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Abstract  

With functions that range from cell envelope structure and stability to signal transduction and 

transport, lipoproteins make up 2-3 % of bacterial genomes and play critical roles in bacterial 

physiology, pathogenicity and antibiotic resistance. Lipoproteins are synthesized with a signal 

peptide securing them to the cytoplasmic membrane with the lipoprotein domain in the periplasm 

or outside the cell. Post-translational processing requires a signal peptidase II (LspA) that 

removes the signal peptide. Here, we report the crystal structure of LspA from Pseudomonas 

aeruginosa in complex with the antimicrobial, globomycin at x A resolution. Conserved residues 

in the active site and mutagenesis studies identify LspA as an aspartyl peptidase. In a striking 

example of molecular mimicry, globomycin appears to inhibit by acting as a non-cleavable 

peptide that includes a tetrahedral transition-state analogue. This complex structure should 

inform rational antibiotic drug discovery. 

One Sentence Summary 

A crystal structure shows how a bacterial enzyme functions in lipoprotein maturation and is 

inhibited by the antibiotic globomycin. 

 

We are interested in proceeding as a report – manuscript must be cut to fit our report format. Need to 

cut about 500 words of text beyond the cutting I have done (the main text double space, no figs, 

should start on page 3 and end on page 9 – this is giving some space beyond our usual report 

constraint) 
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 The threat of antibiotic resistance is recognized as a serious public health issue. Governments 

have introduced  incentives to encourage work on anti-infectives by major drug makers in the 

face of a rise in antimicrobial-resistant infections globally.  

 

Fig. 1. Post-translational processing leading to lipoprotein maturation in Gram-negative bacteria. 

Lipoproteins are synthesized as pre-prolipoprotein precursors via the Sec or TAT pathways with an N-terminal 

signal peptide (green cylinder) securing them to the cytoplasmic membrane and the lipoprotein domain (green 

square) in the periplasm. Post-translational processing requires, at a minimum, the sequential action of lipoprotein 

diacylglycerol transferase, Lgt, to lipid modify with a diacylglycerol and signal peptidase II, LspA, to remove the 

signal peptide. For some lipoproteins, the lipoprotein N-acyl transferase, Lnt, is required to N-acylate the N-terminal 

cysteine of the lipoprotein. LspA cuts in the lipobox, a consensus sequence of form LAGC* where C* (yellow oval) 

has been dagylated by Lgt, to the amino side of the C*. Trafficking to the outer membrane uses the lipoprotein outer 

membrane localization (Lol) pathway that involves the ABC transporter, LolCDE, a carrier chaperone, LolA, and a 

receptor, LolB, itself a lipoprotein. Lipoproteins reside mostly on the outer leaflet of the inner membrane and on the 

inner leaflet of the outer membrane facing into the periplasm.  Some are located facing and in the extracellular 

space.  

The enzymes involved in bacterial lipoprotein post-translational processing (Fig. 1) are essential 

in many pathogenic organisms and have no equivalents in humans, making them potential drug 

targets (2-4). LspA, as a key enzyme involved in the post-translational processing of close to two 

hundred lipoproteins in P. aeruginosa, an opportunistic human pathogen, is a target for antibiotic 

development (2, 5). LspA does not have sequence homology to proteins of known structure. A 

DALI search failed to identify structural homologs, suggesting the peptidase exists in an entirely 
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new fold. Globomycin, an antibiotic produced by select strains of Streptomyces, inhibits LspA 

(2). This cyclic depsipeptide (fig. S1) is an antimicrobial effective against Gram-negative 

bacteria. Synthetic analogs also inhibit the growth of Gram-positive bacteria including 

methicillin-resistant Staphylococcus aureus (MRSA) (2).  

P. aeruginosa has 175 lipoproteins (5) and presumably all are processed by a promiscuous LspA. 

The prolipoprotein substrates of LspA are cleaved at a four-residue consensus sequence known 

as the lipobox that always ends with a cysteine The prolipoproteins  consist of an N-terminal 

signal peptide that includes the first three residues of the lipobox and a C-terminal lipoprotein 

starting with the lipobox cysteine. Signal peptides range in length from 13 to 34 residues and are 

predicted to be transmembrane helices. The N-terminal stretch of amino acids, the N-segment, is 

2 to 21 amino acids long and includes at least one signature cationic residue. Between the N-

segment and the lipobox is the 6 to 17 residue long hydrophobic, or H-segment, that is rich in 

apolar residues. The lipobox has a consensus sequence Leu-Ala-Gly-Cys (LAGC, L-3A-2G-1C+1) 

and, in the prolipoprotein form, the cysteine is in thioether linkage to diacylglycerol (DAG). We 

refer to the dagylated cysteine as Cys*.  

While predicted to be part of the signal peptide helix, it seems likely that the lipobox adopts an 

extended conformation to provide access for cleavage to the scissile Gly-Cys* bond and to 

enable the C-terminal lipoprotein to reside in the periplasm. In the case of shorter signal 

peptides, the distance between the cationic N-segment which is anchored at the cytoplasmic 

interface and the lipoprotein that isin the periplasm, may induce the helix to unwind locally. The 

high frequency of Gly in the lipobox could facilitate uncoiling. Residues at the N-terminus of the 

cleaved lipoprotein provide signals for downstream trafficking machinery (2-4) and are known 

(6) or have been speculated to be uncoiled (3). The structures of only a few lipoproteins are 

available. Examples include CytC (PDB ID, 3CP5), AlgK (3E4B), Lpp (1EQ7), CsgG (4Q79) 

and the four lipoproteins of the BAM complex, BamB (3PRW), C (2YH5), D (3QKY) and E 

(2YH9) (7). Together, these observations suggest that the lipobox and the first few residues that 

follow it into the lipoprotein are in an extended conformation. 

We sought to obtain a high-resolution crystal structure of LspA to gain insights into mechanism 

of action. Crystallization trials were conducted using recombinant LspA from P. aeruginosa 

(strain PAO1) (5). Fos-choline 12 proved an effective solubilizing and refolding detergent, and 

affinity and size-exclusion chromatography provided material of high purity. In meso (lipid cubic 

phase) crystallization trials (8) with the apo-enzyme failed to produce crystals. In the presence of 

globomycin however, crystals grew at 20 C with monoolein (9.9 MAG) as host lipid. A 

structure of the complex was obtained with a resolution of 2.8 Å using seleno-methionine single-

wavelength anomalous diffraction phasing (Fig. 2).  

LspA is a small protein consisting of 169 amino acids (5). It is a monomer in the crystal.  

Structurally, the protein can be broken down into two domains each assembled from secondary 

structure elements from discontinuous stretches of the protein chain (Fig. 2). The first consists of 
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four transmembrane helices (MH1-4) with the N- and C-termini in the cytoplasm. The second is 

the periplasmic domain which has two sub-domains. The bigger of the two is a 4-stranded, 

amphiphilic -sheet which rests on the membrane. The sheet has the appearance of a cupped 

hand or cradle (-cradle) that extends away from the helical core of the protein.  Its hydrophobic 

surface is in contact with the membrane, while its polar surface faces the periplasm. The second 

sub-domain consists of a long loop with a single helical turn, the periplasmic helix (PH). The PH 

also sits on the membrane with thelong axis of the periplasmic PH loop orthogonal to that of the 

-cradle.  

 

Fig. 2. LspA-globomycin complex structure. (A) Cartoon representation of LspA viewed from within the 

membrane with the membrane interface shown as horizontal lines and globomycin as a stick figure (yellow 

carbons). Transmembrane helices are labelled MH1-4. The -stranded cradle (labelled) at the membrane interface is 

poised to accommodate the soluble domain of the prolipoprotein substrate and lipoprotein product. The C-terminal 

“strand” of the -cradle leading into the proposed active site is interrupted by conserved Pro137 and does not 

conform to standard -sheet hydrogen bonding patterns.  (B) As in (A) rotated by ~60 .  (C) As in (A) viewed from 

the periplasm. (D) 2Fo-Fc simulated-annealing composite OMIT map contoured at 1  and carved at 2.3 Å around 

globomycin. Globomycin appears to inhibit by mimicking a non-cleavable, tetrahedral transition-state in the 

reaction. Proposed catalytic aspartates, Asp124 and Asp143, are shown on either side of the -hydroxyl of 

globomycin serine (g·Ser). Globomycin and catalytic aspartates are shown in stick representation with yellow and 

slate (A-C) or cyan (D) carbons, respectively. 
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Fig. 3. Conserved residue surface representation of LspA based on an analysis of 485 orthologs. The orthologs 

had between 35% and 95% sequence identity with the signal peptidase II of P. aeruginosa (PAO1).  (A) View into 

the globomycin binding site from within the membrane. LspA in surface representation. Globomycin and MAG as 

sticks with yellow and grey carbons, respectively.  (B) As in (A) rotated by 180 . The color coding is as follows: 

cyan, white and purple correspond to low, average and high conservation, respectively. The analysis was done using 

the ConSurf server (9). 
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Fig. 4. The prolipoprotein, proICP, from P. aeruginosa docked into LspA. The signal peptide helix (magenta) 

docks into the pocket created by MH2, MH3 and MH4. The lipobox cysteine, Cys*, is dagylated (light blue sticks) 

and the lipoprotein (light blue cartoon) extends across the -cradle into the periplasm. The complex, as shown, is 

stable in MDS, especially in the region of the signal peptide helix and the lipobox. Full details of docking and 

simulations are available under Methods. Catalytic dyad aspartates shown as stick with cyan carbons.   

The crystal structure of globomycin (10) was used to guide modelling into a distinctive, donut-

shaped region of electron density in the between MH2, MH3 and MH4 on the periplasmic side of 

the membrane (Fig. 2D). The ligand density allowed unambiguous placement and orientation of 

the entire globomycin molecule, a 19-member cyclic depsipeptide that includes an -

methylhydroxy fatty acid, N-methyl-L-Leu (g·Leu), L-allo-Ile (g·Ile), L-Ser (g·Ser), L-allo-

Thr (g·Thr) and Gly (g·Gly) (11) (fig. S1). Globomycin is amphiphilic with polar and apolar 

halves. g·Ser and g·Thr comprise the polar half while the hydroxy fatty acid, g·Leu and g·Ile 

make up the apolar half. As expected, the apolar half of globomycin extends into the membrane, 

and its polar end faces the interface. In the unbound state, MDS show globomycin partitions into 

the membrane oriented essentially as it is in the complex (fig. S2). The PH loop sits over and 

blocks direct access from the periplasm to the active site suggesting that globomycin first 

partitions into the lipid bilayerand then diffuses laterally into the active site to inhibit the 

enzyme. 

Conserved residues decorate the globomycin binding pocket (fig 3), a region that has been 

implicated in peptidase activity (12). 
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Globomycin is firmly anchored to LspA by hydrogen bonds and hydrophobic interactions (Fig. 

2D and fig. S3). The most notable hydrogen bond is that between the-hydroxy of g·Ser and the 

carboxyl of Asp143, tentatively identified as one of the catalytic dyad aspartates (12). In MDS, 

this interaction persists throughout the 500 ns simulation. The backbone carbonyls of g·Leu, 

g·Ile and g·Ser, to one side of the globomycin ring, face the protein and hydrogen bond with the 

side chains of strictly conserved Asn112, Arg116. The side chain of g·Leu, as well as the acyl 

chain of the hydroxy fatty acid, have extensive hydrophobic interactions with apolar residues in 

the protein (Fig. 2D). These are particularly well developed in the case of the fatty acid which is 

in close contact with the membrane exposed surface of the PH and with residues on MH2. MDS 

confirms these interactions (fig. S3). 

LspA was investigated by MDS in the complex and apo forms. In both, the enzyme was stable in 

a POPE:POPG membrane (movies S1 and S2). Through the 500 ns simulation, the 

transmembrane helix bundle held together as a unit while the -cradle and PH loop remained 

anchored at the bilayer interface. In the apo form, simulations showed a minor rearrangement of 

the active site with a network of hydrogen bonds emerging that involve Asn54, Asp124, Asn140, 

Asp143 and Asn112, all highly conserved residues. In addition, there was enhanced flexibility of 

the PH loop, which moved laterally at the interface whilst remaining anchored to the membrane 

by highly conserved Phe59 and Phe61.  

If globomycin in the complex indicates the active site in LspA, an examination of this part of the 

protein immediately suggests how the prolipoprotein substrate, orients itself for binding and 

Michaelis complex formation. The signal peptide helix of the prolipoprotein is the right size and 

shape to slot into the space between MH2 and MH4 of LspA (Fig. 4). Upon signal peptide helix 

binding, the lipobox of the substrate would sit in the active site. Presumably, it would reside with 

its backbone, in an extended conformation, similar to and perhaps mapping directly onto that of 

the g·Leu-g·Ile-g·Ser tripeptide in globomycin (Fig. 5), as observed in the complex structure. 

The Cys* of the lipobox, with its bound DAG, would now reside further up in the active site 

positioning the lipoprotein in the periplasm (Fig. 4). With the  
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Fig. 5. Globomycin bound to LspA with a lipobox Leu-Ile-Ser-Cys tetrapeptide docked manually onto the 

g·Leu-g·Ile-g·Ser peptide backbone of globomycin. The docking exercise places the scissile Ser-Cys bond of the 

lipobox (black arrow) next to the catalytic dyad aspartyls, Asp124 and Asp143. LspA is shown in cartoon 

representation with cylindrical helices. Globomycin, the lipobox peptide and the catalytic aspartyls are shown as 

sticks with yellow, cyan and blue carbons, respectively. The proposed location of the prolipoprotein chain extending 

N- and C-terminally from the lipobox is indicated in transparent cyan cartoon representation. Need to cut to 4 

figures this can be fig 4b 

this alignment, the scissile Gly-Cys* bond is extended and positioned between the carboxyls of 

the proposed catalytic residues, Asp124 and Asp143. The lipid modification on Cys*, with its 

long hydrophobic chains, must remain anchored in the membrane. An indication as to where its 

glycerol head group and part of one of the chains might reside comes from a lobe of electron 

density modelled in the complex structure as a monoacylglycerol (MAG, the host lipid used for 

crystallization) which sits to one side of the active site (fig. S4). While host lipid density, at 2.8 

Å resolution, is often poorly and incompletely defined, density for the active site lipid is clearly 

present in all four molecules of the asymmetric unit extending to C7 or C8 of the MAG acyl 

chain in omit maps. We suggest therefore that one of the DAG acyl chains of the prolipoprotein 

substrate occupies a similar position on LspA. Reminiscent of how MAG is bound in the 

complex, the head group of the DAG moiety is likely clamped in a groove where MH4 and the 

-cradle come together thereby helping position and orient the scissile bond in the active site. 

The above model for how the prolipoprotein substrate interacts with LspA is supported by MDS 

(Fig. 4 and movie S3).  

Residues 56 to 62, that include the PH, are highly conserved. This stretch of protein sits on the 

surface of the membrane directly over the active site (Fig. 2)and . Constrains extension of the 

substrate from the active site to the periplasm a confining space between the -cradle and PH 
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loop sub-domains.. In this model the Cys* of the substrate is clamped between the -cradle and 

the PH loop with the dipole of PH aligned with the carbonyl oxygen of Cys*.(fig 4) 

Despite lacking the consensus sequence, Asp-Thr-Gly, of aspartyl proteases (13), LspA has been 

tentatively identified as an aspartyl endopeptidase (12). In the absence of evidence to the 

contrary, we assume here that the catalytic mechanism is as described for other aspartyl 

proteases (13). Accordingly, we envision Michaelis complex formation involving a conjunction 

in the active site of two aspartates, a catalytic water and the scissile bond. Using globomycin to 

demark the active site, two aspartate residues, Asp124 and Asp143, with suitably poised side 

chain carboxyls are apparent in the structure that, in all likelihood, represent the catalytic dyad 

(Fig. 2D). We propose therefore that these aspartates play a general acid-base role with the one 

closest to the proposed water (not seen in the complex but apparent in MDS, movie S4) being 

charged and abstracting a proton from it creating a potent nucleophile (fig. S1B). The 

nucleophile attacks the carbonyl carbon of the scissile bond forming a tetrahedral intermediate. 

Protonation of the amide nitrogen in the scissile bond and rearrangement causes the tetrahedral 

intermediate to collapse and hydrolysis products to form. Separation of the substrate’s binding 

moieties by proteolysis would logically result in a sharply lower binding affinity of the two 

reaction products compared to substrate. The freed lipoprotein product is anchored in the 

membrane only by the DAG chains of its C-terminal Cys* and should readily diffuse out of the 

active site thereby resetting LspA for another round of catalysis. Further processing of the signal 

peptide and lipoprotein products of the LspA reaction, when it occurs, involves signal peptide 

peptidases and N-acylation by lipoprotein N-acyl transferase, Lnt, respectively (Fig. 1).  

Many aspartyl proteases are important drug targets. The hypertension regulator, renin (14, 15), 

and HIV protease (13, 16) are examples.  Of the thousands of inhibitors designed to target 

aspartyl proteases most contain a non-cleavable core structure of the hydroxyethylene or 

hydroxyethylamine type designed to mimic the tetrahedral intermediate in the proteolytic 

reaction (7) (fig. S1C-E). For those that have been crystallized bound to target proteases the 

hydroxyl group sits between and is within hydrogen bonding distance of the two catalytic 

aspartates. Strikingly, the hydroxyethylamide of g·Ser in globomycin incorporates elements of a 

non-cleavable transition-state isostere.  In the complex, the hydroxyl group of g·Ser nestles 

between the two catalytic aspartates, Asp124 and Asp143, and although only hydrogen bonded 

to Asp143 in the complex, it is in position to coordinate both (Fig. 2D).  This suggests that part 

of the globomycin molecule behaves asa non-cleavable tetrahedral transition state analogue (fig. 

S1) and that the antibiotic is a competitive inhibitor of LspA. Further mimicking other features of 

the prolipoprotein substrate, globomycin contains the peptide backbone and side chains 

corresponding to the P-3, P-2 and P-1 sites relative to the scissile bond in the lipobox. As noted, 

this feature of globomycin has been used to model a convincing lipobox and prolipoprotein into 

the substrate binding and active sites of LspA (Figs. 4 and 5). The prolipoprotein model has 

been exploited successfully in molecular dynamics simulations (MDS) (Fig. 4). 
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An analysis of deduced amino acid sequences of LspAs from 485 organisms having between 

35%  and 95% sequence identity with the signal peptidase II of PAO1 identified fourteen strictly 

conserved residues (D23, K27, N54, G56, G108, A109, N112, R116, V122, D124, 139F, N140, 

A142, D143) (12). The bulk of these map onto the proposed binding and actives sites in the 

LspA complex (Fig. 3). This lends credence to the location of both sites in the protein as 

identified in the complex structure. All strictly conserved polar residues are involved in a 

hydrogen bonded network extending into the membrane between the two periplasmic sub-

domains (fig. S5) that serves multiple purposes. It provides structural integrity and definition to 

the active and binding sites. At the same time, it positions and orients active site residues 

optimally for pKa modulation and catalysis. Such a hydrogen bonded network of polar residues 

facilitates access to the active site of catalytic water molecules from the periplasm, confirmed in 

MDS (movie S4). 

Mutagenesis studies performed on LspA from Bacillus subtilis identified six amino acids, 

corresponding to Asp23, Asn112, Asp115, Asn140, Ala142, and Asp143 in P. aeruginosa, as 

being important for activity (12). Only Asp23 was required for stability, suggesting the other five 

residues were needed for catalysis, active site geometry, or the recognition of prolipoproteins 

(12). Four of the five residues map onto the proposed active site in the LspA-globomycin 

complex in ways that make sense. However, Asp115 is a highly conserved residue on the 

periplasmic end of MH3 (fig. S5). It coordinates with conserved Lys27 which interacts indirectly 

with catalytic Asp143 via conserved Asn112. Mutating it to Ala inhibited peptidase activity (12). 

In the Tjalsma et al. study (12), Asp115 and Asp143 were proposed to form the catalytic dyad. In 

light of the current structure, this is unlikely. We conclude that the catalytic dyad is Asp124 and 

Asp143. Both are strictly conserved and suitably disposed for proteolysis. 
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Fig. 6. Endopeptidase activity of LspA with the substrate prolipoprotein, generated in situ, based on the pre-

prolipoprotein ICP. (A) Reaction time course. (B) Dependence on LspA concentration. (C) Inhibition by 

globomycin.  (D-F) Quantitative representation of the data in (A), (B), and (C), respectively, based on SDS-PAGE 

gel image analysis. Lines drawn to guide the eye. (G) Effect of single site mutations in LspA. A schematic to aid in 

the interpretation of the SDS-PAGE data is presented in fig. S6A.  (H) Quantitative representation of the data in (G) 

based on gel image analysis. Assays were performed using proICP (pICP) generated in situ by the DOPG-dependent 

dagylation of pre-proICP (ppICP) catalysed by Lgt (Methods). The Lgt substrate, pre-proICP, appears as two closely 

spaced bands (ppICP, ppICP’, fig. S6A) with the higher molecular weight band the stronger of the two (best seen in 

(G)). The relative intensities of the two bands vary from prep to prep, apparent in the different panels. The LspA 

product, ICP, also runs as a pair of bands (ICP, ICP’, fig. S6A). It is the integrated intensity of the well-resolved ICP 

band that is quantified on the gel using ImageJ and reported in (D-F) and (H). The mobility of LspA is very similar 

to that of ppICP’. The mobility of the LspA mutants differs slightly from that of the wild-type enzyme which makes 

them visible on the gel to varying degrees depending on the mutant (G) (fig. S6B).  

To test the hypothesis peptidase activity of LspA was measured by SDS-PAGE with the 

dagylated form of the pre-prolipoprotein, Inhibitor of Cysteine Peptidase (ICP) (17), as substrate 

(Fig. 6). Dagylation was effected through the action of Lgt on ICP with 

dioleoylphosphatidylglycerol (DOPG) as lipid substrate. The undagylated pre-prolipoprotein was 

not an LspA substrate (fig. S6C). Under standard assay conditions, wild-type LspA activity was 

evident by the appearance of bands corresponding to the dagylated lipoprotein (13 kDa) and the 

signal peptide (4 kDa). Asp124Asn and Asp143Asn mutants were devoid of activity consistent 

with the hypothesis that Asp124 and Asp143 are the catalytic dyad residues (Fig. 6G, H). By 

contrast, the Asp115Ala and Asp115Asn mutants had small and significant activities, 



P a g e  | 12 

 

respectively, suggesting that this residue is functionally important but not catalytic. MDS 

revealed transient interactions involving Asp115 not seen in the crystal structure and provide a 

plausible explanation for how these two mutations compromise catalysis to different degrees 

(movie S5). The Arg116Ala mutant was inactive, as expected given Arg116’s interaction with 

globomycin and its proposed role in orienting the lipobox backbone of the peptide substrate in 

the active site. Globomycin inhibited the enzyme (Fig. 6C).  

Synthetic analogues of globomycin have been tested for efficacy against a number of bacterial 

species as part of a structure-activity relationship study (11). The most effective congeners, 

which were ten-times more potent than globomycin, were modifications where the fatty acyl 

chain was lengthened. This finding makes sense in light of the complex structure where a longer 

chain would provide for more extensive interactions with the apolar surface of MH2 (Fig. 2D). It 

would also increase solubility in the membrane which could contribute to potency. The hydroxyl 

group in g.Ser was shown to be essential for globomycin inhibitory activity which agrees with 

this residue’s proposed role as a transition state mimic.  

P. aeruginosa has 175 different lipoproteins (5). All must be processed by LspA. The signal 

peptide and extramembrane parts of lipoproteins differ from one another in size, sequence and 

structure to sizable degrees. How LspA is able to recognize and to process close to 200 distinct 

prolipoproteins as substrates and yet perform catalysis with each with fidelity is an intriguing 

question. A feature common to all is the dagylated lipobox cysteine. This cysteine is distinctive 

from LspA’s perspective likely because it resides accessible at the membrane interface where it 

is oriented with its C-terminus extending out of the membrane attached to the extramembrane 

lipoprotein and with its side chain and N-terminus toward the membrane anchored by the DAG 

moiety and the signal peptide, respectively (fig. S7). Presumably, this unique disposition and set 

of linkages are what identify it, in all 175 prolipoproteins, for binding and cleavage by LspA. 

The LspA structure reported here has grooves and clefts radiating about the active site with 

remarkable shape complementarity to this trigonal feature of the prolipoprotein substrate. Upon 

docking, the scissile bond of the substrate sits in the active site of the enzyme poised for 

cleavage. Thus, while LspA is highly specific in terms of the proteolytic reaction it catalyzes, its 

impressive substrate promiscuity can be explained by a shape complementarity around the 

scissile bond shared by all prolipoproteins. 

The complex structure reported here can be used to inform the design of globomycin analogues 

with improved binding, efficacy, selectivity and pharmacokinetic properties. As an alternative, 

since LspA is an aspartyl endopeptidase, it is a suitable target with which to explore the 

thousands of inhibitors developed for other medically relevant aspartyl proteases (13, 16While 

the sequence identity of LspA from P. aeruginosa and MRSA is only 32%, the majority of active 

site residues are conserved. MDS of both the apo and globomycin-bound homology models of 

MRSA LspA show remarkable stability and fidelity to the observed dynamics of the crystal 

structure of P. aeruginosa LspA, suggesting the model is a faithful representation of the MRSA 
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homologue (fig. S8). In the absence of a crystal structure of MRSA LspA, these homology 

models should prove useful for drug design and discovery. 

Based on the complex structure, globomycin is an antibiotic against which resistance, through 

point mutations in LspA that do not compromise catalysis, is hard to conceive. The binding sites 

of the prolipoprotein substrate and globomycin overlap while the active and binding site residues 

are networked to such degrees that any mutation perturbing globomycin’s interactions with the 

enzyme would likely also impact on how LspA binds and cleaves its substrate. Since antibiotics 

that do not elicit resistance are invaluable medically (18), lessons in effective drug design might 

be learned from the Actinomycetes, microbes that may well have achieved this in globomycin. 
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