32，813，20	тT	AA	c8	2．952，32	${ }_{6}$	тп	${ }^{\text {c9 }}$	8，947，11	cic	In
${ }^{1}$	${ }_{8,805,925}$	${ }_{6} / 6$	AA	c2	7，14，691	AA	\％16	${ }^{\text {c3 }}$	3，03，810	${ }_{6} 16$	тт	${ }^{\text {c3 }}$	39，700，909	${ }_{6} 16$	AA	c4	39，920，355	${ }_{6} 16$	cic	c5	480，	тT	c／c	${ }^{\text {c6 }}$	845	${ }_{6} 16$	A／A	c7	3，857	${ }^{16}$	тт	c8	，952，	тп	c／c	c9	8，986，159	AIA	cic
${ }^{\text {c1 }}$	${ }^{8,805,9}$	A／A	cic	${ }^{\text {c2 }}$	7，142，706	тт	¢／G	${ }^{\text {c3 }}$	3，108，506	AA	тт	${ }^{\text {c3 }}$	39，765，92	cic	тт	${ }^{4}$	39，920，43	${ }_{6} / 6$	AA	c5	21，480，88	cı	т	${ }^{\text {c6 }}$	25，913，45	cı	AA	${ }^{\text {c7 }}$	32，997，38	т	cic	c8	23，952，42	тп	AIA	c9	8，986，25	тT	AA
${ }^{\text {c1 }}$	8，806，036	${ }_{6 / 6}$	AA	c^{2}	885，2	тт	¢／G	${ }^{\text {c3 }}$	3，108，5	тт	c／c	${ }^{\text {c }}$	79，32	т！	G／6	${ }^{4} 4$	20，4，	A／A	¢／G	c5	21，880，20	AA	${ }_{6} 6$	${ }^{\text {c6 }}$	513，	cic	тт	c7	983，	cic	A／A	c8	23，952，43	тп	${ }_{6} 16$	c9	9，036，89	AA	cic
1	9，051，366	тт	AA	c2	7，325，272	${ }_{6 / 6}$	A／A	${ }^{\text {c3 }}$	3，108，60	a／a	gic	${ }^{\text {c3 }}$	39，982，13	c／c	AA	c4	39，920，44	c／c	A A	c5	21，690，07	AA	${ }_{6} 16$	${ }^{\text {c6 }}$	5，942，68	тп	cic	${ }^{\text {c7 }}$	32，984，23	a	я	c8	24，041，8	AA	$\sigma 16$	c9	9，038，42	тr	${ }_{616}$
${ }^{1}$	9，051，37	\％／6	AA	c2	7，394，86	\％ 16	A	${ }^{\text {c3 }}$	3，142，20	${ }_{6} / 6$	AA	${ }^{\text {c3 }}$	40，188，711	c／c	AA	C4	39，968，3	тr	${ }_{616}$	c5	21，723，12	זT	c	c6	25，92，	Tr	cic	c7	3，103，303	тT	cı	${ }^{\text {c8 }}$	4，076，43	AA	c／c	c9	，135，	A／A	ca
${ }^{\text {c1 }}$	9，051，37	AA	${ }_{6} 6$	c2	7，397，72	${ }_{6 / 6}$	AA	${ }^{\text {c }}$	3，231，39	${ }_{6} 16$	cic	${ }^{\text {c3 }}$	，88，8	тп	cic	c4	39，996，5	A／A	¢／6	c5	21，794，18	тт	${ }_{6} 16$	${ }^{\text {c6 }}$	25，92，7	c／c	тт	c7	33，104，6	cic	тп	c8	．338，	тT	cic	${ }^{\text {cs }}$	142	a	AA
1	9，053，761	тп	G／G	c2	7，442，970	¢ו6	cic	${ }^{\text {c3 }}$	3，231，4	AA	c／c	c3	225，1	${ }_{6} / 6$	тп	c4	．014	тп	${ }_{6} 6$	c5	21，794，59	cic	AA	${ }^{\text {c6 }}$	\％，942	6／6	AIA	c7	． 324	\％／6	c／c	${ }^{\text {c8 }}$	2，361，2	cic	тп	${ }^{\text {c9 }}$	9，142	cic	AA
${ }^{1}$	9，055，88	c／c	тт	${ }^{\text {c2 }}$	7，42，630	тп	cic	${ }^{\text {c3 }}$	3，231，49	616	AA	${ }^{\text {c3 }}$	40，261，32	${ }^{616}$	A／A	${ }^{4} 4$	40，880，87	${ }^{616}$	cic	c5	21，828，11	cic	т	c6	25，942，83	${ }_{6} 16$	AA	c7	3，324，55	cic	тт	c8	2．546，	AA	${ }^{1 / c}$	${ }^{\text {c9 }}$	9，259，	610	тт
1	9，05，890	тп	cic	c2	7，484，12	\％／6	AA	${ }^{\text {c3 }}$	3，25，678	als	A A	c3	40，501，64	c／c	тп	c4	246，	c／c	тп	c5	21，83，011	c／c	A A	c6	25，942，84	AA	${ }_{6} 16$	c7	33，324，56	cic	тп	c8	24，63，05	${ }_{6} 16$	тT	${ }^{\text {c9 }}$	9，286，159	я	тt
1	9，053，922	AA	тп		7，697，735	AA	G／6	${ }^{\text {c3 }}$	3，259，540	A／A	${ }_{6} / 6$	${ }^{\text {c3 }}$	40，501，724	\％／6	A／A	c4	40，246，794	cı	тт	c5	21，665，86	c／c	${ }_{6} 16$	${ }^{\text {c6 }}$	25，924，859	${ }^{1 / 8}$	AA	${ }^{\text {c7 }}$	33，324，611	a	${ }_{6} / 6$	c8	24，630，07	at	тп	c9	9，286，52	тп	A A
	9，243，4	AA	тr	c2	7，743，06	co	π	${ }^{\text {c3 }}$	3，284，60	${ }_{6} 6$	NA	${ }^{\text {c3 }}$	40，502，85	A／A	G／6	c4	40，246，86	${ }^{616}$	A／A	c5	21，933，15	${ }_{6}^{6 / 6}$	тT	c6	25，94，	Tr	c／c	c7	3，324，62	тT	c／c	с8	24，661，6	a／A	tr	c9	9，287，0	AIA	c／c
${ }^{1}$	9，245，7	c／c	тп	c2	7．836，4	c，	\％／6	${ }^{\text {c3 }}$	3，284，60	6／6	AA	c3	40，572，11	c／c	π	c4	40，247，86	cı	AA	c5	21，970，7	тт	AA	${ }^{\text {c6 }}$	25，94，58	GIc	A／A	c7	，324，	AA	тп	c8	24，700，41	a／c	c／c	${ }^{\text {c9 }}$	9，305，	a	A／A
${ }^{1}$	9，365，003	cı	тп	c2	7，896，15	тп	c，	${ }^{\text {c3 }}$	3，3	c／c	тт	c3	40，574，714	${ }_{6} / 6$	тп	c4	40，247，922	${ }^{1 / 8}$	AA	cs	21，970，83	т	c／c	${ }^{\text {c6 }}$	25，944，56	${ }_{6} 16$	тা	${ }^{\text {c }}$	325	cic	тт	c8	24，700，60	тп	c 10	${ }^{\text {c9 }}$	9，869，	AA	тт
1	9，365，619	${ }_{6} / 6$	тT	${ }^{2} 2$	8，356，0	\％	тT	${ }^{\text {c3 }}$	3，307，6	A／A	т	${ }^{\text {c3 }}$	40，80， 2	${ }_{6} 16$	A／A	${ }^{4}$	40，248，	A／A	\％／G	cs	，970	${ }^{6 / 1}$	AA	${ }^{\text {c6 }}$	25，944	AA	${ }^{616}$	c7	3，325，4	т	cic	${ }^{\text {c8 }}$	24，700，6	AA	тT	${ }^{\text {cs }}$	．869	тT	616
1	9，42，413	${ }_{6} 16$	AA	c2	776，6	тт	AA	${ }^{\text {c }}$	3，30，3	cı	тт	${ }^{\text {c3 }}$	40，90，0	A／A	${ }_{6} 16$	${ }^{4} 4$	40，248，	${ }^{616}$	cic	c5	1，970	${ }_{6} / 1$	тп	${ }^{\text {c6 }}$	25，488，36	gic	AIA	${ }^{\text {c7 }}$	33，350，9	gic	AA	${ }^{\text {c8 }}$	24，701，	cic	тп	c9	9，917，68	616	тп
1	9，488，74	${ }_{6} 16$	cic	c2	8，476，81	тп	AA	${ }^{\text {c3 }}$	3，436，25	AA	тп	${ }^{\text {c3 }}$	40，752，98	тп	cic	c4	40，288，58	c／c	тп	c5	21，99，15	c／c	тп	${ }^{\text {c6 }}$	25，997，57	AA	610	${ }^{\text {c7 }}$	33，550，93	cic	Gic	${ }^{\text {c8 }}$	24，70，1，	cic	тT	c9	10，014，76	Tr	cic
${ }^{1}$	9，488，	${ }_{6} 6$	AA	c2	8，510，10	AA	s／6	${ }^{\text {c3 }}$	3，436，28	G／6	тт	${ }^{\text {c3 }}$	40，995，03	т	916	${ }^{4} 4$	40，249，9	${ }_{6} 16$	A／A	c5	22，032，88	тT	${ }_{6} 16$	${ }^{\text {c6 }}$	25，997，5	тп	AIA	c7	3，350，9	G／6	AA	c8	25，168，12	тп	cic	c9	0，015，91	ald	${ }_{6} 16$
${ }^{1}$	9，489，9	c／c	\％r	${ }^{\text {c2 }}$	8，520，975	6／6	тT	${ }^{\text {c }}$	3，436，38	π	G／	${ }^{\text {c3 }}$	，060，0	c／c	${ }_{6}$	c4	40，249，96	c／c	тп	c5	2，077，64	тт	cic	${ }^{\text {c6 }}$	26，039，17	c／c	тп	c7	3，351，22	AA	c／c	c8	25，168，18	gis		c9	10，02， 4	a A	${ }_{6} / 6$
${ }^{\text {c1 }}$	9，40，001	A／A	cic	c2	21，0	тп	cic	${ }^{\text {c3 }}$	3，585，2	тп	¢／6	c3	288，4	тп	\％／6	c4	40，25，2	${ }^{\text {A／A }}$	тт	cs	22，373，27	cı	тп	${ }^{\text {c6 }}$	26，047，2	${ }^{616}$	A／A	c7	\％，351，	6／6	AA	c8	25，451，3	616	тп	c9	10，569	тп	${ }_{6} 16$
${ }^{1}$	9，511，764	т！	cic	${ }^{\text {c2 }}$	8，540，048	π	cic	${ }^{\text {c3 }}$	3，585，7	AA	616	${ }^{\text {c3 }}$	41，341，45	${ }^{616}$	cic	${ }^{4} 4$	40，25，4，	тT	c／c	${ }^{\text {c5 }}$	22，562，	AA	${ }_{6} 16$	${ }^{\text {c6 }}$	26，047	AA	${ }_{6} 16$	${ }^{\text {c7 }}$	33，351，03	916	ca	${ }^{\text {c8 }}$	25，451，3	тT		${ }^{\text {c9 }}$	10，569	c／c	AA
${ }^{\text {c1 }}$	9，511，838	A／A	тT	${ }^{\text {c2 }}$	8，581，072	\％／6	AA	${ }^{\text {c }}$	3，585，7	тт	AA	${ }^{\text {c3 }}$	50，7	A／A	тт	${ }^{4} 4$	251，4	${ }^{616}$	A／A	c5	22，56，00	тT	A／A	c6	26，047	тT	cic	cr	33，692，5	AA	${ }_{6} 16$	c8	25，555，	cic	тп	${ }^{\text {cs }}$	10，569，79	AA	тп
${ }^{1}$	9，511，85	cic	тп	c2	8，58，08	тп	6／6	${ }^{\text {c3 }}$		G／6	AA	${ }^{\text {c3 }}$	41，557，93	c／c	AA	c4	0	тп	cic	c5		cic	9	c6		Tr	gic	c7	33，692	a	тп	c8	2．691，	cı	тп	${ }^{\text {c9 }}$	10，605，5	tr	c／c
${ }^{1}$	9，522，073	${ }_{6} / 6$	AA	c2	8，601，95	$6 / 6$	π	${ }^{\text {c3 }}$		тT	c，	${ }^{\text {c3 }}$	41，685，3	AIA	c／c	c4	40，251，	a／A	тп	${ }^{\text {cs }}$	22，562	c／c	${ }_{16}$	${ }^{\text {c6 }}$	26，461	6／10	AA	${ }^{\text {c }}$	33，894	AA	${ }_{6} 16$	${ }^{\text {c8 }}$	2，09，	cic	AA	c9	10，605		AA
${ }^{1}$	9，524，39	A／A	G／G	c2	8，612，78	c／c	AA	${ }^{\text {c }}$	3，96，32	π	AA	${ }^{\text {c }}$	853，6	AA	${ }_{\text {gic }}$	c4	252，23	AA	σ_{6}	c5	22，564，3	c／c	тп	co	26，461，9	an	616	c7	33，915，10	cic	G／6	co	25，897，47	cic	AA	${ }^{\text {c9 }}$	10，612，	，	тп
${ }^{1}$	9，524，412	AA	тп	c2	，12，8	A A	cic	c3	4，011，15	c／c	тп	c3	41，855，56	A／A	${ }_{6} / 6$	${ }^{4} 4$	40，357，3	${ }_{6} 16$	cic	c5	22，889，10	${ }_{6} 16$	AA	${ }^{\text {c } 6}$	26，518，	c／c	тт	c7	33，919，	AA	c 10	c8	25，98，	тп	616	c9	10，734	AA	${ }_{6} 16$
${ }^{\text {c1 }}$	9，524，462	AA	cic	c2	8，620，01	AA	тт	${ }^{\text {c3 }}$	4，079，42	a／6	cic	c3	41，98，8	тп	cic	c4	413，	cı	${ }_{6} / 6$	c5	22，85，9	cı	AA	${ }^{\text {c } 6}$	26，554，	cc	тт	c7	34，172，	cc	${ }_{6} / 6$	c8	25，98，2	AA	a	${ }^{\text {c9 }}$	10，73，	g	AA
1	9，574，45	A／A	G／6	${ }^{\text {c2 }}$	20，0	A	тT	${ }^{\text {c3 }}$	4，103，54	${ }^{1 / 6}$	A A	${ }^{\text {c3 }}$	898，	c／c	AA	c4	40，413，1	тт	${ }_{6} 16$	c5	22，855，	тт	cras	${ }^{\text {c } 6}$	26，554	AIA	a	c7	$34,216,04$	g	cic	${ }^{\text {c8 }}$	26，073	AA	cic	c9	\％，733	cla	and
${ }^{1}$	，574，4	${ }^{6 / 6}$	тт	c_{2}	8，627，93	c／c	тт	${ }^{\text {c3 }}$	4，112，2	c／c	${ }_{\text {als }}$	${ }^{\text {c3 }}$	42，046，47	тт	c／c	c4	40，420	זr	6／6	cs	2，855	cic	тт	${ }^{\text {c } 6}$		Tr	cic	${ }^{\text {c }}$	34，216，24	gic	cic	c8	26，692，1	gic	cic	${ }^{\text {c9 }}$	10，814，58	${ }^{610}$	AA
${ }^{\text {c1 }}$	10，172，188	c	тт	${ }^{\text {c }}$	8，726，562	${ }_{6} / 6$	AA	${ }^{\text {c3 }}$	4，438，54	${ }_{6}^{6 / 6}$	AA	c3	42，09，33	${ }^{616}$	AIA	c4	40，705，74	A／A	${ }^{616}$	c5	2，．85	${ }_{6} 6$	AA	${ }^{\text {c6 }}$	26，54，	${ }^{616}$	A／A	${ }^{\text {c7 }}$	34，282，9	тT	AIA	c8	26，34，647	cic	tr	c9	，892	тT	cic
${ }^{\text {c1 }}$	81，3	т！	G／6	c2	8，739，25	c／c	AA	c3	4，515，716	${ }^{\text {c／c }}$	тт	${ }^{\text {c3 }}$	277，0	AIA	${ }_{6} / 6$	c4	40，705，78	т！	c／c	cs	22，86，03	${ }^{\text {a／A }}$	${ }_{616}$	${ }^{\text {c6 }}$	26，554，	6ic	AA	cr	34，30，60	cic	ir	${ }^{\text {c }}$	26，825，65	a		c9	10，92，55		${ }^{616}$
${ }^{\text {c1 }}$	10，512，07	cı	тп	${ }^{\text {c2 }}$	8，805，14	тт	c，	c3	4，515，73	AA	cic	${ }^{\text {c3 }}$	42，391，94	${ }_{6} 16$	тп	c4	40，76，163	A／A	6／6	${ }^{\text {c5 }}$	22，864，35	${ }_{6} / 6$	тп	${ }^{\text {c6 }}$	26，55，4	AIA	${ }_{6} 16$	c7	34，399，70	AA	610	c8	26，825，6	AA	${ }_{6} / 1$	c9	10，892	c／c	тт
	10，512，13	тт	916	${ }^{\text {c2 }}$	$8,805,1$	c／c	тт	${ }^{\text {c }}$	4，5	${ }^{\text {AIA }}$	G／6	${ }^{\text {c3 }}$	42，391，971	${ }_{6 / 6}$	тт	c4	40，76，34	tr	${ }_{6 / 6}$	${ }^{\text {c }}$	22，864，	AA	Gis	${ }^{\text {c6 }}$	26，600	${ }^{616}$	A／A	c7	34，371，4	AA	${ }_{6} 16$	c8	27，032，13	${ }^{616}$	тT	${ }^{\text {c9 }}$	10，918	тT	c／c
c1	10，512	${ }^{\text {c／a }}$	AA	c2	8，825	g／6	c_{10}	c3	4，516，8	${ }_{6} / 6$	c／c	${ }^{\text {c3 }}$	42，526，2	A／A	${ }_{6} 16$	c4	40，749	cic	A A	c5	22，8	cic	тп	${ }^{\text {c6 }}$	26，60， 35	G／6	c／c	c7	34，37，	AA	${ }_{6} 16$	${ }^{\text {c8 }}$	27，196，	AA	${ }^{6 / 1}$	c9	10，918，81	тT	co
${ }^{\text {c1 }}$	10，54，68	тт	cic	c2	${ }^{8,826,71}$	c，	זT	${ }^{\text {c3 }}$	4，51，959	${ }_{6} / 6$	AIA	${ }^{\text {c3 }}$	42，882，678	тп	c／c	c4	40，783，587	c／c	AA	${ }^{\text {c5 }}$	22，9	тт	c／c	${ }^{\text {c6 }}$	26，97，	${ }^{1 / 8}$	AA	${ }^{\text {c7 }}$	34，371，5	тп	cic	c8	27，198，0	cic	тт	c9	10，918，816	AA	610
		cos	тit	c_{2}		\％	co	${ }^{\text {c }}$		\％	AA	${ }^{\text {c3 }}$		析	A／A	c4		AA	6／8	c5	22，947，489	AA	cic	c6	27，022，62	Tr	G／6	c7	34，39，927	Tr	AA	c8	2，303，	tin	co	c9	11．014，475	AA	

[^1] chromosomes．

Appendix III Cont.

Table S3: Cont. : Differences in Allelic variants at various chromosomes positions in parent lines; the cultivated rapid cycling DHSL150 and C07007

*Note: Yellow colour indicates variants sequence of the cultivated rapid cycling DHSL150 line and grey colour indicates that of wild S1 C07007 line showing differences in allelic variant in their
chromosomes.

Appendix III Cont.

Table S3: Cont. : Differences in Allelic variants at various chromosomes positions in parent lines; the cultivated rapid cycling DHSL150 and C07007.

	Stion	DHS	c0707	chr.	Position	DHSL150	c07007		Postion	DHS	coroor	chr.	Postion	DHS	co7007	chr.	Position	DHS	c07007	chr.	Position	HSL150	co7007	chr.	Position	DHSL150	co7007	chr.	position	DHSLI50	c07007	7 chr .	Position	DHSL150	c07007		Position	DHSL150	
	2734,98	\%	AA	c2	13,207,490	AA	тт	${ }^{\text {c3 }}$	5,73,235	тт	AA	c3	45,635,870	616	AA	c4	44,80,850	c/c	тт	c5	26,33,457	AA	тп	${ }^{\text {c6 }}$	31,169,801	тп	c/c	c7	77,768	${ }^{6} 6$	AIA	c8	, 63,256	AA	c/c	c9	16,48,415	тт	cic
	12,734,950	${ }_{6 / 6}$	A/A	c2	13,222,378	A/A	тT	${ }^{\text {c3 }}$	5,74,	тт	AA	c3	45,65,301	тп	AA	c4	45,319,44	тп	c/c	cs	26,38,529	A ${ }^{\text {a }}$	${ }_{\text {GIG }}$	c6	31,211,172	${ }_{6 / 6}$	AIA	${ }^{\text {c7 }}$	37,288,313	c/c	тт	c8	30,48,24	c/c	\%/6	c9	16,481,457	${ }_{6 / 6}$	AIA
	${ }_{1} 12,734,956$	c/c	тт	c2	13,22, 3,39	тп	A/A	c3	5,749,116	тп	cic	${ }^{\text {c3 }}$	45,655,32	AA	тт	c4	45,38,693	cı	¢16	c5	26,391,512	тт	c/c	c6	3,215,00	c/c	тт	c7	37,300,411	cic	\%	c8	30,60,65	gic	c/c	c9	16,482,12	cı	ब/6
	c1 12,770,133	${ }_{6} 6$	тт	c2	13,22,404	c/c	тп	${ }^{\text {c3 }}$	5,882,854	A/A	G/6	${ }^{\text {c3 }}$	45,68, 437	AA	cic	c4	45,389,714	6/G	AA	cs	26,39,584	${ }_{616}$	A/A	c6	31,247,221	A/A	GIG	c7	37,35,11	AA	616	c8	30,60,67	тт	c/c	${ }^{\text {cs }}$	16,526,070	${ }_{6} 6$	AA
	12,770,186	${ }_{6} / 6$	тт	c2	13,22,424	A/A	6/6	${ }^{\text {c3 }}$	5,943,52	тп	c,	${ }^{\text {c3 }}$	45,88,547	AA	c/	c4	45,725,296	A/A	${ }_{6} 18$	cs	26,478,293	c/c	тп	${ }^{\text {c6 }}$	31,247,23	тп	A A	c7	37,36,78	ac	тп	c8	30,60,7,	тп	c/c	c9	16,552,55	AA	${ }_{6} / 6$
	12,770,20	c/c	тт	c2	13,22,	c/c	тт	${ }^{\text {c3 }}$	6,03,4	c/c	тп	${ }^{\text {c3 }}$	45,72,65	тп	c/c	c4	45,72, 116	c/c	A/A	cs	26,478,32	c/c	AA	${ }^{\text {c6 }}$	31,384,51	A/A	тт	c7	26,8	AA	${ }_{6} / 6$	c8	30,62,4	тт	c/c	c9	628,47	c/c	${ }_{6} 16$
	12,770,205	cı	тп	c2	13,845,	тт	cic	c3	6,048,37	тп	cic	${ }^{\text {c3 }}$	45,748,264	тп	AA	c4	45,97,815	c/c	тп	cs	26,525,76	c/c	тп	${ }^{\text {c6 }}$	31,96,	т	A/A	c7	3,378,103	alc	cic	c8	30,60,8	${ }_{6} 16$	c/c	${ }^{\text {cs }}$	16,67,49	c/c	тп
	c1 12,770,222	тт	gic	c2	13,845,388	тп	\%/6	c3	6,19,736	AA	${ }_{6} / 6$	c3	45,825,413	AIA	g/6	c4	45,979,879	cı	AA	cs	26,525,878	${ }_{6} 16$	тп	c6	31,696,048	тт	cic	c7	37,385,582	an	${ }_{616}$	c8	30,64,04	тп	${ }_{616}$	c9	16,72,57	${ }_{616}$	тп
	c1 12,770,243	A/A	тп	c2	13,927,85	тп	${ }_{6} 16$	с3	6,13,319	AA	¢/G	${ }^{\text {c3 }}$	45,971,494	c/c	тт	c4	45,979,990	G/6	тп	cs	26,525,906	тп	cic	${ }^{6}$	31,99,082	cı	G/6	c7	37,56,885	тп	AA	c8	30,604,14	тп	AA	c9	16,73,05	c/c	тп
	12,770,270	AA	${ }_{6} 16$	c2	13,927,8	${ }_{6} / 6$	c/c	${ }^{\text {c3 }}$	6,132,3	c/c	${ }_{6} 16$	${ }^{\text {c3 }}$	45,971,511	AA	cic	c4	45,97,924	тп	AA	cs	26,525,94	${ }_{6} 16$	AA	c6	32,150,43	тт	c/c	c7	${ }^{37,562,93}$,	AA	c8	30,64,17	AA	c/c	c9	16,75,56	${ }_{6} 16$	A/A
	12,771,21	${ }_{6} / 6$	cic	c2	14,06,00	cıc	тп	c3	6,15,02	cı	G/6	${ }^{\text {c3 }}$	46,067,447	тт	cic	c4	45,979,932	тп	cic	cs	26,525,946	тп	c/c	c6	32,150,	тт	A/A	c7	37,59,87	A/A	c/c	c8	30,643,174	тп	A/A	c9	16,762,840	A/A	6/6
	12,771,422	${ }_{6} / 6$	AA	c2	14,079,2	A/A	т!	c3	6,156,	тп	AA	${ }^{\text {c3 }}$	46,118,73	AIA	G/	c4	45,983,72	тп	616	cs	26,599,5	c/c	тп	${ }^{6}$	32,150	c/c	тп	c7	37,59	c/c	тп	c8	30,646,	GI6	тп	c9	16,76	${ }_{6 / 6}$	cı
	${ }_{1} 12,778,128$	тп	GIG	c2	14,158,301	тп	c/c	${ }^{\text {c3 }}$	6,22,560	c/c	AA	${ }^{\text {c3 }}$	46,138,184	cı	AA	c4	45,983,295	cı	тп	cs	26,779,879	AIA	${ }_{6 / 6}$	c6	32,16	${ }_{6 / 6}$	c/c	c7	${ }^{37,596}$	a/	${ }_{10}$	c8	30.46,51	тп	c/c	${ }^{\text {cs }}$	16,869,	c/c	тп
	13,199,262	A/A	т!	c2	14,158,	${ }_{6} / 6$	AA	${ }^{\text {c3 }}$	6,274,086	c/c	тп	${ }^{\text {c3 }}$	46, 214,258	c/c	тт	c4	46,057,966	c/c	тт	c5	26,828,997	AA	cic	${ }^{6}$	32,316,939	c/c	тт	ct	37,596,94	AA	c)	${ }^{\text {c8 }}$	30,85,41	616	AA	c9	18,869,74	тп	c/c
	13,219,326	c/c	тп	c2	14,184,6	тп	c/c	${ }^{\circ}$	6,274,0	c/c	тт	${ }^{\text {c3 }}$	46,388,145	c/c	тт	c4	46,096,771	c/c	тп	cs	26,90,430	тп	G/6	c6	32,42,83	A/A	c/c	c7	37,601,428	тт	c/	c8	30,90,37	тп	c/c	${ }^{\text {cs }}$	16,89,97	c/c	тп
	13,28,44	тт	cic	c2	14,427,7	\%/6	AA	c3	6,295,940	AA	916	${ }^{\text {c3 }}$	46,867,065	AA	c/c	c4	46,097,03	c/c	тт	c5	27,007,057	${ }_{6} 16$	AA	${ }^{6}$	32,64,64	тт	AA	${ }^{\text {c7 }}$	37,62,315	c/c	тт	${ }^{\text {c8 }}$	30,690,381	тп	AA	c9	16,879	c/c	тп
	13,306,	${ }_{6} / 6$	A/A	c2	14,503,	тп	c/c	${ }^{\text {c3 }}$	6,295,979	тп	σ_{16}	c3	46,867	G/6	cı	c4	46,136	AA	ब/6	c5	27,333	тז	AA	c6	32,7	${ }_{6} / 6$	A/A	c7	37,62	ब16	AA	c8	30,72	tr	${ }_{6} 16$	c9	16,90	${ }_{616}$	A/A
	13,339,466	A/A	G6	c2	14,564,135	тп	c/c	${ }^{\text {c3 }}$	6,29,9	тп	cic	${ }^{\text {c3 }}$	46,936,838	6/6	тт	c4	46,13	тп	cı	cs	27,33	cı	тп	${ }^{\text {c6 }}$	32,810,	тт	G6	c7	37,62	G16	AA	c8	31,03,3	${ }^{16}$	AA	${ }^{\text {cs }}$	16,90,29	${ }_{6} 16$	c/c
	$1{ }^{13,33}$	A/A	6/8	c2	14,59,	¢/6	A/A	${ }^{\text {c3 }}$	6,302,2	${ }_{6} / 6$	A/A	${ }^{\text {c3 }}$	46,936,92	тп	AA	c4	46,137,	c/c	тп	cs	27,467,	AA	c/c	${ }^{\text {c6 }}$	32,810	тп	c/c	c7	37,63,53	a	c/c	c8	31,04, ,19	c/c	AA	${ }^{\text {cs }}$	16,96,12	c/c	тп
	13,33	${ }_{6} / 6$	тт	c2	14,59,09	тп	c/c	${ }^{\text {c3 }}$	6,317,642	cic	тт	${ }^{\text {c3 }}$	47,032,543	тт	cı	c4	46,137,27	тп	cic	cs	27,467,093	c/c	тт	c6	32,81,910	A/A	cic	c7	37,63,552	c/c	тт	с8	31,09,77	AIA	${ }_{616}$	c9	17,014,079	A/A	\%/6
	13,922,16	c/c	тt	${ }^{\text {c2 }}$	14,600,44	${ }_{6} / 6$	тт	${ }^{\text {c3 }}$	6,319,530	als	AA	c3	48,87,509	тт	AA	c4	46,137,2	тп	cic	c5	27,563,9	${ }^{6 / 1}$	тп	${ }^{\text {c } 6}$	3,017,	т	c/c	c7	37,63,556	т!	cic	c8	31,095,	тт	c/c	${ }^{\text {c9 }}$	17,014	AA	616
	c1 13,434,57	c/c	тп	c2	14,603,036	c/c	A/A	${ }^{\text {c3 }}$	6,319,557	AA	Gis	${ }^{\text {c3 }}$	48,913,860	cic	AA	c4	46,137,270	c/c	g/6	cs	27,563,9	тт	cic	${ }^{\text {c6 }}$	33,017,	cic	тп	c7	37,63,4	${ }_{6} 16$	AA	c8	31,351,	cic	AA	${ }^{\text {cs }}$	17,16	тп	6/6
	13,43	AA	618	c2	14,0	\%/6	AA	${ }^{\text {c3 }}$	6,31,565	тп	AA	${ }^{\text {c3 }}$	48,9	AIA	c/c	c4	46,	AIA	cic	c5	27,	cic	AA	${ }^{\text {c6 }}$	33,037,617	AA	${ }_{6} 16$	c7	37,636	6/6	AA	c8	31,47,86	cic	т	c9	17,58	${ }_{6} 16$	тп
	14,036,225	тт	cic	c2	14,676,0	AIA	cic	${ }^{\text {c3 }}$	6,320,00	c/c	π	${ }^{\text {c3 }}$	48,95,483	cic	AA	c4	46,248,88	${ }_{6} 16$	AA	cs	27,602,465	тп	cic	c6	33,46,76	тп	G/6	c7	37,636,169	тп	c/c	c8	31,557,2	c	A/A	${ }^{\text {cs }}$	17,75,10	c/c	AA
	c1 14,03,237	${ }_{6 / 6}$	тт	c2	14,67,08	${ }_{6} / 6$	cic	${ }^{\text {c3 }}$	6,320,011	g6	AA	c3	48,95,493	cic	\%	c4	46,26,1,	тп	A/	c5	27,602,473	тп	${ }_{6} 16$	${ }^{6}$	33,826,415	A/A	c	c7	37,68,039	A/A	618	c8	31,613,46	тп	c/c	${ }^{\text {c9 }}$	18,065,	A/A	616
	${ }^{1} 14.403,089$	${ }_{6 / 6}$	тт	c2	14,898,72	¢/6	A/A	${ }^{\text {c3 }}$	6,320,038	c/c	тт	${ }^{\text {c3 }}$	48,99,085	cic	тт	c4	46,28,33	c/c	тт	cs	27,758,178	тп	AA	c6	33,918,	AA	GIG	c7	37,78,12	тп	c/c	c8	31,61, ${ }^{\text {a }}$	AA	${ }_{6} 16$	c9	18,344	тп	G/6
	c1 14,074,63	c/c	${ }_{6} / 6$	c2	14,90	\%/6	c/c	c3	6,32,	6/6	AA	${ }^{\text {c3 }}$	48,999,	AA	616	c4	46,28	cı	тт	cs	27,758	${ }_{6} / 6$	a A	${ }^{6}$	34,01	cı	AA	c7	37,87,312	тT	A A	c8	${ }^{31,613}$	618	тп	c9	19,35	${ }_{6} / 6$	AA
	14,074	c/c	тт	c2	14,949,109	c/c	тп	${ }^{\text {c3 }}$	6,30,16	${ }_{6}$	AA	${ }^{\text {c3 }}$	49,08,4	AA	тт	c4	46,28,3	AA	616	cs	27,779,662	тт	an	${ }^{6}$	34,084	A/A	${ }_{6} / 6$	c7	37,85, ${ }^{\text {a }}$	AA	$6 / 6$	c8	31,69,36	cic	тт	c9	20,410,5	AA	c/c
	14,12, ${ }^{\text {a }}$	c/c	тп	c2	108,8	тп	c/c	c3	6,36,29	AA	тт	c3	49,08,561	cic	тп	c4	46,288,3	616	тп	cs	27,78,982	${ }_{6} 16$	AA	${ }^{6}$	34,094	тт	cic	c7	37,907,51	cic	тп	${ }^{\text {c8 }}$	31,704,15	cı	тп	c9	20,410	${ }_{6} 16$	тп
	c1 14,230,3	тт	AA	c2	15,108,84	${ }^{6 / 6}$	тт	${ }^{\text {c3 }}$	6,36, 39	тT	A/A	${ }^{\text {c }}$	49,083,592	тт	AA	c4	46,28,40	AA	618	c5	27,78,00	616	AA	${ }^{\text {c6 }}$	34,094,0	A/A	616	c7	37,92,95	AA	${ }^{616}$	${ }^{\text {c8 }}$	31,74,2	тT	c/c	${ }^{\text {cs }}$	20,410	т	616
	c1 14,30,066	c/c	тT	c2	15,108,903	тп	${ }_{6} / 1$	${ }^{\text {c3 }}$	6,36,417	${ }_{6} / 6$	AA	${ }^{\text {c3 }}$	49,447,610	cı	AA	c4	46,28,409	тп	AA	c5	27,79, 243	${ }_{6} 16$	AA	${ }^{\text {c }}$	34,994,620	${ }^{616}$	AA	c7	37,99,23	G16	тп	c8	31,704,30	тп	${ }_{6} / 6$	c9	20,439,51	c/c	AA
	c1 14,313,6	c/c	тт	c2	15,25,	AA	тт	${ }^{\text {c }}$	6,369,	тт	AA	${ }^{\text {c3 }}$	49,45,3,36	тт	AA	${ }^{\text {c }}$	46,610,	c/c	тт	${ }^{\text {c5 }}$	27,91,26	тт	cic	${ }^{\text {c6 }}$	34,097,4	${ }^{\text {s/6 }}$	тt	${ }^{\text {c7 }}$	38,03,20	gic	AA	${ }^{\text {c8 }}$	31,74,3	AA	${ }_{6 / 6}$	c9	20,542,1	${ }_{6 / 6}$	cic
	c1 14,313,6	${ }_{6} / 6$	тп	c2	15,25, 8	тп	A/A	${ }^{\text {c3 }}$	6,383,243	тт	cic	${ }^{\text {c3 }}$	49,729,609	AIA	cic	c4	46,673,56	c/c	616	cs	27,791,24	c/c	тп	${ }^{6}$	34,097,5	тп	cic	c7	38,03,21	AA	тп	c8	31,848,23	AA	c/c	${ }^{\text {c9 }}$	20,592	AA	${ }_{6} 16$
	c1 14,313,7	тт	616	c2	15,25,599	${ }_{6} 16$	AA	${ }^{\text {c3 }}$	6,383,317	AA	${ }_{6}$	${ }^{\text {c3 }}$	4,9,85,554	т	cic	c4	46,673,562	тт	cic	c5	27,995,439	тт	cic	${ }^{\text {c } 6}$	34,468,	cic	AIA	${ }^{\text {ct }}$	38,01,69	6/6	AA	c8	31,874,20	тп	cic	c9	20,669	тт	616
	c1 14,38, ,31	AA	ब16	c2	15,25,6,10	AA	G/6	${ }^{\text {c3 }}$	6,383,383	${ }^{\text {c/ }}$	тп	${ }^{\text {c3 }}$	49,85,652	6/G	AA	c4	46,697,178	${ }_{616}$	тп	cs	27,86,793	${ }_{6} 16$	AA	c6	34,48,983	AA	тп	${ }^{\text {cr }}$	38,03,35	тп	AA	${ }^{\text {c8 }}$	3,8,74,23	тп	${ }_{6} 16$	cs	20,669,74	c/c	AA
	c1 14,49,4,414	c/0	тп	c2	15,327,51	a/A	616	c3	6,88,411	cı	тт	c3	49,923,819	тп	c/c	c4	46,697,332	cı	тп	c5	27,821,722	тп	cic	${ }^{6}$	34,502,34	AA	cic	c7	38,08,41	AA	тп	c8	31,958,85	gic	A A	${ }^{\text {c9 }}$	20,705,584	cı	AA
	1 14,47,043	c/c	616	c2	15,423,86	тп	c/c	${ }^{\text {c3 }}$	6,412,64	c/c	AA	${ }^{\text {c3 }}$	50,237,169	c/c	тт	c4	46,738,743	тп	cic	cs	27,823,763	cic	тп	${ }^{\text {c6 }}$	${ }^{34,521,883}$	тт	cic	c7	38,136,069	cic	gis	c8	31,95,9	c 10	${ }_{6} / 6$	c9	22,166,83	A/A	616
	c1 14,476,61	${ }_{6} / 6$	тт	${ }^{\text {c }}$	15,47,02	A/A	616	${ }^{\text {c3 }}$	6,413,422	AA	cic	${ }^{\text {c3 }}$	50,245,639	тт	c/c	c4	46,817,4818	c/c	A1A	${ }^{\text {cs }}$	27,86,370	${ }_{6} 6$	A/A	${ }^{\text {c6 }}$	34,898,5	A/A	cic	${ }^{\text {c7 }}$	38,19,72	cic	тт		31,958,	cic	${ }_{6} 16$	${ }^{\text {c9 }}$	22,38	${ }_{6} / 6$	тп
	${ }_{1} 14.478,625$	AA	GIG	c2	15,86,937	тп	AA	${ }^{\text {c3 }}$	6,415,344	c/c	тт	${ }^{\text {c3 }}$	50,332,19	6/6	тт	c4	46,817,501	тт	G/G	cs	27,911,912	${ }_{6 / 6}$	AA	c6	34,89,510	c/c	AA	c7	38,25,10	cı	тп	${ }^{\text {c8 }}$	31,95,07	${ }^{616}$	c/	c9	22,31,72	${ }_{6} 6$	A/A
	${ }^{\text {c }}$ 14,47,613	c/c	тт	c2	16,038,400	AA	616	c3	6,447,91	AA	c/c	${ }^{\text {c3 }}$	50,42,481	cı	тт	c4	46,930,949	${ }_{6} 16$	cı	c5	27,911,973	cic	AA	${ }^{\text {c } 6}$	35,027,325	c/c	AA	${ }^{\text {ct }}$	38,25,31	тп	cic	c8	31,95,18	gic	cı	${ }^{\text {cs }}$	22,381,814	6/6	AA
	c1 14,56,988	c/c	тт	c2	16,193,33	6/6	тт	c3	6,452,90	тп	AA	${ }^{\text {c3 }}$	50,422,505	тт	616	c4	46,981,069	тт	616	c5	27,912,007	cı	AA	${ }^{\text {c } 6}$	35,23,30	тт	cic	c7	38,27,66	A ${ }^{\text {a }}$	c 10	c8	31,960,0	тп	cic	c9	22,50,65	${ }_{6} 16$	AA
	c1 14,56,117	cı	6	c2	16,23,615	\%/6	c/c	${ }^{\text {c3 }}$	6,477,762	тт	c/c	${ }^{\text {c3 }}$	50,430,761	616	cic	c4	46,981,444	cic	тт	cs	27,915,667	AA	cic	${ }^{\text {c } 6}$	35,45,.05	${ }_{6} 16$	AA	c7	38,28,074	c/c	${ }_{6} 16$	c8	31,963,39	AA	${ }_{6} / 6$	c9	22,57,58	A A	тп
	${ }^{1} 14.456,133$	тт	AA	c2	16,23, ${ }^{\text {c30 }}$	${ }_{6} / 6$	A/A	c3	6,47,768	c/c	\%/6	${ }^{\text {c3 }}$	50,813,499	AIA	тт	c4	46,98,512	ब6	c/c	c5	27,95,686	\%/6	тп	c6	35,454,592	тп	A/A	c7	38,28,08	AA	\%6	с8	31,97,98	c/c	тт	c9	22,57,19	тп	c/c
	c1 14,57,662	c/c	тп	c2	16,23,	c/c	тп	${ }^{\text {c }}$	6,40,2	тп	AA	${ }^{\text {c3 }}$	50,847,	тп	AA	c4	46,982,24	${ }_{6} 16$	AA	cs	27,915,78	тп	c/c	c6	35,45,	${ }_{6} 16$	AA	c7	38,45,39	AA	cic	c8	31,92,96	a	${ }^{6}$	c9	22,592,448	тп	c/c
	c1 14,75,420	тт	${ }_{6} / 6$	c2	16,472,45	c/c	A/A	${ }^{\text {c3 }}$	490,29	A/A	тт	${ }^{\text {c3 }}$	50,876,	${ }_{6} 16$	AA	c4	46,982,24	cic	тT	c5	27,915,84	тT	cic	${ }^{\text {c6 }}$	35,97,58	610	AA	${ }^{\text {ct }}$	38,45,42	тT	AA	${ }^{\text {c8 }}$	32,018,73	тr	AA	c9	22,592	AA	тт
	c1 14,89,514	тп	cic	c2	16,67, 83	${ }_{6} / 6$	AA	${ }^{\text {c3 }}$	6,53,761	G6	A/A	${ }^{\text {c3 }}$	50,87, 263	тп	cic	c4	47,179,011	AA	cic	cs	27,915,953	A/A	${ }_{6} 16$	${ }^{\text {c6 }}$	35,702,458	c/c	G/6	c7	38,45,450	тr	c/c	${ }^{\text {c8 }}$	32,018,820	тп	AA	${ }^{\text {c9 }}$	22,65,24	A/A	616
	c1 14,960,881	тп	6/	c2	16,67,955	cic	G/6	c3	6,584,002	cic	¢16	${ }^{\text {c3 }}$	50,876,390	т!	cic	c4	47,270,038	616	A/A	c5	27,95,946	cı	тт	${ }^{\text {c6 }}$	35,702,532	cic	тт	c7	38,461,42	${ }^{616}$	тт	c8	32,310,08	тп	cic	c9	22,657,702	тт	AA
	${ }_{\text {c }}$ 14,98,369	${ }_{6 / 6}$	тп	c2	16,763,752	AA	c/c	${ }^{\text {c3 }}$	6,601,60	тп	${ }_{6} 16$	${ }^{\text {c3 }}$	50,950,565	6/G	AA	c4	47,34,949	A/A	${ }_{616}$	cs	27,95,982	AA	${ }_{6}$	c6	35,736,881	c/c	тп	c7	38,46,56	an	${ }_{616}$	c8	32,39,4	ald	AA	${ }^{\text {c9 }}$	22,716,055	AA	c/c
${ }^{\text {c1 }}$	15,010,386	тт	cic	c2	16,851,25	cic	${ }_{6} / 6$	${ }^{\text {c3 }}$	6,68,051	cı	\%/6	c3	50,95,573	${ }_{6}$	c 1	c4	47,413,00	тп	cic	c5	27,95,995	AA	G/G	c6	35,736,702	AA	c/c	c7	38,43,16	тп	AA	c8	32,399,41	cic	AA	c9	22,74,28	cic	тт
	15,010,415	тт	AA	c2	16,55,266	cı	AA	c3	6,68,92	тт	916	${ }^{\text {c3 }}$	50,996,673	cı	тт	c4	47,88,010	cic	тп	cs	28,071,422	c/c	тт	${ }^{\text {c } 6}$	35,762,632	AA	6	c7	38,559,900	c/c	тז	c8	32,34,4,34	A/A	${ }_{6} / 6$	${ }^{\text {cs }}$	22,754,01	c/c	AA
	$c_{1} 15.036,488$	AIA	G/6	c^{2}	16,851,472	A/A	616	${ }^{\text {c }}$	6,74,587	als	AA	${ }^{\text {c3 }}$	51,012,686	тт	cic	c4	47,484,156	A/A	тп	c5	28.091,643	G/6	A/A	${ }^{\text {c6 }}$	35,841,977	c		c7	38.560,236	c/c	тT	c8	32,399,470	c/c	тT	c9	22,75,73,	616	A/A

Appendix III Cont．

Table S3：Cont．：Differences in Allelic variants at various chromosomes positions in parent lines；the cultivated rapid cycling DHSL150 and C07007

rr．Postition	DHSL15	07007	crr．	Postion	DHSL150	co7007	chr．	Postion	DHSLL5	c07007	chr．	Postion	DHSL150	co7007	chr ．	Postion	DHSL150	C0707	chr．	Postion	DHSL150	c07007	chr．	Postion	DHSL150	c07007	crr．	Postion	DHSLI50	c07007	chr．	Postion	DHSL 150	co7007	chr．	Postion	DHSL	C0700
15，04	тт	AA	c2	16，851，473	AA	c／c	${ }^{\text {c3 }}$	6，825，544	тп	${ }_{6} / 6$	${ }^{\text {c3 }}$	51，012，688	${ }^{6 / 6}$	тT	c4	47，84，195	${ }^{1 / 6}$	A／A	c5	28，16， 395	тт	${ }_{6} / 6$	${ }^{\text {c } 6}$	35，99，638	c／c	тт	c7	38，61，1，54	A／A	c／c		32，34，647	G／6	c／c	c9	22，75，336	cı	тT
c1 15，08，574	A／A	cic	c2	16，853，120	AA	c，	${ }^{\text {c3 }}$	6，834，299	тп	c／c	c3	51，012，706	A／A	${ }_{6} / 6$	c4	47，484，268	тT	cic	c5	28，210，962	${ }_{6} 16$	c／c	${ }^{\text {c6 }}$	35，989，673	AA	c／c	c7	38，627，41	т斤	${ }_{6 / 6}$	c8	2，377，64	c／c	${ }_{6} / 6$	c9	22，59，857	c／c	тп
c1 15，04，995	c／c	6／G	C2	16，994，975	c／c	т斤	${ }^{\text {c3 }}$	6，834，38	тп	c，	${ }^{\text {c3 }}$	51，013，21	c／c	G／6	c4	47，537，918	${ }^{6 / 6}$	AA	cs	28，20，99	c／c	AA	${ }^{\text {c6 }}$	35，999，67	c／c	${ }_{6} / 6$	c7	38，69，33	тт	c／c	c8	32，41，033	c／c	тт	c9	22，759，66	${ }_{6} 16$	A／A
c1 15，052，615	тт	cic	C2	16，994，93	тт	cic	c3	7，196，672	AA	т斤	c3	51，099，01	тп	G／6	c4	47，769，134	AA	c／c	c5	28，212，83	${ }_{6} 16$	AA	c6	35，922，56	${ }_{6} / 6$	A／A	C7	38，697，50	AA	${ }_{6 / 6}$	c8	32，425，571	тт	c／c	c9	22，76，566	тп	A／A
$c_{\text {c1 }} 15,05,628$	${ }_{6} / 6$	cic	c2	16，998，613	AIA	${ }_{6} 6$	c3	7，246，844	AA	cı	c3	51，199，219	тт	c／c	c4	47，776，34	AA	тт	c5	28，215，65	${ }_{616}$	AA	${ }^{\text {c6 }}$	35，922，71	AIA	${ }_{6} / 6$	c7	38，826，119	cic	тт	c8	32，435，737	${ }_{6} / 6$	AA	c9	22，782，391	тT	cic
c1 15，07，563	c／c	AA	C2	16，998，625	6／6	cıc	c3	7，25，552	A / A	тт	c3	51，199，229	G／6	AA	c4	47，89，315	c／c	тт	c5	28，864，596	тт	c／c	c6	35，923，09	${ }_{6} 16$	AA	c7	38，826，140	${ }_{6} / 6$	c／c	c8	32，44，503	${ }_{6} 16$	тт	c9	22，922，905	тT	c／c
c1 15，07，596	AIA	тт	C2	16，998，336	c／c	AA	c3	${ }^{7,368,241}$	AA	σ_{16}	c3	51，199，26	${ }^{1 / c}$	AA	c4	4	тп	c／c	c5	28，926，93	c／c	тт	c6	35，923，10	G／6	AA	c7	38，54，502	G／G	тт	C8	32，44， 37	c／c	AIA	c9	22，997，122	A／A	т！
${ }_{\text {cl }} 1515,738,826$	A／A	тп	c2	17，044，040	G／6	тT	c3	7，36， 260	cic	тт	c3	51，317，382	c／c	тп	c4	4	c／c	AA	c5	28，999，78	AA	G／G	c6	35，923，12	6／6	AA	c7	3，888，85	${ }^{6 / 6}$	A／A	C8	32，45，0	тп	AA	c9	22，997，123	тп	c／c
c1 15，73，${ }^{\text {a }}$ 68	cic	AA	c2	17，044，043	AA	т	c3	7，368，39	тт	${ }_{6} 16$	${ }^{\text {c3 }}$	51，317，41	AA	610	c4	47，938，85	AA	c／c	c5	28，99，${ }^{\text {8，}}$	G／a	AA	${ }^{\text {c6 }}$	35，923，15	c／c	${ }_{6 / 6}$	c7	3，094，	c／c	тп	c8	32，45，	c／c	AA	c9	2，997	AA	$6 / 6$
${ }^{\text {c］}}$ 15，73，054	cic	тT	c2	17，07，430	AIA	c／c	${ }^{\text {c3 }}$	7，593，819	616	A／A	${ }^{\text {c3 }}$	51，317，419	тп	A／A	c4	47，93，85	AA	616	c5	28，949，89	AIA	${ }_{6} / 6$	${ }^{\text {c6 }}$	35，23，16	c／c	тт	c7	39，169，53	c／c	тп	с8	32，490，6	тп	cic		23，066，98	c／c	AIA
15,7	тr	AA	c2	17，79，534	${ }_{6}^{6 / 6}$	AA	${ }^{\text {c3 }}$	7，593，86	${ }^{\text {c／a }}$	тп		51，33，3	${ }^{10}$	тп	${ }^{\text {c }}$	47，988，4818	тп	${ }^{\text {G／G }}$		28，499，9	זT	cic	${ }^{\text {c6 }}$	35，923，2	${ }^{\text {c／a }}$	A 14		39，169，	${ }_{6}^{6 / 6}$	c／c	${ }^{68}$	32，514，	тT	c／c	${ }^{\text {c9 }}$	23，067	${ }^{\text {A／A }}$	${ }^{616}$
15，751，44	A／A	G／G	c2	79，56	тп	c／c	${ }^{\text {c3 }}$	7，607，088	c／c	A A	c3	51，33，38	тп	c／c	c4	47，948，63	${ }_{6} / 6$	тт	c5	28，95，19	тп	c／c	${ }^{\text {c6 }}$	35，923，27	AA	c／c	c7	3，305，62	AA	${ }_{6} 16$	c8	2，528	${ }_{6} / 6$	A／A	c9	23，067，3，	${ }_{6} / 6$	A／A
15，789，12	A A	\％／G	c2	17，791，39	AA	616	${ }^{\text {c3 }}$	7，607，137	c／c	AA	${ }^{\text {c3 }}$	51，47，93	${ }_{6} / 6$	c／c	c4	48，001，917	${ }^{616}$	A／A	c5	28，95，19	${ }_{6} 16$	тп	${ }^{\text {c6 }}$	35，949，37	6／6	c／c	c7	3，3，30，45	${ }_{6} / 16$	AA	c8	32，587，2	AA	${ }_{6} / 6$	c9	23，069，59	AA	cic
15，965，79	${ }_{6} / 6$	AA	c2	1，9，9	AA	тт	${ }^{\text {c3 }}$	7，616，66	c／c	тт	c3	51，496，34	AA	\％／6	c4	48，08，54	AA	тп	c5	28，95，23	cic	т！	${ }^{\text {c6 }}$	36，104，42	тт	c／c	c7	39，396，	AA	c／c	${ }^{\text {c8 }}$	32，593，2	тп	c／c	c9	2，069，60	c／a	AA
c1 15，965，841	c／c	тт	c2		тп	cic	${ }^{\text {c3 }}$	7，616，682	AA	\％／6	c3	51，800，04	c／c	тт	c4	48，081，58	c／c	AA	c5	28，95，25	AIA	G／6	c6	36，104，47	тT	A／A	c7	39，530，	AA	тт	C8	32，66，6	c／c	тп	c9	2，337，55	6／6	AA
5，85，87	A／A	σ_{16}	c2	17，792，065	AA	тт	c3	7，616，786	AA	cic	с3	51，800，400	AA	G／6	c4	48，098，60	AA	тт	c5	28，953，259	A／A	${ }_{6} / 6$	c6	36，11，397	$6 / 6$	c／c	c7	39，688，30	AA		c8	2，88	тт	c／c	c9	2，369	тT	cic
15，977，2	${ }^{616}$	cic	c2	17，993，438	G／6	c／c	${ }^{\text {c3 }}$	7，959，361	${ }_{6} 16$	AA	${ }^{\text {c3 }}$	51，800，412	AA	${ }^{\text {a }}$	${ }^{4}$	48，150，617	тп	G／6	c5	29，003，658	тT	AA	${ }^{\text {c6 }}$	36，117，96	${ }_{6} 16$	AA	c＞	39，688，302	AA	${ }_{6} / 6$	${ }^{\text {c8 }}$	32，949，89	A／A	c／c	c9	23，373，270	c／c	тт
084，3	тт	cı	c2	17，993，488	A A	тT	${ }^{\text {c3 }}$	8，151，02	тт	c／c	${ }^{\text {c3 }}$	51，002，29	c／c	AA	c4	48，15，23	тT	AA	c5	29，071，42	${ }^{6 / 6}$	AA	${ }^{\text {c6 }}$	36，117，	c／c	AA	c7	39，720，	тп	c／c	C8	32，949，9	тп	AA	c9	23，374，21	c／c	A／A
304，5	c／c	тт	c2	17，993，996	\％／6	тт	${ }^{\text {c3 }}$	8，151，066	AA	${ }_{6} / 6$	c3	51，332，73	${ }^{616}$	cic	${ }^{4} 4$	199，20	AA	$6 / 6$	c5	29，071，46	AA	G／	c6	36，148，76	AA	$6 / 6$	c7	39，721，0	тт	c／c	C8	32，449，9	AA	${ }_{6} / 6$	c9	23，413，9	тп	cic
16，304，58	A／A	$6 / 6$	${ }^{\text {c2 }}$	236，97	тт	${ }_{6} / 6$	${ }^{\text {c3 }}$	8，206，96	616	AA	c3	32，	AA	c／c	C4	48，200，83	AA	616	c5	071，	$\mathrm{cla}^{\text {c }}$	тп	c6	5，271	AA	${ }_{6} / 6$	c7	39，722，2	тт	c／c	C8	32，961	тт	c／c	c9	2，426，	AA	cic
c1 16，377，063	AA	cıc	c2	18，236，93	тт	c／c	c3	8，393，98	cı	тт	${ }^{\text {c3 }}$	51，952，5	cic	G16	c4	48，259，3	cla	тт	${ }^{\text {c5 }}$	29，071，5	cic	AA	${ }^{\text {c6 }}$	s，271，0	AA	616		39，782，	G10	AIA	c8	33，043	AA	cı		23，426，	cı	т！
16，40，53	AA	616	c2	18，242，694	AA	g／6	c3	8，507，382	тт	cic	c3	52，446，053	AA	тт	c4	48，295，366	тп	c／c	${ }^{\text {c5 }}$	29，380，26	c／c	тт	${ }^{\text {c6 }}$	36，27，20	c／c	тт	c7	39，789，78	c／c	${ }_{6} / 6$	c8	33，043，91	c／c	тт	c9	${ }^{23,444,65}$	тT	${ }_{6} / 6$
16，45	тп	AA	c2	18，242，713	тт	G／6	${ }^{\text {c3 }}$	8，50，405	тт	cı	c3	52，70，005	c／c	тт	c4	48，417，63	c／c	тп	${ }^{\text {c5 }}$	29，419，80	тт	c／c	c6	36，271，20	AA	c／c	c7	39，89，80	G／6	A／A	C8	33，93，07	6／6	тт	c9	23，444，66	AA	${ }_{6} / 6$
16，5	A／A	G16	c2	18，242，229	тт	cic	c3	8，59，194	cı	616	${ }^{\text {c3 }}$	52，86，879	c／c	тт	c4	48，45，66	${ }^{1 / 6}$	тт	c5	29，531，69	тт	cic	c6	36，317，6	G／6	c／c	c7	39，789，8	AA	тп	c8	33，093，14	тT	AA	c9	2，481，910	tr	c／c
c1 16，692，402	тт	${ }_{6} 16$	${ }^{\text {c2 }}$	18，300，245	c／c	т斤	c3	8，763，142	${ }_{6} / 6$	AA	${ }^{\text {c3 }}$	52，973，364	AA	\％／6	c4	48，887，192	AA	cı	c5	29，963，72	c／c	${ }_{6} / 6$	c6	${ }^{36,341,7}$	c／c	${ }_{6} 16$	c7	40，042，04	AA	$6 / 6$	c8	33，07，5	c／c	тT	c9	23，504，82	${ }^{616}$	A／A
${ }_{\text {c1 }} 16,692,426$	тт	${ }_{6} 6$	c2	18，308，59	616	c／c	c3	8，763，145	cı	AA	${ }^{\text {c3 }}$	52，977，476	${ }_{6} / 6$	cı	c4	49，048，95	AA	тт	c5	30，019，30	${ }_{6} 16$	AA	${ }^{\text {c6 }}$	36，341，76	AA	тт	c7	40，070，43	cic	тт	C8	33，295，4	c／c	тт	c9	23，541，32	c／c	AA
c1 16，953，966	A／A	${ }^{16}$	${ }^{\text {c2 }}$	18，308，54	זт	cic	c3	8，763，208	$9 / 6$	AA	${ }^{\text {c3 }}$	53，144，378	AIA	\％／6	C4	49，061，07	AA	\％／6	c5	30，123，59	AA	тт	${ }^{\text {c6 }}$	36，31，70	${ }_{6} / 6$	тт	c7	40，162，7	G／6	тт	C8	33，295，5	${ }_{6} / 1$	AA	c9	23，578，14	cic	A／A
c1 16，954，026	AA	\％／6	C2	18，506，749	AA	610	${ }^{\text {c3 }}$	8，76，348	c／c	¢16	${ }^{\text {c3 }}$	53，144，450	c／c	AIA	c4	49，061，092	cı	AIA	${ }^{\text {c5 }}$	30，297，27	AA	тт	${ }^{\text {c6 }}$	36，341，88	${ }^{1 / 6}$	тт	c7	40，250，84	${ }^{6 / 6}$	AIA	C8	33，422，5	${ }^{616}$	cic	c9	23，577，23	AA	${ }_{6 / 6}$
c1 16，954，032	тп	¢／6	${ }^{\text {c2 }}$	18，506，750	тT	AA	${ }^{\text {c3 }}$	$8.876,369$	c／c	тт	${ }^{\text {c3 }}$	53，67，98	тт	c／c	c4	49，061，10	т！	c／c	c5	30，473，55	AA	${ }_{6} 16$	${ }^{\text {c6 }}$	36，34，881	cic	тт	c7	40，37，	ब	AA	c8	33，32，	${ }^{616}$	AA	c9	23，533，	тn	cic
c1 17，072，346	c／c	тп	${ }^{\text {c2 }}$	18，508，86	AA	тT	${ }^{\text {c3 }}$	8，876，37	c／c	\％／6	${ }^{\text {c3 }}$	53，16，02	тт	${ }_{6} / 6$	c4	49，191，931	c／c	${ }_{6} / 6$	c5	30，547，79	AA	c／c	c6	36，36，	${ }_{6} / 1$	c／c	c7	40，393，	cic	т！	c8	3，342，	AA	тт	c9	23，677	т π	cic
${ }^{\text {c1 }} 17$ 17，022，349	${ }^{\text {c／c }}$	тт	c2	18，520，916	AA	т斤	${ }^{\text {c3 }}$	8，883，9	${ }^{1 / 6}$	A／A	${ }^{\text {c3 }}$	53，248，22	AIA	${ }_{6} 6$	c4	49，19，9	AA	${ }_{6} / 6$	${ }^{\text {c5 }}$	30，746，88	AA	тп	c6	36，367	A／A	${ }_{6} / 6$	c7	40，458	AA	тп	c8	3，3，38，	c／c	т！	c9	23，730，2	c／a	AA
${ }^{1} 1717,022,37$	AA	c／c	c2	18，55，2	cic	тт	${ }^{\text {c3 }}$	9，059，5	тт	cic	${ }^{\text {c3 }}$	53，28，06	тT	${ }_{6} 6$	c4	49，191，	тт	6／6	c5	30，932，27	${ }^{6 / 6}$	тп	c6	${ }^{\text {\％，367，22 }}$	cic	G10		40，46	AA	cic	c8	3，432	ga	AA	cs	3，75	G／6	AA
${ }^{\text {c1 }}$ 17，184，60	тт	cic	C2		тт	AA	c3	9，066，323	$9 / 6$	AA	c3		тт	AA	C4	49，424，	${ }_{16}$	AA	c5		AA	тт	${ }^{\text {c6 }}$		т	cic			Tr	cic			c／a	Ald			AA	GIC
17，184，69	c／c	т	c2	18，629，873	916	тT	${ }^{\text {c3 }}$	9，062，5	cı	тT	${ }^{\text {c3 }}$	53，48，9	6／6	тт	c4	49，689，69	тT	AA	c5	30，946，1	${ }_{6} 6$	AA	${ }^{\text {c6 }}$		c／c	тт	c7	40，759	${ }_{6} / 1$	c／c	C8	．550，	AA	cic	c9	23，797，31	${ }^{616}$	AA
17，184，77	AA	c／c	C2	18，671，06	6／6	тт	${ }^{\text {c3 }}$	9，062，57	G／6	AA	${ }^{\text {c3 }}$	5，522，10	т	c／c	${ }^{4} 4$	692	тп	¢／6	${ }^{\text {c5 }}$	30，946，20	c／c	AA	${ }^{\text {c6 }}$	36，367	cic	AA	c7	40，910	${ }_{6} / 1$	AA	c8	19，	${ }_{6} 16$	cic	c9	3，955，44	AA	Gla
17，185，31	AA	gic	${ }^{\text {c2 }}$	27，14	тT	cic	${ }^{\text {c3 }}$	9，117，50	cic	тт	${ }^{\text {c3 }}$	53，52，11	c／c	тт	${ }^{4} 4$	49，70，	${ }_{6} 16$	c／c	cs	946	тт	c／c	c6	36，422	G／6	AA	${ }^{\text {cr }}$	40，912	тп	alc	C8	3，720，	${ }^{616}$	cic	c9	24，132，4	${ }^{\text {tr }}$	cic
17，185，38	${ }_{6 / 6}$	AA	${ }^{\text {c2 }}$	27，18	тп	cic	${ }^{\text {c3 }}$	9，117，5	AA	gic	${ }^{\text {c3 }}$	5，521，1，1	тп	c／c	c4	710，2	${ }^{616}$	AIA	c5	30，946，45	c／c	т	${ }^{\text {c6 }}$	5，402	AA	¢／6	c7	8，961	${ }_{6} 16$	AA	c8	3，720，	AA	cic	c9	24，335	тT	cic
17，185，42	тп	cic	c2	99，6	616	AA	${ }^{\text {c3 }}$	9，117，52	AA	6	${ }^{\text {c }}$	53，63，4，	c／c	AA	${ }^{4}$	49，70，	c／c	A A	cs	31，03，76	тт	A／A	${ }^{\text {c6 }}$	36，410	тп	c／c	c7	40，961，	c 10	AA	${ }^{\text {c8 }}$	33，001，08	c／c	тт	${ }^{\text {c9 }}$	27，825，5		c／c
17，185，4	AA	G／G	c2	983，4	c／c	AA	${ }^{\text {c3 }}$	9，144，	AA	616	c3	53，868，	тT	${ }_{6} / 6$	${ }^{\text {c }}$	49，806，17	cic	тт	c5	31，031，7	${ }^{6}$	AA	c6	36，414	AA	${ }_{6} 16$	${ }^{\text {c7 }}$	40，961	тT	AA	${ }^{\text {c8 }}$	33，80，	AA	${ }_{1 / 1}$	${ }^{\text {c9 }}$	27，976	c／c	тT
，191，422	AA	тт	C2	71，8	тт	c／c	${ }^{\text {c3 }}$	9，144，73	c／c	тт	${ }^{\text {c3 }}$	53，870，	c／c	AA	C4	49，806，	тт	c／c	c5	31，377，47	AA	тт	c6	36，429，	6／6	cic	c7	41，079	gic	тт	c8	33，003	c／c	тT	c9	28，00	610	A／A
1315，5	${ }_{6} 16$	AA	c2	19，363，33	тT	AA	${ }^{\text {c3 }}$	9，317，5	тT	${ }_{616}$	${ }^{\text {c3 }}$	54，000，	${ }_{6} / 6$	тT	d	49，806，	тT	AA	c5	31，337，8	тT	c／0	c6	6，452	c／c	${ }_{6} 16$	C7	41，079	clo	G／0	${ }^{\text {c8 }}$	3，803	AA	cic	c9	28，00	${ }_{6} 16$	AA
${ }^{1} 17,315,5$	c／c	G16	${ }^{\text {c2 }}$	19，369，64	6／6	тт	c3	9，360，69	т斤	${ }_{6} 16$	c3	54，042，2	AA	тт	c4	49，807，	AA	c／c	c5		c／c	тT	c6		Tr	$6 / 6$	cr		cıa	т斤	c8		c／a	¢16	c9	28，266	тT	
17，80，9814	${ }_{6} / 6$	AA	C2	19，369，737	cı	$6 / 6$	${ }^{\text {c3 }}$	9，56，983	т斤	cic	c3	54，042，29	тп	c／c	c4	49，807，703	AA	\％／6	cs	31，454，732	${ }^{6 / 6}$	тп	${ }^{\text {c6 }}$	36，452，66	тт	c／c	c7	41，092，38	AA	${ }^{6 / 6}$	c8	33，04，78	cic	тп	c9	28，266，20	c／c	тT
7，944，	тт	cic	c2	19，369，856	тл	cic	${ }^{\text {c3 }}$	9，56，096	A／A	${ }_{6} / 6$	${ }^{\text {c3 }}$	54，215，47	6／6	тт	c4	890	AA	тп	cs	31，45，762	AA	${ }_{6} / 6$	${ }^{\text {c6 }}$	36，452，70	c／c	тт	c7	41，138，2	6／6	тп	c8	33，804，20	AA	тп	c9	28，461，20	AA	т斤
c1 18，08，，040	тп	cı	c2	19，369，909	т	AA	c3	9，720，70	c／c	AA	${ }^{\text {c3 }}$	54，237，45	6／6	AA	c4	49，809，14	AA	тт	c5	31，454，78	A A	σ_{6}	c6	36，454，22	${ }^{616}$	c／c	c7	41，180，0	c／c	тт	c8	3，．004，88	c／c	тт	c9	28，558，66	тr	${ }_{616}$
c1 18，092，540	c／c	тT	c2	19，545，441	т	AA	${ }^{\text {c3 }}$	9，775，971	c／c	AA	c3	54，295，30	тт	cı	c4	49，809，218	AA	тт	c5	31，454，82	тT	c／c	c6	36，454，37	${ }_{6} / 6$	AA	c7	41，203，23	тт	\％／6	c8	33，831，66	AA	тп	c9	28，544，30	c／c	т！
18，092，61	\％ 6	AA	c2	19，703，884	זT	AA	c3	9，817，877	cı	G16	c3	54，295，387	c／c	тт	c4	49，809，248	AA	616	c5	31，74，645	6／6	AA	${ }^{\text {c6 }}$	36，454，44	AA	${ }_{6 / 6}$	c7	41，352，445	A／A	cic	c8	33，83，099	тт	c／c	c9	28，54，733	AIA	${ }_{616}$
18，102，13	тт	AA	c2	19，2	זT	c，	c3	9，8	AA	6／6	${ }^{1}$	54，403，8	т	c／c	c4	49，83，	т！	c／c	c5	31，95，4	c／c	AA	${ }^{\text {c6 }}$	36，454	${ }_{6}^{616}$	тT	c7	41，352，	тT	c／c	c8	33，833	AA	$6 / 6$	c9	28，594	6／6	

＊Note：Yellow colour indicates variants sequence of the cultivated rapid cycling DHSL150 line and grey colour indicates that of wild S1 C07007 line showing differences in allelic variant in their chromosomes

Appendix III Cont．

Table S3：Cont．：Differences in Allelic variants at various chromosomes positions in parent lines；the cultivated rapid cycling DHSL150 and C07007

					sL150																						7 crr ．											
	c／c	тп	${ }^{\text {c2 }}$	20，361，922	тп	व10	${ }^{\text {c3 }}$	9，899，649		\％		54，03，990	тт	c／c	c4	49，86，523	AA		cs	32，537，168	AA	c／c	${ }^{\text {c6 }}$	36，454，643		ac		41，352．488		AA	с8	3，83，261	AA	өя	co	28，594，447	AA	
		тп	c2		тт	${ }_{6} 18$	${ }^{\text {c3 }}$	9，944，110	c／c	тп	${ }^{\text {c3 }}$	54，404，064	${ }_{6} / 1$	cic	c4	49，86，583	AA	\％	c5		тт	A／A	${ }^{\text {c6 }}$		${ }_{6} 18$	AIA	c7	41，35，951	c／c	${ }_{6} 16$	${ }_{\text {cs }}$	33，83，361	AA	өic	c9	20，66， 383	AA	
c1 18，25，531	AA	cic	c2	20，376，386	${ }_{6}$ ¢	AA	${ }^{\text {c3 }}$	ง，9	тп	A／A	${ }^{\text {c3 }}$	54，95，67	AIA	${ }_{6} 6$	c4	876，	c 10	тт	c5	32，59，2，	c／c	тп	${ }^{\text {c6 }}$	36，454	c／0	тт	cт	，488，	cic	тп	${ }_{8}$	3，387，	ब18	an	c9	，	AA	\％
18,	тт	AA	c2	64，08	cı	тт	c3	9，944，14	AA	c／c	${ }^{\text {c3 }}$	54，619，2	тп	c／c	c4	878，	cic	AA	c5	32，612	тп	AA	${ }^{6}$		碞	¢／6	c7	1，489	an	${ }_{6} / 6$	c8	3，837	ald	с10	c9	29，295	${ }_{6} / 6$	
18，3	AA	cra	c2	64，00	A／A	¢וя	${ }^{\text {c }}$	9，98，6	c	тп	${ }^{\text {c3 }}$	54，647，	${ }^{616}$	cic	c4	003，1	A／A	яs	c5	3，051	a	c10	${ }^{\text {c } 6}$	36，730	тп	AA	c7	，489，	cic	AA	с8	33，66，	ald	AA	c9	2，600，78	c／0	тп
18,	${ }_{6} / 6$	cı	c2	21，550，3	${ }_{6} / 6$	AA	${ }^{\text {c3 }}$	10，014，2	\％ 18	A／A	${ }^{\text {c3 }}$	55.027	c／c	тп	c4	．155，	c／c	тт	c5	053	c／0	\％18	${ }^{6}$	36，734	A／A	тт	c7	4．489	ac	тт	${ }^{\text {c8 }}$	33，870，	cic	тт	cs	9，997，50	a／a	c／0
18.	${ }^{6 / 6}$	AA	c2	21，551，5	тп	cic	c3	10，014，	AA	a／8	${ }^{\text {c3 }}$	55	${ }^{1 / 8}$	AA	c4	50，388，0	\％ 6	A／A	cs	33，116	AA	gra	${ }^{\text {c6 }}$		ac	A／A	ct	41，551	at	${ }^{1 / 8}$	c8	3，870，	тп	c／0	c9	0， 144,3	AA	
18，995	cic	AA	c2				${ }^{\text {c3 }}$		${ }^{1 / 8}$	A／A		55，028，	AA	\％	c4	50，388，02	cic	тт	cs			an	${ }^{\text {c6 }}$		a	¢／6	ct	41，55	ala	${ }^{1 / 8}$	c8	33，880	т	c／0			т	cic
18，95，	618	AA	c2	22，174，9	${ }_{6} 16$	c／c	c3	10，	${ }^{1 / 8}$	AA	${ }^{\text {c3 }}$	55，270，	AA	яя	c4	540	a	\％／6	${ }^{\text {c5 }}$	33，477	coc	\％18	${ }^{6}$	6，75	618	AA	${ }^{\text {ct }}$	4．55	6／8	AA	${ }^{\text {c8 }}$	3，880	cic	${ }_{6} 16$	${ }^{\text {c9 }}$	0，78	c／c	
18，5	cic	AA	c2	，75，06	${ }_{6} 6$	c／c	${ }^{\text {c3 }}$	10，22，0	c／c	${ }_{6} 16$	${ }^{\text {c3 }}$	55，615，4	AA	өя	c4	， 679.260	cic	AA	c5	3，649，19	ब10	тп	c6	． 76	${ }^{1 / 8}$	cic	c7	，．637，	बc	AA	c8	．880，	ald	тп	${ }^{\text {cs }}$	0，870，3	тп	c／c
${ }_{\text {c1 }} 18,5827,1$	AA	\％	c2	22，175，09	тr	с，	c3	10，402，5	тt	cic	c3	55，78，0	c／c	тт	c4	源79，29	\％／8	cic	c5		A A	als	${ }^{\text {c6 }}$	36，823	тт	AIA	c7	，637，	ब／10	c 10		． 896	тп	A／A	${ }^{\text {cs }}$	2，949，22	A／A	
18，564，3	alc	тт	c2	89，3	A／A	¢וя	${ }^{\text {c3 }}$	．02，	c／c	σ_{16}	${ }^{\text {c3 }}$	55，81，8	тт	cic	c4	．682，84	A／A	тп	c5	33，655	A ${ }^{\text {a }}$	cic	${ }^{\text {c6 }}$	． 849	als	AA	cr	，637	c／0	тт	c8	\％，927	A／A	тп	${ }^{\text {cs }}$	3，208，8	A／A	c／c
c1 18，610，2	cic	тп	c2	22，189，3		\％／6	${ }^{\text {c3 }}$	10，418，78	c／c	AA	${ }^{\text {c3 }}$	55，880，2	cı	тт	c4	828，2	cic	－	c5	33，664	тт	ac	c6	36，94，	тт	AA	${ }^{\text {ct }}$	，681	cı	тт		3，928	ald	A	cs		cor	
c1 18，93，6	${ }^{616}$	AA	0		${ }_{6}$／6	AA	c3	10，41，	тт	${ }^{\text {c／}}$		55，927，	AIA	${ }_{6}$	c4	50，797	т	${ }_{\text {g／}}$	c5	33，665	тт	${ }^{1 / 1}$	${ }^{6}$		cı	gis	c_{7}		AA	тп	8	33，92	cic	${ }_{6}$	cs		a	Tr
18，0	тт	cic				тт			AA	c／c		56，079，		я	c4	50，797，2	тт	A／A	c5	33，704	a	tr	${ }^{\text {c } 6}$	36，972	тт	An		41,84	тп	A／A		33，922	ac	AA		3，360	cic	тт
c1 18，699，94	6／8	тт	c2	22，247，22	cı	тп	c3	10，49，66	AA	тт	${ }^{\text {c3 }}$	56，	c／c	тT	c4	50，797，2	cic	тт	${ }^{\text {c5 }}$	33，704	${ }^{616}$	A／A	${ }^{\text {c6 }}$	6，974	тT	cic	${ }^{\text {c7 }}$	41.844	тп	${ }^{\text {c／a }}$	${ }^{\text {c8 }}$	33，928，	${ }^{616}$	AA	cs	3，648	cı	
23，900	cı	тп	c2	2317，5		бו6	c3	10，449，678	AA	c／c		56	${ }_{6} 18$	AA	c4	51，180，68	c）	AIA	c5	33，73，${ }^{\text {a }}$	at	тr	${ }^{6}$	36，97	c／0	тт	${ }^{\text {c7 }}$	41,983	tr	co	c8	33，92，4	cı	тT	c9		тп	cic
23，1	AA	9	${ }^{2}$	22，320，23	тт	c／c	${ }^{\text {c3 }}$	10，464，15	c／c	AA		d	a	${ }^{\text {ald }}$	c4	51，195，43	cic	${ }_{616}$	${ }^{\text {c5 }}$	33，737	тT	c／c	${ }^{\text {c6 }}$	36，933，	тт	c／c	${ }^{\text {c7 }}$	2，043		${ }_{6} 6$	c8	3，92	cic	тп	${ }^{\text {c9 }}$		тT	
23，1	a	AA	c2	退398，33	A／A	¢，	${ }^{\text {c3 }}$	10，	c／c	тт		56，456，	c／c	тт	c4	51，195，60	ata	c／c	c5	33，99，6	c／c	тп	${ }^{6}$	36，933	alc	A／A	${ }^{\text {c7 }}$	2，043	${ }^{16}$	тт	${ }_{88}$	3，942	ac	AA	${ }^{\text {c9 }}$	5，268	тп	AA
	cic	тt		2，03，5		т	${ }^{\text {c3 }}$	10，530，2	${ }^{1 / 8}$	cic		56，48，28		c／a	c4	51，279，06	cic	тт	${ }^{\text {c5 }}$	33，979，680	ब18	AA	ce	36，98	ब／8	AA	${ }^{\text {c7 }}$	2，054	c／c	A／A		3，968	AA	${ }^{16}$	${ }^{\text {c9 }}$	5，268，80	c／0	
23,	A／A	тr	${ }^{2}$	退220，	тп	c／0	c	10，53，2	${ }_{6}$	AA		56，584，	c／c	яı	c4	51，36，2	тт	c／c	c5	34，059，20，	тп	${ }_{\text {ara }}$	c6	5，984	AA			\％ 05	a	A 1	88	3，969	тT	A／A	c	5．268	AIA	\％／6
c1 $23,888,3$	тп	cı	c2	22，40，63		бוя	c	10，75，4	\％18	тт		56，46，12	c／c	AA	c4	51，365，30	тп	σ_{16}	cs		тт	an	${ }^{6}$	36，984	тп	${ }_{6}$	cz	42，06，3	cı	${ }^{618}$		33，982，2	c 10	тT	cs	5，269，	тп	${ }_{6}$
c1 23，614，2	a	als	${ }^{2}$	22，65， 12	${ }_{6} / 6$	AA	${ }^{\text {c }}$	10，790，4	AA	c／c		57，61，9	c／c	тт	c4	51，450，011	cı	${ }_{6 / 6}$	${ }^{\text {c5 }}$	34，414	${ }^{618}$	AA	${ }^{6}$	36，991	618	A／A	cr	42,322	cı	${ }^{1 / 8}$	c8	33，982	${ }^{1 / 8}$	AA		55，269	${ }^{1 / 1}$	cic
${ }^{1}$ 23，28，	610	cı	c2	22，63，43		¢／6	c	10，847，		c／c			${ }^{\text {c／a }}$		ca		AA	тт	cs		A／A	тп	O	36，99	\％	A			ब／8	тт			cı	тт	c9	55.26	тп	AA
24	тп	${ }^{616}$	${ }^{\text {c2 }}$	22，791，06	тт	cic	${ }^{\text {c3 }}$	10，847，69	c／c	AA		57，266，64	A／A	cı	c4	51，454，81	a ${ }^{\text {a }}$	${ }_{6}^{6 / 6}$	${ }^{\text {c5 }}$	34，459，1	${ }^{616}$	${ }^{\text {A／A }}$	${ }^{\text {c6 }}$	36，993	A／A	${ }^{6 / 8}$	${ }^{\text {c7 }}$	， 330	a	A／A	${ }^{\text {c8 }}$	3，982	ald	A／A	${ }^{\text {c9 }}$	333	c／c	
24,45	тт	cic	${ }^{\text {c2 }}$	22，880，420		\％／6	cs	10，88	\％18	，		57，32，61	тп	${ }_{0}$	c4	51，454	c）	${ }_{6}$	cs	34，641	a	cic	${ }^{6}$	36，993，	я	AA		230	т	ac		33，982	cic	¢／6		5，333	т	c／c
24，4	тт	618	${ }^{2}$	22，882，79		AA	${ }^{\text {c3 }}$	10，88	\％18	тт		57，32，61	AA	тт	c4	51，464，11	ө10	c／c	${ }^{\text {c5 }}$	34，90，	a ${ }^{\text {a }}$	兂	¢	7，129		тт	${ }^{\text {ct }}$	， 38.	cic	т	88	34，003，120	c	тт	${ }^{\text {cs }}$	5，344	gla	
24,4	A／A	${ }_{6}$	c2	30，5	cı	тп	${ }^{\text {c }}$	11，303，6	тп	G／6	c3	57，630，	тп	cı	c4	5，465，20	тп	c／c	cs	3，9，30，6	тп	c／c	c6	37，136，	610	тп	c7	22，366	тп	c／c	8	34，019，20，	cic	A A	cs	55，34，0	c／0	тт
24	AA	${ }_{6}$				A A	c3	11，35，3	${ }^{1 / 8}$	cı		57，63，5	тп	co	c4	．465	c／0		cs		ar	AA	d	137		¢／6	cr	2，366	a	，		4，025	an	\％／6		5，399	тп	
24,5	AA	${ }^{\text {c／a }}$	${ }^{\text {c2 }}$	${ }^{23,330,6}$	${ }^{\text {c／a }}$	тт	${ }^{\text {c3 }}$	11，335，94	${ }_{\text {cre }}$	σ_{6}		57，67，28，	A／A	${ }^{\text {c／a }}$	c4	51，533，62	тт	A／A	${ }^{\text {c5 }}$	34，962，5	cr	${ }_{\text {¢ }}$ \％	${ }^{\text {c6 }}$	，25	c／c	${ }^{\text {¢ }} 6$	${ }^{\text {c7 }}$	42，587	${ }_{\text {tr }}$	${ }_{\text {cre }}$	${ }_{8}$	34，048	${ }_{\text {\％1／}}$	${ }^{\text {c／a }}$	${ }^{\text {c9 }}$	5，399	cra	
c1 24，535，	AA	¢16	${ }^{2}$			т！	${ }^{\text {c3 }}$		тт	cı		57，870，72	тт	cı	c4		an	，	${ }^{\text {c5 }}$		A／A		ca		an	${ }_{616}$	，		${ }^{16}$				тт				cic	
24，53， 2,83	c／c	AA	${ }^{2}$	23，130，70	${ }_{6} 16$	c／c	${ }^{\text {c3 }}$	11，651，51	AA	${ }_{6} 16$	${ }^{\text {c3 }}$	57，926，6	AA	я16	c4	51，53，6，6	co	AIA	${ }^{\text {c5 }}$	35，35，46	析	cı	${ }^{6}$	37，293，2	a ${ }^{\text {a }}$	cic	${ }^{\text {ct }}$	22，603	a	тт	88	34，04	crand	тт	${ }^{\text {c9 }}$	5 5，45	a	
24,6 24,6	${ }_{\text {cla }}$	${ }_{\text {cic }}$	${ }_{\text {c2 }}$	${ }^{23,785,00}$	${ }_{\text {A }}^{\text {A }}$	тT	${ }_{\text {c3 }}^{\text {c3 }}$	${ }^{11,6}$	т π	${ }_{\text {cla }}^{\text {cic }}$	${ }_{\text {c3 }}^{\text {c3 }}$	58,182 58,193	A／A	${ }_{\text {ala }}$	c4	51，54，	${ }_{\text {a }}$	An	${ }_{\text {c5 }}^{\text {c5 }}$		זп	${ }_{\text {c／a }}$	${ }_{6}{ }^{\text {c6 }}$		cic	тп				тT			cic	${ }_{\text {¢ }}^{6}$			cic	
	${ }_{\text {a }}$	c／c	${ }^{\text {c2 }}$			AA	c3	${ }^{11,668,3} 11,68,3$		c／c		58，250，1		A AA	${ }_{\text {c4 }}$	51,564, 51,565 1	c）	A AA	c5 c5	$3,4,48 \mathrm{~m}$ 35,489	т！	${ }^{16}$	c6	37，293，	cıc		${ }^{\text {c7 }}$	${ }_{42,666}$	AIA	тт		$\begin{aligned} & 34,05 \\ & 34,06 \end{aligned}$	c／c	\％／6			c／c	${ }_{\text {I／G }}^{\text {A／A }}$
c1 24，652，9	cı	AA	c2	析	cı	тт	${ }^{\text {c3 }}$	11，674，46	AA	cı	c3	58，250，11	AA	я	c4		я	\％	cs	5，167，	cic	тп	da	，446	AA	${ }_{6} 6$	${ }^{\text {c7 }}$	2，708	an	${ }_{6} 6$	c8	4，061	тт	AA	${ }^{\text {c9 }}$	5，740，2	gic	
24，65，96	cı	тп	c2	24，41，88	AA	cı		11，67，00	c／0	тт	c3	58，25，36	AA	cı	c4	51，65，2	тп	A／A	cs	36，28，	cı	тп	${ }^{6}$	37，47，401	с1c	${ }_{6}$	${ }^{\text {ct }}$	42，78，4	тп	${ }^{618}$	a	34，02，3	ald	AA	c9	35，744，	a	${ }_{6} / 6$
c）24，67， 0	${ }^{1 / 8}$	AA	${ }^{\text {c2 }}$			an	c3	1，075，	cı	тт		58，82，3	c／c	\％	c4	51，571，50	an	${ }_{6}$	c5	，293	AIA	cic	¢		cic	AA	c7	2，834，2	тп	cic	с8		an	тт			610	
24，676，	тт	als	cr	，93，0	cı	In	c3	11，697，22	c／c	${ }_{6} 16$	c3	，17，	тп	AA	c4	578，35	a	cı	cs	．572，	，	тп	¢	，477		AA	${ }^{\text {ct }}$	22，876，	，	AA	c8	34，137	a	，	${ }^{\text {c9 }}$		cı	
26	${ }^{616}$	AA	c2	005，6	тт	cı	${ }^{\text {c3 }}$	11，702，12	AA	cic	${ }^{\text {c3 }}$	59，219，	AA	cic	c4	578，	an	${ }_{6}$	cs	．099	ala	alc	${ }^{\text {c6 }}$	，570	AA	硡	${ }^{\text {c7 }}$	22，876	тп	A A	c8	，	6／8	AA	c9		cı	${ }_{6} 16$
26，1	тт	cic	c2	，	тт	с10	${ }^{\circ}$	退	an	¢ו6	c3	59，520，0	cracr	тт	c4	，．60，	cic	${ }_{6}$	c5	37，115，	，	cracmer	c6	（1）		c／c	${ }^{\text {c7 }}$	，2，87，	an	т	c8 ${ }^{3}$	4，266	析	cı	${ }^{\text {cs }}$	5，74，	AA	cı
26，198	тт	cic	c2	108，9	AA	\％／6	c3	11，810，	тт	cı	c3	59，52，	cı	тт	c4	5，601	cic	A／A	cs	37，13，	AA	${ }_{6} 1$	${ }^{6}$	3，623	тп	cic	${ }^{\text {c7 }}$	2，877	AA	${ }_{6}$	c8		тп	cic	${ }^{\text {cs }}$	5，781	AA	速
26,2	cra	тт	c^{2}	25，34，19	${ }_{6}^{6 / 6}$	cı	${ }^{\text {c3 }}$	1．859	A／A	${ }^{16}$	${ }^{\text {c3 }}$	59，539，	${ }^{\text {c／c }}$	тп	c4	51，601，00	a	${ }_{6} 16$	${ }^{\text {c5 }}$	析	tr	${ }^{616}$	c6	， 62	tr	cı	${ }^{1}$	42，887	cra	AA	c8	34，262	${ }^{616}$	${ }^{10}$	${ }^{\text {c9 }}$	5，800	${ }^{6 / 8}$	A／A
2，	c／0	тп	c2	25，34，5	AA	c／c	c3	11，860，2	AA	\％18	c3		AA	\％18	c4	51，70，0	AA	тп	cs	，243	a	тп	¢	，02	cic	${ }^{6}$	ct		at				ac		c9	59		тп
26，487，	тт	cı	c_{2}	25，264，10	cic	AA	${ }^{\text {c3 }}$	12，05，8	${ }^{1 / 8}$	AA		59，607，83	A／A	als	c4	．700，	a	${ }^{16}$	c5	245	тт	at	c6	．623	т	AA	c7	．256	т	cod	c8	4，349	A	π	${ }^{\text {cs }}$	， 66	gic	
${ }_{\text {ci }} 26,8876,7$	AA	${ }_{6}$	${ }^{\circ} 2$	25，264，855	${ }^{616}$	A A	${ }^{\text {c3 }}$	12，050，9	A／A	${ }_{6} / 6$	${ }^{\text {c3 }}$	59，652，16	тr	cic	${ }^{\text {c4 }}$	700,11	${ }_{\text {c }}$	${ }_{6} / 6$	${ }^{\text {c5 }}$	305	1	and	${ }^{66}$	\％032	a	an	${ }^{\text {c7 }}$	3，451．	an	\％	${ }^{\text {c8 }}$	34，349	${ }^{\text {cic }}$	，	${ }^{\text {c9 }}$	5，981，62	AA	
c1 26，877，	${ }^{6 / 6}$	cic	c2	25，26，05	A／A	т！	${ }^{\text {c3 }}$	12，050，	c／c	AA		59，652，22	тT	cı	c4	700，2	cic	тп	${ }^{5}$	37，329，	c／c	an	${ }^{\text {c6 }}$	632	cod	тז	${ }^{\text {c7 }}$	3，451．	${ }^{1 / 6}$	cra	${ }^{\text {c8 }}$	34，349	c／0	тп	c9	5，981，6	AA	${ }_{6} 6$
26	${ }^{\text {a／a }}$	cic	c2	25，275，166	\％	cı	${ }^{1}$	12．066，5	${ }_{\text {ITr }}$	AA	${ }^{\text {c3 }}$	59，788，799	тr	${ }^{\text {c／a }}$	${ }^{\text {c4 }}$	51，700，23	${ }^{\text {c／c }}$	тт	${ }^{\text {c5 }}$	37，39，457	${ }_{\text {cos }}^{\text {cic }}$	тп	${ }^{\text {c6 }}$	${ }^{37,93,365}$	тr	AA	c7	43，451，522	${ }^{\text {c／a }}$	${ }_{\text {\％}}^{\text {cic }}$	c8 ${ }^{\text {c }}$	34，003，603	A／A	IT	${ }^{\text {c9 }}$	5，001，2	A A	
${ }^{27}$	cic	тт	c2		${ }_{6}$	AA	${ }^{\text {c3 }}$	2．07， 2	тт	AA	c3 c3		c／c	${ }_{6}$	${ }_{\text {c4 }}$	，700，2	${ }_{6}^{616}$	A／A	${ }_{\text {c5 }}^{\text {c5 }}$		тт		${ }_{\text {c6 }} \mathbf{c}$	37，922，9		${ }_{\text {c／e }}^{\text {cic }}$	${ }^{\text {c7 }}$		AT	${ }_{\text {c／a }}^{\text {c／}}$	c8 c8		${ }_{\text {c／a }}$		cs		A AA	
${ }^{1} 272$,	тп	c／c	${ }^{\text {c2 }}$		cı	A／A	c3		${ }^{616}$	AA	${ }^{\text {c }}$		AA	${ }^{1 / 6}$	c4	51，70，	a	${ }^{616}$	${ }^{\text {c5 }}$		，		${ }^{\text {c6 }}$		AA	тT	${ }^{\text {c7 }}$		a	${ }^{616}$	${ }^{\text {c8 }}$		тп	${ }_{0}$	c9		${ }_{6} 16$	
	${ }_{\text {Tr }}$	$\begin{aligned} & 616 \\ & \sigma 16 \\ & \hline 10 \end{aligned}$			${ }_{c}^{\text {c／a }}$				${ }^{\text {a／a }}$					я 6			Aa	¢ \quad ¢T	c5		${ }_{\text {c／c }}^{\text {c／c }}$	ac			${ }_{\text {Tin }}$	${ }_{\text {cis }}^{\text {¢1／}}$												

Note：Yellow colour indicates variants sequence of the cultivated rapid cycling DHSL150 line and grey colour indicates that of wild S1 C07007 line showing differences in allelic variant in their chromosomes

Appendix III Cont．

Table S3：Cont．：Differences in Allelic variants at various chromosomes positions in parent lines；the cultivated rapid cycling DHSL150 and C07007．

	Postio	DHSL150	07007	chr．	Postion	DHSL150	coroc		Postion	DHSL150	27007		Postion	oHSLI50			Position	DHSL150	coroer		astion	DHSL150	coroor	chr	mation				Postion	DHSL150	coroor		Postion		coroor		Postion		
${ }^{\text {c1 }}$	243，	тт	cı	c2	341，752	AA	cic	${ }^{\text {c3 }}$	12，534，868	c／c	${ }_{6} / 6$	c3	60，182，	c／c	A／A	c4	81，057	c／c	A／A	c5	5，625	c／c	${ }_{\text {GIG }}$	c6	，371	A／A	тт	c7	850	c／c	тт	c8	34，793，805	AA	${ }_{6} / 1$	c9	36，362，999	тT	AA
${ }^{1}$	27，294，30	тп	6／6	c2	26，	A／A	616	c3	12，5	тп	G／6	${ }^{\text {c3 }}$	60，189	тт	c／c	c4	51，989，235	${ }_{6} / 1$	c／c	c5	38，154，468	${ }_{6} / 6$	AA	c6	37，975，130	c／c	тт	${ }^{\text {c7 }}$	43，625，53	тп	c／c	c8	34，826，49	AA	тт	c9	．，56	A／A	${ }_{6} / 6$
${ }^{1}$	27，31，525	тт	c，	c2	26，419，880	6／6	AA	${ }^{\text {c3 }}$	13，075，568	c／c	тт	${ }^{\text {c3 }}$	60，272，327	AA	тп	c4	52，063，517	${ }_{616}$	AA	c5	38，66，513	c／c	тп	c6	37，9	c／c	тт	${ }^{\text {c7 }}$	43，752，330	т斤	cı	c8	35，13，994	c／c	тт	${ }^{\text {c9 }}$	36，513，135	c／c	${ }_{6} / 6$
${ }^{1}$	27，312，533	6／6	AA	C2	26，54，711	AA	6／6	${ }^{\text {c3 }}$	13，087，937	AA	c／c	c3	60，272，339	AA	тт	c4	52，06，550	A／A	\％／6	c5	38，69，609	c／c	A／A	${ }^{\text {c6 }}$	37，998，814	${ }_{6} 6$	A／A	c7	43，760，423	AIA	G／G	c8	35，13，973	AIA	${ }_{6} / 6$	c9	36，56，，550	тT	
${ }^{1}$	27，525	AIA	6／6	c2	26，577，215	c／c	AA	c3	123，6	cic	${ }_{6} / 6$	${ }^{\text {c3 }}$	400，	тT	${ }_{6} / 6$	c4	52，167，	${ }^{616}$	A／A	c5	38，66， 6	тп	AIA	c6	38，011，0	c／c	тп	c7	43，78，8	c／c	тт	c8	35，238	тT	A A	c9	36，564，271	A／A	G 16
${ }^{\text {c1 }}$	27，525，80	тп	c／c	c2	26，737，7	AA	G／6	c3	13，23，665	тп	c／c	${ }^{\text {c3 }}$	，786	${ }_{6} / 6$	c／c	c4	52，237，45	cı	тт	c5	38，670，71	тп	AA	${ }^{\text {c } 6}$	38，012，	${ }_{6} 16$	AA	${ }^{\text {c7 }}$	43，800，22	cı	тт	с8	35，239	тп	c／c	c9	36，5	я	AA
${ }^{\text {c1 }}$	27，52，88	\％／6	AA	c2	26，737，8	6／6	AA	c3	13，232，989	тт	cic	${ }^{\text {c3 }}$	6．518，901	A／A	cic	c4	52，23，48	${ }^{616}$	AA	c5	38，69，253	${ }^{616}$	тп	c6	38，040	тп	c／c	${ }^{\text {ct }}$	43，800，117	cı	${ }_{6} 16$	c8	35，292，	т！	gic	c9	36，565	cic	610
${ }^{\text {c1 }}$	27，527，711	${ }_{6} / 6$	AA	c2	26，845，166	${ }_{6} / 6$	cic	c3	13，423，908	AA	gic	${ }^{\text {c3 }}$	60，533，63	AA	c／c	c4	52，280，58	AIA	тт	c5	38，697，25	тп	A／A	c6	38，179，04	A／A	c／c	c7	43，802，4080	cic	${ }_{6} 16$	c8	35，292，	${ }_{6} 16$	cic	c9	36，56	AA	cic
${ }^{1}$	27，527，7	A／A	тт	c2	26，845	c／c	тп	${ }^{\text {c3 }}$	13，423，946	${ }_{6 / 6}$	AA	${ }^{\text {c3 }}$	Stin	тп	c／c	c4	529	тп	cic	c5	38，710，2	${ }_{6} 16$	זr	c6	38，242，90	тп	A／A	${ }^{\text {c7 }}$	43，00，	AA	${ }_{6} / 6$	${ }^{\text {c8 }}$	35，2	c／c	тп	c9	36，5	610	A／A
${ }^{\text {c1 }}$	27，582，913	AA	\％／6	c2	26，935，255	${ }_{6} / 6$	тт	${ }^{\text {c3 }}$	13，517，279	${ }_{6} / 6$	AA	${ }^{\text {c3 }}$	60，557，177	c／c	тт	C_{4}	52，317，32	${ }_{6} / 6$	тп	c5	38，710，30	тп	c／c	${ }^{\text {c } 6}$	38，270，27	A／A	c／c	c7	43，804，0	${ }^{6 / 6}$	A 1	${ }^{\text {c8 }}$	35，43，10	cic	618	c9	36，565，374	${ }^{6 / 6}$	A
${ }^{\text {c1 }}$	27，52，969	AA	тп	c2	26，935，300	${ }_{6} / 16$	AA	${ }^{\text {c3 }}$	13，517，370	AA	G／6	${ }^{\text {c3 }}$	60，619，55	AA	${ }^{1 / 6}$	c4	52，434，009	${ }_{6} 16$	AA	c5	38，710，348	A／A	${ }_{6} / 6$	${ }^{\text {c6 }}$	38，270，2	${ }^{6 / 6}$	AA	c7	43，04，003	AA	${ }_{6} / 1$	c8	35，699，76	618	AA	c9	36，565，451	AA	6／G
${ }^{\text {c1 }}$	27，58，	AA	G／6	c2	26，959，971	AA	тт	${ }^{\text {c3 }}$	13，530，174	AA	тT	c3	60，619，726	AA	${ }_{6} 16$	c4	52，528，145	тT	AA	c5	38，73，650	тп	AA	c6	38，270，320	тп	c／c	${ }^{\text {c7 }}$	43，804，26	，	тп	C8	，780，482	A ${ }^{\text {a }}$	тт	c9	36，619，935	${ }^{1 / 6}$	AA
${ }^{\text {c1 }}$	27，582，	тт	A／A	c2	26，99，705	AA	6／6	c3	13，564，061	cı	тт	${ }^{\text {c3 }}$	S19，23	тт	cic	c4	52，528，147	тп	c／c	c5	．735，	${ }_{6} 16$	AA	${ }^{\text {c6 }}$	8，298	тп	c／c	c7	43，907	я	c／c	c8	35，78，	ald	G／6	c9	36，620	c／c	тп
${ }^{\text {c1 }}$	27，691，	${ }_{616}$	т	c2	962，	cı	\％／6	${ }^{\text {c3 }}$	13，56，086	c／c	тт	c3	789，20	тт	cic	C4	52，528，	cı	${ }_{6} 16$	c5	．735，	тп	cic	c6	\％，376，	A／A	616	ct	44，016，	тп	AA	с8	35，797	${ }^{616}$	тт	c9	37,4	cı	610
${ }^{\text {c1 }}$	27，728，	${ }_{6} / 6$	тп	c2	27，065	тт	cic	${ }^{\text {c }}$	13，567，915	${ }_{6} 6$	c／c	${ }^{\text {c3 }}$	61，071，972	cic	тт	C4	52，547，84	тт	cic	c5	38，756，170	${ }_{6 / 6}$	AIA	${ }^{\text {c6 }}$	38，3	т！	616	${ }^{\text {c7 }}$	44，017	AA	cic	c8	35，81	AA	тп	c9	37，443，422	cic	$6 / 10$
${ }^{\text {c1 }}$	27，728，3	тт	cic	c2	27,0	A／A	G／6	c3	13，632，028	${ }^{616}$	тT	${ }^{\text {c3 }}$	61，072，845	c／c	${ }_{6} / 6$	c4	52，65，014	${ }_{6} 6$	A／A	${ }^{\text {c5 }}$	38，75，23	cic	6／6		38，4	A／A	${ }_{6} 16$	${ }^{\text {c7 }}$	44，017	AIA	cic	c8	35，81	${ }^{616}$	A／A	c9	37，	AA	6／1
${ }^{\text {c1 }}$	27，730，	616	AA	c2	27，08	A／A	cic	${ }^{\text {c3 }}$	13，632，094	6／a	тт	${ }^{\text {c3 }}$	61，104，183	A／A	${ }_{6} 16$	c4	52，736，649	A／A	cic	c5	38，756，252	${ }_{6} / 6$	c／c	${ }^{\text {c6 }}$	38，402	A A	тт	${ }^{\text {c7 }}$	44,01	тп	c／c	c8	35，8	A／A	${ }^{616}$	c9	37，	${ }^{616}$	AA
${ }^{1}$	27,7	т斤	cc	c2	27，090，712	6／6	AA	${ }^{\text {c3 }}$	13，635，579	GI6	тT	${ }^{\text {c3 }}$	61，104，807	${ }_{6} 16$	тп	c4	52，736，913	A A	${ }_{6} 16$	c5	38，756，264	${ }_{6} / 6$	A／A	${ }^{\text {c6 }}$	38，43，44	тT	c／c	c7	44，064，35	cic	тT	c8	35，822，00	cic	тп	c9	37，963，56	Tr	AA
${ }^{\text {c1 }}$	27，85，5	тп	cic	c2	27，990，7	тп	cic	${ }^{\text {c3 }}$	13，761，592	c／c	616	c3	61，107，139	AA	${ }_{6} / 6$	c4	236，9	＋	c／c	c5	．788	${ }^{618}$	A／A	${ }^{\text {c6 }}$	38，993	c／c	тт	c7	44，06	cı	тт	c8	35，847	cı	${ }_{6} / 6$	c9	37，993，808	cı	
${ }^{\text {c1 }}$	28，16，4	т	AA	c2	27，15，28	c／c	тт	${ }^{\text {c3 }}$	61，60	${ }_{6} 6$	A／A	${ }^{\text {c3 }}$	107，16	${ }_{6} 16$	AA	c4	52，73，99	c／c	π	c5	\％，790，	A／A	616	${ }^{\text {c6 }}$	38，933	AA	${ }^{616}$	c7	44，065	${ }^{6} 16$	тп	${ }^{\text {c8 }}$	35，90，	a／a	тп	c9	8，00	${ }^{6 / 6}$	cic
${ }^{\text {c1 }}$	28，167，4	т	AA	c2	27，326，63	тп	cic	${ }^{\text {c3 }}$	13，761，644	\％ 6	тт	${ }^{\text {c3 }}$	107，1	${ }_{6 / 6}$	AA	C4	52，737，00	${ }_{6 / 6}$	A／A	c5	，794，	AA	¢／G	${ }^{\text {c }}$	38，499，	тT	${ }^{1 / 1}$	c7	44，274，64	cic	AA	c8	35，94，	cic	G／8	c9	38，012	AA	cic
${ }^{\text {c1 }}$	28，167，5	тт	AA	${ }^{2}$	27，36，7，7	A／A	тт	${ }^{\text {c3 }}$	13，762，49	AA	${ }_{616}$	${ }^{\text {c3 }}$	195，7	тп	AA	c4	52，763，	cic	тп	c5	38，794，	cic	A／A	${ }^{\text {c } 6}$	38，499，	тп	c／c	c7	44，33，23	gic	A／A	${ }^{\text {c8 }}$	36，105，1	т！	cic	cs	38，110	тт	cic
${ }^{\text {c1 }}$	28，168，4	тт	c	c2	27，326，	${ }_{6 / 6}$	тт	${ }^{\text {c }}$	13，768，044	AA	6／6	cs	61，401，492	т	cic	c4	52，88	тп	c／c	c5	38，95	cic	AA	c6	38，49	${ }_{6 / 6}$	c／c	${ }^{\text {c7 }}$	44，33	AA	cic	${ }^{\text {c8 }}$	36，319	тп	AA	c9	38，110	тT	AA
${ }^{\text {c1 }}$	28，17	тп	AA	C2	27,39	тт	c／c	${ }^{\text {c3 }}$	13	c／c	AA	${ }^{\text {c3 }}$	61，447，012	${ }_{6} 16$	AA	c4	52，892，280	${ }_{6} 16$	A／A	${ }^{\text {c5 }}$	38，9	тп	AA	${ }^{\text {c6 }}$	38，49	c／c	тп	${ }^{\text {c7 }}$	44,46	тп	cic	c8	36，32	${ }^{6 / 6}$	AA	c9	38，1	тп	
${ }^{\text {c1 }}$	28，26， 245	c／c	т！	c_{2}	27，562，361	¢16	тт	${ }^{\text {c3 }}$	13，804，969	${ }_{6} / 6$	AA	${ }^{\text {c3 }}$	61，447，033	AA	${ }_{6} 16$	C4	52，892，436	${ }_{6} 16$	cic	c5	38，95，912	тп	${ }_{6} / 6$	${ }^{6} 6$	38，499，54	c／c	${ }_{6} 16$	c7	44，498，76	610	тп	c8	36，54，6	тп	cic	c9	38，153，54	AA	
${ }^{1}$	28，263，281	AA	cic	${ }^{\text {c2 }}$	27，562，487	тт	\％／6	${ }^{\text {c3 }}$	13，804，975	g／	AA	${ }^{\text {c3 }}$	61，447，088	\％／6	c／c	c4	52，905，413	${ }_{6} / 6$	A／A	c5	38，95，153	c／c	AA	${ }^{\text {c6 }}$	38，503，41	тT	c／c	${ }^{\text {ct }}$	44，558，33	AA	тT	c8	36，55，47	616	AA	c9	38，155，04	${ }^{6 / 6}$	
${ }^{1}$	28，512，464	c／c	тт	${ }^{\text {c2 }}$	27，50，684	тт	616	c3	13，55，766	c／c	AA	c3	61，447，089	тт	AA	4^{4}	52，905，431	c／c	AA	c5	38，92，584	${ }_{6 / 6}$	AA	${ }^{\text {c6 }}$	38，510，3	${ }^{6 / 6}$	тT	c7	44，647，78	G／6	a	c8	36，55，49	тп	cic	c9	\％，25	c／c	
${ }^{\text {c1 }}$	28，527，8	c／c	\％／6	c2	27，66，466	c／c	тт	${ }^{\text {c }}$	13，931，115	c／c	тт	${ }^{\text {c3 }}$	61，447，107	c／c	6／6	c4	9005，4010	${ }_{6} / 6$	тт	c5	\％，952	AA	тт	${ }^{\text {c6 }}$	38，510，	AA	тп	${ }^{\text {c7 }}$	44，647，	тп	${ }_{6} / 6$	${ }^{\text {c8 }}$	36，622，	an	alc	c9	38，256	AIA	c／0
${ }^{\text {c1 }}$	28，527，	A／A	cic	c2	27，69，647	тп	\％／G	${ }^{\text {c3 }}$	13，993，737	тт	A／A	${ }^{\text {c3 }}$	481，	тп	¢／6	c4	52，978，145	cı	тT	c5	38，952，	AA	${ }_{616}$	${ }^{\text {c } 6}$	515	6／6	тt	${ }^{\text {ct }}$	44,647	cic	тт	c8	36，68，	AA	gic	c9	38，32	clc	тп
${ }^{\text {c1 }}$	28，577，8	AA	cic	c2	27，69，88	${ }^{616}$	A／A	${ }^{\text {c3 }}$	13，93，8	c／c	тT	${ }^{\text {c3 }}$	481，2	тт	AA	C4	52，985，	A／A	cic	c5	38，953，7	a／a	тп	${ }^{\text {c6 }}$	38，515，	${ }_{6 / G}$	A／A	${ }^{\text {c7 }}$	44，647	тт	cic	${ }^{\text {c }}$	36，702，4	т！	cic	c9	38，329	тT	cra
${ }^{\text {c1 }}$	28，592，689	AA	т！	c2	27，95，16	${ }_{6} 16$	тT	c3	13，94，00	AA	тT	c3	．643，32	${ }_{6} / 6$	AA	c4	52，997	A／A	¢／6	${ }^{\text {c5 }}$	38，987，	${ }_{6} 16$	A／A	c6	38，515，023	A／A	тт	，	44，647，96	AA	тт	${ }^{\text {c8 }}$	36，72，5	AA	${ }^{1 / 1}$	c9	38，329	AA	тT
${ }^{\text {c1 }}$	28，592，763	AA	GIG	c2	27，962，3	т	AA	c3	14，03，6	${ }_{6} 6$	AA	${ }^{\text {c3 }}$	61，68，29	cı	тT	c4	52，99	${ }^{616}$	AA	c5	38，987，	${ }_{6} 16$	AA	${ }^{\text {c6 }}$	38，600，	тп	cic	c7	44，68，7，	cı	${ }_{6} / 1$	c8	36，75，7	gic	тп	c9	38，329，	cic	тп
${ }^{\text {c1 }}$	28，59	c／c	AA	c2	27，96，63	A／A	т！	c3	14，178，0	AA	c／c	${ }^{\text {c3 }}$	61，740，5	AA	G16	c4	52，997，74	c／c	AA	c5	38，9	т斤	${ }_{6} 16$	${ }^{\text {c6 }}$	38，60	тT	AIA	${ }^{\text {c7 }}$	44，688	cic	тт	${ }^{\text {c8 }}$	5，775	AA	тT	${ }^{\text {c9 }}$	8，343	6／6	
${ }^{\text {c1 }}$	28，73	c／c	${ }_{6} 6$	c2	28，272，017	т	cic	c3	14，178，86	${ }_{6} 16$	AA	${ }^{\text {c3 }}$	61，74，99	${ }_{6} 16$	AA	C4	52，997，74	cı	т！	c5	39，104，13	$6 / 10$	c／c	${ }^{\text {c6 }}$	38，601	${ }^{616}$	AA	${ }^{\text {c7 }}$	44，648，8，	cic	тт	${ }^{\text {c8 }}$	36，79，70	cic	тт	${ }^{\text {c9 }}$	38，31，	A／A	
${ }^{\text {c1 }}$	28，87，99	тт	c	c2	A13，8	${ }_{616}$	AA	${ }^{\text {c3 }}$	14，334，743	AIA	gic	${ }^{\text {c3 }}$	61，761，006	тт	AA	c4	52，997	${ }_{6} 16$	c／c	c5	．135，	${ }_{6} 6$	c／c	co	38，601	${ }^{\text {c／c }}$	616	c7	44，715，	cı	тт	${ }^{\text {c8 }}$	36，790，5	тп	cı	c9	38，373，		AIA
${ }^{\text {c1 }}$	29，07，	A／A	616	c2	28，46， 8,	тп	AA	c3	14，33，8	\％／6	тт	${ }^{\text {c3 }}$	．769，36	${ }_{6} / 6$	AA	c4	53，001，6	тп	A／A	c5	39，135，10	${ }^{6 / 6}$	A／A	${ }^{\text {c6 }}$	38，601，5	A／A	${ }^{6} / 18$	${ }^{\text {c7 }}$	44，748，9	a	cic	c8	36，790，6	тп	cı	c9	38，437	тт	c／c
${ }^{\text {c1 }}$	29，082，92	AA	тп	c2	744，75	AA	${ }^{616}$	${ }^{\text {c3 }}$	334，8	${ }_{6} 6$	тт	${ }^{\text {c3 }}$	770，3	тп	${ }_{6} 16$	c4	53，01，7	cic	тт	c5	39，139，3	A／A	cic	${ }^{\text {c6 }}$	38，601，5	${ }^{616}$	AIA	${ }^{\text {c7 }}$	44，772，2	тт	a	${ }^{\text {c8 }}$	36，790，6	${ }^{616}$	cic	${ }^{\text {c9 }}$	38，433，	A／A	${ }_{6} / 6$
${ }^{\text {c1 }}$	29，268，48	${ }^{\text {c／a }}$	тT	c2	28，515，5	${ }_{6} 6$	AA	${ }^{\text {c3 }}$	14，388，11	cic	AA	${ }^{\text {c3 }}$	61，770，35	${ }_{6} / 6$	тп	c4	53，04，46	${ }^{616}$	AA	${ }^{\text {c5 }}$	39，139，38，	cı	AIA	${ }^{\text {c6 }}$	38，601，60	${ }^{616}$	c／c	c7	44，889，39	AA	${ }^{616}$	c8	36，790，62	тп	AA	c9	38，433，	tr	cic
${ }^{\text {c1 }}$	29，47， 8	${ }_{6 / 6}$	тт	c2	28，515，5	AA	cic	c3	14，338	${ }_{6} 6$	AA	${ }^{\text {c3 }}$	，770，42	AA	т	C4	53，127，24	тT	cic	c5	39，448	AA	$6 / 6$	c6	38，601，62	${ }^{616}$	AIA	${ }^{\text {c7 }}$	44，889，	${ }^{6 / 6}$	A／A	${ }^{\text {c8 }}$	36，077，62	${ }^{616}$	AA	c9	38，539	cic	π
${ }^{\text {c1 }}$	29，762，	A／A	${ }^{1 / 8}$	c2	28，63，140	тп	cic	c3	14，3	${ }_{6} 16$	AA	${ }^{\text {c3 }}$	，776，	cic	AA	C4	53，128，280	c／c	тп	c5	39，48，	cic	тп	${ }^{\text {c6 }}$	38，682，12	AIA	616	${ }^{\text {c7 }}$	44，900	${ }^{6 / 6}$	cic	c8	36，811	618	AA	c9	38，622	тт	c／c
c1	29，8	cı	тт	c2	28，63，310	\％／6	тт	c3	14，437，818	${ }_{6} / 6$	c，	c3	（263，	${ }^{\text {a／a }}$	тт	C4	55，318，	A／A	G／6	c5	39，489，604	${ }^{616}$	A／A	${ }^{\text {c6 }}$	38，772	cic	тп	${ }^{\text {c7 }}$	44，947，	AIA	G／6	c8	36，812，0	616	cic	c9	38，662	${ }^{16}$	AA
c1	29，668，811	${ }_{\text {c }}$	616	c2	28，63， 8,87	${ }_{6} / 6$	AA	c3	14，574，021	${ }_{6} / 6$	тт	c3	18，74	${ }^{\text {c／c }}$	тт	C4	3，381，	${ }^{616}$	AA	c5	39，494，398	AA	c／c	${ }^{\text {c6 }}$	38，844，32	cic	тт	${ }^{\text {c7 }}$	5，047，	тп	c／c	${ }^{\text {c8 }}$	36，912，	${ }^{616}$	тп	c9	8，745．	${ }^{6 / 6}$	AA
${ }^{\text {c1 }}$	29，969，860	тт	cic	c2	34，07	AA	тт	${ }^{\text {c }}$	653，56	${ }^{616}$	тт	${ }^{\text {c3 }}$	2094，63	т斤	AA	c4	53，381，18	c／c	AA	${ }^{\text {c5 }}$	39，529，2	${ }^{6 / 1}$	A／A	${ }^{\text {c6 }}$	38，844，	тT	c／c	${ }^{\text {c7 }}$	45，50，33	gic	A／A	${ }^{\text {c8 }}$	36，832，2	AA	${ }^{1 / 6}$	c9	88，751	AA	${ }_{6} 6$
${ }^{\text {c1 }}$	30，05，122	тт	cic	c2	28，809，95	${ }_{6 / 6}$	A／A	${ }^{\text {c3 }}$	14，82，853	AA	тт	c3	${ }^{62,235,40}$	c／c	т！	c4	53，381，12	${ }_{616}$	т！	${ }^{\text {c5 }}$	39，544，	${ }^{616}$	тт	${ }^{\text {c6 }}$	38，85，	${ }^{10}$	tr	${ }^{\text {c7 }}$	45，15，68	6／0	тт	c8	36，322，3	тп	c／c	c9	39，052	${ }^{616}$	тT
${ }^{\text {c1 }}$	30，24，546	cic	AA	${ }^{2}$	810，057	c／c	тT	c3	14，822，888	${ }_{6} 6$	AA	c3	62，235，412	тT	c／c	${ }^{\text {c4 }}$	53，381，287	c／c	${ }_{6} 16$	${ }^{\text {c5 }}$	39，649，628	тп	${ }_{6 / 6}$		38，855，675	c／c	тт	${ }^{\text {c7 }}$	45，247， 158	c／c	тт	${ }^{\text {c8 }}$	36，89，346	тт	AA	${ }^{\text {c9 }}$	33，71，，970	тT	cic
${ }^{\text {c1 }}$	30，24，590	6／6	AA	c_{2}	29，367，050	c，	тт	c3	14，822，934	TT	AA	c3	62，235，459	${ }_{6} 16$	AA	c4	53，3	6／6	AA	${ }^{5}$	39，649，648	тT	c／c	c6	38，929，073	${ }_{6} 16$	тi	c7	45，247，212	A／A	c／c	c8	36，3	c／c	916	c9	39，28	cic	

＊Note：Yellow colour indicates variants sequence of the cultivated rapid cycling DHSL150 line and grey colour indicates that of wild S1 C07007 line showing differences in allelic variant in their chromosomes．

Appendix III Cont．

Table S3：Cont．：Differences in Allelic variants at various chromosomes positions in parent lines；the cultivated rapid cycling DHSL150 and C07007．

r．Postition	DHSL150	07007	chr．	Postion	DHSL150	co7007	chr ．	Postion	DHSLL5	c07007	ch.	Postion	DHSL150	007007	chr ．	Position	DHSL15	co7007	crr．	Postion	DHSL150	c07007	crr．	Postion	DHSL1	co7007		Postion	DHSL1	c07007	chr ．	Postion	DHSL1	c07007	chr．	Postion	DHSL	C07007
c1 30，87，441	${ }_{6} 6$	AA	c2	29，418，206	G／6	тп		14，82，5，67	тп	c／c	${ }^{\text {c3 }}$	62，32，888	c／c	тп	c4	53，410，018	${ }_{6 / 6}$	c／c	c5	33，65，791	тт	cic	${ }^{\text {c } 6}$	38，29，206	cı	тт	${ }^{\text {c7 }}$	45，34，993	cı	AA	${ }^{\text {c8 }}$	36，97，264	AA	тт		3，325，484	c／c	\％ 6
c1 30，872，862	A／A	cic	c2	29，442，05	σ_{6}	т	c3	15，126，260	c／c	тт	c3	62，40，350	тп	¢／6	c4	53，410，081	cc	тт	c5	39，653，125	c／c	AA	${ }^{\text {c } 6}$	38，29，22	тт	616	c7	45，31，069	cic	тт	c8	9，291	тT	${ }_{6 / 6}$	c9	39，35，701	c／c	G／6
c1 30，98， 194	${ }_{616}$	a／a	C2	29，442，06	cc	т	c3	15，205，433	AA	\％ 16	${ }^{\text {c }}$	62，434，364	${ }_{6} / 6$	A／A	c4	53，410，12	AA	$6 / 6$	c5	39，65，176	${ }_{6} 6$	AA	c6	38，929，23	זT	$6 / 6$	${ }^{\text {c7 }}$	5，315，0	AA	c／c	c8	6，979，368	AA	6／6	c9	，327，86	זт	c／c
c1 30，918，202	c／c	AA	C2	29，47，573	cic	6／6	${ }^{\text {c3 }}$	15，213，725	AA	тT	${ }^{\text {c }}$	62，557，276	c／c	AA	c4	53	cic	6／6	c5	39，65，20	c／c	т斤	${ }^{\text {c } 6}$	38，970，934	c／c	тт	${ }^{\text {c7 }}$	45，324，946	cic	זт	c8	7，000，98	AA	c／c	c9	0，374，361	т斤	616
c1 30，918，232	тп	cic	C2	29，479，840	AA	cic	c3	15，213，757	6／6	т	c3	62，726，074	AIA	cı	c4	53	тт	${ }_{6} / 6$	c5	39，65，98	A A	c／c	${ }^{\text {c6 }}$	38，970，93	тT	A／A	${ }^{\text {c7 }}$	45，356，	AA	cı	c8	3，093，74	тT	c／c	c9	39，41，410	A／A	тт
50，938，	A／A	cı	c2	29，479，900	AA	тт	c3	15，215，178	тп	\％／6	${ }^{\text {c3 }}$	62，747，359	AA	G／6	c4	53，413，	g／6	cic	c5	39，654，024	${ }^{6 / 6}$	тп	${ }^{\text {c } 6}$	39，011，79	c／c	${ }_{6 / 6}$	c7	45，372	AA	тп	${ }^{\text {c8 }}$	37，097，12	тп	c／c	c9	39，44，0，038	AA	6／6
31，228，8	A／A	тп	c2	29，582，860	тп	c／c	c3	15，374，721	A／A	σ_{6}	${ }^{\text {c3 }}$	62，747，366	AA	${ }_{6} / 6$	c4	53，413，	c／c	A／A	c5	33，665，	тт	c／c	${ }^{\text {c } 6}$	39，076，56	тп	cı	${ }^{\text {c7 }}$	45，3	${ }^{616}$	AA	c8	37，12，32	c／c	тт	c9	39，494	тт	cı
31，469，357	c／c	тт	c2	29，54，11	ब／6	c／c	c3	74，723	AA	¢／6	${ }^{\text {c3 }}$	2747，39	тT	cic	c4	53，509，03	A／A	${ }_{6 / G}$	c5	．665，2	${ }_{6} / 6$	тт	${ }^{\text {c6 }}$	39，175，1	c／c	AA	${ }^{\text {c7 }}$	45，372	AA	c／c	с8	37，12，	96	AA	c9	9，49	c／c	A／A
31，556，646	тп	c／c	c2	9，9	c／c	тт	${ }^{\text {c3 }}$	15，440，142	cic	тт	${ }^{\text {c3 }}$	27，8	c／c	тп	c5	20，511	c／c	AA	c5	39，66，36	${ }_{6} / 6$	AA	${ }^{\text {c6 }}$	，181，	тт	c／c	c7	45，517，	тп	c／c	${ }^{\text {c8 }}$	，115，2	cic	A／A	c9	5，684，15	A／A	$6 / 6$
31，619，42	т	cic	c2	29，761，34	\％／6	A／A	${ }^{\text {c3 }}$	15，440，163	c／c	${ }_{6 / 6}$	${ }^{\text {c3 }}$	63，144，98	${ }_{6} / 6$	AA	c5	31，899	cc	AA	c5	39，66，36	тт	c	${ }^{\text {c6 }}$	39，181，	A／A	\％／6	${ }^{\text {c7 }}$	45，522，4	c／c	тп	c8	115，3	${ }_{6} / 6$	тп	c9	716，31	c／c	тт
c1 31，773，323	AA	ब／G	c2	29，761，375	тт	616	${ }^{\text {c3 }}$	15，440，17	c／c	זT	${ }^{\text {c3 }}$	63，146，49	тт	${ }_{6} 16$	c5	32，34	AA	тп	c5	39，668，2	тT	sic	c6	181，7	${ }_{6} / 1$	AA		5，522，	тT	c／c	c8	，175，2	c／c	тт	9	716，31	тT	A／A
c1 31，885，119	${ }^{6 / 6}$	тп	c2	29，911，52	c	тт	${ }^{\text {c3 }}$	15，441，76	${ }_{6} / 6$	NA	c3	${ }^{63,14,5,5}$	тп	G／6	c5	48，605	c	тт	c5	39，668，30	AA	a	c6	39，18，	${ }_{6} / 6$	AA		45，526，4	т斤	c／c	${ }^{\text {c }}$	，178，3818	AA	\％$/ 6$	c9	0，393，6	${ }^{6 / 6}$	AA
c1 32，013，56	c／c	6／6	C2	29，918，54	π	AA	c3	15，45，3，3	c／c	т斤	c3	63，254，60	c／c	тт	c5	68，024	${ }_{6} / 6$	тт	c5	39，677，88	${ }_{6} / 6$	co	c6	39，334，	тт	AA	${ }^{\text {c7 }}$	45，526，5	c／c	AA	c8	，212，	тT	c／c	c9	40，871，872	A	c／c
32，120，	тт	cic	C2	29，918，544	AA	тT	${ }^{\text {c3 }}$	15，445，326	\％／	тт	${ }^{\text {c3 }}$	63，279，489	тп	AA	${ }^{\text {c5 }}$	68，033	тT	cic	c5	39，677，90	${ }^{\text {c／c }}$	AA	${ }^{\text {c6 }}$	3，3，34，3	${ }_{616}$	тт	${ }^{\text {c7 }}$	45，526，51	тп	AIA	C8	37，253，05	A／A	${ }_{6} 16$	c9	071，	c／c	тт
32，160	cı	616	c2	29，920，010	¢／6	AA	${ }^{\text {c3 }}$	15，445，366	тп	c 10	${ }^{\text {c3 }}$	63，484，123	c／c	тп	c5	68，238	тп	cı	c5	39，677，928	${ }_{6} 16$	AA	${ }^{\text {c } 6}$	39，350，21	¢／G	тт	${ }^{\text {c7 }}$	45，538	${ }_{6 / 1}$	AA	с8	37，264，033	т	cı		41，177，285	cic	זT
32，16	${ }_{6} / 6$	cic	c2	29，957，621	c／c	AIA	${ }^{\text {c3 }}$	15，445，649	тт	\％／6	${ }^{\text {c3 }}$	63，524，550	тп	c c	${ }^{\text {c5 }}$	${ }^{85,755}$	${ }_{616}$	A／A	${ }^{\text {c5 }}$	39，678，018	AA	${ }^{6} 16$	${ }^{\text {c6 }}$	39，350，35	AA	тт	${ }^{\text {c7 }}$	45，659，054	A／A	cic	c8	37，264，070	c	тп	c9	41，215，500	A／A	${ }_{6} 6$
c1 32，27，${ }^{\text {a }}$ ， 56	AIA	cic	c2	29，957，70	AA	cı	${ }^{\text {c3 }}$	15，520，327	тT	A／A	${ }^{\text {c3 }}$	63，524，574	тп	c／c	c5	85，759	${ }_{616}$	cic	c5	39，681，94	тT	c）	${ }^{\text {c6 }}$	39，35，37	A／A	cic	${ }^{\text {c7 }}$	45，788，77	AIA	тт	c8	37，387，78	тт	AIA	c9	41，215，	${ }^{616}$	AA
32，692，66	AA	тп	c2	29，	c／c	A／A	${ }^{\text {c3 }}$	15，547，891	AA	cic	${ }^{\text {c }}$	63，567，265	A／A	gic	c5	769	AA	${ }_{6} 16$	c5	39，882，126	AA	${ }_{6} / 6$	${ }^{6}$	9，407	${ }^{1 / 8}$	AA	${ }^{\text {c7 }}$	45，86，	AA	${ }_{6} / 6$	c8	，387，7	AA	${ }_{0}$	c9	41，576，10	тп	cı
32,7	A／A	बI6	C2	29，986，965	c 10	G16	c3	15，547，936	AA	a 6	c3	63，575，109	${ }_{6} 6$	AA	c5	342，522	тп	${ }_{6} / 6$	${ }^{\text {c5 }}$	39，882，142	A／A	${ }_{6} / 6$	${ }^{\text {c } 6}$	39，412，2	тп	AA	${ }^{7}$	45，902，60	тr	c／c	${ }^{\text {c8 }}$	37，46，50	${ }_{1 / 8}$	${ }_{1 / c}$	c9	4，576，15	${ }_{6} / 6$	тT
${ }^{33,12}$	A／A	c	c2	30，152，341	π	${ }_{\text {c }}$	${ }^{\text {c3 }}$	15，585，57	c／c	${ }^{16}$	${ }^{\text {c3 }}$	63，973，18	c／c	тт	c5	364，139	${ }_{6} / 6$	тт	${ }^{\text {c5 }}$	39，882，18	${ }_{6} / 6$	AA	${ }^{\text {c6 }}$	39，420，62	${ }_{6} 6$	AA	${ }^{\text {c7 }}$	45，902，73	тп	c／c	${ }^{\text {c8 }}$	7，519，1818	тп	c／c	c9	4，581，32	c／c	A／A
c1 33，157，769	\％r	616	c2	30，158，14	$8 / 6$	A／A	c3	15，890，671	${ }^{\text {a／A }}$	616	${ }^{\text {c3 }}$	63，973，32	т斤	\％／6	c5	364，936	тт	A／A	c5	39，882，19	тr	AA	${ }^{\text {c6 }}$	39，420，62	${ }_{\text {A }}$	$6 / 6$	${ }^{\text {c7 }}$	45，92，78	${ }_{6} 16$	AA	${ }^{\text {c8 }}$	7，519，24	тп	c，	c9	41，581，330	$A^{\text {A }}$	c／c
c1 33，225，063	c／c	π	C2	30，169，85	c	тt	c3	15，892，77	${ }_{6} 6$	т	${ }^{\text {c3 }}$	63，978，47	AIA	тт	c5	365，00	${ }_{6} 6$	AA	c5	39，882，22	AA	${ }_{1 / 8}$	${ }^{\text {c6 }}$	3，4，427，4	TT	cic	${ }^{\text {cr }}$	45，911，3	cı	тт	c8	37，539，14	c／c	тт	c9	4，593，45	tr	c／c
33，	тт	916	c2	30，264，52	π	616	c3	15，902，045	тт	${ }^{10}$	${ }^{\text {c3 }}$	64，623，092	\％r	AA	c5	365，012	c／c	A／A	c5	39，916，907	${ }^{616}$	тп	${ }^{\text {c6 }}$	39，450，5	тT	cic	${ }^{\text {c7 }}$	45，922，7	AA	G／6	${ }^{\text {c8 }}$	37，53，21	AA	616	c9	41，593，5	6／6	AA
c1 33，399，147	тт	AA	c2	30，88，27	A／A	${ }_{6} 6$	c3	15，902，136	тп	cracmer	${ }^{\text {c3 }}$	64，624，029	т	cic	c5	378，294	${ }_{6 / 6}$	cic	c5	39，916，920	тп	gic	${ }^{\text {c6 }}$	39，45，702	т	${ }_{6} 16$	cr	46，03，	6／6	тп	${ }^{\text {c8 }}$	37，53，5	т	cic		41，593，716	c／c	
c1 33，433，76	${ }_{616}$	AA	c2	30，483，515	тT	c，	${ }^{\text {c3 }}$	15，925，0	c／c	616	${ }^{\text {c3 }}$	64，627，14	тт	cic	${ }^{\text {c5 }}$	378，488	c／c	т！	${ }^{\text {c5 }}$	39，999，197	c／c	тп	${ }^{\text {c6 }}$	，461	AA	${ }_{6 / 6}$	c7	46，049，	616	A／A	c8	37，649	т	gic		4，620	т斤	AA
33，43，94	${ }_{6 / 6}$	тп	c2	30，483，523	AA	тт	${ }^{\text {c3 }}$	15，929，306	AA	G／6	${ }^{\text {c3 }}$	64，627，25	c／c	тт	${ }^{\text {c5 }}$	378，6	${ }_{\text {GIG }}$	A／A	c5	39，919	${ }_{6} 16$	тп	cos	39，594，	cı	тт	${ }^{\text {cr }}$	46，050	AA	${ }_{6} 16$	c8	37，687	т	cı		11，62	c／c	
33，880，84	тп	c	c2	30，762，412	616	AA	${ }^{\text {c }}$	15，954，112	тп	als	${ }^{\text {c }}$	64，442，639	AA	тп	c5	383，51	${ }_{6} / 1$	c／c	c5	22，	AA	${ }_{6} / 6$	${ }^{\text {ct }}$	15，990	тп	AA	c7	46，06，981	cic	${ }_{6} / 6$	c8	37，87，66	тп	c／c	c9	623，	c／c	${ }_{6 / 6}$
33,4	c／c	тT	c	30，762，426	\％ 16	AA	${ }^{\text {c3 }}$	15，986，11	AA	a 6	c3	64，647，174	a／a	${ }_{6} 16$	cs	408，243	A／A	тт	c5	39，922，70	AA	c／c	c7	154，06	${ }^{616}$	AA	${ }^{\text {c7 }}$	46，068	c／c	тп	${ }^{\text {c8 }}$	7，687，70	c／c	${ }_{6} 16$	c9	4，623，21	c／c	тп
c1 33，52，142	c／c	${ }^{16}$		30，762，49	π	co	${ }^{\text {c3 }}$	16，061，792	cic	π	${ }^{\text {c }}$	64，647，270	${ }_{6} 6$	cic	${ }^{\text {c5 }}$	409，891	cc	тт	${ }^{\text {c5 }}$	39，922，70	c／c	זT	${ }^{\text {c7 }}$	172，38	AA	тT	${ }^{\text {c7 }}$	46，069，	c／c	т斤	c8	7，689，62	${ }_{6} / 6$	cı	c9	1，987，79	Tr	cic
c1 33，52， 3 ，38	тп	NA	c2	30，783，992	c	AA	c3	16，128，767	тT	cr	c3	64，791，85	тт	cic	c5	409，902	${ }_{6} 6$	AIA	c5	39，922，72	${ }_{6} / 6$	AA	${ }^{\text {c7 }}$	95，30	AA	c／c	${ }^{\text {c7 }}$	46，06	т	c／c	${ }^{\text {c8 }}$	7，712，8	A／A	${ }^{6 / 1}$	${ }^{\text {c9 }}$	42，828，19	${ }^{\text {A／A }}$	cic
c1 33，541，256	c／c	NA	c2	30，783，99	AA	gic	${ }^{\text {c3 }}$	16，280，950	тп	cic	${ }^{\text {c3 }}$	64，791，89	c／c	тт	c5	420，178	${ }_{6} 16$	AA	c5	40，048，74	c／c	AA	${ }^{\text {c7 }}$	265，93	${ }^{\text {AIA }}$	\％／6	${ }^{\text {c7 }}$	46，072，1	${ }^{616}$	тт	${ }^{\text {c8 }}$	3，719，24	c／c	${ }^{1 / 6}$	c9	42，828，23	AA	cic
33，56	${ }_{616}$	AA	c2	31，230，130	тт	cic	${ }^{\text {c3 }}$	16，281，126	c／c	тт	c3	64，791，91	т	A／A	c5	420，2	тп	c／c	c5	40，12，933	AA	${ }_{6} 16$	${ }^{\text {c7 }}$	327，06	${ }_{6} 16$	A／A	c7	46，106，	硡	тп	${ }^{\text {c8 }}$	37，764，3	${ }_{6}$	AA	c9	42，86，88	c／c	тп
33，54	${ }^{616}$	AA	c2	31，230，162	g16	AIA	${ }^{\text {c3 }}$	16，281，143	AA	G／6	${ }^{\text {c3 }}$	64，816，599	c／c	тп	${ }^{\text {c5 }}$	450，0	A／A	\％／6	c5	40，143，120	тп	\％／6	${ }^{\text {c7 }}$	445，99	c／c	${ }_{6 / 6}$	${ }^{\text {c7 }}$	，121，	616	A／A	с8	37，99，25	硡	A A	c9	22，867	號	6／6
33，60	${ }_{6} 6$	cic	c2	31，230，169	${ }_{6} / 6$	AA	${ }^{\text {c3 }}$	16，296，088	cic	A／A	${ }^{\text {c3 }}$	64，843，50	c／c	${ }_{6} 16$	${ }^{\text {c5 }}$	455，0	AAA	cı	c5	40，150	тT	c c	${ }^{\text {cr }}$	446，00	${ }_{6 / 6}$	AA	cr	46，121	${ }_{6} 16$	a	${ }^{\text {c8 }}$	37，997，65	616	cic	c9	43，185，89	AA	${ }_{6} 16$
33，63	${ }_{6} 6$	AA	${ }^{\text {c2 }}$	31，230，25	${ }_{6} / 6$	cic	c3	16，436，11	c／c	\％r	${ }^{\text {c3 }}$	64，843，5	${ }^{\text {c／c }}$	${ }_{6} 6$	${ }^{\text {c5 }}$	461，003	AA	cic	${ }^{\text {c5 }}$	40，451，925	тT	${ }_{6} 16$	${ }^{\text {c7 }}$	452，08	A／A	${ }^{616}$	cr	46，176	т斤	c／c	${ }^{\text {c8 }}$	\％，797	${ }_{6} 16$	AA	cs	43，196，31	cic	π
33，86，072	тт	cic	c2	31，88，99	c 10	AA	${ }^{\text {c3 }}$	16，436，2	c／c	6／6	${ }^{\text {c3 }}$	64，860，07	${ }_{6} 6$	AA	${ }^{\text {c5 }}$	461.038	тп	cic	c5	40，570，12	c／c	т	${ }^{\text {c7 }}$	452，09	${ }_{6} 16$	тт	cr	46，176，	тп	c／c	${ }^{\text {c }}$	．797，7	AA	cic	c9	43，215，3	${ }_{6} 16$	A／A
${ }^{34,}$	c／c	AA	c2	31，383，32	тт	c，	c3		${ }_{6} 6$	т	${ }^{\text {c3 }}$		A／A	тт	c5	569，102	тT	cic	c5	40，740，57	AA	c／c	\％	597，16	тп	c／c	${ }^{\text {cr }}$	46，176	c／c	тп	${ }^{\text {c8 }}$	7，835，73	AA	${ }_{6} / 6$	c9	3，217，630	\％	${ }_{6} 16$
34，164，054	AIA	Gig	${ }^{2}$	31，412，38	A／A	IT	${ }^{\text {c }}$	16，592，43	тп	cic	c3	64，860，92	тт	AIA	c5	569，116	A／A	тт	c5		${ }_{6} / 6$	тп	${ }^{\text {c }}$	922，130	A／A	c／c	c	46，252，3	${ }_{6} 6$	тт	${ }^{\text {c8 }}$	37，840，014	c／c	A／A	${ }^{\text {c9 }}$	277，	AA	crand
c1 34，227，973	AA	${ }_{\text {GIG }}$	${ }^{2}$	31，412，48	c／c	тT	c3	16，625，308	\％r	gic	${ }^{\text {c }}$	64，869，49	тт	G／G	${ }^{\text {c5 }}$	593，768	A／A	916	c5	40，93，27	a／A	тп	${ }^{\text {c7 }}$	997,14	тп	c／c	${ }^{\text {c7 }}$	32，0	${ }_{6} 6$	AIA	c8	840，	${ }_{6} 6$	an	${ }^{\text {c9 }}$	43，295，991	π	${ }^{\text {A／A }}$
34，302，27	тп	AA	c2	31，605，96	c／c	тт	c3	16，377，897	AAA	gic	${ }^{\text {c3 }}$	70，9	тт	AA	${ }^{\text {c5 }}$	594，205	тт	cic	${ }^{\text {c5 }}$	41，041，	c／c	тп	${ }^{\text {c7 }}$	1，571，3	c／c	${ }_{6} 16$	c7	46，32，	тп	c／c	c8	37，80，	c／c	${ }^{616}$	${ }^{\text {c9 }}$	3，296	A／A	cic
34，302，426	cic	${ }_{6} 16$	c2	31，764，71	тт	A／A	c3	16，76，63	AA	cic	c4	27，432	${ }_{6} 16$	AA	c5	651，626	${ }_{6} / 6$	тп	c5	41，041，	A A	${ }_{6} / 6$	d	1，912，7	${ }_{\text {a }}$ A		${ }^{\text {ct }}$	46，54，48	тп	ca	c8	37，80，	тп	cı	${ }^{\text {c9 }}$	4，310	an	cı
34，302，450	c／c	618	C2	31，764，732	${ }_{6 / 6}$	AA	${ }^{\text {c3 }}$	16，808，596	${ }^{616}$	c／c	${ }^{\text {c4 }}$	0，761	c／c	AA	c5	651，788	${ }_{6 / 6}$	A／A	c5	，041	c／c	тт	${ }^{\text {c7 }}$	1，975，	A／A	${ }_{6} 16$	${ }^{\text {ct }}$	46，633	тт	cic	c8	37，840	\％／6	cı	${ }^{\text {c9 }}$	43，335	AA	\％／6
34，304，6	${ }^{6 / 6}$	AA	c2	31，932，983	g／6	AA	${ }^{\text {c3 }}$	16，008，599	AA	G／G	${ }^{\text {c4 }}$	121，398	AIA	${ }_{616}$	${ }^{\text {cs }}$	697，02	AIA	G／G	c5	416，2	${ }_{6 / 6}$	AA	${ }^{\text {c7 }}$	1，996，	т！	${ }_{6} 16$	c7	46，63，2	π	AA	${ }^{\text {c8 }}$	38，261，	616	AIA	${ }^{\text {c9 }}$	4，408	${ }_{6} 6$	A／A
34，34，63	тт	cic	${ }^{\text {c2 }}$	32，022，45	c／c	AA	c3	16，886，193	${ }_{6} 16$	AA	c4	7，27	тт	${ }_{6} 6$	${ }^{\text {cs }}$	97，074	тт	${ }_{6} / 6$	${ }^{\text {c5 }}$	41，753，23	${ }^{616}$	AA	c7	2，378，00	A／A	${ }^{616}$	${ }^{\text {c7 }}$	46，633，	A／A	${ }^{616}$	${ }^{\text {c8 }}$	38，266，40	cic	AIA	с9	4，691	A／A	c／c
c1 34，304，772	cic	616	c2	32，113，90	cic	тT	c3	16，886，229	${ }_{6} 6$	тT	c4	538，12	c／c	тт	c5	697，096	A／A	${ }_{6} / 6$	c5	41，753，309	c／c	тт	${ }^{\text {c7 }}$	2，378，04	AA	${ }_{6 / 6}$	${ }^{\text {c7 }}$	46，70，${ }^{\text {a }}$	616	AA	${ }^{\text {c8 }}$	38，376，7	${ }^{6 / 6}$	AA	c9	44，754，673	тп	A／A
${ }^{1}$ 34，304，790	AA	616	c2	32，160，087	6／6	c，	c3	16，906，409	${ }_{6} 6$	AA	c4	693，456	${ }_{6} / 6$	A／A	${ }^{\text {cs }}$	697，098	AA	G16	c5	41，774，258	тп	c／c	${ }^{\text {c7 }}$	2，561，537	тT	cı	${ }^{\text {c7 }}$	46，700，74	${ }^{1 / 6}$	AA	${ }^{\text {c8 }}$	38，376，787	${ }^{1 / 6}$	тп	${ }^{\text {c9 }}$	44，847，596	${ }_{6} / 6$	AA
							${ }^{\text {c }}$			cic	${ }^{4} 4$	69，464	AA	Tr	${ }^{\text {c5 }}$	741.437	G／G	AA	${ }^{\text {c5 }}$		616	im	c7	2．642，86	$6 / 10$	tr	c7	46，70，83		c／c	${ }^{\text {c8 }}$	38，36， 7						

＊Note：Yellow colour indicates variants sequence of the cultivated rapid cycling DHSL150 line and grey colour indicates that of wild S1 C07007 line showing differences in allelic variant in their
chromosomes．

Appendix III Cont.

Table S3: Cont. : Differences in Allelic variants at various chromosomes positions in parent lines; the cultivated rapid cycling DHSL150 and C07007.

34,322,	тт	c	c2	32,28,6	cic	AA	${ }^{\text {c3 }}$	1.006,	тп	cic	${ }^{\text {c4 }}$	${ }^{693,595}$	тп	cı	${ }^{\text {c5 }}$	803,560	cic	${ }^{616}$	${ }^{\text {cs }}$	41,965,913	A/A	тп	${ }^{\text {c7 }}$	2,73	A/A	${ }_{6} 6$	${ }^{\text {c7 }}$	46,70	тп	A/A	${ }^{\text {c }}$	38,42,406	тп	cic	c9	44,8	тп	cı
c1 34,32,725	cic	AA	${ }^{\text {c2 }}$	32,289,610	A/A	тп	${ }^{\text {c3 }}$	17,006,492	${ }_{6} 16$	AA	c4	693,62	AA	тп	${ }^{\text {c5 }}$	803,608	A/A	cic	${ }^{5}$	42,144,863	тп	A/A	${ }^{\text {c7 }}$	2,890,46	c/c	${ }_{6} / 6$	c7	46,962,030	A/A	G/6	c8	38,42,55	${ }_{6} / 6$	AA	c9	45,14, ,13	тп	${ }_{6} / 6$
34,322,93	A A	тп	c2	32,73,9910	AA	cic	${ }^{\text {c3 }}$	17,006,497	тп	${ }_{6} / 6$	c4	693,627	AA	${ }_{6} 16$	cs	807,665	cic	AA	cs	42,152,43	cic	тп	${ }^{\text {c7 }}$	2,89,511	${ }_{6} / 6$	тт	c7	46,962,16	c/c	тт	c8 ${ }^{\text {3 }}$	3,435,7	${ }_{6} / 6$	c/c	c9	5,146,	тп	c/c
34,323,02	${ }_{6} / 6$	тт	c2	32,73,02	g/6	тп	c3	17,006,550	c/c	тт	c4	694,016	${ }_{6} 6$	c/c	c5	830	A/A	${ }_{\text {GI }}$	c5	42,20,93	c/c	тп	${ }^{\text {c7 }}$	2,917	c 10	тп	c_{7}	46,971,67	a/a	${ }_{\text {g/ }}$	c8 3	38,46,02	c/c	тп	c9	5,146,88	${ }_{6} / 6$	A/A
34,34,043	тп	cic	c2	32,74,941	A/A	cic	${ }^{\text {c3 }}$	17,042,702	g/	тт	c4	35,530	A/A	g/	c5	873,434	\%/6	AA	c5	42,204,945	c/c	тп	c7	2,917,21	c/c	AA	c7	46,971,710	тп	cı	c8	38,462,47	${ }_{6} 6$	тп	c9	45,14,02	AA	c/c
34,34,072	тп	cic	c2	32,74,070	c/c	тт	${ }^{\text {c3 }}$	17,074,245	a/a	\%/6	c4	939,560	A/A	${ }_{6} 6$	cs	873,54	${ }_{6} 16$	тT	c5	42,205,04	тT	AA	${ }^{\text {c7 }}$	2,95,40	${ }_{6} / 6$	AA	c7	46,991,	c/c	тт	c8	38,46,5	${ }_{6} 6$	${ }^{\text {c/a }}$	${ }^{\text {c9 }}$	45,93,3	тп	\%/6
34,357,8,	c/c	тп	c2	32,746,811	тп	c/c	${ }^{\text {c3 }}$	17,122,3	c/c	тт	c4	964.5	A/A	${ }_{\text {G/G }}$	c5	902.4	${ }_{6} 16$	AA	cs	42,206,33	AA	cic	c7	3,024	тп	cic	c7	47,016,6	c/c	G/G	c8 ${ }^{\text {3 }}$	38,507,4	${ }_{6} / 6$	AA	c9	45,410,7	${ }^{6 / 8}$	A/A
34,382,2	${ }^{6 / 6}$	A/A	c2	26,82	A/A	тт	${ }^{\text {c3 }}$, 50,64	A/A	${ }_{616}$	c4	5,47	\%	${ }^{\text {g/ }}$	c5	919,596	тт	A/A	cs	42,206,420	AA	cr	${ }^{\text {c7 }}$	3,024,138	${ }_{6} / 6$	тп	c_{7}	47,035,1	c/c	\ldots	c8 3	38,57,55	тп	c/c	c9	,429,0	AA	${ }_{616}$
3,598,3	т	G/6	C2	32,81,7,19	c/c	a/	${ }^{\text {c3 }}$	17,180,306	AA	σ_{16}	c4	6,291	${ }_{6} / 6$	AA	cs	978,512	тп	c/c	cs	42,20,49	AA	тт	${ }^{\text {c7 }}$	3,542	a/	${ }_{6} 6$	c7	47,090,	${ }_{6} 16$	AA	c8	38,518,49	${ }_{6} / 6$	AA	c9	45,512,8	c/c	тт
34,617,067	6/6	тп	c2	32,887,701	A/A	тп	${ }^{\text {c3 }}$	17,180,319	a A	\%/6	c4	1,111,042	${ }_{6} 16$	a A	c5	1,008,216	${ }^{616}$	c/c	c5	42,20, 18	c/c	тп	${ }^{\text {c7 }}$	3,70,38	${ }_{6} / 6$	AA	c7	47,12,	тт	AA	c8	38,518,54	${ }_{6} 6$	${ }^{\text {c/ }}$	c9	45,610,	тп	${ }_{6} / 6$
34,663,31	${ }_{6} 16$	AA	c2	32,296,75	тт	AA	${ }^{\text {c3 }}$	17,180,	${ }^{6 / 6}$	AA	c4	1,369,05	π	cic	c5	1,008,228	A/A	тт	${ }^{\text {c5 }}$	42,21	${ }^{6 / 6}$	A A	${ }^{\text {ct }}$	3,701		c 10	c7	47,147,11	${ }^{6 / 1}$	AA	c8	38,51,55	тт	cic	c9	45,610,9	тT	c/c
34,67,415	cic	Gic	c2	226,795	cic	¢ic	c3	17,401,069	c/c	AA	c4	138,600	c/c	gic	c5	1,032,408	тт	cic	c5	42,221,926	тп	c/c	${ }^{\text {c7 }}$	3,725,34	c/c	тт	c7	47,18,614	c/c	тп	co	3,522,9	тп	cic	c9	45,610,9	c/c	A/A
34,953,16	тт	cic	${ }^{2} 2$	33,04,18	AA	¢/G	${ }^{\text {c3 }}$	17,401,114	${ }^{1 / 6}$	AA	c4	1,72,665	тп	cic	c5	1,032,53	cı	AA	cs	${ }^{42,232,579}$	A/A	${ }_{6} 16$	${ }^{\text {c7 }}$	3,769	AA	тт	c7	47,188,	A 1	${ }_{6} 16$	${ }^{\text {c8 }}$	38,543,	${ }_{6} / 6$	A/A	c9	45,617,1	c/c	тт
34,95, 180	A/A	cic	c2	33,050,689	${ }_{6 / 6}$	AA	${ }^{\text {c3 }}$	17,401,219	${ }^{616}$	cic	c4	72,678	c/c	G/G	${ }^{\text {c }}$	1,032,837	c/c	тп	${ }^{\text {c5 }}$	${ }^{42,232,58}$	тт	cic	${ }^{\text {c7 }}$	3,70,	AA	cic	c7	47,25,7	т	cic	${ }^{\text {c8 }}$	38,54,68	A A	тT	c9	45,66,44	cı	\%/6
35,041,7	c/c	AA	c2	.58,192	\%/6	тт	${ }^{\text {c3 }}$	17,43	${ }^{1 / 6}$	тт	c4	1,824,023	${ }^{616}$	AA	c5	1,032,843	${ }_{6} 16$	cic	${ }^{\text {c5 }}$	42,232,63	cic	тт	${ }^{\text {c7 }}$	3,772	AA	cic	c7	47,25,8,	AIA	\%/6	c8 ${ }^{\text {3 }}$	38,54,75	AA	т	c9	46,066,23	т	${ }_{6 / 6}$
35,04,227	тп	cic	c2	33,226,552	тт	AA	${ }^{\text {c3 }}$	17,608,9	тт	c/c	c4	1,824,065	тп	916	cs	1,033,0	тт	c/c	cs	42,242,16	c/c	тп	${ }^{\text {c7 }}$	4,098,	c/c	тт	c7	47,25,87	c/c	тт	${ }^{\text {c8 }}$	38,56,196	${ }^{6 / 6}$	A/A	cs	46,066,25	c/c	тт
35,10,6	G/6	AA	${ }^{\text {c2 }}$	226,5	gic	AA	${ }^{\text {c3 }}$	17,663,	c/c	тп	c4	1,824	${ }_{6} 16$	A/A	cs	1,033,	c/c	тп	c5	${ }^{22,694}$	A/A	616	${ }^{\text {c7 }}$	4,099	${ }_{6} 16$	A A	c7	47,253	тп	c/c	c8	38,574,	cic	тп	c9	46,066,360	тп	A/A
35,10,6	тт	cic	c2	283,544	\% 6	тт	${ }^{\text {c3 }}$	17,759,043	c/c	тT	c4	,24,098	cic	тT	c5	1,038,	A/A	тт	${ }^{\text {c5 }}$	${ }^{42,891}$	cic	${ }_{6 / 6}$	${ }^{\text {c7 }}$	4,216,	тт	cic	c7	47,288	${ }^{616}$	cic	c8 ${ }^{\text {3 }}$	38,57,	${ }_{6 / 6}$	A/A	c9	46,106,4	AA	c/c
35,10,65	тт	\% 6	c2	88,837	c/c	NA	${ }^{\text {c3 }}$	759,1	${ }_{6} / 6$	A/A	c4	2,033,285	AA	916	cs	1,043,59	A/A	G/6	cs	22,893,10	6	AA	${ }^{\text {c7 }}$	4,366,	${ }_{6} / 6$	тт	c7	47,28,420,	c/c	тт	${ }^{\text {c8 }}$	38,574,98	${ }^{6 / 6}$	c/c	${ }^{\text {c9 }}$	46,106,4	AA	${ }_{6} / 6$
35,110,83	тп	an	${ }^{2} 2$	${ }^{33,943,714}$	\%/6	AA	${ }^{\text {c3 }}$	17,796,653	AA	cic	c4	, 33,372	${ }_{6} / 6$	AA	cs	1,098,210	тт	cic	cs	42,910,	тт	AA	${ }^{\text {c7 }}$	4,531	тп	c/c	c7	47,29,3	A/A	${ }_{6} / 6$	c8	38,43,194	${ }_{6} / 6$	тп	c9	46,106,71	c/c	тт
35,76,508	${ }_{6} 6$	a A	c2	33,	AA	$6 / 6$	${ }^{\text {c3 }}$	17,796,6	als	c/c	c4	2,033,577	c/c	G/6	cs	1,113,	c/c	AA	c5	42,950,	c/c	$6 / 6$	${ }^{\text {c7 }}$	4,53	c/c	тп	c7	47,289	A/A	616	c8	38,75,16	AA	тт	c9	46,106,758	тп	c/c
35,975	A/A	тп	${ }^{\text {c2 }}$	34,0	тт	\% 6	${ }^{\text {c3 }}$	17,796,73	c/c	AA	c4	2,041,711	A/A	c/c	c5	1,113,781	A/A	gis	${ }^{\text {c5 }}$	43,004	AA	тт	${ }^{\text {c7 }}$	4,5	${ }_{6} 16$	AA	c7	47,300	т	cic	c8	38,758,16	c/c	${ }^{16}$	c9	46,	A/A	тт
c1 36,00	AA	${ }_{6} / 6$	${ }^{\text {c2 }}$	34,095,94	A/A	alc	${ }^{\text {c3 }}$	17,806,820	AA	тт	c4	2,079.072	AA	тт	${ }^{\text {c5 }}$	1,116,274	AA	gis	${ }^{\text {c5 }}$	43,158,23	тT	cic	${ }^{\text {c7 }}$	4,700	тT	cic	c7	317	cı	тт	c8 ${ }^{\text {3 }}$, 338,	AA	\%16	${ }^{\text {c9 }}$	46,329,	cic	\%
c1 36,04,09	cic	AA	${ }^{2}$	34,05,0	\%/6	AA	${ }^{\text {c3 }}$	17,898,850	${ }_{6} 16$	AA	c4	2,180,589	cic	${ }^{16}$	c5	116,2	A A	тт	${ }^{\text {c5 }}$	43,158,280	${ }_{6} 16$	A/A	c7	4,700,	A A	¢/6		47,31,02	A/A	cic	c8	38,33,26	${ }_{6} 16$	cic	${ }^{\text {c9 }}$	46,47, 240	A/A	${ }_{616}$
36,35,14	c/c	an	${ }^{2}$	34,105,0	AA	6/6	${ }^{\text {c3 }}$	17,913,3	6/6	тп	c4	2,326,2	тп	als	c5	1,122	A/A	${ }_{6} / 6$		43,239	AA	616	${ }^{\text {c7 }}$	4,740	c/c	тт	c7	47,318,	тп	${ }^{616}$	${ }^{\text {c8 }}$	38,38,30	c/c	тт		46,41,3	AA	c/c
36,35	cı	тT	c2	34,119,821	A 1	тт	${ }^{\text {c3 }}$	17,930,155	cic	тT	c4	2,473	A/A	тт	c5	1,139,902	${ }^{616}$	AA	${ }^{\text {c5 }}$	43,259,	тт	A/A	${ }^{\text {c7 }}$	4,807	A/A	тт	c7	47,42	т!	AA	c8 ${ }^{\text {3 }}$	38,552,856	AIA	тт	${ }^{\text {c9 }}$	46,	${ }_{6} / 1$	A/A
c1 36,415,77	cic	т	c2	34,185,295	gic	AA	${ }^{\text {c3 }}$	291,72	${ }_{6}$	тп	c4	2,486,7	c/c	זT	${ }^{\text {c5 }}$	1,150,2	\%/6	AA	c5	43,259	т	c/c	${ }^{\text {c }}$	4,85	тп	${ }_{6 / 6}$	c7	47,542	${ }^{\text {AIA }}$	${ }_{6} 16$	c8	s,852,	${ }^{6 / 6}$	at	${ }^{\text {c9 }}$	46,522	c/c	π
c1 36,507,990	${ }_{6 / 6}$	тт	-	34,20,8	A/A	G/6	${ }^{\text {c3 }}$	18,321,373	AA	\%/G	c4	2,617,6	${ }_{6}$	cic	c5	1,150,2	${ }_{6} / 6$	тт	cs	43,301,	${ }_{6 / 6}$	cic		4,924	тт	cic	¢	47,542,	${ }_{6} 16$	cic	c8 ${ }^{\text {3 }}$	38,60,	\%/6	cic	${ }^{\text {c9 }}$	46,522,5	т	${ }_{6} / 6$
c1 36,56,324	c/c	тт	c2	34,61,5	${ }_{6} / 6$	a A	${ }^{\text {c3 }}$	18,365,2	AA	\%/6	c4	2.617,6	als	A/A	cs	1,150,	${ }^{616}$	AA	cs	43,306,	тп	616	${ }^{\text {c7 }}$	5,042	c/c	тт	c7	47,63,	${ }_{6} / 6$	A/A	${ }^{88}$	38,864,32	A A	${ }_{6} 16$	c9	46,807,	AA	c/c
c1 36,59	${ }^{\text {c/a }}$	тт	${ }^{2}$	34,648,759	cic	\%r	${ }^{\text {c3 }}$	18,431,373	AA	¢/G	c4	2,72,5,53	т	als	c5	1,150,782	,	тп	${ }^{\text {c5 }}$	43,366,98	тт	cic	${ }^{\text {c7 }}$	5,12	a A	${ }_{6} 16$	c7	47,630,	тт	cic	c8 ${ }^{\text {3 }}$	38,864	AA	gic	c9	46,807,8	6/6	тт
${ }^{\text {c1 }} 36,614,53$	${ }_{6} / 6$	A/A	c2	34,74,47	тт	A/A	c3	18,450,9	cic	тт	c4	226,5	${ }_{6} 16$	cic	c5	1,150,8,	${ }_{6 / 6}$	a/a	cs	43,36,18	AA	тп	c7	5,455,	c/c	AA	c7	47,63,	c/c	π	${ }^{\text {c8 }}$	38,97,087	${ }_{6} / 6$	cra	${ }^{\text {c9 }}$	46,807,84	AA	тт
${ }^{\text {c1 }} 36,614,58$	A/A	G/6	c2	34,704,709	π	cic	${ }^{\text {c3 }}$	18,451,2	AA	тT	c4	2,742,166	A/A		${ }^{\text {c5 }}$	1,150,		AA	${ }^{\text {c5 }}$	43,370,	c/c	A/A		5,596,887	π	cic	${ }^{\text {c7 }}$	47,630,87	тп	616	c8	38,967,94	A/A	c/c	c9	46,87,982	cic	тт
36,47,	A/A	тт	c2	35,085,506	c/c	G/6	${ }^{\text {c3 }}$	18,458,32	${ }_{6} / 6$	A/A	c4	2,787,557	${ }^{616}$	AA	c5	1,248,1	c/c	тт	c5	43,370,	A/A	6/6	${ }^{\text {ct }}$	5,596,90	${ }_{6} 16$	тт	c7	47,69,54	A/A	тп	${ }^{\text {c8 }}$	39,05,65	A/A	тп	c9	46,964,852	cı	тт
${ }^{\text {c1 }} 36,655$,	т	${ }_{\text {c }}$	${ }^{2}$	105,8	тт	AA	${ }^{\text {c3 }}$	18,483,337	AA	gic	c4	2,808,414	тп	AA	${ }^{\text {c5 }}$	289,7	cic	т	${ }^{\text {c5 }}$	43,472,73	cic	тп	${ }^{\text {c7 }}$	5,654	тT	cic	c7	47,695,	тT	cic	c8 ${ }^{\text {3 }}$	39,397,5	A/A	gic	c9	47,26,49	тT	c/c
c1 36,76,057	тт	AA	c2	35,106,942	тп	a/	c3	.483,346	AA	тт	c4	2,808,564	тп	cic	cs	1,311,12	c/c		cs	43,497,455	AA	c/c	${ }^{\text {c7 }}$	5,654,	тп	AA	c7	47,75,4	${ }_{6} 16$	AA	${ }^{\text {c8 }}$	39,456,687	тп	c/0	c9	47,269,493	cı	${ }_{6} / 6$
$\mathrm{c}_{1} 36,830,0$	A/A	6/6	c2	35,216,489	тп	6/6	${ }^{\text {c3 }}$	18,488,0	c/c	1π	c4	2,808,585	AA	c/c	cs	1,38,63	A/A	cic	${ }^{\text {cs }}$	43,98,08	c/c	тп	${ }^{\text {c7 }}$	5.55,93	${ }_{6} 16$	a	${ }^{2}$	47,999,35	c/c	тт	${ }^{\text {c8 }}$	39,549,36	A/A	618	cs	47,26,67	AA	${ }_{6 / 6}$
37,24,683	${ }_{6} 16$	AA	${ }^{\text {c2 }}$	39,210	${ }_{6 / 6}$	AA	${ }^{\text {c3 }}$	18,488,022	c/c	тT	c4	2,808,633	${ }_{616}$	тт	${ }^{\text {c5 }}$	1,386,64	c/c	тт	${ }^{\text {c5 }}$	43,577,08	${ }_{6 / 6}$	c/c	${ }^{\text {c7 }}$	5,756,46	тT	${ }_{6} 6$	${ }^{\text {c7 }}$	47,99,40	A/A	${ }^{16}$	c8	39,550,3	tr	GI6	${ }^{\text {c9 }}$	47,269,79	т	¢/6
37,247,22	A/A	616	c2	226,22	${ }_{6} 6$	тт	${ }^{\text {c3 }}$	503,3	c/c	т	c4	2,842,422	тп	c	${ }^{\text {cs }}$	1,386,66	A/A	${ }^{616}$	${ }^{\text {cs }}$	43,574	c/c	AIA	${ }^{\text {c7 }}$	5,759,	c/c	тT	c7	48,03,	${ }^{6 / 6}$	a ${ }^{\text {a }}$	${ }^{\text {c8 }}$	39,550,4	тп	a	${ }^{\text {c9 }}$	47,269,82	${ }^{616}$	A/A
c1 37,24,90	A/A	cic	c2	35,629,296	cic	¢/6	${ }^{\text {c3 }}$	18,503,376	тп	cic	c4	2,871,070	A/A	¢/6	c5	1,464,9	A/A	cic	${ }^{\text {c5 }}$	43,586,9	A/A	${ }_{6} / 6$	${ }^{\text {c7 }}$	5,760,	cic	тт	${ }^{\text {c7 }}$	48,04,3	${ }^{6 / 6}$	AA	c8	39,550,615	тп	cic	c9	47,35,49	gic	A/A
c1 37,247,90	A/A	a/8	c2	35,62,35	тп	AA	${ }^{\text {c3 }}$.527,	${ }_{6 / 6}$	AA	c4	2,871,12	${ }_{6} 16$	AA	c5	1,467,711	cı	A/A	c5	43,699,	AA	${ }_{6} 16$	${ }^{\text {c7 }}$	6,127,402	AA	${ }_{6} 16$	${ }^{\text {c7 }}$	48,07, 8	A/A	${ }^{6}$	${ }^{\text {c8 }}$	39,712,92	A/A	cic	¢	47,57,44	cı	тт
37,252,3	т	AA	${ }^{\text {c2 }}$	35,667,702	c/c	AA	${ }^{\text {c3 }}$		${ }^{16}$	cic	c4	2,7\%	${ }_{6}$	c/c	c5	,	${ }^{616}$	A/A	${ }^{\text {c5 }}$	43,619	AA	cic	${ }^{\text {c7 }}$	6,209,	${ }^{6 / 1}$	тт	${ }^{\text {c7 }}$	48,07,88	gic	AA	c8	39,72,99	AA	cic	${ }^{\text {c9 }}$	47,357,4	A/A	${ }_{6 / 6}$
c1 $37,25,37$	тт	AA	c2	35,66,570	c/c	AA	${ }^{\text {c3 }}$	18,591,747	AA	cic	c4	2,879,920	тп	c/c	c5	1,549,66	${ }^{616}$	AA	c5	43,73,812	${ }^{6 / 6}$	A/A	cr	6,394,95	${ }^{616}$	AA	c7	48,12, 14	AA	c/c	${ }^{\text {c8 }}$	39,713,011		AA	c9	47,415,5	${ }^{616}$	тт
c1 37,799,66	A/A	a/c	c2	35,66,623	тп	AA	${ }^{\text {c3 }}$	18,728,937	c/c	σ_{16}	c4	2,893,803	A/A	c/c	${ }^{\text {c5 }}$	1,124,43	c/c	AA	cs	43,73,84	${ }_{6} / 6$	c/c	cr	6,414,57	c/c	тT	${ }^{\text {c7 }}$	48,123,17	${ }^{6 / 6}$	c/c	${ }^{\text {c8 }}$	39,713,13	${ }^{616}$	A A	co	47,48,86	AA	${ }_{6 / 6}$
${ }^{\text {c1 }} 37,807,28$	тп	cic	c2	35,672,92	A/A	gic	${ }^{\text {c3 }}$,737,	cic	¢/G	${ }^{\text {c }} 4$	2,893,8	${ }^{616}$	тт	${ }^{\text {c5 }}$	726,	cic	G/6	${ }^{\text {c5 }}$	3,732	тT	cic	${ }^{\text {c7 }}$.431	тT	c/c	c7	48,12,	$6 / 10$	AA	c8	s,713,	AA	616	c9	47,888,9	π	cic
37,807,2	${ }_{6} 16$	AA	c2	35,672,93	gic	тт	${ }^{\text {c }}$	18,737,8	c/c	gic	${ }^{\text {c }} 4$	2,89,53	AA	тт	${ }^{\text {c5 }}$	1,726,6	тT	cic	${ }^{\text {c5 }}$	4,32,217	π	AA	${ }^{\text {c7 }}$	6,553,80	AA	cic	c7	48,198,8	cic	AA	c8	39,76, 1	cic	${ }^{616}$	${ }^{\text {c9 }}$	47,657,00	A/A	${ }_{6} 16$
c1 37,99, 189	c/c	тп	c2	35,776,429	тп	a/	c3	18,759,546	cı	тп	c4	2,894,588	${ }^{616}$	AA	cs	1,808,477	тп	cic	cs	43,732,27	cı	AA	${ }^{\text {c7 }}$	6,553,81	AA	тп	c7	48,19,8	,	cic	${ }^{\text {c }}$	3,716,17	6	AA	c9	47,62,48	AA	тт
c1 38,006,83	тт	cic	c2	35,76,5	g/6	cic	${ }^{\text {c3 }}$	18,796,26	тT	6/6	c4	3,358,706	тп	c/c	c5	1,907,828	A/A	cic	${ }^{\text {c5 }}$	43,733,48	A/A	${ }_{6} 16$	${ }^{\text {c7 }}$	6,576,20	т	c/c	${ }^{\text {c7 }}$	48,204,20	cic	AA	c8	39,716,2	A/A	тT	${ }^{\text {c9 }}$	47,62,64	тT	c/c
$c^{\text {c }} 38.006,48$	c/c	AA	c2	35,77,5	тп	cic	${ }^{\text {c3 }}$	18,96,29	c/c	тт	c4	3,358,8	cı	тт	cs	907,	c/c	тт	cs	43,747,	${ }^{616}$	тп	${ }^{\text {c7 }}$	6,576,	c/0	тт	${ }^{7}$	48,21,5	cic	AA	c8 ${ }^{\text {3 }}$	39,73,6	${ }^{616}$	AA	c9	47,82, 13	${ }^{616}$	c/c
38,039,3	${ }_{6}^{6 / 6}$	AA	C_{2}	35,81,88	${ }^{6 / 6}$	AA	${ }^{\text {c3 }}$	139,5	${ }^{616}$	AA	${ }^{4} 4$	3,38,34	${ }_{6} 16$	AA	c5	1,926,94	т!	c/c	${ }^{\text {c5 }}$	43,747,72	т	AA	${ }^{\text {ct }}$	6,624,20	cı	AA	c7	48,212,61	A/A	тT	c8 3	39,767,66	${ }^{6 / 8}$	cic	c9	47,910,5	${ }^{\text {c/c }}$	AA
38,090,61	т	AA	c2	36,031,629	тп	c/c	${ }^{\text {c3 }}$	133,618	cic	тп	c4	3,458,307	c/c	${ }_{6} 6$	c5	1,969,396	${ }_{6} 16$	AA	c5	43,747,744	π	cic	${ }^{\text {c7 }}$	6,654,2	${ }_{6} 16$	cra	c7	48,213,75	an	${ }^{1 / 8}$	c8 ${ }^{\text {3 }}$	3, 8 87,499	A/A	${ }^{616}$	c9	47,944	a/	cic
c1 38,00, 991	${ }_{\text {c }}$	тп	${ }^{2} 2$	36,078,335	A/A	916	${ }^{\text {c3 }}$	19,139,62	тп	c/c	c4	3,576,53	т	c/c	${ }^{\text {cs }}$	1,969,481	${ }^{6 / 6}$	тт	${ }^{\text {c5 }}$	43,802	тT	A/A	${ }^{\text {c7 }}$	6,702,99	тп	c/c	${ }^{7}$	48,216,	${ }^{616}$	A/A	${ }^{88}$	39,872,503	${ }^{616}$	AA	${ }^{\text {c9 }}$	47,984,29	${ }^{\text {c/c }}$	тт
${ }^{1} 38.040$,	тт	c/c	c2	36,078,378	6/6	cic	c3	19,3	тт	cı	${ }^{\text {c }} 4$	3,576,331	т!	cic	c5	1.9	c/c	A/A	c5	43,810,4	c/c	tr	${ }^{\text {c7 }}$	7,284,10	618	A/A	c7	48,216,	тr	A/A	C8 3	39,872,616	c/c	тт	c9	48,011,278	тп	cı

* Note: Yellow colour indicates variants sequence of the cultivated rapid cycling DHSL150 line and grey colour indicates that of wild S1 C07007 line showing differences in allelic variant in their
chromosomes

Appendix III Cont．

Table S3：Cont．：Differences in Allelic variants at various chromosomes positions in parent lines；the cultivated rapid cycling DHSL150 and C07007

				ostio			ch	Postio	DHSL			sastion				ssitio				Postio	HSS			Posi														
c1 38，040，709	тт	AA		36，17，872	A／A	G／6	c3	19，447，019	G／G	AA	c4	3，57，714	AA	\％／6	c5	1，969，618	A／A	G／6	c5	43，810，424	тт	c／c	c7	$7.284,189$	G／6	AA	c7	48，216，638	6／6	A／A		39，906，950	cic	тT	c9	48，089，817	тт	${ }_{6 / 6}$
c1 38，06，722	c／c	тп	C2	36，25，，335	c／c	G／6	c3	19，468，178	G／6	AA	C4	3，700，993	${ }^{616}$	AA	c5	2，190，998	c／c	AA	c5	43，872，478	c／c	TT		7，285，665	${ }_{6} / 6$	AA		48，216，763	AA	${ }_{\text {GIG }}$		39，90，966	c／c	тT	c9	48，08，8，44	т	c／c
c1 38，06，812	c／c	тт		36，331，434	тп	G／6	C3	19，47，980	т斤	cic	C4	3，701，09	тт	c／c	C5	2，20，525	c／c	G／6	c5	43，872，48	cIC	A／A		7，285，72	A／A	c／c	c7	48，21，566	c／c	A／A	c8	39，986，218	c／c	тп	c9	8，229，999	${ }_{6} / 6$	AIA
c1 38，120，612	c／c	AA		36，395，021	c／c	${ }_{6} / 6$	c3	19，47，096	c／c	זT	C4	3，702，842	${ }_{6} 16$	AA	c5	2，209，552	A / A	$6 / 6$	c5	43，908，52	т	G／G		7，320，70	Tr	cic	C7	48，221，717	clc	тT	C8	39，986，23	c／c	тт	c9	8，263，497	AA	G／6
c1 38，12，，210	6／6	тт		36，395，035	G／6	AA	c3	19，476，129	тп	c／c		3，702，857	AA	т斤	cs	2，211，188	Tr	616	c5	43，911，976	${ }^{616}$			， 321470	π	AA		88，221，74	AA	6／6		39，986，248	тT	AA	c9	4，263，502	${ }_{6} 16$	A／A
c1 38，12，，324	${ }_{6 / 6}$	AA		36，694，247	${ }_{6} / 6$	AA	C3	20，583，745	тп	cic	C4	3，753，508	${ }_{6} 16$	c／c		2，217，873	c／c	тп		44，119，82	Tr	cic		7，331，641	AA	6／6		48，267，43	AA	cic	c8 3	39，992，89	AIA	c／c	c9	48，457，2	AIA	σ_{6}
c1 38，141，134	A／A	G／G	C2	36，694，273	c／c	A／A	c3	20，591，880	${ }_{6} / 1$	A／A	C4	3，753，738	c／c	тт	c5	2，220，914	A / A	$6 / 6$	${ }^{\text {c }}$	44，23，45	AA	c／c		7，335，6	AA	6／6		48，287，69	c／c	AA	c8	39，999，025	A／A	тт	c9	48，546，79	AA	$6 / 6$
c1 38，141，146	тп	cic		36，872，331	A／A	${ }_{6 / 6}$	c3	20，86，550	A／A	cic	c4	3，755，207	${ }_{6} 16$	A／A	c5	2，330，507	c／c	тп	c5	44，248，70	Tr	sic			cic	тт		4，313，75	זп	cic		40，004，72	זT	cic	c9	4，551，80	AA	TT
${ }_{\text {cl }}$ 38，36，910	c／c	тп		36，872，401	Tr	cic	c3	20，904，015	AA	Tr		3，771，547	cic	G／G	C5	2，372，847	${ }^{\text {AIA }}$	тт	c5	44，24，743	¢r	$A^{\text {A }}$		，，735，802	${ }_{6} / 6$	тт		48，313，86	${ }^{6 / 6}$	AA	C8	40，234，7	Tr	clc	c9	， 551	c／c	AIA
${ }^{1}$ 38，41，466	c／c	AA	C2	36，89，488	6／6	clc	C3	20，904，046	G／G	AA	C4	3，881，195	${ }_{6} 16$	A A	C5	2，372，883	тп	c／c	${ }^{\text {c }}$	44，248，746	тп	A／A	${ }^{\text {c7 }}$	7，454，825	AA	тт	c7	48，316，610	6／6	AA	с8 4	40，234，74	тп	c／c	c9	48，551，871	тп	c／c
${ }^{\text {c1 }}$ 38，673，644	AA	G／G		36，891，502	${ }_{6} / 6$	AA	c3	20，904，047	AA	c ${ }^{\text {c }}$	c	3，881，348	AA	тT	c5	2，451，539	${ }_{6} / 6$	AA	c5	44，248，923	זп	6／6		，，454，89	${ }^{6 / 6}$	c／c	${ }^{\text {c7 }}$	48，352，24	cic	тT	c8	40，236，1	т	c／c	c9	48，595，68	${ }^{616}$	тT
c1 38，69，259	c／c	тп		36，891，510	c／c		c3	20，906，623	${ }_{6} / 6$	AA		3，881，371	cic	616	C5	2，451，545	AIA	$6 / 6$		44，280，47	c／c	${ }_{1 / 6}$		7，51，311	${ }_{6} / 6$	AA	c8	32，318	זT	A／A	c8	40，236，1	c／c	$6 / 6$	c9	4，595，82	Tr	c／c
c1 38，67，648	тт	cic	C2	36，988，788	AA	616	C3	20，933，688	6／6	AA	C4	3，88，482	AA	\％／G	c5	2，451，57	тп	c／c	c5	4，344，	${ }_{6} / 6$	A／A	cr	7，551，32	c／c	тT	c8	32，362	A／A	c／c	c8	40，236，11	тп	c／c	c9	．760	тп	c／c
c1 38，679，696	тт			36，977，756	тп	c／c	c3	20，994，501	c／c	${ }_{6 / 6}$		4，104，108	Tr	AA	c5	2，4	т	c／c	c5	44，373，161	A／A	т π		8，000，412	c／c	AA		42，954	A / A	cic		40，240，3	616	Tr	c9	48，760，5	тr	G／6
${ }^{\text {c }}$－38，99， 384	AA	616		38，774，044	6／6	NA	c3	21，058，422	cic	AA		4，106，533	${ }^{616}$	тT		2，486，596	т斤	c／c		44，514，36	${ }_{6 / 6}$	AA		${ }^{9,20,827}$	cic	тт		43，027	${ }_{6} / 6$	cic		40，299，7	Tr	616	c9	48，782，47	AA	616
c1 $38,89,495$	c／c	тT	C2	38，40，146	AA	G／6	C3	21，146，811	AA	тT	c4	，06，62	${ }_{6} / 1$	AA	c5	2，486，47	c／c	AA	c5	4，581	т斤	G／G	${ }^{\text {c7 }}$	9，992，84	AA	c／c	c8	43，097	A／A	G／6	c8	，299，	тп	6／6	c9	． 820	тT	G／6
c1 39，03，789	6／6	т斤	c2	38，938，179	c／c	тT	c3	21，226，604	G／G	AA	c4	4，110，771	AA	616	c5	2，48，640	c／c	тT	c5	44，595，768	Tr	6／6	c7	9，993，01	c／c	тт	c8	43，133	G／6	cıc	c8	40，3	c / c	AA	c9	857	cic	π
${ }_{1}$ 39，25，043	тп	AA		38，979，864	AA	т	c3	21，226，862	cic	AA		4，131，802	AA	$6 / 6$		2，524，71	тп	A／A		44，726，19	cic	$6 / 6$		9，84，022	${ }_{6} 16$	clc		120，48	cic	616	c8	40，302，3	AA	GIG	c9	48，86，21	G／a	AA
c1 39，228，180	c／c	тT	C2	38，999，900	AA	616	C3	21，234，247	AA	$6 / 6$	c4	4，140，691	cic	AA	C5	2，652，767	т斤	cic	C5	44，83，57	тT	AA	${ }^{\text {c7 }}$	9，947，02	c／c	6／6	c8	124，11	G／6	т！	C8	40，304，55	${ }_{6} / 6$	AA	c9	48，09，53	$6 / 6$	c／c
${ }^{\text {c }}$ 39，248，282	6／6	AA	C2	38，979，912	G／6	NA	C3	21，234，322	cı	916	c4	4，140，82	c／c	тT	c5	2，713，712	тT	$6 / 6$	c5	44，928，813	c／c	тT	${ }^{\text {c7 }}$	9，952，533	${ }_{6} / 6$	AA	c8	124，249	${ }^{\text {A／A }}$	G／6	c8	40，3	${ }_{6} 16$	cic	c9	8，909，72	Tr	cic
${ }^{1}$ 39，33，420	тা	cic		38，979，916	c／c	NA	c3	21，259，736	${ }_{6} 16$	Tr	c4	4，140，830	cic	т斤		2，774，919	tr	AA	${ }^{\text {c5 }}$	44，928，82	AA	זп		9，984，462	AA	\％／6	c8	139，01	c／c	G／6	c8	40，326，13	Tr	AA	c9	8，952，43	cic	π
${ }^{1}$ 39，39，432	т斤	cic	c2	38，80，356	cic	AA	c3	21，311，058	clc	616	c4	4，151，054	cic	AA	c5	2，816，010	AIA	c／c	${ }^{\text {c5 }}$	44，963，58	c／c	тп	${ }^{\text {c7 }}$	10，013，32	c／c	AIA	c8	150，10	cic	тT	C8	40，326，188	Tr	cic	c9	48，899，7	AA	тT
c1 39，38，874	тт	cic	c2	39，029，885	c／c	тT	c3	21，428，680	G／6	AA	C4	4，159，751	c／c	тT	C5	2，816，011	$A A$	c／c	c5	44，963，63	A／A	G／6	c7	10，385，13	AA	$6 / 6$	C8	181，514	6／6	AA	c8	40，366，1	${ }_{6} 16$	тт	c9	9，123，43	${ }_{6} 16$	тт
${ }_{1}$ 39，38，852	тт	$\sigma_{6} 6$		39，053，513	6／6	A	c3	21，437，	AA	${ }_{6} / 6$	c4	4，159，72	c／c	тT	${ }^{5}$	2，81，046	Tr	c／c	${ }^{5}$	45，097，39	cic	It	${ }^{\text {c }}$	0，385，18	G／G	AA	c8	181，570	Tr	AA	C8	40，382，2	${ }_{6} 16$	AA	c9	9，123，459	т	cı
c1 39，417，224	тT	cic	c2	39，05，539	тT	cic	c3	21，451，409	т斤	c／c	c4	4，165，89	${ }_{6} / 6$	тт	c5	2，816，126	тт	AA	c5	45，097，39	cIC	G／G	${ }^{\text {c7 }}$	10，429，75	тT	c／c	c8	582，22	тт	cic	c8	40，335，	cic	AA	c9	49，123，462	${ }_{6} 6$	AIA
c1 39，417，257	т斤	cic	c2	39，088，596	616	т	c3	21，532，289	cic	тT	C4	4，165，948	AA	c／c	c5	2，881，301	A／A	c／c	c5	342	т	A／A	${ }^{\text {c }}$	10，429，762	G／G	AA	c8	41，62	AIA	т！	c8	0，335，5	cı	т！	c9	130，8	A／A	тп
${ }_{1}$ 39，43，086	c／c	π		39，071，550	6／6	AA	c3	21，664，797	c／c	тT	c4	4，368，757	cı	AA	c5	2，89，159	${ }_{6} 16$	AA	${ }^{\text {c5 }}$	45，353，042	6／6	TT	${ }^{\text {c }}$	10，434，2	Tr	${ }_{616}$	c8	663，15	Tr	c／c	c8	40，336，5	cic	тт	c9	， 130	AIA	c／c
c1 39，44，121	тT	$\mathrm{cla}^{\text {c }}$	c_{2}	39，229，239	c／c	т	c3	21，64，810	6／6	c，	c4	4，368，844	${ }_{6} 16$	AA	c5	2，893，174	A／A	${ }_{6} / 6$	c5	45，495，46	AA	тT	${ }^{\text {c7 }}$	10，45，36	G／6	AA	c8	768，33	тT	AA	C8	40，336	AIA	G16	c9	49，130，94	AA	${ }_{6 / 6}$
c1 39，441，158	A／A	616		39，229，25	AA	616	c3	21，664，82	тT	G／6	c4	4，472，34	тп	cı	cs	2，893，178	A／A	c／c	c5	495，4	c／c	тп		10，472，204	${ }_{6 / 6}$	A／A	c8	895，901	c／c	A／A	c8	10，390，5	Tr	${ }_{6 / 6}$	c9	130，9	AIA	G／6
c1 39，50，284	c／c	т		39，23，423	тT	616	c3	21，681，807	${ }_{6 / 6}$	c，	c4	4，505，886	${ }_{616}$	c／c	c5	2，89，292	${ }_{6} 16$	A／A	${ }^{\text {cs }}$	495，4	c／c	A／A	${ }^{\text {c }}$	10，479，48	c／c	${ }_{6 / 6}$	c8	916，627	G／6	cic	c8	40，452，07	т！	${ }_{6} 16$	c9	9，135，	${ }_{616}$	c／c
，296	${ }_{6} 6$	AA	c2	39，230，601	${ }_{6} / 6$	AA	c3	21，704，72	AA	זт	c4	4，505，21	c／c	тт	c5	2，993，31	c／c	тT	C5	499，5	cic	AA	${ }^{\text {c7 }}$	10，522，013	тT	AIA	C8	1，235，5	${ }_{6} 6$	AA	c8	40，452，	тп	AA	c9	49，138，8	cic	тп
c1 39，615，77	AA	тт	C2	39，273，66	A／A	${ }_{6} / 6$	c3	21，72，96	тп	c	c4	4，569，33	cı	GIG	c5	25，17	${ }_{6} 16$	A／A	c5	545，13	AA	${ }_{6 / 6}$		10，543，13	тп	AA	c8	1，246，11	AIA	c／c	c8	8，471，	${ }_{6} 6$	тT	c9	9，138	${ }^{616}$	A／A
c1 39，68，452	c／c	AA	c2	39，273，764	G／G	cic	c3	21，773，035	G／G	cic	c4	4，598，274	тп	c／c	c5	2，925，192	c／c	тп	c5	45，585，702	AIA	тп	${ }^{\text {cr }}$	10，560，20	$6 / 6$	AA	c8	1，26，426	c／c	AA	c8	40，475，90	${ }_{6 / 6}$	AA	c9	49，138，889	cic	A／A
c1 39，68， 824	AA	σ_{6}	c2	23，8	AA	cic	c3	退1，84，88	AA	G／G	c4	4，598，29	G／G	c／c	c5	330，64	${ }^{616}$	тт	${ }^{\text {c5 }}$	687，09	TT	A／A	${ }^{\text {c7 }}$	，601，4	cIC	AA	c8	1279，48	c／c	AA	C8	40，494，7	${ }_{6 / 6}$	AA	c9	49，166，74	тп	cIC
c1 39，729，210	A／A	616	C2	39，25，890	cic	тT	c3	21，84，863	c／c	AA	c4	4，59，310	${ }^{\text {AA }}$	$6 / 6$	cs	，330，7	тп	cic	${ }^{\text {c5 }}$	45，801，81	AA	${ }_{616}$	\％	0，601，417	AA	cic	c8	1，279，477	тп	c／c	c8		${ }_{6 / 6}$	тп	c9	245	c／c	тт
c1 39，75，448	тп	AA	C2	39，27，974	${ }^{\text {A／A }}$	тт	c3	21，905，895	G／6	cic	c4	4，599，63	тז	${ }_{6 / 6}$	c5	2，96，549	c／c	тп	${ }^{\text {c5 }}$	45，801，869	c／c	${ }_{6} 16$	${ }^{\text {c7 }}$	10，605，516	Tr	${ }_{c}$	c8	1，27，504	${ }^{616}$	AA	C8	40，499，20	AA	т	c9	49，261，829	cı	AIA
5，550	т	cic	C_{2}	，60，6	cic	тт	c3	21，95，927	тп	G／G	c4	，69，11	c／c	тT	c5	2，956，569	тT	AA	c5	809，	${ }_{6} / 16$	AA	${ }^{\text {c7 }}$	10，612，36	AA	$6 / 6$	c8	1279，4	AA	${ }_{6} 6$	c8	40，50，7	${ }_{6 / 6}$	AA	c9	9，261，83	${ }_{\text {A }}$	c／c
c1 39，826，618	тт	cic	C2	39，470，95	AA	gic	c3	21，935，944	${ }_{6 / 6}$	тт	c4	4，640，122	${ }_{616}$	A／A	c5	2，959，940	${ }_{616}$	c／c	${ }^{\text {c5 }}$	45，809，77	${ }_{616}$	c／c	c7	10，612，40	AA	c／c	c8	1，27，641	${ }_{6 / 6}$	A／A	c8	40，503，746	тп	c／c	c9	9，305，3	AIA	${ }_{6} 6$
2，14	${ }_{6}^{6 / 6}$	AA	C_{2}	76，9	TT	$6 / 6$	c3	2038，79	${ }_{\text {G／}}$	AIA	c4	4，640，127	cic	тп	c5	2，961，24	c／c	${ }_{6} 16$	c5	［，854，89	AA	$6 / 6$	${ }^{\text {c7 }}$	0，786，08	c／c	тп	c8	${ }^{\text {，326，563 }}$	AIA	G／G	c8	40，503，753	тT	c／c	c9	49，309，704	тт	c／c
1 40，036，71	${ }^{16}$	т	${ }^{2} 2$	39，676，92	т！	${ }_{6} / 6$	c3	22，051，054	AA	G／G	c4	40，154	${ }_{6} / 6$	זп	c5	0，64	$\mathrm{c} / 0$	т	${ }^{\text {c5 }}$	45，85，939	тT	cic	${ }^{67}$	10，786，997	тT	AA	${ }^{\text {c8 }}$	，334，73	c／c	т！	C8	4，542，3	т	G／G	c9	49，312，402	т	$6 / 6$
$140,054,4$	dis	c 10		39，76，939	NA	c		22，076，988	AA	זп	c4	4，685，37	A／A	тт	c5	21，043	c／c	тт	${ }^{5}$	45，854，982	616	AA		10，822，011	AA	cic	c8	1，622，019	c／c	6／6	c8	40，55，903	Tr	c／c	c9	49，312，432	AA	96

＊Note：Yellow colour indicates variants sequence of the cultivated rapid cycling DHSL150 line and grey colour indicates that of wild S1 C07007 line showing differences in allelic variant in their chromosomes

Appendix III Cont．

Table S3：Cont．：Differences in Allelic variants at various chromosomes positions in parent lines；the cultivated rapid cycling DHSL150 and C07007．

		sL150	97007		Positio	Hsulso												ohsulis				ohst150								H4st150	co7007			H4st150	co7007				cor707
${ }^{\text {c1 }}$	40．057，662	AA	тт	c2	38，73， 693	өוя	тт	${ }^{\text {c3 }}$	22，01，，59	\％／6	AA	${ }^{\text {c4 }}$	4，886，187	\％／6	AIA	cs	3，22，046	cı	AA	cs	45，87，．67	\％я	т	${ }^{\text {c7 }}$	10，82，012	\％／6	Aa	${ }^{\text {cs }}$	1，622，060	тп	AA	${ }^{\text {c8 }}$	40，55，212	A／a	cı	${ }^{\text {co }}$	49，33，159	тт	cıc
c1	40，28，242	co	тт	c2	39，73，754	тт	cı	${ }^{\text {c }}$	22，104，494	${ }_{6}$	AA	${ }^{\text {c4 }}$	4，886，223	тт	AA	cs	3，142，004	cı	AA	cs	45，87，．387	cı	я	c7	10，33，717	AA	cic	${ }^{\text {cs }}$	1，857，001	cı	я 16	с8	40，57，410	${ }^{\text {ofe }}$	cı	${ }^{\text {c．}}$	49，003，684	\％ 1	a ${ }^{\text {a }}$
	40，148，225	тт	a／	${ }^{2}$	33，86，206	cocme	a／6	${ }^{\text {c }}$	22，232，23	${ }^{1 / 8}$	A／A	c4	05，008	${ }_{6} / 6$	AA	cs	3，142，42	${ }^{16}$	AA	${ }^{\text {c5 }}$		тп	a	${ }^{\text {c7 }}$		тr	${ }_{6}$	${ }^{\text {cs }}$	1.890	c／c	тт	${ }^{\text {cs }}$	A0，	${ }^{6 / 6}$	A	${ }^{\text {c9 }}$		тт	cic
c1	40，148，2	a 1	тт	${ }^{\text {c2 }}$	33，90，，92	\％	cic	${ }^{\text {c3 }}$	22，235，559	${ }^{\text {s／b }}$	AA	c4	4，705，013	${ }^{1 / 8}$	A，	${ }^{\text {c5 }}$	3，146，537	${ }_{\text {\％}}$	A，	${ }^{\text {cs }}$	46，160，16	cı	тп	${ }^{\text {cr }}$	10，83，73	cı	AA	${ }^{\text {cs }}$	2，066，332	${ }_{6}$	тп	${ }^{\text {c8 }}$	40，726，09	тт	AA	${ }^{\text {c9 }}$	49，48，25	\％ 6	Aa
	40，148，2	AA	тт	c2	39，92，4，25	яic	тт	${ }^{\text {c3 }}$	22，235，860	cı	тт	c4	4，798．867	AA	яic	cs	3，157，070	тп	${ }_{6} 16$	cs	46，325．625	cı	A／A	${ }^{\text {c7 }}$	10，918，564	cı	тт	cs	2，066，862	a／a	тп	cs	40，726，209	cic	тт	cs	49，48，28	тт	AA
	40，259，216	बIf	da	c2	40，02，675	тп	c／a	${ }^{\text {c3 }}$	22，236，418	AA	gic	${ }^{\text {c }}$	4，965，360	A／A	тт	cs	181，92	A／A	сוс	cs	46，347，870	c／0	AA	cr	10，988，10	c 10	${ }_{\text {¢ }}$	\％	2，085，890	c／a		с8	40，726，227	A／A	¢וя	co		gic	an
${ }^{\text {c1 }}$	40，259，388	тп	cוc	${ }^{\text {c2 }}$	40，08，061	A／A	cic	${ }^{\text {c }}$	22，264，862	${ }_{6}$	cic	ca	4，965，428	A／A	${ }_{\text {וf }}$	cs	188，622	c／c	AA	cs	46，37，673	cı	тт	cт	10，98，26	cı	тт	c8	2，085，90	тп	बI¢	c8	40，726，29	A／A	c／a	ся	48，474，	als	AA
${ }^{\text {c1 }}$	40，278，926	т	я16	${ }^{\text {c2 }}$	40，098，095	т	cic	${ }^{\text {c3 }}$	22，601	${ }_{6}$	AA	c4	5，027，007	c	${ }_{\text {¢ }}$	${ }^{\text {cs }}$	3，186，637	A／A	т	cs	46，476，747	a／a	${ }^{\text {¢ }}$	c7	11，508，072	¢ו	ala	сs	2，100，087	A／a	тт	с8	40，73， 163	${ }_{6} 16$	т π	cs	49，77，82，	AA	${ }_{\text {ald }}$
	40，35，565	a／a	${ }_{6}$ g	${ }^{\text {c2 }}$	40，55，8，18	\％／6	сл	${ }^{\text {c }}$	．369	AA	gic	ca	5．08，928	тт	AA	c5	5，253	${ }^{10}$	A A	cs	46，56，330	${ }^{16}$	сл	c＞	11，509，12	тп	AA	c8	2，100，109	${ }^{\text {c／}}$	тт	с8	40，780，30	${ }_{6}$	AA	co		als	a
	40，542，60	cı	σ_{6}	c2	40，594，58	тт	яя	${ }^{\text {c }}$	边	${ }_{6}$	cic	c4	11，0	${ }^{16}$	тп	c5	3，275，25	A／A	тп	cs	46，56，	cı	тп	c7	11，513，	${ }_{6}$ ¢	тп	сs	2，13	an	${ }_{\text {¢ }}$	${ }^{\text {cs }}$	40，78，3	тп	an	c9		an	тп
${ }^{\text {c1 }}$	40，547，379	тt	${ }^{16}$	${ }^{\text {c2 }}$	40，59，652	${ }^{\text {\％／6 }}$	A／A	${ }^{\text {c3 }}$	22，388，823	A／A	тт	${ }^{\text {c4 }}$	5，111，014	${ }^{\text {c／c }}$	${ }_{\text {¢16 }}$	${ }^{\text {c5 }}$	3，277，411	${ }_{6}^{616}$	${ }_{\text {c／}}$	${ }^{\text {c5 }}$	46，650，393	${ }_{\text {cı }}$	тr	${ }^{\text {c7 }}$	11，513，96	${ }^{\text {c／a }}$	AA	${ }^{\text {c8 }}$	2，113，59	тT	ब\％	${ }^{\text {c8 }}$	40，782，341	${ }_{6}^{6 / 6}$	cic	${ }^{\text {cs }}$	49，484，8	An	${ }_{\text {c }}$
	40.5	a A	c，	c2		\％	AA	${ }^{\text {c }}$		c／c	тт	c4		\％／s	тт	cs	2280	cı	тт	cs	46，653．488	тт	cı	c7	，	cic	тт	с8	2，11，614	a／a	тт	с8	40，875，43	т	a 1	c9		AA	aic
	40，547，	A／A	я／	c2	86，288	0	cı	${ }^{\text {c }}$	22， 195	тr	cic	c4	，52，57	тп	cic	${ }^{\text {cs }}$	318，67	A／A	c／c	cs	46,654	${ }^{\text {a／c }}$	tr	c7	11，534，	c／c	тT	${ }^{\text {c8 }}$	2，710	6／8	тт	c8	41，012，012	6／8	AA	${ }^{\text {cя }}$	49，49，98	${ }^{\text {a／}}$	cı
${ }^{1}$	40，5477．437	tт	AA	${ }^{\text {c2 }}$		cı	тт	${ }^{\text {c3 }}$			A／A	${ }^{\text {ca }}$	5，56，618	тr	${ }_{\text {\％}}^{6}$	${ }^{\text {cs }}$	，41，833	тт	${ }^{\text {cic }}$	${ }^{\text {cs }}$	46，654，354	$\stackrel{\text { ¢／}}{\text { ¢ }}$	A／A	${ }^{\text {c7 }}$	11，536，176	${ }^{\text {c／c }}$		${ }^{\text {c8 }}$	2，70，26	${ }^{16}$	C／C	${ }^{\text {c8 }}$	41，062，68	${ }^{616}$	тт	ся		тп	
c1		tia	cc	${ }_{c}^{\text {c2 }}$	${ }_{\text {a }}^{40,682,61}$	${ }_{\text {c／c }}^{\text {c／8 }}$	${ }_{\text {A／}}^{\text {A／}}$	${ }_{\text {c3 }}^{\text {c3 }}$	22，495，219	$\stackrel{\text { тr }}{\text { тт }}$	cic	${ }_{\text {c4 }}^{\text {c4 }}$	${ }_{\text {5，}}^{\substack{\text { 5，32，115 } \\ \text { 5，41，943 }}}$	${ }_{\text {c／c }}^{\text {c／c }}$	$\underset{\text { cic }}{\text { ¢T }}$	${ }_{\text {c5 }}^{\text {c5 }}$		${ }_{\text {\％is }}^{\text {\％／}}$	$\underset{\text { тı }}{\text { ¢／}}$	${ }_{\text {c5 }}^{\text {c5 }}$	46，654，3	тT	${ }_{\text {cic }}^{\text {cic }}$	$\mathrm{c}_{\mathrm{c} 7}$	${ }_{1}^{12,233,3} 1$	A A／	${ }_{\text {ofic }}^{\text {¢T／}}$	c8 cs	2， $\begin{aligned} & \text { 2，770，296，996 }\end{aligned}$	$\underset{\text { an }}{\text { tin }}$	${ }_{\text {a／c }}^{\text {a }}$	${ }_{\substack{\text { c8 } \\ \text { cs }}}$	${ }_{\text {41，}}^{41,275, \text { ，} 1,38}$	${ }_{\text {A／A }}^{\text {A／A }}$	${ }_{\text {cic }}^{\text {cic }}$	c9	49，492，979 ${ }_{\text {c，} 94,962}$	A／A	${ }_{\text {cic }}^{\text {cic }}$
${ }^{1}$	40，564，08	c 10	AA	${ }^{\text {c2 }}$	40，84，8，81	я，	тт	${ }^{\text {c }}$	22，496，140	тт	cic	ca	5，585，447	тп	cı	cs	3，458，	a ${ }^{\text {a }}$	cic	cs	46，65，15	${ }_{6}$	тт	c7	12，23，9	gic	тт	cs	2，856，	${ }^{16}$	AA	с8	41，32，76	ब18	AA	cs	4，995，12	cic	gic
	40．566，789	т	c，	${ }^{\text {c2 }}$	40，861，942	A／A	¢ו¢	${ }^{\text {c3 }}$	6，228	A／a	тт	${ }^{\text {c4 }}$	S．451	тr	A／A	${ }^{\text {cs }}$	${ }^{3,777,019}$	${ }_{\text {\％}}$ \％	A／A	${ }^{\text {cs }}$	4，377	A／a	c	${ }^{\text {c7 }}$	12，240，955	cr	т	${ }^{\text {c8 }}$	2，856，740	AA	alo	${ }^{\text {c8 }}$	41，36，96	${ }^{16}$	A／	cs	4，946，079	т	A／a
	40，567，	\％Is	AA	${ }^{\text {c2 }}$	40，062		cic	${ }^{\text {c3 }}$	22，996，242	${ }^{\text {c／a }}$	тт	c4	5，55，484	${ }^{\text {c／c }}$	тr	${ }^{\text {cs }}$	3，77\％	－	gic	${ }^{\text {cs }}$	46，704，440	cı	т	c7	12，257，8	－	dc	с8	2，83，	－	cic	${ }^{\text {c8 }}$	41，397，04	a／a	яя	cs	49，996，101	als	AA
	40，722，50	тt	${ }^{\text {c／c }}$	${ }^{\text {c2 }}$	40，916，7	\％	A／A	${ }^{\text {c3 }}$	22，604，100	тr	A／A	${ }^{\text {c4 }}$	5．648，331	${ }^{616}$	A／A	${ }^{\text {cs }}$	3．815．	${ }_{6}^{6 / 6}$	cı	${ }^{\text {cs }}$	46，708	A／A	${ }^{\text {a／6 }}$	${ }^{\text {c7 }}$	${ }_{12}^{12,25782}$	${ }^{6 / 6}$	C／C	${ }^{\text {c8 }}$	2，896，	cr	\％	c8	41，466，	${ }^{\text {c／c }}$	тт	c9		тт	${ }_{\text {cı }}$
c1	40，77， 4	${ }_{\text {ata }}^{\text {ta }}$	${ }_{\text {A／A }}^{\text {of }}$	${ }_{\text {c2 }}$		${ }_{\text {cic }}^{\text {cic }}$	${ }_{\text {AIA }}$	${ }_{\text {c3 }}$	${ }_{2}^{22,63,33,}$	$\underset{\text { Ala }}{\text { A／A }}$	${ }_{\text {Tr }}^{\text {Tr }}$	${ }_{\text {c4 }}$	5，754，32989	${ }_{\text {cic }}^{\text {A／}}$	cic	${ }_{\text {c5 }}$		${ }_{\text {A }}^{\text {A }}$ a	${ }_{\text {cic }}^{\text {cic }}$	${ }_{\text {cs }}^{\text {cs }}$	46，709，29	${ }_{\text {cic }}^{\text {cir }}$	${ }_{\text {\％／}}^{\text {cic }}$	${ }_{c 7}^{c 7}$	12，2， 27 12,258 1	${ }_{\text {cir }}^{\text {c／r }}$	${ }_{\text {cic }}^{\text {AA }}$	${ }_{\text {cs }}^{\text {cs }}$	${ }_{\text {a，}}^{2,271}$	${ }_{\text {cic }}^{\text {cic }}$	${ }_{\text {cic }}^{\text {c／c }}$	${ }_{\text {cs }}^{\text {cs }}$	4， $41,48,22^{4}$	${ }_{\text {ala }}^{\text {a }}$	тic	${ }_{\text {cs }}$	${ }_{49,550,887}^{48,56.96}$	${ }_{\text {IT }}$	$\underset{\text { cı }}{\text { ¢T }}$
	40，824，730	cr	тт	${ }^{\text {c2 }}$	41，32， 0	тт	cic	${ }^{\text {c }}$	22，88， 22	тт	с10	c4	6，129，0	c 10	я行	cs	3，857，4	c／c	тт	cs	46，708，	c／a	т	${ }^{\text {c }}$	12，283	A／A	яя	с8	3，02	тт	c／a	св	41，488	${ }_{6}$	сוс	c9	49，552	c	тт
${ }_{\text {cr }}$	40，8	тт	${ }^{\text {g／6 }}$	${ }^{\text {c2 }}$	41，373，678	A／A	${ }_{\text {¢ }}^{6}$	${ }^{c} 3$	22，88，403	A／A	${ }_{\text {cis }}$	${ }^{\text {c4 }}$	，${ }^{25,251}$	A／a	c 10	${ }^{\text {c5 }}$	940，	${ }^{\text {c／a }}$	$\underset{\text { A／A }}{\text { Tr }}$	${ }_{\text {c5 }}^{\text {c5 }}$		${ }_{\text {A／A }}^{6 / 8}$	A／A	${ }_{\text {c7 }}^{\text {c7 }}$		Tr	σ	${ }_{\text {c8 }}^{\text {cs }}$		${ }_{c}^{\text {c／c }}$	AA	${ }_{\text {c8 }}^{\text {cs }}$	${ }_{41,44}^{41,4}$	${ }_{c}^{\text {cric }}$	C／C	c9			
${ }^{1}$	$4,021,3$ $41,035,06$	cic		${ }_{\text {c2 }}^{\text {c2 }}$	${ }^{41,37,4,029}$	AAA	${ }_{616}^{\text {¢／}}$	${ }_{\text {c3 }}^{\text {c3 }}$	${ }_{2}^{22,773,0}$	${ }_{\text {ris }}^{\text {¢／}}$	${ }_{\text {cic }}^{\text {Tr }}$	${ }_{c 4}^{\mathrm{C4}}$	${ }_{\text {ene }}^{6,581,1,38}$	${ }_{\text {AIA }}^{\text {a／a }}$	C／A	${ }_{\text {cs }}^{\text {cs }}$		${ }_{\text {ala }}^{\text {c／a }}$	$\underset{\text { \％İ }}{\text { ric }}$	${ }_{\text {cs }}^{\text {cs }}$		${ }_{\text {c／a }}^{\text {c／a }}$	${ }_{\text {cic }}^{\text {cic }}$	${ }_{\text {c7 }} \mathrm{c} 7$	12，79737 12,847 1285	AAA	cic	${ }_{\text {cs }}^{\text {cs }}$	${ }_{\substack{3,021 \\ 3,22}}$	${ }_{\text {cha }}$	${ }_{\text {ar }}^{6}$	${ }_{\text {c8 }}^{\text {cs }}$	41，448	${ }_{\text {colc }}$	AAA	${ }^{\text {cs }}$	49，56，	¢r	
	41，05，110	cr	\％／6	c2	41，26，901	тп	сı	${ }^{\text {c }}$	22，773．09	A／A	тт	c4	6，84，7，	тт	AA	c5	3，970．368	тп	cic	c6	2，093，86	тп	я¢	c7	12，847，	тr	я的	cs	3，38，	${ }^{1 / 8}$	AA	cs	41，488	a／A	c／c	cs	49，88， 33	тп	cı
	41，035，17	aia	тт	${ }^{\text {c2 }}$	41，48，648	A／a	cı	${ }^{\text {c3 }}$	22，925，381	c／c	тт	${ }^{\text {c4 }}$	${ }^{\text {6，862，705 }}$	A／a	a	${ }^{\text {cs }}$	3，977，194	$\stackrel{\pi}{\text { r }}$	cı	${ }^{\text {c6 }}$	2，093，879	${ }^{616}$	cı	${ }^{\text {c7 }}$	12，851，5	\％／	AA	${ }^{\text {c8 }}$	3，373，7	cı	AA	${ }^{\text {c8 }}$	41，454，08	A／A	cı	${ }^{\text {c9 }}$	49，680，426	c	AA
	41，072，17	gis	AA	${ }^{\text {c2 }}$	41，515，	¢я	cı	${ }^{\text {c3 }}$	22，96，	cı	ब18	${ }^{\text {c4 }}$	${ }^{\text {6，862，713 }}$	A／A	\％6	cs	4．066，2	тт	c，	c6	2，396，35	т	an	${ }^{\text {c7 }}$	12，551，	тт	ct	${ }^{\text {c8 }}$	3，373，	cras	硡	${ }^{\text {c8 }}$		alc	A 1	cs		als	AA
cr	${ }^{41,0}$	बic	$\underset{\text { AIA }}{\substack{\text { a／a }}}$	${ }_{\text {c2 }}^{\text {c2 }}$	41.	$\underset{\text { AIA }}{\text { A／}}$	$\underset{\text { cic }}{\text { cic }}$	${ }_{\text {c3 }}^{\text {c3 }}$	22，96，963	${ }_{\text {AIA }}^{\text {A／A }}$	${ }_{\text {Tr }}$	${ }_{\text {c4 }}^{\text {c4 }}$	${ }^{7,315,197}$	$\underset{\text { Tr }}{\substack{\text { rim }}}$	${ }_{\text {cla }}^{\text {cha }}$	${ }_{\text {c5 }}^{\text {c5 }}$	4，477，566	$\underset{\text { ATA }}{\text { Ti }}$	${ }_{\text {cla }}^{\text {c／a }}$	c6	${ }_{2,396}^{2,39}$	${ }_{\text {\％I／}}^{\text {\％／}}$	cic	${ }_{\text {c7 }}^{\text {c7 }}$	${ }_{\text {l }}^{12,88}$	${ }_{\text {c／e }}^{\text {c／r }}$	c／c	c8 cs c	3,412 3 3	${ }_{\text {coc }}^{\text {c／a }}$	$\underset{\text { cic }}{\text { ric }}$			AIA	$\stackrel{\text { cic }}{\text { cic }}$	c9			
${ }^{1}$	${ }^{4,1,294,023}$	${ }_{\text {gis }}$	${ }_{\text {cic }}^{\text {cic }}$	${ }_{\text {c2 }}$	41，625，120		AAA	${ }_{\text {c3 }}$	${ }_{2}^{2,3,24,0,000}$	${ }_{\text {тr }}$	${ }_{\text {cic }}^{\text {a／}}$	${ }_{c 4}$	${ }_{\text {7，}}^{7,37,6824}$	A／A	AA	${ }_{\text {c5 }}$	4， $4,721,3,81$	${ }_{\text {gis }}$	$\underset{\text { cic }}{\text { a／}}$	${ }_{\text {c6 }}$	${ }^{2,4902,6}$	${ }_{\text {\％／G }}^{\text {¢／}}$	cic	${ }_{c}{ }^{\text {c }}$	13，320	$\underset{\text { rr }}{\text { rir }}$	cı	${ }_{\text {c8 }}^{\text {c8 }}$	3，4as，	${ }_{\text {a }}^{\text {a／a }}$	cic	${ }_{\text {cs }}^{\text {c8 }}$	41，546	AIA	AAA	${ }_{\text {c9 }}$	49，720	${ }_{\text {c／c }}^{\text {c／e }}$	$\underset{\text { tr }}{\text { an }}$
	41，23，963	cr	тт	c2	41，625，10	тп	¢／6	${ }^{\text {c3 }}$	23，356	cra	тт	c4	8，086，72	тп	${ }_{6}$	cs	4．74，	${ }^{6}$	cı	c6	2，402，7	A／a	тт	c7	13，009		cic	с8	3，455		\％	${ }^{\text {c8 }}$	652	ara	я 6	c9	49,72	${ }_{6}$	A／a
${ }^{\text {c1 }}$	41，236，	cra	тт	${ }^{\text {c2 }}$	41，554	тп	cı	${ }^{\text {c3 }}$	23，615，	A／a	${ }^{\text {ofo }}$	${ }^{\text {c4 }}$	8，093，4	A／a	тт	${ }^{\text {c5 }}$		${ }^{\text {c／a }}$	тт	${ }^{\text {c6 }}$		AA	${ }^{\text {\％／6 }}$	${ }^{\text {c7 }}$		${ }^{\text {c／c }}$	тт	${ }^{\text {c8 }}$	3，545	tr	cı	${ }^{\text {c9 }}$	126，20	тп	A 1	${ }^{\text {c9 }}$	49，73	${ }_{\text {\％／}}$	
c1	4， 4,322	${ }_{\text {cıa }}^{\text {A／A }}$	$\stackrel{\text { g／6 }}{\text { ¢т }}$	${ }_{c}^{\text {c2 }}$	${ }_{4}^{41,554,16} 4$		$\underset{\substack{\text { A／A } \\ \text { Gic }}}{\text { cos }}$	${ }_{\text {c3 }}$	． 623,18	${ }_{\text {cic }}^{\text {cic }}$	Tr	${ }_{c 4}^{\text {c4 }}$	${ }_{8,209}^{8,191,}$	${ }_{\text {ala }}^{\text {A／A }}$	\％	${ }_{\text {cs }}^{\text {cs }}$	${ }_{\text {a }}^{4,836,3}$	$\underset{\text { ata }}{\text { A／}}$	\％ic	${ }_{\text {ce }}^{\text {ce }}$	${ }_{\substack{\text { 3，003 } \\ \text { 3，03 }}}^{\text {a }}$	${ }_{\text {cic }}^{\text {c／a }}$	An	${ }_{\text {c7 }}^{\text {c7 }}$		${ }_{\text {alis }}$	${ }_{\text {cıa }}^{\text {cia }}$	${ }_{\text {c8 }}^{\text {c8 }}$	${ }_{\substack{3,55 \\ 3,55}}^{\text {a }}$	$\stackrel{\text { Tr }}{\substack{\text { ara }}}$	$\underset{\text { alc }}{\text { cia }}$	${ }_{\text {cs }}^{\text {cs }}$	${ }^{128,688} 1$	${ }_{\text {cic }}^{\text {a／a }}$	${ }_{\text {ala }}^{\text {gic }}$	${ }_{\text {cg }}^{\text {c9 }}$	${ }_{4}^{49,760,95}$	$\stackrel{\text { cra }}{\text { cic }}$	cic
c1	41，414，613	gic	AA	c2	41，86，，888	cic	тт	${ }^{\text {c3 }}$	23，63，408	AA	of	c4	8，290，206	${ }^{16}$	AA	c5	5，218，057	тп	со	${ }^{\text {c6 }}$	3，120，390	AA	\％	c7	14，49，3	тп	Aa	cs	3．607，80	${ }^{16}$	AA	${ }^{\text {cs }}$	256，3	AIA	тп	cs	49，85，75	${ }_{6}$	AA
	16.004	a／a	${ }^{16}$	${ }^{\text {c2 }}$	， 869.080	A ${ }^{\text {a }}$	${ }_{\text {¢ }}$ \％	${ }^{\text {c3 }}$	23，486	${ }^{\text {c／c }}$	AA	${ }^{\text {c4 }}$	$8.27,10$	тп	A／A	${ }^{\text {c5 }}$	5，289，694	тr	${ }_{\text {c／}}$	${ }^{\text {c6 }}$	3，215，453	тп	AA	${ }^{c} 7$	14，687，2	A／a	ब16	${ }^{\text {c8 }}$	3，648，252	${ }^{616}$	左	${ }^{\text {c9 }}$	${ }^{257,657}$	AIA	${ }_{\text {¢ }}$		49，986，595	${ }^{16}$	т
		${ }_{\text {alic }}^{\text {ala }}$	${ }_{\text {a／a }}^{\text {G／}}$	${ }_{\text {c2 }}^{\text {c2 }}$	${ }_{4}^{41,8}$	${ }_{\text {als }}^{\text {a／c }}$	c／c		${ }_{2}^{23,723,363}$	${ }_{\text {cos }}^{\text {A／A }}$		${ }_{\text {c4 }}^{\text {c4 }}$	8，465，23	${ }_{\text {A／A }}^{\text {a／a }}$	${ }_{\text {\％／6 }}^{\text {g／}}$	${ }_{\text {cs }}^{\text {cs }}$	${ }_{5}^{5,308,14}$	${ }_{6} 16$	9	c6 c6 c			${ }_{\text {c／a }}^{\text {c／a }}$	c7	${ }_{\text {14，}}^{14,88}$	${ }_{\text {c／c }}^{\text {c／}}$	¢／c	${ }_{\text {c8 }}^{\text {c8 }}$		${ }_{\text {ata }}^{\text {an }}$	cıc	${ }_{\text {cs }}^{\text {cs }}$	${ }_{288,6}^{288}$	${ }_{\text {che }}^{\text {cic }}$	$\stackrel{\text { тт }}{\text { т }}$	c9		${ }_{\text {a／A }}$	
	41，43，488	өis	AA	c_{2}	41，87，，422	A ${ }^{\text {a }}$	яs	${ }^{\text {c }}$	27，00	rr	gis	c4	，72．559	cı	AA	c5	5，424，449	${ }_{6}$	AIA	c6	3，829，2	${ }^{16}$	c	c7	15，066	cı	тт	с8	3，817	${ }^{16}$	AA	${ }^{\text {cs }}$	36，11	тп	яis	c．	49，87，	тп	cı
	41,	${ }_{6}$	cic	c2	41.	тп	cı	${ }^{\text {c }}$		c／c	тт	c4	72，995	AA	тт	cs	5，46，613	\％	AA	${ }^{\text {c6 }}$	3，934，7	a／a	cı	c7	15，26，88	a／a	\％	с8	3，82，004	c／0	тт	${ }^{\text {cs }}$	316，139	a／a	я	c9	49，87，20	тп	an
		gis	AA	c2	41，872	AA	\％	${ }^{\text {c }}$	23，227，	AA	тr	c4	8，472，7	${ }^{1 / 8}$	A／A	${ }^{\text {cs }}$	5，496，	${ }^{1 / 6}$	A／A	${ }^{6}$		${ }^{1 / 8}$	тт	${ }^{\text {cr }}$		c／c	ө6	${ }^{\text {c8 }}$		cid	тr	${ }^{\text {cs }}$	${ }^{336}$ ，22	c／a	AA	с9		an	${ }_{6}$
	4，1563．012	as	AA	${ }^{\text {c2 }}$	4，1，872，34	тT	${ }_{\text {c／}}$	${ }^{\text {c3 }}$	23，74，403	${ }_{\text {cra }}$	¢ı	c4	${ }^{8,473,732}$	тr	AA	${ }_{\text {c5 }}^{\text {c5 }}$	5，496，74	${ }^{\text {a／c }}$	cic	${ }^{\text {ce }}$	4，009，37	$\stackrel{\text { ars }}{ }$	cracmalc	${ }_{\text {c7 }}^{\text {c7 }}$	15.352	${ }^{\text {AIA }}$	Tr	c8		ata	\％r	${ }^{\text {c9 }}$		${ }_{\text {cic }}$	¢ic	${ }^{\text {co }}$	4，9，876，010	${ }_{6}$	
${ }^{\text {c1 }}$	4，1，563，120	gis	${ }_{\text {c／c }}^{\text {c／c }}$	${ }_{\text {c2 }}$	${ }_{\text {a }}^{4,1,872,38}$	${ }_{\text {\％İ }}^{\text {II }}$	${ }_{\text {AIA }}^{\text {a }}$	${ }_{\text {c3 }}$	${ }^{23,7495,}$	${ }_{\text {c／}}^{\text {ric }}$	тic	${ }_{c 4}^{\mathrm{c} 4}$		${ }^{\text {o／8 }}$	${ }_{\text {ala }}^{\text {ata }}$	${ }_{\text {c5 }}$		${ }_{\text {c／a }}^{\text {A／}}$	\％／t	${ }_{\text {c6 }}$	${ }_{4}^{4,0096,07}$	A／A	${ }_{\text {c／ic }}$	${ }_{\text {cr }}{ }^{\text {cr }}$	15，416，0	${ }_{\text {als }}^{\text {a／}}$	т\％	${ }_{\text {cs }}^{\text {cs }}$	${ }_{4}^{4,830}$	an	${ }_{\text {c／e }}$	${ }_{\text {c9 }}$	536，02	${ }_{c}$	AIA	${ }_{\text {c9 }}^{\text {c9 }}$	49，877，	${ }_{\text {Tr }}^{\text {an }}$	c10
	41，564，289	g1	AA	c2	41，82，423	cı	тт	${ }^{\text {c3 }}$	895，3	тт	cı	c4	8，622，918	cı	6／6	cs	5，997，36	A／A	cic	${ }^{\text {c }}$	4．096，02	${ }^{\text {a／8 }}$	A／A	c7	15，416，3	тт	6／8	с8	4，836，	g／8	тт	ся	889，8	AIA	яя	cя	49，885，	cı	析
${ }^{\text {c1 }}$	41,5	тr	AA	${ }^{\text {c2 }}$	41，005，73	cı	тr			${ }^{\text {\％／6}}$	A／A	${ }^{\text {c4 }}$		A／a	тr	${ }^{\text {c5 }}$		${ }_{\text {c／c }}$	${ }_{0}^{16}$	${ }^{\text {c6 }}$		${ }_{\text {c／c }}$	A／A	${ }^{\text {cr }}$		tr	cic	${ }^{\text {cs }}$	5．081，	cic	A ${ }^{\text {a }}$	${ }^{\text {c9 }}$		${ }_{\text {coser }}$		${ }^{c 9}$		тr	
	4， $41,565,96$	oic	${ }_{\text {A }}^{\text {AA }}$	${ }_{\text {c2 }}^{\text {c2 }}$	${ }^{4,970,38}{ }_{4}^{41,970,48}$	${ }^{618}$	Tin	${ }_{\text {c3 }}$	${ }_{\text {2，}}^{2,4,966,3,3}$	${ }_{6}$	${ }_{\text {cıa }}$	${ }_{c 4}^{\mathrm{c} 4}$	${ }^{\text {8，000，37 }} \mathrm{O}, 56,366$	${ }^{1 / 8}$	тт	${ }_{\text {c5 }}^{\text {c5 }}$	${ }_{5}^{5,539,22}$	${ }_{\text {cic }}^{\text {A／A }}$	\％／r	${ }_{\text {ce }}^{\text {ce }}$	${ }^{4,123,38}$	c／c	${ }_{\text {\％19 }}^{\text {gic }}$	${ }_{\text {c7 }}^{\text {c7 }}$	15，4，3，38 $15,452,37$	${ }_{616}^{6 / 1}$	${ }_{\text {alc }}^{\text {A／}}$	${ }_{\text {cs }}^{\text {cs }}$		${ }_{\text {TIA }}^{\text {at }}$	${ }_{\text {AIA }}^{\text {al }}$	${ }_{\text {c9 }}$		${ }_{\text {cic }}$	¢ı	${ }_{\text {c9 }}$	4，9，929，091	${ }_{\text {cic }}$	${ }_{\text {cic }}^{\text {gic }}$
${ }^{\text {c1 }}$	41，64，	ब19	AA	c2	41，97，422	яs	AA	${ }^{\text {c3 }}$		тт	AA	ca	256，414	A／A	${ }^{6}$	cs	5，\％¢，	cı	тт	c6	4，248，48	тп	${ }_{0}$	c＞	15，632	A／A	ब18	c8	5．600，	${ }^{10}$	я	cs	924,5	ata	¢וֹ	cs	¢，00	${ }_{6}$	cı
		${ }_{6}$	AA	c2	41，998，	AA	cı	${ }^{\text {c3 }}$	24，179，015	A／A	cic	c4	0，256，4	тп	AA	cs	775，	тт	c／c	${ }^{\text {c6 }}$	4，288，5	тт	c／c	${ }^{\text {ct }}$	15，938	A／A	ө6	c8	6，150	тт	AA	cs	92， 5	c／c	тт	${ }^{\text {cя }}$	50，00，	a／a	тт
		\％ 6	AA	c2	41，998，8	c／c	тr	${ }^{\text {c }}$		c／c	тт	c4		cı	т	${ }^{\text {c5 }}$		A／A	${ }_{\text {c／e }}$	${ }^{\text {c6 }}$		${ }^{1 / 8}$	AA	${ }^{\text {c7 }}$		тr	A／A	${ }^{\text {c8 }}$			A／A			тT				${ }^{\text {a／}}$	
	41，691，36	Tr	AA	${ }^{\text {c2 }}$	41，98，8	cı	\％	${ }^{\text {c3 }}$	24，789，111	${ }_{\text {cla }}$	тт	${ }_{c 4}^{\text {c4 }}$		${ }_{\text {c／a }}^{\text {A／A }}$	${ }^{\text {c／c }}$	${ }_{\text {c5 }}^{\text {c5 }}$		${ }_{\text {cic }}^{\text {cic }}$	тт	${ }^{6}$		${ }_{\text {cic }}^{\text {cic }}$	AA	c7		тr	cic	${ }_{\text {c8 }}^{\text {c8 }}$		${ }_{\text {tr }}^{\text {tr }}$	A	${ }_{\text {cs }}^{\text {co }}$		${ }^{1 / 2}$	\％	${ }_{\text {co }}^{\text {c9 }}$		10	${ }_{\text {c／c }}^{\text {c／c }}$
	41，757，482	тп	AA	c2	42，11，518	A／A	тп	${ }^{\text {c3 }}$	24，77，394	A／A	тт	c4	9，597，105	\％18	AA	cs	5．94，703	c／c	тп	c6	4，254，761	тп	\％	${ }^{\text {c7 }}$	15，2	${ }_{6}$ ¢	AA	с8	6．67，	\％18	cic	cs	1.02	610	тr	${ }^{\text {cs }}$	50，11	als	т
		я	AA	${ }^{2}$	42，991，398	AA	cı	${ }^{\text {c }}$		c／c	тп	c4		cı	тт	${ }^{\text {cs }}$		A／A	тп	．		тп	${ }_{6}$	${ }^{\text {cr }}$			cı	сs		A／A	¢וя	${ }^{\text {cs }}$		crand	A／	co		cre	
	${ }^{41,868.172}$	an	c／c	${ }^{\text {c2 }}$	42，209．64	өя	A／A	${ }^{\text {c }}$		AA	cı	c4	0．597．1	A／A	6／8	cs	5．844，748	tr	c／c	c6	4，315	A／A	c／c	c7	16.14	\％	cı	c8	7，087	c／c	тr	$\stackrel{ }{\text { c．}}$	1．069，27	AA	\％	c9	s0，120．	cic	

＊Note：Yellow colour indicates variants sequence of the cultivated rapid cycling DHSL150 line and grey colour indicates that of wild S1 C07007 line showing differences in allelic variant in their chromosomes

Appendix III Cont.

Table S3: Cont. : Differences in Allelic variants at various chromosomes positions in parent lines; the cultivated rapid cycling DHSL150 and C07007.

Postion	DHSL150	c0707	chr.	Postion	DHSL150	co7007	7	Postion	DHSLL50	co7007		Postion	DHSL150	7		Postion	DHSLL50	co7007	chr	Postion	DHsL150	co7007	chr.	Postion	DHSL150	007	chr.	Postion	DHSL150	d	chr.	Postion	DHSL150	c07007	chr.	Postion	DHS	C07007
41,92, 195	тт	cic	c2	42,20,673	${ }^{16}$	cı	${ }^{\text {c3 }}$	24,342,388	тт	c	c4	9,61,981	${ }_{6} 16$	c/c	c5	5,488,684	${ }_{6} 16$	cic	${ }^{\text {c6 }}$	4,315,	AA	${ }_{6} / 6$	${ }^{\text {c7 }}$	16,411,975	тт	cı	c8	.130	AA	\%/6	c9	321	тп	c/c	c9	,766	A/A	тт
42,24,958	6/6	AA	C_{2}	42,20, 682	AA	\%/6	c3	24,38,962	${ }_{\text {GIG }}$	A/	c4	9,61,238	c/c	тт	c5	588,726	c/c	AA	c6	4,510,691	${ }_{6} / 6$	c/c	${ }^{\text {c7 }}$	16,891,153	тт	cic	c8	,165,15	c/c	AA	c9	091,33	c/c	AA	c9	50,123,81	A/A	c/c
42,25,366	${ }_{6} / 6$	тп	c2	42,240,588	A/A	тт	c3	1389,965	cı	gic	c4	9.860,584	A/A	${ }_{6} / 6$	c5	5,848,735	A/A	${ }_{6} 6$	c6	4,534,587	тп	σ_{6}	${ }^{\text {c7 }}$	16,947,73	${ }_{6} 6$	тп	c8	7,16, 20	AA	g/6	c9	1,093,39	${ }_{6} 16$	AA	c9	50,174,724	c/c	тп
42,257,37	${ }_{6} 6$	AA	c2	12200,60	c/c	AA	c3	390,022	c/c	тт	c4	10,165,42	тт	G/G	c5	5,874,169	AA	${ }_{\text {¢ }}$ (1)	c6	4,586,47	тт	${ }_{6 / 6}$	${ }^{\text {c7 }}$	16,98,29	тп	cic	c8	7,167,71	AA	${ }_{6 / 6}$	c9	143,66	${ }_{6} / 6$	AA	c9	50,245,9	A/A	c/c
42,419,99	тт	cic	C2	240,6	\%/6	c/c	c3	24,395,0	AA	c/c	c4	1290,	${ }_{6} / 1$	AA	c5	5,968,823	c/c	тп	c6	4,749,	тт	AA	${ }^{\text {c7 }}$	16,94,3,37	AA	тт	c8	243,	${ }_{6 / 6}$	тт	c9	1,18,325	тт	6/G	c9	50,24,938	AA	${ }_{6 / 6}$
42,4	6/6	AA	C2	42,259,196	AIA	${ }_{6 / 6}$	c3	24,447,923	c/c	тт	c4	10,29,005	${ }_{6} 6$	AA	c5	6,116,738	A/A	тт	c6	4,749	c/c	т斤	${ }^{\text {c7 }}$	17,005,933	тт	c/c	c8	7,36,223	тт	A/A	c9	1,183,807	A/A	cic	c9	50,24,986	${ }_{6}^{6 / 6}$	AA
2,578,2	A/A	G/G	C2	42,259,320	G/6	AA	c3	24,453,97	AA	тт	c4	10,418,767	c/c	тт	cs	6,187,36	тт	cic	${ }^{\text {c6 }}$	4,74,827	c/c	т斤	c7	17,080,941	${ }_{6} / 6$	A/A	c8	7,46,060	AA	тт	c9	1,254,314	AA	тт	c9	50,245,988	$6 / 6$	c/c
42,604	6/6	cic	C2	42,992,855	cıc	тт	c3	24,526,775	G/G	тт	c4	10,418,771	тт	G/6	c5	6,187,412	тп	c/c	${ }^{\text {c6 }}$	4,803	c/c	тт	${ }^{\text {c7 }}$	17,03,533	тт	c/c	c8	534,0	${ }_{6} / 6$	c/c	c9	1,254,377	AA	6/6	c9	50,35,708	c/c	тT
04,	$6 / 6$	c/c	c2	43,220,491	AA	${ }_{6} / 6$	c3	24,526,32	c/c	\%/6	c4	10,418,793	A/A	тт	c5	6,438,122	AA	c/c	${ }^{\text {c6 }}$	4,942,916	c/c	тп	${ }^{\text {c7 }}$	17,13,7,65	A/A	c/c	c8	7,51,521	${ }_{6} 16$	AA	c9	1,254,393	тт	c/c	c9	50,42, 862	${ }_{6} / 6$	A/A
c1 42,60,921	c/c	тт	c2	43,220,504	тт	AA	c3	24,80, 3,37	c/c	тт	c4	10,418,867	AA	${ }_{6} / 6$	c5	6,53,267	${ }_{6} 6$	тт	c6	4,969,582	c/c	тт	c7	17,32,069	cic	тт	c8	7,551,537	тт	c/c	c9	1,340,968	т	c/c	c9	50,451,120	${ }_{6} 6$	A/A
c1 42,605,505	A/A	тт	c2	4,3,31,025	cı	AA	c3	24,802,890	AA	\%/6	c4	10,49,026	c/c	\%/6	${ }^{\text {c5 }}$	6,535,305	тт	A/A	c6	5,17,845	c/c	тт	c7	17,396,193	AA	$6 / 6$	c8	7,73,976	c/c	AA	c9	1,422,093	AA	$6 / 6$	c9	50,45,124	${ }_{6} / 6$	A/A
c1 42,605,724	6/6	AA	C2	43,381,031	c/c	тT	c3	24,83,1,56	тт	cic	c4	10,594,293	c/c	тт	c5	6,597,601	AA	тT	c6	5,39,958	тт	c/c	c7	17,449,193	AA	$6 / 6$	c8	7,736,17	AA	тт	c9	1,422,999	т	$6 / 6$	c9	5,484	6/6	тт
42,647,	c/c	\%/6	C2	43,381,065	c/c	AIA	c3	24,96, 199	тт	AA	c4	10,594,426	c/c	тт	${ }^{\text {c5 }}$	6,721,411	тт	c/c	c6	5,437,742	тT	AA	c7	17,449,247	A/A	${ }_{6} / 6$	c8	7,736,139	c/c	${ }_{6} / 6$	c9	1,422,240	тп	c/c	c9	50,48,010	${ }_{6} 16$	AA
42,728,	$6 / 6$	AA	${ }^{\text {c2 }}$	4,381,083	AA	G/6	c3	24,963,277	${ }_{6} / 6$	AA	c4	10,594,461	${ }_{6} 6$	A/A	c5	6,767,336	${ }_{6} / 1$	A/A	${ }^{\text {c6 }}$	5,488,269	A/A	тт	${ }^{\text {c7 }}$	17,482,582	c/c	тт	c8	7,73,201	тт	AA	c9	1,422,248	AA	${ }_{6 / 6}$	c9	50,485,041	${ }_{6} 16$	тт
c1 42,730,714	тт	AA	c2	43,382,407	AA	${ }_{616}$	${ }^{\text {c3 }}$	24,972,79	AIA	6/6	c4	10,594,476	A/A	тт	${ }^{\text {c5 }}$	6,73,900	$6 / 1$	A/A	${ }^{\text {c6 }}$	5,488,290	AA	616	${ }^{\text {c7 }}$	17,748,461	cic	A/A	c8	7,736,519	c/c	тт	c9	1,446,38	тT	c/c	c9	50,485,07	${ }^{616}$	A/A
42,76	c/c	тT	${ }^{\text {c2 }}$	43,382,420	AIA	gic	${ }^{\text {c3 }}$	24,972,833	AA	тт	c4	11,140,46	AA	${ }_{6 / 6}$	${ }^{\text {c5 }}$	6,781,924	тT	${ }_{6} / 6$	c6	5,477,01	AIA	${ }_{6} 16$	c7	17,786,87	тт	AA	c8	7,736,58	тT	c/c	c9	1,446,420	AA	c/c	c9	50,485,10	${ }^{6 / 6}$	A/A
42,76,428	c/c	тт	${ }^{\text {c2 }}$	43,52,968	тт	c/c	c3	24,9	AA	\%/6	c4	11,140,471	т	cic	cs	6,78,22	тт	6/G	${ }^{\text {c6 }}$	5,634,998	${ }_{6} 6$	AA	${ }^{\text {c7 }}$	17,964,867	тп	${ }_{6} 6$	c8	832,3	тп	c/c	c9	446,423	cic	${ }_{6 / 6}$	c9	50,5	c/c	тт
42,80,307	A/A	GIG	c2	${ }^{43,884,927}$	c/c	$\sigma_{\text {GIG }}$	${ }^{\text {c3 }}$	24,984,415	тт	AA	c4	11,	${ }_{616}$	AA	cs	7,120	${ }_{6} / 6$	A/A	c6	5,753	c/c	тп	${ }^{\text {c7 }}$	17,9	AA	${ }_{6 / 1}$	c8	7,834	c/c	A/A	c9	1,536,43	тп	cic	c9	50,5	тп	A/A
42,80	A/A	тт	c2	4,3,33,381	AA	¢16	c3	24,985,887	g/G	AA	c4	11,654,591	тп	c/c	c5	7,14,184	A/A	\%/G	${ }^{\text {c6 }}$	5,75,164	\%/6	A/A	${ }^{\text {c }}$	18,092,424	тп	AA	c8	7,83,215	тп	c/c	c9	1,54, 560	тт	c/c	c9	50,500,381	${ }_{6 / 6}$	c/c
${ }_{42,83}$	AA	т	c2	44,276,255	c/c	т!	c3	24,98,045	A/A	тT	c4	11,770,139	c/c	тт	c5	7,143,220	AA	тт	${ }^{\text {c6 }}$	5,75,186	тт	c/c	${ }^{\text {c }}$	18,108,427	c/c	тт	c8	7,83,155	A/A	G/6	c9	1,592,789	c/c	AA	c9	50,529,295	A/A	${ }_{6} / 6$
42,85	${ }_{6} / 6$	т	c2	44,720,126	AA	cı	c3	24,98,084	G/G	AA	C4	11,862,067	AA	c/c	c5	7,175,463	тт	c/c	${ }^{\text {c6 }}$	6,02,454	6/6	AIA	${ }^{\text {c7 }}$	18,108,45	cc	$6 / 6$	c8	7,838,175	${ }_{6} / 6$	AA	c9	1.59	AA	G/G	c9	50,52, ,322	c/c	${ }_{6 / 6}$
42,8	тт	cic	c2	44,727,388	тт	cı	c3	25,00,490	\%/6	тт	c4	11,862,088	AA	${ }_{6} 6$	c5	7,175,484	тт	c/c	${ }^{\text {c6 }}$	6,08,395	тт	${ }_{6} / 6$	${ }^{\text {c7 }}$	18,189,882	c/c	тт	c8	7,88,040	c/c	${ }_{6} / 6$	c9	1,600,74	AA	${ }_{6} / 6$	c9	50,559,45	c/c	A/A
42,8	6/6	cic	c2	44,781,325	cı	тт	c3	25,00,502	${ }_{6} / 6$	A 1	c4	11,862,117	тт	G/G	c5	7,181,790	тт	c/c	${ }^{\text {c6 }}$	6,04,366	c/c	AA	c7	18,32,602	${ }_{6} 16$	AA	c8	8,044,742	AA	cic	c9	1,638,634	${ }_{6} / 6$	AA	c9	50,593,275	G/6	AA
c1	A/A	G/G	c2	44,874,029	тт	cı	c3	25,010,451	c/c	G/G	c4	11,862,121	c/c	тт	c5	7,181,885	AA	тт	${ }^{\text {c6 }}$	6,19,965	c/c	тт	${ }^{\text {c7 }}$	18,372.052	c/c	тT	c8	8,04,765	cic	G/6	c9	1,63,653	тт	cic	c9	50,59,368	тп	c/c
c1) 43.0	тT	σ_{16}	c2	44,884,648	тт	cic	c3	25,04, ,18	G/6	cı	c4	12,872,875	A/A	${ }_{6} 16$	c5	7,197,113	AA	${ }_{6} / 6$	${ }^{\text {c6 }}$	6,20,251	${ }_{6} 6$	AA	${ }^{\text {c7 }}$	18,37, ${ }^{\text {a }}$ 9	тт	AA	c8	8,279,242	тT	c/c	c9	1,63,081	${ }_{6 / 6}$	AA	c9	50,593,377	тт	c/c
c1 43,04	c/c	тт	c2	44,884,659	тт	cı	c3	25,04, 824	G/6	c/c	c4	13,10,361	тT	cic	c5	7,201,354	${ }_{6} / 6$	cic	c6	6,43,269	${ }_{6} 6$	AA	${ }^{\text {c7 }}$	18,375.886	AIA	тт	с8	9,292,102	G/6	A/A	c9	1,693,83	${ }_{6}$	AIA	${ }^{\text {cs }}$	50,62,, 533	AIA	${ }_{6 / 6}$
43,0	тт	AA	C2	44,944,924	cı	тт	c3	25,043,42	AA	cic	c4	13,14, 1818	${ }_{6} / 6$	AA	c5	7,304,746	6/6	c/c	c6	6,65,992	6/6	AA	c7	18,389,969	${ }_{6} / 6$	A/A	c8	9,30,321	AA	$6 / 6$	c9	1,868,996	тп	cic	${ }^{\text {c9 }}$	50,627,549	c/c	A/A
43,0	A/A	c/c	c2	45,007,831	c/c	тп	c3	25,118,131	AA	G/6	c4	${ }^{13,148,829}$	6/6	c/c	cs	7,382,702	c/c	тт	${ }^{\text {c6 }}$	6,71,530	${ }_{6} / 6$	AA	c7	18,483,795	c/c	тт	c8	9,772,174	c/c	AA	c9	1,86, 811	тп	AA	c9	50,627,911	AIA	c/c
c1 43,052,092	AA	$6 / 6$	c2	45,007,844	тт	c/c	c3	25,144,152	c/c	тт	c4	14,604,076	тт	cic	c5	7,466,146	тт	c/c	${ }^{\text {c6 }}$	6,72, 103	тт	AA	${ }^{\text {c7 }}$	18,483,799	тт	616	c8	9,993,55	c/c	616	c9	1,876,79	${ }_{6} 16$	cic	c9	50,627,923	AA	тт
c1 43,057,045	c/c	${ }_{6} / 6$	c2	45,07,862	тт	c/c	c3	25,210,820	c/c	тт	c4	14,604,09	G/6	AA	c5	7,446,769	тт	c/c	c6	6,726,970	A/A	т!	${ }^{\text {c7 }}$	18,728,818	A/A	${ }_{6} / 6$	c8	9,809,84	AA	тт	c9	1,879,02	c/c	тп	c9	50,639,34	AA	$6 / 6$
43,09,016	тт	A/A	${ }^{\text {c2 }}$	45,007,911	AA	тт	c3	25,21,850	c/c	тп	c4	15,100,431	AA	c/c	c5	7,446,876	AA	616	${ }^{\text {c6 }}$	6,755,286	${ }_{6} 6$	c/c	c7	18,728,	тT	c/c	c8	9,800,89	${ }_{6} 16$	c/c	c9	1,896,28	AA	тп	c9	50,639,353	AA	${ }_{6 / 6}$
43,09,018	A/A	${ }_{6} / 6$	c2	263,9	тт	cic	c3	307,8	${ }_{6} / 6$	AA	c4	15,1	тп	\% 6	c5	7,460,9	${ }_{6} / 6$	AA	${ }^{\text {c6 }}$	6,75,	${ }_{6 / 6}$	A/A	c7	1,816,	A/A	c/c	c8	9,824,160	${ }^{1 / 6}$	AA	c9	1,899,94	тп	${ }^{6 / 6}$	c9	50,780	cic	A/A
43,09, 121	${ }_{6} / 6$	cic	c2	, 66,97	6/6	AA	c3	25,35,024	AA	тт	c4	15,100,447	AIA	gic	c5	7,460,9	AA	cic	${ }^{\text {c6 }}$	6,892,110	тт	cic	c7	18.816,	cic	тт	c8	824,	тт	cic	c9	915,	6/6	AA	c9	50,880,1	c/c	тт
43,244,74	AA	σ_{6}	c2	45,26,978	AA	6/6	c3	25,458,099	AA	6/6	c4	15,104,025	c/c	тт	c5	7,495,9	${ }_{6} / 6$	cic	${ }^{\text {c6 }}$	6,892,	тп	c/c	${ }^{\text {c7 }}$	19,3	c/c	тп	c8	9,831,2	A/A	тп	c9	1,915,	тп	c/c	${ }^{\text {c9 }}$	50,88,2	тп	${ }_{6 / 6}$
43,24,830	cic	G/6	c2	45,29,558	cic	AA	c3	25,998,488	cic	${ }_{6} 6$	c4	15,108,395	6/6	AA	cs	7,53,13	тп	cic	c6	6,93,4,	cic	тп	c7	19,344,25	c/c	тт	c8	9,831,2	${ }_{6} 16$	c/c	c9	2,099,4	тп	c/c	c9	50,780,2	${ }_{6} / 6$	cic
43,26,485	A/A	6/6	c2	20,60	тт	cic	c3	25,557,714	т	AA	c4	15,108,406	${ }_{6} / 6$	тт	c5	7.567,6	A/A	тт	${ }^{\text {c6 }}$	6,990,166	c/c	тт	${ }^{\text {c7 }}$	9,560,2	6/6	A/A	c8	9,831,33	cic	тт	c9	2,099,46	${ }_{6} 16$	AA	c9	50,780,29	${ }_{6} / 6$	A/A
43,37,987	${ }_{6 / 6}$	тт	c2	27,409	тп	AA	c3	, 1,56	тт	\%/G	c4	2,514	cic	916	c5	7,640,423	т!	c/c	c6	6,998,8	${ }_{6} / 6$	c/c	c7	19,669,93	c/c	тT	c8	9,869,66	т	c/c	c9	2,099,55	т	cic	c9	50,781,86	AA	${ }_{6} / 6$
$43,39,724$	тп	c/c	c2	,27,436	816	AA	c3	582,62	тт	cı	c4	15,364,148	тп	$6 / 6$	c5	7,640,4	cic	тт	c6	7,309,56	A/A	${ }_{6} 16$	c7	20,116,87	6/6	A/A	c8	9,869,64	тп	cic	c9	2,19, 3	c/c	тт	c9	50,793,26	AA	тт
43,05,076	тт	cic	c2	27,93	\%/6	AA	c3	, 50,434	AA	тт	c4	25,950	${ }^{\text {c/a }}$	тт	c5	,41,5	${ }_{6} 6$	AA	c6	7,359,095	cic	${ }_{616}$	c7	2,.363,	A/A	6/6	c8	9,920,73	AA	G/6	c9	2,860,63	${ }_{616}$	c/c	c9	50,813,65	AA	616
c1 43,48,389	G/6	AA	C2	45,32,935	${ }_{6 / 6}$	тт	c3	26,150,456	G/6	A/A	c4	15,60,356	тп	cic	c5	7,641,709	cic	тт	${ }^{\text {c6 }}$	7,687,819	A/A	G/6	c7	20,609,59	тп	${ }^{6 / 6}$	c8	9,93,3,30	A/A	${ }_{6 / 6}$	c9	2,292,00	AA	${ }_{6} 16$	${ }^{\text {c9 }}$	50,843,313	тт	A/A
c1 43,66,806	c/c	AA	c2	45,329,433	c/c	${ }_{6} / 6$	${ }^{\text {c }}$	26,16,683	${ }_{\text {GIG }}$	AA	c4	16,65,873	G/6	A/A	c5	7,689,208	тт	A/A	c6	7,687,828	${ }^{6 / 6}$	тт	c7	20,60, 6, 14	cic	AIA	c8	9,93,618	тп	cic	c9	2,304,50	${ }_{6} 16$	c/c	c9	50,890,379	тт	c/c
43,68,821	тт	cic	c2	29,461	тп	\%6	c3	26,16,704	тп	AA	c4	6,66,843	${ }_{6 / 6}$	c/c	cs	8,002,966	A/A	G/6	c6	7,687,9	тт	AA	c7	20,609,630	cı	AA	c8	10,855,68	AA	c/c	c9	2,481,08	${ }_{6} 16$	c/c	c9	50,979	616	AA
43,66, 828	A/A	тт	c2	406,154	A/A	${ }_{6} 6$	c3	26,186,106	c/c	тт																												
1 43,722,251	${ }_{\text {c/ }}$	т																																				

Note: Yellow colour indicates variants sequence of the cultivated rapid cycling DHSL150 line and grey colour indicates that of wild S1 C07007 line showing differences in allelic variant in their
chromosomes.

Appendix IV Phenotypic traits measured during the Initial Salt Shock Screening in 2015

Table S4: Plant height measured (cm) and comparison between treated and control B. oleracea plants

Plant_height								
Geno ID Name	Mean Cntr	STDV (x)	SEM	Mean Trt	STDV (x)	SEM		T.test
DHLS150 B. ole(DHSL150)	26.967	7.855	3.207	21.300	6.479		2.645	0.0519954
C07007-S1 B. bourgaei-S1	16.983	3.296	1.346	15.317	3.688		1.505	0.10161522
C10025-DH B. bourgaei-DH	15.067	0.459	0.187	13.417	0.917		0.375	0.00085717
C10027-DH B. bourgaei-DH	51.017	8.450	3.450	40.700	12.675		5.175	0.00696582
C07060-S1 B. oleracea-S1	6.333	0.838	0.342	5.350	0.950		0.388	0.00559424
C10125-DH B. oleracea-DH	14.560	1.730	0.774	12.840	1.249		0.559	0.00245136
C10128-DH B. oleracea-DH	8.780	1.114	0.498	7.700	0.957		0.428	0.06955741
C07094-S1 B. incana-S1	9.040	1.176	0.526	7.840	0.918		0.410	0.01070963
C13012-DH B. incana-DH	25.617	4.605	1.880	24.100	4.332		1.769	0.24759905
C13013-DH B. incana-DH	11.400	2.706	1.105	11.067	2.439		0.996	0.40529205
C07019-S1 B. hilarionis-S1	9.700	2.399	1.199	7.175	0.919		0.460	0.05863275
C13001-DH B. hilarionis-DH	13.950	1.487	0.607	11.817	0.787		0.321	0.00618253
C07069-S1 B. oleracea-S1	14.400	1.194	0.534	12.740	1.308		0.585	0.09556585
C10132-DH B. oleracea-DH	24.317	2.616	1.068	18.900	3.058		1.248	0.0062644
C10139-DH B. oleracea-DH	14.433	1.171	0.478	11.000	2.656		1.084	0.00106038
C07079A-S1 B. oleracea-S1	13.050	2.749	1.122	10.917	2.417		0.987	0.00708092
C10121-DH B. oleracea-DH	30.800	1.553	0.634	25.100	2.982		1.218	0.00915396
Early Big-DF B. oleracea-DH	14.420	0.847	0.379	13.680	0.545		0.244	0.06080378
To1000DH3 B. oleracea	45.533	4.160	1.698	42.200	6.263		2.557	0.03611189

Table S4: Plant fresh weight measured (g) and comparison between treated and control B. oleracea genotypes

			Plant_fresh_weight					
Geno ID	Name	Mean Cntr	STDV (x)	SEM	Mean Trt	STDV (x)	SEM	T.test
DHLS150	B. ole(DHSL150)	54.537	14.534	5.933	39.013	9.233	3.769	0.0125835
C07007-S1	B. bourgaei-S1	23.457	3.880	1.584	22.233	7.434	3.035	0.36206453
C10025-DH	B. bourgaei-DH	45.010	8.941	3.650	36.406	9.489	3.874	0.04692781
C10027-DH	B. bourgaei-DH	66.360	15.189	6.201	45.568	10.583	4.320	0.02102509
C07060-S1	B. oleracea-S1	34.605	4.529	1.849	30.310	4.851	1.980	0.09083652
C10125-DH	B. oleracea-DH	55.738	8.651	3.869	46.852	13.528	6.050	0.00280186
C10128-DH	B. oleracea-DH	31.638	10.169	4.548	28.962	13.124	5.869	0.33111763
C07094-S1	B. incana-S1	25.738	2.259	1.010	17.840	3.670	1.641	0.00673984
C13012-DH	B. incana-DH	40.176	4.979	2.033	29.844	8.776	3.583	0.01140266
Cl3013-DH	B. incana-DH	48.322	13.401	5.471	32.893	7.856	3.207	0.01933901
C07019-S1	B. hilarionis-S1	14.523	2.630	1.315	10.730	3.642	1.821	0.08419381
C13001-DH	B. hilarionis-DH	32.020	7.021	2.866	23.758	5.567	2.273	0.00577378
C07069-S1	B. oleracea-S1	40.030	6.138	2.745	30.628	4.448	1.989	0.00477092
C10132-DH	B. oleracea-DH	40.640	6.197	2.530	32.483	10.001	4.083	0.07875728
C10139-DH	B. oleracea-DH	40.595	7.740	3.160	29.222	6.922	2.826	0.05702414
C07079A-S1	B. oleracea-S1	25.590	3.741	1.527	18.258	8.042	3.283	0.00928704
C10121-DH	B. oleracea-DH	57.428	7.393	3.018	48.802	7.719	3.151	0.04591283
Early Big-DH	B. oleracea-DH	16.596	3.122	1.396	17.448	2.091	0.935	0.30499299
Tol000DH3	B. oleracea	10.573	2.256	0.921	9.295	2.542	1.038	0.19973874

[^2]
Appendix IV Cont.

Table S5: Plant dry weight (g) measured and comparison between treated and control B. oleracea genotype

			Plant_dry_weight						
Geno ID	Name	Mean Cntr	STDV (x)	SEM	Mean Trt	STDV (x)	SEM		T.test
DHLS150	B. ole(DHSL150)	4.215	0.994	0.406	2.802	1.001		0.408	0.00245536
C07007-S1	B. bourgaei-S1	1.695	0.559	0.228	1.623	0.889		0.363	0.44162579
C10025-DH	B. bourgaei-DH	4.420	0.807	0.330	3.466	1.145		0.467	0.02763895
C10027-DH	B. bourgaei-DH	6.280	0.614	0.251	4.195	1.762		0.719	0.01014799
C07060-S1	B. oleracea-S1	5.922	0.780	0.318	5.182	1.008		0.411	0.04537451
C10125-DH	B. oleracea-DH	5.274	0.795	0.355	3.252	1.658		0.741	0.01203719
C10128-DH	B. oleracea-DH	4.128	1.577	0.705	4.138	1.287		0.576	0.49534405
C07094-S1	B. incana-S1	4.836	0.910	0.407	3.100	0.878		0.393	0.01177742
C13012-DH	B. incana-DH	3.222	0.872	0.356	2.510	0.407		0.166	0.12334193
C13013-DH	B. incana-DH	4.167	1.242	0.507	3.078	0.995		0.406	0.12945915
C07019-S1	B. hilarionis-S1	1.478	0.567	0.284	1.085	0.544		0.272	0.10351743
C13001-DH	B. hilarionis-DH	2.347	0.626	0.256	1.620	0.570		0.233	0.00378254
C07069-S1	B. oleracea-S1	4.008	0.858	0.384	2.492	1.248		0.558	0.01765931
C10132-DH	B. oleracea-DH	4.097	0.673	0.275	2.278	1.500		0.612	0.00035099
C10139-DH	B. oleracea-DH	2.845	0.531	0.217	1.745	0.779		0.318	0.01190016
C07079A-S1	B. oleracea-S1	2.100	0.508	0.208	1.060	0.881		0.360	0.01360123
C10121-DH	B. oleracea-DH	6.568	1.603	0.654	4.237	2.270		0.927	0.00597154
Early Big-DH	B. oleracea-DH	4.580	0.691	0.309	4.414	0.448		0.200	0.3891392
To1000DH3	B. oleracea	0.662	0.384	0.157	0.457	0.374		0.152	0.10403032

Table S6: Leaf fresh weight (g) and comparison between treated and control B. oleracea

			Leaf_fresh_weight						
Geno ID	Name	Mean Cntr	STDV (x)	SEM	Mean Trt	STDV (x)	SEM		T.test
DHLS150	B. ole(DHSL150)	3.650	1.334	0.545	3.398	0.936		0.382	0.26941808
C07007-S1	B. bourgaei-S1	4.572	1.717	0.701	4.697	1.349		0.551	0.36778793
C10025-DH	B. bourgaei-DH	6.170	1.907	0.779	6.674	1.604		0.655	0.31933598
C10027-DH	B. bourgaei-DH	1.845	0.864	0.353	1.852	1.026		0.419	0.48642139
C07060-S1	B. oleracea-S1	6.950	1.525	0.623	6.602	1.365		0.557	0.26958045
C10125-DH	B. oleracea-DH	4.068	1.577	0.705	5.080	2.459		1.100	0.21275077
C10128-DH	B. oleracea-DH	2.244	0.332	0.148	1.838	0.683		0.305	0.1124702
C07094-S1	B. incana-S1	5.552	0.888	0.397	3.486	0.889		0.398	0.0194206
C13012-DH	B. incana-DH	4.000	0.923	0.377	3.942	0.841		0.343	0.44974495
C13013-DH	B. incana-DH	10.077	3.273	1.336	8.167	1.432		0.585	0.10364402
C07019-S1	B. hilarionis-S1	2.165	0.795	0.398	2.288	1.301		0.651	0.43028355
C13001-DH	B. hilarionis-DH	3.990	0.315	0.129	3.502	0.384		0.157	0.03815183
C07069-S1	B. oleracea-S1	8.400	1.246	0.557	7.523	1.202		0.537	0.13277427
C10132-DH	B. oleracea-DH	6.630	1.263	0.516	6.067	1.012		0.413	0.19188423
C10139-DH	B. oleracea-DH	8.645	2.331	0.952	7.278	2.059		0.841	0.21699351
C07079A-S1	B. oleracea-S1	5.854	0.940	0.384	4.170	0.986		0.402	0.03818132
C10121-DH	B. oleracea-DH	2.993	0.740	0.302	4.268	1.793		0.732	0.00656907
Early Big-DH	B. oleracea-DH	3.062	0.681	0.305	3.664	0.455		0.203	0.12408786
To1000DH3	B. oleracea	0.562	0.230	0.094	0.382	0.209		0.085	0.06465437

*NOTE: Blue $=$ control and Red $=$ treated plants

Appendix IV Cont.

Table S7: Leaf dry weight (g) and comparison between treated and control B. oleracea genotypes

Table S8: Leaf Area (cm) and comparison between treated and control B. oleracea genotypes

			Leaf_area					
Geno ID	Name	Mean Cntr	STDV (x)	SEM	Mean Tit	STDV (x)	SEM	T.test
DHLS150	B. ole(DHSL150)	264.196	48.693	19.879	226.820	35.513	14.498	0.05461702
C07007-S1	B. bourgaei-S1	246.934	26.176	10.686	239.307	25.521	10.419	0.37196935
C10025-DH	B. bourgaei-DH	274.790	34.931	14.260	273.579	19.925	8.135	0.47376935
C10027-DH	B. bourgaei-DH	153.566	15.745	6.428	144.186	18.686	7.628	0.14716924
C07060-S1	B. oleracea-S1	461.104	59.149	24.148	343.736	101.529	41.449	0.01164702
C10125-DH	B. oleracea-DH	269.787	67.376	30.131	232.388	45.127	20.182	0.03174925
C10128-DH	B. oleracea-DH	224.248	24.481	10.948	196.364	25.483	11.396	0.12106283
C07094-S1	B. incana-S1	479.805	52.168	23.330	361.331	57.688	25.799	0.04081665
C13012-DH	B. incana-DH	278.521	22.319	9.112	248.660	25.226	10.298	0.08215804
C13013-DH	B. incana-DH	449.376	160.901	65.687	409.470	112.514	45.934	0.26095699
C07019-S1	B. hilarionis-S1	244.796	45.067	22.533	199.280	66.759	33.380	0.01777901
C13001-DH	B. hilarionis-DH	283.432	34.927	14.259	233.138	31.138	12.712	0.0029676
C07069-S1	B. oleracea-S1	356.072	51.660	23.103	381.962	73.278	32.771	0.16959192
C10132-DH	B. oleracea-DH	351.481	28.871	11.787	313.610	45.023	18.381	0.10411561
C10139-DH	B. oleracea-DH	416.991	86.971	35.506	368.784	76.963	31.420	0.21730497
C07079A-S1	B. oleracea-S1	410.159	80.402	32.824	328.500	87.808	35.847	0.0356247
C10121-DH	B. oleracea-DH	279.360	20.970	8.561	290.310	39.549	16.146	0.3236079
Early Big-DH	B. oleracea-DH	267.267	63.880	28.568	293.899	68.179	30.491	0.24425391
To1000DH3	B. oleracea	124.796	42.410	17.314	84.414	35.220	14.378	0.05005908

*NOTE: Blue $=$ control and Red $=$ treated plants

Appendix IV Cont.

Table S9: Calculated ratio between different phenotypic traits measured in B. oleracea genotypes
Ratio (Cntrl-Trt/Trt)

Geno ID	Name	Plant_height	Plant_fresh_weight	Plant_dry_weight	Leaf_fresh_weight Leaf_dry_weight	Leaf_area	
DHLS150	B. ole(DHSL150)	0.266	0.398	0.504	0.074	-0.063	0.165
C07007-S1	B. bourgaei-S1	0.109	0.055	0.044	-0.027	-0.013	0.032
C10025-DH	B. bourgaei-DH	0.123	0.236	0.275	-0.076	0.113	0.004
C10027-DH	B. bourgaei-DH	0.253	0.456	0.497	-0.004	0.006	0.065
C07060-S1	B. oleracea-S1	0.184	0.142	0.143	0.053	0.233	0.341
C10125-DH	B. oleracea-DH	0.134	0.190	0.622	-0.199	-0.008	0.161
C10128-DH	B. oleracea-DH	0.140	0.092	-0.002	0.221	-0.066	0.142
C07094-S1	B. incana-S1	0.153	0.443	0.560	0.593	0.959	0.328
C13012-DH	B. incana-DH	0.063	0.346	0.284	0.015	-0.104	0.120
C13013-DH	B. incana-DH	0.030	0.469	0.354	0.234	-0.082	0.097
C07019-S1	B. hilarionis-S1	0.352	0.353	0.362	-0.054	0.336	0.228
C13001-DH	B. hilarionis-DH	0.181	0.348	0.449	0.139	-0.007	0.216
C07069-S1	B. oleracea-S1	0.130	0.307	0.609	0.117	-0.211	-0.068
C10132-DH	B. oleracea-DH	0.287	0.251	0.798	0.093	-0.202	0.121
C10139-DH	B. oleracea-DH	0.312	0.389	0.630	0.188	-0.075	0.131
C07079A-S1	B. oleracea-S1	0.195	0.402	0.981	0.404	-0.137	0.249
C10121-DH	B. oleracea-DH	0.227	0.177	0.550	-0.299	0.023	-0.038
Early Big-DH	B. oleracea-DH	0.054	-0.049	0.038	-0.164	1.023	-0.091
To1000DH3	B. oleracea	0.079	0.138	0.449	0.472	-0.098	0.478

Appendix V

Phenotypic traits measured second Salt Shock Screening in 2017

Table S10a: Plant height measured (cm) and comparison between treated and control B. oleracea plants \qquad

	Plant_height					
Species Name	Mean Cntr	SEM		Mean Trt		SEM
B. ole(DHSL150)	27.083	0.747	23.783	1.198	0.09560859	
007B. bourgaei-S1	10.200	1.193	10.833	1.764	0.5	
025B. bourgaei-DH	10.480	0.177	9.160	0.289	0.00216685	
013B. incana-DH	9.080	0.887	8.660	0.749	0.3744382	
001B. hilarionis-DH	8.500	5.267	0.233	7.083	0.341	0.043279
060B. oleracea-S1	6.667	0.601	5.000	0.289	0.25	
128B. oleracea-DH	13.040	1.201	6.333	0.167	0.39758362	
079AB. oleracea-S1	52.333	1.116	14.640	1.336	0.267621	
0121B. oleracea-DH			32.833	2.845	0.00144172	

Table S10b: Leaf fresh weight (g) and comparison between treated and control B.
oleracea

	Leaf_fresh_weight					
Species Name	Mean Cntr	SEM	Mean Trt		SEM	
	T.test					
B. ole(DHSL150)	7.242	0.560	12.148	1.566	0.01506594	
O07B. bourgaei-S1	8.837	1.392	11.233	1.726	0.22012941	
O25B. bourgaei-DH	9.326	0.766	10.258	0.763	0.11853072	
O13B. incana-DH	9.678	1.399	8.880	0.258	0.36679228	
O01B. hilarionis-DH	9.072	0.502	10.627	1.099	0.16799302	
O60B. oleracea-S1	5.007	0.811	5.340	0.752	0.4368595	
128B. oleracea-DH	6.677	0.303	10.100	1.940	0.22902935	
O79AB. oleracea-S1	6.030	0.566	7.022	0.348	0.14234466	
O121B. oleracea-DH	7.018	0.644	8.663	1.271	0.19608846	

*NOTE: Blue $=$ control and Red $=$ treated plants

Appendix V Cont.

Table S10c: Leaf dry weight (g) and comparison between treated and control B. oleracea genotypes

	Leaf_dry_weight					
Species Name	Mean Cntr		SEM		Mean Trt	

Table S10d: Leaf Area (cm) and comparison between treated and control B.
oleracea genotypes \qquad

Leaf_area					
Species Name	Mean Cntr	SEM	Mean Trt	SEM	T.test
B. ole(DHSL150)	116.012	7.394	104.897	7.561	0.16906489
007B. bourgaei-S1	163.873	13.756	187.100	4.854	0.1989727
025B. bourgaei-DH	94.083	5.431	87.794	4.261	0.25923234
013B. incana-DH	120.846	10.767	96.460	8.103	0.01178374
001B. hilarionis-DH	152.616	10.434	163.996	20.850	0.30105473
060B. oleracea-S1	89.623	14.386	77.643	12.815	0.41843632
128B. oleracea-DH	117.552	18.466	129.899	26.337	0.35516062
079AB. oleracea-S1	151.396	11.193	151.377	16.230	0.43020526
0121B. oleracea-DH	180.464	15.422	154.840	17.274	0.16125183

*NOTE: Blue $=$ control and Red $=$ treated plants

Appendix VI

Figure S1: Standard curves established in running samples by using ICP-MS for mineral analysis for sodium (Na), potassium (K) and calcium (Ca) respectively.

Appendix VI Cont.

Different concentration of $\mathrm{Na}^{+}, \mathrm{K}^{+}$and Ca^{2+} in ppm measured 24 hour post-treatment (24 hpt) (week-six)

Table S11a: Sodium (Na^{+}) level (ppm) in 3 replicate each of B. oleracea genotypes leaves and comparison between control and treated

Geno ID	Species	Rep 1	Rep 2	Rep 3	Rep 1	Rep 2	Rep	Mean	Mean	STDV_CtıSEM_Ctrl STDV_Tı SEM_Trt T.TEST				
C10001	B. ole(DHSL150	0.75	0.30	0.25	2.83	2.57	2.90	0.43	2.77	1.297	0.749	0.174	0.100	0.00258
C13013	B. incana-DH	1.03	0.82	0.73	2.61	2.11	3.76	0.86	2.83	2.579	1.489	0.843	0.486	0.03328
C10025	B. bourgaei-DH	0.59	0.68	0.89	3.72	3.05	3.66	0.72	3.48	2.159	1.247	0.371	0.214	0.00309
C10121	B. oleracea-DH	1.10	0.91	1.17	2.79	3.42	3.79	1.06	3.33	3.177	1.834	0.505	0.292	0.00814
C13001	B. hilarionis-DH	1.07	0.97	0.93	3.23	2.59	2.30	0.99	2.71	2.963	1.711	0.475	0.274	0.00895
C07079A	B. oleracea-S1	0.54	0.47	1.62	3.88	4.41	1.44	0.88	3.24	2.628	1.517	1.585	0.915	0.10338
C07060	B. oleracea-S1	0.68	0.45	0.59	0.98	1.95	3.01	0.57	1.98	1.716	0.991	1.014	0.585	0.07418
C07007	B. bourgaei-S1	0.47	0.81	0.53	0.55	1.16	2.36	0.60	1.36	1.805	1.042	0.922	0.532	0.14919
C10128	B. oleracea-DH	0.33	0.10	0.30	0.11	0.94	1.25	0.24	0.77	0.730	0.422	0.588	0.340	0.14685

Table S11b: Potassium $\left(\mathrm{K}^{+}\right)$level (ppm) in 3 replicate each of B. oleracea genotypes leaves and comparison between control and treated

Geno ID	Species	Rep 1	Rep 2	Rep 3	Rep 1	Rep 2	Rep 3	Mean	Mean	STDV_CtiSEM_Ctrl STDV_Tı SEM_Trt T.TEST				
C10001	B. ole (DHSL150)	12.37	6.01	5.43	12.66	9.94	10.76	7.94	11.12	23.815	13.750	1.396	0.806	0.08411
C13013	B. incana-DH	16.03	10.67	12.81	15.70	15.04	13.69	13.17	14.81	39.510	22.811	1.025	0.592	0.18226
C10025	B. bourgaei-DH	12.87	8.66	10.55	12.70	12.39	9.47	10.69	11.52	32.078	18.520	1.783	1.029	0.31584
C10121	B. oleracea-DH	16.77	14.22	17.37	15.41	15.07	17.30	16.12	15.93	48.360	27.921	1.201	0.694	0.39570
C13001	B. hilarionis-DH	8.46	12.32	13.29	10.28	13.56	13.13	11.36	12.32	34.065	19.667	1.783	1.029	0.12092
C07079A	B. oleracea-S1	9.30	6.31	11.38	9.53	11.59	9.90	9.00	10.34	26.990	15.583	1.100	0.635	0.28802
C07060	B. oleracea-S1	15.97	9.51	11.86	16.69	21.32	18.65	12.45	18.89	37.338	21.557	2.324	1.342	0.09118
C07007	B. bourgaei-S1	3.48	5.59	3.58	2.64	4.27	7.14	4.22	4.68	12.646	7.301	2.277	1.315	0.39619
C10128	B. oleracea-DH	12.45	1.91	8.33	1.65	9.61	3.98	7.56	5.08	22.687	13.098	4.092	2.362	0.34580

Table S11c: Calcium $\left(\mathrm{Ca}^{2+}\right)$ level (ppm) in 3 replicate each of B. oleracea genotypes leaves and comparison between control and treated

Geno ID Species	Rep 1	Rep 2	Rep 3	Rep 1	Rep 2	Rep 3	Mean	Mean	STDV CtisEM_Ctrl STDV_T1 SEM_Trt T.TEST				
C10001 B. ole(DHSL150)	2.68	1.16	0.93	2.50	2.13	3.68	1.59	2.77	4.777	2.758	0.809	0.467	0.15062
C13013 B. incana-DH	3.46	2.16	2.80	2.03	3.12	2.77	2.80	2.64	8.414	4.858	0.556	0.321	0.41733
C10025 B. bourgaei-DH	1.89	2.24	2.84	1.73	2.49	2.30	2.33	2.17	6.975	4.027	0.396	0.229	0.28413
C10121 B. oleracea-DH	4.02	3.79	3.72	2.62	2.29	3.53	3.84	2.81	11.531	6.657	0.642	0.371	0.06670
C13001 B. hilarionis-DH	4.60	3.36	2.92	2.40	2.91	3.27	3.62	2.86	10.874	6.278	0.438	0.253	0.20787
C07079A B. oleracea-S1	1.97	2.09	6.22	4.29	4.96	6.35	3.43	5.20	10.289	5.940	1.051	0.607	0.08462
C07060 B. oleracea-S1	2.98	1.40	1.65	1.97	3.55	2.72	2.01	2.75	6.028	3.480	0.792	0.457	0.25562
C07007 B. bourgaei-S1	2.57	3.07	2.05	2.53	2.60	2.85	2.56	2.66	7.691	4.440	0.168	0.097	0.41194
C10128 B. oleracea-DH	2.10	1.12	1.06	0.29	2.27	0.95	1.43	1.17	4.278	2.470	1.009	0.582	0.39754

Appendix VI Cont.

Different concentration of $\mathbf{N a}^{+}, \mathbf{K}^{+}$and $\mathbf{C a}^{\mathbf{2 +}}$ in $\mathbf{~ p p m}$ measured two-weeks post-treatment ($\mathbf{2} \mathbf{w k p t}$)

Table S11d: Sodium (Na^{+}) level (ppm) in 3 replicate each of B. oleracea genotypes leaves and comparison between control and treated

Geno ID	Species	Rep 1	Rep 2	Rep 3	Rep 1	Rep 2	rep 3	Mean	Mean	STDV_CtıSEM_Ctrl	STDV_T1	SEM_Trt	T.TEST
C10001	B. ole (DHSL150)	1.17	1.47	1.04	6.66	5.24	7.74	1.23	6.55	0.22300 .129	1.253	0.723	0.01231
C13013	B. incana-DH	0.62	0.30	1.16	1.21	4.18	2.85	0.69	2.75	$0.435 \quad 0.251$	1.491	0.861	0.08426
C10025	B. bourgaei-DH	0.41	0.91	0.49	2.71	3.98	2.11	0.60	2.93	$0.271 \quad 0.156$	0.952	0.550	0.01531
C10121	B. oleracea-DH	0.70	0.87	0.78	6.57	11.90	9.60	0.78	9.36	0.0850 .049	2.673	1.543	0.01453
C13001	B. hilarionis-DH	0.91	4.29	3.25	0.73	5.31	6.22	2.82	4.09	1.7310 .999	2.943	1.699	0.15028
C07079A	B. oleracea-S1	0.52	0.48	1.15	9.02	0.50	0.86	0.72	3.46	$0.377 \quad 0.217$	4.816	2.781	0.22056
C07060	B. oleracea-S1	0.53	0.66	0.43	0.92	2.82	4.07	0.54	2.60	$0.117 \quad 0.068$	1.588	0.917	0.07950
C07007	B. bourgaei-S1	1.91	0.67	0.68	7.66	6.67	2.46	1.08	5.60	$0.712 \quad 0.411$	2.758	1.593	0.04023
C10128	B. oleracea-DH	0.74	0.18	0.81	0.68	4.26	6.56	0.57	3.83	0.3450 .199	2.964	1.711	0.09991

Table S11e: Potassium (K^{+}) level (ppm) in 3 replicate each of B. oleracea genotypes leaves and comparison between control and treated

Geno ID	Species	Rep 1	Rep 2	Rep 3	Rep 1	Rep 2	Rep 3	Mean	Mean	STDV_CtiSEM_Ctrl STDV_Tı SEM_Trt T.TEST				
C10001	B. ole(DHSL150)	6.77	6.69	9.51	1.79	3.08	4.03	7.66	2.97	1.604	0.926	1.124	0.649	0.00694
C13013	B. incana-DH	6.66	10.50	12.35	5.66	5.69	9.01	9.84	6.79	2.901	1.675	1.925	1.111	0.05517
C10025	B. bourgaei-DH	4.41	9.78	4.61	8.47	4.80	4.90	6.26	6.06	3.042	1.757	2.092	1.208	0.47204
C10121	B. oleracea-DH	4.91	8.04	4.05	6.56	7.62	8.21	5.67	7.46	2.099	1.212	0.836	0.483	0.15363
C13001	B. hilarionis-DH	6.38	6.37	4.81	6.31	5.12	6.67	5.85	6.03	0.907	0.524	0.812	0.469	0.43034
C07079A	B. oleracea-S1	9.26	6.14	11.30	3.85	5.24	5.52	8.90	4.87	2.599	1.500	0.895	0.516	0.06192
C07060	B. oleracea-S1	2.59	10.15	8.28	9.98	7.52	11.84	7.01	9.78	3.936	2.273	2.170	1.253	0.22146
C07007	B. bourgaei-S1	5.32	7.55	7.49	8.51	3.87	6.14	6.79	6.18	1.271	0.734	2.320	1.340	0.39533
C10128	B. oleracea-DH	7.65	3.08	11.62	10.21	8.79	5.94	7.45	8.31	4.273	2.467	2.173	1.255	0.41154

Table S11f: Calcium $\left(\mathrm{Ca}^{2+}\right)$ level (ppm) in 3 replicate each of B. oleracea genotypes leaves and comparison between control and treated

Geno ID Species	Rep 1	Rep 2	Rep 3 Rep 1		Rep 2	Rep 3 Mean		Mean	STDV_Cti SEM_Ctrl STDV_Tı SEM_Trt T.TEST				
C10001 B. ole(DHSL150)	4.73	3.16	3.46	2.81	3.19	3.27	3.79	3.09	0.605	0.349	1.959	1.131	0.23242
C13013 B. incana-DH	1.73	1.95	4.13	0.95	3.08	3.21	2.60	2.41	0.590	0.340	1.353	0.781	0.10675
C10025 B. bourgaei-DH	2.05	2.91	1.88	3.14	2.28	1.59	2.28	2.34	0.846	0.488	0.151	0.087	0.23635
C10121 B. oleracea-DH	2.36	2.99	1.79	2.84	3.89	2.85	2.38	3.19	0.800	0.462	0.790	0.456	0.05429
C13001 B. hilarionis-DH	4.20	2.60	1.71	3.47	2.37	2.06	2.84	2.63	0.468	0.270	0.902	0.521	0.41893
C07079A B. oleracea-S1	1.74	2.02	6.30	3.42	3.01	1.81	3.35	2.75	0.976	0.563	1.111	0.641	0.38690
C07060 B. oleracea-S1	3.41	1.49	1.60	1.36	1.38	2.30	2.17	1.68	0.838	0.484	0.996	0.575	0.25488
C07007 B. bourgaei-S1	4.45	3.57	3.69	1.36	2.82	4.42	3.90	2.87	0.489	0.282	0.478	0.276	0.05985
C10128 B. oleracea-DH	5.01	0.64	3.33	2.71	4.28	3.63	2.99	3.54	1.488	0.859	1.670	0.964	0.05811

Appendix VI Cont.

Different concentration of $\mathrm{Na}^{+}, \mathrm{K}^{+}$and Ca^{2+} in ppm measured week-eight 24 hr post-treatment (8 wk 24 hrpt)

Table S11g: Sodium $\left(\mathrm{Na}^{+}\right)$level (ppm) in 3 replicate each of B. oleracea genotypes leaves and comparison between control and treated

Geno ID	Species	Rep1	Rep 2	Rep 3	Rep 1	Rep 2	Rep 3	Mean	Mean	STDV_CtıSEM_Ctrl	STDV_T1	1 SEM_Trt	T.TEST
C10001	B. ole(DHSL150)	0.81	0.89	1.252	1.86	7.02	10.70	0.98	6.53	$0.236 \quad 0.137$	0.172	0.099	0.07560
C13013	B. incana-DH	1.93	0.82	0.210	6.85	3.14	2.18	0.99	4.06	0.8720 .504	1.913	1.104	0.04044
C10025	B. bourgaei-DH	5.63	0.65	0.846	0.47	7.54	8.86	2.37	5.62	$2.821 \quad 1.629$	0.659	0.380	0.26069
C10121	B. oleracea-DH	0.88	1.13	1.300	1.65	1.94	10.45	1.10	4.68	$0.209 \quad 0.121$	3.449	1.991	0.16422
C13001	B. hilarionis-DH	13.10	7.03	5.396	2.44	2.53	6.97	8.51	3.98	$4.059 \quad 2.344$	2.700	1.559	0.16421
C07079A	B. oleracea-S1	6.82	0.96	0.370	0.65	0.74	1.11	2.71	0.84	$3.565 \quad 2.059$	1.126	0.650	0.23833
C07060	B. oleracea-S1	0.42	0.58	0.415	0.71	3.32	1.97	0.47	2.00	$0.096 \quad 0.055$	0.942	0.544	0.08131
C07007	B. bourgaei-S1	3.20	0.44	0.540	9.03	8.01	0.58	1.39	5.87	1.5630 .902	1.529	0.883	0.09390
C10128	B. oleracea-DH	4.73	0.25	0.493	4.90	3.38	5.85	1.82	4.71	$2.516 \quad 1.452$	1.214	0.701	0.09712

Table S11h: Potassium $\left(\mathrm{K}^{+}\right)$level (ppm) in 3 replicate each of B. oleracea genotypes leaves and comparison between control and treated

Geno ID Species	Rep 1	Rep 2	Rep 3	Rep 1	Rep 2	Rep 3	Mean	Mean	STDV_CtıSEM_Ctr	STDV_T	SEM_T	T.TEST
C10001 B. ole(DHSL150)	5.51	7.57	6.350	8.30	6.52	6.39	6.48	7.07	$1.037 \quad 0.599$	3.669	2.118	0.32763
C13013 B. incana-DH	6.66	7.39	12.080	6.44	10.31	7.46	8.71	8.07	$2.941 \quad 1.698$	5.079	2.933	0.39867
C10025 B. bourgaei-DH	8.86	7.20	9.163	8.40	10.17	8.34	8.41	8.97	$1.056 \quad 0.610$	3.259	1.882	0.34279
C10121 B. oleracea-DH	11.64	7.34	8.828	9.84	6.74	6.38	9.27	7.65	$2.186 \quad 1.262$	3.988	2.303	0.04876
C13001 B. hilarionis-DH	8.30	5.41	5.502	5.16	18.80	9.70	6.40	11.22	$1.639 \quad 0.947$	1.776	1.025	0.20997
C07079A B. oleracea-S1	7.40	8.12	6.775	9.64	7.99	10.23	7.43	9.29	$0.675 \quad 0.390$	1.300	0.751	0.11006
C07060 B. oleracea-S1	6.15	7.73	7.671	7.11	7.46	6.13	7.18	6.90	$0.897 \quad 0.518$	2.232	1.289	0.36607
C07007 B. bourgaei-S1	7.55	5.72	7.120	5.83	6.84	7.10	6.80	6.59	$0.958 \quad 0.553$	1.454	0.840	0.41245
C10128 B. oleracea-DH	7.60	4.67	5.853	6.46	8.20	7.55	6.04	7.40	1.4770 .852	4.946	2.856	0.21088

Table S11i: Calcium $\left(\mathrm{Ca}^{2+}\right)$ level (ppm) in 3 replicate each of B. oleracea genotypes leaves and comparison between control and treated

Geno ID Species	Rep 1	Rep 2	Rep 3	Rep 1	Rep 2	Rep 3	Mean	Mean	STDV_Cti SEM_Ctrl STDV_Ti SEM_Trt T.TEST				
C10001 B. ole(DHSL150)	2.45	3.22	2.027	1.99	3.45	5.73	2.57	3.09	0.605	0.349	1.959	1.131	0.23242
C13013 B. incana-DH	2.17	1.99	3.091	4.04	3.35	3.01	2.42	2.41	0.590	0.340	1.353	0.781	0.10675
C10025 B. bourgaei-DH	4.06	2.69	2.518	3.16	6.14	3.31	3.09	2.34	0.846	0.488	0.151	0.087	0.23635
C10121 B. oleracea-DH	4.15	2.55	3.443	2.81	2.28	2.35	3.38	3.19	0.800	0.462	0.790	0.456	0.05429
C13001 B. hilarionis-DH	3.76	2.99	2.919	2.41	4.81	3.10	3.23	2.63	0.468	0.270	0.902	0.521	0.41893
C07079A B. oleracea-S1	4.08	2.16	3.409	2.22	3.34	5.21	3.22	2.75	0.976	0.563	1.111	0.641	0.38690
C07060 B. oleracea-S1	2.48	0.81	1.517	0.85	1.43	0.98	1.60	1.68	0.838	0.484	0.996	0.575	0.25488
C07007 B. bourgaei-S1	1.86	2.78	2.600	3.50	4.74	2.93	2.41	2.87	0.489	0.282	0.478	0.276	0.05985
C10128 B. oleracea-DH	3.69	0.86	1.469	4.01	2.48	3.26	2.01	3.54	1.488	0.859	1.670	0.964	0.05811

Appendix VI Cont.

Different concentration of $\mathbf{N a}^{+}, \mathrm{K}^{+}$and $\mathbf{C a}^{\mathbf{2 +}}$ in $\mathbf{~ p p m}$ measured two-weeks post-treatment (10 week)

Table S11j: Sodium $\left(\mathrm{Na}^{+}\right)$level (ppm) in 3 replicate each of B. oleracea genotypes leaves and comparison between control and treated

Geno ID	Species	Rep 1	Rep 2	Rep 3	Rep 1	Rep 2	Rep 3	Mean	Mean	STDV_CtıSEM_Ctrl STDV_T_ SEM_Trt T.TEST				
C10001	B. ole (DHSL150)	1.078	0.908	0.956	0.45	7.29	4.62	0.98	4.12	1.015	0.586	2.270	1.311	0.49518
C13013	B. incana-DH	3.493	0.150	0.113	0.74	1.53	2.15	1.25	1.48	1.321	0.762	1.292	0.746	0.39298
C10025	B. bourgaei-DH	0.311	1.621	0.249	0.33	1.11	1.96	0.73	1.14	1.841	1.063	0.480	0.277	0.24542
C10121	B. oleracea-DH	7.112	0.990	0.968	17.90	3.58	8.20	3.02	9.89	1.273	0.735	1.724	0.995	0.39505
C13001	B. hilarionis-DH	0.950	0.518	2.376	1.26	2.25	2.04	1.28	1.85	0.445	0.257	1.003	0.579	0.20112
C07079A	B. oleracea-S1	2.509	2.047	2.414	0.36	0.38	0.28	2.32	0.34	1.032	0.596	3.819	2.205	0.01127
C07060	B. oleracea-S1	0.172	1.911	0.213	0.21	0.49	0.22	0.77	0.31	0.869	0.502	1.043	0.602	0.14441
C07007	B. bourgaei-S1	3.072	0.321	0.351	0.59	5.95	2.31	1.25	2.95	0.422	0.243	3.458	1.996	0.21571
C10128	B. oleracea-DH	2.649	0.606	0.535	0.27	7.41	0.27	1.26	2.65	0.412	0.238	0.289	0.167	0.19303

Table S11k: Potassium (K^{+}) level (ppm) in 3 replicate each of B. oleracea genotypes leaves and comparison between control and treated

Geno ID Species	$\begin{aligned} \hline \text { Rep } 1 \\ \hline 11.13 \end{aligned}$	Rep 2	Rep 3	Rep 1	Rep 2	Rep 3	Mean	Mean	STDV_CtiSEM_Ctrl STDV_T1 SEM_Trt T.TEST				
C10001 B. ole(DHSL150)		3.92	2.03	2.77	2.67	2.02	5.69	2.49	5.520	3.187	4.958	2.863	0.11375
C13013 B. incana-DH	2.35	4.69	6.05	4.42	4.26	4.13	4.36	4.27	5.389	3.112	5.072	2.928	0.04281
C10025 B. bourgaei-DH	3.06	4.12	2.32	3.77	2.67	3.84	3.17	3.43	5.903	3.408	2.036	1.176	0.21144
C10121 B. oleracea-DH	2.26	1.62	1.89	47.32	1.75	3.13	1.93	17.40	7.707	4.450	5.668	3.273	0.27376
C13001 B. hilarionis-DH	2.75	6.07	4.54	3.51	2.42	4.44	4.45	3.46	4.566	2.636	4.068	2.349	0.25046
C07079A B. oleracea-S1	5.32	4.18	2.30	2.72	2.96	3.20	3.93	2.96	4.879	2.817	4.070	2.350	0.26880
C07060 B. oleracea-S1	3.61	4.03	3.95	3.92	3.59	3.66	3.86	3.72	8.997	5.194	5.927	3.422	0.13564
C07007 B. bourgaei-S1	4.21	5.72	4.12	3.76	5.60	4.05	4.68	4.47	0.903	0.521	2.164	1.249	0.10907
C10128 B. oleracea-DH	2.10	11.90	4.80	8.31	8.40	8.31	6.27	8.34	4.008	2.314	3.439	1.985	0.20884

Table S111: Calcium $\left(\mathrm{Ca}^{2+}\right)$ level (ppm) in 3 replicate each of B. oleracea genotypes leaves and comparison between control and treated

Geno ID Species	Rep 1	Rep 2	Rep 3	Rep 1	Rep 2	Rep 3	Mean	Mean	STDV_Cti SEM_Ctrl STDV_T1 SEM_Trt T.TEST				
C10001 B. ole(DHSL150)	2.898	5.770	5.483	3.94	6.87	4.81	4.72	2.72	1.839	1.062	0.776	0.448	0.48828
C13013 B. incana-DH	4.596	1.896	2.271	2.95	2.49	2.72	2.92	3.23	0.573	0.331	1.164	0.672	0.30317
C10025 B. bourgaei-DH	2.619	2.322	2.178	2.24	2.43	2.61	2.37	2.61	0.382	0.220	0.440	0.254	0.19003
C10121 B. oleracea-DH	1.991	2.179	2.179	29.93	1.62	1.51	2.12	2.66	0.228	0.132	0.621	0.359	0.36511
C13001 B. hilarionis-DH	2.577	1.214	1.922	2.94	2.05	3.02	1.90	2.83	0.493	0.285	0.283	0.163	0.10496
C07079A B. oleracea-S1	1.224	1.967	3.271	2.22	3.07	2.47	2.15	2.26	0.851	0.491	1.466	0.846	0.02643
C07060 B. oleracea-S1	3.027	3.397	1.011	2.15	3.72	1.17	2.48	1.79	1.282	0.740	1.104	0.637	0.25419
C07007 B. bourgaei-Sl	3.551	3.159	3.590	0.95	2.90	2.22	3.43	2.98	0.594	0.343	0.796	0.460	0.49618
C10128 B. oleracea-DH	2.358	4.702	1.906	4.95	3.61	4.95	2.99	1.56	1.054	0.608	0.916	0.529	0.07494

Appendix VII

Scripts used in B. oleracea genome alignment during re-analysis of transcriptomic data

Uploading the files
>/Users/almustaphalawal/Desktop/Brassica_oleracea.v2.1.37.gff3.gz/ Genome smrmal@warwick.ac.uk
find /home/smrmal/data/ -name "*.fastq.gz" | xargs -n 1 fastqc -t 6
-o ./
Performing quality test multiqc

- multiqc

Performing trimming
>for i in $\$(\mathrm{ls}$ *1.fastq.gz | cut -c1-17 | sort -u); do trimmomatic
PE -threads 20 -phred 33 -trimlog trimlogFile.txt
/home/smrmal/data/RNASeqData/fastq_1/\$\{i\}1.fastq.gz
/home/smrmal/data/RNASeqData/fastq_1/\$\{i\}2.fastq.gz
\$\{i\}_forward_paired.fq.gz \$\{i\}_forward_unpaired.fq.gz
\$\{i\}_reverse_paired.fq.gz \$\{i\}_reverse_unpaired.fq.gz
ILLUMINACLIP:/home/smrmal/adapters/TruSeq3-PE.fa:2:30:10; done
Align to trimmed reads to the genome
>tophat Genome/Boleracea.v2.genome.fasta
data/RNASeqData/fastq_1/WTCHG_200339_001
_forward_paired.fq.gz
data/RNASeqData/fastq_1/WTCHG_200339_001_reverse_paired.fq.gz -r 74 -i 50 -I 50000 -p 16 -no-mixed --trascriptome-index
Genome/Boleracea.v2.cds.fasta
>tophat Genome/Boleracea.v2.genome.fasta
data/RNASeqData/fastq_1/\$\{i\}_forward_paired.fq.gz
data/RNASeqData/fastq_1/\$\{i\}_reverse_paired.fq.gz -r 74 -i 50 -I
50000 -p 16 --no-mixed --trascriptome-index
Genome/Boleracea.v2.cds.fasta
To get the Tophat out-put
>for i in $\$(l \mathrm{~s}$ /home/smrmal/data/RNASeqData/fastq_2/
*_paired.fq.gz | cut -c1-17 | sort -u); do tophat --output-dir
/home/u1560846/alalign/\$\{i\}_tophat.out
>/home/u1560846/Bogenome/Boleracea.v2.genome
/home/smrmal/data/RNASeqData/fastq_2/\$\{i\}_forward_paired.fq.gz
/home/smrmal/data/RNASeqData/fastq_2/\$\{i\}_reverse_paired.fq.gz
-r 74 -i 50 -I 50000 -p 16 --no-mixed --trascriptome-index
/home/u1560846/Bogenome/Boleracea.v2.cds.fa ; done

Appendix VIII

Table S12a: Normalised data analysis by using two housekeeping genes; B-Tubulin (up-to the yellow mark) and TIP41 (up-to light pink mark)

Appendix VIII Cont.

Table S12b: Normalised data analysis by using two housekeeping genes; B-Tubulin (up-to the yellow mark) and TIP41 (up-to light pink mark)

Species ID: C10121-DH																			
Gene Name	Mean Ct_Crrl	Mean Ct_Trt	SD(Cntrl)	SD(Treated)	\%CV (Cntrl)	\%CV (Trted)	SEM(Contrl	I SEM(Treated	T.TEST	dCt (Cnrtl)	dCt (Trt)	Log Fold	ddCt	Remark	dCt -value:	dCt -value:	Log Fold	ddCt	Remark
CLC	26.977	27.722	0.5032	0.4357	1.865	1.572	0.291	0.252	0.076292	-2.093	-2.687	0.663	-0.593	Down-regulated	-4.185	-4.730	0.685	-0.545	Down-regulated
CAX3	31.567	32.048	0.2084	0.3602	0.660	1.124	0.120	0.208	0.017972	-6.558	-6.720	0.894	-0.162	Down-regulated	-4.200	-4.852	0.637	-0.652	Down-regulated
ECA2	27.187	28.278	0.0592	0.1054	0.218	0.373	0.034	0.061	0.002792	-1.870	-3.497	0.324	-1.627	Down-regulated	-1.398	-1.878	0.717	-0.480	Down-regulated
KT	25.675	26.178	0.2496	0.1366	0.972	0.522	0.144	0.079	0.032492	-1.383	-1.678	0.815	-0.295	Down-regulated	-0.298	-0.460	0.894	-0.162	Down-regulated
KUP	22.648	22.768	0.0831	0.1279	0.367	0.562	0.048	0.074	0.048587	1.970	2.252	1.216	0.282	Up-regulated	3.768	3.680	0.941	-0.088	Down-regulated
KT2	26.177	26.970	0.3182	0.1480	1.215	0.549	0.184	0.085	0.039113	-1.770	-2.168	0.759	-0.398	Down-regulated	-0.380	-0.798	0.748	-0.418	Down-regulated
NHX1	31.772	32.653	0.3919	0.4216	1.234	1.291	0.226	0.243	0.002829	-7.872	-7.687	1.137	0.185	Up-regulated	-5.612	-6.258	0.639	-0.647	Down-regulated
V-type-a1	24.282	25.003	0.0912	0.6729	0.375	2.691	0.053	0.388	0.086107	-0.887	-1.033	0.903	-0.147	Down-regulated	1.125	0.572	0.681	-0.553	Down-regulated
V-type-G	34.070	34.252	0.4703	0.1457	1.380	0.425	0.272	0.084	0.227721	-9.147	-9.137	1.007	0.010	Up-regulated	-8.273	-7.375	1.864	0.898	Up-regulated

Species ID: C07079A-S																			
Gene Name	Mean Ct_Crrl	Mean Ct_Trt	SD(Cntrl)	SD(Treated)	\%CV (Cntrl)	\%CV (Trted)	SEM(Contr	SEM(Treated	T.TEST	dCt (Cnrtl)	dCt (Trt)	Log Fold	ddCt	Remark	dCt -value:	dCt -value: Lo	Log Fold	ddCt	Remark
CLC	27.010	27.320	0.7873	0.6106	2.915	2.235	0.455	0.353	0.361148	-2.658	-2.905	0.843	-0.247	Down-regulated	-0.542	-0.835	0.816	-0.293	Down-regulated
CAX3	32.098	32.430	0.3230	0.2656	1.006	0.819	0.187	0.153	0.200739	-4.088	-4.575	0.714	-0.487	Down-regulated	-6.362	-6.715	0.783	-0.353	Down-regulated
ECA2	26.382	28.293	0.3176	0.3960	1.204	1.400	0.183	0.229	0.020716	-0.578	-3.830	0.105	-3.252	Down-regulated	-0.502	-2.108	0.328	-1.607	Down-regulated
KT	25.527	25.948	0.1776	0.2696	0.696	1.039	0.103	0.156	0.058418	-0.628	-1.247	0.651	-0.618	Down-regulated	-0.068	0.272	1.266	0.340	Up-regulated
KUP	23.957	24.210	0.6386	0.2778	2.666	1.147	0.369	0.160	0.325017	0.273	-0.048	0.800	-0.322	Down-regulated	2.778	2.135	0.640	-0.643	Down-regulated
KT2	27.525	27.885	0.2037	0.4519	0.740	1.620	0.118	0.261	0.219593	-2.657	-2.778	0.919	-0.122	Down-regulated	-0.828	-1.383	0.681	-0.555	Down-regulated
NHX1	33.080	32.812	0.0577	0.0715	0.174	0.218	0.033	0.041	0.02253	-8.493	-8.317	1.130	0.177	Up-regulated	-7.553	-6.652	1.868	0.902	Up-regulated
V-type-a1	24.547	25.922	1.3462	0.3271	5.484	1.262	0.777	0.189	0.107616	0.252	-1.120	0.386	-1.372	Down-regulated	2.047	0.578	0.361	-1.468	Down-regulated
V-type-G	33.112	34.603	0.2034	0.5283	0.614	1.527	0.117	0.305	0.009218	-8.343	-8.948	0.657	-0.605	Down-regulated	-6.397	-6.928	0.692	-0.532	Down-regulated

Species ID: C07060-S1																			
Gene Name	Mean Ct_Crrl	Mean Ct_Trt	SD(Cntrl)	SD(Treated)	\%CV (Cntrl)	\%CV (Trted)	SEM(Contr	I SEM(Treated	T.TEST	dCt (Cnrtl)	dCt (Trt)	Log Fold	ddCt	Remark	dCt -value	t -value	g Fold	ddCt	Remark
CLC	28.412	29.040	0.6205	0.3027	2.184	1.042	0.358	0.175	0.089885	-2.247	-2.777	0.693	-0.530	Down-regulated	-1.210	-1.707	0.709	-0.497	Down-regulated
CAX3	31.495	31.915	0.1671	0.2407	0.531	0.754	0.096	0.139	0.005048	-2.270	-3.445	0.443	-1.175	Down-regulated	-4.933	-5.582	0.638	-0.648	Down-regulated
ECA2	26.150	28.578	0.0721	0.0900	0.276	0.315	0.042	0.052	0.00013	-0.288	-2.950	0.158	-2.662	Down-regulated	0.283	-1.377	0.316	-1.660	Down-regulated
KT	26.343	26.377	0.1387	0.2187	0.526	0.829	0.080	0.126	0.289741	-0.715	-0.582	1.097	0.133	Up-regulated	0.355	0.328	0.982	-0.027	Down-regulated
KUP	24.685	25.112	0.6999	0.3497	2.836	1.393	0.404	0.202	0.165226	1.942	0.795	0.452	-1.147	Down-regulated	2.703	2.058	0.639	-0.645	Down-regulated
KT2	29.522	29.138	1.2935	0.3155	4.381	1.083	0.747	0.182	0.283656	-3.385	-2.892	1.408	0.493	Up-regulated	-1.765	-2.042	0.825	-0.277	Down-regulated
NHX1	32.972	33.117	0.4917	0.0580	1.491	0.175	0.284	0.033	0.33634	-7.775	-7.232	1.457	0.543	Up-regulated	-5.673	-5.912	0.848	-0.238	Down-regulated
V-type-a1	26.472	26.297	1.2082	0.1666	4.564	0.634	0.698	0.096	0.417111	-0.580	-0.282	1.230	0.298	Up-regulated	1.333	0.585	0.595	-0.748	Down-regulated
V-type-G	30.413	34.368	1.5944	0.4284	5.242	1.246	0.921	0.247	0.014477	-3.258	-7.948	0.039	-4.690	Down-regulated	-2.368	-5.720	0.098	-3.352	Down-regulated

Appendix VIII Cont.

Figure S2a: Comparison of relative abundance of $\mathrm{Na}^{+} / \mathrm{H}^{+}$exchanger (NHXI), potassium transporter ($K T$ and $K U P$) between the control and treated normalized by using housekeeping gene B-Tubulin.

Appendix VIII Cont.

Figure S2b: Comparison of relative abundance of potassium transporter ($K T$), cation exchanger (CAX3), and endoplasmic reticulum calcium exchanger (ECA2) between the control and treated normalized by using housekeeping gene B-Tubulin.

Appendix VIII Cont.

Figure S2c: Comparison of relative abundance of vacuolar proton pumps genes (V type a, and V-type- G), and chloride channel B subunit ($C L C-B$), between the control and treated normalized by using housekeeping gene B -Tubulin.

Appendix VIII Cont.

Figure S2d: Comparison of regulation of potassium transporter genes ($K T, K U P$), 24 hrpt and 2 weeks (2 wkpt) normalized by using housekeeping gene TIP41.

Appendix VIII Cont.

Figure S2e: Comparison of regulation of cation exchanger gene (CAX3), and endoplasmic reticulum calcium exchanger (ECA2) and chloride channel (CLCB)between 24 hpt and 2 weeks (2 wk) normalized by using housekeeping gene TIP41.

Appendix VIII Cont.

Figure S2f: Comparison of relative abundance of potassium transporter gene ($K T$ and $K U P$) between the control and treated normalized by using housekeeping gene TIP41

Appendix VIII Cont.

Figure S2g: Comparison of relative abundance of cation exchanger gene (CAX3), endoplasmic reticulum calcium transporter gene (ECA2) and chloride channel B subunit ($C L C-B$) between the control and treated normalized by using housekeeping gene TIP41.

Appendix IX

Figure S3a: Images of potassium ion transporter genes indicating heterozygous alleles at exon regions in wildtype S1 B. oleracea using IGV.

Appendix IX Cont.

Figure S3b: Images of cation $/ \mathrm{H}^{+}$and endoplasmic calcium exchanger showing the presence of heterozygous alleles at exon regions of the transcripts in wildtype S1 B. oleracea.

[^0]: chromosomes．

[^1]: ＊Note：Yellow colour indicates variants sequence of the cultivated rapid cycling DHSL150 line and grey colour indicates that of wild S1 C07007 line showing differences in allelic variant in their

[^2]: *NOTE: Blue $=$ control and Red = treated plants

