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Simple Irreducible Subgroups of Exceptional Algebraic Groups

Adam R. Thomas
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Abstract

A closed subgroup of a semisimple algebraic group is called irreducible if it lies in no proper
parabolic subgroup. In this paper we classify all irreducible subgroups of exceptional algebraic
groups G which are connected, closed and simple of rank at least 2. Consequences are given
concerning the representations of such subgroups on various G-modules: for example, with one
exception, the conjugacy classes of irreducible simple connected subgroups of rank at least 2 are
determined by their composition factors on the adjoint module of G.

1 Introduction

Let G be a reductive connected algebraic group. A subgroup X of G is called G-irreducible (or
just irreducible if G is clear from the context) if it is closed and not contained in any proper
parabolic subgroup of G. This definition, due to Serre in [27], generalises the standard notion of an
irreducible subgroup of GL(V ). Indeed, if G = GL(V ), a subgroup X is G-irreducible if and only
if X acts irreducibly on V . Similarly, the notion of complete reducibility can be generalised (see
[27]): a subgroup X of G is said to be G-completely reducible (or G-cr for short) if, whenever it is
contained in a parabolic subgroup of G, it is contained in a Levi subgroup of that parabolic.

Now let G be a connected semisimple group. In [20], Liebeck and Testerman studied connected
G-irreducible subgroups for the first time, showing amongst other things that they are semisimple
and only have a finite number of overgroups in G. Connected G-irreducible subgroups play an
important role in determining both the G-cr and non-G-cr connected subgroups of G. The G-cr
subgroups of G are simply the L′-irreducible subgroups of L′ for each Levi subgroup L of G (noting
that G is a Levi subgroup of itself). To determine the non-G-cr subgroups of G one strategy is
as follows. Let P be a proper parabolic subgroup with unipotent radical Q and Levi complement
L. Then for each L′-irreducible subgroup X, determine the complements to Q in XQ that are not
Q-conjugate to X (if any exist). Any non-G-cr connected subgroup will be of this form for some
L′-irreducible connected subgroup X.

We now restrict our attention further by letting G be a simple algebraic group of exceptional
type over an algebraically closed field K of characteristic p (setting p = ∞ for characteristic 0).
In this paper we classify the simple, connected G-irreducible subgroups of rank at least 2. For
G = G2 this is a trivial consequence of [12, Theorem 1] and for G = F4 this has already been done
[32, Theorem 4]. We therefore only have to deal with G = E6, E7 and E8, for which we prove the
following three theorems. The tables referred to in the statements can be found in Section 10 of
the paper.
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Theorem 1. Suppose X is a simple, connected, irreducible subgroup of E6 of rank at least 2. Then
X is Aut(E6)-conjugate to exactly one subgroup of Table 9.

Theorem 2. Suppose X is a simple, connected, irreducible subgroup of E7 of rank at least 2. Then
X is E7-conjugate to exactly one subgroup of Table 10.

Theorem 3. Suppose X is a simple, connected, irreducible subgroup of E8 of rank at least 2. Then
X is E8-conjugate to exactly one subgroup of Table 11.

We note that Amende [1] covers the G-irreducible subgroups of rank 1 in G = G2, F4, E6 and
E7. The semisimple (non-simple) G-irreducible subgroups and the irreducible subgroups of E8 of
rank 1 will be covered in forthcoming work of the author. Also, under various assumptions on the
characteristic (p > 7 covers all of them), Theorems 1–3 can be deduced from the results in [14].
Our contribution is to remove these characteristic restrictions.

Each subgroup in Tables 9–11 is described by its embedding in some maximal connected subgroup,
given in Theorem 3.1. Notation for the embeddings is given in Section 2.

From these results we can prove a number of representation-theoretic corollaries. For the first of
these, we need the following definition. Let G be a simple algebraic group (of arbitrary type), V be
a module for G and X and Y be subgroups of G. Then we say X and Y share the same composition
factors on V if there exists a morphism from X to Y , which is an isomorphism of abstract groups
sending the composition factors of X to composition factors of Y .

The first of our corollaries shows that if G is an exceptional algebraic group then, with one ex-
ception, conjugacy between G-irreducible subgroups is determined by their composition factors on
L(G).

Corollary 1. Let G be a simple exceptional algebraic group and X and Y be simple, connected
irreducible subgroups of G of rank at least 2. If X and Y have the same composition factors on
L(G) then either:

(1) X is conjugate to Y in Aut(G), or

(2) G = E8, X ∼= Y ∼= A2, p 6= 3, X →֒ A2
2 < D2

4 via (10, 10[r]) and Y →֒ A2
2 < D2

4 via (10, 01[r])
(or vice versa) where r 6= 0 and A2

2 is irreducibly embedded in D2
4.

Again, this is proved in [14, Theorem 4] with restrictions on the characteristic p. The notation
“X →֒ A2

2 via (10, 10[r])” is explained in Section 2.

The next corollary highlights the interesting subgroups that areM -irreducible but not G-irreducible
for some reductive, maximal connected subgroup M . Here “interesting” means that the M -
irreducible subgroup is not obviously G-reducible, i.e. M ′-reducible for some other reductive,
maximal connected subgroup M ′ or contained in a proper Levi subgroup.

Corollary 2. Let G be an exceptional algebraic group and X be a simple connected subgroup of
rank at least 2 of G. Suppose that whenever X is contained in a reductive, maximal connected
subgroup M it is M -irreducible and assume that such an overgroup M exists. Assume further that
X is not contained in a proper Levi subgroup of G. Then either:

(1) X is G-irreducible, or
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(2) X is Aut(G)-conjugate to a subgroup in Table 1 below. Such X are non-G-cr and satisfy the
hypothesis.

Table 1: Non-G-cr subgroups that are irreducible in every (and at least one) maximal,
reductive overgroup

G Max. M p M -irreducible subgroup X

F4 A2Ã2 p = 3 A2 →֒ A2Ã2 via (10, 01)

E6 A2G2 p = 3 A2 →֒ A2Ã2 via (10, 10)

E7 A2A5 p = 3 A2 →֒ A2A
(∗)
2 < A2A5 via (10, 10) (see Lemma 6.2)

A7 p = 2 C4

p = 2 D4

G2C3 p = 2 G2 →֒ G2G2 via (10, 10)

E8 D8 p = 2 B4(‡) (see Lemma 7.1)

p = 2 B2 →֒ B2
2(‡) via (10, 10[r]) (r 6= 0), (10, 02) or (10, 02[r]) (r 6= 0)

(see Lemma 7.1)

A8 p = 3 A2 →֒ A2
2 < A8 via (10, 10[r]) (r 6= 0) or (10, 01[r]) (r 6= 0)

G2F4 p = 7 G2 →֒ G2G2 < G2F4 via (10, 10)

Again, the notation in the table is explained in Section 2.

A natural question to ask is whether G-irreducible subgroups of a certain type exist, especially in
small characteristics. When G is a simple exceptional algebraic group [20, Theorem 2] (corrected
in [1, Theorem 7.4]) shows that G-irreducible A1 subgroups exist, except for G = E6 when p = 2.
The following corollary shows that G-irreducible A2 subgroups almost always exist.

Corollary 3. Let G be an exceptional algebraic group. Then G contains a G-irreducible A2 sub-
group, unless G = E7 and p = 2.

Given the existence of irreducible A2 subgroups, we study their overgroups. In many cases there
exists a unique reductive maximal connected subgroup M containing a representative of each con-
jugacy class of G-irreducible A2 subgroups.

Corollary 4. Let G be an exceptional algebraic group. Then there exists a reductive, maximal
connected subgroup M containing representatives of every Aut(G)-conjugacy class of G-irreducible
A2 subgroups, unless (G, p) is one of the following: (G2, 3), (E6, p 6= 2), (E7, p ≥ 5) or (E8, p 6=
3), in which cases either two or three reductive, maximal connected subgroups are required. The
following table lists such overgroups M .

Table 2: Maximal connected overgroups for G-irreducible A2 subgroups.

G p ≥ 5 p = 3 p = 2

G2 A2 A2 and Ã2 A2

F4 A2Ã2 A2Ã2 A2Ã2

E6 A3
2 and A2 A3

2, A2G2 and G2 A3
2

E7 A2A5 and A2 A2A5 —

E8 A2E6 and D8 A2E6 A2E6 and D8
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We require the following definition before discussing the final set of corollaries. As before, let G be
a simple exceptional algebraic group.

Definition [17, p. 263] A simple, simply connected subgroupX of G is restricted if all composition
factors of L(G) ↓ X are restricted if X 6= A1, and are of high weight at most 2p − 2 if X = A1.

In Section 9 we prove a set of corollaries which extend [17, Corollary 1]. This states that when p is
a good prime for G, any simple G-cr subgroup X is contained in a uniquely determined commuting
product Y1 . . . Yk such that each Yi is a simple restricted subgroup of the same type as X and each
of the projections X → Yi/Z(Yi) is non-trivial and involves a different field twist. For each G, we
extend this to all characteristics for each simple, connected G-irreducible subgroup of rank at least
2. In each case, we obtain a small number of counterexamples in bad characteristic.

We briefly describe the strategy for the proofs of Theorems 1–3 (see Section 4 for further details).
Theorem 3.1 lists all the maximal connected subgroups that are reductive and have no A1 simple
factor. For each of these maximal subgroups M , we find all simple M -irreducible subgroups of
rank at least 2 and call these “candidate” subgroups. It then remains to investigate which of the
candidate subgroups are G-irreducible, and to solve the conjugacy problem for the candidates.

The proofs of Theorems 2 and 3, as well as Corollary 2, have some interesting features, notably when
proving an M -irreducible subgroup is not G-irreducible. These include non-abelian cohomology
(applied to the unipotent radicals of parabolic subgroups), finite subgroups and computations in
Magma [4]. See Lemmas 6.3, 7.4, 7.9 and 7.13 for examples.

2 Notation

Let G be a simple algebraic group over an algebraically closed field K. Let Φ be the root system
of G and Φ+ be the set of positive roots in Φ. Write Π = {α1, . . . , αl} for the simple roots of G
and λ1, . . . , λl for the fundamental dominant weights of G, both with respect to the ordering of the
Dynkin diagram as given in [5, p. 250]. We sometimes use a1a2 . . . al to denote a dominant weight
a1λ1+a2λ2+ · · ·+alλl. We denote by VG(λ) (or just λ) the irreducible G-module of dominant high
weight λ. The Weyl module of high weight λ is denoted WG(λ) (or just W (λ)). Another module
we refer to frequently is the adjoint module for G, which we denote L(G). We let V7 := WG2

(10),
V26 := WF4

(0001), V27 := VE6
(λ1) and V56 := VE7

(λ7). For a G-module V , we let V ∗ denote
the dual module of V . If Y = Y1Y2 . . . Yk, a commuting product of simple algebraic groups, then
(V1, . . . , Vk) denotes the Y -module V1 ⊗ · · · ⊗ Vk where each Vi is an irreducible Yi-module. The
notation X̄ denotes a subgroup of Y that is generated by long root subgroups of Y . If Y has short
root elements then X̃ means X̃ is generated by short root subgroups.

Suppose char(K) = p < ∞ (recalling that characteristic 0 is denoted p = ∞). Let F : G → G be the
standard Frobenius endomorphism (acting on root groups Uα = {uα(c)|c ∈ K} by uα(c) 7→ uα(c

p))
and V be a G-module afforded by a representation ρ : G → GL(V ). Then V [r] denotes the module
afforded by the representation ρ[r] := ρ ◦ F r. Let M1, . . . ,Mk be G-modules and n1, . . . , nk be
positive integers. Then Mn1

1 / . . . /Mnk

k denotes an G-module having the same composition factors
as Mn1

1 ⊕ · · · ⊕ Mnk

k . Furthermore, V = M1| . . . |Mk denotes an G-module with a socle series as
follows: Soc(V ) ∼= Mk and Soc(V/Mi) ∼= Mi−1 for k ≥ i > 1. Sometimes, to make things clearer,
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we will use a tower of modules
M1

M2

M3

to mean the same as M1|M2|M3.

We need a notation for diagonal subgroups of Y = H1H2 . . . Hk, a commuting product, where all
of the subgroups Hi are simple and of the same type; call the simply connected group of this type
H. Let Ŷ = H ×H × · · · ×H, the direct product of k copies of H. Then we may regard Y as Ŷ /Z
where Z is a subgroup of the centre of Ŷ and Hi is the image of the ith projection map. A diagonal
subgroup of Ŷ is a subgroup X̂ ∼= H of the following form: X̂ = {(φ1(h), . . . , φk(h))|h ∈ H}
where each φi is an endomorphism of H. A diagonal subgroup X of Y is the image of a diagonal
subgroup of Ŷ under the natural map Ŷ → Y . To describe such a subgroup it therefore suffices to
give an endomorphism, φi, of H for each i. By [29, Chapter 12], φi = αθiF

ri where α is an inner
automorphism, θi is a graph morphism and F ri is a power of the standard Frobenius endomorphism.
We only wish to distinguish these diagonal subgroups up to conjugacy and therefore assume α is
trivial. For each 1 ≤ i ≤ k we must give a (possibly trivial) graph automorphism θi of H, and a
non-negative integer ri.

Such a diagonal subgroup X is denoted “X →֒ H1H2 . . . Hk via (λ
[θ1r1]
1 , λ

[θ2r2]
1 , . . . , λ

[θkrk]
1 )”. We

often abbreviate this to “X via (λ
[θ1r1]
1 , . . . , λ

[θkrk]
1 )” if the group Y is clear. Unless X is of type Dn

(n ≥ 4), a graph automorphism is uniquely determined by the image of λ1 (including the special

isogeny from Bn to Cn which takes λ1 to 2λ1). In these cases, instead of writing λ
[θiri]
1 we write

µ[ri] where µ is the image of λ1 under θi. The only time we need a diagonal subgroup of a product
of type Dn subgroups is when dealing with D2

4. We give a notation for the graph automorphisms
of D4: denote an order 3 automorphism by τ and an involutory automorphism by ι. We usually
use the letters r, s, t, u, . . . to be the field twists and they are always assumed to be distinct.

Let J = {αj1 , αj2 , . . . , αjr} ⊆ Π and define ΦJ = Φ ∩ ZJ . Then the standard parabolic subgroup
corresponding to J is the subgroup P = 〈T,Uα : α ∈ ΦJ ∪ Φ+〉. The Levi decomposition of P is
P = QL where Q = Ru(P ) = 〈Uα |α ∈ Φ+ \ ΦJ〉, and L = 〈Uα |α ∈ ΦJ〉. For i ≥ 1 we define

Q(i) =

〈
Uα

∣∣∣∣∣∣
α =

∑

j∈Π

cjαj where
∑

j∈Π\J

cj ≥ i

〉
,

which is a subgroup of Q. The i-th level of Q is Q(i)/Q(i + 1), and this is central in Q/Q(i +
1). Moreover, by [2, Theorem 2] each level of Q has the structure of a completely reducible L-
module.

3 Preliminaries

Before proving Theorems 1–3 we present some of the results needed in the proofs. Let G be a
simple algebraic group over an algebraically closed field of characteristic p. The first of these
results gives us a starting point for our strategy, which is described in Section 4. When we say
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a reductive, maximal closed connected subgroup we mean a subgroup that is maximal among all
closed connected subgroups and is reductive.

Theorem 3.1. [18, Corollary 2] The following tables give the reductive, maximal closed connected
subgroups M of G = E6, E7 and E8 with each simple component having rank at least 2. We also
give the composition factors of the restrictions to M of V27, V56 and L(G).

G = E6

M Comp. factors of V27 ↓ M Comp. factors of L(E6) ↓ M

F4 W (0001)/ 0000 W (1000)/W (0001)
C4 (p 6= 2) 0100 2000/ 0001
A3

2 (10, 01, 00)/ (00, 10, 01)/
(01, 00, 10)

(W (11), 00, 00)/ (00,W (11), 00)/
(00, 00,W (11))/ (10, 10, 10)/ (01, 01, 01)

A2G2 (10,W (10))/ (W (02), 00) (W (11),W (10))/ (W (11), 00)/ (00,W (01))
G2 (p 6= 7) W (20) W (01)/W (11)
A2 (p ≥ 5) W (22) 11/ 41/ 14

G = E7

M Comp. factors of V56 ↓ M Comp. factors of L(E7) ↓ M

A7 0100000/ 0000010 W (1000001)/ 0001000
A2A5 (10, 10000)/ (01, 00001)/

(00, 00100)
(W (11), 00000)/ (00,W (10001))/ (10, 00010)/
(01, 01000)

G2C3 (W (10), 100)/ (00,W (001)) (W (10),W (010))/ (W (01), 000)/ (00,W (200))
A2 (p ≥ 5) W (60)/W (06) W (44)/ 11

G = E8

M Comp. factors of L(E8) ↓ M

D8 W (0100000)/ 00000010
A8 W (1000001)/ 00100000/ 00000100
A2E6 (W (11), 000000)/ (00,W (010000)/ (10, 000001)/ (01, 100000)
A2

4 (W (1001), 0000)/ (0000,W (1001))/ (1000, 0100)/ (0001, 0010)/ (0100, 0001)/
(0010, 1000)

G2F4 (W (10),W (0001))/ (W (01), 0000)/ (00,W (1000))
B2 (p ≥ 5) 02/W (06)/W (32)

Note that in the cases in Theorem 3.1 where M is of maximal rank, the composition factors are
not given in [18] but are straightforward to calculate; moreover, for (G,M) = (E6, A

3
2), (E7, A2A5),

(E8,D8) and (E8, A
2
4) we have made a choice of simple system within each factor.

Next we state some results which allow us to find the M -irreducible subgroups of each M in
Theorem 3.1. If M is a classical simple group we can use the following.
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Lemma 3.2. [20, Lemma 2.2] Suppose G is a classical simple algebraic group, with natural module
V = VG(λ1). Let X be a semisimple connected closed subgroup of G. If X is G-irreducible then
one of the following holds:

(i) G = An and X is irreducible on V ;

(ii) G = Bn, Cn or Dn and V ↓ X = V1 ⊥ . . . ⊥ Vk with the Vi all non-degenerate, irreducible and
inequivalent as X-modules;

(iii) G = Dn, p = 2, X fixes a non-singular vector v ∈ V , and X is a Gv-irreducible subgroup of
Gv = Bn−1.

The next two results give us an explicit list of G-irreducible subgroups of rank at least 2, for G2

and F4. The first is clear: the only reductive maximal connected subgroups without rank 1 factors
are isomorphic to A2 and therefore there are no further subgroups to consider. The composition
factors of VG2

(10) and L(G) can be found by considering G2 < D4.

Lemma 3.3. Suppose X is a simple, connected irreducible subgroup of G2 of rank at least 2. Then
X is G2-conjugate to exactly one subgroup of Table 7.

Theorem 3.4. [32, Theorem 4] Suppose X is a simple, connected irreducible subgroup of F4 of
rank at least 2. Then X is F4-conjugate to exactly one subgroup of Table 8.

We now describe some elementary results about G-irreducible subgroups.

Lemma 3.5. [20, Lemma 2.1] If X is a connected G-irreducible subgroup of G, then X is semisimple
and CG(X) is finite.

Lemma 3.6. Suppose a G-irreducible subgroup X is contained in K1K2, a commuting product of
connected non-trivial subgroups K1, K2 of G. Then X must have a non-trivial projection to both
K1 and K2. Moreover, each projection must be a Ki-irreducible subgroup.

Proof. The first assertion is clear by Lemma 3.5. For the second statement, suppose the projection
to K1 is contained in a parabolic, P , of K1. Then X < PK2 which is a parabolic subgroup of
K1K2 and therefore by the Borel-Tits Theorem [3], X is contained in a parabolic subgroup of G,
a contradiction.

For the next two results, recall the definition from the introduction of two algebraic groups having
the same composition factors.

Lemma 3.7 ([32, Lemma 3.4.3]). Let H be a reductive algebraic group, Q be a unipotent group
on which H acts on algebraically, and X be a complement to Q in the semidirect product HQ.
Suppose V is a rational HQ-module. Then the composition factors of H on V are the same as the
composition factors of X on V .

Lemma 3.8. Suppose X < G is semisimple and V is a G-module. Assume the composition factors
of V ↓ X are not the same as those of V ↓ H for any group H such that

(i) H is of the same type as X, or p = 2 and X ∼= Bn, H ∼= Cn, and

(ii) H ≤ L′ and is L′-irreducible, for some Levi subgroup L.

Then X is G-irreducible.

7



Proof. Suppose X < P for some parabolic subgroup of G, minimal with respect to containing X.
Let P = QL be the Levi decomposition, so X < QL′. Hence, there exists some subgroup H ≤ L′,
with QH = QX. Furthermore, H is L′-irreducible (by minimality) and [31, Lemma 3.6.1] shows
H is of the same type as X, or if p = 2, X ∼= Bn and H ∼= Cn. This is a contradiction because
Lemma 3.7 shows that the composition factors of V ↓ X and V ↓ H are the same.

Corollary 3.9. Suppose X < G is semisimple and L(G) ↓ X has no trivial composition factors.
Then X is G-irreducible.

Proof. Suppose X is G-reducible. Then by Lemma 3.8 (with V = L(G)) there exists a subgroup H
of some Levi subgroup L such that the composition factors of L(G) ↓ H are the same as L(G) ↓ X.
But H < L, so L(G) ↓ H has trivial composition factors coming from L(Z(L)), a contradiction.

Lemma 3.10. [26, Lemma 1.3] Let 0 6= l ∈ L(G) and C = CG(l). Then:

(i) if l is semisimple, then C contains a maximal torus of G;

(ii) if l is nilpotent, then Ru(C) 6= 1 and hence C is contained in a proper parabolic subgroup of G.

The next result is [15, Prop. 1.4] with X allowed to be semisimple rather than simple; the proof is
the same.

Lemma 3.11. [15, Prop. 1.4] Let X be a semisimple, connected algebraic group over K and let
S be a finite subgroup of X. Suppose V is a finite-dimensional X-module satisfying the following
conditions:

(i) every X-composition factor of V is an irreducible S-module;

(ii) for any X-composition factors M , N of V , the restriction map Ext1X(M,N) → Ext1S(M,N)
is injective;

(iii) for any X-composition factors M,N of V , if M ↓ S ∼= N ↓ S, then M ∼= N as X-modules.

Then X and S fix precisely the same subspaces of V .

The following result is a slight generalisation of [11, Lemma 1.2 (ii)], proved with a small modifi-
cation of the proof of [21, Prop. 3.6(iii)].

Lemma 3.12. Let X be a semisimple algebraic group and M a finite-dimensional X-module. Let
W1, . . . ,Wr be the composition factors of M , of which m are trivial, and set n =

∑
dim H1(X,Wi).

Assume that H1(X,K) = 0 and for each i we have

H1(X,Wi) = {0} ⇐⇒ H1(X,W ∗
i ) = {0} .

If m ≥ n > 0, then M has either a trivial submodule or a trivial quotient. In particular, if M is
self-dual then it contains a trivial submodule.

Lemma 3.13. Let X = B4 and p = 2. Then the following Weyl modules for X have the given
socle series and are uniserial.

(i) W (λ1) = λ1|0.

(ii) W (λ2) = λ2|0|λ1|0.
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(iii) W (λ3) = λ3|λ2|0|λ1|0.

Furthermore, letting M be the uniserial module 0|λ2|0, we have the following cohomology groups.

(1) H1(X,λ1) = K.

(2) H1(X,M) = H1(X,λ3) = 0.

(3) H2(X,λ1) = H2(X,M) = 0.

Proof. The structure of the Weyl modules is given by [18, Lemma 7.2.2]. The assertions for
H1(X,λ1) and H1(X,λ3) follow from these. Now, consider the short exact sequence of modules
0 → A → B → C → 0. This gives us a long exact sequence of cohomology groups:

0 → H0(X,A) → H0(X,B) → H0(X,C) → H1(X,A) → H1(X,B) → H1(X,C) → · · ·

We can apply this to the short exact sequence 0 → K → M → M/K → 0 (where we use K for
the 1-dimensional trivial module and M/K is the uniserial module 0|λ2). We obtain the long exact
sequence

0 → K → K → 0 → 0 → H1(X,M) → 0 → 0 → H2(X,M) → H2(X,M/K) → 0 → · · ·

Immediately H1(X,M) must be 0 by exactness and H2(X,M) ∼= H2(X,M/K). Similarly, consid-
ering the short exact sequence 0 → VB4

(λ2) → M/K → K → 0 we find H2(X,M/K) ∼= H2(X,λ2).
Using the dimension-shifting identity [10, II. 4.14], H2(X,λ2) = H1(X, 0|λ1|0) and since 0|λ1|0 is
tilting, it follows from [10, II. 4.13] that H1(X, 0|λ1|0) = 0. Hence H2(X,M) ∼= H2(X,λ2) = 0.
Finally, using the dimension-shifting identity again, H2(X,λ1) = H1(X,K) = 0.

Lemma 3.14. Let X = A2 and p = 3. Then the following hold:

(i) Ext1X(22, 00) ∼= Ext1X(22, 11) ∼= Ext1X(22, 30) ∼= Ext1X(22, 03) = 0;

(ii) Ext1X(11[i], 00) ∼= K for all i ≥ 0;

(iii) Ext1X(30[i], 11) ∼= Ext1X(30[i], 11[i]) ∼= Ext1X(03[i], 11) ∼= Ext1X(03,[i] , 11[i]) ∼= K for all i ≥ 0;

(iv) Ext1X(30[i], 00) ∼= Ext1X(03[i], 00) = 0 for all i ≥ 0;

(v) Ext1X(11⊗ 11[j], 11) ∼= Ext1X(11 ⊗ 11[j], 11[j]) ∼= K for all j > 0;

(vi) Ext1X(11 ⊗ 11[j], 00) ∼= Ext1X(11 ⊗ 11[j], 30) ∼= Ext1X(11 ⊗ 11[j], 30[j]) ∼= Ext1X(11 ⊗ 11[j], 03) ∼=
Ext1X(11⊗ 11[j], 03[j]) = 0 for all j > 0.

Proof. All of these can be directly deduced from [30, Lemma 2.7].

Lemma 3.15. Let X = A2, p = 3 and M be a self-dual X-module. Suppose the composition
factors of M are isomorphic to 11 or 00, with at least one trivial composition factor. Then M has
a trivial submodule.

Proof. Suppose M has no trivial submodule. Then since Ext1X(11, 11) = 0, there must exist an
indecomposable submodule, N with structure 00|11. If N is a direct summand of M then so is
N∗ = 11|00 and M has a trivial submodule, a contradiction. So N is not a direct summand of M .
Since Ext1X(11, 00) ∼= Ext1X(00, 11) ∼= K (using Lemma 3.14(ii)), it follows that M must have a
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submodule isomorphic to 11|00|11. But [18, Lemma 4.2.4(i)] shows there is no module with socle
series 11|00|11 (it must split as (11|00) + 11), a contradiction.

4 Strategy for the proofs of Theorems 1–3

We describe the strategy used to prove Theorems 1–3. It relies on the following lemma.

Lemma 4.1. Let G be a simple exceptional algebraic group. Suppose X is a simple, connected
G-irreducible subgroup of rank at least 2. Then there exists a reductive, maximal connected closed
subgroup M of G each of whose simple components has rank at least 2, such that X ≤ M and X is
M -irreducible.

Proof. Let M be a maximal connected subgroup of G containing X. As X is G-irreducible, M
must be reductive. Moreover, X is M -irreducible, as any non-trivial parabolic subgroup of M
is contained in a parabolic of G by [3]. Finally, by Lemma 3.6, M can have no rank 1 simple
components.

Theorem 3.1 gives us all reductive, maximal connected closed subgroups of G with no rank 1 simple
components for G = E6, E7 and E8. For each such M we must find all simple, connected M -
irreducible subgroups of rank at least 2. To avoid repeating the term “simple, connected subgroup
of rank at least 2” we introduce the following definition.

Definition Let G be E6, E7 or E8. We call a subgroup X of G a G-candidate (or just a candidate)
if the following hold:

(1) X is connected and simple of rank at least 2;

(2) there exists a reductive, maximal connected subgroup M of G containing X such that X is
M -irreducible.

In Theorems 1–3 we are aiming to find the irreducible subgroups up to G-conjugacy. The strategy
is as follows: for each reductive, maximal connected subgroup M (from Theorem 3.1) we find all
G-candidate subgroups, up to M -conjugacy, contained in M . To do this we use Lemma 3.2 and
[23] for classical simple components of M , and Lemma 3.3 and Theorem 3.4 for exceptional simple
components of M when G = E6, as well as Theorems 1 and 2 when G = E8 for M = A2E6 and
A1E7, respectively. We then find all G-conjugacies between the candidate subgroups contained in
the different reductive, maximal connected subgroups.

The last step is to check whether each G-conjugacy class of candidate subgroups is G-irreducible
or not. To do this we heavily use Lemma 3.8 and Corollary 3.9. To apply these results we must
find the composition factors of the action of the G-candidate on the minimal or adjoint module.
These can be found by restricting the composition factors of M . This can be done for all G-
candidate subgroups and the composition factors for the G-irreducible subgroups can be found
in Section 10, Tables 9–11. To apply Lemma 3.8 we also need the composition factors for the
action of the Levi subgroups of G on the minimal and adjoint modules. These can be found in
Appendix A, Tables 12–14. In most cases, a G-candidate subgroup is G-irreducible. Corollary
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2 lists the interesting examples of candidate subgroups which are irreducible in every reductive,
maximal connected overgroup yet are G-reducible.

To prove a candidate subgroup is G-reducible can be difficult. For example, in Lemmas 6.3 and 7.4
we use non-abelian cohomology (applied to the unipotent radical of a parabolic subgroup) to show
an A2 subgroup of A2A5 is E7-reducible and a B4 subgroup ofD8 is E8-reducible, respectively.

5 Proof of Theorem 1: E6-irreducible subgroups

We start by considering each of the reductive, maximal connected subgroups of E6 that do not
have an A1 factor, as listed in Theorem 3.1. They are F4, C4 (p 6= 2), A3

2, A2G2, G2 (p 6= 7) and
A2 (p ≥ 5). For each maximal subgroup we determine all E6-candidate subgroups (definition in
Section 4) up to E6-conjugacy. To check we have found all such conjugacies is straightforward; no
two subgroups listed in Table 9 have the same composition factors on L(E6). We then prove those
and only those listed in Table 9 are E6-irreducible.

5.1 Maximal M = F4

We use Theorem 3.4 to find all E6-candidate subgroups contained in F4. This maximal F4 in E6

can be obtained as the fixed points of the standard graph automorphism of E6. This allows us to
make a number of observations. Suppose X ≤ B4 < F4. Then we must have that X < D5 and
therefore X is not E6-irreducible (since D5 is a Levi subgroup of E6). Therefore B4, D̄4 and any
B2 →֒ B2

2 (p = 2) are not E6-irreducible. Now suppose X < Ā2Ã2 < F4. The long Ā2 subgroup
inside F4 is generated by root subgroups of E6 and therefore X < Ā2CE6

(Ā2) = Ā3
2. We will study

the candidate subgroups of Ā3
2 later. We are left with the following E6-candidate subgroups (from

Table 8) to consider: C4 (p = 2), D̃4 (p = 2), G2 (p = 7).

Lemma 5.1. The subgroups C4 (p = 2), D̃4 (p = 2) and G2 (p = 7) are all E6-irreducible.

Proof. Each of the candidate subgroups has a 26-dimensional composition factor on V27. Therefore
we can use Lemma 3.8 on V27, since Table 12 shows that no Levi subgroup has a composition factor
of dimension at least 26.

5.2 Maximal M = C4 (p 6= 2)

Using Lemma 3.2 and [23] we see the only reductive maximal connected subgroup of C4 without
an A1 simple factor is C2

2 when p 6= 2. We note that this C4 is generated by root subgroups of E6

and therefore the C2
2 is generated by root subgroups. However, CE6

(C2) = C2T1 from [13, Table
3]. Therefore any subgroup of C2

2 < C4 centralises a T1 and is therefore not E6-irreducible.

11



5.3 Maximal M = A3
2

All A2 diagonal subgroups that have a non-trivial projection onto each factor are A3
2-irreducible

and form all of the candidate subgroups. The conjugacy classes of these diagonal subgroups are
found in [14, Table 8.3] (noting that finding the conjugacy classes is unaffected by the restriction
imposed on the characteristic there), up to Aut(E6)-conjugacy. Note that we fix a copy of A3

2 in
Theorem 3.1 by giving its composition factors on V27 and L(E6). The following lemma shows all
but one candidate subgroup is E6-irreducible.

Lemma 5.2. The subgroup X = A2 →֒ A3
2 via (10, 10, 10) is not E6-irreducible. Every other A2

candidate subgroup contained in A3
2 is E6-irreducible.

Proof. Suppose p 6= 3. Consider Y = A2 < D4 (the Levi D4 in E6) embedded via VA2
(11). We

claim Y is conjugate to X. Indeed, [14, Table 8.3] shows that this is the case for p > 3 and the
argument given in [14, p. 64] extends to p = 2. Therefore X is contained in a parabolic subgroup
when p 6= 3. When p = 3, we show that X < F4 and is not F4-irreducible. Indeed, in subsection 5.1
we showed A2Ã2 < A3

2 and by comparing composition factors we see X is conjugate to A2 →֒ A2Ã2

via (10, 01), which Theorem 3.4 shows is contained in a parabolic subgroup of F4.

Now consider the other candidate subgroups in A3
2. If p 6= 3 then we can apply Corollary 3.9 (the

restrictions are in Table 9). Now suppose p = 3. We apply Lemma 3.8. Let Z be any of the
candidate subgroups other than X. Then we have to check whether the composition factors of Z
match those of an L′-irreducible subgroup of type A2 for some Levi subgroup L. The possibilities
for L′ are D5, D4, A5, A4, A3, A

2
2 and A2. The subgroups D5 and A5 contain every subgroup

in that list between them. So if we show Z does not match the composition factors of any A2

subgroup of D5 or A5 (not necessarily irreducible) on V27 then that is enough.

From Table 12, V27 ↓ D5 = λ1/λ4/0 and V27 ↓ A5 = λ2
1/λ4. The dimensions for the composition

factors are 16, 10, 1 for D5 and 15, 6, 6 for A5. Depending on which embedding we take into A3
2,

the list of dimensions of composition factors of V27 ↓ Z is one of the following: 7,6,6,3,3,1,1 or
9,9,7,1,1 or 9,9,6,3 or 9,9,9 (from Table 9). We need to show it is not possible for any of these
to correspond with an A2 subgroup of D5 or A5. The latter two, 9,9,6,3 and 9,9,9 cannot match;
they have no 1-dimensional composition factor, ruling out D5 and have two composition factors
of dimension 9, ruling out A5. Now suppose Z has composition factors of dimensions 9,9,7,1,1.
Then A5 is ruled out by the previous reasoning. The only way for an A2 to be contained in D5

with matching composition factors is if VD5
(λ1) ↓ A2 has a 9-dimensional and a trivial composition

factor. This is a contradiction because none of the 9-dimensional composition factors of Z is self-
dual. Finally, suppose Z has the list 7,6,6,3,3,1,1 for its dimensions of composition factors, so
V27 ↓ Z = 10/01/20/02/11/002 . If Z is contained in A5 then VA5

(λ1) ↓ Z must be VA2
(20) or

VA2
(02). But then VA5

(λ4) ↓ Z = VA2
(12) or VA2

(21) ([14, Prop. 2.10]) which is impossible.
Similarly, any A2 contained in D5, with the same composition factors as Z, has composition factors
of VD5

(λ1) ↓ A2 of dimensions 7,3 or 6,3,1. But such an A2 does not preserve an orthogonal form,
a contradiction. Hence Z is E6-irreducible.
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5.4 Maximal M = A2G2

The only possible candidate subgroups are of type A2, so we need to consider G2-irreducible sub-
groups of type A2. The factor G2 of M is contained in a Levi D4, hence the maximal Ā2 generated
by long root subgroups of G2 is in fact generated by root subgroups of E6. So for any candidate
subgroup X < A2Ā2, we will have X < Ā2CE6

(Ā2) = Ā3
2. We have already considered these in the

previous section. By Lemma 3.3 we are left to consider the maximal Ã2 when p = 3, generated
by short root subgroups of G2. As NG2

(Ã2) = Ã2.2 a diagonal subgroup of A2Ã2 with a graph
automorphism applied to the second factor is conjugate to one without. Therefore the following
two lemmas finish the case of M = A2G2.

Lemma 5.3. The subgroup X = A2 →֒ A2Ã2 < A2G2 via (10, 10) when p = 3 is not E6-irreducible.

Proof. Firstly we note that when p = 3, L(E6)
′ is irreducible of dimension 77 for an adjoint E6.

We need to consider the restriction of L(E6)
′ to M = A2G2, given in [18, Table 10.1]:

L(E6)′ ↓ A2G2 = (11, 00) +

(00, 10)

(00, 01) + (11, 10)

(00, 10)

where the tower of modules is a socle series. The restrictions of the G2-modules VG2
(10) and

VG2
(01) to Ã2 are as follows (from Table 7): VG2

(10) ↓ Ã2 = VA2
(11) and VG2

(01) ↓ Ã2 =
VA2

(30)+VA2
(03)+VA2

(00). We also note that VA2
(11)⊗VA2

(11) has a trivial submodule. Therefore,
the tower of modules restricted to X has a submodule 002|11. But Ext1A2

(11, 00) is 1-dimensional so
at least one of those trivial modules must actually occur as a submodule in L(E6)

′ ↓ X. Therefore
X fixes a non-zero vector of L(E6)

′ and we may apply Lemma 3.10. The stabilizer of this vector
in L(E6)

′ is contained in either a parabolic subgroup or maximal rank subgroup. Then, assuming
X is E6-irreducible, it must be contained in A3

2. However, no subgroup of A3
2 has a composition

factor VA2
(22) on L(E6)

′ (the restriction L(E6) ↓ A3
2 is given in Theorem 3.1). Therefore X is not

contained in A3
2 and is not E6-irreducible.

In the next result, recall that r and s are assumed to be distinct non-negative integers and therefore
(10[r], 10[s]) is not equal to (10, 10).

Lemma 5.4. The subgroups A2 →֒ A2Ã2 < A2G2 via (10[r], 10[s]) (rs = 0) when p = 3 are all
E6-irreducible.

Proof. To see this we can apply Lemma 3.8 to V27. Let X be one of the subgroups in the statement.
As X is of type A2 we just need to show it does not have the same composition factors on V27 as
any A2 subgroup of D5 or A5. But V27 ↓ X = 10[r] ⊗ 11[s]/02[r] (from Table 9) so the dimensions
of the composition factors are 21,6. This is incompatible with any subgroup of either D5 or A5 as
neither has a composition factor of dimension at least 21 on V27.

5.5 Maximal M = G2 (p 6= 7)

The only possible candidate subgroups which are proper in M are of type A2. First we consider
the A2 generated by long root subgroups of the G2 (but not of the E6).
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Lemma 5.5. Let X be the A2 subgroup generated by long root subgroups of a maximal G2 (p 6= 7).
Then X is conjugate to Y = A2 →֒ A3

2 via (10, 10, 01). (So X is E6-irreducible by Lemma 5.2.)

Proof. If p 6= 3 this is straightforward because X is an SL3 inside G2 and has a centre of order
3. The full connected centraliser in E6 of a generator of this centre is A3

2. Therefore X < A3
2 and

must be conjugate to Y as it is the only conjugacy class with those composition factors on V27.

Now suppose p = 3. The composition factors of X and Y agree on L(E6). Therefore, the proof
of Lemma 5.2 shows that both X and Y must be E6-irreducible. From [18, p. 215] we have that
L(E6)

′ ↓ G2 = 10|01|11|01|10, a uniserial module and from Table 7, VG2
(10) ↓ X = 10 + 01 + 00.

This implies that X fixes a non-zero vector in L(E6)
′ and we can apply Lemma 3.10. As X is E6-

irreducible, it must be contained in a maximal rank subgroup of E6, which must be A3
2. Comparing

composition factors shows that X must be conjugate to Y .

Finally, we must consider Ã2 when p = 3.

Lemma 5.6. Let Z = Ã2 < G2 when p = 3. Then Z is E6-irreducible.

Proof. We can apply Lemma 3.8 to V27. From Table 9, V27 ↓ G2 = 20 and we therefore deduce
that V27 ↓ Z = VA2

(22). No Levi subgroup has just one composition factor on V27, hence Z is
E6-irreducible.

5.6 Maximal M = A2 (p ≥ 5)

Here there is nothing to prove as any proper simple subgroup of A2 has rank 1 and so the only
candidate subgroup is M itself, which is G-irreducible by maximality.

This completes the proof of Theorem 1.

6 Proof of Theorem 2: E7-irreducible subgroups

We use the same approach as in Section 5 to prove Theorem 2. We start by listing the reductive,
maximal connected subgroups of E7 (with no A1 simple factor) from Theorem 3.1. These are A7,
A2A5, G2C3 and A2 (p ≥ 5). We must consider the E7-candidates contained in each of them in the
following subsections.

6.1 Maximal M = A7

First, applying Lemma 3.2 and [23] we find all candidate subgroups of M . These are A7, C4, D4,
B3 embedded irreducibly via VB3

(001) and A2 (p 6= 3) embedded irreducibly via VA2
(11). The

following lemma handles all of these subgroups.

Lemma 6.1. The only E7-candidates contained in A7 that are E7-irreducible are A7, D4 (p > 2)
and A2 (p > 3). Furthermore, X = A2 (p > 3) is conjugate to Y = A2 →֒ Ā2A2

(⋆) < Ā2A5 via
(10, 10) (where A2

(⋆) is embedded in A5 via VA2
(20)).
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Proof. First consider C4. This C4 is generated by long root subgroups of A7, hence of E7. Therefore,
the connected centraliser of this C4 is T1 (p 6= 2) or a 1-dimensional connected unipotent subgroup
(p = 2) by [13, Lemma 4.9]. As the centraliser is infinite it follows from Lemma 3.5 that this
candidate C4 is not E7-irreducible.

Now consider D4. When p = 2 this is contained in the C4 and therefore is E7-reducible. When
p 6= 2, Corollary 3.9 shows it is E7-irreducible (the restrictions are in Table 10).

There are no E7-irreducible subgroups isomorphic to B3 however. This is because the A7-irreducible
B3 is embedded via VB3

(001) and is therefore contained in D4. The normaliser in E7 of D4 induces
a triality automorphism on this D4 ([9, Lemma 2.15]), which means this B3 is E7-conjugate to
the B3 embedded in A7 via VA7

(λ1) ↓ B3 = WB3
(100)/VB3

(000) which is contained in a parabolic
subgroup of A7.

Finally, consider A2 (p 6= 3) embedded in A7 via VA2
(11). This is contained in D4. When p = 2,

the D4 is contained in a parabolic subgroup of E7 and hence the candidate A2 is not E7-irreducible.
When p > 3, X = A2 is the group of fixed points of a triality automorphism of D4 induced by
an element t ∈ E7 of order 3. To find the full centraliser of t in E7 we calculate the dimension
of CL(E7)(t). By restricting from L(E7) ↓ A7, it follows that L(E7) ↓ D4 = 2000 + 0020 + 0002 +
0100. The triality element t fixes a subgroup A2 of D4 hence fixes a dimension 8 subspace of
L(D4) = λ2. It fixes a diagonal submodule of 2000 + 0020 + 0002 of dimension 35. It follows that
dim(CL(E7)(t)) = 43. Therefore, using [16, Prop. 1.2], the full centraliser of t in E7 is A2A5. Hence
X is conjugate to a subgroup of A2A5 and comparing composition factors shows X is conjugate to
Y . Corollary 3.9 shows that X is E7-irreducible.

6.2 Maximal M = A2A5

We need to find all A5-irreducible subgroups of A5 that are isomorphic to A2. This is straight-
forward from Lemma 3.2. There is just one A5-conjugacy class of irreducible A2 subgroups when
p 6= 2, with VA5

(λ1) ↓ A2 = 20 and none if p = 2. Let A2
(⋆) be the A2 embedded in A5 via

VA5
(λ1) ↓ A

(⋆)
2 = VA2

(20). The normaliser in E7 of M is M.2 where the involution on top acts
as a graph automorphism on both simple factors, by [6, Table 10]. A graph automorphism of A5

induces a graph automorphism of A2
(⋆). Therefore NE7

(Ā2A2
(⋆))/CE7

(Ā2A2
(⋆)) ≥ Z2 where the

involution acts as a graph automorphism on both of the A2 factors. Considering the composi-
tion factors of L(E7) ↓ Ā2A2

(⋆) shows this is in fact an equality. Therefore the conjugacy classes

of candidate subgroups are A2 →֒ Ā2A
(⋆)
2 (p 6= 2) via (10, 10), (10[r], 10[s]) (rs = 0), (10, 01),

(10[r], 01[s]) (rs = 0). We require a technical lemma, before considering which candidate subgroups
are E7-irreducible.

Lemma 6.2. Let p = 3. Then any subgroup X ∼= A2 of E7 with L(E7) ↓ X = 223/116/30/03/004

has a trivial submodule on L(E7).

Proof. Assume there is no trivial submodule. We use the proof and notation of [18, Lemma 4.2.6].
Define C = CL(E7)(L(X)), an X-submodule of L(E7). Suppose C is non-zero. Then it can only
contain the totally twisted X-composition factors on L(E7) (and trivial ones). So C = 30x/03y/00z .
The module VA2

(22) does not extend any of the other composition factors by Lemma 3.14(i) and
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hence the 223 forms a direct summand of L(E7). So we consider its complement, call it M1. Now
M1 is self-dual and has composition factors 30/03/116/004. Suppose z 6= 0. Then the trivial
composition factors of C are direct summands of C because neither 30 nor 03 extends the trivial
module by Lemma 3.14(iv). Therefore C has a trivial submodule, a contradiction. Hence z = 0.
Now suppose x = 1 and y = 0 (or vice versa). There must be an indecomposable direct summand
M2 of M1 of the form 03|(116−a/004−b)|30, which is self-dual. Therefore, the complement to M2,
call it M3, is self-dual and has composition factors 11a/00b. Lemma 3.15 shows that if b 6= 0 then
M3 has a trivial submodule, a contradiction. Hence b = 0. We can apply Lemma 3.15 again to
show that the module in the middle of the indecomposable M2 must contain a trivial submodule.
But 30 does not extend the trivial module so we have a trivial submodule, a contradiction. Finally,
suppose x = y = 1. Then by self-duality C must split off as a direct summand and again we apply
Lemma 3.15 to the complement to show there is a trivial submodule.

So we have shown that C = 0. Now we can apply [18, Lemma 4.2.6]. This shows that the
multiplicities of composition factors of L(E7) ↓ X force X to have a trivial submodule, a final
contradiction.

Before the next lemma, we require the following definition. Suppose Q is a unipotent subgroup of
G and X is a reductive algebraic group which acts algebraically on Q. Then we say a complement
Y to Q in the semidirect product QX is non-standard if Y is not Q-conjugate to X.

In the proofs of Lemmas 6.3 and 7.4 we use a result from non-abelian cohomology ([32, Lemma
3.2.11]). This allows us to deduce results on complements to a non-abelian unipotent radical Q
of a parabolic subgroup. To do this, we consider the filtration of Q by levels and then calculate
certain abelian cohomology groups for each level. This method is introduced by Stewart in [32,
3.2] and is subsequently used throughout. Also, in [22] Litterick and the author use these methods
to classify the non-G-cr subgroups of exceptional algebraic groups in good characteristic, with an
introduction given in Section 3 there.

Lemma 6.3. The E7-candidate subgroups contained in A2A5 that are E7-irreducible are: A2 →֒
Ā2A2

(⋆) < Ā2A5 via (10, 10) (p > 3), (10, 01) (p > 2), (10[r], 10[s]) (rs = 0, p > 2) and (10[r], 01[s])
(rs = 0, p > 2).

Proof. The only possible candidate subgroups are the diagonal subgroups of Ā2A
(⋆)
2 (p 6= 2) by

the discussion before Lemma 6.2. We must prove they are all E7-irreducible except A2 →֒ Ā2A2
(⋆)

via (10, 10) when p = 3. If p ≥ 5 it suffices to use Corollary 3.9, with the restrictions given in

Table 10. Now assume p = 3. First we will use Lemma 3.8 to show A2 →֒ Ā2A
(∗)
2 via (10[r], 10[s]),

(10[r], 01[s]), (10, 01) are E7-irreducible. Take Z to be any one of these subgroups. Then Z has
only two trivial composition factors on L(E7). Therefore if Z is contained in a parabolic subgroup
it has to match the composition factors of an irreducible A2 subgroup of E6, A6 or A2A4 (using
Table 13). We immediately rule out A2A4, since there is no A4-irreducible A2 subgroup. Since
E6 has two trivial composition factors on V56 and Z has none, we rule out E6 and so we are left
with just A6 as a possibility. There is only one A6-irreducible A2 subgroup. Call it Y , where
VA6

(λ1) ↓ Y = VA2
(11). The composition factors of L(E7) ↓ Y are 223/116/30/03/004 . Therefore

Y has more trivial composition factors on L(E7) than Z, and so Z is not a conjugate of Y and
hence does not lie in an A6-parabolic.
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Now we must consider X = A2 →֒ Ā2A
(⋆)
2 via (10, 10) (still with p = 3). Then L(E7) ↓ X =

223/116/30/03/004 , which matches the restriction of Y . The composition factors of X and Y
match on V56 also, both being 302/032/116/002. This suggests X could be contained in an A6-
parabolic, which we now prove. Let P = QA6T1, a standard A6-parabolic. Then [2, Theorem 2]
shows that A6 acts on the levels of Q and that each level is a direct sum of irreducible A6-modules
(see Section 2 for the definition of a level). Furthermore, Q has two levels, each level being just a
single irreducible A6-module. The high weights of these irreducible modules are given below.

Q/Q(2) ↓ A6 = λ4

Q(2) ↓ A6 = λ1

If we write L for the Levi subgroup of P and restrict each level to Y < L′ = A6 we obtain the
following.

Q/Q(2) ↓ Y = 22/11/00

Q(2) ↓ Y = 11

We need to know the structure of level 1 more precisely. To do this we note that A2 is contained
in a G2 in L′. We have

∧3(VG2
(10)) = VG2

(20)/VG2
(10)/VG2

(00) by [14, Prop. 2.10]. Moreover,
this module must be completely reducible as there are no non-trivial extensions between any of the
composition factors (WG2

(20) and WG2
(10) are irreducible when p = 3). Therefore level 1 is com-

pletely reducible when restricted to Y . Since WA2
(22) = VA2

(22) and WA2
(11) = VA2

(11)|VA2
(00)

it follows that H1(A2, 22) = 0 and H1(A2, 11) = K. Therefore dim(H1(A2, Q(i)/Q(i + 1))) = 1
for i = 1, 2. By [30, Theorem 1], H2(A2,M1) = 0 for each direct summand M1 of level 1 and 2.
Therefore we can apply [32, Lemma 3.2.11]. This shows that every complement to Q/Q(i + 1) in
Y Q/Q(i+ 1) lifts to a complement to Q in Y Q for i = 1, 2.

All complements have the same composition factors on L(E7), namely those of Y (by Lemma
3.7). Therefore Lemma 6.2 shows that each complement fixes some non-zero vector l ∈ L(E7). By
Lemma 3.10, if l is semisimple then CE7

(l) contains a maximal torus and if it is nilpotent then
Ru(CE7

(l)) 6= 1. Suppose we have a non-standard A2 complement to Q in Y Q which fixes a non-
zero nilpotent vector l1 of L(E7), call it Z1, and let C := CE7

(l1). We use [19, Table 22.1.2], which
lists all centralisers of nilpotent elements in L(E7), to show that C is equal to the centraliser of an
element in the nilpotent class A2A

3
1. To show this, we consider each centraliser in [19, Table 22.1.2]

and check whether it contains a subgroup A2 with the same composition factors as Y . We find
that there is only one possibility, the centraliser of an element in the nilpotent class A2A

3
1, which

lies in an A6-parabolic subgroup of E7. From [19, Table 22.1.2] we also have that C/Ru(C) = G2

and the dimension of Ru(C) is 35.

We now show that C must lie in P and Ru(C) < Q. Suppose C < P g for some g ∈ E7. Since
Z1 < C, we have Z1 < P ∩P g. As P is a maximal parabolic subgroup we can deduce from [7, 2.8.7,
2.8.8] that P ∩ P g = P or L. But Z1 was chosen to not be Q-conjugate to Y and Y Q ∩ L = Y .
Hence Z1 is not contained in L, and therefore P = P g and C must lie in P . The projection of Ru(C)
to P/Q ∼= A6T1 is a closed unipotent subgroup. By the Borel-Tits Theorem [3], its normaliser is
contained in a parabolic subgroup of A6T1; as it contains G2 which is A6-irreducible, this parabolic
subgroup must be the whole of A6T1. Since the projection of Ru(C) is contained in the unipotent
radical of this parabolic, which is trivial, we conclude that Ru(C) < Q.
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Suppose Z2 is another non-standard complement to Q in Y Q fixing a non-zero nilpotent vector l2
of L(E7). Then from the arguments in the previous two paragraphs, we have that CE7

(l2) < P and
CE7

(l2) = Cg for some g ∈ E7. Moreover, since Cg < P g ∩ P = P it follows that g ∈ NE7
(P ) = P .

Therefore, we conclude that Z2 is contained in Cg for some g ∈ P .

We now prove that there exists a non-standard complement to Q in Y Q not contained in any P -
conjugate of C and hence fixing a non-zero semisimple vector of L(E7). Let Z3 be any non-standard
complement to Q in Y Q and suppose Z3 < Cg where g ∈ P . We saw above that the levels of Q
restrict to G2 as the following.

Q/Q(2) ↓ G2 = 20 + 10 + 00

Q(2) ↓ G2 = 10

We now claim that Q(2) is contained in Ru(C
g). We know that Ru(C

g) is a 35-dimensional
G2-invariant subgroup of Q and therefore has a filtration by G2-modules which contains all of the
above factors bar one copy of VG2

(10). Suppose Ru(C
g)∩Q(2) = 1. Then Ru(C

g) is isomorphic to
Q/Q(2) and hence abelian. Thus Ru(C

g)Q(2) is an abelian 42-dimensional subgroup of Q. This
implies that Q is abelian, a contradiction. Therefore, Ru(C

g) ∩Q(2) 6= 1 and so Ru(C
g) ∩Q(2) =

Q(2), proving the claim. We may now consider Ru(C
g)/Q(2). Since the composition factors of

Ru(C
g)/Q(2) ↓ Y are 22/00, we have H1(Z3Q(2)/Q(2), Ru(C

g)/Q(2)) = 0 and so Z3Q(2)/Q(2) is
Ru(C

g)/Q(2)-conjugate to Y Q(2)/Q(2). Therefore, Z3 is contained in Y Q(2). It remains to show

that there exists a non-standard complement toQ in Y Q that is not contained in Y Q(2). Let Ŵ be a
non-standard A2 complement to Q/Q(2) in Y Q/Q(2) and let W be such that Q(2) < W < YQ and

Ŵ = W/Q(2). The definition of Ŵ being non-standard means that Ŵ is not Q/Q(2)-conjugate

to Y Q(2)/Q(2). Now, as shown above, we can lift Ŵ to a non-standard complement to Q in
Y . Let V be such a lift, so W = V Q(2). Suppose V is Q-conjugate to a subgroup of Y Q(2).
Then V q < Y Q(2) for some q ∈ Q and so W q = (V Q(2))q = V qQ(2) = Y Q(2). However,

Ŵ q = W q/Q(2) = Y Q(2)/Q(2), contradicting the fact that Ŵ was non-standard.

By the previous paragraph, there exists a non-standard complement to Q in Y Q fixing a semisimple
non-zero vector l. Let Z be such a complement. Then CE7

(l) contains a maximal torus. We claim
that CE7

(l)◦ = A2A5. Indeed, the only centralisers of semisimple elements that contain an A2 with
the same composition factors as Z are A2A5 and A6T1. Suppose Z < A6T1. Then Z < Lg for some
g ∈ E7 and we may assume Z = Y g. Therefore Z < Cg and so Z fixes a non-zero nilpotent vector
of L(E7), a contradiction. Hence Z < A2A5 and by comparing composition factors we see that Z
must be conjugate to X. Therefore X is contained in a parabolic subgroup of E7.

6.3 Maximal M = G2C3

The only subgroups of rank at least 2 contained in G2 are G2 and A2 (2 classes if p = 3). However,
there are no C3-irreducible subgroups of type A2 and only if p = 2 is there one conjugacy class of
G2 subgroups in C3.

Lemma 6.4. The E7-irreducible candidate subgroups contained in G2C3 are G2 →֒ G2G2 < G2C3

via (10[r], 10[s]) (rs = 0) with p = 2.
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Proof. To see the subgroups listed in the statement of the lemma are all E7-irreducible we use
Lemma 3.8 on L(E7). All of the subgroups in the lemma have an 84-dimensional composition
factor on L(E7) (see Table 10) but no Levi subgroup has a composition factor of dimension 84 or
higher, by Table 13.

The only candidate subgroup we are claiming is not E7-irreducible is the G2 →֒ G2G2 via (10, 10).
Call this X. To prove X is contained in a parabolic subgroup of E7 we show V56 ↓ X has a trivial
submodule. This is sufficient because the full centraliser of a non-zero vector in V56 has dimension
at least 77, hence is either E6 or contained in a parabolic subgroup. So this implies X is contained
in a parabolic because E6 is a Levi subgroup. From [18, Table 10.2] we get the exact structure of
V56 restricted to G2C3:

V56 ↓ G2C3 =

(00, 100)

(10, 100) + (00, 001)

(00, 100)

.

Also, VC3
(100) ↓ G2 = 10 and VC3

(001) ↓ G2 = 20/002, with a trivial submodule by self-duality.
There is a trivial submodule in VG2

(10)⊗VG2
(10) as well. So the restriction of (10, 100)+ (00, 001)

to X has a trivial submodule of dimension at least 2. Since (00, 100) restricted to X is VG2
(10)

and Ext1G2
(10, 00) is 1-dimensional, it follows that (00, 100) can only block a 1-dimensional trivial

module. Therefore there is a trivial submodule for X on V56, as required.

6.4 Maximal M = A2 (p ≥ 5)

The maximal A2 is the only E7-irreducible subgroup from this maximal subgroup.

This completes the proof of Theorem 2.

7 Proof of Theorem 3: E8-irreducible subgroups

We now move on to the proof of Theorem 3, finding the conjugacy classes of simple, connected
irreducible subgroups of E8 of rank at least 2. As before, we use Theorem 3.1 which lists the
reductive, maximal connected subgroups (with no simple A1 factor) of E8. These are D8, A8,
A2E6, A

2
4, G2F4 and B2 (p ≥ 5). We take each maximal subgroup in turn, finding all E8-irreducible

subgroups up to E8-conjugacy.

7.1 Maximal M = D8

We start by finding all E8-candidate subgroups contained in D8.

Lemma 7.1. The simple, connected D8-irreducible subgroups of D8 of rank at least 2 are listed in
the following Table (each E8-conjugacy class is listed exactly once).
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Irreducible subgroup p Comments

D8 any

B7 any Maximal subgroup of D8.

B4(†) any Maximal with VD8
(λ1) ↓ B4(†) = W (0001) and

VD8
(λ7) ↓ B4(†) = W (1001).

B4(‡) any Maximal with VD8
(λ1) ↓ B4(‡) = W (0001) and

VD8
(λ7) ↓ B4(‡) = W (2000)/W (0010).

A3 p > 2 A3 < B7 with VD8
(λ1) ↓ A3 = 101 + 000.

D4 →֒ D2
4 via:

(1000, 1000[r]) (r 6= 0) any
D2

4 is maximal, see Section 2 for notation of the
diagonal subgroups.

(1000, 0010) any

(1000, 0010[r]) (r 6= 0) any

(1000, 1000[ιr]) (r 6= 0) any

B3 →֒ B2
3 via:

(100, 100[r]) (r 6= 0) any
B2

3 < D2
4 with VD8

(λ1) ↓ B2
3 = (100, 000) +

(000, 001) + (000, 000)2 .

A2 →֒ A2
2 via:

(10, 10[r]) (r 6= 0) p 6= 3
A2

2 < D2
4 (p 6= 3) where VD4

(λ1) ↓ A2 = 11.

(10, 01[r]) (r 6= 0) p 6= 3

B2 →֒ B2
2(†) via: B2

2(†) is maximal if p 6= 2, while B2
2(†) < B4(†) if

(10, 10[r]) (r 6= 0) any p = 2. In both cases VD8
(λ1) ↓ B2

2(†) = (01, 01)
(10, 02) p = 2 and VD8

(λ7) ↓ B2
2(†) = (01,W (11))/(W (11), 01).

(10, 02[r]) (r 6= 0) p = 2

B2 →֒ B2
2(‡) via: B2

2(‡) is maximal if p 6= 2, while B2
2(‡) < B4(‡) if

(10, 10[r]) (r 6= 0) any p = 2. In both cases VD8
(λ1) ↓ B2

2(‡) = (01, 01)
(10, 02) p = 2 and VD8

(λ7) ↓ B2
2(‡) = (W (20), 00)/(00,W (20))/

(10, 02[r]) (r 6= 0) p = 2 (W (10),W (02))/(W (02),W (10)).

B2 →֒ B2B2 via: B2B2 < A3D5 with VD8
(λ1) ↓ B2B2 = (10, 00) +

(10, 10) p > 2 (00, 02) + (00, 00).

(10[r], 10[s]) (rs = 0) p > 2

B2 →֒ B3
2 via: B3

2 < B7, A3D5 with VD8
(λ1) ↓ B3

2 = (10, 00, 00) +

(10, 10[r], 10[s]) (0 < r < s) p > 2 (00, 10, 00) + (00, 00, 10) + (00, 00, 00).

Proof. This is a mainly routine task of using Lemma 3.2 and the tables in [23] to calculate the
possibilities for VD8

(λ1) ↓ X, with X irreducible. We note a few technical details. Firstly, there
are two conjugacy classes of B4 in D8 embedded via VB4

(0001) that are interchanged by the graph
automorphism of D8. We distinguish between them by using B4(†) and B4(‡), which have different
composition factors on VD8

(λ7) (as given in [14, Prop. 2.12]). Similarly there are two conjugacy
classes of B2

2 embedded via VB2
(01) ⊗ VB2

(01) and we use B2
2(†) and B2

2(‡) to represent the two
classes. If p = 2 then B2

2(†) is contained in B4(†) and B2
2(‡) is contained in B4(‡). Indeed, the

action of the B2
2 subgroup of B4 on VB4

(0001) is 01 ⊗ 01. There are only two conjugacy classes in
D8 of stabilisers of the tensor product decomposition of V16 = V4 ⊗ V4, namely B2

2(†) and B2
2(‡).
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By checking the composition factors on L(E8) we see that the B2
2 subgroup of B4(†) is conjugate

to B2
2(†) and similarly B2

2(‡) < B4(‡).

For p > 2, the module VA3
(101) is 15-dimensional and self-dual, therefore A3 embeds into B7 and

is D8-irreducible. When p = 2, the module VA3
(101) is 14-dimensional and [25, Table 1] shows A3

embeds into D7. Therefore there is no D8-irreducible A3 when p = 2.

Finally, consider D2
4. The E8-conjugacy classes of diagonal D4 subgroups are found in [14, p. 59]

and only those conjugacy classes of D8-irreducible subgroups are given in the conclusion of the
lemma.

Now we take each candidate subgroup in Lemma 7.1 which is proper in M and either show it is
E8-irreducible or prove it lies in a parabolic subgroup of E8.

Lemma 7.2. The candidate subgroups B7 and A3 (p 6= 2) are E8-irreducible.

Proof. The B7 is E8-irreducible since no Levi subgroup has a subgroup of type B7 (or C7 if p = 2).
The composition factors in Table 11 show Corollary 3.9 applies to prove that A3 (p 6= 2) is E8-
irreducible.

The following technical lemma is required to prove B4(‡) is not E8-irreducible when p = 2.

Lemma 7.3. Suppose p = 2, X ∼= B4 and L(E8) ↓ X = 2000/10004/01004/00102/00008. Then
L(E8) ↓ X has a trivial submodule.

Proof. We use the proof of [18, Lemma 7.2.3]. In the hypothesis of the lemma it is assumed that
there is a subgroup isomorphic to B4 with the same composition factors on L(E8) as X. Let
C = CL(E8)(L(X)). If C = 0 then the proof of [18, Lemma 7.2.3] shows that L(E8) ↓ X has a
trivial submodule. So we may assume C 6= 0 and that X has no trivial submodule on L(E8). The
composition factors of C are among the totally twisted composition factors of L(E8) ↓ X so C must
have VX(2000) as a submodule (we are assuming no trivial submodules of L(E8) and therefore of
C). This submodule of C must be a submodule of L(E8), but L(E8) is self-dual and has only one
composition factor isomorphic to VX(2000). Therefore C splits off as a direct summand of L(E8).
Hence L(E8) ↓ X = 2000 ⊕M1 where M1 has composition factors 10004/01004/00102/00008. We
claim that M1 has a trivial submodule. To prove the claim we use Lemma 3.12. The conditions of
the lemma hold because only VX(1000) and VX(0100) extend the trivial module, as shown in Lemma
3.13(i)-(iii). Because M1 is self-dual it therefore has a trivial submodule. This is a contradiction,
completing the proof.

Lemma 7.4. Suppose p = 2. Let B4(‡) < D8 be as in Lemma 7.1. Then B4(‡) is contained in an
A7-parabolic of E8.

Proof. We use the same method as in the proof of Lemma 6.3. We find a B4 in an A7-parabolic
and show it is contained in D8 and conjugate to B4(‡).

Let P = QA7T1 be a standard A7-parabolic. The centraliser of the standard graph automorphism
of A7 is a C4. So C4 acts on Q and we may look for complements to Q in QC4. However, as p = 2,
the group B4 can also act on Q. This is due to the special isogeny from B4 to C4. We want to find
a B4 complement to Q in QC4 and need to use the same tools as in the proof of Lemma 6.3. We
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first find the structure of the levels of Q under the action of B4. Using [2, Theorem 2] (and the
notation defined in Section 2) we find Q has three levels and that under the action of L′ = A7 they
have the following A7-module structure.

Q/Q(2) ↓ A7 = λ5

Q(2)/Q(3) ↓ A7 = λ2

Q(3) ↓ A7 = λ7

Now under the action of B4 we find the levels of Q have the following structure.

Q/Q(2) ↓ B4 = λ1 ⊕ λ3

Q(2)/Q(3) ↓ B4 = 0|λ2|0

Q(3) ↓ B4 = λ1

By Lemma 3.13, H1(B4, λ1) is 1-dimensional and H1(B4, 0|λ2|0), H
1(B4, λ3) are both 0. Also,

H2(B4, 0|λ2|0) = H2(B4, λ1) = 0. Therefore [32, Lemma 3.2.11] applies. This shows that every B4

complement to Q/Q(i+ 1) in C4Q/Q(i+ 1) lifts to a B4 complement to Q in QC4 for i = 1, 2, 3.

We know that any B4 complement to Q has the composition factors L(E8) ↓ B4 = 2000/ 10004/
01004/ 00102/ 00008 (these are images of the composition factors of the C4 < A7 under the special
isogeny). Therefore, Lemma 7.3 shows that any B4 complement to Q has a trivial submodule on
L(E8). Let 0 6= l ∈ L(E8) be one such fixed vector. Lemma 3.10 shows CE8

(l) either contains a
maximal torus of E8 or has non-trivial unipotent radical.

Assume we have a non-standard B4 complement to Q, call it X, which fixes l1, a non-zero nilpotent
vector of L(E8). Then using [19, Table 22.1.1], which gives all possible centralisers in E8 of nilpotent
elements of L(E8), and an argument analogous to that given in the proof of Lemma 6.3, we conclude
that CE8

(l1) is in fact P -conjugate to C where C is the centraliser of an element of the nilpotent
class A4

1. Moreover, C/Ru(C) = C4, the dimension of Ru(C) is 84 and C < P with Ru(C) < Q.

It similarly follows as in the proof of Lemma 6.3 that any non-standard B4 complement contained
in a P -conjugate of C is contained in Q(3)C4 and that there exists a non-standard B4 complement
to Q in QC4 that is not contained in any P -conjugate of C. Let Y be such a complement. Then
Y fixes a non-zero semisimple element l2 and D := CE7

(l2) contains a maximal torus. It follows,
from considering the composition factors of Y , that D = A7T1, A8 or D8. We rule out the first
possibility as A7T1 does not contain a B4 subgroup. By Theorem 3.1, we know that A8 does not
fix a non-zero vector on L(E8) when p = 2 and so D = D8. Therefore Y is contained in D8 and has
the same composition factors as B4(‡) by construction. To prove Y is conjugate to B4(‡) we need
to show it is not conjugate to any other B4 subgroup in D8. The only other possibility for a B4

subgroup in D8 with the same composition factors as Y is a B4 in the A7-parabolic of D8 (whose
Levi factor is a Levi subgroup of E8). Let this parabolic be Q1A7T1 < D8. Then Q1 ↓ A7 = λ2.
Therefore under the action of B4 the structure of Q1 is Q1 ↓ B4 = 0|λ2|0. Since H

1(B4, 0|λ2|0) = 0
there are no B4 complements to Q1 in Q1C4 in such an A7-parabolic of D8. Hence Y is conjugate
to B4(‡) and B4(‡) is contained in an A7-parabolic of E8.

Lemma 7.5. The candidate subgroups in Lemma 7.1 isomorphic to B4 are E8-irreducible, except
for B4(‡) when p = 2.
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Proof. If p 6= 2 then the results of [14, p. 97] apply, showing B4(†) and B4(‡) are E8-irreducible.

Now suppose p = 2. Lemma 7.4 shows B4(‡) is contained in an A7-parabolic. We claim B4(†) is
E8-irreducible. We have L(E8) ↓ B4(†) = 01002/10002/0010/1001/00004 . The module VB4

(1001)
is 128-dimensional. Therefore the only possible Levi subgroup that could contain an irreducible
B4 with the same composition factors is E7. But E7 has no irreducible subgroups of type B4 by
Theorem 2. Therefore B4(†) is E8-irreducible.

Lemma 7.6. All of the candidate subgroups in Lemma 7.1 isomorphic to A2 are E8-irreducible.

Proof. If p > 3 then Corollary 3.9 shows they are all E8-irreducible. When p = 3 there are
no A2 candidate subgroups from Lemma 7.1, so let p = 2 and X be a candidate A2. Then
L(E8) ↓ X = 11/11[r]/30/03/30[r]/03[r]/(11 ⊗ 11[r])3/004 with r 6= 0. As before, we use Lemma
3.8. By considering the number of trivial composition factors, the only possible Levi subgroups
containing an irreducible A2 with the same composition factors as X are L′ = E7,D7, A7 or A6.
We can rule out all but D7 because X has three 64-dimensional composition factors. There is no
D7-irreducible A2 that shares the composition factors of X because there is no way of making a
14-dimensional self-dual module out of the composition factors of X (let alone two: VD7

(λ1) occurs
twice in L(E8) ↓ D7). Therefore X is E8-irreducible as claimed.

Lemma 7.7. All of the candidate subgroups in Lemma 7.1 isomorphic to D4 or B3 are E8-
irreducible.

Proof. If p 6= 2 then Corollary 3.9 shows each D4 and B3 candidate subgroup is E8-irreducible. So
suppose p = 2. First consider candidate subgroups isomorphic to D4. If the embedding of D4 has a
non-zero field twist then it contains an E8-irreducibleA2 (by Lemma 7.6) and must beE8-irreducible
itself. So consider X = D4 →֒ D2

4 via (1000, 0010). We will use Lemma 3.8 and therefore need to
do the usual analysis for X, where L(E8) ↓ X = 10002/01002/00102/00012/1010/1001/0011/00004 ,
from Table 11. Using Table 14, the only possible Levi subgroups containing a D4 with the same
composition factors as X are L′ = E7,D7 or A7. We use Theorem 2 to rule out E7, as it has no
irreducible subgroup D4 when p = 2. There are no D7-irreducible D4 subgroups in D7. That leaves
just L′ = A7. If D ∼= D4 < A7 then VA7

(λ1) ↓ D = VD4
(λ1). But L(E8) ↓ D has VD4

(2λ1) as a
composition factor, which means D does not have the same composition factors as X. Hence X is
E8-irreducible.

Now consider (still with p = 2) a candidate B3 as in Lemma 7.1, call it Y . Then

L(E8) ↓ Y = 010/1002/(100[r])2/010[r]/0012/(001[r])2/100 ⊗ 001[r]/001 ⊗ 100[r]/001 ⊗ 001[r]/0004

with r 6= 0 (from Table 11). As there are four trivial composition factors, the only possible Levi
subgroups containing an irreducible B3 with the same composition factors are L′ = E7,D7, A7 and
A6. We know from Theorem 2 that E7 has no irreducible B3 subgroups. Both A6 and A7 have no
composition factors of dimension at least 64 so they are ruled out. Therefore L′ = D7 is the only
remaining possibility. Suppose B3

∼= Z < D7 has the same composition factors as Y on L(E8).
Since VD7

(λ6)
∗ = VD7

(λ7) it follows that the only 64-dimensional composition factor of L(E8) ↓ Y ,
namely 001 ⊗ 001[r], is contained in VD7

(λ2) ↓ Z. But then VD7
(λ6) ↓ Z must contain 100 ⊗ 001[r]

and VD7
(λ7) ↓ Z must contain 001 ⊗ 100[r] (or vice versa). This implies that VD7

(λ6) ↓ Z is not
the dual of VD7

(λ7) ↓ Z, which is a contradiction. So no such Z exists and Y is E8-irreducible.
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Lemma 7.8. Suppose X is a candidate subgroup in Lemma 7.1 isomorphic to B2. Then X is
E8-irreducible unless p = 2 and X is contained in B2

2(‡) < D8.

Proof. If p 6= 2 then Corollary 3.9 is enough for most of the candidate B2 subgroups. There are
two exceptions, both occurring when p = 5, namely X = B2 →֒ B2B2 via (10, 10) and Y = B2 →֒
B2

2(‡) via (10, 10[r]) (r 6= 0). We show both are E8-irreducible using Lemma 3.8. From Table 11,
L(E8) ↓ X = 026/104/202/124/002. There are only two trivial composition factors which means
only L′ = D7 or A7 could possibly contain a B2 with the same composition factors as X. There
is no way of making an 8-dimensional module from the composition factors of L(E8) ↓ X which
rules out A7. Similarly there is no way to make two copies of the same 14-dimensional module
without using both trivial composition factors, but L(E8) ↓ D7 = λ2/λ

2
1/λ6/λ7/0, from Table 14.

So VD7
(λ1)

2 cannot contain any trivial composition factors in a restriction to a B2 sharing the
composition factors of X. This proves X is E8-irreducible.

Now consider Y , still with p = 5. Again, from Table 11,

L(E8) ↓ Y = 02/02[r]/20/20[r]/(10 ⊗ 02[r])2/(10[r] ⊗ 02)2/002.

Therefore the only Levi subgroup that could contain an L′-irreducibleB2 with the same composition
factors as Y is D7. But L(E8) ↓ Y has four 50-dimensional composition factors which, using Table
14, rules out D7. Hence Y is E8-irreducible.

If p = 2 then the only candidate subgroups are diagonal subgroups of B2
2(†) and B2

2(‡). Any
subgroup of B2

2(‡) will not be E8-irreducible. This is because B
2
2(‡) < B4(‡) and Lemma 7.4 shows

B4(‡) is contained in a parabolic subgroup of E8 when p = 2. Now we consider diagonal subgroups
of B2

2(†) with p = 2.

First, let Z1 = B2 →֒ B2
2(†) via (10, 10[r]) (r 6= 0). Then

L(E8) ↓ Z1 = 022/(02[r])2/104/(10[r])4/10 ⊗ 02[r]/(10 ⊗ 10[r])2/10[r] ⊗ 02/01 ⊗ 11[r]/01[r] ⊗ 11/008.

Since there are two 64-dimensional composition factors it follows (from Table 14) that the only
Levi subgroups that could contain an irreducible B2 with these composition factors are E7 and D7.
Theorem 2 rules out E7, so assume there is a B2 contained D7-irreducibly in D7 with the same
composition factors as Z1. The 14-dimensional VD7

(λ1) occurs in L(E8) ↓ D7 and so VD7
(λ1) ↓ B2

includes two trivial composition factors because that is the only way to make a 14-dimensional
module from the composition factors of L(E8) ↓ Z1. The only possibility for a D7-irreducible
B2 with two trivial composition factors is one contained irreducibly in B6. From [14, Table 8.1],
L(E8) ↓ B6 = λ4

1/λ2/λ
2
6/0

8. This means the two, non-isomorphic, 64-dimensional composition
factors of L(E8) ↓ Z1 are contained in VB6

(λ6)
2 (note VB6

(λ2) is 64-dimensional but on restricting
to B2 it cannot be equal to 01 ⊗ 11[r] or 01[r] ⊗ 11). Clearly this cannot happen, which proves Z1

is E8-irreducible.

The same argument works for B2 →֒ B2
2(†) via (10, 02[r]) (r 6= 0). It remains to consider Z2 =

B2 →֒ B2
2(†) via (10, 02). From Table 11,

L(E8) ↓ Z2 = 104/014/204/026/21/122/30/03/13/04/0012 .

Using Table 14 (noting we have one 64-dimensional and 12 trivial composition factors), the possible
Levi subgroups that could contain an irreducible B2 with the same composition factors as Z2
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are D7, E7 and E6. Theorems 1 and 2 rule out E6 and E7. As in the previous argument, it
follows that such an irreducible B2 contained in D7 is contained in B6. The one 64-dimensional
composition factor, VB2

(13), is then equal to VB6
(λ2) ↓ B2. But there is no possible B2 in B6 that

has VB6
(λ2) ↓ B2 = VB2

(13). Hence Z2 is E8-irreducible.

7.2 Maximal M = A8

We need to find all simple subgroups, of rank at least 2, that have an irreducible 9-dimensional
module. By [23] we see that these are A8, B4 (p 6= 2) embedded via VB4

(1000) and A2 < A2
2 where

VA8
↓ A2

2 = (10, 10). It is shown in [14, p. 58] that B4 < A8 is conjugate to B4(‡) < D8. Similarly,
if p 6= 3, then A2

2 is conjugate to A2
2 < D2

4 < D8 (each factor A2 irreducibly embedded) [14, pp.
66-67]. The following lemma shows that when p = 3, the subgroup A2

2 is contained in a parabolic
subgroup of E8. Therefore all diagonal subgroups of A2

2 are contained in a parabolic subgroup of
E8. The proof is different in flavour from all of the arguments so far. We use finite subgroups and
computations in Magma [4] to show A2

2 is contained in a D7-parabolic.

Lemma 7.9. Let p = 3. The subgroup X = A2
2 < A8, embedded via VA8

(λ1) ↓ A2
2 = (10, 10), is

contained in a D7-parabolic of E8.

Proof. Lemma 3.8, along with Table 14 shows the only parabolic subgroup X can be contained
in is a D7-parabolic subgroup. To prove X is contained in a parabolic subgroup we first use
Lemma 3.11 to show that the finite group S = A2(3) × A2(3) < X fixes the same subspaces
as X on L(E8). To show Lemma 3.11 applies we have to check the three conditions. We have
L(E8) ↓ X = (11, 11)3/(11, 00)6/(00, 11)6/(30, 00)/(00, 30)/(03, 00)/(00, 03)/(00, 00)5 and hence
conditions (i) and (iii) hold. Condition (ii) holds for all pairs of composition factors for which there
are no non-trivial extensions between them. Using the Künneth formula [24, 10.85] we see that the
only pairs of composition factors that have a non-trivial extension between them are {M1,M2} =
{(11, 11), (11, 00)}, {(11, 00), (00, 00)} and {(30, 00), (11, 00)} up to duals and swaps. For all but
the last pair, [8, Theorem 7.4] shows immediately that Ext1X(M1,M2) → Ext1S(M1,M2) is injective.
To show the restriction map Ext1X((30, 00), (11, 00)) → Ext1S((10, 00), (11, 00)) is injective it suffices
to show Ext1A2

(30, 11) → Ext1A2(3)
(10, 11) is injective. We know Ext1A2

(30, 11) is 1-dimensional and

the tilting module T (30) = 11|(30 + 00)|11 is indecomposable. We construct T (30) as a direct
summand of 10 ⊗ 10 ⊗ 10. Therefore, if we show a direct summand of 10 ⊗ 10 ⊗ 10 for A2(3)
contains a non-trivial extension of 10 by 11, the restriction map must be injective. This last check
is easily done using Magma [4].

We now show that S fixes a 14-dimensional abelian subalgebra of L(E8) that is ad-nilpotent of
exponent 3 i.e. (ad a)3 = 0 for all a. To do this we construct S as a normal subgroup of the
maximal subgroup (SL(3, 3) ⊗ SL(3, 3)).2 in SL(9, 3). Doing this in Magma gives 11 generators
for S, as 9 × 9 matrices over GF(3). We then write these 11 generators as words in the Magma
generators of A8. Finally, we write the words of A8 generators in terms of the generators of E8.
This allows us to use Magma to find all 14-dimensional S-submodules of L(E8). There is a unique
such S-submodule that is an abelian subalgebra, and it is ad-nilpotent of exponent 3.

So S and therefore X fixes a 14-dimensional abelian subalgebra of L(E8) that is ad-nilpotent of
exponent 3. Exponentiating this subalgebra yields a 14-dimensional unipotent subgroup of E8,
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normalised by X. Therefore X is contained in a parabolic subgroup of E8, as required.

7.3 Maximal M = A2E6

From Theorem 1, we have all of the E6-irreducible subgroups of type A2. They are diagonal
subgroups of A3

2, diagonal subgroups of A2Ã2 < A2G2 when p = 3 or conjugates of A2
∼= Y ,

where Y acts on V27 as W (22) with p 6= 2. Therefore all candidate subgroups contained in A2E6

are diagonal subgroups of A4
2, Ā2A2Ã2 or Ā2Y . We consider these separately in the next three

lemmas.

We fix the composition factors of L(E8) ↓ A4
2 as follows (which is consistent with the restriction of

L(E8) to A2E6 and of V27 and L(E6) to A3
2 in Theorem 3.1):

L(E8) ↓ A4
2 =(W (11), 00, 00, 00)/(00,W (11), 00, 00)/(00, 00,W (11), 00)/(00, 00, 00,W (11))/

(00, 10, 10, 10)/(00, 01, 01, 01)/(10, 01, 10, 00)/(10, 00, 01, 10)/(10, 10, 00, 01)/

(01, 10, 01, 00)/(01, 00, 10, 01)/(01, 01, 00, 10).

Lemma 7.10. Suppose X ∼= A2 is a diagonal subgroup of A4
2 (with non-trivial projection to each

simple factor). Then X is E8-irreducible unless X is conjugate to A2 →֒ A4
2 via (10, 10, 10, 10),

(10[r], 10, 10, 10) or (10, 10[r], 10[r], 10[r]).

Proof. Firstly, note that A2 →֒ A4
2 via (10, 10, 10, 10), (10[r], 10, 10, 10) or (10, 10[r], 10[r], 10[r]) is

contained in a parabolic subgroup of A2E6. This follows from Theorem 1. It remains for us to
show all other diagonal subgroups are indeed E8-irreducible. The conjugacy classes are determined
in [14, pp. 64-65]. If p 6= 3, we apply Corollary 3.9 (the composition factors are listed in Table
11). Now let p = 3. Then any X →֒ A4

2 (except those we already know to be E8-reducible)
has four trivial composition factors on L(E8). Therefore the possible Levi subgroups that can
contain an irreducible A2 subgroup sharing the same composition factors are E7, D7, A6 and D4A2

(using Table 14, Lemma 3.2 and Theorem 2). We use Table 10 to see that any E7-irreducible
A2 does not have the same composition factors as X. The only D7-irreducible A2 subgroup is
embedded via VA2

(11) + VA2
(11)[r] (r 6= 0). But this does not have the same composition factors

as X either. Similarly, the only A6-irreducible A2 is embedded via VA2
(11) and this has six 7-

dimensional composition factors, which is more than X has. Finally, the only D4-irreducible A2

subgroup is embedded via VA2
(11)+00. Therefore any D4A2-irreducible A2 subgroup of D4A2 has

nine trivial composition factors (using the restriction L(E8) ↓ D4A2 in Table 14), which is more
than X has. Hence X is E8-irreducible.

Lemma 7.11. Suppose X ∼= A2 is a diagonal subgroup of Ā2A2Ã2 < Ā2A2G2 < Ā2E6 (p = 3).
Then X is E8-irreducible if and only if it is conjugate to one of the subgroups in Table 11.

Proof. First we must find the conjugacy classes of A2 →֒ Ā2A2Ã2. We have CE8
(G2) = F4, hence

Ā2A2 < F4. It follows that there is an involution acting on Ā2A2, inducing a graph automorphism
on both factors. We also have that Ã2.2 < G2. Therefore all of the conjugacy classes can be
represented by (10[a], 10[b], 10[c]) or (10[d], 01[e], 10[f ]) (with a, b, c and d, e, f not necessarily distinct
for the moment). ForX to be E8-irreducible it must be both A2E6-irreducible andG2F4-irreducible.
To satisfy the first of these conditions we must have b 6= c and e 6= f (from Theorem 1). To satisfy
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the second condition we must have a 6= b (there is only one F4-reducible A2 contained diagonally in
A2A2 when p = 3, and by considering composition factors we see it forces a 6= b rather than d 6= e).
Therefore, the subgroups in Table 11 represent all of the conjugacy classes of candidate subgroups
which might be E8-irreducible. By considering their composition factors on L(E8) we see there are
no more conjugacies between them. It remains to show they are all E8-irreducible.

SupposeX is in one of the conjugacy classes of A2 subgroups in Table 11. Then L(E8) ↓ X has only
three trivial composition factors. Therefore among Levi subgroups, only E7 and D7 can contain
an irreducible A2 subgroup having the same composition factors as X (the proof of the previous
lemma shows an irreducible A2 subgroup of A2D4 has more than three trivial composition factors).
Theorem 2 rules out E7. Any D7-irreducible A2 does not have the same composition factors as X
(in fact it has the same composition factors as A2 →֒ Ā2A2Ã2 via (10, 10, 10[r]) (r 6= 0) which was
G2F4-reducible). Hence X is E8-irreducible.

Lemma 7.12. Suppose X ∼= A2 is a diagonal subgroup of Ā2Y < Ā2E6 (where Y ∼= A2 acts on
V27 via WA2

(22), p > 2). Then X is E8-irreducible.

Proof. The conjugacy classes in Table 11 follow from [14, p. 67] (noting that even when p = 3,
E6 contains Y.2 because Y < G2 and Y.2 < G2). If p > 3, the E8-irreducibility follows from
Corollary 3.9. So suppose p = 3 and let X →֒ Ā2Y . Then L(E8) ↓ X has four trivial composition
factors. Therefore the possible Levi subgroups that could contain an irreducible A2 having the same
composition factors as X are E7, D7, A6 and D4A2 (from the proof of Lemma 7.10). We may rule
all of these out, using the same ideas as in the proof of Lemma 7.10, by considering the irreducible
A2 subgroups in each Levi subgroup and noting that they do not have the same composition factors
as X on L(E8).

Using the composition factors listed in Table 11 we see that there are no conjugacies between any
of the E8-irreducible subgroups in the three different overgroups A4

2, Ā2A2Ã2 and Ā2Y .

7.4 Maximal M = A2
4

By considering which simple groups have an irreducible 5-dimensional module we see that the only
A4-irreducible simple subgroups (of rank at least 2) are A4 and B2 (p 6= 2). So the candidate
subgroups contained in A2

4 are diagonal subgroups of type A4 and B2 (p 6= 2). There is no prime
restriction on A4 subgroups in E8 in [14] so we immediately use [14, Table 8.1] to see that all A4

diagonal subgroups (with a non-trivial projection to both A4 factors) are E8-irreducible, and the
conjugacy classes of such subgroups are as in Table 11. For the B2 subgroups we note that B

2
2 < A2

4

is actually conjugate to B2
2(‡) < D8 (p 6= 2), as is shown in [14, p. 63]. Therefore, we have already

considered them in Lemma 7.8.

7.5 Maximal M = G2F4

The only possible candidate subgroups contained in G2F4 are of type A2 and G2. Theorem 3.4
lists all F4-irreducible subgroups of type A2 and G2. All such subgroups of type A2 are contained
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in Ā2A2 in F4. Therefore any A2 candidate subgroup contained in G2F4 will be conjugate to one
in Ā2CE8

(Ā2) = Ā2E6. Therefore we have already considered them in Section 7.3.

There is only one F4-irreducible subgroup of type G2, namely the maximal G2 when p = 7. There-
fore we finish this section by proving the following lemma.

Lemma 7.13. Suppose X ∼= G2 is a candidate subgroup contained in G2F4. Then X is conjugate
to G2 →֒ G2G2 < G2F4 (p = 7) via (10[r], 10[s]) (rs = 0) or (10, 10). All such candidate subgroups
are E8-irreducible except for G2 →֒ G2G2 (p = 7) via (10, 10).

Proof. The previous discussion shows that a candidate subgroup must be conjugate to a diagonal
subgroup of G2G2. Corollary 3.9 shows that the subgroups G2 →֒ G2G2 < G2F4 (p = 7) via
(10[r], 10[s]) (rs = 0) are all E8-irreducible. We need to prove X = G2 →֒ G2G2 via (10, 10) (p = 7)
is contained in a parabolic subgroup of E8. We use the same approach as in the proof of Lemma
7.9. First, let S = G2(7) < X. We show Lemma 3.11 applies to S < X acting on L(E8). We have
L(E8) ↓ X = 30/112/202/013/00, so conditions (i) and (iii) of the lemma hold. Condition (ii) holds
directly from [8, Theorem 7.4].

We now show that S fixes a 14-dimensional, abelian subalgebra of L(E8) that is ad-nilpotent of
exponent 3. We use Magma [4] to check this. First we need to write down generators of S in terms of
root group elements. We will use the notation a1 . . . a8 for the root a1α1+· · ·+a8α8 in E8. Consider
Ā2E6 < E8. The generators for Ā2 are x±α8

(t) and x±(23465432)(t), where t ∈ K. The generators for
E6 are x±α1

(t), . . . , x±α6
(t) and the generators for F4 are xα1

(t)xα6
(t), x−α1

(t)x−α6
(t), xα3

(t)xα5
(t),

x−α3
(t)x−α5

(t), x±α2
(t) and x±α4

(t). Let AB = G2(7)G2(7) < G2F4. The following elements are
a set of generators for A:

xγ1 = x22343221(1)x12343321(6)x12244321(1),

x−γ1 = x−(22343221)(1)x−(12343321)(6)x−(12244321)(1),

xγ2 = x23465432(1),

x−γ2 = x−(23465432)(1).

From [33, Prop. G.1], the following elements are a set of generators for B:

xγ′

1
= xα1

(1)xα3
(1)xα1+α3

(3)xα2
(1)xα5

(1)xα6
(1)xα5+α6

(3),

x−γ′

1
= x−α1

(2)x−α3
(2)x−α1−α3

(2)x−α2
(1)x−α5

(2)x−α6
(2)x−α5−α6

(2),

xγ′

2
= xα3+α4

(1)xα2+α4
(3)xα4+α5

(6),

x−γ′

2
= x−α3−α4

(1)x−α2−α4
(5)x−α4−α5

(6).

The map x±γi → x±γ′

i
gives an isomorphism A → B. Therefore

S = 〈xγ1xγ′

1
, x−γ1x−γ′

1
, xγ2xγ′

2
, x−γ2x−γ′

2
〉.

We check that S ∼= G2(7) and that there is a unique 14-dimensional abelian subalgebra of L(E8)
that is ad-nilpotent of exponent 3, which is fixed by S. Therefore, by Lemma 3.11 X fixes this
subalgebra and exponentiating gives a unipotent group normalised by X. Hence X is contained in
a parabolic subgroup of E8.
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7.6 Maximal M = B2 (p ≥ 5)

The maximal B2 is the only candidate subgroup and is E8-irreducible by maximality.

This completes the proof of Theorem 3.

8 Corollaries

Corollary 1 follows from Tables 7–11, noting that all G-irreducible conjugacy class representatives
have a unique set of composition factors on L(G), apart from the one exception in the statement.
Corollary 3 also follows immediately from Tables 7–11. Corollary 4 follows from the proofs of
Lemma 3.3, Theorem 3.4 and Theorems 1–3.

Corollary 2 requires more work. First we need a technical lemma for A2 subgroups when p =
3.

Lemma 8.1. Let p = 3 and A2
2 < A8 be embedded via VA8

(λ1) ↓ A2
2 = (10, 10). If Y1 = A2 →֒ A2

2

via (10, 10[r]) and Y2 = A2 →֒ A2
2 via (10, 01[r]) (with r 6= 0 in both) then the following modules

have the indicated socle series:

(1) VA8
(λ1 + λ8) ↓ Y1

∼= VA8
(λ1 + λ8) ↓ Y2 = (11 + 11[r])|(11 ⊗ 11[r] + 002)|(11 + 11[r]),

(2) VA8
(λ3) ↓ Y1 = ((11 + 11[r])|(11⊗ 11[r] + 30 + 30[r] + 00i)|(11 + 11[r])) + 001−i with i = 0 or 1,

(3) VA8
(λ3) ↓ Y2 = ((11 + 11[r])|(11⊗ 11[r] + 30 + 03[r] + 00i)|(11 + 11[r])) + 001−i with i = 0 or 1.

Proof. For part (1) note that VA8
(λ1) ⊗ VA8

(λ8) = VA8
(0)|VA8

(λ1 + λ8)|VA8
(0) and (VA8

(λ1) ↓
Y1) ⊗ (VA8

(λ8) ↓ Y1) ∼= (VA8
(λ1) ↓ Y2) ⊗ (VA8

(λ8) ↓ Y2) = 10 ⊗ 10[r] ⊗ 01 ⊗ 01[r]. It is therefore
enough to prove for an A2 that the self-dual module M := 10 ⊗ 10[r] ⊗ 01 ⊗ 01[r] has socle series
00|(11+11[r])|(11⊗11[r]+002)|(11+11[r])|00. The composition factors are as indicated, so we need to
show the structure of the module is as claimed. Firstly, M = (10⊗01)⊗(10[r]⊗01[r]) = (00|11|00)⊗
(00|11[r]|00) and hence M only has a 1-dimensional trivial submodule and a 1-dimensional trivial
quotient. If there is a trivial direct summand then M does not have enough composition factors
that extend the trivial (see Lemma 3.14) to block all of the other three trivial composition factors,
leading to a trivial submodule or quotient of larger dimension. Hence M has no trivial direct
summands. Furthermore, the composition factor 11 ⊗ 11[r] does not occur as a submodule or
quotient of M . This is because if we restrict to S ∼= SL(3, 3) inside Y1 acting as 10⊗ 10 on VA8

(λ1)
then VS(11) ⊗ VS(11) does not occur as a submodule or quotient of (VS(00)|VS(11)|VS(00)) ⊗
(VS(00)|VS(11)|VS(00)) (checked using Magma [4]). Therefore Socle(M) = 11a + (11[r])b + 00, and
since M is self-dual it follows that a and b are at most 1. Moreover, swapping the field twists
0 and r in M does not change M so it is also symmetrical, hence a = b. Suppose a = b = 1.
Then M = (11 + 11[r] + 00)|(11 ⊗ 11[r] + 002)|(11 + 11[r] + 00) since 11 ⊗ 11[r] does not extend
the trivial module. But no such M exists since the module in the middle of M does not extend
the trivial module, hence there are three trivial modules for the socle to block. This is impossible
because Ext1A2

(11, 00) ∼= K ∼= Ext1A2
(11[r], 00) by Lemma 3.14. Hence a = b = 0 and the socle is

00. Now consider the socle of M/00. Since 11⊗ 11[r] is not in the socle of M and does not extend
the trivial module it is not in the socle of M/00. Similarly, the socle does not have a composition
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factor isomorphic to 00. Hence the socle must be 11 + 11[r], again by self-duality and symmetry.
It therefore follows that M has the required socle series, since there are no non-trivial extensions
between 11⊗ 11[r] and 002.

For part (2) we need to prove that M :=
∧3(10 ⊗ 10[r]) has one of the two indicated socle series

(i = 0 or 1). The composition factors are easily checked to be correct and we again consider
S ∼= SL(3, 3) inside Y1, acting as 10⊗10 on VA8

(λ1). Using Magma, we check that
∧3(10⊗10) ↓ S =

22+00+(11|(30+03)|11)+(11|(30+00)|11)2 and 11⊗11 ↓ S = 22+00+(11|(30+03+00)|11). Hence
we see that none of 11⊗ 11[r], 30 or 30[r] are submodules or quotients of the Y1-module M . Lemma
3.14 shows that only 11 and 11[r] extend these three Y1-modules and so M must have the structure
((11+11[r])|(11⊗11[r]+30+03[r])|(11+11[r]))+00 or (11+11[r])|(11⊗11[r]+30+03+00)|(11+11[r]).

The last part is similar to the previous one. Let M :=
∧3(10 ⊗ 01[r]). In this case we consider

the subgroup S′ ∼= SL(3, 3) of Y2 acting as 10 ⊗ 01 on VA8
(λ1). Then

∧3(10 ⊗ 01) ↓ S′ =
22+00+((11+11)|(30+03+11)|11)+(11|(30+03+11)|(11+11)). It follows that 11⊗11[r] could
occur as a submodule or a quotient but not a direct summand of the Y2-module M . Furthermore,
30 and 03[r] cannot occur as submodules or quotients of the Y2-module M . Using Lemma 3.14
again, we conclude that M must have one of the structures indicated, completing the proof.

Lemma 8.2. Let G = E7, p = 2 and X = G2 →֒ G2G2 < G2C3 via (10, 10). Then V56 ↓ X is
indecomposable.

Proof. It is enough to prove that V56 ↓ S is indecomposable where S = G2(2) < X. By [18,
Table 10.2], V56 ↓ G2C3 = (00, 100)|((10, 100) + (00, 001))|(00, 100). This module is constructed
from M1 := (00, 100)|(10, 100)|(00, 100) and M2 :=

∧3((00, 100)) = (00, 100)|(00, 001)|(00, 100) as
follows: take a maximal submodule of M1 + M2, call it M3 and then quotient M3 by a diagonal
submodule of Soc(M3) = (00, 100) + (00, 100). We construct such a module for G2(2) × C3(2)
in Magma. This module is still indecomposable when restricted to S and in fact has socle series
(00 + 10 + 01)|(20 + 00)|(20 + 00)|(10 + 01 + 00).

Proof of Corollary 2 The strategy for the proof is as follows. For each exceptional algebraic
group G and each reductive, maximal connected subgroup M of G we find all simple M -irreducible
connected subgroups of rank at least 2 that are not G-irreducible from the proofs of Lemma 3.3,
Theorem 3.4 and Theorems 1–3. Given such a subgroup X we then check whether it satisfies the
hypothesis of Corollary 2. That is to say, we check whether X is contained reducibly in another
reductive, maximal connected subgroup M ′.

The result is trivial for G = G2.

For G = F4, we follow the proof of Theorem 3.4 in [32] noting that the only subgroup that is M -
irreducible for someM , but not F4-irreducible is X = A2 →֒ A2Ã2 via (10, 01) when p = 3. Suppose
X is contained reducibly in another reductive, maximal connected subgroup M ′ or contained in a
Levi subgroup. Consideration of the composition factors of X on V26 shows that the only possibility
is M ′ = B4 (which contains a Levi subgroup B3T1). The possibilities for a subgroup A2 with the
same composition factors as X contained in B4 are VB4

(1000) ↓ A2 = 11 + 002 or 00|11|00. By
[32, Prop 4.2.2], neither of these subgroups is conjugate to X. Hence X is not contained in B4 and
satisfies the hypothesis of the corollary. It is therefore listed in Table 1.

Now let G = E6. The only simple connected subgroups which are M -irreducible for some M but
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not G-irreducible can immediately be found from the proof of Theorem 1. Most are contained in a
D5 Levi subgroup because they are contained in a maximal subgroup B4 of F4. These subgroups do
not satisfy the hypothesis of Corollary 2. The remaining possibilities are A2 →֒ A3

2 via (10, 10, 10)
and A2 →֒ A2Ã2 < A2G2 (p = 3) via (10, 10). By the proof of Lemma 5.2, the first subgroup is
contained in a D4 Levi subgroup when p 6= 3 and is contained F4-reducibly in F4 when p = 3.
Therefore it does not satisfy the hypothesis. Now let p = 3 and consider X = A2 →֒ A2Ã2 < A2G2

via (10, 10). Suppose X is contained reducibly in another reductive, maximal connected subgroup
or contained in a Levi subgroup. Consideration of the composition factors of X on V27 shows that
X is contained in a Levi A5. We have L(E6)

′ ↓ A5 = VA5
(λ1 + λ5) + VA5

(λ3)
2 + 03 (when p = 3

the centres of E6 and A5 coincide). By considering the finite subgroup A2(9) < X and using the
same method as in the proof of Lemma 8.2, we see that X has two direct summands of dimension
21 on L(E6)

′ (and only one trivial direct summand). Therefore X is not contained in a Levi A5

and satisfies the hypothesis of Corollary 2 and X is listed in Table 1.

For G = E7 the result is checked in the same way as for E6. By Lemmas 6.1, 6.3 and 6.4 the
only subgroups which are M -irreducible for some M but not E7-irreducible are X1 = C4 < A7,

X2 = D4 < A7 (p = 2), X3 = A2 < A7 (p = 2), Y = A2 →֒ A2A
(∗)
2 < A2A5 (p = 3) via (10, 10) and

Z = G2 →֒ G2G2 < G2C3 (p = 2) via (10, 10).

First consider X1. When p 6= 2, X1 is contained in a Levi E6 subgroup since its centraliser in
E7 contains a torus (see the proof of Lemma 6.1) and hence X1 does not satisfy the hypothesis of
the corollary. Now let p = 2. Suppose X1 is contained in another reductive, maximal connected
subgroup or contained in a Levi subgroup. Consideration of the composition factors of X1 on V56

shows that the only possibilities are that X1 is contained in E6 or A1F4. The connected component
of the centraliser in E7 of X1 is a 1-dimensional connected unipotent subgroup (see the proof of
Lemma 6.1). Therefore, X1 is not contained in E6 or A1F4 since the connected component of the
centraliser of X1 would contain T1 or an A1, respectively. Hence X1 satisfies the hypothesis of
Corollary 2 and is listed in Table 1.

Now consider X2. Suppose X2 is contained in another reductive, maximal connected subgroup
or contained in a Levi subgroup. As with X1, consideration of the composition factors of X2 on
V56 shows that the only possibilities are that X2 is contained in E6 or A1F4. By [14, Table 8.6],
V56 ↓ A7 = λ2 ⊕λ6, and therefore V56 ↓ X2 = (0|λ2|0)

2. The restrictions of V56 to E6 and A1F4 are
as follows: V56 ↓ E6 = λ1⊕λ6⊕02, by [14, Table 8.6] and V56 ↓ A1F4 = (1, 0001)+(3, 0000), by [18,
Table 10.2]. Therefore, X2 is not contained in E6 or A1F4 and hence X2 satisfies the hypothesis of
Corollary 2.

The last subgroup of A7 to consider is X3. This A2 subgroup is contained in D4 and is the group
of fixed points of a triality automorphism of D4 induced by an element t of E7. By [16, Prop. 1.2],
the full centraliser of t is either a Levi subgroup or A2A5. Since there are no A2A5-irreducible A2

subgroups when p = 2, it follows that X3 is contained either in a Levi subgroup or M ′-reducibly
in a reductive, maximal connected subgroup M ′. Hence X3 does not satisfy the hypothesis of
Corollary 2.

Next consider Y . Suppose Y is contained in another reductive, maximal connected subgroup or
contained in a Levi subgroup. Consideration of the composition factors of Y on V56 shows that Y
is contained in A7. The proof of Lemma 6.3 shows Y is not contained in A7 and so Y satisfies the
hypothesis of the corollary and is in Table 1.
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Finally, consider Z. If Z does not satisfy the hypothesis of the corollary then Z is contained in an
E6 Levi subgroup. From Table 13 it follows that V56 ↓ E6 = λ1+λ6+02. Lemma 8.2 shows that Z
does not have any trivial direct summands on V56 and hence Z is not contained in E6. Therefore,
Z satisfies the hypothesis and is listed in Table 1.

Finally, let G = E8. The proof of Theorem 3 yields the candidate subgroups that are not
G-irreducible. They are those listed in Table 1. It remains to prove that they satisfy the hy-
pothesis of Corollary 2, that is that they are not contained reducibly in another reductive, maximal
connected subgroup or contained in a Levi subgroup.

First, consider X = B4(‡) < D8, with p = 2. The proof of Lemma 7.4 shows X is only contained
in D8 and not A8 or a Levi A7, hence it satisfies the hypothesis of the corollary.

Next, consider the diagonal subgroups of B2
2(‡) (p = 2). Consideration of their composition factors

on L(E8) shows that the only possibilities for another maximal subgroup or Levi subgroup contain-
ing them are A8 or A2

4 (or a Levi A7, A3A4 or A3A3 but they are contained in A8 or A2
4). First, let

X1 = B2 →֒ B2
2(‡) via (10, 10[r]) with r 6= 0. Then X1 contains a subgroup S1

∼= Sp(4, 2) embedded
in D8 via 01⊗ 01. Using Magma [4], we check that

∧2(VS1
(01)⊗ VS1

(01)) has an indecomposable
direct summand of dimension 88. Therefore X1 has an indecomposable direct summand of L(E8)
of dimension at least 88. But the largest dimension of a direct summand of L(E8) ↓ A2

4 is 50 and
of L(E8) ↓ A8 is 84, hence X1 is not a subgroup of A2

4 or A8. To prove X2 = B2 →֒ B2
2(‡) via

(10, 02[r]) (including r = 0) is not contained in A2
4 we consider the parity of r. If r is even then X2

contains a subgroup S2
∼= Sp(4, 4) embedded in D8 via 01 ⊗ 10 = 11. If r is odd then X2 contains

a subgroup S3
∼= Sp(4, 4) embedded in D8 via 01 ⊗ 20 = 21. Again using Magma, we find that

both
∧2(VS2

(11)) and
∧2(VS3

(21)) are indecomposable (of dimension 120). Therefore, for all r,
the subgroup X2 has a 120-dimensional indecomposable direct summand on L(E8) and is not a
subgroup of A2

4 or A8. Hence both X1 and X2 satisfy the hypothesis of Corollary 2.

Now let p = 3 and consider Y1 = A2 →֒ A2
2 via (10, 10[r]) and Y2 = A2 →֒ A2

2 via (10, 01[r]) (r 6= 0
in both cases). Consideration of their composition factors on L(E8) shows that the only reductive,
maximal connected subgroup that can contain Y1 or Y2 (other than A8) is D8 and the only Levi
subgroup is D7. So it suffices to show that Y1 and Y2 are not contained in D8. By Theorem 3.1,
we have L(E8) ↓ D8 = VD8

(λ2) + VD8
(λ7) where VD8

(λ2) is 120-dimensional and VD8
(λ7) is 128-

dimensional. But Lemma 8.1 shows Y1 and Y2 have a 79-dimensional indecomposable summand
and two indecomposable direct summands of dimension at least 83 on L(E8). Hence neither Y1 nor
Y2 is contained in D8 and they both satisfy the hypothesis of the corollary.

Finally, let p = 7 and Z = G2 →֒ G2G2 < G2F4 via (10, 10). Other than G2F4, the only reductive,
connected maximal subgroup that can contain Z is D8 and the only Levi subgroup is D7. There is
only one D8-conjugacy class of G2 subgroups with the same composition factors as Z on L(E8), with
VD8

(λ1) ↓ G2 = VG2
(01)+VG2

(00)2. This G2 is contained in a D7 Levi subgroup of D8 (and E8) and
therefore L(E8) ↓ G2 has a trivial submodule. However, restricting from L(E8) ↓ G2F4 in [18, Table
10.1], we find that L(E8) ↓ Z = 10⊗20+012+11. Since HomG2

(00, 10⊗20) = HomG2
(10, 20) = 0,

we see that L(E8) ↓ Z has no trivial submodules. Hence Z is not contained in D7 and does satisfy
the hypothesis of Corollary 2.
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9 Variations of Steinberg’s Tensor Product Theorem

We need some background for the next set of corollaries. Let X be a simple, simply connected
algebraic group over an algebraically closed field K of characteristic p < ∞. We recall Steinberg’s
tensor product theorem [28]. It states that if φ : X → SL(V ) is an irreducible rational representa-

tion, then we can write V = V
[r1]
1 ⊗ . . .⊗V

[rk]
k , where the Vi are restricted X-modules and the ri are

distinct. The main result of [17] generalises this conclusion to the situation where φ is a rational
homomorphism from X to an arbitrary simple algebraic group G. We describe this generalisation
now. Recall the definition of a subgroup being G-cr and of being restricted from Section 1.

Theorem 9.1. [17, Corollary 1] Assume p is good for G. If X is a connected simple G-cr subgroup
of G, then there is a uniquely determined commuting product Y1 . . . Yk with X ≤ Y1 . . . Yk ≤ G,
such that each Yi is a simple restricted subgroup of the same type as X, and each of the projections
X → Yi/Z(Yi) is non-trivial and involves a different field twist.

Using our classification of G-irreducible subgroups, we can investigate to what extent Theorem 9.1
is true in bad characteristics for simple, connected G-irreducible subgroups of rank at least 2. For
G = G2, F4, E6 and E7 the bad characteristics are 2, 3 and for G = E8 they are 2, 3, 5. To save
repeating ourselves, we will say a subgroup X satisfies the conclusion of Theorem 9.1 if there is a
uniquely determined commuting product Y1 . . . Yk with X ≤ Y1 . . . Yk ≤ G, such that each Yi is a
simple restricted subgroup of the same type as X, and each of the projections X → Yi/Z(Yi) is
non-trivial and involves a different field twist.

Corollary 9.2. Let G = G2 and X be a simple, connected irreducible subgroup of rank at least 2.
Then either X satisfies the conclusion of Theorem 9.1 or p = 3 and X = Ã2.

Proof. From Lemma 3.3 we know the only G2-irreducible subgroups which are simple and of rank
at least 2 are A2 and Ã2 (p = 3). Both are maximal subgroups, so we only have to check whether
they are restricted for p = 2, 3. To do this we use Table 7 which shows A2 is restricted for both
p = 2, 3 but Ã2 is not restricted for p = 3.

Corollary 9.3. Let G = F4 and X be a simple, connected irreducible subgroup of rank at least 2.
Then either X satisfies the conclusion of Theorem 9.1 or p = 2 and X is conjugate to one of the
following subgroups:

(1) C4;

(2) D̃4;

(3) A2 →֒ A2Ã2 via any G-irreducible embedding;

(4) B2 →֒ B2
2 via (10, 02).

Proof. Using the proof of Theorem 3.4 we find that for each simple F4-irreducible connected sub-
group X there is at most one commuting product of restricted groups, of the same type as X,
containing X as a diagonal subgroup with distinct field twists. We have to check if the subgroups
in the possible commuting product are indeed restricted (that is the only obstruction to the con-
clusion of Theorem 9.1).
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If the possible commuting product is just X itself, then we use Table 8 to check whether X is
restricted or not and hence whether X satisfies the conclusion of Theorem 9.1. This leads to the
subgroups in (1), (2) and (4) as well as A2 →֒ A2Ã2 via (10, 10) and (10, 01) in (3). Note that
the subgroup in (4), namely B2 →֒ B2

2 via (10, 02), does not satisfy the conclusion of Theorem 9.1:
firstly, it is not itself 2-restricted; secondly, despite appearances the twists in the two factors are
not distinct, as 02 is just our notation for an endomorphism of B2 involving a graph automorphism,
which is untwisted although it happens to induces a field twist when applied to VB2

(10).

Now let X ∼= A2. We see that the only commuting product of A2 subgroups containing X as a
diagonal subgroup with distinct field twists is A2Ã2 (or just X itself which is covered above). Since
Ã2 is not 2-restricted (L(F4) ↓ Ã2 = W (11)/W (20)3/W (02)3/008) it follows that when p = 2, the
subgroup X does not satisfy the conclusion of Theorem 9.1. When p = 3, both A2 and Ã2 are
3-restricted and so X satisfies the conclusion of Theorem 9.1.

Let X ∼= B2. Then p = 2 and the possible commuting product is B2
2 , containing X diagonally with

distinct field twists. The two B2 factors are restricted (L(F4) ↓ B2 = 105/015/0012) and hence X
satisfies the conclusion of Theorem 9.1.

Corollary 9.4. Let G = E6 and X be a simple, connected irreducible subgroup of rank at least 2.
Then either X satisfies the conclusion of Theorem 9.1 or p = 2 or 3 and X is conjugate to one of
the following subgroups:

(1) maximal A2 (p = 3);

(2) A2 →֒ A2Ã2 < A2G2 (p = 3) via (10[r], 10[s]) (rs = 0);

(3) C4 (p = 2);

(4) D4 (p = 2);

(5) A2 →֒ A3
2 (p = 2) via:

(a) (10, 10, 01)

(b) (10, 10, 10[r]) (r 6= 0)

(c) (10, 10, 01[r]) (r 6= 0)

(d) (10, 10[r], 10[r]) (r 6= 0)

(e) (10, 01[r], 01[r]) (r 6= 0).

Proof. We proceed as we did for F4. The proof of Theorem 1 shows that for each simple E6-
irreducible connected subgroup X, there is at most one commuting product of restricted groups, of
the same type as X, containing X as a diagonal subgroup with distinct field twists. When this is
just X, Table 9 is used to determine whether X is restricted or not and hence whether X satisfies
the conclusion of Theorem 9.1. This yields subgroups (1), (3), (4) and (5)a in the conclusion of the
corollary.

Now let X ∼= A2, and first suppose X →֒ A2Ã2 < A2G2 via (10[r], 10[s]) when p = 3. Because Ã2

is not 3-restricted (L(G) ↓ Ã2 = 30/03/119/009) it follows that X does not satisfy the conclusion
of Theorem 9.1. Now suppose X < Ā3

2. Since Ā2 is both 2-restricted and 3-restricted, if X is a
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diagonal subgroup with three distinct field twists then X satisfies the conclusion of Theorem 9.1
for p = 2, 3. If X has two distinct field twists then it is contained in Ā2A < Ā3

2 or Ā2B < Ā3
2

where A = A2 →֒ Ā2
2 via (10, 10) and B = A2 →֒ Ā2

2 via (10, 01). We have L(E6) ↓ A =
W (11)2/W (20)3/W (02)3/103/013/008 and L(E6) ↓ B = W (11)8/0014. It follows that B is both
2-restricted and 3-restricted, but A is only 3-restricted. Therefore X satisfies the conclusion of
Theorem 9.1 unless p = 2 and it is contained in Ā2A.

Corollary 9.5. Let G = E7 and X be a connected, simple irreducible subgroup of rank at least 2.
Then either X satisfies the conclusion of Theorem 9.1 or p = 2 or 3 and X is conjugate to one of
the following subgroups:

(1) A2 →֒ A2A
(⋆)
2 < A2A5 (p = 3) via (10, 01) (where A

(⋆)
2 is embedded in A5 via VA2

(20));

(2) G2 →֒ G2G2 < G2C3 (p = 2) via (10[r], 10[s]) (rs = 0).

Proof. Studying the proof of Theorem 2, specifically Lemmas 6.1, 6.3 and 6.4, we find that for
each subgroup X there is at most one commuting product of restricted groups, of the same type as
X, containing X as a diagonal subgroup with distinct field twists. As before, it remains to check
whether the groups in the product are restricted.

From Table 10, we see that A7 and D4 (p > 2) are restricted for p = 2, 3. Let X = A2 →֒ Ā2A
(⋆)
2 via

any G-irreducible embedding. The only possibility for a commuting product of A2 restricted sub-

groups containing X as a diagonal subgroup with distinct field twists is Ā2A
(⋆)
2 . Both Ā2 and A

(⋆)
2

are 3-restricted (L(G) ↓ A2 = W (11)/1015/0115/0035 and L(G) ↓ A
(⋆)
2 = 22/213/123/W (11)/008).

It follows that if X has two distinct field twists then it satisfies the conclusion of Theorem 9.1. If X
is embedded via (10, 01) then Table 10 shows that X is not 3-restricted and hence does not satisfy
the conclusion of Theorem 9.1.

Now consider X ∼= G2, with p = 2. The only possibility for a commuting product of G2 subgroups
containing X as a diagonal subgroup with distinct field twists is G2G2 < G2C3. The subgroup
G2 < C3 is not 2-restricted (L(G) ↓ G2 = 20/018/0015) and hence X does not satisfy the conclusion
of Theorem 9.1.

Corollary 9.6. Let G = E8 and X be a connected, simple irreducible subgroup of rank at least 2.
Then either X satisfies the conclusion of Theorem 9.1 or p = 2, 3 or 5 and X is conjugate to one
of the following subgroups:

(1) maximal B2 (p = 5);

(2) A2 →֒ Ā2A2 < Ā2E6 (p = 3) via any G-irreducible embedding;

(3) A2 →֒ Ā2A2Ã2 < Ā2A2G2 (p = 3) via any G-irreducible embedding;

(4) A2 →֒ A4
2 (p = 2) via any G-irreducible embedding that does not have four distinct field twists;

(5) A2 →֒ A2
2 < D2

4 (p = 2) via (10, 10[r]) (r 6= 0) or (10, 01[r]) (r 6= 0);

(6) B2 →֒ B2
2(†) (p = 2) via any G-irreducible embedding.

Proof. As for E7, we use the proof of Theorem 3 to check that for each subgroupX there is only one
possibility for a commuting product of groups, of the same type as X, containing X as a diagonal
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subgroup with distinct field twists.

When this is just X, Table 11 is used to determine whether or not X is restricted and hence whether
it satisfies the conclusion of Theorem 9.1.

If X ∼= D4, A4 or B3 then X satisfies the conclusion of Theorem 9.1 because the simple factors of
D2

4, A
2
4 and B2

3 < D2
4 are all restricted for p = 2, 3, 5. Indeed, L(G) ↓ D4 = 0100/10008/00108/

00018/000028, L(G) ↓ A4 = W (1001)/100010/01005/00105/000110/000024 and L(G) ↓ B3 = 010/
1009/00116/00036.

Now suppose X ∼= A2. When X is contained diagonally in A2
2 < D2

4 (p 6= 3) (each factor A2

irreducibly embedded) it satisfies the conclusion of Theorem 9.1 only when p = 5. Indeed, A2 < D4

is 5-restricted but not 2-restricted since L(G) ↓ A2 = 1125/W (30)/W (03)/0028 . If X is contained
in Ā2A2Ã2 < Ā2A2G2 (p = 3) then it does not satisfy the conclusion of Theorem 9.1 because Ã2

is not 3-restricted (L(G) ↓ Ã2 = 30/ 03/ 1127/ 0053). If X is contained in Ā2A2 < A2E6 (p ≥ 3),
where the A2 acts on V27 as W (22) then X satisfies the conclusion of Theorem 9.1 when p = 5
but not when p = 3. Indeed, Ā2 is restricted for all p since L(G) ↓ A2 = 11/ 1027/ 0127/ 0078 but
A2 < E6 is 5-restricted but not 3-restricted since L(G) ↓ A2 = W (41)/W (14)/W (22)6/W (11)/008 .

Now let X be contained in A4
2. If X is embedded with four distinct field twists then it satisfies

the conclusion of Theorem 9.1 for all p because Ā2 is restricted for all p, as seen in the previous
paragraph. If X is embedded with three distinct field twists then the possibilities for a commuting
product of A2 subgroups diagonally containing X are Ā2

2A or Ā2
2B where A = A2 →֒ Ā2

2 via (10, 10)
and B = A2 →֒ Ā2

2 via (10, 01). From L(G) ↓ A4
2 in subsection 7.3 we find that when p = 3 or 5,

both A and B are restricted but neither A nor B is 2-restricted and hence X satisfies the conclusion
of Theorem 9.1 only when p > 2. Similarly, if X is embedded with two distinct field twists then it
satisfies the conclusion of Theorem 9.1 only when p > 2. Indeed, the possibilities for a commuting
product of A2 subgroups diagonally containing X are A2, AB and Ā2C where C = A2 →֒ Ā3

2 via
(10, 10, 01).

Finally, assume X ∼= B2. Suppose X is diagonally contained in B2
2(‡), B2B2 < A3D5 or B3

2 (all
with p ≥ 3) with distinct field twists. Then X satisfies the conclusion of Theorem 9.1 because
all of the simple B2 factors are restricted for p = 3 and 5. Indeed, the factors are contained
in A4, A3, D5 and A3 again, respectively and the restrictions of L(G) are 20/0211/1020/0024,
02/1011/0132/0055 and 027/118/12/0015 respectively. Now suppose X is diagonally contained in
B2

2(†) with two distinct field twists. The simple B2 factors are restricted for p = 3 and 5 but not
for p = 2 (L(G) ↓ B2 = W (02)6/114/1010/0116/0010). Hence X satisfies the conclusion of Theorem
9.1 only when p > 2.

10 Tables

Here we give the Tables from Lemma 3.3, Theorem 3.4 and Theorems 1–3. The notation used is
explained in Section 2. All of the subgroups listed in Theorems 1–3 are either maximal and hence
found in Theorem 3.1 or an M -irreducible subgroup for one of the maximal connected subgroups
M . Details of these can be found in Sections 4–6. For some subgroups we give a reference to the
subsection they are defined in. We should also explain where all of the restrictions for V26, V27,
V56 and L(G) come from. Theorem 3.1 gives the composition factors for the maximal subgroups.
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From these it is just a case of restricting to the M -irreducible subgroups. This is a mainly routine
calculation, and lots of them have been carried out already. Specifically, in [14, Tables 8.1-8.7],
the composition factors are given with some restrictions on the characteristic. However, even in
the characteristics not covered, it is still possible to deduce the composition factors. Sometimes we
give a composition factor as a Weyl module, which will be reducible in certain characteristics. The
Weyl modules package for GAP, by S. Doty, can be used to determine the composition factors of
these reducible Weyl modules. For convenience, Appendix A has a table listing all of the reducible
Weyl modules that occur in Tables 7–11, which have a trivial composition factor.

Table 7: The simple, connected irreducible subgroups of G2 of rank at least 2.

Irreducible subgroup X Comp. factors of V7 ↓ X Comp. factors of L(G2) ↓ X

A2 10/01/00 W (11)/10/01

Ã2 (p = 3) 11 11/30/03/00

Table 8: The simple, connected irreducible subgroups of F4 of rank at least 2.

Irreducible subgroup X Comp. factors of V26 ↓ X Comp. factors of L(F4) ↓ X

B4 W (1000)/ 0001/ 0000 W (0100)/ 0001

D4 1000/ 0010/ 0001/ 00002 W (0100)/ 1000/ 0010/ 0001

C4 (p = 2) 0100 2000/ 0100/ 0001/ 00002

D̃4 (p = 2) 0100 0100/ 2000/ 0020/ 0002/ 00002

G2 (p = 7) 20 01/ 11

A2 →֒ A2Ã2 via:
(10, 10) W (20)/W (02)/ 10/ 01/W (11) W (11)2/W (21)/W (12)/ 10/ 01

(10[r], 10[s]) (rs = 0) 10[r] ⊗ 10[s]/ 01[r] ⊗ 01[s]/
W (11)[s]

W (11)[r]/W (11)[s]/10[r] ⊗W (02)[s]/
01[r] ⊗W (20)[s]

(10, 01) (p 6= 3) 113/ 002 114/W (30)/W (03)

(10[r], 01[s]) (rs = 0) 10[r] ⊗ 01[s]/ 01[r] ⊗ 10[s]/
W (11)[s]

W (11)[r]/W (11)[s]/10[r] ⊗W (20)[s]/
01[r] ⊗W (02)[s]

B2 →֒ B2
2 (p = 2) via:

(10, 10[r]) (r 6= 0) 10/ 10[r]/ 01⊗ 01[r]/ 002 10/ 10[r]/ 02/ 02[r]/ 10⊗ 10[r]/
01 ⊗ 01[r]/ 004

(10, 02) 10/ 02/ 11/ 002 10/ 20/ 022/ 11/ 12/ 004

(10, 02[r]) (r 6= 0) 10/ 01[r+1]/ 01⊗ 10[r]/ 002 10/ 01[r+1]/ 02/ 10[r+1]/ 01⊗ 10[r]/
10 ⊗ 01[r+1]/ 004
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Table 9: The simple, connected irreducible subgroups of E6 of rank at least 2.

Irreducible subgroup X Composition factors of V27 ↓ X Composition factors of L(E6) ↓ X

F4 W (0001)/ 0000 W (1000)/W (0001)

C4 W (0100) W (2000)/W (0001)

D̃4 < F4 (p = 2) 0100/ 0000 2000/ 0020/ 0002/ 01002/ 00002

G2 W (20) W (01)/W (11)

A2 (p ≥ 3) W (22) W (11)/W (14)/W (41)

A2 →֒ A2Ã2 < A2G2 (p = 3) via:

(10[r], 10[s]) (rs = 0) 10[r] ⊗ 11[s]/ 02[r] 11[r]/ 11[r] ⊗ 11[s]/ (11[s])2/ 30[s]/
03[s]/ 002

A2 →֒ A3
2 via:

(10, 10, 01) 10/ 01/W (20)/W (02)/W (11)/
00

W (11)3/ 102/ 012/W (20)/W (02)/
W (21)/W (12)

(10, 10, 10[r]) (r 6= 0) W (11)/ 10⊗ 01[r]/ 10[r] ⊗ 01/ 00 W (11)2/W (11)[r]/W (20) ⊗ 10[r]/
01 ⊗ 10[r]/W (02)⊗ 01[r]/ 10⊗ 01[r]

(10, 10, 01[r]) (r 6= 0) W (11)/ 10⊗ 10[r]/ 01[r] ⊗ 01/ 00 W (11)2/W (11)[r]/W (20) ⊗ 01[r]/
01 ⊗ 01[r]/W (02)⊗ 10[r]/ 10⊗ 10[r]

(10, 10[r], 01) (r 6= 0) 10 ⊗ 01[r]/W (02)/ 10/ 10[r] ⊗ 10 W (11)2/W (11)[r]/W (11) ⊗ 10[r]/
10[r]/W (11)⊗ 01[r]/ 01[r]

(10, 10[r], 10[r]) (r 6= 0) 10⊗ 01[r]/10[r] ⊗ 01/W (11)[r]/00 W (11)/ (W (11)[r])2/W (20)[r] ⊗ 10/
01[r] ⊗ 10/W (02)[r] ⊗ 01/ 10[r] ⊗ 01

(10, 10[r], 01[r]) (r 6= 0) 10 ⊗ 01[r]/ 01⊗ 01[r]/W (20)[r]/
01[r]

W (11)/ (W (11)[r])2/W (11)[r] ⊗ 10/
10/W (11)[r] ⊗ 01/ 01

(10, 01[r], 01[r]) (r 6= 0) 10⊗ 10[r]/01⊗ 01[r]/W (11)[r]/00 W (11)/ (W (11)[r])2/W (02)[r] ⊗ 10/
10[r] ⊗ 10/W (20)[r] ⊗ 01/ 01[r] ⊗ 01

(10, 10[r], 10[s])
(0 < r < s)

10 ⊗ 01[r]/ 01⊗ 10[s]/ 10[r] ⊗ 01[s] W (11)/W (11)[r]/W (11)[s]/
10 ⊗ 10[r] ⊗ 10[s]/ 01⊗ 01[r] ⊗ 01[s]

(10, 10[r], 01[s])
(0 < r < s)

10 ⊗ 01[r]/ 01⊗ 01[s]/ 10[r] ⊗ 10[s] W (11)/W (11)[r]/W (11)[s]/
10 ⊗ 10[r] ⊗ 01[s]/ 01⊗ 01[r] ⊗ 10[s]

(10, 01[r], 10[s])
(0 < r < s)

10 ⊗ 10[r]/ 01⊗ 10[s]/ 01[r] ⊗ 01[s] W (11)/W (11)[r]/W (11)[s]/
10 ⊗ 01[r] ⊗ 10[s]/ 01⊗ 10[r] ⊗ 01[s]

(10, 01[r], 01[s])
(0 < r < s)

10 ⊗ 10[r]/ 01⊗ 01[s]/ 01[r] ⊗ 10[s] W (11)/W (11)[r]/W (11)[s]/
10 ⊗ 01[r] ⊗ 01[s]/ 01⊗ 10[r] ⊗ 10[s]

Table 10: The simple, connected irreducible subgroups of E7 of rank at least 2.

Irreducible subgroup X Composition factors of V56 ↓ X Composition factors of L(E7) ↓ X

A7 0100000/ 0000010 W (1000001)/ 0001000

D4 (p > 2) 01002 0100/ 2000/ 0020/ 0002

A2 →֒ Ā2A
(∗)
2 < Ā2A5 (p 6= 2) (see §6.2) via:

(10, 10) (p > 3) 302/ 032/ 112 114/W (22)3/ 30/ 03
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(10[r], 10[s]) (rs = 0) 10[r] ⊗ 20[s]/ 01[r] ⊗ 02[s]/
W (30)[s]/W (03)[s]

W (11)[r]/W (11)[s]/W (22)[s]/
01[r] ⊗ 21[s]/ 10[r] ⊗ 12[s]

(10, 01) 10/ 01/W (30)/W (03)/ 21/ 12 W (11)2/ 20/ 21/W (31)/W (22)/ 02/
12/W (13)

(10[r], 01[s]) (rs = 0) 10[r] ⊗ 02[s]/ 01[r] ⊗ 20[s]/
W (30)[s]/W (03)[s]

W (11)[r]/W (11)[s]/W (22)[s]/
10[r] ⊗ 21[s]/ 01[r] ⊗ 12[s]

G2 →֒ G2G2 < G2C3 (p = 2) via:

(10[r], 10[s]) (rs = 0) 10[r] ⊗ 10[s]/ 20[s]/ (10[s])2/ 002 01[r]/ (01[s])2/ 10[r] ⊗ 01[s]/ 20[s]/ 00

A2 (p ≥ 5) W (60)/W (06) W (44)/ 11

Table 11: The simple, connected irreducible subgroups of E8 of rank at least 2.

Irreducible subgroup X Composition factors of L(E8) ↓ X

D8 W (01000000)/ 00000010

B7 W (0100000)/W (1000000)/ 0000001

B4(†) (see §7.1) W (0100)/W (0010)/W (1001)

B4(‡) (p 6= 2) (see §7.1) 0100/W (2000)/ 00102

A3 (p 6= 2) 1012/ 210/ 012/W (111)2

D4 →֒ D2
4 via:

(1000, 1000[r]) (r 6= 0) W (0100)/W (0100)[r]/ 1000 ⊗ 1000[r]/ 0010 ⊗ 0010[r]/ 0001 ⊗ 0001[r]

(1000, 1000[τ ]) W (0100)2/ 1000/ 0010/ 0001/W (1010)/W (1001)/W (0011)

(1000, 1000[τr]) (r 6= 0) W (0100)/W (0100)[r]/ 1000 ⊗ 0010[r]/ 0010 ⊗ 0001[r]/ 0001 ⊗ 1000[r]

(1000, 1000[ιr]) (r 6= 0) W (0100)/W (0100)[r]/ 1000 ⊗ 1000[r]/ 0010 ⊗ 0001[r]/ 0001 ⊗ 0010[r]

B3 →֒ B3B3 < D2
4 via:

(100, 100[r]) (r 6= 0) W (010)/W (100)/W (100)[r]/W (010)[r]/ 001/ 001[r]/W (100) ⊗ 001[r]/
001 ⊗W (100)[r]/ 001 ⊗ 001[r]

A2 →֒ A2
2 < D2

4 (p 6= 3) via:

(10, 10[r]) (r 6= 0) 11/W (30)/W (03)/ 11[r]/W (30)[r]/W (03)[r]/ (11⊗ 11[r])3

(10, 01[r]) (r 6= 0) 11/W (30)/W (03)/ 11[r]/W (30)[r]/W (03)[r]/ (11⊗ 11[r])3

B2 →֒ B2
2(†) (see §7.1) via:

(10, 10[r]) (r 6= 0) W (02)/W (02)[r]/W (10)⊗W (02)[r]/W (02)⊗W (10)[r]/ 01⊗W (11)[r]/
W (11) ⊗ 01[r]

(10, 02) (p = 2) 104/ 014/ 204/ 026/ 21/ 122/ 30/ 03/ 13/ 04/ 0012

(10, 02[r]) (p = 2, r 6= 0) 104/022/ (02[r])4/ (20[r])2/02⊗ 02[r]/ (10⊗ 02[r])2/10⊗ 20[r]/01⊗ 12[r]/
11 ⊗ 10[r]/ 008

B2 →֒ B2
2(‡) (p 6= 2) (see §7.1) via:

(10, 10[r]) (r 6= 0) 02/ 02[r]/W (20)/W (20)[r]/ (10 ⊗ 02[r])2/ (02⊗ 10[r])2

B2 →֒ B2B2 < A3D5 (p ≥ 3) via:

(10, 10) 026/ 104/W (20)2/W (12)4

(10[r], 10[s]) (rs = 0) 02[r]/ (02[s])2/ 10[r]/W (12)[s]/ 10[r] ⊗ 02[s]/ (01[r] ⊗W (11)[s])2
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B2 →֒ B3
2 (p ≥ 3) via:

(10, 10[r], 10[s])
(0 < r < s)

02/ 10/ 10[r]/ 10[s]/ 02[r]/ 02[s]/ 10⊗ 10[r]/ 10⊗ 10[s]/ 10[r] ⊗ 10[s]/
(01 ⊗ 01[r] ⊗ 01[s])2

A8 W (10000001)/ 00100000/ 00000100

A4 →֒ A2
4 via:

(1000, 1000) W (1001)2/ 1000/ 0001/ 0100/ 0010/W (1100)/W (0011)/W (1010)/
W (0101)

(1000, 1000[r]) (r 6= 0) W (1001)/W (1001)[r]/ 1000 ⊗ 0100[r]/ 0100 ⊗ 0001[r]/ 0001 ⊗ 0010[r]/
0010 ⊗ 1000[r]

(1000, 0001[r]) (r 6= 0) W (1001)/W (1001)[r]/ 1000 ⊗ 0010[r]/ 0100 ⊗ 1000[r]/ 0001 ⊗ 0100[r]/
0010 ⊗ 0001[r]

A2 →֒ A4
2 via:

(10[r], 10, 10, 01)
(r 6= 0)

W (11)3/W (11)[r]/102/012/W (20)/W (02)/W (21)/W (12)/10[r]/01[r]/
10⊗ 10[r]/01⊗ 01[r]/10⊗ 01[r]/01⊗ 10[r]/W (20)⊗ 10[r]/W (02)⊗ 01[r]/
W (20) ⊗ 01[r]/W (02) ⊗ 10[r]/W (11)⊗ 10[r]/W (11)⊗ 01[r]

(10, 10[r], 10[r], 01[r])
(r 6= 0)

W (11)/ (W (11)[r])3/ 10/ 01/W (20)[r]/W (02)[r]/W (21)[r]/W (12)[r]/
(10[r])2/ (01[r])2/ 10⊗ 10[r]/ 01⊗ 01[r]/ 10 ⊗ 01[r]/ 01⊗ 10[r]/
W (20)[r] ⊗ 10/W (02)[r] ⊗ 01/W (20)[r] ⊗ 01/W (02)[r] ⊗ 10/
W (11)[r] ⊗ 10/W (11)[r] ⊗ 01

(10, 10, 10[r], 10[r])
(r 6= 0)

W (11)2/ (W (11)[r])2/10⊗W (20)[r]/10⊗ 01[r]/01⊗W (02)[r]/01⊗ 10[r]/
10 ⊗W (11)[r]/ 10/ 01⊗W (11)[r]/ 01/W (20) ⊗ 01[r]/ 01⊗ 01[r]/
W (02) ⊗ 10[r]/ 10⊗ 10[r]/W (11)⊗ 10[r]/ 10[r]/W (11)⊗ 01[r]/ 01[r]

(10, 10, 10[r], 01[r])
(r 6= 0)

W (11)2/ (W (11)[r])2/ 10⊗W (11)[r]/ 10/ 01⊗W (11)[r]/ 01/
10 ⊗W (02)[r]/ 10⊗ 10[r]/ 01⊗W (20)[r]/ 01⊗ 01[r]/W (20)⊗ 10[r]/
01⊗ 10[r]/W (02)⊗ 01[r]/10⊗ 01[r]/W (11)⊗ 10[r]/10[r]/W (11)⊗ 01[r]/
01[r]

(10, 10, 10[r], 10[s])
(0 < r < s)

W (11)2/W (11)[r]/W (11)[s]/ 10⊗ 10[r] ⊗ 10[s]/ 01⊗ 01[r] ⊗ 01[s]/
10 ⊗ 01[r] ⊗ 10[s]/ 01⊗ 10[r] ⊗ 01[s]/W (20)⊗ 01[s]/ 01⊗ 01[s]/
W (02) ⊗ 10[s]/ 10⊗ 10[s]/W (11)⊗ 10[r]/ 10[r]/W (11) ⊗ 01[r]/ 01[r]

(10, 01, 10[r], 10[s])
(0 < r < s)

W (11)2/W (11)[r]/W (11)[s]/ 01⊗ 10[r] ⊗ 10[s]/ 10⊗ 01[r] ⊗ 01[s]/
10 ⊗ 01[r] ⊗ 10[s]/ 01⊗ 10[r] ⊗ 01[s]/W (11)⊗ 01[s]/ 01[s]/W (11)⊗ 10[s]/
10[s]/W (20)⊗ 10[r]/ 01⊗ 10[r]/W (02)⊗ 01[r]/ 10 ⊗ 01[r]

(01, 10, 10[r], 10[s])
(0 < r < s)

W (11)2/W (11)[r]/W (11)[s]/ 10⊗ 10[r] ⊗ 10[s]/ 01⊗ 01[r] ⊗ 01[s]/
01 ⊗ 01[r] ⊗ 10[s]/ 10⊗ 10[r] ⊗ 01[s]/W (11)⊗ 01[s]/ 01[s]/W (11)⊗ 10[s]/
10[s]/W (02)⊗ 10[r]/ 10⊗ 10[r]/W (20)⊗ 01[r]/ 01 ⊗ 01[r]

(01, 01, 10[r], 10[s])
(0 < r < s)

W (11)2/W (11)[r]/W (11)[s]/ 01⊗ 10[r] ⊗ 10[s]/ 10⊗ 01[r] ⊗ 01[s]/
01 ⊗ 01[r] ⊗ 10[s]/ 10⊗ 10[r] ⊗ 01[s]/W (02)⊗ 01[s]/ 10⊗ 01[s]/
W (20) ⊗ 10[s]/ 01⊗ 10[s]/W (11)⊗ 10[r]/ 10[r]/W (11) ⊗ 01[r]/ 01[r]

(10, 10[r], 10[r], 10[s])
(0 < r < s)

W (11)/ (W (11)[r])2/W (11)[s]/W (20)[r] ⊗ 10[s]/ 01[r] ⊗ 10[s]/
W (02)[r] ⊗ 01[s]/ 10[r] ⊗ 01[s]/ 10⊗ 01[r] ⊗ 10[s]/ 01⊗ 10[r] ⊗ 01[s]/
10⊗ 10[r] ⊗ 01[s]/ 01⊗ 01[r] ⊗ 10[s]/ 10⊗W (11)[r]/ 10/ 01 ⊗W (11)[r]/ 01

(10, 10[r], 01[r], 10[s])
(0 < r < s)

W (11)/ (W (11)[r])2/W (11)[s]/W (11)[r] ⊗ 10[s]/ 10[s]/W (11)[r] ⊗ 01[s]/
01[s]/ 10⊗ 10[r] ⊗ 10[s]/ 01⊗ 01[r] ⊗ 01[s]/ 10⊗ 10[r] ⊗ 01[s]/
01 ⊗ 01[r] ⊗ 10[s]/ 10⊗W (02)[r]/ 10⊗ 10[r]/ 01⊗W (20)[r]/ 01⊗ 01[r]
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(10, 01[r], 10[r], 10[s])
(0 < r < s)

W (11)/ (W (11)[r])2/W (11)[s]/W (11)[r] ⊗ 10[s]/ 10[s]/W (11)[r] ⊗ 01[s]/
01[s]/ 10⊗ 01[r] ⊗ 10[s]/ 01⊗ 10[r] ⊗ 01[s]/ 10⊗ 01[r] ⊗ 01[s]/
01 ⊗ 10[r] ⊗ 10[s]/ 10⊗W (20)[r]/ 10⊗ 01[r]/ 01⊗W (02)[r]/ 01⊗ 10[r]

(10, 01[r], 01[r], 10[s])
(0 < r < s)

W (11)/ (W (11)[r])2/W (11)[s]/W (02)[r] ⊗ 10[s]/ 10[r] ⊗ 10[s]/
W (20)[r] ⊗ 01[s]/ 01[r] ⊗ 01[s]/ 10⊗ 10[r] ⊗ 10[s]/ 01⊗ 01[r] ⊗ 01[s]/
10⊗ 01[r] ⊗ 01[s]/ 01⊗ 10[r] ⊗ 10[s]/ 10⊗W (11)[r]/ 10/ 01 ⊗W (11)[r]/ 01

(10, 10[r], 10[s], 10[s])
(0 < r < s)

W (11)/W (11)[r]/ (W (11)[s])2/ 10[r] ⊗W (20)[s]/ 10[r] ⊗ 01[s]/
01[r] ⊗W (02)[s]/ 01[r] ⊗ 10[s]/ 10⊗W (11)[s]/ 10/ 01⊗W (11)[s]/ 01/
10 ⊗ 10[r] ⊗ 01[s]/ 01⊗ 01[r] ⊗ 10[s]/ 10⊗ 01[r] ⊗ 10[s]/ 01⊗ 10[r] ⊗ 01[s]

(10, 10[r], 10[s], 01[s])
(0 < r < s)

W (11)/W (11)[r]/ (W (11)[s])2/ 10[r] ⊗W (11)[s]/ 10[r]/ 01[r] ⊗W (11)[s]/
01[r]/ 10⊗W (02)[s]/ 10⊗ 10[s]/ 01⊗W (20)[s]/ 01⊗ 01[s]/
10 ⊗ 10[r] ⊗ 10[s]/ 01⊗ 01[r] ⊗ 01[s]/ 10⊗ 01[r] ⊗ 10[s]/ 01⊗ 10[r] ⊗ 01[s]

(10, 10[r], 01[s], 10[s])
(0 < r < s)

W (11)/W (11)[r]/ (W (11)[s])2/ 10[r] ⊗W (11)[s]/ 10[r]/ 01[r] ⊗W (11)[s]/
01[r]/ 10⊗W (20)[s]/ 10⊗ 01[s]/ 01⊗W (02)[s]/ 01⊗ 10[s]/
10 ⊗ 10[r] ⊗ 01[s]/ 01⊗ 01[r] ⊗ 10[s]/ 10⊗ 01[r] ⊗ 01[s]/ 01⊗ 10[r] ⊗ 10[s]

(10, 10[r], 01[s], 01[s])
(0 < r < s)

W (11)/W (11)[r]/ (W (11)[s])2/ 10[r] ⊗W (02)[s]/ 10[r] ⊗ 10[s]/
01[r] ⊗W (20)[s]/ 01[r] ⊗ 01[s]/ 10⊗W (11)[s]/ 10/ 01⊗W (11)[s]/ 01/
10 ⊗ 10[r] ⊗ 10[s]/ 01⊗ 01[r] ⊗ 01[s]/ 10⊗ 01[r] ⊗ 01[s]/ 01⊗ 10[r] ⊗ 10[s]

(10, 10[r], 10[s], 10[t])
(0 < r < s < t)

W (11)/W (11)[r]/W (11)[s]/W (11)[t]/ 10[r] ⊗ 10[s] ⊗ 10[t]/
01[r] ⊗ 01[s] ⊗ 01[t]/ 10⊗ 01[s] ⊗ 10[t]/ 01⊗ 10[s] ⊗ 01[t]/ 10⊗ 10[r] ⊗ 01[t]/
01 ⊗ 01[r] ⊗ 10[t]/ 10⊗ 01[r] ⊗ 10[s]/ 01⊗ 10[r] ⊗ 01[s]

(10, 10[r], 10[s], 01[t])
(0 < r < s < t)

W (11)/W (11)[r]/W (11)[s]/W (11)[t]/ 10[r] ⊗ 10[s] ⊗ 01[t]/
01[r] ⊗ 01[s] ⊗ 10[t]/ 10⊗ 01[s] ⊗ 01[t]/ 01⊗ 10[s] ⊗ 10[t]/ 10⊗ 10[r] ⊗ 10[t]/
01 ⊗ 01[r] ⊗ 01[t]/ 10⊗ 01[r] ⊗ 10[s]/ 01⊗ 10[r] ⊗ 01[s]

(10, 10[r], 01[s], 10[t])
(0 < r < s < t)

W (11)/W (11)[r]/W (11)[s]/W (11)[t]/ 10[r] ⊗ 01[s] ⊗ 10[t]/
01[r] ⊗ 10[s] ⊗ 01[t]/ 10⊗ 10[s] ⊗ 10[t]/ 01⊗ 01[s] ⊗ 01[t]/ 10⊗ 10[r] ⊗ 01[t]/
01 ⊗ 01[r] ⊗ 10[t]/ 10⊗ 01[r] ⊗ 01[s]/ 01⊗ 10[r] ⊗ 10[s]

(10, 10[r], 01[s], 01[t])
(0 < r < s < t)

W (11)/W (11)[r]/W (11)[s]/W (11)[t]/ 10[r] ⊗ 01[s] ⊗ 01[t]/
01[r] ⊗ 10[s] ⊗ 10[t]/ 10⊗ 10[s] ⊗ 01[t]/ 01⊗ 01[s] ⊗ 10[t]/ 10⊗ 10[r] ⊗ 10[t]/
01 ⊗ 01[r] ⊗ 01[t]/ 10⊗ 01[r] ⊗ 01[s]/ 01⊗ 10[r] ⊗ 10[s]

(10, 01[r], 10[s], 10[t])
(0 < r < s < t)

W (11)/W (11)[r]/W (11)[s]/W (11)[t]/ 01[r] ⊗ 10[s] ⊗ 10[t]/
10[r] ⊗ 01[s] ⊗ 01[t]/ 10⊗ 01[s] ⊗ 10[t]/ 01⊗ 10[s] ⊗ 01[t]/ 10⊗ 01[r] ⊗ 01[t]/
01 ⊗ 10[r] ⊗ 10[t]/ 10⊗ 10[r] ⊗ 10[s]/ 01⊗ 01[r] ⊗ 01[s]

(10, 01[r], 10[s], 01[t])
(0 < r < s < t)

W (11)/W (11)[r]/W (11)[s]/W (11)[t]/ 01[r] ⊗ 10[s] ⊗ 01[t]/
10[r] ⊗ 01[s] ⊗ 10[t]/ 10⊗ 01[s] ⊗ 01[t]/ 01⊗ 10[s] ⊗ 10[t]/ 10⊗ 01[r] ⊗ 10[t]/
01 ⊗ 10[r] ⊗ 01[t]/ 10⊗ 10[r] ⊗ 10[s]/ 01⊗ 01[r] ⊗ 01[s]

(10, 01[r], 01[s], 10[t])
(0 < r < s < t)

W (11)/W (11)[r]/W (11)[s]/W (11)[t]/ 01[r] ⊗ 01[s] ⊗ 10[t]/
10[r] ⊗ 10[s] ⊗ 01[t]/ 10⊗ 10[s] ⊗ 10[t]/ 01⊗ 01[s] ⊗ 01[t]/ 10⊗ 01[r] ⊗ 01[t]/
01 ⊗ 10[r] ⊗ 10[t]/ 10⊗ 10[r] ⊗ 01[s]/ 01⊗ 01[r] ⊗ 10[s]

(10, 01[r], 01[s], 01[t])
(0 < r < s < t)

W (11)/W (11)[r]/W (11)[s]/W (11)[t]/ 01[r] ⊗ 01[s] ⊗ 01[t]/
10[r] ⊗ 10[s] ⊗ 10[t]/ 10⊗ 10[s] ⊗ 01[t]/ 01⊗ 01[s] ⊗ 10[t]/ 10⊗ 01[r] ⊗ 10[t]/
01 ⊗ 10[r] ⊗ 01[t]/ 10⊗ 10[r] ⊗ 01[s]/ 01⊗ 01[r] ⊗ 10[s]

A2 →֒ Ā2A2 < Ā2E6 (p ≥ 3) (see §7.12) via:

(10, 10) W (11)2/W (41)/W (14)/W (32)/W (23)/W (13)/W (31)/W (21)/W (12)
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(10[r], 10[s]) (rs = 0) W (11)[r]/W (11)[s]/W (41)[s]/W (14)[s]/10[r] ⊗W (22)[s]/01[r] ⊗W (22)[s]

A2 →֒ Ā2A2Ã2 < Ā2A2G2 (p = 3) (see §7.11) via:

(10[r], 10[s], 10[t])
(rst = 0)

11[r]/ 11[s]/ (11[t])2/ 11[s] ⊗ 11[t]/ 30[t]/ 03[t]/ 10[r] ⊗ 20[s]/ 01[r] ⊗ 02[s]/
10[r] ⊗ 01[s] ⊗ 11[t]/ 01[r] ⊗ 10[s] ⊗ 11[t]/ 003

(10[r], 10, 10[r]) (r 6= 0) (11[r])3/ 11/ 11⊗ 11[r]/ 30[r]/ 03[r]/ 10[r] ⊗ 20/ 01[r] ⊗ 02/ 21[r] ⊗ 01/
02[r] ⊗ 01/ 12[r] ⊗ 10/ 20[r] ⊗ 10/ 003

(10, 10[r], 10) (r 6= 0) 113/ 11[r]/ 11⊗ 11[r]/ 30/ 03/ 10 ⊗ 20[r]/ 01⊗ 02[r]/ 21⊗ 01[r]/ 02⊗ 01[r]/
12 ⊗ 10[r]/ 20⊗ 10[r]/ 003

(10[r], 01[s], 10[t])
(rst = 0)

11[r]/ 11[s]/ (11[t])2/ 11[s] ⊗ 11[t]/ 30[t]/ 03[t]/ 10[r] ⊗ 02[s]/ 01[r] ⊗ 20[s]/
10[r] ⊗ 10[s] ⊗ 11[t]/ 01[r] ⊗ 01[s] ⊗ 11[t]/ 003

(10[r], 01[r], 10) (r 6= 0) (11[r])2/ 112/ 11⊗ 11[r]/ 30/ 03/ 12[r]/ 01[r]/ 21[r]/ 10[r]/ 20[r] ⊗ 11/
01[r] ⊗ 11/ 02[r] ⊗ 11/ 10[r] ⊗ 11/ 003

(10, 01, 10[r]) (r 6= 0) 112/ (11[r])2/11⊗ 11[r]/30[r]/03[r]/12/01/21/10/ 20 ⊗ 11[r]/01⊗ 11[r]/
02 ⊗ 11[r]/ 10⊗ 11[r]/ 003

(10[r], 01, 10[r]) (r 6= 0) (11[r])3/ 11/ 11⊗ 11[r]/ 30[r]/ 03[r]/ 10[r] ⊗ 02/ 01[r] ⊗ 20/ 21[r] ⊗ 10/
02[r] ⊗ 10/ 12[r] ⊗ 01/ 20[r] ⊗ 01/ 003

(10, 01[r], 10) (r 6= 0) 113/ 11[r]/ 11⊗ 11[r]/ 30/ 03/ 10 ⊗ 02[r]/ 01⊗ 20[r]/ 21⊗ 10[r]/ 02⊗ 10[r]/
12 ⊗ 01[r]/ 20⊗ 01[r]/ 003

G2 →֒ G2G2 < G2F4 (p = 7) via:

(10[r], 10[s]) (rs = 0) 01[r]/ 10[r] ⊗ 20[s]/ 01[s]/ 11[s]

B2 (p ≥ 5) 02/W (06)/W (32)
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Appendix A Levi subgroups and reducible Weyl modules

We give tables of composition factors for Levi subgroups with each simple factor of rank at least 2,
for G = E6, E7 and E8. If L′ is simple then these can be found in [14, Tables 8.1–8.3, 8.6, 8.7]. If
L′ is not simple then the composition factors can be deduced from those of a maximal subsystem
subgroup containing L′. We also give the composition factors of the reducible Weyl modules (with
at least one trivial composition factor) which appear in Tables 7–14.
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Table 12: The composition factors for the action of Levi subgroups (with no rank 1
simple factors) of E6 on V27 and L(E6).

Levi L′ Comp. factors of V27 ↓ L′ Comp. factors of L(E6) ↓ L′

D5 λ1/ λ4/ 0 W (λ2)/ λ4/ λ5/ 0
D4 1000/ 0010/ 0001/ 00003 W (0100)/ 10002/ 00102/ 00012/ 00002

A5 λ2
1/ λ4 W (λ1 + λ5)/ λ

2
3/ 0

3

A4 10002/ 0010/ 0001/ 00002 W (1001)/ 1000/ 01002/ 00102/ 0001/ 00004

A3 1002/ 0012/ 010/ 0005 W (101)/ 1004/ 0014/ 0104/ 0007

A2 103/ 013/ 009 W (11)/ 109/ 019/ 0016

A2A2 (10, 01)/ (00, 10)3/ (01, 00)3 (W (11), 00)/ (00,W (11))/ (10, 10)3/ (01, 01)3/ (00, 00)8

Table 13: The composition factors for the action of Levi subgroups (with no rank 1
simple factors) of E7 on V56 and L(E7).

Levi L′ Comp. factors of V56 ↓ L′ Comp. factors of L(E7) ↓ L′

E6 λ1/ λ6/ 0
2 W (λ2)/ λ1/ λ6/ 0

D6 λ2
1/ λ5 W (λ2)/ λ

2
6/ 0

3

D5 λ2
1/ λ4/ λ5/ 0

4 W (λ2)/ λ
2
1/ λ

2
4/ λ

2
5/ 0

4

D4 10002/ 00102/ 00012/ 00008 W (0100)/ 10004/ 00104/ 00014/ 00009

A6 λ1/ λ2/ λ5/ λ6 W (λ1 + λ6)/ λ1/λ3/λ4/ λ6/ 0
A5 λ3

1/ λ3/ λ
3
5 W (λ1 + λ5)/ λ

3
2/λ

3
4/ 0

8

A′
5 λ2

1/ λ2/ λ4/ λ
2
5/ 0

2 W (λ1 + λ5)/ λ
2
1/λ2/λ

2
3/ λ4/ λ

2
5/ 0

4

A4 10003/ 0100/ 0010/ 00013/ 00006 W (1001)/ 10004/ 01003/ 00103/ 00014/ 00009

A3 1004/ 0014/ 0102/ 00012 W (101)/ 1008/ 0018/ 0106/ 00018

A2 106/ 016/ 0020 W (11)/ 1015/ 0115/ 0035

A4A2 (1000, 10)/ (0000, 10)/ (0001, 01)/
(0000, 01)/ (0100, 00)/ (0010, 00)

(W (1001), 00)/ (1000, 00)/ (0001, 00)/
(0000,W (11))/ (0010, 10)/ (0001, 10)/ (0100, 01)/
(1000, 01)/ (0000, 00)

A3A2 (100, 10)/ (000, 10)2/ (001, 01)/
(000, 01)2/ (010, 00)2/ (100, 00)/
(001, 00)

(W (101), 00)/ (100, 00)2/ (001, 00)2/
(000,W (11))/ (010, 10)/ (001, 10)2/ (000, 10)/
(010, 01)/ (100, 01)2/ (000, 01)/ (000, 00)4

A2A2 (10, 10)/ (00, 10)3/ (01, 01)/
(00, 01)3/ (10, 00)3/ (01, 00)3/
(00, 00)2

(W (11), 00)/ (00,W (11))/ (10, 10)3/ (01, 01)3/
(10, 01)/ (01, 10)/ (10, 00)3/ (01, 00)3/ (00, 10)3/
(00, 01)3/ (00, 00)9

Table 14: The composition factors for the action of Levi subgroups (with no rank 1
simple factors) of E8 on L(E8).

Levi L′ Composition factors of L(E8) ↓ L′

E7 W (λ1)/ λ
2
7/ 0

3

E6 W (λ2)/ λ
3
1/ λ

3
6/ 0

8

D7 W (λ2)/ λ
2
1/ λ6/ λ7/ 0

D6 W (λ2)/ λ
4
1/ λ

2
5/ λ

2
6/ 0

6
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D5 W (λ2)/ λ
6
1/ λ

4
4/ λ

4
5/ 0

15

D4 W (0100)/ 10008/ 00108/ 00018/ 000028

A7 W (λ1 + λ7)/ λ1/λ2/λ3/ λ5/ λ6/ λ7/ 0
A6 W (λ1 + λ6)/ λ

3
1/λ

2
2/λ3/ λ4/ λ

2
5/ λ

3
6/ 0

4

A5 W (λ1 + λ5)/ λ
6
1/λ

3
2/λ

2
3/ λ

3
4/ λ

6
5/ 0

11

A4 W (1001)/ 100010/ 01005/ 00105/ 000110/ 000024

A3 W (101)/ 10016/ 00116/ 01010/ 00045

A2 W (11)/ 1027/ 0127/ 0078

D5A2 (W (λ2), 00)/ (0,W (11))/ (λ1, 10)/ (λ1, 01)/ (λ4, 01)/ (λ4, 00)/ (λ5, 10)/ (λ5, 00)/ (0, 10)/
(0, 01)/ (0, 00)

D4A2 (W (0100), 00)/ (0000,W (11))/ (1000, 10)/ (0010, 10)/ (0001, 10)/ (1000, 01)/ (0010, 01)/
(0001, 01)/ (1000, 00)2/ (0010, 00)2/ (0001, 00)2/ (0000, 10)3/ (0000, 01)3/ (0000, 00)2

A4A3 (W (1001), 000)/ (0000,W (101))/ (1000, 100)/ (1000, 010)/ (0100, 001)/ (0100, 000)/
(0010, 100)/ (0010, 000)/ (0001, 001)/ (0001, 010)/ (0000, 100)/ (0000, 001)/ (0000, 000)

A4A2 (W (1001), 00)/ (0000,W (11))/ (1000, 10)2/ (1000, 01)/ (1000, 00)/ (0100, 01)/
(0100, 00)2/ (0010, 10)/ (0010, 00)2/ (0001, 01)2/ (0001, 10)/ (0001, 00)/ (0000, 10)2/
(0000, 01)2/ (0000, 00)4

A3A3 (W (101), 000)/ (000,W (101))/ (100, 100)/ (100, 010)/ (100, 001)/ (100, 000)2/ (010, 100)/
(010, 001)/ (010, 000)2/ (001, 001)/ (001, 010)/ (001, 100)/ (001, 000)2/ (000, 010)2/
(000, 100)2/ (000, 001)2/ (000, 000)2

A3A2 (W (101), 000)/ (000,W (11))/ (100, 10)2/ (100, 01)2/ (100, 00)4/ (010, 10)/ (010, 01)/
(010, 00)4/ (001, 10)2/ (001, 01)2/ (001, 00)4/ (000, 10)5/ (000, 01)5/ (000, 00)7

A2A2 (W (11), 00)/ (00,W (11))/ (10, 10)3/ (01, 01)3/ (10, 01)3/ (01, 10)3/ (10, 00)9/ (01, 00)9/
(00, 10)9/ (00, 01)9/ (00, 00)16

Table 15: The composition factors of some reducible Weyl modules that have a trivial
composition factor.

Group p High weight λ Composition factors of W (λ)

An p|n+ 1 λ1 + λn λ1 + λn/0
Bn (n ≥ 2) 2 λ1 λ1/0

Bn (n > 2) 2 λ2 λ2/λ1/0
(n,2)

Dn 2 λ2 λ2/0
(n,2)

A2 2 3λ1 3λ1/0
3 4λ1 + λ2 4λ1 + λ2/3λ1/3λ2/λ1 + λ2/0

B2 2 2λ2 2λ2/λ1/0
2

B4 2 λ3 λ3/λ2/λ1/0
2

3 2λ1 2λ1/0
C4 2 2λ1 2λ1/λ2/0

2

2 λ2 λ2/0
3 λ4 λ4/0

G2 7 2λ1 2λ1/0
F4 3 λ4 λ4/0
E6 3 λ2 λ2/0
E7 2 λ1 λ1/0
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