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One of the major issues in theoretical modeling of epidemic spreading is the development of meth-
ods to control the transmission of an infectious agent. Human behavior plays a fundamental role in
the spreading dynamics and can be used to stop a disease from spreading or to reduce its burden,
as individuals aware of the presence of a disease can take measures to reduce their exposure to con-
tagion. In this paper, we propose a mathematical model for the spread of diseases with awareness
in complex networks. Unlike previous models, the information is propagated following a general-
ized Maki-Thompson rumor model. Flexibility on the timescale between information and disease
spreading is also included. We verify that the velocity characterizing the diffusion of information
awareness greatly influences the disease prevalence. We also show that a reduction in the fraction
of unaware individuals does not always imply a decrease of the prevalence, as the relative timescale
between disease and awareness spreading plays a crucial role in the systems’ dynamics. This result
is shown to be independent of the network topology. We finally calculate the epidemic threshold of
our model, and show that it does not depend on the relative timescale. Our results provide a new
view on how information influence disease spreading and can be used for the development of more
efficient methods for disease control.

I. INTRODUCTION

Mathematical and computational studies of epidemic
models have proven to be very important for under-
standing real-world disease dynamics [1, 2]. Currently,
one of the main motivations behind epidemic modeling
is the development of methods and models that allow
to control the transmission of an infectious agent [1, 3].
These methods include the optimization of more tradi-
tional strategies to control an outbreak, such as vaccina-
tion [3, 4] or or a quarantine mechanism based on adap-
tive connections [5, 6], but also novel approaches that
take into account more accurately human behavioral re-
sponses.

Modeling the influence of human behavior in disease
spreading is an intense research topic [7–11]. In par-
ticular, individual prevention methods can considerably
reduce the overall incidence of a disease, but the acknowl-
edgement of the methods and the decision to adopt them
depend on behavioral factors. The latter have been mod-
eled using opinion dynamics [12–15], game-theoretical
approaches[16–19], spreading processes [20–25], risk per-
ception [26–30] and other approaches [10].

The risk perception approach considers that individu-
als become aware of an epidemics by noticing the pres-
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ence of infected individuals in their neighboring con-
tacts. Bagnoli and others [26] showed that individual
protection triggered by risk perception can stop an epi-
demics from spreading in several network topologies, in-
cluding a moment-diverging scale-free (provided that the
perception response is nonlinear). On the other hand,
awareness by spreading phenomenon models the word-
of-mouth propagation of an information about the epi-
demics. Funk and others [20] showed that, for an SIR
epidemics, the spreading of awareness through individ-
ual contacts could avoid an epidemic outbreak, whereas
a global awareness could only reduce the outbreak size,
but not stop it. Wu and others [27] also studied the in-
fluence of global awareness, risk perception and contact-
spreading awareness in an SIS epidemics, showing that
the local (but not the global) awareness could raise the
epidemic threshold. These works highlighted the impor-
tance of local information for controlling epidemics.

In more recent works, Granell et al. [21, 22] and Wang
et al. [23, 24] also studied spreading awareness in SIS and
SIR epidemic models, respectively. In these works, it was
shown that there can be an information outbreak either
triggered by itself or triggered by an epidemic outbreak,
thus depicting an “information without disease” stage on
the models’ phase diagrams. Due to this state, Granell
and collaborators [21] show that there is a metacritical
point for the epidemic threshold values, and that a global
source of information (regarded as a mass media cam-
paign) can eliminate this metacritical point, as it causes
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the awareness to be always present [22]. Besides, on the
SIR framework, Wang and collaborators [24] show that
there is an optimal information transmission rate that
minimizes the disease spreading.

Most of these works, however, consider that the epi-
demics and the awareness propagate and vanish at the
same timescale. This is a limitation, as many real-world
phenomena do not occur at the same rates. For in-
stance, the HIV infection and renewing cycle has a typi-
cal timescale of many years, whereas the information and
awareness about HIV can be spread and forgotten sev-
eral times during this period. Moreover, important dis-
coveries were obtained by flexibilizing relative timescales
between simultaneous processes. For example, Oliveira
and Dickman [31] determined that the competition be-
tween two biological species may be won by that with a
slower birth/death rate under certain environmental cir-
cumstances. Gómez and collaborators [32] showed that
the diffusion on a two-layer network can be possibly faster
than on each individual layer, if the diffusion time-scales
inside and between the layers are different. It may, there-
fore, be of great value to consider that epidemic spreading
and the propagating awareness about it occur at different
timescales.

Moreover, the models for epidemics and awareness pro-
posed until the present use simple models for the spread-
ing of awareness. Bagnoli [26] considers a fading aware-
ness, which looses its quality as it propagates and even-
tually extinguishes. Granell [21, 22] applies a simple SIS
epidemic model for the awareness, in which spreaders
stop propagating the information by forgetting it (anal-
ogous to the disease healing). These approaches capture
the essential phenomenology, but may be not as accurate
in reproducing the real-world behavior, in which people
may know the information but loose the interest in prop-
agating it. This can be considered using rumor models
[33–35], in which a compartment of individuals called
stiflers is used to represent people who does not want to
propagate the information that they have.

For the modeling of the interaction between epidemics
and awareness, as well as other interacting processes,
multilayer networks are a very useful tool [36–43]. In
particular, multilayers in which all layers have the same
number of nodes (often called multiplex networks) can be
used to model interacting phenomena that do not share
the same contact structure, so that each layer encodes the
contacts associated to the respective dynamics. Most of
the works on disease-behavior interaction that we men-
tioned previously on this paper use multiplexes for their
modeling.

Here we explore a model in which two processes co-
exist: the spreading of a disease and the dissemination
of awareness of the disease. Our model includes two new
ingredients. First, we increase the complexity of previous
models with respect to the dissemination of information
by considering the dynamics of the Maki-Thompson [44]
rumor model − instead of using the traditional dynam-
ics of disease spreading [21, 22]. Second, we introduce a

parameter that allows to control the relative timescales
between the disease and rumor propagation processes.
Results for scale-free networks show that the rumor dy-
namics can indeed reduce the epidemic prevalence. How-
ever, if we couple the characteristic time for awareness
diffusion with the state of individuals, namely, by consid-
ering that infected individuals take more time to inform
about its own infection, a counterintuitive behavior is re-
vealed: the prevalence increases with the rate at which
individuals become aware, despite the fact that fraction
of unaware individuals decreases. The latter mechanism
is important, as there are many diseases to which a simi-
lar behavior can be associated − e.g., HIV transmission,
where HIV-positive patients are often reluctant to volun-
tarily notify their sexual partners [45]. In what follows,
we present the model as well as some analytical insights
and results from numerical simulations. We round off the
paper by discussing our findings and presenting possible
applications to the modeling of real diseases.

II. THE MODEL

Our model considers the propagation of a disease in a
population, simultaneously to the spreading of informa-
tion about it, by which individuals become aware of the
disease and of prevention methods, reducing their conta-
gion probabilities. These two processes run in a double-
layer multiplex network: one layer for the disease spread-
ing and another one for the information awareness to hold
the disease. As of the definition of a multiplex [36], each
layer has the same number of nodes, and there is a one-
to-one link between the nodes in different layers. In this
sense, we identify each pair of linked nodes from each
layer as the same “individual”; the only difference from
one layer to the other one lies in the structure of con-
nections inside the layers. The links on the “epidemic
layer” represent contacts that can possibly transmit the
disease, whereas links on the “informational layer” rep-
resent pairs of individuals that share information with
each other, like in social online networks.

A. Baseline model

The model for the epidemic spreading adopted here is
a reactive SIS (susceptible-infected-susceptible) compart-
mental model [1, 2] in which, at each time step ∆t = 1
of the dynamics, each infected (I) node tries to transmit
the disease to each of its susceptible (S) neighbors on
the epidemic layer with probability β, and then tries to
recover with probability µ.

For the spreading of information awareness to prevent
the transmission we use a cyclic Maki-Thomson rumor
model in complex networks [46], which we call UARU
(unaware-aware-stifler-unaware). Notice that the latter
R here is used for the stifler compartment to avoid con-
fusion with the susceptible (S) state in the SIS model. A
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FIG. 1. Schematic illustration showing the states of the nodes
in the network and the associated transition probabilities be-
tween states, indicated by the Greek letters.

stifler is an informed node who does not propagate the
information anymore. When an aware (spreader) node
contacts an unaware (ignorant) neighbor in the informa-
tional layer, it tries to pass the rumor about the disease.
If the contacted neighbor, however, is an aware or stifler
node, the node that makes the contact becomes stifler.
A stifler individual can also forget the information about
the disease transmission, becoming ignorant about the
disease transmission again. We again use a discrete time
approach [47] by considering a reactive formulation in
which, at each time step ∆t = 1, each aware (A) node
first tries to inform each of its unaware (U) neighbors
with probability γ, and then becomes a stifler (R) with
probability σ. Besides, each stifler node becomes igno-
rant (U) with probability α.

By combining the epidemic and the informational
states of each node, we can describe the overall state
of each individual. In our model, we have six different
states, i.e., SU (susceptible and unaware), SA (suscep-
tible and aware), SR (susceptible and stifler), IU (in-
fected and unaware), IA (infected and aware) and IR
(infected and stifler). Using these overall states, we de-
fine the interaction between the epidemics and awareness
by adding two new features. First, a susceptible node
that is informed (aware or stifler) will reduce its conta-
gion probability by a factor Γ (with 0 ≤ Γ < 1) for each
contact, meaning that it will get the disease from each
of its infected neighbors with probability Γβ (less than
β). Such a feature represents the adoption of prevention
methods against the disease. Second, an additional tran-
sition called self-awareness is considered: if not informed
by a neighbor, an infected-unaware (IU) node can, during
the same time step, become aware with probability κ, by
knowing its own condition. This process simulates the
case in which an infected subject recognizes the symp-
toms of the disease and becomes aware of the infection.

The following reaction equations - representing respec-
tively the (1) infection of an unaware susceptible, (2) in-
fection of an aware susceptible, (3) infection of a stifler

susceptible and (4) healing of an infected node - describe
all possible epidemic transitions (where x is used to rep-
resent an arbitrary informational state):

SU + Ix
β−→ IU + Ix, (1)

SA+ Ix
Γβ−→ IA+ Ix, (2)

SR+ Ix
Γβ−→ IR+ Ix, (3)

Ix
µ−→ Sx. (4)

The informational transitions - respectively (5) infor-
mation of an unaware node, (6) self-awareness of an in-
fected unaware, (7) “stifling” of an aware node by con-
tacting another aware node, (8) “stifling” of an aware via
contact with a stifler and (9) forgetting of the information
- are represented by these equations (x and y represent
arbitrary epidemic states):

xU + yA
γ−→ xA+ yA, (5)

IU
κ−→ IA, (6)

xA+ yA
σ−→ xR+ yA, (7)

xA+ yR
σ−→ xR+ yR, (8)

xR
α−→ xU. (9)

Figure 1 presents the possible transitions between the
six states, grouped according to the epidemic and infor-
mational dynamics.

The timescale of the model is controlled according to a
defined probability. With probability π, only the rumor
transitions (awareness, self-awareness, stifling and forget-
ting) can happen during the current time step. With the
complementary probability (1− π), the epidemic transi-
tions (infection and recovering) can occur. By setting the
value of π, it is possible to emulate different timescales
between the two processes. For instance, a value of π
close to 1.0 means that the rumor propagates much faster
than the infectious agent.

B. Modified model

Besides the baseline model that we have described, we
propose a minor modification that can generate some un-
expected behaviors. We extend the idea of self-awareness
to stifler nodes, considering that a stifler, which is also
infected by the disease, is less likely to forget the informa-
tion. That is, a node who knows about its own infection
does not inform other nodes and also impair the trans-
mission of other nodes, creating additional stiflers around
it. This behavior is approximately observed in the case
of HIV transmission, in which some infected individuals
knows about its own infection but do not voluntarily no-
tify their sexual partners [45], acting as infected-stiflers.
We include this feature by reducing the probability that
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an infected-stifler node forgets the information by a fac-
tor of (1−κ) (so that the self-awareness parameter also re-
duces the rate at which infected-stiflers become infected-
unaware). We refer to this version of the model as modi-
fied model, whereas the version without this modification
is referred to as baseline model.

In the following section, we describe our results with
both baseline and modified models.
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FIG. 2. Stationary density of infected nodes ρ∗I (disease preva-
lence) as a function of the disease propagation probability
(β), for different values of γ, Γ and π, using the baseline
model. For π = 0.5, the rumor spreading and the epidemic
propagation have the same time scale, whereas for π = 0.1
(0.9) rumor events are slower (faster) than the events of the
epidemic process. The solid lines are Markov chain calcula-
tions (see appendix), whereas symbols are results from Monte
Carlo simulations. Other parameters of the model are set to:
µ = 0.9, α = 0.6, κ = 0.5 and σ = 0.6.

III. RESULTS

We performed extensive Monte Carlo (MC) simula-
tions of the dynamics described in the last section, where

we considered a multiplex network composed by two lay-
ers with scale-free organization and N = 1000 nodes
each. Each layer was generated independently by using
the configuration model [48] with power-law exponent
γsf ≈ −2.5 and minimum degree kmin = 4, with a re-
sulting average degree 〈k〉 ≈ 7.4 in each layer. The node
correspondence between the two layers is done at ran-
dom, generating thus no relevant degree correlation for
corresponding nodes in each layer. In order to further
study the model, we also developed a Markov chain ap-
proach that consists of solving a set of fixed point equa-
tions that provide the stationary fractions of nodes in
each state. The Markov chain method is described in the
appendix at the end of this paper.

In figure 2, the stationary density of infected nodes
ρ∗I (prevalence) is plotted against the infection probabil-
ity β, for different values of the parameters γ (informa-
tion spreading probability), Γ (immunization factor for
informed nodes) and π (relative time scale). For this
first analysis, we only used the baseline model. Sym-
bols represent the results from MC simulations of the
model, while solid lines correspond to the solution of the
Markov chain approach. To calculate stationary densities
by MC simulations, we run the dynamics for T = 1200
time steps, ignore the first 400 time steps and calculate
the average fraction of nodes in the desired state over
the remaining 800 steps. Each data point corresponds to
an average over 103 independent realizations of the dy-
namics. At the initial state of each realization, 20% of
the nodes are randomly chosen and assigned the state IA
(infected-aware), whereas the remaining 80% of nodes
are set to the SU state (susceptible unaware). For the
Markov chain calculations, initially each node begins the
process with probability piIA(0) = 0.2 for the infected-
aware state and piSU (0) = 0.8 for the susceptible-unaware
state, with the remaining state probabilities being set to
zero.

Analyzing figure 2, we can first check that the informa-
tion about the disease helps in both reducing the preva-
lence and increasing the epidemic threshold, by com-
paring curves with different values for the information
spreading probability γ. Moreover, the prevalence is de-
creased when the immunity provided by the awareness is
total (Γ = 0.0) rather than partial (Γ = 0.5). However,
the prevalence is also increased if the relative timescale π
is greater, i.e., when the transitions of the rumor process
are faster than those of the epidemic process. This is an
intriguing result as, intuitively, we expect that a faster
informational process should be more efficient in prevent-
ing the disease spreading. We believe that an insight into
this counterintuitive effect can be obtained by studying
simpler versions of the present model within a mean-field
approach, which we left for future work.

To investigate in more detail how the variation of
the relative timescales between the two processes affects
the prevalence, we consider the behavior of the infected,
aware, stifler and unaware stationary densities as a func-
tion of the parameter κ (probability of self-awareness for
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FIG. 3. Stationary densities of nodes in states I (infected),
A (aware), R (stifler) and U (unaware) normalized by their
values when there is no self-awareness (at κ = 0) as a function
of κ, for (a) π = 0.1 (slow rumor spreading) and (b) π = 0.9
(fast rumor spreading). The baseline model was used for this
figure. Squares are the results of Monte Carlo simulations,
whereas the solid lines are Markov chain calculations (see the
appendix). The dotted lines are guides to the eyes. Other
parameters are set to: β = 1.0, µ = 0.9, γ = 0.5, α = 0.6,
Γ = 0.0 and σ = 0.6.

an infected-unaware node). Figure 3 shows these sta-
tionary densities for two different values of π, yet for the
baseline model. Each curve is normalized by its value
when there is no self-awareness (i.e., κ = 0). We no-
tice that, in both cases, the self-awareness is beneficial
to the disease prevention, as the densities of aware (A)
and stifler (R) nodes increase, thus reducing the density
of unaware (U) nodes and the disease prevalence (I). Fig-
ure 3 also shows good agreement between Markov chain
method and Monte Carlo simulations.

The picture changes if we consider the modified model,
described in section II B. Figure 4 shows the same plot as
in figure 3 for the modified model, also with Monte Carlo
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FIG. 4. Normalized stationary densities vs κ using the modi-
fied model (see text), for (a) π = 0.1 (fast epidemic spreading)
and (b) π = 0.9 (fast rumor propagation). Squares and solid
lines correspond to MC simulations and the Markov chain ap-
proach, respectively. Parameter values are the same as those
in Fig. 3.

and Markov chain simulations. For π = 0.1, as it happens
in the baseline model, both densities of aware and stifler
nodes increase with κ. However, for π = 0.9, when the
rumor propagates faster than the disease, the fraction of
aware (A) nodes decreases with κ, whereas the fraction
of stiflers (R) increases very rapidly with κ. This means
that the propagation of the information is hindered by
the self-awareness of infected stiflers, as they resist to
forget the information (unaware) and then become aware
(spreaders) again. Notice that, although the stifler pop-
ulation increases in comparison to the aware population,
the density of unaware nodes still decreases with κ, mean-
ing that less individuals are unprotected from the disease.
Nevertheless, the prevalence (I) increases with κ in this
case.

This is another counterintuitive result, because the dis-
ease prevalence is greater even though the unaware popu-
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FIG. 5. Stationary densities for the susceptible nodes as a
function of the self-awareness probability κ, normalized by
their values with κ = 0, using the modified model, for different
values of the timescale parameter π. The increasing on SU
population with κ for π = 0.9 helps explaining the behavior
in Fig. 4. Other parameters are set to: β = 1.0, µ = 0.9,
γ = 0.5, α = 0.6, Γ = 0.0 and σ = 0.6.

lation is smaller. To understand this, we look at the sus-
ceptible population: if most susceptible individuals are
unaware of the disease, the information is concentrated
at infected nodes and thus is not effective in controlling
the disease. In figure 5, we study the relative distribu-
tion of the susceptible population between unaware (SU),
aware (SA), stifler (SR) and the combination of the pre-
vious two (SA + SR), using the modified model only. For
the case of slower information (π = 0.1), the fraction of
informed susceptible nodes (SA, SR) increases with κ, as
expected. However, when π = 0.9, the opposite happens:
the fraction of SA and SR decreases and the fraction of
susceptible-unaware (SU) nodes increases, meaning that
the fraction of susceptible nodes that are protected by
the information decreases with κ in this case. There-
fore, even if the unaware population is reduced with κ
(as reported in figure 4.b), the information is actually

concentrated at infected individuals, making the protec-
tion inefficient. In other words, the fraction of informed
individuals always increases with κ but, for large π, sus-
ceptible individuals become less informed as κ increases,
and thus the number of infections increases.

Hence, we conclude that the timescale, controlled by
the parameter π, plays a fundamental role on the preva-
lence, meaning that the relative timescale between epi-
demics and information determines if the self-awareness
is beneficial or not for the disease prevention. We also
study how the parameter π changes the behavior of the
prevalence with κ on the modified model, by analyzing
the prevalence ρ∗I vs κ curves for eleven different values of
π. Figure 6 shows such curves, normalized by the value
of the prevalence when κ = 0.

By analyzing the plots in figure 6, we can conceive the
influence of the timescale. For small π (faster epidemics,
slower information), the prevalence exhibits its normal
decreasing behavior with κ for both baseline and modi-
fied models. On the other hand, for larger π (slower epi-
demics, faster information), the curves for the modified
model flip their slope for larger κ values, whereas they
maintain the same behavior for the baseline model. This
means that, when the informational processes are con-
siderably faster than the disease transmission, the self-
awareness process can generate too many stiflers and im-
pair the information spreading, increasing the prevalence.
For both baseline and modified models, the timescale
plays an important role on determining the effectiveness
of the information on reducing the disease prevalence.

The results presented so far were taken using a pair
of scale-free (SF) networks. One natural question is
whether the observed phenomena are due to the particu-
lar topology that we used. To answer that, we simulated
the (modified) model using combinations of two other
topologies: the Watts-Strogatz (WS)[49] and Erdős-
Rényi (ER)[50] models. The ER layers were generated
with connection probability p = 0.008, which produces
an average degree of 〈k〉 ≈ 8 (for N = 1000 nodes). The
WS layers were generated with average degree 〈k〉 = 8
and rewiring probability pr = 0.01, which produces layers
with average clustering coefficient C ≈ 0.47 and average
shortest path length l ≈ 5. For the simulations, we used
the following pairs of epidemic/informational (in this or-
der) layers: ER/ER, ER/SF, ER/WS, WS/WS, SF/WS
and the previously used SF/SF pair.

Figure 7 shows the results of Markov chain calculations
using other topologies. On the upper plot, we show the
prevalence as a function of the self-awareness parameter
κ, for a high value of the timescale (π = 0.9, meaning
faster informational processes). On the lower plot, we
show the prevalence as a function of the timescale param-
eter π for a fixed value (κ = 0.8) of the self-awareness.
All prevalence values are normalized by the first value
of the sequence. For all pairs of topologies, the basic
results that we presented before - the increasing of the
prevalence with π and the reversed behavior with κ for
high values of π are consistently preserved.
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FIG. 6. Normalized disease prevalence ρ∗I(κ)/ρ∗I(κ = 0) vs
κ for the (a) baseline and (b) modified models. The values
of the timescale parameter π increase from the darker to the
brighter color, showing how the curves change their behavior
with κ as π increases. Other parameters are set to: β = 1.0,
µ = 0.9, γ = 0.5, α = 0.6, Γ = 0.0, σ = 0.6.

IV. EPIDEMIC CRITICAL POINT AND PHASE
DIAGRAMS

Following the procedure proposed in [47], we can calcu-
late the epidemic critical point for our model. We show in
appendix B that the phase transition curve between the
endemic and the healthy state is, for both baseline and
modified models, given by β/µ = (Λmax(H))−1, where
the elements of matrix H are defined as:

Hij = [1− (piA + piR)(1− Γ)]Aij (10)

Where Aij is the epidemic layer adjacency matrix and
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ρ
∗ I
(0

)

SF/SF
ER/ER
ER/SF
ER/WS
WS/WS
SF/WS
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1.8

2.0

2.2

ρ
∗ I
(π

)/
ρ
∗ I
(0
.0

1
)

SF/SF
ER/ER
ER/SF
ER/WS
WS/WS
SF/WS

FIG. 7. Markov chain calculations of the normalized preva-
lence for the modified model, using different pairs of network
models between the configurational scale-free (SF), Erdős-
Rényi (ER) and Watts-Strogatz (WS) models. On the up-
per plot, the prevalence is shown as a function of the self-
awareness parameter (κ) for a fixed value of π = 0.9, and on
the lower plot it is shown as a function of π for a fixed value
of κ = 0.8. Other parameters are set to the same values as in
figure 6.

Λmax represents the greatest eigenvalue. This result is the
same as in the model from Granell with no mass media
[21], only replacing the probability that node i is simply
aware piA by the probability that it is “protected” piA +
piR, whose value is calculated by solving the awareness
equations without epidemics.

One first notorious fact is that the epidemic critical
point does not depend on the relative timescale π, as it
does not change the individual “forces” of the epidemic
and informational processes. It also does not depend on
κ, as self awareness is irrelevant when the prevalence is
very small.

Figure 8 shows the phase transition curves in the β x
γ plane, for four different values of the protection factor
Γ. At the left of each curve lies the healthy phase (no
disease in stationary state), whereas the endemic phase
(ρ∗I > 0) is at the right. On the inset, we show how the
epidemic critical point depends on the protection factor
Γ.

One of the main differences to the simpler SIS/UAU
model presented by Granell and others[21] is that the
“metacritical” point is not present, thus resembling the
similar model with mass media presented in [22] by the
same authors. This happens because the rumor model
UARU has no phase transition, i.e., there is always a frac-
tion of nodes that is aware. Therefore, our SIS/UARU
model presents only two phases: healthy and endemic,
lacking a phase in which both disease and information
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FIG. 8. Phase diagram of the model, showing the phase tran-
sition curve between the healthy and endemic phases for dif-
ferent values of Γ. The inset shows the critical epidemic trans-
mission probability β as a function of the protection factor Γ,
for different values of the information transmission probabil-
ity γ. The diagram is the same for the modified and baseline
models, and does not depend on π and κ. Other parameters
are set to: µ = 0.9, α = 0.6, σ = 0.6.

are extinct.
In our model, therefore, the population can be either

informed and healthy or informed and endemic. Al-
though information exists even without disease, the den-
sity of informed individuals is enhanced by the presence
of disease (provided that there is self-awareness), as it
can be seen in figures 3 and 4.

V. CONCLUSIONS

We have analyzed the effect of information awareness
to prevent the transmission of disease in multiplex net-
works. We have considered the Maki-Thompson rumor
model for the propagation of the information, which in-
corporates a forgetting mechanism not included in pre-
vious related models. Besides, the rumor and disease
spread at the same time but under different timescales
that control the relative speeds of these two processes.
We have verified that the information helps to reduce
the prevalence and increase the epidemic threshold of
the disease. We have also observed that self-awareness,
which keeps infected individuals aware of their condi-
tion, is a very effective mechanism for reducing the dis-
ease prevalence. However, in the case that the informa-
tion spreads much faster than the disease, large values
of self-awareness can lead to the counterintuitive result
of a higher prevalence. This happens because the self-
awareness can generate such an excessive number of sti-
flers that impair the propagation of information, with the
overall effect of increasing the prevalence. Therefore, the
relative timescales between the information and infection

processes determines whether the information awareness
is beneficial or not for the magnitude of the epidemics. In
this way, our work highlights the important role played
by infected individuals who help spreading the informa-
tion about the disease, reducing the disease transmission
and the outbreak.

Although our results are obtained only by numerical
simulations on multiplex networks, we show that the re-
sults are robust with respect to the topology, suggest-
ing that they can be extended even for homogeneously
mixed populations. The topology, therefore, may gener-
ate quantitative effects, but not change the qualitative
behavior of the model. We finally investigated the epi-
demic critical behavior, comparing it to previous models
on the literature. Although the relative timescale (con-
trolled by π) has an important influence on the disease
prevalence and its behavior with the model parameters,
it does not affect the epidemic threshold.

Our investigations can also be extended by considering
other dynamics for rumor and disease spreading, as well
as networks presenting assortativity and community or-
ganization. As a general conclusion, this work provides
a motivation for studying other interacting processes us-
ing flexible timescales. It could be of great value for the
community to understand when the results and critical
behavior of dynamical processes are affected or not by
timescale differences between each process.
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moción Cieńıtfica y Tecnológica (PICT 2016 Nro 201-
0215). Y.M. also acknowledges partial support from In-
tesa Sanpaolo Innovation Center. The funders had no
role in study design, data collection, and analysis, deci-
sion to publish, or preparation of the manuscript.



9

Appendix A: Markov chain approach for the
SIS/UARU model

In order to predict the behavior of the model in a
double-layer network, we develop a microscopic Markov
chain approach to write dynamical equations for relevant
probabilities of our system. For that purpose, we follow
the methodology described in [47].

For each node i of the network and for each time stamp
t, the probabilities that it is in each possible state of the
model is defined as p. Such state can either be from a
single process (e.g., piI(t) is the probability that node i is
infected (I) at time t) or a “composite” state (e.g., piSU (t),
piIA(t), etc.). For convenience, we label the corresponding
nodes in different layers with the same number.

The first step is to build the transition trees for all
possible changes of states and their respective transition
probabilities. For each tree, we represent the root as
one of the possible composite states of a node (SU, SA,
SR, IU, IA and IR) at time t, and the leaves at each of
the possible resulting states at time t + 1, starting from
the state at time t. The branches represent each of the
possible transitions. The probabilities of such transitions
are written above the corresponding branches.

As described previously for the numerical simulations,
we separate the transitions into two groups - the epidemic
and informational - and only one of the transitions groups
is performed in a time step. Figure 9 shows the trees for
the SIS/UARU model. The baseline model corresponds
to all the factors in black. The modified model has the
same factors of the baseline model, except for the IR →
IU transition, in which the correct factors are displayed
in red. The modification is interpreted as a reduction on
the forgetting probability for IR nodes.

The probability of each event on the informational side
of figure 9 is multiplied by π, which is the probability
that the informational group is chosen to be updated in
the current time step. On the other hand, probabilities
from the epidemic side carry a factor of 1−π. Therefore,
for instance, the probability that an infected-aware (IA)
node gets healed and becomes susceptible-aware (SA) is
of (1−π) ·µ, following the corresponding probability tree
on the epidemic group.

The transition probabilities for processes which involve
contact with neighboring nodes, namely qiU (infection
of an unaware node), qiA (infection of an aware node),
riU (awareness by contacting an aware neighbor) and riA
(“stifling” - lost of interest) are defined by the following

Information ( π ) Epidemics ( 1 –   π )

SU
SA

SU

SA
SR

SA

IU
IA

IU

IA
IR

IA

IA
IU

SU
IU

SU

SA
IA

SA

IU
SU

IU

IA
SA

IA

SR
SU

SR

IR
IU

IR

SR
IR

SR

IR
SR

IR

FIG. 9. Probability trees with all the possible transitions
for each state. The informational group has an associated
probability of π, whereas the epidemic group carries the com-
plementary probability 1 − π. For the modified model, the
IR → IU transition follows the factors in red (instead of the
ones in black).

set of equations:

qiU = 1−
∏
j

(1−Aij pjI β), (A1)

qiA = 1−
∏
j

(1−Aij pjI Γβ), (A2)

riU = 1−
∏
j

(1−Bij pjA γ), (A3)

riA = 1−
∏
j

(1−Bij (pjA + pjR)σ) (A4)

where Aij and Bij represent the adjacency matrices
for the epidemic and informational layers, respectively.
Here, we point out that our goal is to study the station-
ary state of the system, in which all probabilities do not
change in time. Therefore, the time label t of all proba-
bilities defined here (e.g, piSU (t), riU (t)) were removed.

Based on the transition trees drawn in Fig. 9, we can
write down the Markov chain equations for the probabil-
ities of each node i being in each of the six compartments
(SU, SA, SR, IU, IA, IR) of the model as a fixed point
set of equations, in which the time dependence is already
removed:
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piSU = piSU [π(1− riU ) + (1− π)(1− qiU )] +

+ piSR[πα] +

+ piIU [(1− π)µ] (A5)

piSA = piSU [πriU ] +

+ piSA[π(1− riA) + (1− π)(1− qiA)] +

+ piIA[(1− π)µ] (A6)

piSR = piSA[πriA] +

+ piSR[π(1− α) + (1− π)(1− qiA)] +

+ piIR[(1− π)µ] (A7)

piIU = piSU [(1− π)qiU ] +

+ piIU [π(1− riU )(1− κ) + (1− π)(1− µ)] +

+ piIR[πα(1− κ)] (A8)

piIA = piSA[(1− π)qiA] +

+ piIU [π(riU + (1− riU )κ)] +

+ piIA[π(1− riA) + (1− π)(1− µ)] (A9)

piIR = piSR[(1− π)qiA] +

+ piIA[πriA] +

+ piIR[π(ακ+ 1− α) + (1− π)(1− µ)] (A10)

Equations A6 to A10 represent the baseline model. For
the modified model, in which the IR → IU has a mod-
ified probability, equations A8 and A10 are respectively
replaced by:

piIU = piSU [(1− π)qiU ] +

+ piIU [π(1− riU )(1− κ) + (1− π)(1− µ)] +

+ piIR[πα] (A11)

piIR = piSR[(1− π)qiA] +

+ piIA[πriA] +

+ piIR[π(1− α) + (1− π)(1− µ)] (A12)

We solve the system of 6N equations (where N is the
number of nodes on the network) by the fixed point
method, in which the LHS values are updated by ap-
plying previous values at the RHS expressions. As ex-
plained in the main text, the initial conditions are set to:
piIA = 0.2, piSU = 0.8 and piIU = piIR = piSA = piSR = 0,
for i = 0, 1, ..., N−1. The solutions of these equations are
shown in figures 2, 3 and 4 as solid lines, where we can see
a good agreement between the Markov chain predictions
and Monte Carlo simulations.

Appendix B: Epidemic critical point

From the Markov chain equations, we can derive the
epidemic critical point between the healthy and the en-
demic phases. The basic idea is to analyze the stability
of the healthy solution piI = 0, i = 1, 2, ..., N , using a
perturbative approach.

We first add equations A8 to A10 to obtain the evolu-
tion of the probability piI = piIU + piIA + piIR that node i
is infected:

piI = (1− π)[piI(1− µ) + piSUq
i
U +

+ (piSA + piSR)qiA] + πpiI (B1)

Notice that this equation holds both for the baseline
and modified models, as the informational terms add up
to πpiI in any case. We now use the following approxi-
mation for the qiU and qiA transition probabilities, which
is valid when piI is sufficiently small for any node i:

qiU ≈ β
∑
j

Aijp
j
I (B2)

qiA ≈ Γβ
∑
j

Aijp
j
I (B3)

Rewriting equation B1 with these approximations
yields:

piI ≈(1− π)
{
piI(1− µ) + β [piSU+

+ Γ(piSA + piSR)]
∑
j

Aijp
j
I

}
+ πpiI (B4)

Sending the terms with piI to LHS and leaving the
terms with

∑
j Aijp

i
I on the RHS, we end up with the

following self-consistent relation for piI , which does not
depend on the timescale π:

piI ≈
β

µ
[piSU + Γ(piSA + piSR)]

∑
j

Aijp
j
I (B5)

Equation B5 is a matrix equation of the shape −→p =
(β/µ)H−→p . The trivial solution piI = 0 for every node i
is stable on equation B5 if all eigenvalues of the matrix
H, with elements defined as:

Hij =[piU + Γ(piA + piR)]Aij =

=[1− (piA + piR)(1− Γ)]Aij (B6)

Are not greater than µ/β. Noticed that we also ap-
proximated piU = piSU + piIU ≈ piSU , and the same for A
and R compartments. Therefore, the expression for the
healthy/endemic phase transition curve is:

β

µ
=

1

Λmax(H)
(B7)

The values of piA and piR can be found by solving the
Markov chain equations for the informational model only,
with no interference of the disease.



11

[1] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and
A. Vespignani, Rev. Mod. Phys. 87, 925 (2015).

[2] G. F. de Arruda, F. A. Rodrigues, and Y. Moreno,
Physics Reports 756, 1 (2018).

[3] Z. Wang, C. T. Bauch, S. Bhattacharyya, A. d’Onofrio,
P. Manfredi, M. Perc, N. Perra, M. Salathé, and D. Zhao,
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