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Abstract: 

Drug resistance has become a serious public health problem. Accurate assessment of the 

drug-induced proliferation (DIP) rate is essential in identifying partial drug resistance. 

The turbidity assay is a continuous assay and has been used for years to track the bacteria 

growth, but the method has relative low sensitivity and high experimental error. In 

addition, most current cell proliferation assays are endpoint assays that are not ideal for 

tracking minor changes over time.  Here, we report an EZMTT dye-based detection 

method which provides 10 to 30-fold better sensitivity than the turbidity assay. Simple 

mixing of the EZMTT dye with the bacteria in the presence of an inhibitor allowed 

precise measurement of the drug-induced proliferation rate in high-through-put (HTS) 

mode; the resulting growth curves show critical characteristics of exponential growth 

including the cell density requirement and the doubling time. Within 4-6 hours, the 

simple procedure not only reliably detects all drug resistance found by the traditional 

method, but also partial drug resistance of infectious bacteria (with 5-20% growth), which 

current MIC-based clinical diagnostic methods failed to identify.  In conclusion, this 

simple EZMTT method provides rapid and precise measurement of the drug-induced 

proliferation rate, and identifies 10-30% more partially drug resistant bacteria than 

current clinical diagnostic methods. A combination of the EZMTT dye-based detection 

and the DPI method has great potential to solve the unmet medical need to battle against 

drug resistance.  
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Introduction 

Bacterial resistance to antibiotics is a serious problem worldwide. It prolongs hospital stays 

and considerably increases infectious disease-related mortality1,2. Research groups3-6 have 

demonstrated that drug resistance develops owing to a small population that is resistant to the 

drug, and drug treatment results in selection for the growth of the small drug-resistant cell 

population. Therefore, a sensitive method that reliably detects minor growth after drug treatment 

would be important for the early recognition of drug resistance. 

Traditionally, antibiotic susceptibility testing (AST) uses a cell density-based method (Fig. 

1) for rapidly growing bacteria, such as the turbidity assay, paper diffusion, broth dilution, agar 

dilution, E-test experimental methods and most recently the automated VITEK drug sensitivity 

analysis system for clinical diagnosis7. The turbidity assay has limited sensitivity, so clinically 

80% growth inhibition is used as the cutoff to identify the resistant bacteria. Even though the 

turbidity assay gives a weak signal, it is used because the assay is simple and continuous.   

The indirect impedance method [8] measures the bioelectrical signal changes in response to 

cell numbers, but requires complicated infrastructure. The BactT/ALERT routine blood culture 

bottles [9,10] detect microbial growth by oxygen depletion which requires anaerobic conditions, 

so the bacteria must be grown in a sealed tube or compartment, which is problematic for 

high-throughput plate-based AST assays. The MTT assay is a traditional method for IC50 

measurement, but MTT kills the bacteria during the assay [11]. Therefore, as an end point assay, 

MTT method can not be used to track the drug-induced proliferation rate (DIP) [5].    

Therefore, it is critically important to develop a sensitive continuous assay that reliably 

detects minor growth after drug treatment. Since the EZMTT reagent was shown to have high 

sensitivity and is capable of tracking time-dependent cell growth12,13, we further developed the 

EZMTT-based continuous assays to measure the DIP rate for infectious bacteria. As expected, 

the assay provided rapid, reproducible and precise assessment of drug-resistance and 

importantly, reliable detected10-30% more partial drug resistant bacteria than the current 

turbidity-based diagnostic method..  

 

Results and conclusion:  

EZMTT method provides 10-30 times greater sensitivity in cell growth measurement than 

the traditional turbidity (OD600nm) method 

For decades, fast growing infectious bacteria have been tracked by the cell number-based 

turbidity assay at OD600 nm which is not very sensitive. As shown in Fig. 2, the signal generated by 

the EZMTT method (Fig. 2A-L) is 10-30 times greater than the turbidity assay (Fig. 2a-l) for E. 

coli strains (DH5a and TransG1) and 10 clinically isolated infectious bacteria.  

Significantly, different E. coli strains (Fig. 3A-3F; table) demonstrated differences in 

doubling time and in the required cell density to enter into exponential growth.  The infectious 

species EAEC, EIEC, EPEC and ETEC enter exponential growth at a cell density that is at least 

four times less than those of DH5a and TransG1. In addition, these infectious species grew 

approximately two times faster than DH5a and TransG1.  

Among other infectious bacteria (Fig. 3G-3L), Bacillus cereus enters into exponential 

growth at a relatively low cell density, and the growth rate is rapid enough to have severe 

consequences after infection.  Salmonella paratyphi A and Salmonella are also fast growing 

bacteria with doubling times of 0.7-0.8 h.   

In addition, the EZMTT method provides highly sensitive detection of both 

Staphylococcus aureus and Bacillus cereus.  Staphylococcus aureus is a common and serious 

infection associated with high rates of mortality[10], whose growth is only marginally detected 

by the turbidity assay. The EZMTT assay enhances the detection of growth of both bacterial 

species by 30-fold, making the drug resistance test more sensitive. 

 

EZMTT provides rapid and precise IC50 values for bacterial species  

Since the EZMTT dye shows a strong response to the growth of various bacteria (Fig. 2), 

we tried a 4-hr AST of the bacteria using ampicilin (AMP), kanamycin (KAN), and 

gentamincin (GEN). As shown in Fig. 3, the EZMTT-dye based AST showed high assay 

reliability with an excellent z factor of 0.7-0.8, and provided precise IC50 measurements in 4 hrs 



for Staphylococcus aureus and Bacillus cereus, for which the turbidity-based assay requires 

overnight culture. All the tested strains were sensitive to KAN and GEN. AMP is a potent 

inhibitor for Staphylococcus, but not for E. coli and Bacillus cereus.  

 

EZMTT demonstrates that changes in IC50 value at different cell densities and incubation 

times are related to mechanism of action  

    To evaluate the effect of cell-density or incubation time on AST, we measured IC50 values of 

8 antibiotics in the EAEC E. coli strain. IC50 values shown in Table 1 and Fig. 4 demonstrate the 

correlation between the mechanism of drug action and the cell-number or incubation time 

dependent IC50 changes.  

The antibiotic KAN14 "irreversibly" binds to 30S-subunit proteins and 16S rRNA, while 

RIF15 acts via the inhibition of DNA-dependent RNA polymerase. Both inhibited EAEC cells 

with essentially the same IC50 values regardless the difference in cell density or incubation time; 

perhaps a suppression of RNA or protein synthesis leads to immediate inhibition of cell growth 

and causes cell death.   

NIT16 requires initial activation by bacterial flavoproteins, and the activated nitrofurantoin 

can then either inhibit ribosomal proteins or damage DNA, RNA, protein, and cell wall synthesis. 

Interestingly, the potency of NIT weakened with prolonged incubation time (24 hr versus 4 hr), 

perhaps because at the stagnation period of growth at 24h, NIT was not activated by the 

bacterial flavoproteins.   

AMP17 inhibits penicillin-binding proteins (PBPs) located inside the bacterial cell wall. 

EAEC was resistant to both AMP and PP, but was sensitive to other penicillin-binding protein 

inhibitors (CAZ, FEP and FOX). Interestingly, FOX showed essentially the same IC50 at different 

the cell density or incubation time, but CAZ and FEP showed more than 10-fold higher potency 

at low cell density; the possible explanation is that both CAZ and FEP have multiple cellular 

targets such as penicillin-binding proteins and beta-lactamase. 

 

EZMTT-based DIP rate measurement identifies 10-30% more partial drug resistance than 

the traditional turbidity-based clinical diagnostic methods 

As shown in Table 1, AST testing at low cell density (400 dilutions from 0.5 MFC) 

sometimes gives smaller IC50 values than those tested at higher cell density (40 dilutions from 0.5 

MFC), but after 24 hrs incubation time, the IC50 values are similar for most antibiotics. Also, the 

clinical diagnostic VITEK method uses a 20-fold dilution of a 0.5 MFC bacteria cultures. 

Accordingly, we evaluated the antibiotic resistance of the 6 clinically isolated E coli strains 

(labeled as EAEC, EIEC, EPEC, ETEC, A) using a 40-fold dilution of a 0.5 MFC bacterial 

cultures (Table 2, Fig. 5 and Table 3).  

As shown in Table 2, the inhibitory activity of the 30S ribosomal inhibitors (AMK, GEN, 

MNO and NIT) weakened with prolonged incubation time; perhaps because early phase growth 

is more dependent on protein synthesis. In contrast, bacterial cell wall synthesis inhibitors such 

as CSL, CZO, CTX, FEP, TZP, CXM, CAZ, FOX, MEM gained potency with time, and showed 

reduced IC50 values after 24h treatment; perhaps because inhibition of bacterial cell wall 

synthesis has a late effect on cell growth.  

 

Current clinical AST methods measure MIC or IC50 values at 24 hrs after drug treatment 

and use 80% inhibition as the cut-off. According to that criterion, 11 out of 75 tests listed in 

Table 2 were identified as drug resistant.  However, when we plotted the time-dependent growth 

after antibiotic treatment (Fig. 5), the DIP rates of the highest antibiotic concentration were 

calculated and presented in Table 3. Because the DIP rate of no-drug treated test was 0.12-0.13 

OD/hrs, we selected the slope of 0.012 OD/hrs as the 90% inhibition cut-off. Using 90% as the 

threshold, 15 more tests were identified as partial inhibitors with a slope above 0.012 OD/hrs, 

which corresponds to 10-20% growth in comparison with the no-drug control (DIP rate is 

approximately 0.12 OD/hrs; 100% growth).  

 

 

 



 

Further, the EZMTT- based AST results for E. coli strains were compared with the clinical 

testing results. As shown in Table 3, using the 90% inhibition as the cut-off, the EZMTT 

method identifies more drug resistance in clinically isolated E. coli strains than the current 

diagnostic methods; EZMTT method identified all resistant or partially resistant bacteria that 

were determined by the clinical methods, and in addition, determined10-30% more partial 

inhibitors that were not detected in the clinical turbidity-based VITEK or KB methods.   

 

Conclusion:  

In vitro cell proliferation assays are important tools for drug discovery and clinical diagnosis.  

Theoretical modeling and experimentation demonstrated that simple IC50 measurement is not 

precise enough to identify partial drug resistance, and the DIP rate method was proposed as an 

unbiased metric to measure antiproliferative drug efficacy18. Because the DIP rate measurement 

requires time-dependent growth data, a continuous assay is preferred, because the continuous 

assay can easily collect data from the same sample, whereas the end point assays had to collect 

data from different samples.   

The turbidity assay is a continuous assay and is preferred by the VITEK method to 

determine antibiotic resistance by the DIP-based method.  However, owing to the low 

sensitivity of the turbidity assay, the VITEK requires longer assay times, and the MIC cut-off is 

set at 20%.   

EZMTT provides a continuous cell viability assay with 10-30 fold enhancement in 

sensitivity over the turbidity assay. Therefore, the EZMTT-based assay can be used in the DIP 

method and reliably detect the bacterial growth as low as 5-20%. 

Applying the EZMTT method to various clinically isolated infectious bacteria, we obtained 

reproducible IC50 values within 4 hrs. In addition, the assay is sensitive enough to reliably 

detect IC50 changes in response to different incubation times and/or cell densities. The most 

important application of the EZMTT-dye is to reveal 10-30% more cases of partial drug 

resistance (5-10% growth) that escaped detection under current clinical “radar”. Application of 

the EZMTT-based AST method will allow doctors to obtain precise resistance information on a 

large panel of antibiotics within 4-6 hours and to prescribe the most efficacious medicine to 

patients; this will avoid prolonged medical treatment and generation of more antibiotic resistant 

bacteria. Therefore, if implemented with VITEK type automation technology, the EZMTT- 

based AST method is expected to be a promising tool in combating the worldwide crises of 

multi-drug resistance in infectious diseases and cancer.  

 

Materials and methods 

Materials 

Mueller-Hinton Broth was purchased from OXOID（Hampshire，U.K；Chemicals from 

Sigma (USA), EZMTT purchased from JNF Bioscience (China; USA), CCK-8 or WST-8 from 

Beyotime Biotechnology (China), Enterococcus casseliflavus Collins et al. ATCC700327, 

Escherichia coli (Migula) Castellani and Chalmers ATCC 25922，Pseudomonas aeruginosa 

(Schroeter) Migula ATCC 27853，Staphylococcus aureus subsp. aureus Rosenbach ATCC 25923 

were purchased from ATCC (USA). Pathogenic Escherichia coli (EPEC), invasive E.coli (EIEC), 

toxigenic E.coli (ETEC), adherent E. coli (EAEC), Shigella sonnei, Shigella flexneri, 

Staphylococcus aureus, Bacillus cereus, and Salmonella paratyphi A were isolated from clinical 

samples and characterized based on Diagnostic Criteria and Principles of Management 

(WS271-2007, WST287-2800, WS/T80-1996, WS280-2008, WS271-2007)18-21. Antibiotics such 

as Amikacin (AMK), Cefoperazone/Sulbactam (CSL), Cefazolin (CZO), Cefotaxime (CTX), 

Cefepime (FEP), Imipenem (IPM), Ciprofloxacin (CIP), Sulfamethoxazole (SXT), Gentamicin 

(GEN), Piperacillin/tazobactam (TZP), Cefuroxime (CXM), Ceftazidime (CAZ), Cefoxitin 

(FOX), Meropenem (MEM), Minocycline (MNO), Nitrofurantoin (NIT),Ampicillin (AMP), 

Kanamycin (KAN), Piperacillin (PP), Rifampicin (RIF) purchased from Solarbio LLC (Beijing, 

China) or Kangtai LLC (Wenzhou, China). The antibiotic mechanism of actions are found at 

www.db.yaozhi.com.  Drug containing cassetts (AST-GNS16) were used to measure the 



antibiotic resistance in E. coli and read by VITEK 2 compact automatic microbiology instrument 

from Merieux LLC (France) .  

 

Clinical drug resistant diagnostic method for Escherichia coli 

Various E. coli strains were isolated from clinical samples and plated on MH plate 

according to standard procedure22.  Colonies (3-5 each) from the overnight culture plate were 

diluted in 0.45% NaCl buffer (pH 4.5～7.2) to make a solution with 0.5 MCF turberdity. Then, a 

20-fold dilution was made and dispensed into the AST-GNS16 card (E. coli drug-resistant testing 

card) for automatic reading by the VITEK 2 compac system to obtain drug resistant information.   

 

EZMTT method for growth curves and doubling time measurement  

Freshly cultured cells were used for growth curve measurement. For gram positive or 

negative bacteria (e.g. E. coli), cells were resuspended in MH broth to prepare r a 0.5 MCF 

solution. Then, two-fold bacteria dilutions (0-0.5 MCF) were made using the MH broth 

containing 1X EZMTT. The cells were grown at 37︒C and tracked every 1 hour for 24 hours. 

For comparison, cultures without 1X EZMTT were carried out as controls under the same 

condition, and aliquots (100 µl) were taken for cell number measurement by colony formation. 

The doubling times were calculated by linear curve fitting the log phase data points (absorbance 

at 450 nm & growth time) to obtain the linearity equation, which was then used to calculate the 

time needed to reach the same absorbance (e.g. OD450 nm=1). The average time needed for each 

two-fold dilutions to reach the same absorbance at the log phase is recorded as the doubling time.    

 

EZMTT method for IC50 and DIP rate measurement  

DIP rate measurement requires freshly cultured cells. For gram-positive or negative 

bacteria, 10 to 80-fold dilutions in MH broth containing 1X EZMTT were added to a 96-well 

plate or transparent glass tubes, followed by treatment with compounds. Cell growth was 

measured by absorbance of 450 nm and 600 nm to generate DIP rates for each treatment. Results 

are representative of at least 2 independent experiments in triplicates or 3 experiments in 

duplicates.  
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Table 1. Inhibition of an E. coli (EAEC) strain at different cell density or incubation time 
 

 IC50   (μg/mL) of an E. coli strain 

Antibioticsa 40×, 4h 40×, 8h 40×, 24h 400×, 8h 400×, 24h 

KAN 2.7±0.11 4±0.19 4±0.18 2.6±0.05 4±1.94 

RIF 2±0.049 2.9±0.1 5.7±0.21 2±0.18 2.9±0.14 

NIT 2.9±0.07 6.7±0.14 22.9±0.7 3.5±0.07 21±0.71 

AMP >128 >128 >128 >128 >128 

PP >256 >256 >256 3.3±0.41 >256 

CAZ 5.9±0.28 2.5±0.14 2.1±0.14 <0.25 0.26 

FEP 5±0.45 1.6±0.08 1.4±0.04 <0.0625 <0.0625 

FOX 3.2±0.99 1.6±0.47 2.6±0.98 0.9±0.42 1.3±0.46 

Kanamycin (KAN), Rifampicin (RIF),  Nitrofurantoin (NIT), Ampicillin (AMP), Piperacillin 

(PP), Ceftazidime (CAZ), Cefepime (FEP), Cefoxitin (FOX) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2. IC50 measurement of 5 clinically isolated bacteria strains by the EZMTT method. 

 

Antiobiotics
b
  

Max. conc. 

IC50 (μg/mL) of various E. coli strainsa 

EAEC EIEC EPEC ETEC A 

4h 24h 4h 24h 4h 24h 4h 24h 4h 24h 

AMK(64μg/mL) ＜2 2.8 ＜2 4.7 2.5 6.8 2.3 2.8 ＜2 5.5 

GEN(16μg/mL) ＜0.5 0.75 ＜0.5 1.1 0.5 1.5 ＜0.5 0.8 ＜0.5 1.2 

MNO(16μg/mL) ＜0.5 1.5 ＜0.5 ＜0.5 1.2 12 ＜0.5 ＜0.5 ＜0.5 1.8 

NIT(128μg/mL) 9.3 12 6.5 12 8 24 10.6 10.8 6.5 27 

CSL(64μg/mL) 29.3 2.3 10.6 ＜2 20 6.3 42 ＜2 ＞64 42.6 

CZO(32μg/mL) 6 6 3.3 0.5 6.7 3 3.8 1.5 4 ＞32 

CTX(4μg/mL) 3.3 1 1.4 ＜0.12 ＞4 2 4 ＜0.12 2 4 

FEP(16μg/mL) 9.3 1.2 4.5 ＜0. 5 5.5 2 6 ＜0. 5 ＜0. 5 8.6 

TZP(128μg/mL) ＞128 4 64 ＜4 ＞128 4 4 ＜4 ＞128 ＞128 

CXM(16μg/mL) ＞16 16 ＞16 4 ＞16 16 ＞16 3.5 ＞16 ＞16 

CAZ(32μg/mL) 10 1 8 <1 32 1 6 ＜1 ＞32 32 

FOX(32μg/mL) 12 4 4.5 4.5 16 4 10.6 6 ＞32 21 

MEM(8μg/mL) ＜0.25 ＜0.25 0.3 ＜0.25 4 0.25 0.5 ＜0.25 0.42 0.42 

CIP(4μg/mL) ＜0.12 ＜0.12 ＜0.12 ＜0.12 0.2 0.6 ＜0.12 ＜0.12 ＜0.12 ＜0.12 

SXT(8μg/mL) ＞8 ＞8 ＜0.25 ＜0.25 ＜0.25 ＜0.25 ＜0.25 ＜0.25 ＞8 ＞8 

aPathogenic Escherichia coli (EPEC), invasive E.coli (EIEC), toxigenic E.coli (ETEC), adherent 

E. coli (EAEC) 
bAmikacin (AMK), Gentamicin (GEN), Minocycline (MNO), Nitrofurantoin 

(NIT),Cefoperazone/Sulbactam (CSL), Cefazolin (CZO), Cefotaxime (CTX), Cefepime (FEP), 

Piperacillin/tazobactam (TZP), Cefuroxime (CXM), Ceftazidime (CAZ), Cefoxitin (FOX), 

Meropenem (MEM), Ciprofloxacin (CIP), Sulfamethoxazole (SXT) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3.Comparison the antibiotic resistant test results from clinical diagnosis and the EZMTT 

dye based DIP rates measurement  

 

Strain EAEC  EIEC  EPEC  ETEC  A 

 EZMTT Assesment  EZMTT Assesment  EZMTT Assesment  EZMTT Assesment  EZMTT Assesment 

Antibiotics Slope EZa  CLb  Slope EZa  CLb  Slope EZa  CLb  Slope EZa  CLb  Slope EZa  CLb 

AMK(64μg/mL) 0.006 Sa   0.003 Sa   0.003 Sa   0.002  Sa   0.004  Sa  

GEN(16μg/mL) 0.005 Sa Sc  0.003 Sa Sc  0.002  Sa Sc  0.005  Sa Sc  0.004  Sa Sc 

MNO(16μg/mL) 0.020 Ra Sd  0.014 Ra Sd  0.013  Ra Id  0.013  Ra Sd  0.016  Ra Id 

NIT(128μg/mL) 0.019 Ra Sc  0.044 Ra Ic  0.015  Ra Sc  0.010  Sa Sc  0.014  Ra Ic 

CSL(64μg/mL) 0.004 Sa Sd  0.004 Sa Sd  0.004  Sa Sd  0.005  Sa Sd  0.017  Ra Id 

CZO(32μg/mL) 0.011 Sa Sc  0.013 Ra Sc  0.037  Ra Sc  0.017  Ra Sc  0.128  Ra Rc 

CTX(4μg/mL) 0.008 Sa   0.006 Sa   -0.003  Sa   0.010  Sa   0.062  Ra  

FEP(16μg/mL) 0.003 Sa Sc  0.007 Sa Sc  0.015  Ra Sc  0.009  Sa Sc  -0.005  Sa Sc 

TZP(128μg/mL) 0.042 Ra Sc  0.003 Sa Sc  0.045  Ra Sc  0.001  Sa Sc  0.098  Ra Sc 

CXM(16μg/mL) 0.050 Ra   0.009 Sa   0.064  Ra   0.012  Sa   0.109  Ra  

CAZ(32μg/mL) 0.008 Sa Sd  0.004 Sa Sd  0.004  Sa Sd  0.004  Sa Sd  0.030  Ra Sd 

FOX(32μg/mL) 0.005 Sa Sc  0.004 Sa Sc  0.003  Sa Sc  0.004  Sa Sc  0.012  Ra Ic 

MEM(8μg/mL) 0.006 Sa Sd  0.012 Sa Sd  0.045  Ra Sd  0.013  Ra Sd  0.034  Ra Sd 

CIP(4μg/mL) 0.005 Sa Sc  0.003 Sa Sc  0.005  Sa Sc  0.002  Sa Sc  0.114  Ra Rc 

SXT(8μg/mL) 0.128 Ra Rc  0.008 Sa Sc  0.006  Sa Sc  0.003  Sa Sc  0.006  Sa Sc 

Control(0μg/mL) 0.122    0.130    0.122    0.129    0.118   

 
a Results from EZMTT-dye based method, using 90% inhibition as the drug resistance 

threshold 
b Identification based on clinical diagnostic methods 
c Clinically used MIC (VITEK) method 
d Clinically used KB method 

 

 

 

 

 

 

 

 



 
Figure 1. Main cell proliferation methods: AST methods for E. coli including turbidity assay, 

paper diffusion, broth dilution, agar dilution, E-test experiment, the automated VITEK drug 

sensitivity analysis system. Other available assays are oxygen detection, DNA sequencing, and 

MTT methods.  EZMTT-dye based assay is a highly sensitive continuous assay for bacteria.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Figure 2. Growth of E coli strains and other infectious bacteria: Up panel (A-L): growth curve 

tracked by EZMTT method; Lower panel (a-l): growth curve tracked by turbidity method; The 

doubling times at log phase measured by the EZMTT and the turbidity methods are A) 

0.80±0.11h and 0.79±0.10 h for DH5α, B) 0.88±0.00 h and 0.85±0.21 h for TransG1,C) 

0.42±0.06 h and 0.42±0.08 h for EAEC( adhesive), D) 0.40±0.11 h and 0.40±0.07 h for EIEC 

(invasive), E) 0.43±0.09 h and 0.42±0.09 h for EPEC (pathogenic), F) 0.41±0.05h and 0.40±0.07 

h for ETEC (toxigenic) E. Coli, G) 0.72±0.23 h and 0.74±0.06 h for Salmonella, H) 0.80±0.10 h 

and 0.71±0.08 h for Salmonella paratyphi, I) 1.33±0.14 h and 0.82±0.20 h for Shigella flexneri, 

J) 1.17±0.02 h and 1.30±0.27 h for Shigella sonnei, K) 0.50±0.07 h and 0.49±0.06 h for 

Staphylococcus aureus, L) 0.42±0.08 h and 0.47±0.18 h for Bacillus cereus, respectively.   

 

 

 

 

 



 
Figure 3. EZMTT-dye based AST of clinically isolated (A) E. coli, (B) Staphylococcus aureus 
and (C) Bacillus cereus. (D) z factors and IC50 values obtained using the EZMTT dye.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure 4. Changes in IC50 values in respond to the cell density and incubation times. Difference 

in IC50 values of EAEC strain treated with Kan, NIT, PP, CAZ to show the effects of incubation 

time at low (A) and high (B) cell density, and the effect of cell density (C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure 5. Time dependent growth of clinically isolated bacteria in the presence of 

antibiotics. The slope of cell growth at various antibiotic concentrations 


