Manuscript version: Author's Accepted Manuscript

The version presented in WRAP is the author's accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:

http://wrap.warwick.ac.uk/126059

How to cite:

Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.
© 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercialNoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/.

C
 BY
 NC ND

Publisher's statement:

Please refer to the repository item page, publisher's statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

SYMPLECTIC AND ORTHOGONAL K-GROUPS OF THE INTEGERS

MARCO SCHLICHTING

Abstract

Nous calculons explicitement les groupes d'homotopie des espaces topologiques $B \mathrm{Sp}(\mathbb{Z})^{+}, B O_{\infty, \infty}(\mathbb{Z})^{+}$et $B O_{\infty}(\mathbb{Z})^{+}$.

We explicitly compute the homotopy groups of the topological spaces $B \mathrm{Sp}(\mathbb{Z})^{+}$, $B O_{\infty, \infty}(\mathbb{Z})^{+}$and $B O_{\infty}(\mathbb{Z})^{+}$.

1. Énoncé des résultats

Soient $\operatorname{Sp}(\mathbb{Z}), O_{\infty, \infty}(\mathbb{Z})$ et $O_{\infty}(\mathbb{Z})$ le groupe symplectique infini, le $\langle 1,-1\rangle$-groupe orthogonal infini et le groupe orthogonal hyperbolique sur l'anneau des entiers \mathbb{Z}. Ils sont obtenus comme réunion des sous-groupes $\mathrm{Sp}_{2 n}(\mathbb{Z}), O_{n, n}(\mathbb{Z})$ et $O_{2 n}(\mathbb{Z})$ de $G L_{2 n}(\mathbb{Z})$ laissant invariant les formes bilinéaires de matrices de Gram

Les groupes $\operatorname{Sp}(\mathbb{Z}), O_{\infty, \infty}(\mathbb{Z})$ et $O_{\infty}(\mathbb{Z})$ ont des sous-groupes de commutateurs parfaits. Rappelons que pour un tel groupe G la construction plus de Quillen $B G^{+}$appliquée à l'espace classifiant $B G$ de G est munie d'une application continue $B G \rightarrow B G^{+}$qui induit un isomorphisme sur les groupes d'homologie intégrale et vaut $G \rightarrow G /[G, G]$ sur π_{1}.

Le but de cet article est de calculer explicitement les groupes d'homotopie des espaces topologiques $B \mathrm{Sp}(\mathbb{Z})^{+}, B O_{\infty, \infty}(\mathbb{Z})^{+}$et $B O_{\infty}(\mathbb{Z})^{+}$. Ces espaces sont des espaces de lacets infinis puisqu'ils sont les composants connexes des espaces the K-théorie $K \mathrm{Sp}(\mathbb{Z}), G W(\mathbb{Z})$ et $K Q(\mathbb{Z})$ des formes non dégénérées symplectiques, bilinéaires symétriques et quadratiques sur \mathbb{Z}. On sait que les groupes d'homotopie de ces espaces sont des groupes abéliens de génération finie.

Pour un groupe abélien A, on note $A_{\text {odd }}$ le sous-groupe des éléments d'ordre impaire fini.
Theorem 1.1. Les groupes d'homotopie des espaces $B \operatorname{Sp}(\mathbb{Z})^{+}$et $B O_{\infty, \infty}(\mathbb{Z})^{+}$pour $n \geq 1$ sont donnés dans le tableau du Theorem 2.1

Theorem 1.2. L'application qui envoie une forme quadratique sur sa forme bilinéaire symétrique associée induit un morphisme d'espaces de K-théorie $K Q(\mathbb{Z}) \rightarrow G W(\mathbb{Z})$ qui est un isomorphisme

$$
\pi_{n} B O_{\infty}(\mathbb{Z})^{+} \xrightarrow{\cong} \pi_{n} B O_{\infty, \infty}(\mathbb{Z})^{+} \quad \text { en degré } n \geq 2
$$

et le monomorphisme $(\mathbb{Z} / 2)^{2} \subset(\mathbb{Z} / 2)^{3}$ en degré $n=1$.

[^0]Remark 1.3. Notons par B_{k} le k-1ème nombre de Bernoulli [Wei05, Example 24] et par d_{n} le dénominateur de $\frac{1}{n+1} B_{(n+1) / 4}$ pour $n=3 \bmod 4$. Selon [Wei05, Introduction, Lemma 27] on a $K_{n}(\mathbb{Z})=\mathbb{Z} / 2 d_{n}$ pour $n=3 \bmod 8$ et $K_{n}(\mathbb{Z})=\mathbb{Z} / d_{n}$ pour $n=7 \bmod 8$. En outre les groupes $K_{4 k}(\mathbb{Z})$ sont finis d'ordre impair et conjecturés zéro [Wei05, Introduction]. Par example $K_{4}(\mathbb{Z})=0$ [Rog00]. Donc on a pour $n \geq 1$ le tableau de groupes d'homotopie comme dans Remark 2.3.

2. Statement of results

Let $\operatorname{Sp}(\mathbb{Z}), O_{\infty, \infty}(\mathbb{Z})$ and $O_{\infty}(\mathbb{Z})$ be the infinite symplectic, infinite $\langle 1,-1\rangle$ orthogonal and infinite hyperbolic orthogonal groups over the integers. They are obtained as the union of subgroups $\operatorname{Sp}_{2 n}(\mathbb{Z}), O_{n, n}(\mathbb{Z})$ and $O_{2 n}(\mathbb{Z})$ of $G L_{2 n}(\mathbb{Z})$ fixing the bilinear forms with Gram matrix

$$
\left(\begin{array}{ccccc}
0 & 1 & & & \\
-1 & 0 & \ddots & & \\
& & & 0 & 1 \\
& & & -1 & 0
\end{array}\right), \quad\left(\begin{array}{ccccc}
1 & 0 & & & \\
0 & -1 & & & \\
& & \ddots & 1 & \\
& & 0 & 0 \\
& -1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{llll}
0 & 1 & & \\
1 & 0 & \ddots & \\
& & & \\
& & 1 & 1 \\
& 0
\end{array}\right) .
$$

The groups $\operatorname{Sp}(\mathbb{Z}), O_{\infty, \infty}(\mathbb{Z})$ and $O_{\infty}(\mathbb{Z})$ have perfect commutator subgroups. Recall that for such groups G, Quillen's plus construction $B G^{+}$applied to the classifying space $B G$ of G comes with a continuous map $B G \rightarrow B G^{+}$which induces an isomorphism on integral homology groups and is $G \rightarrow G /[G, G]$ on π_{1}.

The purpose of this article is to compute explicitly the homotopy groups of the topological spaces $B \mathrm{Sp}(\mathbb{Z})^{+}, B O_{\infty, \infty}(\mathbb{Z})^{+}$and $B O_{\infty}(\mathbb{Z})^{+}$. These spaces are infinite loop spaces since they are the connected components of the spaces $K \mathrm{Sp}(\mathbb{Z})$, $G W(\mathbb{Z})$ and $K Q(\mathbb{Z})$ which are the K-theory spaces of non-degenerate symplectic, symmetric bilinear and quadratic forms over \mathbb{Z}. It is known that the homotopy groups of these spaces are finitely generated abelian groups.

For an abelian group A, denote by $A_{o d d}$ the subgroup of elements of finite odd order.
Theorem 2.1. The homotopy groups of the spaces $B \operatorname{Sp}(\mathbb{Z})^{+}$and $B O_{\infty, \infty}(\mathbb{Z})^{+}$for $n \geq 1$ are given in the following table

$n \bmod 8$	0	1	2	3	4	5	6	7
$\pi_{n} B \operatorname{Sp}(\mathbb{Z})^{+}$	$K_{n}(\mathbb{Z})$	0	\mathbb{Z}	$K_{n}(\mathbb{Z})$	$\mathbb{Z} / 2 \oplus K_{n}(\mathbb{Z})$	$\mathbb{Z} / 2$	\mathbb{Z}	$K_{n}(\mathbb{Z})$
$\pi_{n} B O_{\infty, \infty}(\mathbb{Z})^{+}$	$\mathbb{Z} \oplus \mathbb{Z} / 2$ \oplus $K_{n}(\mathbb{Z})$	$(\mathbb{Z} / 2)^{3}$	$(\mathbb{Z} / 2)^{2}$	$\mathbb{Z} / 8$ \oplus $K_{n}(\mathbb{Z})_{\text {odd }}$	$\mathbb{Z} \oplus K_{n}(\mathbb{Z})$	0	0	$K_{n}(\mathbb{Z})$

Theorem 2.2. The map that sends a quadratic form to its associated symmetric bilinear form induces a map of K-theory spaces $K Q(\mathbb{Z}) \rightarrow G W(\mathbb{Z})$ which is an isomorphism

$$
\pi_{n} B O_{\infty}(\mathbb{Z})^{+} \xrightarrow{\cong} \pi_{n} B O_{\infty, \infty}(\mathbb{Z})^{+} \quad \text { in degree } n \geq 2
$$

and the monomorphism $(\mathbb{Z} / 2)^{2} \subset(\mathbb{Z} / 2)^{3}$ in degree $n=1$.
Remark 2.3. Denote by B_{k} the k-th Bernoulli number [Wei05, Example 24] and let d_{n} denote the denominator of $\frac{1}{n+1} B_{(n+1) / 4}$ for $n=3 \bmod 4$. By [Wei05, Introduction, Lemma 27] we have $K_{n}(\mathbb{Z})=\mathbb{Z} / 2 d_{n}$ for $n=3 \bmod 8$ and $K_{n}(\mathbb{Z})=\mathbb{Z} / d_{n}$ for $n=7 \bmod 8$. Moreover, the groups $K_{4 k}(\mathbb{Z})$ are finite of odd order which are
conjectured to be zero [Wei05, Introduction]. For example, $K_{4}(\mathbb{Z})=0$ [Rog00]. In particular for $n \geq 1$ we have the following table of homotopy groups

$n \bmod 8$	0	1	2	3	4	5	6	7
$\pi_{n} B \operatorname{Sp}(\mathbb{Z})^{+}$	$(0 ?)$	0	\mathbb{Z}	$\mathbb{Z} / 2 d_{n}$	$\mathbb{Z} / 2 \oplus(0 ?)$	$\mathbb{Z} / 2$	\mathbb{Z}	\mathbb{Z} / d_{n}
$\pi_{n} B O_{\infty, \infty}(\mathbb{Z})^{+}$	$\mathbb{Z} \oplus \mathbb{Z} / 2 \oplus(0 ?)$	$(\mathbb{Z} / 2)^{3}$	$(\mathbb{Z} / 2)^{2}$	\mathbb{Z} / d_{n}	$\mathbb{Z} \oplus(0 ?)$	0	0	\mathbb{Z} / d_{n}

where (0?) denotes a finite group of odd order conjectured to be zero.

3. Proof part 1: Odd torsion

Lemma 3.1. Let R be the ring of integers in a number field F. Then for all $n \geq 0$ there are isomorphisms

$$
K Q_{n}(R)_{o d d} \cong G W_{n}(R)_{o d d} \cong K \operatorname{Sp}_{n}(R)_{o d d} \cong\left(K_{n}(R)_{o d d}\right)^{C_{2}}
$$

where the action of C_{2} on K-theory is induced by $G L(R) \rightarrow G L(R): M \mapsto{ }^{t} M^{-1}$.
Proof. The natural map $K Q_{n}(R)_{o d d} \rightarrow G W_{n}(R)_{o d d}$ is an isomorphism with inverse the cup product with the quadratic space associated with the Leech lattice Γ_{8} [MH73, Ch. 2, §6]. Write $G W^{[0]}(R)$ and $G W^{[2]}(R)$ for $G W(R)$ and $K \operatorname{Sp}(R)$; see Section 4 below for general $G W^{[n]}$. The hyperbolic and forgetful maps factor as $K^{[r]}(R)_{h C_{2}} \rightarrow G W^{[r]}(R) \rightarrow K^{[r]}(R)^{h C_{2}}$; see [Sch17, (7.3) and Lemma 7.4] which doesn't use $1 / 2 \in R$. Here $K^{[n]}$ denotes the K-theory spectrum K with C_{2}-action induced by the n-th shifted duality $\operatorname{Hom}(, R[n])$. On the spectrum level, this action depends on $n=0,2$. However, on homotopy groups the actions agree for $n=0,2$. Denote by $L^{[r]}$ the homotopy cofibre of the map of spectra ${ }^{1}$ $K^{[r]}(R)_{h C_{2}} \rightarrow G W^{[r]}(R)$, then $L_{i}^{[r]}=L_{i-1}^{[r-1]}$ only depends on the difference $n-i$, $i \geq 1$ [Schc] and

$$
G W_{n}^{[r]}(R)[1 / 2] \cong K_{n}^{[r]}(R)[1 / 2]^{C_{2}} \oplus L_{n}^{[r]}(R)[1 / 2]
$$

since the composition $K^{[r]}(R)[1 / 2]_{h C_{2}} \rightarrow G W^{[r]}(R)[1 / 2] \rightarrow K^{[r]}(R)[1 / 2]^{h C_{2}}$ is an equivalence [Sch17, Lemma B.14]. Strictly speaking we define a non-connective version of $L^{[r]}$ as the homotopy colimit of the sequence

$$
\begin{equation*}
G W^{[r]} \rightarrow S^{1} \wedge G W^{[r-1]} \rightarrow S^{2} \wedge G W^{[r-2]} \rightarrow \cdots \tag{3.1}
\end{equation*}
$$

with appropriate delooping of $G W^{[n]}$ as in [Sch17] using the definition of $\mathscr{E}^{[n]}$ as below. The maps in (3.1) are the connecting maps of the homotopy fibration (4.1). Then we have by definition $L_{i}^{[n]}=L_{0}^{[n-i]}$ and as in [Sch17] we formally obtain the homotopy fibration whose connected cover we used above:

$$
\left(K^{[n]}\right)_{h C_{2}} \rightarrow G W^{[n]} \rightarrow L^{[n]} .
$$

By Lemma 4.4 below, the canonical map $L_{i}^{[r]}(R)[1 / 2] \rightarrow L_{i}^{[r]}(F)[1 / 2]$ is an isomorphism for $i \geq r$. By [Sch17, Proposition 7.2] and [Bal01, Theorem 5.6], we

[^1]have
\[

L_{i}^{[r]}(F)[1 / 2]=\left\{$$
\begin{array}{cc}
W(F)[1 / 2] & r \equiv i \bmod 4 \\
0 & \text { else }
\end{array}
$$\right.
\]

where $W(F)$ is the usual Witt group of F. But it is well-known that $W(F)[1 / 2]$ is a free $\mathbb{Z}[1 / 2]$-module of rank the number of orderings of F. This proves the lemma for $K_{n} Q, G W_{n}$ for $n \geq 0$ and $K_{n} \mathrm{Sp}$ for $n \geq 2$. From the Zariski local to global spectral sequence, we see $L_{1}^{[2]}(R)[1 / 2]=L_{0}^{[1]}(R)[1 / 2]=H^{1}\left(R, L_{0}^{0}[1 / 2]\right)=0$ since $L_{0}^{[0]}[1 / 2]$ is constant (flasque) on a ring of integers R and $L_{0}^{[1]}$ is Zariskilocally trivial. So, $K_{1} \operatorname{Sp}(R)_{\text {odd }}=\left(K_{1}(R)_{\text {odd }}\right)^{C_{2}}$. Finally, $L_{0}^{[2]}(R)=0$ for a ring of integers since $K_{0} \operatorname{Sp}(R)=H^{0}(R, \mathbb{Z})$, by the Zariski spectral sequence, hence $H: K_{0}(R) \rightarrow K_{0} \operatorname{Sp}(R)$ is surjective and $L_{0}^{[2]}=0$.

Continue to assume that R is a ring of integers in a number field. Let $\ell \in \mathbb{Z}$ be an odd prime and set $R^{\prime}=R[1 / \ell]$. Then the inclusion $R \subset R^{\prime}$ induces an isomorphism: $K_{n}(R)\{\ell\} \cong K_{n}\left(R^{\prime}\right)\{\ell\}$ on ℓ-primary torsion subgroups for $n \geq 1$. For $i \geq 1$ the abelian group $K_{2 i}\left(R^{\prime}\right)$ is finite and the group $K_{2 i-1}\left(R^{\prime}\right)$ is finitely generated. For all $i \geq 1$ and large ν we therefore have an exact sequence

$$
\begin{equation*}
0 \rightarrow K_{2 i}\left(R^{\prime}\right)\{\ell\} \rightarrow K_{2 i}\left(R^{\prime}, \mathbb{Z} / \ell^{\nu}\right) \rightarrow K_{2 i-1}\left(R^{\prime}\right)\{\ell\} \rightarrow 0 \tag{3.2}
\end{equation*}
$$

[Wei05, Lemma 68]. Since ℓ is invertible in R^{\prime} which has $\operatorname{cd}_{\ell}\left(R^{\prime}\right) \leq 2$, the proved Quillen-Lichtenbaum conjecture says that the following change of topology map is an isomorphism $K_{2 i}\left(R^{\prime}, \mathbb{Z} / \ell^{\nu}\right) \cong K_{2 i}^{e t}\left(R^{\prime}, \mathbb{Z} / \ell^{\nu}\right)$ for $i \geq 1$. The change of topology map is C_{2}-equivariant. From the etale local to global spectral sequence for $K^{e ́ t}$ we obtain the C_{2}-equivariant isomorphism

$$
\begin{equation*}
K_{2 i}\left(R^{\prime}, \mathbb{Z} / \ell^{\nu}\right) \cong K_{2 i}^{e ́ t}\left(R^{\prime}, \mathbb{Z} / \ell^{\nu}\right) \cong H_{e ́ t}^{0}\left(R^{\prime}, K_{2 i} / \ell^{\nu}\right) \tag{3.3}
\end{equation*}
$$

[Wei05, Proof of Theorem 70] on which the action on the left is $G L(R) \rightarrow G L(R):$ $M \mapsto{ }^{t} M^{-1}$ and on the right hand side it is multiplication with $(-1)^{i}$. Combining (3.2) and (3.3), Lemma 3.1 yields the following.

Theorem 3.2. Let R be a ring of integers in a number field, and $\ell \in \mathbb{Z}$ an odd prime. Then for all $n \geq 1$ we have isomorphisms

$$
G W_{n}(R)\{\ell\} \cong K \operatorname{Sp}_{n}(R)\{\ell\} \cong K Q_{n}(R)\{\ell\} \cong\left\{\begin{array}{ll}
K_{n}(R)\{\ell\} & n \equiv 0,3 \\
\bmod 4 \\
0 & n \equiv 1,2
\end{array} \bmod 4\right.
$$

4. Proof part 2: 2-adic computations

For an exact category with weak equivalences und duality (\mathscr{E}, w, \sharp, can), denote by $G W(\mathscr{E}, w, \sharp$, can $)$ the associated Grothendieck-Witt space of symmetric bilinear forms [Sch10, Definition 3]. If \mathscr{E} has a strong symmetric cone [Sch10, Definition 4], [Schc] I denote by $\mathscr{E}^{[1]}=\left(\operatorname{Mor} \mathscr{E}, w_{\text {cone }}, \sharp\right.$, can $)$ the exact category with weak equivalences and duality of morphisms in \mathscr{E} with duality and double dual identification induced by functoriality of $\#$ and can and weak equivalences those maps $f \rightarrow g$ of arrows in \mathscr{E} such that $\operatorname{cone}(f) \rightarrow \operatorname{cone}(g)$ is a weak equivalence in \mathscr{E}. By functoriality, $\mathscr{E}^{[1]}$ also has a strong symmetric cone. Set $G W^{[0]}(\mathscr{E})=G W(\mathscr{E})$ and define inductivily for $r \geq 1$

$$
G W^{[r+1]}(\mathscr{E})=G W^{[r]}\left(\mathscr{E}^{[1]}\right)
$$

By [Sch10, Theorem 6], the sequence

$$
\mathscr{E} \xrightarrow{E \mapsto 1_{E}} \operatorname{Mor} \mathscr{E} \xrightarrow{1} \mathscr{E}^{[1]}
$$

induces a homotopy fibration $G W(\mathscr{E}) \rightarrow K(\mathscr{E}) \rightarrow G W^{[1]}(\mathscr{E})$ of -1-connected spectra and by iteration the homotopy fibration

$$
\begin{equation*}
G W^{[r]}(\mathscr{E}) \rightarrow K(\mathscr{E}) \rightarrow G W^{[r+1]}(\mathscr{E}) \tag{4.1}
\end{equation*}
$$

compare [Sch17, Proof of Proposition 4.9]. For details and a generalisation; see [Schc]. For $r<0$, we define $G W^{[r]}(\mathscr{E})$ such that (4.1) holds for all $r \in \mathbb{Z}$. For a commutative ring R, we denote by $G W^{[r]}(R)$ the space $G W^{[r]}\left(\mathrm{Ch}^{b} \mathcal{P}(R)\right.$, quis, $\operatorname{Hom}(, R)$, can $)$ where $\mathcal{P}(R)$ is the category of finitely generated projective R-modules and quis is the set of quasi-isomorphisms.

Theorem 4.1 ([Schd]). Let R be a commutative ring, then
(1) $G W^{[0]}(R)$ is the K-theory space $G W(R)$ of the category of non-degenerate symmetric bilinear forms over R,
(2) $G W^{[2]}(R)$ is the K-theory space $K \operatorname{Sp}(R)$ of the category of non-degenerate sympectic forms over R, and
(3) $G W^{[4]}(R)$ is the K-theory space $K Q(R)$ of the category of non-degenerate quadratic forms over R.

In particular, by [Schb, Theorem 6.6, Example 3.11 and Remark 2.19] we have

$$
\begin{aligned}
& G W^{[0]}(\mathbb{Z})=G W(\mathbb{Z}) \simeq \mathbb{Z} \times \mathbb{Z} \times B O_{\infty, \infty}(\mathbb{Z})^{+} \\
& G W^{[2]}(\mathbb{Z})=K \operatorname{Sp}(\mathbb{Z}) \simeq B \operatorname{Sp}(\mathbb{Z})^{+} \\
& G W^{[4]}(\mathbb{Z})=K Q(\mathbb{Z}) \simeq \mathbb{Z} \times \mathbb{Z} \times B O_{\infty}(\mathbb{Z})^{+}
\end{aligned}
$$

Theorem 4.2 ([Scha]). Let R be a Dedekind domain and $S \subset R$ a multiplicative set of non-zero divisors. Then there is a natural homotopy fibration

$$
\bigoplus_{\wp \cap S \neq \varnothing} G W^{[-1]}(R / \wp) \rightarrow G W^{[0]}(R) \rightarrow G W^{[0]}\left(S^{-1} R\right)
$$

Recall that Friedlander [Fri76] shows that $K_{n} \mathrm{Sp}\left(\mathbb{F}_{2}\right)$ is a finite group of odd order for $n \geq 1$. In particular its 2 -adic completion $K_{n} \operatorname{Sp}\left(\mathbb{F}_{2}\right)_{2}^{\wedge}=0$ for $n \geq 1$. Since the same is true for $K\left(\mathbb{F}_{2}\right)$, we obtain $G W_{n}\left(\mathbb{F}_{2}\right)_{2}^{\wedge}=0$ for $n \geq 1, G W_{n}^{[\pm 1]}\left(\mathbb{F}_{2}\right)_{2}^{\wedge}=0$ for $n \geq 0$ and the following from Theorems 4.1, 4.2 and the homotopy fibration (4.1).

Theorem 4.3. Let $\mathbb{Z}^{\prime}=\mathbb{Z}[1 / 2]$ then the ring homomorphism $\mathbb{Z} \rightarrow \mathbb{Z}^{\prime}$ induces isomorphisms after 2-adic completion

$$
\begin{array}{rlrl}
K_{n} \mathrm{Sp}(\mathbb{Z})_{2}^{\wedge} & \cong K_{n} \operatorname{Sp}\left(\mathbb{Z}^{\prime}\right)_{2}^{\wedge}, & & n \geq 0, \\
G W_{n}(\mathbb{Z})_{2}^{\wedge} \cong G W_{n}\left(\mathbb{Z}^{\prime}\right)_{2}^{\wedge}, & & n \geq 1, \\
K Q_{n}(\mathbb{Z})_{2}^{\wedge} \cong K Q_{n}\left(\mathbb{Z}^{\prime}\right)_{2}^{\wedge}, & & n \geq 2 .
\end{array}
$$

Finally, the 2-adic homotopy groups of $K \mathrm{Sp}\left(\mathbb{Z}^{\prime}\right)$ and $G W\left(\mathbb{Z}^{\prime}\right)=K Q\left(\mathbb{Z}^{\prime}\right)$ can be found in [Kar05, 4.7.2]. This proves the theorems in Section 2 apart from the following which was needed in the proof of Lemma 3.1.
Lemma 4.4. Let R be the ring of integers in a number field F. Then the inclusion $R \subset F$ induces an isomorphism

$$
L_{i}^{[r]}(R)[1 / 2] \simeq L_{i}^{[r]}(F)[1 / 2], \quad i \geq r .
$$

Proof. It suffices to prove the case $r=0$ since $L_{i}^{[r]}=L_{i-r}^{[0]}$. From Theorem 4.2 we deduce the homotopy fibration of -1 -connected spectra

$$
\bigoplus_{\wp \neq(0)} G W^{[-1]}(R / \wp)[1 / 2] \rightarrow G W^{[0]}(R)[1 / 2] \rightarrow G W^{[0]}(F)[1 / 2]
$$

in which the right horizontal map is also surjective on π_{0}, by the computations in [MH73]. Using the analogous statement for K-theory, we obtain the homotopy fibration of spectra

$$
\bigoplus_{\wp \neq(0)} L^{[-1]}(R / \wp)[1 / 2] \rightarrow L^{[0]}(R)[1 / 2] \rightarrow L^{[0]}(F)[1 / 2] .
$$

The left term in that fibration is trivial since for a finite field \mathbb{F}_{q}, we have

$$
L^{[-1]}\left(\mathbb{F}_{q}\right)[1 / 2] \simeq 0 .
$$

This is well-known for q odd, and for q even, $L^{[-1]}\left(\mathbb{F}_{q}\right)$ is a module spectrum over $L^{[0]}\left(\mathbb{F}_{2}\right)$ whose homotopy groups are 2-primary torsion since on π_{0} it is

$$
L_{0}^{[0]}\left(\mathbb{F}_{2}\right)=W\left(\mathbb{F}_{2}\right)=\mathbb{Z} / 2 .
$$

References

[Bal01] Paul Balmer. Triangular Witt groups. II. From usual to derived. Math. Z., 236(2):351382, 2001.
[Fri76] Eric M. Friedlander. Computations of K-theories of finite fields. Topology, 15(1):87-109, 1976.
[Kar05] Max Karoubi. Bott periodicity in topological, algebraic and Hermitian K-theory. In Handbook of K-theory. Vol. 1, 2, pages 111-137. Springer, Berlin, 2005.
[MH73] John Milnor and Dale Husemoller. Symmetric bilinear forms. Springer-Verlag, New YorkHeidelberg, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73.
[Rog00] John Rognes. $K_{4}(\mathbf{Z})$ is the trivial group. Topology, 39(2):267-281, 2000.
[Sch10] Marco Schlichting. The Mayer-Vietoris principle for Grothendieck-Witt groups of schemes. Invent. Math., 179(2):349-433, 2010.
[Sch17] Marco Schlichting. Hermitian K-theory, derived equivalences and Karoubi's fundamental theorem. J. Pure Appl. Algebra, 221(7):1729-1844, 2017.
[Schb] Marco Schlichting. Higher K-theory of forms I. From rings to exact categories. Accepted for publication in J. Inst. Math. Jussieu. DOI: 10.1017/S1474748019000410.
[Schc] Marco Schlichting. Higher K-theory of forms II. From exact categories to chain complexes. In preparation.
[Schd] Marco Schlichting. Higher K-theory of forms III. From chain complexes to derived categories. In preparation.
[Scha] Marco Schlichting. Higher K-theory of forms for Dedekind domains. In preparation.
[Wei05] Charles Weibel. Algebraic K-theory of rings of integers in local and global fields. In Handbook of K-theory. Vol. 1, 2, pages 139-190. Springer, Berlin, 2005.

Marco Schlichting, Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, UK

E-mail address: m.schlichting@warwick.ac.uk

[^0]: Date: September 9, 2019.
 This work was partially funded by the Leverhulme Trust.

[^1]: ${ }^{1}$ All spectra in this paper are -1 -connected, and all homotopy fibrations are in the category of -1 -connected spectra unless otherwise stated. In particular, the second map of a homotopy fibration need not be surjective on π_{0}

