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Abstract—The problem of characterizing testable graph prop-
erties (properties that can be tested with a number of queries
independent of the input size) is a fundamental problem in the
area of property testing. While there has been some extensive
prior research characterizing testable graph properties in the
dense graphs model and we have good understanding of the
bounded degree graphs model, no similar characterization has
been known for general graphs, with no degree bounds. In this
paper we take on this major challenge and consider the problem
of characterizing all testable graph properties in general planar
graphs.

We consider the model in which a general planar graph can be
accessed by the random neighbor oracle that allows access to any
given vertex and access to a random neighbor of a given vertex.
We show that, informally, a graph property P is testable with
one-sided error for general planar graphs if and only if testing
P can be reduced to testing for a finite family of finite forbidden
subgraphs. While our presentation focuses on planar graphs, our
approach extends easily to general minor-free graphs.

Our analysis of the necessary condition relies on a recent
construction of canonical testers in the random neighbor oracle
model that is applied here to the one-sided error model for testing
in planar graphs. The sufficient condition in the characterization
reduces the problem to the task of testing H-freeness in planar
graphs, and is the main and most challenging technical contribu-
tion of the paper: we show that for planar graphs (with arbitrary
degrees), the property of being H-free is testable with one-sided
error for every finite graph H , in the random neighbor oracle
model.

Index Terms—property testing; H-freeness; general planar
graphs; minor-free graphs; constant-time algorithms;

I. INTRODUCTION

The fundamental problem in the area of graph property
testing is for a given undirected graph G to distinguish if G
satisfies some graph property P or if G is ε-far from satisfying
P , where G is said to be ε-far from satisfying P if an ε-
fraction of its representation should be modified in order to
make G satisfy P . The notion of testability of combinatorial
structures and of graphs, has been introduced by Goldreich et
al. [17], who have shown that many natural graph properties
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such as k-colorability or having a large clique are testable, that
is, have a tester, whose query complexity, that is, the number
of oracle queries to the input representation (in [17], to the
graph adjacency matrix) can be upper bounded by a function
that depends only on the property P and on ε, the proximity
parameter of the test, and is independent of the size of the input
graph G. This has been later extended to show that testability
in the dense graph model (of [17]) is closely related to the
graph regularity lemma as one can show that a property is
testable (with two-sided error) if and only if it can be reduced
to testing for a finite number of regular partitions [2]; for
one-sided error testing, it has been shown that a property is
testable if and only if it is hereditary or close to hereditary [6].
In particular, we know that subgraph freeness is testable with
one-sided error in this model (see, e.g., [5]). We also know of
similar logical characterization of families of testable graph
properties (for example, every first-order graph property of
type ∃∀ is testable, while there are first-order graph properties
of type ∀∃ that are not testable [1]).

While for many years the main efforts in property testing
have been concentrated on the dense graph model, there has
been also an increasing amount of research focusing on the
bounded degree graph model introduced by Goldreich and Ron
[18], the model more suitable for sparse graphs. For example,
while it is trivial to test the subgraph freeness with one-sided
error in this model, testing H-minor freeness is more complex,
and is possible with constant query complexity only if H is
cycle-free [10]; if H has a cycle, then Ω̃ε(

√
n) queries are

required and effectively sufficient [10], [15]. Among further
highlights, it is known that every hyperfinite property is
testable with two-sided error [25] (see also [8], [12], [19]).

Rather surprisingly, much less is known for general graphs,
that is, graphs with no bound for the maximum degree (see,
e.g., [16, Chapter 10]). The model has been initially studied
by Kaufman et al. [22], Parnas and Ron [26], and Alon et al.
[3], where the main goal was to study the trade-off between
the complexity for sparse graphs with that for dense graphs (it
should be noted though that these papers were using a slightly
different access oracle to the input graph). These results show
that most of even very basic properties are not testable.



Czumaj et al. [11] addressed a related question in this model,
and show that in fact if one restricts the input graphs to be
planar (but without any constraints on the maximum degree),
then the benchmark problem of testing bipartiteness is testable
in the random neighbor query model. In a similar vein, Ito [21]
extended the framework from [25] and show that all graph
properties are testable for a certain special class of multigraphs
called hierarchical-scale-free multigraphs. Still, despite these
few results and despite its natural importance, our understand-
ing of graph property testing for degree-unconstrained graphs
is very limited. In this paper we take on this major challenge
and consider the problem of characterizing all testable graph
properties in general planar graphs. We consider the model in
which a general planar graph can be accessed by the random
neighbor oracle that allows access to any given vertex and
access to a random neighbor of a given vertex. We show
that, informally, a graph property P is testable with one-sided
error for general planar graphs if and only if testing P can
be reduced to testing for a finite family of finite forbidden
subgraphs. While our presentation focuses on planar graphs,
our approach extends easily to general minor-free graphs.

The central combinatorial problem considered in this paper
is that of subgraph detection. The question of identifying
frequent subgraphs in big graphs is one of the most funda-
mental problems in network analysis, extensively studied in the
literature. It has been empirically shown that different classes
of networks have the same frequent subgraphs and they differ
for different network classes [24]. In this context, frequently
occurring subgraphs are also known as network motifs [24].
This raises the question how quickly we can identify the motifs
of a given network. Recent work approaches this question by
approximating the number of occurrences of certain subgraphs
using random sampling [14], [15], [20]. In this paper, we will
study the corresponding property testing question: Can we
distinguish a graph that has no copies of a predetermined
subgraph H from a graph in which we need to remove more
than an ε-fraction of its edges in order to obtain a graph that
contains no copy of H . This question has received a lot of
attention in the property testing setting and it is known that
subgraph freeness can be tested with a constant number of
queries both in the dense graph model (see, e.g., [5]) and in the
bounded degree graph model, where testing subgraph freeness
is simple. The problem of testing subgraph freeness has also
been studied in the setting of general graphs [3], where the
authors give a lower bound of Ω(n1/3) queries for testing
triangle freeness, which can be extended to other non-bipartite
subgraphs. They also give an upper bound of O(n6/7) queries.
We continue this line of research, but will put our focus on
sparse graphs, i.e., graphs with bounded average degree. Since
it seems that for many properties we cannot hope for extremely
efficient, that is, testing algorithms with a constant number of
queries in general graphs (often a hard example is a clique on√
n vertices), we focus our attention on planar graphs. It has

been only recently shown that bipartiteness in planar graphs
can be tested with a constant number of queries [11]. Our
result can be viewed as a major extension of that result: we

prove that for every fixed graph H , the property of H-freeness
can be tested with a constant number of queries. Our approach
extends to general minor-free graphs.

A. Basic notation

Before we proceed with detailed description of our results,
let us begin with some basic definitions.

Throughout the paper we use several constants depending on
H (forbidden subgraph) and ε. We use lower case Greek letters
to denote constants that are typically smaller than 1 (e.g.,
δi(ε,H)) and lower case Latin letters to denote constants that
are usually larger than 1 (e.g., fi(ε,H)). All these constants
are always positive. Furthermore, throughout the paper we use
the asymptotic symbols Oε,H(·), Ωε,H(·), and Θε,H(·), which
ignore multiplicative factors that depend only on H and ε and
that are positive for ε > 0.

Throughout the paper, for any set of edge-disjoint subgraphs
S of G = (V,E), we write G[S] to denote the graph with
vertex set V and edge set being the set of edges from the sets
in S .

Property testing and H-freeness: A graph property P is
any family of graphs closed under isomorphism. (For example,
bipartiteness is a graph property P defined by a family of all
bipartite graphs.) We are interested in finding an algorithm
(called tester) for testing a given graph property P , i.e., an
algorithm that inspects only a very small part of the input
graph G, and accepts if G satisfies P with probability at least
2
3 , and rejects G if it is ε-far away from P with probability at
least 2

3 , where ε is a proximity parameter, 0 ≤ ε ≤ 1. We say
a simple graph G is ε-far from P if one has to delete or insert
more than ε|V | edges from G to obtain a graph satisfying P1.

The main focus of this paper is on the study of testers with
one-sided error, that is, testers that always accept all graphs
satisfying P and can err only for graphs ε-far from P . (In
contrast, two-sided error testers can err (with probability at
most 1

3 ) both for graphs ε-far from P and for graphs satisfying
P .)

The main graph properties considered in this paper are
related to forbidden subgraphs. Throughout the entire paper
we will fix H = (V (E), E(H)) to be an arbitrary, simple,
finite undirected graph. The notion of a graph H being finite
means that its size is constant, though we will allow the
constant to be a function of ε, the proximity parameter for

1Similarly as in [11], we notice that the standard definition of being ε-
far (see, e.g., the definition in [16] or [22]) expresses the distance as the
fraction of edges that must be modified in G to obtain a graph satisfying
P; comparing this to our definition, instead of modifying ε|V | edges, one
modifies ε|E| edges. In this paper we prefer to use the definition with ε|V |
edge modifications because our focus is on the study of sparse graphs, graphs
with |E| = O(|V |). Indeed, for any class of planar graphs or graphs with an
excluded minor, which are the main classes of graphs studied in this paper,
the number of edges in the graph is upper bounded by O(|V |). Moreover,
unless the graph is very sparse (i.e., most of its vertices are isolated, in which
case even finding a single edge in the graph may take a large amount of
time), the number of edges in the graph is Ω(|V |). Thus, under the standard
assumption that |E| = Ω(|V |), the ε in our definition and the ε in the previous
definitions remain within a constant factor. We use our definition of being ε-
far for simplicity; our analysis can be extended to the standard definition in
a straightforward way.



property testing, which will be clear from the context. (That
is, for a given graph property P and a proximity parameter ε,
0 < ε < 1, we will say that a graph H is finite (for P and ε)
if there is s = s(ε) = Oε(1), such that |V (H)| ≤ s for every
n ∈ N.)

We say that a given graph G is H-free if G does not contain
a copy of H . Following the definition above, we say that a
simple graph G is ε-far from H-free if one has to delete more
than ε|V | edges from G to obtain an H-free graph.

Our definitions extends to families of forbidden graphs in
a natural way. If H is a finite family of finite graphs, then a
given graph G is H-free if for every H ∈ H, G is H-free.
Similarly, G is ε-far from H-free if for every H ∈ H, G is
ε-far from H-free. Further, notice that if H is a finite family
of finite graphs then since each H ∈ H is of size Oε(1), so is
the size of H; hence, H is also a finite family of finite graphs.

In our paper we will also consider the following generaliza-
tion of H-freeness. In what follows, for a given graph property
P and n ∈ N, let Pn be the graph property P for n-vertex
graphs.

Definition 1: (Semi-subgraph-freeness) A graph property
P = (Pn)n∈N is semi-subgraph-free if for every ε, 0 < ε < 1,
and every n ∈ N, there is a finite family H of finite graphs
such that the following hold:

(i) any graph G satisfying Pn is H-free, and
(ii) any graph G which is ε-far from satisfying Pn, is not
H-free (contains a copy of some H ∈ H).

Let us emphasize that in Definition 1 by a finite family H
of finite graphs we mean that even though H may depend
on n, the sizes of H and of any H ∈ H are always upper
bounded by a function independent on n, |H| = Oε(1) and
|V (H)| = Oε(1).

B. Oracle access model: random neighbor queries

The access to the input graph is given by an oracle. We
consider the random neighbor oracle, in which an algorithm
is given n ∈ N and access to an input graph G = (V,E) by
a query oracle, where V = {1, . . . , n}. The random neighbor
query specifies a vertex v ∈ V and the oracle returns a vertex
that is chosen i.u.r. (independently and uniformly at random)
from the set of all neighbors of v. (Notice that in the random-
neighbor model, since V = {1, . . . , n}, the algorithm can also
trivially select a vertex from V i.u.r.)

We believe that the random-neighbor model is the most nat-
ural model of computations in the property testing framework
in the context of very fast algorithms, and therefore our main
focus is on that model.

Remark 2: We notice that all our results could be also
presented in a variant of the model above in which we would
allow only two types of queries: random vertex query, which
returns a random vertex, and random neighbor query, which
returns a random neighbor of a given vertex v.

Each time we call the random neighbor oracle, the returned
random vertex or its random neighbor is chosen independently
and uniformly at random (i.u.r.). All vertices of the input graph
are accessible and distinguishable by their IDs, and there is no

requirement about the IDs other than that they are all distinct.
Notice that in this model, the tester does not know n, the size
of the input graph G.

Query complexity: The query complexity of a tester is the
number of oracle queries it makes.

We say a graph property P is testable if it has a tester with
constant query complexity, that is, for every ε, 0 < ε < 1,
there is q = q(ε) such that for every n ∈ N the tester has
query complexity upper bounded by q (the complexity may
depend on P and ε, but not on the input graph nor its size).

Other oracle access models: There are some natural vari-
ations of the random neighbor oracle model that have been
considered in the literature and that can be relevant here.

I. One could extend the random neighbor oracle model to
the random distinct neighbor oracle model, where one
allows for every vertex to query for distinct random
neighbors (that is, each time we call the random distinct
neighbor query for a given vertex v, the oracle returns
a neighbor of v chosen i.u.r. among all neighbors not
returned earlier); if all neighbors have been already
returned then the oracle would return a special symbol.

II. One could consider a model allowing two other types of
queries: degree queries: for every vertex v ∈ V , one can
query the degree of v, and neighbor queries: for every
vertex v ∈ V , one can query its ith neighbor. Observe that
by first querying the degree of a vertex, we can always
ensure that the ith neighbor of the vertex exists in the
second type of query.

It should be noted that while our main focus is on the
random neighbor oracle model, our testers (and their analysis)
for H-freeness can be trivially modified to work in the other
three oracle access models (in particular, Theorems 14, 38,
and 40 hold in all these models). However, our main result, the
characterization of testable properties in planar graphs cannot
be extended to the other models (see Section I-C4), other
than the variant of the random neighbor oracle discussed in
Remark 2.

C. Our results

In this paper we present a characterization of all testable
graph properties for general planar graphs in the random
neighbor oracle model, showing that, informally, a graph
property P is testable with one-sided error for general planar
graphs if and only if testing P can be reduced to testing for
a finite family of finite forbidden subgraphs (see Theorem 5).
Further, the results extend to general families of minor-free
graphs G.

The result is proven in two steps: First we apply a recent
result from [9] (see Theorem 11) to argue in Theorem 12
the (easier) necessary condition, that in the random neighbor
oracle model, any graph property P testable with one-sided
error can be reduced to testing for a finite family of forbidden
subgraphs. Then we prove our main technical contribution,
Theorem 14, that for a given connected finite graph H ,
subgraph freeness is testable (can be tested with a constant
number of queries) on any input planar graph G, assuming the



access to G is via the random neighbor oracle. This latter result
extends to arbitrary (not necessarily connected) finite graphs H
and to testing for H-freeness for any finite family H of finite
graphs, see Theorem 38 in Section VIII. By combining these
results, our characterization in Theorem 5 of graph properties
testable with one-sided error for general planar graphs will
follow; this result extends to general minor-free graphs.

While we believe that our general characterization of all
testable graph properties of planar and minor-free graphs is a
central problem in property testing and is the main contribution
of this paper, we also hope that our constant query time tester
for subgraph freeness will further advance our understanding
of efficient algorithms for that fundamental problem.

Our work is a continuation of our efforts to understand the
complexity of testing basic graph properties in graphs with
no bounds for the degrees. Indeed, while major efforts in
the property testing community have been put to study dense
graphs and bounded degree graphs (cf. [16, Chapter 8-9]),
we have seen only limited advances in the study of arbitrary
graphs, in particular, sparse graphs but without any bounds
for the maximum degrees. We believe that this model is
one of the most natural models, and it is also most relevant
to computer science applications (see also the motivation in
[16, Chapter 10.5.3]). While the understanding of testing in
general graphs is still elusive, our work makes a major step
forward towards understanding of testing properties for most
extensively studied classes of graphs, in our case of planar and
minor-free graphs.

1) Overview: Any testable property can be reduced to
testing for forbidden subgraphs: We begin with an easier
part of our characterization (see Section II for details). Our
approach follows the method of canonical testers for graph
properties testable for general graphs developed recently in
[9]. The intuition here is rather simple: if a graph property P
is testable then all what the tester can do is for a given input
graph G to randomly sample a constant number of vertices and
then to explore their neighborhoods of constant size, and on
the basis of the visited subgraph U of G to decide whether to
accept the input graph or to reject it. Further, the assumption
that we consider a one-sided error tester implies that the tester
must always accept any graph G satisfying P . Therefore, in
particular, if we define H as the family of all U for which
the tester rejects any input graph G that contains U , then we
can argue that any graph G satisfying P must be H-free. The
analysis can be easily extended to hold for an arbitrary class
of the input graphs, e.g., for planar graphs.

(Notice that these arguments show only that any testable
graph property P has a finite family H of finite graphs such
that P is H-free. However, we do not say anything about any
other properties of P; indeed, P may be not only H-free but
also may have some other properties. A good example showing
the sensitivity of this notion is testing bipartiteness. It has
been shown [11] that for general planar graphs bipartiteness is
testable with one-sided error, but clearly, bipartiteness cannot
be defined as a property of H-freeness for a finite family
H of forbidden graphs. However, one can easily show (cf.

[10, Section 2.1]) that if an input graph G is ε-far from
bipartitiness, then there must be an odd k = O(1/ε2), so that
G is O(ε)-far from Ck-free, and this fact suffices to argue that
bipartitiness for planar graphs is testable.)

To turn this intuition into a formal proof, we need to do
some additional work. We rely heavily on the canonical tester
developed recently in [9] to argue that to test any testable graph
property we can assume that the tester at hand is “oblivious”
and works non-adaptively. This allows us to obtain a clean
characterization of forbidden subgraphs for any given testable
property P . Further, we lift this characterization to extend
the analysis to semi-subgraph-free graph properties, which are
graph properties defined asH-free or close toH-free, for some
finite family H of finite graphs. The analysis is presented in
Section II (see Theorem 12).

2) Overview: Testing for forbidden subgraphs in planar
graphs and minor-free graphs: The main technical contri-
bution of this paper is a proof that for planar graphs, the
property of being H-free is testable with one-sided error for
every connected finite subgraph H , in the random neighbor
oracle model, see Theorem 14. This result extends to arbitrary
(not necessarily connected) finite graphs H and to testing
for H-freeness for any finite family H of finite graphs, see
Theorem 38. Further, the results extend to general families of
minor-free graphs G, see Theorem 40.

Let us first discuss the challenges of the task of testing H-
freeness. It has been known for a long time that for bounded
degree graphs one can test H-freeness with a constant number
of queries using the following simple tester: randomly sample
a constant number of vertices and check whether any of them
belongs to a copy of H . This result relies on two properties
of bounded degree graphs: (i) that it is easy to test whether
a given vertex belongs to a copy of H (just run a BFS of
depth |V (H)|), and (ii) that if a given graph is ε-far from H-
free then it has many edge-disjoint copies of H that cover a
total of a linear number of vertices. But both these properties
fail to work for general graphs. For example, for (ii), consider
an n-vertex graph G with n −

√
n isolated vertices and

√
n

vertices forming a clique. It is easy to see that G is ε-far from
H-free (for a sufficiently small ε with respect to the size of
H), but all copies of H in G are covered only by

√
n vertices

and as the result, testing H-freeness trivially requires Ω(
√
n)

queries: one has to perform so many queries (in expectation)
to hit a first non-isolated vertex.

In our analysis, by focusing on planar (or minor-free)
graphs, we are able to circumvent the latter obstacle (ii)
(argued implicitly in Lemma 20), but the former obstacle (i)
still persists. Our approach to cope with (i) is by devising a
simple modification of BFS search, random bounded-breadth
bounded-depth search. By bounding the breadth and depth of
the graph exploration we are able to ensure that the complexity
of the tester is bounded. However, then the main challenge in
our analysis is to analyze this process, to show that indeed, it
distinguishes between H-free graphs and graphs that are ε-far
from H-free.

Our approach relies on a proof that for any planar graph G



that is ε-far from H-free there exists a set Q of edge-disjoint
copies of H such that,

(i) if we can find a copy of H in G[Q] with a constant
number of queries, then also in G we can find a copy of
H with a constant number of queries, and

(ii) if the input graph was G[Q], then we could find a copy
of H with a constant number of queries.

The construction of the set Q is existential, and is performed
by a process of gradually deleting edges of G so that after each
round of edge deletions, (i) is maintained, and so that at the
end, the structure of G[Q] is simple enough so that (ii) is
easy. The process is controlled by a sequence of contractions:
we reduce the problem of finding a copy of H in G to the
problem of finding a copy of H with one vertex contracted,
which in turn, we reduce to the problem of finding a copy
of H with two vertices contracted, and so on so forth. The
idea is that if at the end of this process, we have to find
a copy of H contracted to single vertex, this task is easy to
analyze. The main challenge of our analysis here is to carefully
manage the contractions to have the analysis going through.
In a similar context, the authors in [11] have been arguing that
this task is already very complex for cycles in the analysis of
constant-length random walks in planar graphs, that is, graphs
with good separators and bad expansion. However, by using a
sequence of self-reductions relying on contractions (and hence
reducing testing Ck-freeness to testing Ck−1-freeness, where
Ck is a cycle of length k), the authors in [11] were able to show
there that for planar graphs, testing bipartiteness (implicitly,
testing Ck-freeness for constant k) can be done with constant
query complexity and with one-sided error.

The approach presented in our paper can be seen as a major
extension of the approach used for testing bipartiteness in
[11] to test H-freeness, though the problem of testing H-
freeness is significantly more complex. Indeed, the central
tool used for bipartiteness, contractions of a path or a cycle,
becomes problematic when the forbidden graph H has vertices
of degree higher than 2. The challenge here is that to contract
vertices of higher degrees, the information about their neigh-
bors is difficult to be maintained. Still, we follow a similar
approach, but since we cannot perform the contraction in term
of graphs, we do it via introducing hyperedges, to ensure that
after contracting high degree vertices the information about
their neighbors is memorized in a form of a hypergraph. This
extension of the framework from graphs to hypergraphs makes
the entire analysis significantly more complicated and one of
our main technical contributions is to make the analysis work
for this case. For example, one central challenge is to ensure
that the input graph, originally planar, maintain some planarity
properties even after applying a sequence of contractions. This
task is not very difficult if the contractions were performed in
graphs, but when we have to process hypergraphs, maintaining
planarity seems to be entirely hopeless. Still, we will show
how to efficiently model the connectivity information of the
hypergraph using the concept of shadow graphs that are unions
of planar graphs.

The analysis is long, with many subtle fine points, and is
presented in details in Sections III–VII.

Remark 3: While in our analysis we did not try to optimize
the complexity of the H-freeness tester, focusing on the task of
obtaining the query complexity of Oε,H(1), let us mention that
in fact, with the analysis as it is now, without any optimization
efforts, the complexity of our tester is doubly exponential in
|V (H)|/ε.

Remark 4: While our main focus is on the random neighbor
oracle model, it is straightforward to extend our testers and
their analysis for H-freeness and for H-freeness to the other
two oracle access models presented in Section I-B. (However,
our main result, the characterization of testable properties in
planar graphs (and Theorem 12), cannot be extended to the
other models (cf. Section I-C4), except the variant of the
random neighbor oracle from Remark 2.)

3) Characterization of graph properties testable with one-
sided error for planar/minor-free graphs: By combining the
results sketched in Sections I-C1 and I-C2, the following
characterization of graph properties testable with one-sided
error (in the random neighbor oracle model) for general planar
graphs and for minor-free graphs follows:

Theorem 5: A graph property P is testable with one-sided
error in the random neighbor oracle model for planar graphs
(and for minor-free graphs) if and only if P is semi-subgraph-
free.

The proof of Theorem 5 follows immediately from our
Theorem 12 (necessary condition) and Theorems 38 and 40
(sufficient condition).

One can read this characterization informally as follows:
A graph property P is testable with one-sided error in the
random neighbor oracle model for planar graphs (or for
minor-free graphs) if and only if P can be described as a
property of testing forbidden subgraphs of constant size (the
maximum size of any forbidden subgraph can be a function of
P and ε).

4) Remarks on the sensitivity and robustness of the oracle
access models: While our tester for H-freeness (Section I-C2)
is robust, the characterization presented in Theorem 5 is very
sensitive to the oracle model. For example, it might be natural
to consider a variant of our random neighbor oracle model to
allow for every vertex to query for distinct random neighbors.
That is, each time we call the random distinct neighbor query
for a given vertex v, the oracle will return a neighbor of v
chosen i.u.r. among all neighbors not returned earlier. One
important feature of this model is that after deg(v)+1 queries
for a random distinct neighbor of vertex v, we are able to
detect the degree deg(v) of vertex v in the input graph. This
makes this model more powerful than our random neighbor
oracle model, and in particular, it allows to test some properties
that cannot be reduced to testing for forbidden subgraphs. For
example, in that model one can test connectivity with O(1/ε3)
queries and one-sided error (see, e.g., [18]). Indeed, if the
input graph G is ε-far from being connected, then it is easy
to see that G must have 1

2εn connected components of size at
most 2

ε . Therefore, after randomly sampling 3
ε vertices, with



probability at least 2
3 one of the randomly sampled vertices

will be in one of these small connected components. Since
all vertices in this component must have degree at most 2

ε ,
we can run BFS algorithm to explore the entire connected
component with O(1/ε2) random distinct neighbor queries
and verify that this connected component is indeed small,
proving that the input graph is ε-far from being connected.
This can be easily formalized to obtain a one-sided error tester
for connectivity with query complexity O(1/ε3) in the random
distinct neighbor oracle model. However, this task cannot be
efficiently performed in our random neighbor oracle model
(since we can never confirm with a finite number of queries a
degree of a given vertex, even if its degree is constant, even
if it is 1), and indeed, connectivity testing cannot be reduced
to testing for a finite family of forbidden subgraphs and is
not is a semi-subgraph-free graph property, even in planar
graphs. (This is in contrast to other characterizations presented
earlier in the literature, e.g., in [6], where the tester for the
dense graphs model reduces to testing for forbidden induced
subgraphs, giving a complete characterization of properties
testable with one-sided error in terms of hereditary properties.)
And so, even for planar graphs, testing connectivity in the
random neighbor oracle model is impossible with one-sided
error!2

D. Organization of the paper

We begin in Section II with a formal analysis showing the
necessary part of our characterization of testable properties,
that any testable property is semi-subgraph-free (cf. Theorem
12 in Section II-D).

Then, in Sections III–VII, we present the main technical
contribution of this paper, a complete analysis showing the
sufficient part of our characterization of testable properties in
planar graphs, that for any finite graph H , testing H-freeness is
testable in planar graphs. The analysis here is split into several
sections, with some auxiliary and technical results deferred to
the full version of the paper [13]. We begin in Section III
with an outline of the proof of testing H-freeness, focusing
on connected H . Then, in Section IV, we present our tester and
define our framework. Section V gives the first (and easiest)
step in our transformation and show that any graph that is ε-far
from H-free has a linear number of edge-disjoint copies of H .
Then, in Section VI, we show how the contractions (cf. Section
I-C2) can be performed in hypergraphs, to ensure existence of
a sought set Q of edge-disjoint copies of H in which we
can detect a copy of H . The analysis is then completed in
Section VII. Finally, in Section VIII we discuss the extension
to families of arbitrary finite graphs and in Section IX we
discuss the extension to minor-free graphs.

2To see this, consider two planar graphs: a cycle Cn on n vertices, which
is connected, and a perfect matching Mn on n vertices, which is ε-far from
connected (for ε < 1

2
). Any tester should reject Mn with probability at least

2
3

. But at the same time, if we consider the tester on Cn (which must be
accepted) then after performing q queries, with probability at least 2−q , and
so with positive probability, it will see only a subgraph of Mn. Therefore,
since we consider one-sided error testers which must accept Cn, we conclude
that no one-sided error tester can reject Mn.

Some final conclusions are in Section X.

II. ANY TESTABLE PROPERTY CAN BE REDUCED TO
TESTING FOR FORBIDDEN SUBGRAPHS

In this section we provide a formal proof of the necessary
(and easier) condition in our characterization, Theorem 12,
that any one-sided-error testable property for arbitrary graphs
can be reduced to testing for forbidden subgraphs of constant
size (this claims holds for any finite family of graphs, not only
for planar graphs). It should be noted that each graph in the
family of forbidden graphs may have size depending on ε, the
proximity parameter of the tester.

Our analysis critically relies on a recently developed in
[9] canonical tester that shows that to test any testable graph
property we can assume that the tester at hand is “oblivious”
and works non-adaptively. This will allow us later to obtain
a clean characterization of forbidden subgraphs for any given
testable property P .

A. Bounded-breadth bounded-depth graph exploration and
bounded-discs

Our analysis relies on a random (BFS-like) bounded-breadth
bounded-depth search, Bounded-BFS-Traverse below, an ex-
ploration algorithm similar to BFS of depth t. The algorithm
runs from a given vertex a random BFS-like exploration of
breadth d and of depth t using the random neighbor oracle (i.e.,
every vertex selects d of its neighbors i.u.r. and recursively
continues the process from them, until depth t is reached).
The main difference is that instead of visiting all neighbors
of every vertex, like in the standard BFS algorithm, we visit
only d neighbors chosen i.u.r., to limit the complexity of the
search algorithm.

Bounded-BFS-Traverse (G, v, d, t):
• Let L0 = {v}.
• For ` = 1 to t do:
� Let L` = ∅ and E` = ∅.
� For every u ∈ L`−1 do:
◦ Choose d neighbors of u using d random

neighbor queries; call them Γu.
◦ Let Eu = {(u, x) : x ∈ Γu}.
◦ Set L` = L` ∪ Γu and E` = E` ∪ Eu.

� L` = L` \
⋃`−1

i=0 Li.
• Return the subgraph of G induced by

⋃t
`=1 E`.

We use the notion of bounded-breadth/depth search
Bounded-BFS-Traverse to define bounded discs.

Definition 6: For given d, t ∈ N, graph G = (V,E),
and vertex v ∈ V , a (d, t)-bounded disc of v in G is any
subgraph U of G that can be returned by Bounded-BFS-
Traverse (G, v, d, t).

Vertex v is called a root of the (d, t)-bounded disc U .
Let us observe that, assuming that d ≥ 2, Bounded-BFS-

Traverse (G, v, d, t) performs
∑t
i=1 d

i ≤ 2dt queries to the
input graphs. Accordingly, for d ≥ 2, any (d, t)-bounded disc
has at most

∑t
i=0 d

i ≤ 2dt vertices and at most
∑t
i=1 d

i ≤ 2dt

edges.



B. Rooted graphs, their basic properties, and semi-rooted-
subgraph-freeness

In our analysis it will be sometimes useful to consider also
rooted graphs, that is, graphs with some number of vertices
distinguished as special vertices called roots. (For example,
bounded discs from Definition 6 are rooted graphs.) To analyze
similarities between rooted graphs, we will use the following
definition.

Definition 7: (Root-preserving isomorphism) Let Q =
(V (Q), E(Q)) and Q′ = (V (Q′), E(Q′)) be two rooted
graphs. A root-preserving isomorphism between Q and Q′,
denoted Q ∼=r Q

′, is a bijection f : V (Q)→ V (Q′) such that
u is the root of V (Q) if and only if f(u) is the root of V (Q′),
and (u, v) ∈ E(Q) if and only if (f(u), f(v)) ∈ E(Q′).

If Q ∼=r Q
′, then we say that Q is root-preserving isomor-

phic to Q′.
We will extend this definition to compare a rooted graph

with its occurrences (in a sense of root-preserving isomor-
phisms) in a large graph (which does not necessarily have to
be rooted).

Definition 8: Let G be an undirected graph and let Q be
a rooted graph. A rooted copy of Q in G is a subgraph U
of G such that one can assign the roots to U so that there
is a root-preserving isomorphism between Q and the rooted
version of U . For an arbitrary set Q of rooted graphs, we say
that G is Q-rooted-free if for every Q ∈ Q, there is no rooted
copy of Q in G.

With these definitions, we are ready to present our auxiliary
graph property notion.

Definition 9: (Semi-rooted-subgraph-freeness) A graph
property P is semi-rooted-subgraph-free if for every ε, 0 <
ε < 1, and every n ∈ N, there is a finite family H of finite
graphs such that the following hold:

(i) any graph G satisfying Pn is H-rooted-free, and
(ii) any graph G which is ε-far from satisfying Pn, is not
H-rooted-free.

Similarly as in Definition 1, the notion of a family H of
finite graphs means that every graph H ∈ H is finite, i.e.,
|V (H)| = Oε(1).

C. Modeling forbidden subgraphs in rooted graphs

While our analysis uses rooted graphs, their use is purely
auxiliary because of the following simple fact.

Lemma 10: If a graph property P is semi-rooted-subgraph-
free then P is also semi-subgraph-free.
Proof. This follows easily from the definitions of semi-
rooted-subgraph-free and semi-subgraph-free properties. For
any rooted graph H , let H denote the same graph with
removed roots (that is, we remove the labels defining the
roots); similarly, for any family H of rooted graphs, let
H = {H : H ∈ H}. Then we claim that for any graph G
be an arbitrary graph and any family H of rooted graphs,

(a) if G is H-rooted-free then G is also H-free, and
(b) if G is notH-rooted-free, then G is also notH-free.

Indeed, to see part (a), suppose, by contradiction, that G is
not H-free, that is, there is H with H ∈ H such that H is a
subgraph of G. But then G has a rooted copy of H , since we
can take the roots of H and assign them to H , so that there
is a root-preserving isomorphism between H and the rooted
version of H . Since G has a rooted copy of H , we conclude
that G is not H-rooted-free, which is contradiction.

To see part (b), suppose, by contradiction, that G is H-free,
that is, there is no H ∈ H such that G has a copy of H . But
then, clearly, G is H-rooted-free, since otherwise, there would
be H ∈ H such that G had a rooted copy of H , which would
imply that H was a subgraph G; contradiction.

Now, we are ready to complete the proof of Lemma 10.
By Definition 9, if P is semi-rooted-subgraph-free then there
exists a finite family H of finite rooted graphs such that (i) any
graph G satisfying P is H-rooted-free, and (ii) any graph G
which is ε-far from satisfying P , is not H-rooted-free. If we
combine these properties with our claim above, then we obtain
that for the finite family of finite graphs H = {H : H ∈ H},

(i’) any graph G satisfying P is H-rooted-free, and thus (by
(a)) also H-free, and

(ii’) any graph G which is ε-far from satisfying P , is not
H-rooted-free, and thus (by (b)) also not H-free.

Therefore P is semi-subgraph-free (cf. Definition 1). �

D. Canonical testers and reduction to testing for forbidden
subgraphs

Next, our analysis follows the framework described in
Section I-C1. We rely on the following Theorem 3.6 from
[9] describing a canonical way of designing any tester in the
random neighbor oracle model.

Theorem 11 (Canonical tester [9]): Let P = (Pn)n∈N be a
graph property that can be tested in the random neighbor oracle
model with query complexity q = q(ε) and error probability
at most 1

3 . Then for every ε, there exists q′ = Θ(q), and an
infinite sequence Q = (Qn)n∈N such that for every n ∈ N,
• Qn is a set of rooted graphs such that each Q ∈ Qn is

the union of q′ many (q′, q′)-bounded discs;
• the property Pn on n-vertex graphs can be tested with

error probability at most 1
3 by the following canonical

tester (with query complexity qO(q)):
� sample a set (possibly, a multiset) S of q′ vertices

chosen i.u.r.;
� for each sampled vertex v, run Bounded-BFS-

Traverse (G, v, q′, q′) to get a (q′, q′)-bounded disc Uv;
� reject if and only if there exists a root-preserving iso-

morphism between the union of the explored (q′, q′)-
bounded discs and some element Q ∈ Qn, that is, there
is Q ∈ Qn with

⋃
v∈S Uv

∼=r Q.
Furthermore, if P = (Pn)n∈N can be tested in the random
neighbor oracle model with query complexity q(ε) with one-
sided error, then the resulting canonical tester for P has one-
sided error too.

Theorem 11 from [9] shows that without loss of generality,
we can assume that any testable graph property can be tested



by a canonical tester with constant query complexity. With
Theorem 11, Lemma 10, and Definitions 1 and 9 at hand, we
are now ready to present the main result of this section.

Theorem 12: If a graph property P is testable with one-
sided error in the random neighbor oracle model then P is
semi-subgraph-free.
Proof. First, notice that thanks to Lemma 10, it is enough
to show that if a graph property P is testable with one-sided
error in the random neighbor oracle model then P is semi-
rooted-subgraph-free (cf. Definition 9).

Let us fix n ∈ N and ε, and suppose that Pn is a graph
property on n-vertex graphs that can be tested in the random
neighbor oracle model with query complexity q(ε) and one-
sided error. By Theorem 11 from [9], we can assume that Pn
is tested by a canonical tester T that satisfies the conditions of
Theorem 11. In particular, let Qn be the family of forbidden
rooted graphs for Pn (union of q′ many (q′, q′)-bounded discs)
whose existence follows from Theorem 11. We will show that
so defined family of rooted graphs satisfies the conditions in
Definition 9, proving that P is semi-subgraph-free.

Let us first notice that each rooted graph Qn has at most
2(q′)q

′
vertices and at most 2(q′)q

′
edges, and so Qn is a finite

family of finite rooted graphs.
Let us next show item (i) of Definition 9, that any n-vertex

graph G satisfying Pn isQn-rooted-free (cf. Definition 8). The
proof is by contradiction and so suppose that there is a graph
G satisfying Pn which contains a rooted copy of Q ∈ Qn.
Then, with a positive probability the canonical tester T on G
will take that copy of Q ∈ Qn, and by the definition, it will
reject G. This means that the tester has a nonzero probability
of rejecting G, contradicting our assumption that the tester T
is one-sided.

Now, we want to prove item (ii) of Definition 9. Let G be an
n-vertex graph that is ε-far from satisfying Pn. Any tester for
Pn should reject G with nonzero probability. By definition of
our canonical tester T, G is rejected by T only if G contains
a rooted subgraph U such that if the tester T gets U from the
oracle, then U ∼=r Q. By definition of T and Qn this means
that Q ∈ Qn, which proves item (ii) of Definition 9.

We have shown that if a graph property P is testable with
one-sided error in the random neighbor oracle model then P
is semi-rooted-subgraph-free. By Lemma 10, this yields that
P is semi-subgraph-free, completing the proof. �

Remark 13: While Theorem 12 is presented for any general
graphs, it is straightforward to extend it to hold also for infinite
classes of graphs, for example, for planar graphs, or for the
family of minor-closed graphs.

E. Uniform characterization using oblivious testers and for-
bidden subgraphs

While Theorem 11 from [9] allows to simplify the analysis
of testable properties, the analysis as in Theorem 12 obtains
non-uniform testers, in the sense of the dependency on n. We
could make our result uniform by considering a special class of
uniform testers, which we call oblivious testers, that capture

the essence of testers of testable properties in the flavor of
Theorem 11 (see [6] for a similar notion in the context of
testing dense graphs). This characterization is discussed in
details in the full version of the paper [13].

III. TESTING H -FREENESS: HIGH-LEVEL VIEW

We begin our analysis with fixing an arbitrary finite, con-
nected, undirected, simple graph H = (V (E), E(H)).3

Our tester of H-freeness relies on a simple graph ex-
ploration. We first describe our algorithm for testing H-
freeness of planar graphs with arbitrary degrees and provide
the high level structure of its analysis. We defer most of
technical details to Sections IV– VII and the full version of
the paper [13].

Our algorithm relies on a random bounded-breadth
bounded-depth search, Random-Traverse below, which uses
Bounded-BFS-Traverse (G, v, d, t) from Section II-A. (Let us
remind, cf. page 6, that Bounded-BFS-Traverse (G, v, d, t) is
similar to BFS of depth t starting at vertex v, though instead
of visiting all neighbors of every vertex, one visits only
d neighbors chosen i.u.r., to limit the complexity of the
algorithm.)

Random-Traverse (G, d, t):
• Pick a random vertex v ∈ V i.u.r. and run

Bounded-BFS-Traverse (G, v, d, t).

Our tester Random-Exploration runs f(ε,H) times our
search algorithm Random-Traverse with parameters d =
h(ε,H), t = g(ε,H), each time checking if the graph induced
by the visited edges contains a copy of H , or does not. The
algorithm accepts G as H-free if and only if all calls found
no copy of H in G.

Tester: Random-Exploration (G,H, ε):
(with three implicit parameters, integer functions f, g, h)

• Repeat f(ε,H) times:
� Run Random-Traverse (G, h(ε,H), g(ε,H)) and let E

be the resulted set of edges.
� If the subgraph of G induced by the edges E contains a

copy of H , then reject.
• If every subgraph explored is H-free, then accept.

The following main theorem describes key properties of our
tester.

Theorem 14: Let H be connected. There are positive
functions f , g, h, such that for any planar graph G:
• if G is H-free, then Random-Exploration(G,H, ε) accepts
G, and

• if G is ε-far from H-free, then Random-
Exploration(G,H, ε) rejects G with probability at
least 0.99.

3While our analysis here assumes that H is connected, this is clearly not
required for the main result. If H is disconnected then with the coloring
trick (cf. Section IV-A1), one could have identical analysis and consider all
connected components one by one, extending the results to arbitrary, not
necessarily connected H . We will discuss this in details in Section VIII.



It is obvious that the first claim holds: if G is H-free, then
so is every subgraph of G, and therefore Random-Exploration
always accepts. Therefore, to prove our main result, Theorem
14, it suffices to show that if G is ε-far from H-free, then
Random-Exploration rejects G with probability at least 0.99.
In view of that, from now on, we assume that the input graph
G is ε-far from H-free for some constant ε > 0.

We note that it is enough to show that a single in-
stance of the random bounded-breadth bounded-depth search
(Random-Traverse) of breadth Oε,H(1) and depth Oε,H(1)
finds a copy of H with probability Ωε,H(1). Indeed, for
any functions f , g, and h, if Random-Traverse (G, d, t) with
h(ε,H) = Oε,H(1) and g(ε,H) = Oε,H(1) finds a copy
of H with probability at least 5/f(ε,H) = Ωε,H(1), then
this implies that f(ε,H) = Oε,H(1) independent calls to
Random-Traverse (G, d, t) detect at least one copy of H with
probability at least 1−(1−5/f(ε,H))f(ε,H) ≥ 1−e−5 ≥ 0.99.
Therefore, in the remainder of the paper, we analyze the
following algorithm Tester(G,H, d, t).

Tester (G,H, d, t):
• Run Random-Traverse (G, d, t) and let E be the resulted

set of edges.
• If the subgraph of G induced by the edges E contains a

copy of H , then reject.
• If not, then accept.

We will show the following central technical theorem.
Theorem 15: Let H be a connected undirected graph.

There are positive functions d = d(ε,H) = Oε,H(1) and
t = t(ε,H) = Oε,H(1) such that for any planar graph
G that is ε-far from H-free, Tester(G,H, d, t) finds a copy
of H with probability Ωε,H(1). The query complexity of
Tester(G,H, d, t) is O(dt) = Oε,H(1).

Since by our discussion above Theorem 15 yields Theorem
14, we will focus on proving Theorem 15. We also notice
that the query complexity of the tester follows directly from
its definition, and so we will concentrate on showing that for
d = Oε,H(1) and t = Oε,H(1), Tester(G,H, d, t) finds a copy
of H with probability Ωε,H(1).

A. Outline of the proof of testing H-freeness

In this subsection we outline the key ideas behind our proof
of testing H-freeness. Since the proof is long and complex,
we will give here mostly some underlying intuitions, leaving
the details to Sections IV–VII.

By our discussion above, it suffices to focus on the case
when the input graph G is ε-far from H-free. Our analysis
relies on the following result (shown in Lemma 17) that every
simple planar graph G that is ε-far from H-free has a subgraph
G satisfying the following:
(a) if Tester(G, H, d, t) finds a copy of H in G with proba-

bility Ωε,H(1), then Tester(G,H, d, t) finds a copy of H
in G with probability Ωε,H(1), and

(b) Tester(G, H, d, t) finds a copy of H in G with probability
Ωε,H(1).

Our first (and easy) step towards proving this property is to
show that G contains a linear number of edge-disjoint copies
of H (see Lemma 20). This follows by iteratively removing
copies of H and observing that by the definition of being ε-
far from H-free, we have to remove εn edges to make G free
of copies of H . In the following we will use Q to denote
a set (of linear size) of edge-disjoint copies of H in G. We
continue by showing that given Q, we can compute a subset
Q′ of linear size such that the graph G[Q′] (subgraph of G on
vertex set V and with edge set being the union of the edges
of the subgraphs in Q′) satisfies the first property above. The
proof essentially shows that one can remove copies from Q′
until every vertex in G[Q′] has degree either 0 or a small
positive constant times its degree in G.

Next, we would like to define a sequence of sets Q = Q0 ⊇
Q1 ⊇ · · · ⊇ Q|V (H)| with associated hypergraphs with the
following interpretation. The hyperedges will be labelled in
such a way that we are able to recover the set Qi from it. We
will use hyperedges to replace certain subgraphs of H and
their corresponding part in G.

Hyperedges: We will now describe the use of hyperedges
as replacements for copies of subgraphs of H in G. Let G∗ be
a subgraph of G that has a copy of H . Consider a subgraph
H1 of H and let u1, . . . , u` be the vertices in the copy of H1

in G∗ that separate G \H1 from H1, so that (cf. Figure 1):
(a) every vertex from {u1, . . . , u`} is adjacent in G∗ to

some vertex H1 \ {u1, . . . , u`},
(b) every vertex in H1 \ {u1, . . . , u`} is adjacent in G∗

only to vertices from H1, and
(c) {u1, . . . , u`} forms an independent set in H1.

Then, we can construct a gadget to represent that copy
of H1 by removing from H1 all vertices and edges from
H1 \ {u1, . . . , u`} and replacing them by a single hyperedge
{u1, . . . , u`}.

We will encode the structural information of the subgraph
replaced by the hyperedge in a label, so that it may happen that
we have parallel hyperedges with different labels. In addition
to the above structural role we recall from the previous section
that the idea of hyperedges was to encode that whenever (a
hypergraph version of) Random-Traverse enters the hyperedge
then it will reach all its vertices. Our final goal will be to
construct a hypergraph that only consists of selfloops, so that
we can argue easily that our tester finds a copy of H by finding
a corresponding set of labelled selfloops.

Vertex coloring: A major difficultly in applying our ap-
proach is to find subgraphs that can be replaced. One way to
simplify this question is to color both the vertices of H and
the vertices of G with |V (H)| colors, such that every vertex
of H receives a distinct color and every copy of H in Q has
the same coloring as H . We show in Lemma 20 that there is a
coloring χ of G and H such that G contains a set Q containing
a linear number of such edge-disjoint colored copies of H . An
important feature of this coloring, which will be very useful
in finding vertices that can be replaced by hyperedges, is that
every vertex has the same role in all subgraphs from Q it is
contained in.
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Fig. 1. (a) Consider a part of the input graph G with numbered vertices corresponding to the colored vertices in a copy of H in G and thick
edges corresponding to the edges in that copy of H . (b) We have a subgraph H1 of H consisting of the vertices and edges marked by the
grey area, with vertices {2, 3, 4, 6, 7} separating H1 from the rest of G. (c) The gadget obtained by removing internal vertices {1, 5} and
replacing H1 by a hyperedge connecting vertices {2, 3, 4, 6, 7}.

Getting from Qi to Qi+1: Next we describe how we move
from the set Qi to Qi+1. This is the main step in our reduction
and it will be partitioned in a number of substeps. We start
with an overview. In each round we perform the following
high level process:

• Select a vertex vi ∈ V (H).
• Simultaneously, contract every vertex u ∈ V (Hi(Qi)) with
χ(u) = χ(vi) as follows:
� for every colored copy h of H in Qi+1 that contains vertex
u:
◦ add a new hyperedge consisting of vertices in N h

i 〈u〉,
where N h

i 〈u〉 is the set of neighbors of u in h (in the
corresponding hypergraph) other than u (that is, u /∈
N h

i 〈u〉);
� remove vertex u (with all incident edges from Hi(Qi)).

We remark that our algorithm above ensures that no neigh-
boring vertices are contracted since the coloring χ has no
monochromatic edges. This follows from the fact that every
edge in G[Q] belongs to some copy of H and the coloring
of H has no monochromatic edge. Thus, we can perform the
contractions independently.

In our construction we will require that the contracted
vertices additionally satisfy some stronger properties. This is
to maintain (approximately) some basic properties of planar
graphs.
• We want to ensure that all contractions in Hi(Qi) corre-

sponding to the contraction of vi are consistent, that is,
the contraction of u is the same in every colored copy
of H that contains u (that is, for every vertex u in with
χ(u) = χ(vi), for any two colored copies h1, h2 of H in
Qi+1 containing vertex u, we have N h1

i 〈u〉 = N h2

i 〈u〉).
The required property is captured in the following definition
(see also Definition 26).

Definition 16: (Safe vertices) Let Qi be a set of edge-
disjoint colored copies of H in G and let Q ⊆ Qi. We call a
vertex u safe if for all colored copies h ∈ Q of H that contain
u, the sets N h

i 〈u〉 are the same.
Finding safe vertices: Our next challenge is to show that we

can find many (a linear number) safe vertices of the same color.

In order to do so, we will delete elements from the current set
Qi in a controlled way until we can guarantee that many safe
vertices of the same color exist. An important concept that we
define here is that of a shadow graph. A shadow graph is a
union of |V (H)| planar graphs and it models the neighborhood
relation of our hypergraph, such that two vertices are adjacent
in the shadow graph if and only if they belong to the same
edge in the hypergraph. The main use of shadow graphs is to
show in the upcoming construction that our hypergraph still
satisfies some near-planar properties that will be useful in the
analysis. The concept of shadow graphs and the proof of their
existence is one of the main new ideas in this paper.

Using the existence of shadow graphs, we can properly
implement the process of contractions via hyperedges, proceed
similarly as in an earlier paper about testing of bipartiteness
in planar graphs [11], where the shadow graphs guarantee that
we still approximately satisfy the properties of planar graphs
that were used the previous paper [11]: We first prove that we
can construct a subset Q of Qi of linear size such that every
copy of H in Q has a vertex of constant degree in G[Q]. Then
we use this claim in the proof of Lemma 32 to show how to
construct a subset Q∗ of Qi such that every copy of H in Q∗
contains a safe vertex.

Wrapping things up: What remains to do is to prove that
our construction satisfies the second required property of our
tester:

⊗ Tester(G[Q], H, d, t) finds a copy of H in G[Q]
with probability Ωε,H(1).

We define Q to be the set Q|V (H)| obtained in the final
round of our reduction.

We will then prove ⊗ by showing two central properties
(proven in Claims 36 and 37), which informally say that after
all contractionsM|V (H)| only consists of selfloops, which can
easily be found (Claim 36) and the proof of Claim 37 formal-
izes our idea that if our random walk enters a hyperedge in
Hi+1(Q) then we perform with constant probability the same
operation in Hi+1(Q) in two steps of our randomized process.
Combining the results with our previous considerations yields
our main statement: H-freeness in planar graphs is constant



query-time testable.

IV. ANALYSIS OF TESTER WHEN G IS ε-FAR FROM H -FREE

Because of the arguments from the previous section, the
remainder of the paper deals with the main technical challenge
of our result: proving Theorem 15 that in any simple planar
graph G = (V,E) that is ε-far from H-free, our algorithm
Tester finds with sufficient probability a copy of H .

Our analysis relies on the following lemma showing the
existence of a special subgraph G of G:

Lemma 17: For every ε ∈ (0, 1), there are d = d(ε,H)
and t = t(ε,H), such that for every simple planar graph G =
(V,E) that is ε-far from H-free, there is a subgraph G of G
with the following properties:
(a) if Tester(G, H, d, t) finds a copy of H in G with proba-

bility Ωε,H(1), then Tester(G,H, d, t) finds a copy of H
in G with probability Ωε,H(1), and

(b) Tester(G, H, d, t) finds a copy of H in G with probability
Ωε,H(1).

Observe that if such a subgraph G as promised in Lemma
17 always exists, then these properties immediately imply that
Tester(G,H, d, t) finds a copy of H in G with probability
Ωε,H(1) and therefore, by the discussion above, Theorems 14
and 15 follow.

In order to prove Lemma 17, we will show that for any
simple planar graph G that is ε-far from H-free, there exists
a set Q of edge-disjoint copies of H in G for which G[Q],
the subgraph of G induced by the edges of Q, satisfies the
properties of graph G in Lemma 17. The construction of
the set Q and the analysis of its properties form the main
technical contribution of our paper. While part (a) in Lemma
17 is rather easy to achieve and to analyze (thanks to Lemma
18 in Section IV-A2), the main challenge of our construction
is in ensuring part (b) in Lemma 17. For that, we use a
rather elaborate construction to gradually find a sequence
Q1 ⊇ Q2 ⊇ · · · ⊇ Q|V (H)| of sets of edge-disjoint copies
of H in G, with |Q|V (H)|| = Ωε,H(|V |), such that the final
set Q|V (H)| is the set Q that defines G = G[Q|V (H)|] in
Lemma 17.

The construction of the sequence Q1 ⊇ Q2 ⊇ · · · ⊇
Q|V (H)| of sets of edge-disjoint copies of H in G, with
|Q|V (H)|| = Ωε,H(|V |), for which we could easily argue that
Tester(G[Q|V (H)|], H, d, t) finds a copy of H in G[Q|V (H)|]
with probability Ωε,H(1), is the most challenging and technical
contribution of our paper. We begin with a simple construction
of Q1 which is a set of Ωε,H(|V |) edge-disjoint copies of H
in G (cf. Lemma 20). Then our construction is iterative: we
design a reduction that takes set Qi of Ωε,H(n) edge-disjoint
copies of H and we construct from it another set Qi+1 ⊆ Qi
with |Qi+1| = Ωε,H(|Qi|) for which we simplify the structure
of G[Qi+1] with respect to that of G[Qi]. To guide our process,
we associate with each Qi a certain hypergraph Hi(Qi) that is
constructed from Qi by contracting vertices of H in a specific,
consistent way (cf. Section VI-C). The purpose of Hi(Qi)
is to model the copies of H by a hypergraph on a smaller
number of vertices, by contracting vertices (and incident

edges) which are known to be visited by Random-Traverse via
other means. We will construct a sequence of hypergraphs
H1(Q1),H2(Q2), . . . ,H|V (H)|(Q|V (H)|) that correspond to
sets Q1,Q2, . . . ,Q|V (H)|, and a sequence of hypergraphs
M1,M2, . . . ,M|V (H)| that are “shrunk” copies of H , each
Mi with |V (H)| − i + 1 vertices, such that, informally, for
our algorithm of selecting Q1,Q2, . . . ,Q|V (H)|, the following
conditions holds:
• the probability of finding by Random-Traverse a copy of
H in G[Q1] is the same as the probability of finding by
Random-Traverse a copy of M1 in H1(Q1),

• the probability of finding by Random-Traverse a copy
of Mi+1 in Hi+1(Qi+1) is similar to the probability of
finding by Random-Traverse a copy of Mi in Hi(Qi),
and

• using the fact that M|V (H)| has a single vertex, one can
easily estimate the probability of finding by Random-
Traverse a copy of M|V (H)| in H|V (H)|(Q|V (H)|).

With these three properties at hand, the main theorem will
follow.

One central feature of our analysis via the study of hyper-
graphs is to ensure that the underlying hypergraphs have some
basic planar graphs-like properties. (In particular, informally,
in our analysis we would like to argue that there is always
a constant fraction of low-degree vertices.) While we do
not have a useful characterization of planar hypergraphs, we
will be able to model some planarity-like properties of the
hypergraphs using some special graph reduction (via shadow
graphs), see Lemma 29 (and for more details, see the full
version of the paper [13]).

In the following sections we will develop this framework
in details, finalizing it in Section VII that proves the desired
properties above.

A. Auxiliary technical tools

We begin with three auxiliary tools in our analysis, the
study of the problem of finding colored copies of H in
G (Section IV-A1), a reduction simplifying condition (a) of
Lemma 17 (Section IV-A2), and extension of the testing and
graph exploration framework to hypergraphs (Section IV-A3).

1) Auxiliary tools: Finding colored copies of H in G:
To simplify the analysis, we will consider colored copies
of H in G. Let us color all vertices of H using |V (H)|
colors, one color for each vertex (without loss of generality,
the colors are {1, 2, . . . , |V (H)|}). While the coloring is not
needed by the algorithm, it will simplify the analysis. With
this in mind, instead of showing that our algorithm Tester
finds with sufficient probability a copy of H , we will show
(cf. Lemma 20) that there is a coloring χ of vertices of G such
that Tester finds (with sufficient probability) a colored copy of
H , that is, a copy of H in G with colors of the vertices in
the copy consistent with the coloring χ. (While this statement
sounds trivial, since once we found a copy of H in G we can
always color vertices of G to be consistent with the coloring
of H , the colors will be helpful in our analysis.) Therefore,
from now on, whenever we will aim to find a copy of H we



will mean to find a colored copy of H consistent with given
coloring χ.

Let us notice one immediate implication of this assumption:
if Qi and χ are fixed, then one can think about every edge
e as a labeled edge, since the colors of its endpoints define
a unique edge in H that e corresponds too. We will use this
property implicitly throughout the paper, without mentioning
it anymore.

2) Auxiliary tools: Simplifying condition (a) of Lemma
17: (via edge-disjoint copies of H): We show that one can
simplify condition (a) of Lemma 17 for the special case when
the subgraph G of G is a union of a linear number of edge-
disjoined colored copies of H (a similar approach has been
also used in [11]). That is, if there is a graph G[Q] with
a linear number of edge-disjoint colored copies of H , then
Lemma 18 shows that there is always a subset Q′ ⊆ Q
with cardinality |Q′| = Ωε,H(|Q|) such that the graph G[Q′]
satisfies property (a).

Lemma 18: (Transformation to obtain property (a)) Let
G = (V,E) be a simple planar graph. Let Q be a set of
Ωε,H(|V |) edge-disjoint colored copies of H in G. Then there
exists a subset Q′ ⊆ Q, |Q′| = Ωε,H(|V |), such that the graph
G[Q′] satisfies condition (a) of Lemma 17.

The proof of Lemma 18, as a natural extension of the
approach from [11], is deferred to the full version of the
paper [13].

3) Traversing hypergraphs and testing hypergraph M-
freeness: In Section IV, we described two central algorithms
used for testing H-freeness: Random-Traverse, and Tester.
Both these algorithms were presented in a form required to
test H-freeness in a graph. However, in our transformations we
will apply the same algorithms to hypergraphs, to test whether
a hypergraph H (in a form of Hi(Qi), as defined in Section
VI-C) is M-free, where M is a fixed hypergraph (which in
our applications will be Mi, as defined in Section VI-B).
While the modifications are rather straightforward, for the
sake of completeness, we will describe below these algorithms
to be run on a hypergraph. Furthermore, in our algorithms
for hypergraphs we will have one additional parameter, a
representative function Rep : V → V , which describes the
way how the edges have been contracted (cf. Definition 34).
The idea behind the representative function Rep is that any
vertex u that either is in the hypergraph H or which does not
belong to any set of copies of H has Rep(u) = u, but any
other vertex u from G that has been contracted and now does
not appear in H, has Rep(u) equal to its representative in H.
In the latter case, the intuition is that the representative is a
vertex in H that with probability Ωε,H(1) can be reached from
u in Oε,H(1) steps, if Random-Traverse (run in G) started at u.

Remark 19: Let us remark that in HTester and Random-
HTraverse below we use the input graph G implicitly, since in
Random-HTraverse we directly refer here to the set V , which is
the vertex set of G, and we do so indirectly via the use of Rep,
whose domain and range are V . Further, in our applications
we will always have that V (H) ⊆ V .

Random-HTraverse (H,Rep, d, t):
• Pick a vertex v ∈ V i.u.r., and let L0 = {Rep(v)}

(i.e., L0 has a randomly selected vertex, such that any u ∈
V is chosen with probability |Rep(−1)(u)|

|V | ).
• If v is a vertex of H then for ` = 1 to t do:
� Let L` = ∅ and E` = ∅.
� For every u ∈ L`−1 do:
◦ Choose d edges incident to u in H i.u.r.; call them
E`,u.

◦ Let Γu be the set of vertices in E`,u.
◦ Set L` = L` ∪ Γu and E` = E` ∪ E`,u.

� L` = L` \
⋃`−1

i=0 Li.
• Return the edges

⋃t
`=1 E`.

HTester (H,Rep,M, d, t):
• Run Random-HTraverse (H,Rep, d, t) and let E be the

resulted set of edges.
• If the sub-hypergraph ofH induced by the edges E contains

a copy of M, then reject.
• If not, then accept.

V. FINDING THE FIRST SET Q1 OF EDGE-DISJOINT
COLORED COPIES OF H

We now proceed with a simple construction that for a given
graph G that is ε-far from H-free, finds a set Q1 of Ωε,H(|V |)
edge-disjoint colored copies of H in G.

Lemma 20: If G is ε-far from H-free, then one can color
vertices of G with |V (H)| colors χ such that G has a set Q
of at least ε

|E(H)|·|V (H)||V (H)| · |V | edge-disjoint colored copies
of H .
Proof. We first find the copies of H without considering the
coloring of V and V (H), and then we will prove the existences
of the relevant coloring χ.

We find edge-disjoint copies of H in G one by one. Suppose
that we have already found in G a set of k edge-disjoint copies
of H , where k < ε|V |

|E(H)| . Then, since G is ε-far from H-free,
the graph obtained from G by removal of the k copies of H
found already (which removes k|E(H)| < ε|V | edges from
G) cannot be H-free, and hence G must contain a copy of
H . This copy would be edge-disjoint with all copies found
before, what by induction shows that G has at least ε·|V |

|E(H)|
edge-disjoint copies of H .

Let H1, . . . ,H` be the edge-disjoint copies of H in G,
with ` ≥ ε·|V |

|E(H)| . Let us consider a uniformly random
coloring of vertices of G (with |V (H)| colors) and let Xi

be the indicator random variable that Hi has all vertices of
the same color as in H; let X =

∑`
i=1Xi. Clearly, for

every i, Pr[Xi = 1] = E[Xi] = 1
|V (H)||V (H)| . Therefore,

E[X] = E[
∑`
i=1Xi] =

∑`
i=1 E[Xi] = `

|V (H)||V (H)| . This
implies that there is a coloring of vertices of G that has at
least `

|V (H)||V (H)| ≥ ε·|V |
|E(H)|·|V (H)||V (H)| edge-disjoint colored

copies of H . Therefore, there is a coloring χ with this property,
that is, after we color vertices of G using χ, then G will have
at least ε·|V |

|E(H)|·|V (H)||V (H)| edge-disjoint colored copies of H
that form the required set Q. �



Using the result from Lemma 20, from now on, we will
assume that the vertices of G are colored using χ (the coloring
from Lemma 20) so that G has at least Ωε,H(|V |) edge-disjoint
colored copies of H .

VI. CONSTRUCTING Qi+1 FROM Qi
The construction of Q1 from Section V is rather simple,

but it is significantly more complex to define Q2, and then
Q3, . . . ,Q|V (H)|. In what follows, we will first present key
intuitions in Section VI-A, then describe our framework in
Sections VI-B and VI-C, and present details of the construc-
tion of Qi+1 in Section VI-D.

While our main focus is on the sets Qi of edge-disjoint
colored copies of H in G, in our analysis we will analyze
these sets and the relevant graphs G[Qi] via their suitable
hypergraph representation. Indeed, to prove that Random-
Traverse finds a copy of H , we will consider a hypergraph
induced by “shrunk” copies of H defining Qi. The idea of
this construction is two-folded:
• on one hand, using the hypergraph representation it will

be easier to argue a lower bound for the probability that
a copy of H is found, and

• on the other hand, the hypergraph representation will
allow us to combine distinct colored copies of H (or the
subgraph of H) that are undistinguishable to Random-
Traverse.

A. Overview: Gadgets, hypergraph representation & their use

Our analysis relies on special structures (gadgets) in the
input graph and then representing these gadgets in a succinct
way using hypergraphs.

Let G∗ be a subgraph of G that has a copy of H . Consider
a subgraph H1 of H and let u1, . . . , u` be the vertices in the
copy of H1 in G∗ that separate G \H1 from H1, so that (cf.
Figure 1):

(a) every vertex from {u1, . . . , u`} is adjacent in G∗ to
some vertex H1 \ {u1, . . . , u`},

(b) every vertex in H1 \ {u1, . . . , u`} is adjacent in G∗

only to vertices from H1, and
(c) {u1, . . . , u`} forms an independent set in H1.

Then, we can construct a gadget to represent that copy
of H1 by removing from H1 all vertices and edges from
H1 \ {u1, . . . , u`} and replacing them by a single hyperedge
{u1, . . . , u`}.

We will be using this construction of gadgets to model the
following scenario:
• when entering (in Random-Traverse) H1 via any single

edge incident to any vertex from the separator u1, . . . , u`
is sufficient to visit (with constant probability) all edges
in H1.

Therefore, for the analysis, this will correspond to the situation
that
• there is a hyperedge {u1, . . . , u`}, and by visiting this

hyperedge (in the hypergraph), the algorithm will visit
(with constant probability) all edges in H1 (in the original

graph), and will be able to continue the search from all
separating vertices u1, . . . , u`.

Furthermore, the gadgets can be also helpful in the analysis
of “substitutable” copies of a subgraph of H . Suppose that
for a subgraph H1 of H , the separator (as defined above) is
identical in multiple copies, that is, vertices u1, . . . , u` form
the separator in multiple edge-disjoint copies of H1. Then, we
have multiple hyperedges {u1, . . . , u`} and their multiplicity
represents the fact that to find a copy of H1 it is enough to
visit just one of the hyperedges {u1, . . . , u`}. In particular,
if u1 is incident to multiple copies of the identical hyperedge
{u1, . . . , u`}, then the probability that the process will visit H1

starting from u1 increases with this multiplicity. And so, if the
multiplicity is of order degG(u1), then after reaching vertex
u1, the Random-HTraverse algorithm (cf. Section IV-A3) will
visit the entire H1 with a constant probability.

The central idea behind the gadgets as described above is to
use them repeatedly to transform a subgraph of G into a sub-
hypergraph representing a smaller subgraph of G for which
we can easily analyze the Random-HTraverse algorithm.

B. Shrinking H and hypergraph representation of H by Mi

We will begin with an iterative procedure that gradually
shrinks H into a single vertex. This procedure processes H and
its contractions in a form of a hypergraph. (See also Figures
2–4.)

Let us consider an arbitrary numbering of the vertices of H ,
v1, v2, . . . , v|V (H)|; this order is not known in advance and
is independent of the coloring of H (in fact, the order will
be determined by the structure of G, and finding the right
order v1, v2, . . . , v|V (H)| is the central part of our analysis in
the next sections, finalized in Lemma 33). In our analysis,
we will perform a sequence of transformations on H , each
transformation converting some hypergraphMi corresponding
to H into some other hypergraph Mi+1 corresponding to H ,
1 ≤ i ≤ |V (H)| − 1 (cf. Figures 2–4), such that:

• M1 := H , and
• Mi+1 is obtained fromMi by contracting vertex vi to its

neighbors as follows:
� let Ni be the set of all neighbors of vi in Mi; contract
vi to its neighbors by removing vi from Mi and then
adding a new hyperedge consisting of vertices in Ni.

We will want to maintain information about all vertices
which have been contracted to create a given hyperedge (e.g.,
in Figure 1, these would be vertices {1, 5}) and so we will
label the hyperedges. We will denote the label of an edge
e by σ(e). A regular edge e (original edge from E(H)) has
an empty label, i.e., σ(e) = ∅, and if Ei denotes the set of
edges/hyperedges incident to vertex vi in Mi, then the new
hyperedge Ni obtained by contraction of vi will have label
σ(Ni) = {vi}∪

⋃
e∈Ei σ(e) (i.e., its label is the union of {vi}

and the union of the labels of the edges in Ei).
Furthermore, we will also have colored label σ∗ of any edge

e, defined as the set of the colors of the vertices defining the
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Fig. 2. Consider the input graph G in Figure (a) and consider the process of shrinking G, as described in Section VI-B. (b) presents
contraction of vertex 1 and adding of hyperedge {5, 7, 8, 9} (with label {1}). (c) After contracting vertex 2 and adding hyperedge {3, 4}
(with label {2}).
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Fig. 3. Continuing the example from Figure 2: (d) After contracting vertex 3 and adding hyperedge {4, 8, 10} (with label {2, 3}). (e) After
contracting vertex 4 and adding hyperedge {8, 10} (with label {2, 3, 4}). (f) After contracting vertex 5 and adding hyperedge {6, 7, 8, 9}
(with label {1, 5}).
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Fig. 4. Continuing the example from Figures 2 and 3: (g) After contracting vertex 6 and adding hyperedge {7, 8, 9} (with label {1, 5, 6}). (h)
After contracting vertex 7 and adding hyperedge {8, 9} (with label {1, 5, 6, 7}; note that as the result, we have two parallel edges between
8 and 9, but each of these edges is different, one corresponds to a direct edge between 8 and 9 with label ∅, and another corresponds to the
gadget with separator {8, 9} and internal vertices {1, 5, 6, 7} (as shown by the label)). (i) After contracting vertex 8 and adding hyperedge
{9, 10} (with label {1, 2, 3, 4, 5, 6, 7, 8}). (j) After contracting vertex 9 and hyperedge {10} (with label {1, 2, 3, 4, 5, 6, 7, 8, 9}).

label of e, that is, σ∗(e) = {χ(u) : u ∈ σ(e)}. (Note that if
σ(e) = ∅ then σ∗(e) = ∅.)

We will also use the following notion.
Definition 21: If in our construction, in Mi, we had edges

e1, . . . , e` incident to vi, then we will say that the newly
created hyperedge Ni inMi+1 is modeled by edges e1, . . . , e`
in Mi.

Let us note that the construction above allows “selfloops,”
that is, hyperedges consisting of a single vertex, and that it
allows multiple copies of hyperedges on the same vertex set
(see, e.g., Figure 4 (h) or Figure 5, and one could have many
copies of hyperedges even with more than two vertices). An
important feature of the latter case is that all these hyperedges

will be considered as different hyperedges, since they corre-
spond to different subgraphs of H and have different labels.
Note also that all labels are disjoint (i.e., σ(e1) ∩ σ(e2) = ∅
for any distinct hyperedges e1, e2 in Mi).

C. Shrinking copies of H in G

The central idea of our analysis is to mimic the correspond-
ing transformation of H (as described in Section VI-B) in all
relevant copies of H in sets Q1,Q2, . . . , and then, instead
of searching for a copy of H in G[Q1], G[Q2], . . . , to search
for copies ofM1,M2, . . . in the corresponding shrunk hyper-
graphs H1(Q1),H2(Q2), . . . . Then, we will argue that finding
a copy of H in G is (almost) as easy as finding a copy ofM1

in H1(Q1), which in turn can be reduced (by paying a small
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Fig. 5. Construction of hypergraphs (a) M1, (b) M2, (c) M3, (d) M4, with multiple hyperedges {4, 5}.

price) to finding a copy ofM2 inH2(Q2), and so on, reducing
everything to finding a copy ofM|V (H)| inH|V (H)|(Q|V (H)|).
And then, since M|V (H)| has only a single vertex, we would
hope that finding its copy in H|V (H)|(Q|V (H)|) is easy.

In order to incorporate this approach, we will transform
appropriate subgraphs of G into a sequence of hypergraphs,
such that after i transformations, every relevant copy of H is
shrunk into Mi+1. (Let us emphasize that this step relies on
the choice of vertex vi — which is the same in all copies of
H — to be determined by the structure of Qi, as described
in Lemma 33.) In particular, we will mimic the corresponding
transformation on Q1,Q2, . . . as follows.

We consider a hypergraph, denoted by Hi(Qi), correspond-
ing to Qi, which has
• vertex set V (Hi(Qi)) = V \ {u ∈ V : χ(u) ∈ {χ(vj) :
j < i}} (vertices4 in G that have colors of vertices
{vi, . . . , v|V (H)|}, that is, that have not been contracted
in Mi yet), and

• edge set formed by an edge-disjoint collection of copies
of Mi (we allow hyperedges to have some multiplicity).

Then, for some carefully chosen set Qi+1 ⊆ Qi, a new
hypergraph Hi+1(Qi+1) is obtained from Hi(Qi) by
• removing all hyperedgescorresponding to the edge-

disjoint copies of H in Qi \Qi+1 and
• then taking the set Qi+1 of copies of H and shrinking

them, in the same way asMi is transformed intoMi+1:

• Select a vertex vi ∈ V (H).
• Simultaneously, contract every vertex u ∈ V (Hi(Qi))

with χ(u) = χ(vi) as follows:
� for every colored copy h of H in Qi+1 that contains

vertex u:
◦ add a new hyperedge consisting of vertices in
N h

i 〈u〉, where N h
i 〈u〉 is the set of neighbors of

u in h (in the hypergraph Hi(Qi)) other than u
(that is, u /∈ N h

i 〈u〉);
� remove vertex u (with all incident edges from
Hi(Qi)).

Notice that in our construction of Hi+1(Qi+1) we are
removing all vertices u ∈ V with color χ(u) = χ(vi). And

4Let us first remind that we are assuming that the vertices of G are colored
using χ so that G has at least Ωε,H(|V |) edge-disjoint colored copies of H ,
as promised by Lemma 20.

so, in particular, V (Hi+1(Qi+1)) = V \ {u ∈ V : χ(u) ∈
{χ(vj) : j ≤ i}}.

Furthermore, since we contract only vertices of color χ(vi)
and since these vertices are independent in G[Qi+1] (indeed,
since Qi+1 is the set of edge-disjoint colored copies of H ,
G[Qi+1] does not have monochromatic edges), the operation
above is well defined and the contractions of all vertices of
color χ(vi) can be performed independently in all copies of
H in Qi+1. This yields an equivalent definition:

Remark 22: The following is an equivalent definition of
Hi+1(Qi+1):

• Start with graph G[Qi+1].
• For every copy h of H in Qi+1, perform the shrinking

of H into hypergraph Mi+1.
• Combine all copies of Mi+1 obtained in that way.
• Remove all vertices u with χ(u) = χ(vj) for j ≤ i that

do not belong to any copy of Qi+1.

The fact that this description is correct follows from the fact
that the shrinking of different copies of H can be performed
independently because of vertex coloring, which ensures that
if we contract a vertex u with χ(u) = χ(vj) and create a
new edge N h

j 〈u〉, then this construction can be performed
independently for different copies of H .

Notice that because of the construction above, to de-
fine Hi+1(Qi+1), we do not need to consider the con-
structions of H1(Q1),H2(Q2), . . . ,Hi(Qi) one after an-
other, but we could do it with the constructions of
H1(Qi+1),H2(Qi+1), . . . ,Hi(Qi+1), and from Hi(Qi+1) to
build Hi+1(Qi+1).

(Note that the vertex set of Hi+1(Qi+1) is
V (Hi+1(Qi+1)) = V \ {u ∈ V : χ(u) ∈ {χ(vj) : j ≤ i}}.
Further, observe that Hi+1(Qi+1) may have (isolated) vertices
u that do not belong to any copy of Qi+1.)

The construction above maintains a relationship between
edges in Hi(Qi) and edges in Mi.

Definition 23: (Corresponding edges) If e is an edge in
Hi(Qi) then the corresponding edge to e in Mi is edge e′ in
Mi such that the colors of vertices in e are the same as the
colors of vertices in e′ (i.e., {χ(x) : x ∈ e} = {χ(vj) : vj ∈
e′}), and the colored labels of e and e′ are the same too (i.e.,
σ∗(e) = σ∗(e∗)).

Notice that every edge in Hi(Qi) has a unique correspond-
ing edge in Mi. Furthermore, for any edge e′ in Mi, the
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Fig. 6. Operation of contracting vertex of color 13 (numbers depicted correspond here to the colors) to define new hypergraph H14(Q14).
(a) Describes the edges of a single copy of M13 incident to vertex of color 13 (in the center) in H13(Q13). (b) Describes the edges of
two copies of M13 incident to vertex of color 13 in H13(Q13). (Notice that in this case, vertex of color 13 is not safe.) (c) Describes the
situation of contracting vertex of color 13, which creates two new hyperedges, and removal of vertex of color 13 and all incident edges.
This defines H14(Q14).

number of edges in Hi(Qi) corresponding to edge e′ in Mi

is exactly |Qi|.
Next, we can also mimic Definition 21 in the context of our

construction here as follows:
Definition 24: (Modeling edges inHi+1(Qi+1) by edges in

Hi(Qi)) Let u be a vertex in Hi(Qi) with χ(u) = χ(vi). Let
h be a colored copy of H in Qi+1 that contains vertex u. Let
e1, . . . , e` be the edges incident to u Hi(Qi) corresponding to
the copy h. Then, we will say that the newly created hyperedge
N h
i 〈u〉 in Hi+1(Qi+1) is modeled by edges e1, . . . , e` in
Hi(Qi).

Now, we are ready to formalize the process of finding a
colored copy of Mi in a hypergraph.

Definition 25: (Finding a colored copy of Mi) Let
vi, . . . , v|V (H)| be the vertices in Mi. We say that HT-
ester (H,Rep,Mi, d, t) finds a colored copy of Mi in H if
the corresponding algorithm Random-HTraverse (H,Rep, d, t)
returns a set of edges E , such that
• the sub-hypergraph of H induced by the edges E

contains vertices xi, . . . , x|V (H)| such that for every
edge/hyperedge e inMi, E contains an edge correspond-
ing to e, or equivalently,
� χ(xj) = χ(vj) for every j, i ≤ j ≤ |V (H)|, and
� for every edge {vj1 , . . . , vjr} in Mi, E contains edge
{xj1 , . . . , xjr}.

1) Adjusting for planar graphs: safe vertices and consistent
hypergraphs: In our construction we will require more proper-
ties from the contractions defining Hi+1(Qi+1). To maintain
some basic properties of planar graphs (which are required
by our analysis), we will want to model the operation of
contraction of a vertex u as the standard vertex contraction of
u to one of its neighbors. For that, we will need an additional,
stronger property:
• we want to ensure that all contractions in Hi(Qi) corre-

sponding to the contraction of vi in Mi are consistent,
that is, the contraction of u is the same in every colored
copy of H that contains u (that is, for every vertex
u in with χ(u) = χ(vi), for any two colored copies

h1, h2 of H in Qi+1 containing vertex u, we have
N h1

i 〈u〉 = N h2

i 〈u〉).
To facilitate this property, we will use the following defini-

tions.
Definition 26: (Safe vertices) Let Qi be a set of edge-

disjoint colored copies of H in G and let Q ⊆ Qi. We call a
vertex u ∈ V (Hi(Qi)) safe (with respect to Q and Hi(Qi))
if for all colored copies h ∈ Q of H that contain u, the sets
N h
i 〈u〉 are the same.
Remark 27: Note that Definition 26 means that for every

safe vertex u with respect to Q and Hi(Qi), not only all edges
incident to u correspond to the edges from Mi incident to
vertex v in Mi with χ(u) = χ(v), but also, if u is incident
to r edges in Hi(Qi) and v is incident to edges e1, . . . , e` in
Mi, then

(i) we can partition the edges incident to u into ` groups,
each group corresponding to one of the edges e1, . . . , e`
in Mi, each group of the same size r/`, such that two
edges e′, e′′ from the same group have the same colored
label (i.e., σ∗(e′) = σ∗(e′′)) and are defined by the same
vertices (i.e., for every vertex x, x ∈ e′ iff x ∈ e′′);

(ii) |N h
i 〈u〉| = |

⋃`
j=1 ej \ {v}|, that is, u has as many

neighbors in Hi(Qi) as v has in Mi;
(iii) {χ(x) : x ∈ N h

i 〈u〉} = {χ(x) : x ∈
⋃`
j=1 ej \ {v}}.

Our next iterative definition extends the notion of safe
vertices to the entire hypergraph.

Definition 28: (Consistent hypergraphs) For any set Q1

of edge-disjoint colored copies of H in G, the hypergraph
H1(Q1) (which is equal to the graph G[Q1]) is called consis-
tent (for Q1).

Let Qi be a set of edge-disjoint colored copies of H in G
and let Qi+1 ⊆ Qi. If hypergraph Hi(Qi) is consistent for Qi,
then hypergraph Hi+1(Qi+1) obtained from Hi(Qi) is called
consistent (for Qi+1) if every vertex u ∈ V (Hi(Qi)) with
χ(u) = χ(vi) is safe with respect to Qi+1 and Hi(Qi).

2) Central property of consistent hypergraphs via shadow
graphs: With the notion of safe vertices and consistent hy-
pergraphs, we can now present the following central lemma
that shows that the neighborhood of vertices in consistent
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Fig. 7. Operation of contracting safe vertex of color 13 (numbers depicted in the vertices correspond to the colors, and number depicted
next to the edges correspond to the colored labels of the edges) to define new hypergraph H14(Q14). (a) Describes the edges of a single
copy of M13 incident to vertex of color 13 (in the center) in H13(Q13). Since we want vertex of color 13 to be safe, it is possible there
are many more copies of M13 incident to that vertex, in which case all of them use identical edges as in the depicted single copy (here
identical means: on the same vertex set, with the same colored labels, but with distinct labels). (b) Describes the situation after contracting
vertex of color 13 in H14(Q14). Notice that the new edge in H14(Q14) has colored label {1, 2, 3, 5, 6, 8, 9, 11, 13} and is modeled by five
edges in H13(Q13).

hypergraphs can be modeled by some semi-planar structures,
which we will call shadow graphs, that are a union of at most
|V (H)| simple planar graphs.

Lemma 29: Let Qi be a set of edge-disjoint colored copies
of H in G and let Hi(Qi) be a hypergraph consistent for Qi.
Then, there is a simple graph G(Hi(Qi)),

(a) with the vertex set equal to the set of all non-isolated
vertices in Hi(Qi),

(b) that is a union of at most |V (H)| simple planar graphs,
and

(c) such that for any distinct x, y ∈ V (Hi(Qi)), x is
adjacent to y in Hi(Qi) if and only if x is adjacent
to y in G(Hi(Qi)).

The simple graph G(Hi(Qi)) in Lemma 29 will be called
the shadow graph of Hi(Qi).

We consider the characterization provided in Lemma 29
to be one of the most interesting and highly non-trivial
contributions of this paper. This is the key tool that allows us
to facilitate the approach presented in the paper. (The proof of
Lemma 29 is deferred to the full version of the paper [13].)

3) Finding many safe vertices of the same color: The main
use of Lemma 29 is to show that even though the use of the hy-
pergraphs H1(Q1),H2(Q2), . . . looses some basic properties
of planar graphs, our use of consistent hypergraphs allows us
to apply Lemma 29 to maintain some weaker, but still similar
properties of the hypergraphs H1(Q1),H2(Q2), . . . . We begin
with the following lemma that shows that the hypergraphs will
have a constant fraction of vertices of low degrees. The proof
of our next Lemma 30 extends the approach used earlier in
the context of planar graphs from [11]; we defer the proof to
the full version of the paper [13].

Lemma 30: Let Qi be a set of edge-disjoint colored copies
of H in G and let Hi(Qi) be a hypergraph consistent for Qi.
Then, there is a set Q ⊆ Qi of size at least |Qi|

4|V (H)|+2 such
that in the hypergraph Hi(Q), every copy of H in Q has a

vertex with at most 6|V (H)| distinct neighbors.
Our next lemma follows the arguments used in a related

proof from [11] and shows that if there is a color with all
vertices having a small number of neighbors in Hi(Q) for
Q ⊆ Qi, then we can always find a large subset of Q with all
vertices of that color being safe.

Lemma 31: Let Qi be a set of edge-disjoint colored copies
of H in G such that Hi(Qi) is a hypergraph consistent for Qi.
Let c be a color of a vertex in {1, . . . , |V (H)|} \ {χ(vj) : j <
i}. Let Q ⊆ Qi such that every colored copy of H in Q has
vertex of color c with at most 6|V (H)| distinct neighbors in
Hi(Q). Then there is a subset Q′ ⊆ Q, |Q′| ≥ |Q|

(6|V (H)|)|V (H)| ,
such that every colored copy h of H in Q′ has vertex of color
c safe with respect to Q′ and Hi(Qi).
Proof. Let c1, . . . , c` be the colors of vertices adjacent to
vertex of color c in Mi (notice that c may be among these
colors). For each non-isolated vertex u in Hi(Q) of color c,
for every color cs, 1 ≤ s ≤ `, select i.u.r. one of its neighbors
u〈s〉 in Hi(Q) of color cs. Next, remove from Q every copy
of h of H in Hi(Q) containing vertex u unless the vertices
from this copy incident to u are the selected ` neighbors
u〈1〉, u〈2〉, . . . , u〈`〉. Let Q′ be the set of remaining copies of
H in Hi(Q).

Our construction ensures that every remaining non-isolated
vertex u of color c is safe with respect to Q′ and Hi(Qi).
Furthermore, since every vertex of color c has at most 6|V (H)|
distinct neighbors (taking into account self-loops) in Hi(Q),
the probability that a fixed copy of h in Q is not deleted by the
process above is at least (6|V (H)|)−`. Therefore the expected
size of Q′ is at least (6|V (H)|)−` · |Q|, and therefore, there
exists a set Q′ of that size that satisfies the lemma. �

With Lemmas 30 and 31 at hand, we are now ready to
present the main result of this section.

Lemma 32: Let Qi be a set of edge-disjoint colored copies



of H in G and let Hi(Qi) be a hypergraph consistent for Qi.
Then, there is color c in {1, . . . , |V (H)|} \ {χ(vj) : j < i}
and a set Q∗ ⊆ Qi of size at least |Qi|

(6|V (H)|)|V (H)|+2 such that
every colored copy h of H in Q∗ has vertex of color c safe
with respect to Q∗ and Hi(Qi).
Proof. By Lemma 30, there is a set Q̂ ⊆ Qi, |Q̂| ≥
|Qi|

4|V (H)|+2 , such that every colored copy of H in Q̂ has a
vertex with at most 6|V (H)| distinct neighbors in Hi(Q̂). For
a color c∗ ∈ {1, . . . , |V (H)|} \ {χ(vj) : j < i}, let Q̂c∗

be the subset of Q̂ such that every copy of H in Q̂c∗ has a
vertex of color c∗ with at most 6|V (H)| distinct neighbors
in the hypergraph Hi(Q̂). Since

⋃
c∗ Q̂c∗ = Q̂, there is one

color c ∈ {1, . . . , |V (H)|} \ {χ(vj) : j < i} such that
|Q̂c| ≥ 1

|V (H)| · |Q̂| ≥
|Qi|

(4|V (H)|+2)·|V (H)| ≥
|Qi|

(6|V (H)|)2 and
every copy of H in Q̂c has a vertex of color c with at
most 6|V (H)| distinct neighbors in Hi(Q̂), and hence also
in Hi(Q̂c). Therefore, we can take such set Q̂c as set Q
in Lemma 31, to conclude that there is a subset Q′ ⊆ Q̂c,
|Q′| ≥ |Q̂c|

(6|V (H)|)|V (H)| ≥ |Qi|
(6|V (H)|)|V (H)|+2 , such that every

colored copy h of H in Q′ has vertex of color c safe with
respect to Q′ and Hi(Qi). �

D. Constructing set Qi+1 of edge-disjoint colored copies of
H and Hi+1(Qi+1)

Now we are ready to define our construction of the set Qi+1

of edge-disjoint colored copies of H obtained as a subgraph
of Qi, and with this, to define the hypergraph Hi+1(Qi+1)
from Hi(Qi).

Let Qi be a set of edge-disjoint colored copies of H in G,
where Hi(Qi) is a hypergraph consistent for Qi. We apply
Lemma 32 to choose color c in {1, . . . , |V (H)|} \ {χ(vj) :

j < i} and a set Q∗ ⊆ Qi of size at least |Qi|
(6|V (H)|)|V (H)|+2

such that every colored copy h of H in Q∗ has vertex of
color c safe with respect to Q∗ and Hi(Qi) (that is, for every
vertex u with χ(u) = c, all colored copies h ∈ Qi+1 of H
that contain u have identical sets N h

i 〈u〉 in Hi(Qi)). Then,
we define Qi+1 := Q∗ and select vertex vi to be the vertex
of color c in H .

With so defined vertex vi, we can immediately construct
the hypergraph Hi+1(Qi+1) (from the hypergraph Hi(Qi)).
The details of the construction have been presented in Section
VI-C, and it required the choice of set Qi+1 and of vertex vi
among the vertices in V (H) \ {v1, . . . , vi−1}.

By Lemma 32 (cf. Definition 28 of consistent hypergraphs),
this immediately gives the following lemma.

Lemma 33: Let Qi be a set of edge-disjoint colored copies
of H in G and let Hi(Qi) be a hypergraph consistent for
Qi. Then, the choice of the set Qi+1 with the vertex vi, as
described above, will ensure that |Qi+1| ≥ |Qi|

(6|V (H)|)|V (H)|+2

and that Hi+1(Qi+1) obtained from Hi(Qi) is consistent
for Qi+1.

1) Representatives Repi for Q and Hi(Q): In our anal-
ysis, we will be also using the concept of representatives
to describe the scenario that a vertex from V has been

contracted to some other vertices during the construction of
Hi(Q) (in some moment, it has been deleted from Hj(Q),
1 ≤ j < i, and new hyperedges containing all neighbors
of this vertex has been formed, in which case of these
neighbors is used as a proxy). The canonical representative
function plays an important role in our analysis and it is used
explicitly in algorithms HTester and Random-HTraverse. (For
the following definition, let us recall the construction of the
hypergraph Hi(Qi) from Section VI-C. Let us also notice
that the notion of canonical representatives is used solely in
the analysis at the end of the process, and since it is not
used for the construction of sets Q1,Q2, . . . ,Q|V (H)| and
hypergraphs H1(Q1),H2(Q2), . . . ,H|V (H)|(Q|V (H)|) and is
used only to model their behavior, it does rely on the final
order v1, . . . , v|V (H)| of the vertices in H .)

Definition 34: (Canonical representatives) Let Q be a set
of edge-disjoint colored copies of H in G. Let v1, . . . , v|V (H)|
be an arbitrary order of vertices of H such that for each i,
1 ≤ i ≤ |V (H)|, the hypergraph Hi(Q) is consistent for Q.
A canonical representative function is a sequence of functions
Rep1,Rep2, . . . ,Rep|V (H)| : V → V such that for every i,
1 ≤ i ≤ |V (H)|:
• if u is an isolated vertex in G[Q], then Repi(u) = u for

every i;
• otherwise, if u is a vertex in Hi(Q) (i.e., χ(u) /∈ {χ(vj) :

1 ≤ j < i}), then Repi(u) = u;
• otherwise, Repi(u) = x, where (i) x ∈

⋃
e:u∈σ(e) e and

(ii) for any x, y ∈
⋃

e:u∈σ(e) e, if x 6= y, χ(x) = χ(vj1),
and χ(y) = χ(vj2), then j1 < j2.

We will denote any single Repi as a representative function.
The notion of the canonical representative function

Rep1,Rep2, . . . ,Rep|V (H)| : V → V describes the dependen-
cies between the vertices from G in the construction of the se-
quence of the hypergraphs H1(Q),H2(Q), . . . ,H|V (H)|(Q).
And so, Repi(u) = u unless vertex u has been contracted
during the construction of Hj(Q) for j < i. If u has been
contracted during the construction of Hj(Q), then for some
colored copy h of H in Q containing u, we first added a new
hyperedge consisting of vertices in N h

j 〈u〉, and then removed
vertex u (with all incident edges from Hj(Q)). In that case,
we will define Repj(u) = x, 5where x is the vertex in N h

j 〈u〉
that will be contracted first among all vertices in N h

j 〈u〉 (that
is, if x, y ∈ N h

j 〈u〉 and χ(x) = χ(vr1) and χ(y) = χ(vr2),
then r1 ≤ r2). Furthermore, if in some future iteration s > j
vertex x = Repj(u) is contracted, then we will not only set
Reps(x), but we will also update Reps(u) to be the same
as Reps(x). In fact, we will maintain that for all k > j, if
Repj(u) = x then Repk(u) = Repk(x).6

5Notice that this notion is well defined only since u is a safe vertex with
respect to Q and Hj(Q), because in that case the neighbors of u in Hj(Q)
do not depend on the choice of the copy h of H in Q containing u we
consider.

6Note that function Repi defines a forest on V , where in each “tree” the
root is a vertex u with Repi(u) = u, and the “leaves” are formed by vertices
u with Rep

(−1)
i (u) 6= u (that is, for which there is no v with Repi(v) = u).



Remark 35: Equivalently, one can define
Rep1, . . . ,Rep|V (H)| : V → V recursively as follows:
• if u is an isolated vertex in G[Q], then Repi(u) = u for

every i;
• otherwise:
� Rep1(u) = u for every vertex u ∈ V ;
� for any i, 2 ≤ i ≤ |V (H)|, for every u ∈ V :
? if u is a vertex in Hi(Q), then Repi(u) = u;
? otherwise,
∗ if Repi−1(u) has color different than χ(vi−1)7,

then Repi(u) = Repi−1(u);
∗ else, Repi(u) is equal to the neighbor of vertex
Repi−1(u) inHi−1(Q) with the lowest color (that
is, Repi(u) is the neighbor x of Repi−1(u) in
Hi−1(Q) that minimizes j with χ(x) = χ(vj)).

Let us explain the choice of vertex x in the last case of the
definition of Repi(u). First of all, the choice of Repi(u) to be
a neighbor of vertex Repi−1(u) in Hi−1(Q) is to ensure that
u will belong to the label of the newly created edge incident
to that neighbor in Hi(Q). The choice of the neighbor with
the “lowest color” is to ensure that that vertex will be the first
to be contracted in the later procedure of shrinking Hj(Q),
and thus, during that construction, the edge containing vertex
u will be replaced by another edge. Therefore, our choosing
x ensures that if χ(u) = χ(vr), then
• for every i ≤ r, Repi(u) = u, and
• for every i > r, Repi(u) is a vertex inHi(Q) and there is

a hyperedge e incident to vertex Repi(u) such that u ∈ e.

VII. COMPLETING THE PROOF OF LEMMA 17, AND OF
THEOREMS 14 AND 15

We are now ready to complete the proof of Lemma 17, and
with this of Theorems 14 and 15.

Let G = (V,E) be a simple planar graph that is ε-far
from H-free. By our analysis in the previous sections (see
Lemma 33), we know that we can order the vertices of H
v1, . . . , v|V (H)| to define the hypergraphs M1, . . . ,M|V (H)|,
so that there are sets Q1, . . . ,Q|V (H)| of edge-disjoint colored
copies of H in G with Q|V (H)| ⊆ Q|V (H)|−1 ⊆ · · · ⊆ Q1 and
|Q|V (H)|| = Ωε,H(|V |), such that for each i, 1 ≤ i ≤ |V (H)|,
the hypergraph Hi(Qi) is consistent for Qi.

Let us first apply Lemma 18 to the set Q|V (H)| of edge-
disjoint colored copies of H in G to obtain a subset Q ⊆
Q|V (H)| with |Q| = Ωε,H(|V |), such that the graph G[Q]
satisfies condition (a) of Lemma 17. Therefore, we only have
to show that condition (b) of Lemma 17 holds too, that is, we
have to show that if G = (V,E) is a simple planar graph that
is ε-far from H-free, then

⊗ Tester(G[Q], H, d, t) finds a copy of H in G[Q]
with probability Ωε,H(1).

Q is a set of edge-disjoint colored copies of H in G
such that |Q| = Ωε,H(|V |), and such that for each i,
1 ≤ i ≤ |V (H)|, the hypergraph Hi(Q) is consistent

7That is, Repi−1(u) is not in Hi−1(Q).

for Q. Let us take the canonical representative function
Rep1,Rep2, . . . ,Rep|V (H)| : V → V , cf. Definition 34.

We will prove ⊗ by showing the following two properties
(proven below as Claims 36 and 37):

1. the probability that HT-
ester (H|V (H)|(Q),Rep|V (H)|,M|V (H)|, |V (H)|2, 1)
finds a copy of M|V (H)| is Ωε,H(1), and

2. for every i, 1 ≤ i < |V (H)|,
• if the probability that HT-

ester (Hi+1(Q),Repi+1,Mi+1, d, t) finds a copy
of Mi+1 is Ωε,H(1),

• then the probability that HT-
ester (Hi(Q),Repi,Mi, |V (H)| · d, 2t) finds a copy of
Mi is Ωε,H(1).

Indeed, if Property 1 holds, then by iterating Property
2, we have that for some d∗, t∗ = Ωε,H(1), the proba-
bility that HTester (H1(Q),Rep1,M1, d

∗, t∗) finds a copy
of M1 is Ωε,H(1). Since Rep1 is the identity function
Rep1(u) = u for every u ∈ V , and since H1(Q) ≡ G[Q],
the behavior of Random-HTraverse (H1(Q),Rep1, d

∗, t∗) is
identical to the behavior of Random-Traverse (G[Q], d∗, t∗),
and further, since M1 ≡ H , the behavior of HT-
ester (H1(Q),Rep1,M1, d

∗, t∗) is identical to the behavior of
Tester (G[Q], H, d∗, t∗). Therefore, we obtain that the prob-
ability that Tester (G[Q], H, d∗, t∗) finds a copy of H is
Ωε,H(1), what yields ⊗.

What remains is to prove that Properties 1 and 2 hold, what
we do in the following two central claims, whose proofs are
deferred to Section VII-A below.

Claim 36: The probability that algorithm
HTester (H|V (H)|(Q),Rep|V (H)|,M|V (H)|, |V (H)|2, 1)
finds a copy of M|V (H)| is Ωε,H(1).

Claim 37: Let 1 ≤ i < |V (H)|, d = d(ε,H) ≥
|V (H)|, t = t(ε,H), d∗ = |V (H)| · d, and t∗ = 2t.
If the probability that HTester (Hi+1(Q),Repi+1,Mi+1, d, t)
finds a copy of Mi+1 is Ωε,H(1), then the probability that
HTester (Hi(Q),Repi,Mi, d

∗, t∗) finds a copy of Mi is
Ωε,H(1).

With Claims 36 and 37 at hand, we obtain that Properties
1 and 2 hold, and therefore we can conclude the proof of the
proof of Lemma 17, and with this of Theorems 14 and 15. �

A. Proofs of central Claims 36 and 37
In this section we give proofs of two our central results

on which relies our proof of Lemma 17 (and with this of
Theorems 14 and 15): Claims 36 and 37.

We begin with the proof of Claim 36.
Claim 36: The probability that algorithm HT-

ester (H|V (H)|(Q),Rep|V (H)|,M|V (H)|, |V (H)|2, 1) finds a
copy of M|V (H)| is Ωε,H(1).
Proof. Our construction (see Section VI-B) ensures that
M|V (H)| has some number s of hyperedges e1, . . . , es, each
ej consisting of a single vertex v|V (H)|, and with the labels of
edges e1, . . . , es defining a partition of {v1, . . . , v|V (H)|−1}
(that is,

⋃s
j=1 σ(ej) = {v1, . . . , v|V (H)|−1} and σ(ej1) ∩

σ(ej2) = ∅ for any j1 6= j2).



Similarly, our construction (see Section VI-C) ensures that
H|V (H)|(Q) contains s · |Q| hyperedges, each hyperedge e in
H|V (H)|(Q) consisting of a single vertex of color χ(v|V (H)|).
Furthermore, each such hyperedge e corresponds (cf. Def-
inition 23) to a copy of one of the hyperedges e1, . . . , es
from M|V (H)|; let us denote by ind(e) the index of the copy
eind(e) corresponding to e. Notice that σ∗(e) = σ∗(eind(e)) and
|{e in H|V (H)|(Q) : ind(e) = j}| = |Q| for any j, 1 ≤ j ≤ s.

Let d∗ = |V (H)|2. In view of the comments
and the construction above, by Definition 25,
HTester (H|V (H)|(Q),Rep|V (H)|,M|V (H)|, d

∗, 1) finds a
copy of M|V (H)| if,

(1) in the call to Random-
HTraverse (H|V (H)|(Q),Rep|V (H)|, d

∗, 1), it selects
the starting vertex u = Rep|V (H)|(v) to be non-isolated
in H|V (H)|(Q), and

(2) vertex u chooses among its d∗ random incident edges all
copies of e1, . . . , es.

Our definition of Rep ensures that Rep|V (H)|(x) is a non-
isolated vertex in H|V (H)|(Q) if and only if x is a non-
isolated vertex in G[Q]. Therefore we only have to show
that G[Q] has Ωε,H(|V |) non-isolated vertices. Let G∗[Q]
be the subgraph of G[Q] induced by non-isolated vertices.
Since G∗[Q] consists of |Q| edge-disjoint copies of H , G∗[Q]
has |Q| · |E(H)| edges. Since G∗[Q] is a subgraph of a
simple planar graph, G∗[Q] is a simple planar graph too,
and thus must have at least 1

3 |Q| · |E(H)| vertices. There-
fore, since |Q| = Ωε,H(|V |), we conclude that G∗[Q] has
Ωε,H(|V |) vertices, or equivalently, that G[Q] has Ωε,H(|V |)
non-isolated vertices. Therefore, with probability Ωε,H(1)
Random-HTraverse (H|V (H)|(Q),Rep|V (H)|, d

∗, 1) selects a
non-isolated as the starting vertex.

Next, let us condition on the fact that the starting vertex u =
Rep|V (H)|(v) is non-isolated in H|V (H)|(Q). Analogously to
the classic coupon collector’s problem, we can argue that if
u selects at least s2 (in fact, s ln(1 + s) would suffice too)
times incident edges i.u.r., then with probability Ωε,H(1), the
set E`,u will contain s hyperedges e′1, . . . , e

′
s with ind(e′j) = j

for every j, 1 ≤ j ≤ s. In this case, the set E`,u will contain
a copy of M|V (H)|.

By our arguments above, this yields the claim. �

We now move to the proof of Claim 37.
Claim 37: Let 1 ≤ i < |V (H)|, d = d(ε,H) ≥

|V (H)|, t = t(ε,H), d∗ = |V (H)| · d, and t∗ = 2t.
If the probability that HTester (Hi+1(Q),Repi+1,Mi+1, d, t)
finds a copy of Mi+1 is Ωε,H(1), then the probability that
HTester (Hi(Q),Repi,Mi, d

∗, t∗) finds a copy of Mi is
Ωε,H(1).
Proof. Let us refer to Definition 25 for the meaning
of algorithm HTester (Hs(Q),Reps,Ms, d

′, t′) (and thus also
of Random-HTraverse (Hs(Q),Reps, d

′, t′)) finding a colored
copy of Mr.

The proof relies on two basic properties that hold with
probability Ωε,H(1):

• that a single step of Random-
HTraverse (Hi+1(Q),Repi+1, d, t) can be simulated
by 2 steps of Random-HTraverse (Hi(Q),Repi, d

∗, t∗)
with d∗ = |V (H)| · d and t∗ = 2t, and

• that if Random-HTraverse (Hi+1(Q),Repi+1, d, t) starts
at a vertex u, then the same vertex u will be processed
by Random-HTraverse (Hi(Q),Repi, d

∗, t∗) in L0 ∪ L1

(i.e., in one of the first two rounds).
Once these two claims hold, the proof of Claim 37 follows

immediately.
We begin with showing that a single step of Random-

HTraverse (Hi+1(Q),Repi+1, d, t) can be simulated by 2 steps
of Random-HTraverse (Hi(Q),Repi, d

∗, t∗).
We begin with two auxiliary definitions. For any pair of

edges e and e′, we say e and e′ are semi-equivalent if their
vertex sets are the same and their colored labels are the same.
Let e be an edge in Hi+1(Q) that is modeled by edges
e1, . . . , er in Hi(Q) (cf. Definition 24). Then any r edges
e′1, . . . , e

′
r in Hi(Q) are called sub-equivalent to e if for every

1 ≤ j ≤ r, edges ej and e′j are semi-equivalent.
The first definition relates to the scenario when HT-

ester (H,Rep,Mj , d, t) finds a colored copy of Mj in H
that contains edge e in H. In that case, we claim that the
algorithm would have found a copy of Mj also if instead
of using edge e, it used any edge semi-equivalent to e.
The second definition is used to describe the scenario when
HTester (Hi+1(Q),Repi+1,Mi+1, d, t) finds a colored copy
of Mi+1 by finding edges E in Hi+1(Q) matching Mi+1. In
that case, to find a colored copy of Mi, it is enough that
HTester (Hi(Q),Repi,Mi, d

∗, t∗) finds only edges E ′ such
that for every e ∈ E , E ′ contains edges e′1, . . . , e

′
s in Hi(Q)

that are sub-equivalent to e.
Let us consider a step of creating set L` in Random-

HTraverse (Hi+1(Q),Repi+1, d, t), and let u be a vertex in
L`−1 with incident edge e. Let e belong to a copy he ofMi+1

in Hi+1(Q) and let ê be the corresponding edge inMi+1. By
our construction, edge e was either already present in Hi(Q),
or is a result of a contraction in Hi(Q) of a vertex x with
χ(x) = χ(vi). In the latter case, e is equal to N he

i 〈x〉, the set
of neighbors of x in he (in Hi(Qi)) other than x.

In Random-HTraverse (Hi+1(Q),Repi+1, d, t), when ver-
tex u selects d incident edges i.u.r., the probability that
u chooses e among its d incident edges in Random-
HTraverse (Hi+1(Q),Repi+1, d, t) is pu,e = 1 − (1 −
1/ degHi+1(Q)(u))d, where degHi+1(Q)(u) is the number of
edges incident to vertex u in Hi+1(Q).

If edge e was already present in Hi(Q), then the
probability that u chooses e among its d incident edges
in Random-HTraverse (Hi(Q),Repi, d

∗, t∗) is equal to 1 −
(1 − 1/ degHi(Q)(u))d

∗
. Next, we notice that for any ver-

tex x in Hi+1(Q), degHi+1(Q)(u) ≤ degHi(Q)(u) ≤
|V (H)|degHi+1(Q)(u). (Indeed, for any colored copy h of H
in Q that contains vertex x, if we contract in h a neighbor of x
in Hi(Q), then we remove up to |V (H)| edges from Hi(Q)
and add exactly one new edge.) This implies that with our
setting d∗ = |V (H)|·d, we have 1−(1−1/ degHi(Q)(u))d

∗ ≥



1−(1−1/(|V (H)| ·degHi+1(Q)(u)))|V (H)|·d = Ωε,H(1−(1−
1/ degHi+1(Q)(u))d). 8 Therefore, we can conclude that:
Case 1: if edge e is present in Hi(Q) and in Random-

HTraverse (Hi+1(Q),Repi+1, d, t), vertex u selects e
among its d incident edges with probability pu,e, then
in Random-HTraverse (Hi(Q),Repi, d

∗, t∗), vertex u
selects e among its d∗ incident edges with probability
Ωε,H(pu,e).

The case when edge e is not present in Hi(Q) and has been
obtained as a contraction of vertex x with χ(x) = χ(vi), with
e = N he

i 〈x〉, is more complicated.
Since Hi+1(Q) is consistent for Q, vertex x is safe with

respect to Q and Hi(Q). Let x be incident to degHi(Q)(x)
edges in Hi(Qi) and note that χ(x) = χ(vi). By Remark 27,
we can group edges incident to x in Hi(Qi) into r groups
of the same size each (equal to degHi(Q)(x)/r), each group
corresponding to a copy of one of the r edges incident to
vi in Mi, any two edges from the same group being semi-
equivalent.

After contracting vertex x, we will create s =
degHi(Q)(x)/r new edges e1, . . . , es in Hi+1(Q), each new
edge with the same vertex set Ni〈x〉 that correspond to the
set of neighbors of x in Hi(Qi), and having the same colored
label. Thus all new edges e1, . . . , es are semi-equivalent.
Furthermore, any e′1, . . . , e

′
r incident to x in Hi(Qi) that are

from r different groups are sub-equivalent to every edge in
e1, . . . , es.

We will compare the probability that after arriving at vertex
u, Random-HTraverse (Hi+1(Q),Repi+1, d, t) visits any of
the edges e1, e2, . . . , es, with the probability that after arriving
at u, algorithm Random-HTraverse (Hi(Q),Repi, d

∗, t∗) visits
in Hi(Q) r edges that are incident to x in Hi(Qi) and that
are from r different groups (and hence are sub-equivalent to
every edge in e1, . . . , es).

In Random-HTraverse, when vertex u selects d incident
edges i.u.r., the probability that it chooses at least one of
the edges e1, . . . , es among its d incident edges in Random-
HTraverse (Hi+1(Q),Repi+1, d, t) is equal to pi+1 = 1−(1−
s/ degHi+1(Q)(u))d.

Let us compare it to the probability that in Random-
HTraverse (Hi(Q),Repi, d

∗, t∗), when vertex u selects d inci-
dent edges i.u.r. then one of these edges is incident to vertex x,
and when in Random-HTraverse (Hi(Q),Repi, d

∗, t∗) vertex
x selects d incident edges i.u.r. then at least one edge from each

8To see this, think about the following experiment. Choosing e inHi+1(Q)
is like choosing one out of degHi+1(Q)(u) incident edges, and repeat-
ing it d times; choosing e in Hi(Q) is like choosing one out of up
to |V (H)| · degHi+1(Q)(u) incident edges, and repeating it d∗ times.
Now, to choose e in Hi(Q) we can also split all edges incident to u
in Hi(Q) into degHi+1(Q)(u) groups, each group of size approximately
degHi(Q)(u)/ degHi+1(Q)(u). Then, the probability that we will choose an
edge from the same group as e is pu,e (approximately, because of rounding)
the same as the probability that we will choose edge e inHi+1(Q). Therefore,
with probability at most 1/|V (H)|, we would then choose edge e in Hi(Q).
If we repeat this |V (H)| time, we will get probability Ωε,H(pu,e). (Notice
that we could also be happy with the probability pu,e/|V (H)|, since this is
Ωε,H(pu,e).)

of the r groups of edges incident to x in Hi(Q) is chosen9.
The first probability, that one of the incident edges selected by
u is incident to x, is equal to pi ≥ 1−(1−s/ degHi(Q)(u))d

∗
,

since the number of edges containing both u and x in Hi(Q)
is at least s. To estimate the second probability, similarly as we
were already arguing in the proof of Claim 36 and analogously
to the classic coupon collector’s problem, if x selects at least
r2 (in fact, r ln(1 + r) would suffice too) times incident edges
i.u.r. (and we have d∗ ≥ |V (H)|2), then with probability
Ωε,H(1), the corresponding set E·,x will contain at least one
edge from each of the r groups of edges incident to x in
Hi(Q). Therefore, in summary, with probability Ωε,H(pi), if
Random-HTraverse (Hi(Q),Repi, d

∗, t∗) visits vertex u, then
the algorithm will visit (until at most two rounds later) edges
e′1, . . . , e

′
r that are sub-equivalent to edges e1, . . . , es.

Now we only have to match the probabilities of
these events in Random-HTraverse (Hi(Q),Repi, d

∗, t∗) and
in Random-HTraverse (Hi+1(Q),Repi+1, d, t). Since, as we
were arguing above, degHi+1(Q)(u) ≤ degHi(Q)(u) ≤
|V (H)|degHi+1(Q)(u), we note that with our setting d∗ =
|V (H)| · d, we have pi+1 = 1 − (1 − s/ degHi+1(Q)(u))d =
Ωε,H(pi), using the same arguments as before. This gives the
following:
Case 2: if edge e is not in Hi(Q), when Random-

HTraverse (Hi+1(Q),Repi+1, d, t) arrives at vertex
u, if pi+1 is the probability that u selects an edge
semi-equivalent to e among its d incident edges,
then when Random-HTraverse (Hi(Q),Repi, d

∗, t∗)
arrives at u (with u ∈ L`), then with probability
Ωε,H(pi+1) the set

⋃`+2
j=1 Ej of selected edges until at

most two rounds later contains edges e′1, . . . , e
′
r that

are sub-equivalent to e.
Therefore, in summary, our analysis of Case 1 and

Case 2 above implies our claim that a single step of
algorithm Random-HTraverse (Hi+1(Q),Repi+1, d, t)
can be simulated by 2 steps of algorithm Random-
HTraverse (Hi(Q),Repi, d

∗, t∗), with the success probability
loss of Oε,H(1). That is, if one arrives at vertex u in step
k of Random-HTraverse (Hi+1(Q),Repi+1, d, t) and the
probability that one selects an edge semi-equivalent to e is
pi+1, then if one arrives at vertex u in step ` of Random-
HTraverse (Hi(Q),Repi, d

∗, t∗), then with probability
Ωε,H(pi+1), either E`+1 contains an edge semi-equivalent to
e, or

⋃`+2
j=1 Ej contains edges e′1, . . . , e

′
r that are sub-equivalent

to e.
Choosing starting vertex: Let us recall that the proba-

bility to choose u ∈ V (Hi+1(Q)) as a starting vertex
Repi+1(v) in Random-HTraverse (Hi+1(Q),Repi+1, d, t) is

pi+1 =
|Rep

(−1)
i+1 (u)|
|V | . Since we may contract many vertices into

9Let us notice that we do not assume that x will be processed in the
next round in Random-HTraverse (Hi(Q),Repi, d

∗, t∗), after vertex u is
processed. This is because it is possible that vertex x has been processed
before vertex u, for example, as the very first vertex in the call to Random-
HTraverse (Hi(Q),Repi, d

∗, t∗). Our arguments imply that both u and x will
be processed (in the way we want them to be processed) not later than in the
next round.



u during our construction, the probability of choosing u as a
starting vertex in Random-HTraverse (Hi+1(Q),Repi+1, d, t)
can be significantly larger than the probability of choosing
u in Random-HTraverse (Hi(Q),Repi, d

∗, t∗), which is pi =
|Rep

(−1)
i (u)|
|V | . However, our definition of Repi+1 ensures that

|Rep
(−1)
i+1 (u)| = |Rep

(−1)
i (u)|+

∑
x adjacent to u in Hi(Q):

χ(x)=χ(vi)

|Rep
(−1)
i (x)| .

Let us notice that if a vertex x of color χ(vi) that is adjacent
to u in Hi(Q) is selected as the starting vertex in Random-
HTraverse (Hi(Q),Repi, d

∗, t∗), which happens with proba-

bility |Rep
(−1)
i (x)|
|V | , then since (cf. Lemma 33) x is a safe vertex

with respect to Q and Hi(Q), each copy of Mi in Hi(Q)
containing vertex x has at least one edge containing also vertex
u. Therefore, in Random-HTraverse (Hi(Q),Repi, d

∗, t∗), we
will not only have x ∈ L0, but also if d = Ωε,H(1)
is sufficiently large (d > |V (H)| will suffice), then with
probability at least 1

2 we will have u ∈ L1. Summing up
over all starting vertices (including u), we obtain that u is in
L0 ∪ L1 with probability at least 1

2pi+1.

Now we are ready to complete the analysis and
prove Claim 37. Let us consider the random process
Random-HTraverse (Hi+1(Q),Repi+1, d, t) selecting vertices
and edges to define Lj and Ej+1 for 0 ≤ j ≤ t.
Similarly, let us consider the random process of Random-
HTraverse (Hi(Q),Repi, d

∗, 2t) selecting vertices and edges
to define L′j and E ′j+1 for 0 ≤ j ≤ 2t. No-
tice that |

⋃t
j=0 Lj | = Ωε,H(1), |

⋃t
j=1 Ej | = Ωε,H(1),

|
⋃2t
j=0 L

′
j | = Ωε,H(1), |

⋃2t
j=1 E ′j | = Ωε,H(1). Suppose

that HTester (Hi+1(Q),Repi+1,Mi+1, d, t) starts at a vertex
u = Repi+1(v) and finds a copy of Mi+1 consisting of
edges e1, . . . , ek in Hi+1(Q), where k = |V (H)| − i. Then,
our analysis above gives that with at most a constant-factor
probability loss, HTester (Hi(Q),Repi,Mi, d

∗, 2t) will have
u in L′0 ∪ L′1, and then, for every edge ej , 1 ≤ j ≤ k,
will either have ej ∈

⋃2t
t=1 E ′t or e′j1 , . . . , e

′
jr
∈

⋃2t
t=1 E ′t,

where e′j1 , . . . , e
′
jr

are sub-equivalent to edges ej (this defines
a proper coupling, properly taking care of multiple edges
equivalent to ej). Now, since every edge ej

(i) either corresponds to an edge in bothMi+1 andMi, or
(ii) corresponds to an edge ê in Mi+1 that is modeled by

ê′j1 , . . . , ê
′
jr

in Mi, and edges e′j1 , . . . , e
′
jr

correspond to
the edges ê′j1 , . . . , ê

′
jr

,

we can argue that in that case, HT-
ester (Hi(Q),Repi,Mi, d

∗, 2t) will find a copy of Mi

(cf. Definition 25).

Therefore, with only a constant-factor probability loss, if
HTester (Hi+1(Q),Repi+1,Mi+1, d, t) finds a copy ofMi+1

then HTester (Hi(Q),Repi,Mi, |V (H)|d, 2t) finds a copy of
Mi. �

VIII. EXTENSION TO FAMILIES OF ARBITRARY (NOT
NECESSARILY CONNECTED) FINITE GRAPHS

Our result in Theorem 14 can be easily extended to allow
the forbidden finite graphs H to be arbitrary, that is, not
necessarily connected. Furthermore, the analysis extends in
a straightforward way to the case when one wants to test if
for a given arbitrary finite family H of finite graphs, the input
planar graph G is H-free, that is, contain no copy of any
graph from H.

Disconnected H: Notice that when H is not connected,
Tester (G,H, d, t) may not be able to find a copy of H in
G since it explores only a small connected neighborhood of
the randomly sampled starting vertex v. However, one can
easily extend the tester to be run separately on each connected
component of H to do the job.

Let us assume that H consists of connected components
h1, h2, . . . , hr. As in Section IV-A1, we color the vertices of
H arbitrarily, using |V (H)| distinct colors {1, 2, . . . , |V (H)|},
one color for each vertex. Our analysis in Section IV starts
with (an existential) Lemma 20 that if G is ε-far from H-free,
then one can color vertices of G with |V (H)| colors χ such
that G has a set of Ωε,H(|V |) edge-disjoint colored copies of
H . It is easy to see that Lemma 20 holds also for disconnected
H . And so, in particular, for every connected component hi
of H , there are Ωε,H(|V |) edge-disjoint colored copies of hi
with colors of the vertices consistent with the coloring χ of
G. Furthermore, since all connected components h1, h2, . . . , hr
use distinct colors in H , these copies will be edge-disjoint be-
tween the copies of h1, h2, . . . , hr. Then, for every connected
component hi of H , we run Tester (G, hi, di, ti), and the iden-
tical analysis as in Sections IV – VII concludes that Theorem
15 holds in the following way: there are positive functions
di = di(ε, hi) = Oε,H(1) and ti = t(ε, hi) = Oε,H(1),
such that for any planar graph G that is ε-far from H-free,
Tester(G, hi, di, ti) finds a colored copy of hi with probability
Ωε,H(1). Since the colored copies of connected components
h1, h2, . . . , hr are pairwise disjoint in G, this implies that if
we run Tester (G, hi, di, ti) for 1 ≤ i ≤ r, with appropriate
di = Oε,H(1) and ti = Oε,H(1), then for any planar graph
G that is ε-far from H-free, we find a colored copy of H
with probability Ωε,H(1). Therefore, if we repeat this process
Oε,H(1) many times, we can amplify the error probability and
obtain that for any planar graph G that is ε-far from H-free,
we find a colored copy of H with probability at least 2

3 .
Forbidden family: Next, we extend our study to test if a

given planar graph contains no copy of any forbidden graph
from a given finite family of finite graphs. Let H be an
arbitrary finite family of finite graphs (for a given ε > 0,
we allow the size to be Oε(1)). We say a simple graph G is
H-free if it is H-free for every H ∈ H; G is ε-far from H-free
if one has to delete more than ε|V | edges from G to obtain
an H-free graph. This definition implies that since H is finite,
if G is ε-far from H-free, then there is H ∈ H such that G is
ε/|H|-far from H-free.

Let us suppose that H is an arbitrary finite family of finite



graphs. (Note that since H is a finite family of finite graphs,
|H| = Oε(1).) Then our analysis above can be easily extended
to test with a constant number of queries if a planar graph is
H-free. Indeed, let us run a constant query-time ε/|H|-tester
for every H ∈ H, and reject if any of the tests rejects. Notice
that if G is H-free then this tester will accept, and if G is
ε-far from H-free then since there is H ∈ H such that G is
ε/|H|-far from H , the tester will reject G with probability at
least 2

3 .
The discussion above can be summarized in the following

theorem.
Theorem 38: Let H be an arbitrary collection of (not

necessarily connected) finite graphs. Then there is a one-
sided error property tester that for any simple planar graph G
performs a constant number of queries to the random neighbor
oracle and accepts if G is H-free, and with probability at least
2
3 rejects if G is ε-far from H-free.

Theorem 38 holds also if H varies with different ε. That is,
if for a given ε > 0, the goal is to test if G is H-free or is
ε-far from H-free, for a finite family of graphs H that may
depend on ε.

IX. EXTENDING THE ANALYSIS TO MINOR-FREE GRAPHS

While throughout the paper we focused on testing H-
freeness of planar graphs, our techniques can easily be ex-
tended to any class of minor-free graphs. Recall that a graph L
is called a minor of a graph G if L can be obtained from G via
a sequence of vertex and edge deletions, and edge contractions.
For any graph L, a graph G is called L-minor-free if L is not a
minor of G. (For example, by Kuratowski’s Theorem, a graph
is planar if and only if it is K3,3-minor-free and K5-minor-
free.)

Let us fix a graph L and consider the input graph G to be
an L-minor-free graph. We now argue now that entire analysis
presented in the previous sections easily extends to testing H-
freeness of G. The key observation is that our analysis in
Sections III–VII relies only on the following two properties
of planar graphs:

(i) every minor of a planar graph is planar,
(ii) the number of edges in a planar graph is O(n), where n

is the number of vertices
It is known that these two properties hold for any class
of L-minor-free graphs (that is, the first property would be
that every minor of an L-minor-free graph is L-minor-free).
Therefore, we can proceed with nearly identical analysis for
L-minor-free graphs and arrive at the following version of
Theorem 14.

Theorem 39: Let L be a fixed graph. There are positive
functions f , g, and h such that for any L-minor-free-graph G:
• if G is H-free, then Random-Exploration (G,H, ε) ac-

cepts G, and
• if G is ε-far from H-free, then Random-

Exploration(G,H, ε) rejects G with probability at
least 0.99.

Furthermore, in the same way as in Section VIII, we can
extend Theorem 38 to obtain the following.

Theorem 40: Let L be a fixed graph. Let H be an arbitrary
collection of (not necessarily connected) finite graphs. Then
there is a one-sided error property tester that for any L-minor-
free-graph G performs a constant number of queries to the
random neighbor oracle and accepts if G is H-free, and with
probability at least 2

3 rejects if G is ε-far from H-free.
Remark 41: It should be noted that while our main focus

is on the random neighbor oracle model, it is straightforward
to extend our testers (and their analysis) for H-freeness to
the other three oracle access model presented in Section I-B.
Indeed, since each of these models can trivially simulate the
random neighbor oracle model without any loss in the query
complexity, Theorem 40 (and also Theorems 14 and 38) holds
also for all these oracle access models.

However, our main result, the characterization of testable
properties in planar graphs, as well as our reduction in
Theorem 12, cannot be extended to the other models (see
Section I-C4).

X. CONCLUSIONS

The fundamental problem in the area of property testing is
to understand the complexity of testing graph properties in all
natural models. One of the central questions here is to provide
characterizations of testable graph properties in these models,
that is, to determine which graph properties can be tested with
constant query complexity. While we have characterizations of
graph properties testable in the dense graph model, and some
understanding of testable graph properties in the bounded-
degree graph model, finding such a characterization in a very
natural case of general graphs, without any bounds for their
maximum degrees, remains a challenging and elusive open
problem. The main result of this paper, Theorem 5, resolves
an important natural special case of this open problem, which
concerns property testers for planar graphs and for minor-
closed graphs with one-sided error in the random neighbor
oracle model.

Our main technical, algorithmic contribution significantly
extend the approach from [11] to prove that H-freeness is
testable with a constant number of queries for general planar
graphs. Our result was proven via a new type of analysis of
random exploration of planar graphs and their combination
of the study of hypergraph representations of contractions in
planar graphs. Our analysis easily carries over to classes of
graphs defined by general fixed forbidden minors.

Our work is a continuation of our efforts to understand the
complexity of testing basic graph properties in graphs with
no bounds for the degrees. Indeed, while major efforts in
the property testing community have been put to study dense
graphs and bounded degree graphs (cf. [16, Chapter 8-9]),
we have seen only limited advances in the study of general
graphs, in particular, sparse graphs but without any bounds
for the maximum degrees. We believe that this model is one
of the most natural models, and it is also most relevant to
computer science applications. Similarly as it has been done
in [16, Chapter 10.5.3], we would advocate further study of



this model because of its importance, its applications, and the
variety (and beauty) of techniques used to advance this topic.
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