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SYMPLECTIC AND ORTHOGONAL K-GROUPS OF THE

INTEGERS

MARCO SCHLICHTING

Abstract. Nous calculons explicitement les groupes d’homotopie des espaces

topologiques B Sp(Z)+, BO∞,∞(Z)+ et BO∞(Z)+.

We explicitly compute the homotopy groups of the topological spacesB Sp(Z)+,

BO∞,∞(Z)+ and BO∞(Z)+.

1. Énoncé des résultats

Soient Sp(Z), O∞,∞(Z) etO∞(Z) le groupe symplectique infini, le ⟨1,−1⟩-groupe
orthogonal infini et le groupe orthogonal hyperbolique sur l’anneau des entiers Z.
Ils sont obtenus comme réunion des sous-groupes Sp2n(Z), On,n(Z) et O2n(Z) de
GL2n(Z) laissant invariant les formes bilinéaires de matrices de Gram

(
0 1
−1 0

⋱
0 1
−1 0

) , (
1 0
0 −1

⋱
1 0
0 −1

) and (
0 1
1 0

⋱
0 1
1 0

) .

Les groupes Sp(Z), O∞,∞(Z) et O∞(Z) ont des sous-groupes de commutateurs
parfaits. Rappelons que pour un tel groupe G la construction plus de Quillen
BG

+
appliquée à l’espace classifiant BG de G est munie d’une application continue

BG → BG
+

qui induit un isomorphisme sur les groupes d’homologie intégrale et
vaut G→ G/[G,G] sur π1.

Le but de cet article est de calculer explicitement les groupes d’homotopie des
espaces topologiques B Sp(Z)+, BO∞,∞(Z)+ et BO∞(Z)+. Ces espaces sont des
espaces de lacets infinis puisqu’ils sont les composants connexes des espaces the
K-théorie K Sp(Z), GW (Z) et KQ(Z) des formes non dégénérées symplectiques,
bilinéaires symétriques et quadratiques sur Z. On sait que les groupes d’homotopie
de ces espaces sont des groupes abéliens de génération finie.

Pour un groupe abélien A, on note Aodd le sous-groupe des éléments d’ordre
impaire fini.

Theorem 1.1. Les groupes d’homotopie des espaces B Sp(Z)+ et BO∞,∞(Z)+ pour
n ≥ 1 sont donnés dans le tableau du Theorem 2.1

Theorem 1.2. L’application qui envoie une forme quadratique sur sa forme bilinéaire
symétrique associée induit un morphisme d’espaces de K-théorie KQ(Z)→ GW (Z)
qui est un isomorphisme

πnBO∞(Z)+ ≅

⟶ πnBO∞,∞(Z)+ en degré n ≥ 2

et le monomorphisme (Z/2)2
⊂ (Z/2)3

en degré n = 1.
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2 MARCO SCHLICHTING

Remark 1.3. Notons par Bk le k-ıème nombre de Bernoulli [Wei05, Example
24] et par dn le dénominateur de 1

n+1
B(n+1)/4 pour n = 3 mod 4. Selon [Wei05,

Introduction, Lemma 27] on a Kn(Z) = Z/2dn pour n = 3 mod 8 et Kn(Z) = Z/dn
pour n = 7 mod 8. En outre les groupes K4k(Z) sont finis d’ordre impair et
conjecturés zéro [Wei05, Introduction]. Par example K4(Z) = 0 [Rog00]. Donc on
a pour n ≥ 1 le tableau de groupes d’homotopie comme dans Remark 2.3.

2. Statement of results

Let Sp(Z), O∞,∞(Z) and O∞(Z) be the infinite symplectic, infinite ⟨1,−1⟩-
orthogonal and infinite hyperbolic orthogonal groups over the integers. They are
obtained as the union of subgroups Sp2n(Z), On,n(Z) and O2n(Z) of GL2n(Z)
fixing the bilinear forms with Gram matrix

(
0 1
−1 0

⋱
0 1
−1 0

) , (
1 0
0 −1

⋱
1 0
0 −1

) and (
0 1
1 0

⋱
0 1
1 0

) .

The groups Sp(Z), O∞,∞(Z) and O∞(Z) have perfect commutator subgroups. Re-

call that for such groups G, Quillen’s plus construction BG
+

applied to the classi-
fying space BG of G comes with a continuous map BG → BG

+
which induces an

isomorphism on integral homology groups and is G→ G/[G,G] on π1.
The purpose of this article is to compute explicitly the homotopy groups of

the topological spaces B Sp(Z)+, BO∞,∞(Z)+ and BO∞(Z)+. These spaces are
infinite loop spaces since they are the connected components of the spaces K Sp(Z),
GW (Z) and KQ(Z) which are the K-theory spaces of non-degenerate symplectic,
symmetric bilinear and quadratic forms over Z. It is known that the homotopy
groups of these spaces are finitely generated abelian groups.

For an abelian group A, denote by Aodd the subgroup of elements of finite odd
order.

Theorem 2.1. The homotopy groups of the spaces B Sp(Z)+ and BO∞,∞(Z)+ for
n ≥ 1 are given in the following table

n mod 8 0 1 2 3 4 5 6 7

πnB Sp(Z)+ Kn(Z) 0 Z Kn(Z) Z/2⊕Kn(Z) Z/2 Z Kn(Z)

πnBO∞,∞(Z)+
Z⊕ Z/2

⊕

Kn(Z)
(Z/2)3 (Z/2)2

Z/8

⊕

Kn(Z)odd
Z⊕Kn(Z) 0 0 Kn(Z)

Theorem 2.2. The map that sends a quadratic form to its associated symmetric
bilinear form induces a map of K-theory spaces KQ(Z) → GW (Z) which is an
isomorphism

πnBO∞(Z)+ ≅

⟶ πnBO∞,∞(Z)+ in degree n ≥ 2

and the monomorphism (Z/2)2
⊂ (Z/2)3

in degree n = 1.

Remark 2.3. Denote by Bk the k-th Bernoulli number [Wei05, Example 24] and
let dn denote the denominator of 1

n+1
B(n+1)/4 for n = 3 mod 4. By [Wei05, Intro-

duction, Lemma 27] we have Kn(Z) = Z/2dn for n = 3 mod 8 and Kn(Z) = Z/dn
for n = 7 mod 8. Moreover, the groups K4k(Z) are finite of odd order which are
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conjectured to be zero [Wei05, Introduction]. For example, K4(Z) = 0 [Rog00]. In
particular for n ≥ 1 we have the following table of homotopy groups

n mod 8 0 1 2 3 4 5 6 7

πnB Sp(Z)+ (0?) 0 Z Z/2dn Z/2⊕ (0?) Z/2 Z Z/dn

πnBO∞,∞(Z)+ Z⊕ Z/2⊕ (0?) (Z/2)3 (Z/2)2 Z/dn Z⊕ (0?) 0 0 Z/dn

where (0?) denotes a finite group of odd order conjectured to be zero.

3. Proof part 1: Odd torsion

Lemma 3.1. Let R be the ring of integers in a number field F . Then for all n ≥ 0
there are isomorphisms

KQn(R)odd ≅ GWn(R)odd ≅ K Spn(R)odd ≅ (Kn(R)odd)C2

where the action of C2 on K-theory is induced by GL(R)→ GL(R) ∶M ↦
t
M

−1
.

Proof. The natural map KQn(R)odd → GWn(R)odd is an isomorphism with inverse
the cup product with the quadratic space associated with the Leech lattice Γ8

[MH73, Ch. 2, §6]. Write GW
[0](R) and GW

[2](R) for GW (R) and K Sp(R);
see Section 4 below for general GW

[n]
. The hyperbolic and forgetful maps factor

as K
[r](R)hC2

→ GW
[r](R) → K

[r](R)hC2 ; see [Sch17, (7.3) and Lemma 7.4]

which doesn’t use 1/2 ∈ R. Here K
[n]

denotes the K-theory spectrum K with
C2-action induced by the n-th shifted duality Hom( , R[n]). On the spectrum
level, this action depends on n = 0, 2. However, on homotopy groups the actions

agree for n = 0, 2. Denote by L
[r]

the homotopy cofibre of the map of spectra1

K
[r](R)hC2

→ GW
[r](R), then L

[r]
i = L

[r−1]
i−1 only depends on the difference n − i,

i ≥ 1 [Schc] and

GW
[r]
n (R)[1/2] ≅ K[r]

n (R)[1/2]C2 ⊕ L
[r]
n (R)[1/2]

since the composition K
[r](R)[1/2]hC2

→ GW
[r](R)[1/2] → K

[r](R)[1/2]hC2 is
an equivalence [Sch17, Lemma B.14]. Strictly speaking we define a non-connective

version of L
[r]

as the homotopy colimit of the sequence

(3.1) GW
[r]
→ S

1
∧GW

[r−1]
→ S

2
∧GW

[r−2]
→⋯

with appropriate delooping of GW
[n]

as in [Sch17] using the definition of E
[n]

as
below. The maps in (3.1) are the connecting maps of the homotopy fibration (4.1).

Then we have by definition L
[n]
i = L

[n−i]
0 and as in [Sch17] we formally obtain the

homotopy fibration whose connected cover we used above:

(K[n])hC2
→ GW

[n]
→ L

[n]
.

By Lemma 4.4 below, the canonical map L
[r]
i (R)[1/2] → L

[r]
i (F )[1/2] is an

isomorphism for i ≥ r. By [Sch17, Proposition 7.2] and [Bal01, Theorem 5.6], we

1All spectra in this paper are −1-connected, and all homotopy fibrations are in the category
of −1-connected spectra unless otherwise stated. In particular, the second map of a homotopy

fibration need not be surjective on π0
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have

L
[r]
i (F )[1/2] = {W (F )[1/2] r ≡ i mod 4

0 else

where W (F ) is the usual Witt group of F . But it is well-known that W (F )[1/2] is
a free Z[1/2]-module of rank the number of orderings of F . This proves the lemma
for KnQ, GWn for n ≥ 0 and Kn Sp for n ≥ 2. From the Zariski local to global

spectral sequence, we see L
[2]
1 (R)[1/2] = L

[1]
0 (R)[1/2] = H

1(R,L0
0[1/2]) = 0

since L
[0]
0 [1/2] is constant (flasque) on a ring of integers R and L

[1]
0 is Zariski-

locally trivial. So, K1 Sp(R)odd = (K1(R)odd)C2 . Finally, L
[2]
0 (R) = 0 for a ring

of integers since K0 Sp(R) = H
0(R,Z), by the Zariski spectral sequence, hence

H ∶ K0(R)→ K0 Sp(R) is surjective and L
[2]
0 = 0. �

Continue to assume that R is a ring of integers in a number field. Let ` ∈ Z
be an odd prime and set R

′
= R[1/`]. Then the inclusion R ⊂ R

′
induces an

isomorphism: Kn(R){`} ≅ Kn(R′){`} on `-primary torsion subgroups for n ≥ 1.

For i ≥ 1 the abelian group K2i(R′) is finite and the group K2i−1(R′) is finitely
generated. For all i ≥ 1 and large ν we therefore have an exact sequence

(3.2) 0→ K2i(R′){`}→ K2i(R′,Z/`ν)→ K2i−1(R′){`}→ 0

[Wei05, Lemma 68]. Since ` is invertible in R
′

which has cd`(R′) ≤ 2, the proved
Quillen-Lichtenbaum conjecture says that the following change of topology map is

an isomorphism K2i(R′,Z/`ν) ≅ K
ét
2i(R′,Z/`ν) for i ≥ 1. The change of topology

map is C2-equivariant. From the etale local to global spectral sequence for K
ét

we
obtain the C2-equivariant isomorphism

(3.3) K2i(R′,Z/`ν) ≅ K ét
2i(R′,Z/`ν) ≅ H0

ét(R′,K2i/`ν)
[Wei05, Proof of Theorem 70] on which the action on the left is GL(R)→ GL(R) ∶
M ↦

t
M

−1
and on the right hand side it is multiplication with (−1)i. Combining

(3.2) and (3.3), Lemma 3.1 yields the following.

Theorem 3.2. Let R be a ring of integers in a number field, and ` ∈ Z an odd
prime. Then for all n ≥ 1 we have isomorphisms

GWn(R){`} ≅ K Spn(R){`} ≅ KQn(R){`} ≅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Kn(R){`} n ≡ 0, 3 mod 4

0 n ≡ 1, 2 mod 4.

4. Proof part 2: 2-adic computations

For an exact category with weak equivalences und duality (E , w, ♯, can), denote
by GW (E , w, ♯, can) the associated Grothendieck-Witt space of symmetric bilinear
forms [Sch10, Definition 3]. If E has a strong symmetric cone [Sch10, Definition

4], [Schc] I denote by E
[1]

= (Mor E , wcone, ♯, can) the exact category with weak
equivalences and duality of morphisms in E with duality and double dual identi-
fication induced by functoriality of ♯ and can and weak equivalences those maps
f → g of arrows in E such that cone(f)→ cone(g) is a weak equivalence in E . By

functoriality, E
[1]

also has a strong symmetric cone. Set GW
[0](E ) = GW (E ) and

define inductivily for r ≥ 1

GW
[r+1](E ) = GW [r](E [1]).
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By [Sch10, Theorem 6], the sequence

E
E↦1E
⟶ Mor E

1
⟶ E

[1]

induces a homotopy fibration GW (E ) → K(E ) → GW
[1](E ) of −1-connected

spectra and by iteration the homotopy fibration

(4.1) GW
[r](E )→ K(E )→ GW

[r+1](E );
compare [Sch17, Proof of Proposition 4.9]. For details and a generalisation; see

[Schc]. For r < 0, we define GW
[r](E ) such that (4.1) holds for all r ∈ Z. For a com-

mutative ringR, we denote byGW
[r](R) the spaceGW

[r](Ch
b P(R), quis,Hom( , R), can)

where P(R) is the category of finitely generated projective R-modules and quis is
the set of quasi-isomorphisms.

Theorem 4.1 ([Schd]). Let R be a commutative ring, then

(1) GW
[0](R) is the K-theory space GW (R) of the category of non-degenerate

symmetric bilinear forms over R,

(2) GW
[2](R) is the K-theory space K Sp(R) of the category of non-degenerate

sympectic forms over R, and

(3) GW
[4](R) is the K-theory space KQ(R) of the category of non-degenerate

quadratic forms over R.

In particular, by [Schb, Theorem 6.6, Example 3.11 and Remark 2.19] we have

GW
[0](Z) = GW (Z) ≃ Z × Z ×BO∞,∞(Z)+,

GW
[2](Z) = K Sp(Z) ≃ Z ×B Sp(Z)+,

GW
[4](Z) = KQ(Z) ≃ Z × Z ×BO∞(Z)+.

Theorem 4.2 ([Scha]). Let R be a Dedekind domain and S ⊂ R a multiplicative
set of non-zero divisors. Then there is a natural homotopy fibration

⨁
℘∩S≠∅

GW
[−1](R/℘)→ GW

[0](R)→ GW
[0](S−1

R).

Recall that Friedlander [Fri76] shows thatKn Sp(F2) is a finite group of odd order

for n ≥ 1. In particular its 2-adic completion Kn Sp(F2)∧2 = 0 for n ≥ 1. Since the

same is true for K(F2), we obtain GWn(F2)∧2 = 0 for n ≥ 1, GW
[±1]
n (F2)∧2 = 0 for

n ≥ 0 and the following from Theorems 4.1, 4.2 and the homotopy fibration (4.1).

Theorem 4.3. Let Z′ = Z[1/2] then the ring homomorphism Z → Z′ induces
isomorphisms after 2-adic completion

Kn Sp(Z)∧2 ≅ Kn Sp(Z′)∧2 , n ≥ 0,

GWn(Z)∧2 ≅ GWn(Z′)∧2 , n ≥ 1,

KQn(Z)∧2 ≅ KQn(Z′)∧2 , n ≥ 2.
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Finally, the 2-adic homotopy groups of K Sp(Z′) and GW (Z′) = KQ(Z′) can
be found in [Kar05, 4.7.2]. This proves the theorems in Section 2 apart from the
following which was needed in the proof of Lemma 3.1.

Lemma 4.4. Let R be the ring of integers in a number field F . Then the inclusion
R ⊂ F induces an isomorphism

L
[r]
i (R)[1/2] ≃ L[r]

i (F )[1/2], i ≥ r.

Proof. It suffices to prove the case r = 0 since L
[r]
i = L

[0]
i−r. From Theorem 4.2 we

deduce the homotopy fibration of −1-connected spectra

⨁
℘≠(0)

GW
[−1](R/℘)[1/2]→ GW

[0](R)[1/2]→ GW
[0](F )[1/2]

in which the right horizontal map is also surjective on π0, by the computations
in [MH73]. Using the analogous statement for K-theory, we obtain the homotopy
fibration of spectra

⨁
℘≠(0)

L
[−1](R/℘)[1/2]→ L

[0](R)[1/2]→ L
[0](F )[1/2].

The left term in that fibration is trivial since for a finite field Fq, we have

L
[−1](Fq)[1/2] ≃ 0.

This is well-known for q odd, and for q even, L
[−1](Fq) is a module spectrum over

L
[0](F2) whose homotopy groups are 2-primary torsion since on π0 it is

L
[0]
0 (F2) =W (F2) = Z/2.

�
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