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Abstract— We propose a genetic algorithm (GA) based method to 

improve the sampling efficiency in THz time domain spectroscopy 

(THz-TDS). For a typical time domain THz signal, most 

information are contained in a short region of the pulse which 

needs to be densely sampled, while the other regions fluctuating 

around zero can be represented by fewer points. Based on this 

clustering feature of the THz signal, we can use much fewer 

sampling points and optimize the distribution by using a GA to 

achieve an accurate scanning in less time. Both reflection and 

transmission measurements were conducted to experimentally 

verify the performance. The measurement results show that the 

sampling time can be greatly reduced while maintain very high 

accuracy both in time-domain and frequency-domain compared 

with a high-resolution step scan. This method significantly 

improves the measurement efficiency. It can be easily adapted to 

most THz-TDS systems equipped with a mechanical delay stage 

for fast detection and THz imaging.    

Index Terms—sampling method, genetic algorithm, terahertz 

 

I. INTRODUCTION 

erahertz time-domain spectroscopy (THz-TDS) has been 

widely applied as an important tool to investigate material 

properties [1], molecular vibrations [2] and medical 

diagnosis [3]. In many THz-TDS systems, a femtosecond laser 

pulse is divided into a pump and a probe beam with one of them 

being delayed by an optical stage to sample a THz signal in the 

time-domain [4]. A numerical Fourier transform of the 

time-domain signal gives the frequency spectrum with both 

magnitude and phase information. The maximum frequency 

and the frequency resolution are determined by the time 

interval and time length, respectively. In a practical setup, 

usually two scanning modes, rapid scan and step scan, are 

implemented. The rapid scan shakes the delay stage backwards 

and forwards quickly and constantly in a scanning range. The 

actual scanning speed (i.e. number of time-domain waveforms 

achieved in a unit time) varies widely from different setups 

from several hertz to hundreds of hertz [5]. However, a very 

short time-constant is available for every sampled data in the 

rapid mode, hence resulting in a poor signal-to-noise ratio 

(SNR). On the contrary, the step scan mode distributes the  
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scanning range into equal intervals according to the 

time-resolution. The stage stops at every sampling point for 

data acquisition. This allows an arbitrary long integration time 

to provide a favorable SNR. However, the scanning speed is 

greatly reduced and the efficiency is sacrificed in every 

acceleration and deceleration process [6]. 

 To improve the sampling speed, several methods have been 

proposed. For example, asynchronous optical sampling (AOS) 

requires no mechanical time delay stages and avoids the 

compromise between the data acquisition rate and frequency 

resolution [7-8]. However, two expensive femtosecond lasers 

are needed and the mode-locked frequencies of these two lasers 

should be very stable, which will significantly increase the total 

cost of the whole system. Another technique implements a 

rotary optical delay line or circular involute [9-10] to replace 

the conventional linear stage. An updated version called fast 

rotary linear optical delay line (FRLODL) [11] is also possible. 

The repetition rate can be significantly increased but a 

complicated calibration is required to adapt the nonlinear 

rotational angles to the linear time-step. Furthermore, the 

reflecting blades need to be polished frequently to stay smooth 

[11]. Previous work from our group by He et al. introduced an 

adaptive sampling method [12]. It calculates the points 

distribution based on the clustering feature of the THz pulse 

and can be easily implemented in a wide range of THz-TDS 

systems. The speed improvement of this method is highly 

dependent on the clustering feature of the signal. When the 

scanning signal has a highly clustered distribution, the 

amplitudes outside the main pulse are weak, and the speed can 

be significantly improved. On the contrary, when the signal 

contains long ringing oscillations, the speed is less improved 

due to the larger amount of data points needed. Nevertheless, 

the speed improvements for different cases are mostly by a 

factor of 2-3. There are two further limiting factors remaining. 

Firstly the sectional distribution only considers the amplitude 

and the amplitude variation of its nearest neighbors, which does 

not comprehensively represent the sampling density needed. 

Secondly, in each section, the sampling points are still equally 

distributed. The scanning efficiency can be further improved by  

adaptively distributing according to the waveform. To do this, a 
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huge computation will be required, which may further increase 

the time cost. 

Calculating the optimized distribution of the sampling point  

is a high-dimensional optimization problem, which can be well 

solved by a genetic algorithm (GA). A GA is a type of 

metaheuristic approach inspired by the process of natural 

selection to generate high-quality solutions for global 

optimization problems, introduced by John Holland [13]. GAs 

are sufficiently powerful to solve problems with a large number 

of parameters and a non-smooth objective function, to which 

traditional derivative-based methods cannot be applied. When a 

GA searches parallel to a population of points, it is able to avoid 

stagnation in local optimal solutions and always guarantees a 

global sub-optimal solution, providing a reliable and fast 

convergence. In this work, we apply the GA approach to 

adaptively sample THz signals in the time-domain without any 

extra hardware cost. The GA quickly determined the optimized 

distribution of the sampling points from a coarse rapid scan. 

The number of points was significantly less than that required 

in a normal step scan, reducing that scanning time. The system 

adaptively sampled the signal according to the optimized 

distribution using a long integration time to achieve a good 

SNR with much lower time cost. Water and lactose were 

measured to verify the accuracy and efficiency of the GA in 

different geometries, with water being measured in reflection 

and lactose being measured in transmission. 

 

II. EXPERIMENT SETUPS 

The fiber-based THz-TDS system employed in our study is 

the Menlo K15 equipped with a built-in PI (type: LMS-80 PI) 

delay stage. The stage has a 39-nm step resolution and 

programmable moving positions and speed. 

To measure a solid material such as a lactose pellet, the 

emitter and detector are aligned in a straight line to establish a 

transmission setup. To measure liquid samples, a reflection 

geometry is used. The schematic diagram of the reflection 

module is shown in Fig.1. A quartz window is placed above the 

THz optics. Liquids are placed on the top of the quartz window. 

The incident angle of the THz beam is set to be 30o to the 

bottom surface of the quartz and both reflections from the lower 

air-quartz and upper quartz-sample/air interfaces are detected. 

The upper sample and air reflections can be extracted by 

subtracting the lower reflection (defined as the baseline) from 

the detected signal and used for further sample characterization. 

Details about the measurement and data processing are given in 

our previous work [14-15]. 

 
Fig.  1. Diagram showing the reflected signal paths for the sample, reference 

and baseline measurements. 

III. GENETIC ALGORITHM BASED ADAPTIVE SAMPLING 

A. Features of THz-TDS signals 

The broadband and coherent THz light emitted from a 

photoconductive antenna or an electro-optic crystal has an 

ultra-short pulse width. This results in the clustering feature 

that most of the information is compressed in a short main 

pulse, while the other regions only weakly oscillate around 

zero. In case that the THz light interacts with an object having 

absorption peaks or resonances to break this coherence, such as 

water-vapor, lactose or resonant structures, sample-induced 

echoes will be generated. These echoes appear as gradually 

weakening oscillations after the main pulse and vanish to zero 

after a certain length [16-18]. Therefore, in most cases, a THz 

signal can be efficiently sampled because only a relatively short 

region needs to be scanned. However, according to the Fourier 

transform, the frequency resolution is decided by the signal 

length in the time-domain. For example, a 20ps signal without 

zero padding is required to provide a 50 GHz (1/20ps) spectrum 

resolution, while the major pulse of a typical THz signal only 

lasts for 3 ps. In a general step scan, as the sampling time 

intervals are equally distributed, most of the time is spent on the 

regions having weak amplitudes. A more efficient sampling can 

be realized by adaptively distributing denser points at the main 

pulse region whilst giving a sparse distribution at the other 

regions. In particular, the optimizing distribution should be 

calculated based on the actual signal profile to achieve the 

minimum error under a given number of sampling points. This 

was realized by our genetic algorithm as detailed in the 

following sections. 

B. Pre-processing and GA-based optimization  

The whole process can be separated into three parts; a. rapid 

scan of a coarse signal and pre-processing, b. GA optimization, 

and c. adaptive sampling with a long integration time.   

In part a, a signal Erapid was obtained by a rapid scan which 

typically takes around 1 s. We first separate the signal into 

sections with identical length and distribute certain number of 

sampling points to each section by evaluating the section 

significance. The ‘section’ was set to initially allocate a 

different number of sampling points in different regions. The 

length of the section is selected to be slightly shorter than the 

pulse length so that it can better locate the pulse region. The 

significance of each point p is the weighted sum of the 

amplitudes, the first and second: 

1 1 1 1

1 2 2

+ ( ) ( )

2

p p p p p p p p

p p

E E E E E E E E
Sig E w w

t t

       
  

 
 

(1) 

where 𝑆𝑖𝑔  is the defined significance. 𝐸  is the time-domain 

electric field amplitude. Δ𝑡 is the time step. The subscript p, p-1 

and p+1 are the indices of the points. The weights w1 and w2 are 

determined according to Eq.(2). In this way, the sum of the 

amplitude, the sum of the first derivate and the sum of the 

second derivate of the whole signal are the same to make an 

equal contribution to the significance. The low SNR of the 

rapid scan introduces weak oscillations, which mainly 

contributes errors to the second derivatives. Therefore, in case 

of very low SNR, the second derivative provides very little 

information. However, the amplitude and the first derivative 

can still be utilized to evaluate the significance well. In a 
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practical measurement, our rapid scan signal is usually acquired 

in 1s, which is slower than the highest rate of 4 Hz and can 

normally provide SNR>45dB. The SNR of a 1s rapid scan 

signal is about 10dB lower than that by a step scan with time 

constant 30ms, which does not significantly affect the GA 

optimization. In case the signal is weak, a slower version of 

rapid scan (e.g. taking 5s) can be used to improve the SNR with 

little sacrifice on the overall speed. 

1 1 1 1

1 2 2

( ) ( )

2

p p p p p p

p

p p p

E E E E E E
E w w

t t

      
 

 
  

(2) 

In the main-pulse region, most points have high amplitudes to 

contribute to the first term of Eq. (1). There are also points with 

a small amplitude but a large gradient in the main pulse region. 

These points contribute to the first-order derivative. The 

remaining cases are those with a small amplitude and located at 

the turning point of the waveform. They make a large 

second-order derivative. The three parts can clearly distinguish 

pulse and non-pulse regions by giving different Sig values. Let 

sectioni denote the set of sampling points contained in the i-th 

section, the significance of sectioni can be calculated by 

summing up the Sig values in the section, as expressed by 

Eq.(3). The number of sampling points assigned to each section 

is given by the proportion compared to the overall significance, 

as shown in Eq. (4) 

sec i
i pp tion

sig sig


                                      (3) 

 

i
i

pp

sig
NumSam Integer ASNum

sig

 
  
 
 

                 (4) 

where ASNum is the total number of sampling points 

pre-determined for the adaptive sampling, NumSami is the 

number of sampling points in the i-th section decided by the 

proportion of the sig value and is rounded to an integer. Figure 

2 shows an example of a rapid scan signal acquired by the 

reflection system and the point distributions decided by the 

above method. The number of sampling points assigned to the 

sections is proportional to the amount of information included 

in the corresponding section, which is quantitatively 

represented by sig. 

 

 
Fig.  2. The signal is divided into 20 identical sections on time domain, the 

histogram shows the sampling numbers for each section with the total number 
of 200 points 

 

In part b, the GA tries different sampling distributions to find 

the optimization that gives the minimum error to the scanned 

signal. A GA solves a problem by firstly initializing a 

population of randomly generated chromosomes (i.e. 

solutions), with the population size specified by NumPop. An 

objective function fobj is defined to evaluate the quality of these 

chromosomes and give a score to rank them accordingly. The 

top-half of the population is kept as parents and a process called 

crossover is applied to generate new chromosomes. The 

crossover is usually done by randomly exchanging part of the 

genes (i.e. parameters) of two chromosomes to make the newly 

generated chromosome maintain some of the profile from its 

parents. The remaining NumPop/2 parent chromosomes and the 

new-born NumPop/2 offspring form the population of the next 

generation. This above process iterates until the specified 

maximum iteration number NumItp. Another process called 

mutation is also applied in every iteration to randomly change 

some of the genes of the solutions to ensure the divergence of 

the searching. The final optimized solution is given by the top 

chromosome in the last generation.  

As shown in Table Ⅰ, the GA starts with initializing 

algorithm parameters of NumItp, NumPop, the mutation 

probability MutPro, the number of adaptive sampling points 

ASNum and the minimum time interval MinInt. Next, the GA 

initialized NumPop groups of chromosomes as the first 

generation in Step 2. Each chromosome is given by randomly 

distributed points in every section. Therefore, each 

chromosome’s Ci is an array of sampling positions representing 
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a way of sampling the THz signal. For example, C1=[2ps ,6ps, 

12ps ,16ps…..], C2=[1ps, 3ps, 7ps, 11ps…].  

To evaluate the quality of the chromosome in Step 3, we 

need to simulate the sampled waveform E(Ci) by the 

adaptively distributed positions. This is achieved by 

interpolating the sampling positions to the pre-acquired 

rapid-scan signal, represented by  

( ) interp( , , , ' ')i rapid rapid iE C T E C spline        (5) 

where Trapid and Erapid are the time axis and E-field amplitude of 

the rapid-scan signal. ‘spline’ is the interpolation method. This 

simulates the sampled THz signal using the point distribution 

given by the chromosome. Interpolating E(Ci) to the same time 

axis of the rapid scan signal allows us to evaluate the accuracy. 

This can be expressed by: 

_ ( ) interp( , ( ), , ' ')recons i rapid i i rapidE T C E C T spline    

(6) 

where Erecons_i(Trapid) is the reconstructed signal corresponding 

to the equally distributed rapid scan time axis from the 

adaptively sampled signal. The evaluation can thus be realized 

by using the objective function comparing the difference 

between the reconstructed signal and the rapid scan signal, 

recorded as Fitnessi and given by: 
2

_( ( ) )i recons i rapid rapid

t T

Fitness E T E


           (7) 

The Fitness sums up the square of the E-field difference in 

time-domain. All the chromosomes are scored by their Fitness 

values and ranked accordingly from low to high. The latter half 

is regarded as a bad fit and is redundant. Only the top half is 

kept. This mimics the natural selection rule to keep only those 

populations that have adapted well to their living conditions as 

they may contain genes more suitable for survival. In this way, 

the remaining chromosomes have a higher probability of 

containing good parameters to accurately sample the signal. 

In Step 4, the two-point crossover was applied to the 

remaining population so that they can pass their genes to 

successive generation. This is illustrated schematically in Fig.3. 

Every two neighbor chromosomes reproduce their offspring by 

exchanging part of their genes (a sampling position in a 

chromosome is a gene). The crossover sections on 

chromosomes are chosen randomly.  

As crossover does not bring new genes into the population, 

the mutation process is applied to maintain diversity of the 

searching procedure and avoid premature convergence in 

Step 5. In this problem, the GA starts with a MutPro of 10% to 

mutate the 10% of the offspring chromosomes. Higher 

mutation rate of 25% and 50% will be applied when the fitness 

values does not improve for a certain amount of iterations. To 

avoid missing the best solution, the top ranked chromosome in 

the last generation will not be mutated. So far, the half 

chromosomes from the last generation, and the same number of 

new-born chromosomes, with some random mutations, form 

the new generation to be evaluated in the next iteration. The 

above process repeats until the GA reaches the maximum 

iteration number NumItp. Finally, the best solution is picked 

from the top ranked chromosome in the last generation in 

Step 7.  

TABLE Ⅰ 

ALGORITHM STEPS 

1. Set GA parameters(Numpop, NumItp, ASNum,, MinInt,  MutPro) 

2. Initialization. Generate initial random population 

3. Evaluation. Evaluate and rank fitness of each chromosome in the 

population 

4. Crossover. Crossover of selected parents chromosomes 

5. Mutation. Mutation of chromosomes 

6. Iteration>NumItp? Go to step 7 if yes. Go to step 3 if no 

7. Output the top ranked chromosome in the last iteration 

 

 
Fig. 3. Two-point crossover operation example. The number stands for the 

sampling position with a unit of ps. 

For the final solution obtained from GA, post-processing is 

conducted to remove neighbor points having a time step smaller 

than MinInt. The system bandwidth decides the minimum time 

step required for a time-domain sampling. For example, a 

4 THz bandwidth requires a sampling step smaller than 

0.125 ps. The actual minimum step here should be smaller than 

this critical value because the signal was not equally sampled. 

To ensure the stability, we only remove neighbor points with a 

step smaller than 0.02ps 

In the final part c, the signal was adaptively sampled again 

according to the optimized distribution with a long time 

constant. By doing these, we can efficiently improve the 

sampling speed by skipping less important points while 

maintaining a SNR as good as that by a traditional step scan. 
TABLE Ⅱ 

PARAMETERS OF PROPOSED APPROACH 

 

Parameter 
 

Value 

NumPop       1000 
Mut.Pro 10% 

NumItp 5000 

Sec 20 
MinInt 

T.Cons 

0.02ps 

30ms 

 

IV. EXPERIMENTAL VERIFICATION 

To verify our method, both reflection and transmission 

measurements were conducted. The GA optimization part was 

written in MATLAB, which was then invoked in our 

measurement LABVIEW program. The controlling part of the 

program (e.g. coarse rapid scan , adaptive scan) was directly 

realized in LABVIEW. All the experiments were performed at 

room temperature with a relative humidity below 5%. The 

measurements were conducted by the following protocol: a 

coarse signal was measured by rapid scan for GA analysis; an 

adaptive scan (AS) using a long integration time was sampled 
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according to the optimized GA results; a traditional step scan 

(SS) was performed and used as a reference to be compared 

with the AS result in the aspects of spectrum accuracy and 

measurement efficiency. Results are compared to show the 

accuracy, stability and the improvement in the speed. 

A. Reflection measurement 

We first measured pure water using the window-based 

reflection setup. The time length of the signal is 80 ps.  The 

number of the points by the traditional step scan is 1600 (0.05ps 

step). The sampling points of 80, 120, 160, 200 and 240 were 

used for the AS and SS to evaluate the improvement by the 

algorithm. An example of the time-domain signal by AS using 

200 points is shown in Fig. 4(a), compared with the SS signal. 

They are offset for clarity. Their difference is shown as the 

black curve. The frequency-domain spectrum of the upper 

reflection (by subtracting the lower baseline reflection) by AS 

and SS, as well as their ratio, are shown in Fig. 4 (b). The error 

bars of the AS calculated by the standard deviation of 

2

1

1
( )

n

i aveE E
n

   , where n is the number of the 

measurements, 𝐸𝑖  is the amplitude in frequency domain for 

each measurement, and 𝐸𝑎𝑣𝑒  is the average amplitude for the n 

times measurement. The time-domain amplitudes have an 

average error of 0.0035, which is 0.12% of the peak-to-peak 

value. The maximum error of the spectrum is 0.364, which is 

2% comparing with the SS value at corresponding frequency, 

providing a reliable accuracy for spectroscopy. These results 

showed that the AS has very little difference to the SS signal in 

both time domain and frequency domain. Furthermore, the very 

small standard deviation of the maximum below 0.5 

demonstrates the stability of AS. 

 

 
Fig. 4. (a)Measured time domain water signal using AS scan(200points) and 

SS(1600points) with error value. The signals are offset for clarity (b)The 
corresponding frequency spectrum for the SS and AS signals after subtracting 

the baseline. The AS curve is the average for ten measurements, the error bars 

are the standard deviation. 
 

TABLE Ⅲ 

MEASUREMENTS FOR DIFFERENT SAMPLING NUMBERS 
 

Sampling  

points 

 Adaptive 

scan time(s) 

Speed 

improve-
ment 

 factor 

Error 

RMSE(%) PPOE(%) 
AS SS 

 

AS SS 

80 16.5 

(1.5+7+8) 

14.5 8 21.3 0.2 7 

120 32.5 

(1.5+16+15) 

7.4 3 5 0.18 2.1 

160 46.5 

(1.5+25+20) 

5.2 2.6 3 0.1 0.3 

200 59.5 

(1.5+30+28) 

4.0 1 1.6 0.051 0.36 

240 73.5 

(1.5+38+34) 

3.3 1.1 1.8 0.045 0.063 

To evaluate the performance of the AS using different 

numbers of sampling points, we compared the results in Table 

Ⅲ. The comparison mainly includes two aspects, the scanning 

time and the accuracy. The time used in a traditional 0.05ps SS 

was used as a reference, and it was compared to the time by the 

AS shown in the second column. The ratio between them is 

given by the speed-improvement factor, as shown in the third 

column. The AS time consists of the three parts shown in the 

brackets below the total time: rapid scanning time, GA 

searching time and adaptive sampling time. The rapid scan time 

is related to the signal length but independent of the AS 

parameters. Therefore, it was 1.5 s for all the scans. The GA 

searching time is related to the number of data points and the 

configuration of the computer. We used a general computer 

from Dell Inc (processor: Intel(R) Core(TM) i5-4570 + 8 GB 

Memory) in our measurements. The time needed increases with 

the number of data points. The last term of adaptive sampling 

the signal is nearly proportional to the number of sampling 

points. Therefore, reducing the sampling points can efficiently 

improve the scan speed by reducing the latter two terms. 

Although extra time is needed for the rapid scan and GA 

searching, with the significantly fewer sampling points 

significantly than in the reference scan, the speed improvement 

factors were always larger than 3 for all AS. 
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The accuracy was evaluated by the root mean square error 

(RMSE) and percentage error of Emax (PPOE). RMSE is 

calculated by 

2

1
( ) /

n adp ref

p pj
RMSE E E n


              (8) 

where  𝐸𝑝
𝑎𝑑𝑝

 and 𝐸𝑝
𝑟𝑒𝑓

are the reconstructed AS signals by 

interpolating to the reference time axis and reference signal, 

respectively. The subscript p denotes the p-th point in the 

time-domain and n is the total number of data points. PPOE was 

used to directly evaluate the accuracy of the main pulse. It was 

defined as: 

max max

max

adp ref

ref

E E
PPOE

E


                            (9) 

where  𝐸𝑚𝑎𝑥
𝑎𝑑𝑝

 is the maximum value for AS after interpolation 

and  𝐸𝑚𝑎𝑥
𝑟𝑒𝑓

 is the maximum value for reference signal. 

Under the same sampling points, the values of RMSE and 

PPOE for the AS were smaller than the SS, especially when the 

sampling points were below 160. This clearly indicates that the 

adaptive distribution of the sampling points by the GA 

optimization improved the accuracy. From 80 points to 200 

points, the RMSE and PPOE for AS decrease while the 

consumption of time increases. When the sampling points were 

over 200, the RMSE and PPOE of the AS are almost saturated 

while time consumption is still going up. Therefore, an optimal 

tradeoff between the accuracy and the efficiency can be found 

around 200 points. 

A more straightforward evaluation of the method can be 

done by comparing the sample characterization results, as 

shown in Fig.5. The water refractive index and absorption 

coefficient calculated from the 200 points AS and the reference 

scan are plotted, and compared with the data from Thrane et al. 

[19], Bertie and Lan [20], and Hirori et al. [21]. The error bars 

of the adaptive scan data are also given by the standard 

deviation of 10 individual AS using the same sampling 

parameters. The AS results are highly consistent with the 

reference data, and also match well with the published works, 

showing the high-degree accuracy and reliability of the 

proposed method. To quantitatively evaluate the performance, 

we defined two parameters ΔS and ΔA here as: 

ΔS=
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

|𝐴𝑆.𝑎𝑣𝑒𝑟𝑎𝑔𝑒 |
*100%                   (10) 

ΔA=|
SS−AS

𝑆𝑆
| ∗ 100%                                (11) 

where ΔS stands for the stability of the adaptive scan by 

comparing the standard deviation of 10 scans to their average. 

ΔA evaluates the accuracy by comparing the average AS to the 

step scan. As shown in fig.5, the ΔS values for the refractive 

index and absorption coefficient are both below 2% from 

0.2THz to 1THz, while the ΔA values are below 1% and 3%. 

The values quantitatively demonstrate the robustness and good 

accuracy of the AS for sample characterization.  

 

 
 Fig.5. Different methods for water measurement. Water refractive index (a) 

and absorption coefficient (b) as a function of frequency. The adaptive scan 

curve is the average of 10 adaptive scan results, with standard deviation at the 
corresponding frequency as error bar. ΔS and ΔA are also shown in both 

figures.  

 

B. Transmission measurement 

To show the versatility for different geometries and the 

capability for different pulse shapes, we measured a 460 μm 

lactose pallet. Lactose exhibits strong absorption peaks in the 

THz range, which introduce strong echoes in the time-domain 

after the main pulse, as shown in Fig 6(a). This resulting signal 

is different from that from a non-resonant medium which has a 

pulse width typically smaller than 5ps.  To precisely capture the 

absorption peak features, both the main pulse and the echoes 

should be precisely sampled, hence this gives a good example 

to evaluate the performance of our sampling method on 

different pulse shapes.  

Figure 6(a) compares the 3700 points SS signal to the signal 

reconstructed from the 900 points AS transmitted through the 

lactose. The inset figure zooms in on the central pulse region 

and shows the high degree of matching between the two scans 

at the main pulse and the sample echoes regions. The difference 

are very small for both regions. To compare the 

frequency-domain spectrum, both signals are 

Fourier-transformed and compared to the air reference signal 

and shown in Figure 6(b). The spectrum from AS show almost 
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no difference to the step result from 0.2 THz to 2 THz, while it 

only requires less than 1/4 of the sampling points. The errors 

above 1.5 THz are relatively larger because higher frequencies 

have worse SNR and a higher demand on the sampling density.  

The refractive index and absorption coefficient can be 

extracted from the sample-reference ratio and are shown in 

Figure 7. The AS curve is the average of ten measurements 

with their standard deviation plotted as the error bars. For the 

refractive index, the AS result is highly consistent with the SS 

and has a standard deviation smaller than 0.015 from 0.2 THz 

to 2 THz, showing excellent accuracy and stability of our 

measurement approaches. The absorption coefficient using AS 

also agrees well with the SS data. The AS absorption peak at 

1.377 THz also coincides well with the SS result, except for a 

single outlier point at 1.367 THz. The error is considered to 

result from the relatively worse SNR in the AS. The 33dB 

attenuation is very close to the limit of the system dynamic 

range at this frequency region and any reduction of the SNR 

leads to inaccuracies in resolving the peak. However, the small 

error has very little effect to the peak features and additional 

modeling of the peaks can still be precisely fitted by using the 

AS data. The ΔS for the absorption coefficient in peak regions 

is below 7%, showing the good stability of our measurement.  

In short, the proposed method is able to use fewer than a quarter 

of the sampling points to well reconstruct absorption features of 

a resonant sample. 

  

 
Fig.6. (a)Time domain signal for lactose measured by SS and AS. 

(b)Frequency domain signal respectively restored by SS and AS. The 

magnitude ratio (MR) is calculated by the following equation: MR =

20 log10
𝐸𝑙𝑎𝑐

𝐸𝑎𝑖𝑟
, where 𝐸𝑙𝑎𝑐  and 𝐸𝑎𝑖𝑟  are electric field of lactose and air in 

frequency-domain.  

 

 
Fig.7. Lactose pellet measurement for refractive index (a) and absorption 

coefficient (b). The blue curve is the average of the 10 AS results, the error bar 
is the standard deviation at the corresponding frequency. 
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V. CONCLUSION  

In this paper, we proposed a GA-based optimization 

approach for adaptively sampling signals in THz-TDS systems. 

The method utilizes the clustering feature of TDS signals. This 

feature indicates the possibility of using very few sampling 

points to accurately reconstruct a signal by interpolation. To 

realize this, our approach first allocates a different number of 

sampling points to the distributed regions by considering their 

zero, first and second derivatives of the signal amplitude. The 

GA then optimizes the sample distribution according to the 

fitness between the reconstruct signal and the rapid scan signal. 

The optimized distribution is finally sent to sample the signal 

using a sufficiently long integration time to provide a good 

SNR in the minimum time. Both reflection measurements of 

pure water and transmission measurements of lactose were 

performed for evaluating the algorithm performance. The 

reflection measurements show that the measurement speed can 

be significantly improved with fewer data points assigned to the 

adaptive scan, and at the same time provide a significantly 

higher accuracy than the step scans using the same number of 

data points. The characterization of the refractive index and 

absorption coefficient further proves that the 200 points 

adaptive scan can achieve good accuracy with the measurement 

four times faster than the traditional step scan. The transmission 

measurements of lactose also show promising accuracy 

compared to the step scan result while using less than 1/4 of the 

data points. The efficient speed improvement without 

sacrificing the data quality benefits many applications requiring 

a fast data acquisition. For example, investigations into fast 

variation processes such as skin occlusion or perovskite 

degradation [22-23], or in raster-scan imaging to balance the 

image quality and time cost. The proposed method has no extra 

hardware requirement, thus it can be retrospectively 

implemented in various THz-TDS systems. In a practical 

application, there could be pulse drift in the time-domain 

between the coarse scan signal and the actual adaptive sampling 

signal especially in fiber-based TDS systems, which could 

result from timing jitter error, temperature variation or delay 

line positional error. The actual drift effect varies among 

different systems. The algorithm is usually robust to small 

pulse drifts <0.1 ps. Larger drifts cause sampling position 

errors. In this case, an extra calibration to compensate for the 

pulse drift error can be applied. For example, the actual 

sampled amplitude at a specific position in an AS can be 

compared with the amplitude of the reconstructed signal Erecons 

to evaluate the drift error, which can be used to calibrate the 

later sampling points. This would efficiently improve the 

algorithm robustness and versatility for different applications. 

In summary we have shown how a GA approach can be 

easily adapted to different geometries and different pulse 

shapes, demonstrating robust and versatile characterization 

capabilities. 
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