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3.3 Overdraft with customer naiveté . . . . . . . . . . . . . . . . . . . . 72

3.4 Overdraft with adverse selection . . . . . . . . . . . . . . . . . . . . 83
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Abstract

This thesis consists of three essays on banking theory.
In the first essay (joint with Dr. Kebin Ma) we analyse a possible infor-

mational impact of banking regulations. Banks can take costly actions (such as
higher capitalization, liquidity holding, and advanced risk management) to fend off
runs. While such actions directly affect bank risks, they also carry informational
content as signals of the banks’ fundamentals. A separating equilibrium due to
such signalling, however, involves two types of inefficiency: the high type chooses
excessively costly signals, whereas the low type is vulnerable to runs. This provides
a novel rationale for financial regulations: by restricting banks’ actions, regulators
can maintain a pooling equilibrium where the cross-subsidy among types promotes
financial stability. We build a theoretical model to illustrate the point and also
obtain supporting evidence from the US capital and liquidity regulations.

The second essay (joint with Prof. John Thanassoulis) seeks to provide
a theoretical explanation of the variety of pricing schemes and product bundling
observed in personal current account (PCA) markets. The main motivating fact is
the widespread proliferation of ‘free-if-in-credit’ (FIIC) current accounts in certain
countries (US, UK), in contrast to some other European countries (France, Italy,
Hungary), where even basic current account services are subject to excessive monthly
fees. Existing evidence is consistent with the possibility that FIIC current accounts
are cross-subsidized by exploitative and complicated fee structures on connected
products, in particular by the excessive usage of overdraft facilities. In this research
we propose a novel approach to model competitive aftermarkets, and demonstrate
how certain sources of market power, namely customer naiveté and adverse selection
interact in equilibrium. This helps to better understand why some markets are more
likely to develop FIIC pricing than others.

In the last chapter I demonstrate how illiquidity is determined endogenously
during crises as a result of equilibrium behaviour of financial institutions subject to
leverage constraints. I show in a simple and intuitive framework that asset liquida-
tion decisions exhibit similar characteristic to a Prisoners’ dilemma: although finan-
cial institutions are given the possibility to dampen the cost of fire-sale spillovers,
the only Nash-equilibrium is where banks ’defect’, and end up coordinating on sell-
ing the more liquid common asset, which in turn becomes illiquid. This reduces
welfare compared to the socially optimal de-leveraging rule.

vii



Chapter 1

Introduction

This thesis consists of three essays on banking theory. The common theme of these

research papers, and thereby the organizing principle of my thesis is the presence of

various frictions in banking markets, which call for the attention of policy makers,

and potentially require regulatory intervention. The essays are related to relevant

and recently actively debated policy issues concerning the stability of financial mar-

kets, micro- and macroprudential regulation, as well as non-competitive distortions

in the banking sector.

The dominant approach in this thesis is theoretical, and is based on applied

game-theory. As an applied theorist I believe that an important purpose of theo-

retical research is to help to understand various real-world problems, and answer

practical questions. Mathematical rigorousness is a convenient tool to enlighten

non-trivial perspectives, which can eventually lead to better decision making, and

a more smoothly functioning financial system. In this spirit, the three chapters

investigate the following topics: Chapter 2 discovers a novel, information-based im-

pact of regulations in banking, Chapter 3 explores exploitative and welfare-reducing

overdraft pricing practices in retail banking, while Chapter 4 points out a potential

‘liquidity trap’ in a financial crisis situation due to asset commonalities. These is-

sues all require attention, monitoring, and potentially, intervention by the relevant

regulatory bodies.

Chapter 2 (“Bank Signalling, Risk of Runs and the Informational Impact

of Regulations”, joint with Dr. Kebin Ma) is motivated by post-crisis changes in

banking regulation, and presents a novel perspective on the potential impact of those

regulations. Financial institutions often make use of costly actions (such as higher

capitalization, liquidity holding, and advanced risk management) to fend off runs.

While such actions directly affect bank risks, they also carry informational content
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as signals of the banks’ fundamentals. We show that a separating equilibrium of this

signalling game between the bank and its creditors involves two types of inefficiency:

the high type chooses excessively costly signals, whereas the low type is revealed,

and is vulnerable to runs. This provides a novel rationale for financial regulations.

Placing restrictions on banks’ actions in the form of a conventional microprudential

regulatory tool, such as capital requirements or the recently introduced Liquidity

Coverage Ratio, affects the value of information conveyed by risk management ac-

tions as a signalling device, and in turn, the incentives to engage in discretionary

risk management. Our theoretical model shows that a minimum quantitative re-

quirement can eliminate the separating equilibrium by making it more difficult to

signal private information, thereby regulators can maintain pooling, where the cross-

subsidy across types promotes financial stability.

Our model provides a novel perspective on financial regulation, which fun-

damentally differs from the traditional ones that emphasize its role in mitigating

moral hazard or containing potential negative externalities on the real economy. By

eliminating a way in which markets create information, regulators create ignorance,

which is efficient, as it leads to greater financial stability and higher social welfare.

Our mechanism also provides an explanation for financial institutions’ reaction to

the introduction of a new regulation: a sufficiently restrictive regulatory threshold

induces pooling, and institutions initially not constrained by the to-be introduced

quantitative regulation, optimally decrease their level of risk management towards

the new regulatory limit, which now serves as a focal point. This aspect of our

theory emphasizes a latent link between microprudential and macroprudential reg-

ulatory perspective: regulating some individual institutions changes the prevailing

equilibrium, and thereby the behaviour of other market participants, affecting the

stability of the system as a whole.

The model leads to testable empirical predictions. If financial regulations

do squeeze out separating equilibria, we would expect relatively high dispersion

of risk management measures among banks before the introduction of pertinent

financial regulations, and clustering of observations after the introduction of the

regulations. We test this hypothesis on two data sets: cash holdings of US Bank

holding companies (BHC’s), using a difference-in-difference method which exploits

the recent introduction of Liquidity Coverage Ratio (LCR), as well as changes in

capital ratios around the introduction of Basel I regulatory capital regime. We

find two distinct patterns, both consistent with the predictions of our theory: first,

the dispersion of cash ratios for BHC’s subject to the new regulation decreased

significantly more sharply than those which were not subject to the new regulation.
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This is consistent with a successful elimination of separating equilibrium. For the

case of capital regulation, we find an increase of the number of institutions with

large equity ratios, which might be the result of an insufficient regulatory minimum,

being unable to squeeze out, but boosting the signals required to maintain separating

equilibrium.

The model combines signalling with a stylized bank-run game. Our method-

ological contribution is to develop a novel technique to analyse a global game (which

is necessary to arrive at a unique equilibrium prediction) embedded into a signalling

game in a tractable way which also facilitates welfare analysis. We illustrate our ap-

proach with a linear regime switching function which leads to a closed-form solution,

and generalize to a larger class of models satisfying a single-crossing property.

Chapter 3: A different policy issue and market friction is at the centre

of Chapter 3, titled “Current account and Overdraft Pricing in Retail Banking”

(joint with Prof. John Thanassoulis), which brings us to the search for a pricing

equilibrium in retail banking. At first look, the market structure of banking in

developed countries is a puzzle: although it possesses many key characteristics of

competitive, or at least contestable markets, evidence of monopolistic behaviour

in certain segments is widespread. We study a particular market segment: the

markets for overdrafts. In some countries, especially in the US and the UK, the

predominant personal current account pricing scheme is the so-called ‘free-if-in-

credit’ (FIIC) pricing, sometimes loosely referred to as ‘free banking’. Under this

price schedule, banks charge zero monthly or regular fee for the access to the account

and for basic services. However, accounts are usually bundled together with an

overdraft-service - essentially a short-term borrowing facility - which allows the

customer to go into debit in her account, incurring extensive charges in the form of

service fees or interest payments. In contrast, in some other European countries (for

example France, Italy, Hungary) even basic current account services are subject to -

sometimes quite expensive - monthly fees, while overdraft charges are less important

sources of banks’ profit. The purpose of this research is to better understand the

equilibrium consequences of some underlying market frictions, such as customer

naiveté and information asymmetry, on prices, profits, and on the market structure.

Many observers point out that FIIC-pricing is consistent with a cross-subsidy

across business lines as well as across various groups of customers, with significant

potential welfare consequences. According to the common narrative, hidden and

expensive overdraft fees exploit poorer households — more likely in need of extra

liquidity — to support more sophisticated, wealthier clients, and to generate indus-

try rents. As FIIC-pricing essentially amounts to below-marginal-cost base-good,
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and above-marginal-cost add-on prices, to the extent different groups of customers

differ in their use of the two services, it leads to potential distributional concerns

and welfare effects. To be specific, if overdraft users tend to be poorer households

more likely in financial trouble and in the need of short-term financing, FIIC-pricing

implies a wealth-transfer ‘from the poor to the rich’, leading to an overall reduction

in social welfare. This view has generated a massive policy debate on the potential

role and shape of regulatory intervention. However, existing theories fall short of

explaining why FIIC-pricing develops in certain countries only.

In this paper we analyse a two-stage duopoly model of overdraft pricing which

captures some relevant characteristics of the retail banking sector to illustrate how

FIIC-pricing can emerge as an equilibrium phenomenon. Deviating from much of

the theoretical literature, which treats overdrafts as a monopolistic aftermarket, we

assume that competition for customers is possible even in the overdraft-stage. This

captures the idea that customers’ lock-in is not perfect in a financial services context.

Indeed, the nature of an existing relationship to one’s bank is distinctively differ-

ent from a typical industrial aftermarket situation - the most cited example being

the market for printers and cartridges - where technological linkages tie customers

strongly to the primary-market supplier, while high initial investment costs prevent

switching to another provider. Strictly speaking there is no such technological rea-

son to link payment services (the primary market) to the provision of short-term

customer credit (the aftermarket), yet the market shows similar characteristic: lack

of switching behaviour, and ‘exploitative’ aftermarket pricing.

Our results demonstrate that, despite the possibility of competition in the

second-stage, the presence of naive customers turns to be an important source of

market power and economic profit. Specifically, we show that for an arbitrary low

number of naive customers, prices deviate from marginal-cost pricing, and the unique

Nash-equilibrium of the Bertrand-game on the overdraft market is a mixed-strategy

Nash-equilibrium, where both insider and outsider banks earn positive profit. This

makes overdraft a profitable business, and induces competition in the first stage (on

the market for PCA) to expand market share. When primary markets are sufficiently

competitive, there exist a symmetric ‘FIIC-equilibrium’ for a significant subset of the

parameter space - specifically, FIIC-pricing can prevail even with relatively modest

number of naive customers, and on highly competitive markets.

In the rest of the paper we extend the baseline setup with adverse selection,

and show how the combination of adverse selection and customer naiveté, being the

two most important frictions on banking markets, affect equilibrium pricing, profits,

and customer behaviour. The presence of adverse selection makes it harder for the
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outsider to enjoy the benefits on the aftermarket. As a consequence, the profits

will be tilted towards the bank’s role as an insider. This increases the incentives

to obtain more customers on the primary market, so it decreases first-period PCA

prices even further — making it even more likely that an FIIC-pricing prevails as

an equilibrium. In our model differences in the mass of myopic customers is not the

only possible explanation anymore for the observed differences across countries: ‘free

banking’ may or may not develop depending on the severity of adverse selection, or

the extent of primary market competition as well.

Chapter 4: Endogenous reaction to a systemic shock in an interconnected

banking environment is the subject of Chapter 4 in this dissertation, “Fire sale in

a liquidation game with leverage requirements”. In the aftermath of the financial

crisis, the view that interconnectedness is an important determinant of financial

stability became conventional wisdom among academics and policy-makers. A large

theoretical and empirical literature on systemic risk started to emphasize how var-

ious forms of business relations in the financial sector can turn to a transmission

channel through which shocks propagate in the financial system, eventually leading

to systemic bank failures and causing real economic losses. One potential layer of

interconnectedness, which is the subject of this paper, is indirect linkages through

common investments, or ‘asset commonalities’. If an investor is forced to liquidate

their asset due to some funding pressure, prices may depart from fundamental val-

ues. Mark-to-market evaluation of portfolios forces other investors of the same asset

to re-evaluate their portfolio, which decreases equity value. In turn, the drop in eq-

uity induces additional funding pressure, and those - otherwise healthy - institutions

may be forced to engage in further asset liquidation.

In this paper I explicitly model the asset liquidation decision of financial in-

stitutions under funding pressure, when multiple asset classes are available to adjust

the portfolio. In the model, the ‘funding pressure’, which is the key market friction

behind this phenomenon, is captured by a leverage constraint: following a (sys-

temic) asset-price shock, the banking system may be forced to engage in systemic

deleveraging to restore leverage targets by selling assets and repaying debt. The

novelty of the analysis is to focus on banks’ optimal, equilibrium decision instead of

accounting for rule-based, deterministic de-leveraging spillover effects usually stud-

ied in the academic literature. The investment portfolio on banks’ balance sheets

differ in ex-ante liquidity, measured as the market price impact following an as-

set sale during ‘normal times’. Equity-maximizer financial institutions adjust their

portfolio by choosing to sell assets so that the impact on equity is minimized. In

the presence of asset commonalities, if all banks end up selling the same asset class
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(‘commonality’), liquid assets suddenly may appear illiquid and can be sold only at

a significant fire-sale discount, a phenomenon which was widely observed during the

financial crisis. The endogenous determination of the fire-sale price has to be taken

into consideration by rational financial institutions.

The joint deleveraging decision of interlinked financial institutions induces a

non-cooperative game which we dub ‘the liquidation game’. The main result of this

paper is that as long as the equilibrium liquidation decision of the banks is non-

trivial in the sense that liquidating only one single asset does not strictly dominate,

the emerging unique Nash-equilibrium is not Pareto-optimal. Individual banks could

achieve higher ex-post equity value by choosing another feasible liquidation strategy,

which, however, cannot be maintained as an equilibrium. The market outcome

in equilibrium is reminiscent to a Prisoner’s dilemma: cooperation, which in this

context would mean self-restraint in selling the more liquid asset commonalities and

relying more on idiosyncratic but less liquid assets to restore leverage, could increase

the overall payoffs for each players, but cannot be maintained as an equilibrium. In

the unique Nash-equilibrium banks ‘defect’, and over-liquidate the commonality.

The comparison of the equilibrium and the social planner’s optimal solution

reveals an even more striking feature: the potential loss from the inefficient equilib-

rium may even be larger, if markets appear to be ex-ante more liquid. Intuitively,

more liquid commonality raises the incentives to tilt the liquidation strategy towards

that asset class, which leads to an even larger equilibrium price effect, and further

diminishes equity. This finding has slightly uncomfortable consequences for financial

stability: higher liquidity, although almost unanimously called for by policy-makers

after the crisis, can even be detrimental in highly integrated markets, if fire-sale

decisions following a potential shock are jointly determined in an equilibrium.
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Chapter 2

Bank Signalling, Risk of Runs,

and the Informational Impact of

Regulations

2.1 Introduction

Financial institutions often make use of costly actions to communicate private infor-

mation about their fundamentals.1 A particularly important class of such signalling

devices is banks’ quantitative risk management choices, such as the amount of cap-

ital, or high-quality liquid assets, whose primary goal is to tackle solvency risk and

liquidity risk respectively. These risk management actions are heavily regulated,

requiring banks to maintain adequate levels of such risk measures in circumstances

where externalities or other market imperfections would prevent to reach socially

optimal outcomes as a decentralized solution in a laissez-fair environment.

In this paper we study the interaction between such regulations and the

bank’s incentives to signal private information to its creditors. In our model, plac-

ing restrictions on banks’ behaviour in the form of a conventional microprudential

regulatory tool, such as capital requirements or the recently introduced Liquidity

Coverage Ratio (LCR), affects the value of information conveyed by risk manage-

ment actions as a signalling device, and in turn, the incentives to engage in discre-

tionary risk management. In a no-regulation environment, a separating equilibrium

due to signalling involves two types of inefficiency: the high-type chooses excessively

1A classic example would be banks maintaining high dividend payouts and executive compen-
sation during the crisis, in the endeavour to convince the market of their relatively strong financial
positions.
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costly risk management, whereas the low type is revealed and becomes vulnerable

to runs. In this sense, the private information creation can bear potential social

inefficiency. We show that a minimum quantitative regulation can eliminate sepa-

rating equilibrium and enforce pooling by making it more difficult to signal private

information, thereby mitigating the related inefficiencies.

Our model provides a novel perspective on financial regulation, which fun-

damentally differs from the traditional ones that emphasize its role in mitigating

moral hazard or containing potential negative externalities on the real economy.2

By eliminating a way in which markets create information, regulators create igno-

rance, which is efficient, as it leads to greater financial stability and higher social

welfare. Our mechanism also provides an explanation for financial institutions’ re-

action to the introduction of a new regulation: a sufficiently restrictive regulatory

threshold induces pooling, and institutions initially not constrained by the to-be in-

troduced quantitative regulation, optimally decrease their level of risk management

towards the new regulatory limit, which now serves as a focal point. This aspect of

our theory emphasizes a latent link between microprudential and macroprudential

regulatory perspective: regulating some individual institutions changes the prevail-

ing equilibrium, and thereby the behaviour of other market participants, affecting

the stability of the system as a whole.

Our model combines signalling with a stylized bank-run game, where the

unique equilibrium of the coordination problem of creditors is determined by global

games techniques. We parameterize the strength of the bank by two distinct fun-

damental variables: the bank’s innate and its financial fundamental. While insiders

have private information regarding the bank’s innate ability to effectively make use

of costly risk management tools to fend off runs, a lack of common knowledge re-

garding the financial fundamental drives the global game equilibrium selection in

the second stage of the game.

This model can be solved analogously to a conventional signalling game where

the receivers’ (creditors) unique aggregate responses to any on- and off-equilibrium

action are determined by global-games techniques. Our methodological contribution

is to develop a novel technique to analyse a global game embedded into a signalling

game in a tractable way which also facilitates welfare analysis. We illustrate our ap-

proach with a linear regime switching function which leads to a closed-form solution,

and generalize to a larger class of models satisfying a single-crossing property.

2For example, minimum capital regulation is often justified to correct moral hazard and risk-
taking incentives of shareholders, while the recent introduction of quantitative liquidity regulation
is motivated by decreasing reliance on ‘public liquidity’ and building up sufficient private cushions
to withhold liquidity shocks.
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The first main result of the paper provides conditions for the existence of

a separating equilibrium in which a high-type bank chooses an excessively high

signal. We show that the existence of this equilibrium, as well as the magnitude of

inefficiency, is inherently linked to the precision of receivers’ noisy private signals,

with higher precision leading to larger inefficiencies. Intuitively, higher precision

leads to more correlated aggregate behaviour of creditors in any states of the world,

in turn, leading to more pronounced aggregate responses to (perceived) changes in

unknown parameters. This encourages the low-type to mimic the high-type more

aggressively, who, in turn needs to send a higher signal to maintain separation.

Second, we show that a regulator can eliminate inefficient high signals by

setting a minimum threshold on the bank’s risk management action. Under such

regulations, the minimax payoff for the low-type (i.e. the payoff she could get ir-

respectively of the other type’s behaviour) decreases, which in turn increases the

critical signal that is required for the high-type to maintain separation. For a suffi-

ciently restrictive regulation, this action is too costly, and it is no longer incentive-

compatible for the high-type to maintain the separation. This critical regulatory

minimum also changes with precision: when precision is high, the separating signal

is already high, therefore a relatively low regulatory threshold is sufficient to in-

duce pooling. An implication is that signalling may emerge during turbulent times

(characterized by low precision of observation of the fundamentals): a certain level

of regulation which is just sufficient to maintain pooling during normal times might

not be able to prevent wasteful signalling during turbulent times.

We perform a preliminary welfare analysis tailored specifically to the con-

text of financial regulations. We show that a minimum ratio regulation can indeed

increase ex-ante welfare by squeezing out separating equilibria. A separating equi-

librium in the model leads to two types of inefficiency: the high-type chooses a signal

that is excessively high and costly, whereas the low-type is identified as weak and

becomes vulnerable - resulting in more runs and greater financial instability. In con-

trast, in a pooling equilibrium, the high-type will cross-subsidise the low-type, and

the economy can feature greater financial stability as well as a reduction in costly

signalling. In this sense, financial regulations reduce the information available in

private markets, and the resulting ignorance is efficient. The ex-ante improvement

in expected profits implies that it can be incentive-compatible for banks to accept

financial regulations.

Our model leads to testable empirical predictions. If financial regulations

do squeeze out separating equilibria, we would expect relatively high dispersion

of risk management measures among banks before the introduction of pertinent
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financial regulations, and clustering of observations after the introduction of the

regulations. We test this hypothesis on two data sets: cash holdings of US Bank

holding companies (BHC’s), using a difference-in-difference method which exploits

the recent introduction of Liquidity Coverage Ratio (LCR), as well as changes in

capital ratios around the introduction of Basel I regulatory capital regime. We

find two distinct patterns, both consistent with the predictions of our theory: first,

the dispersion of cash ratios for BHC’s subject to the new regulation decreased

significantly more sharply than those which were not subject to the new regulation.

This is consistent with a successful elimination of separating equilibrium. For the

case of capital regulation, we find an increase of the number of institutions with

large equity ratios, which might be the result of an insufficient regulatory minimum,

being unable to squeeze out, but boosting the signals required to maintain separating

equilibrium.

The methodology of our paper is most related to Angeletos et al. [2006],

and Angeletos and Pavan [2013]. In their pioneering work, the authors consider a

perfectly informed policy maker (sender) who tries to defend a regime with possible

policy intervention and show that once the signalling effect of the policy intervention

is taken into consideration, multiple equilibria will re-surface in a global-game setting

due to the endogeneity of the attackers’ (receivers’) information set. The specific

form of multiplicity in the (semi-) separating equilibrium arises due to the fact that

there is no uncertainty regarding the regime outcome from the sender’s perspective.

As a consequence, any positive policy intervention signals the survival of the regime,

which makes ‘no attack’ a dominant strategy, and the global game is played out over

a truncated posterior distribution on the range of fundamentals when intervention

does not occur.

In contrast to this work, as well as a growing literature on persuasion with

multiple receivers (Inostroza and Pavan [2017], Goldstein and Huang [2016]) the

sender in our model only imperfectly observes the fundamentals. In the context of

banking, insiders such as bank equity holders or managers (i) can have an informa-

tional advantage over their creditors regarding the bank’s resilience to shocks but

(ii) still face uncertainty regarding the fate of the bank. Apart from being more

realistic in the context of banking risk management, the modelling role of residual

uncertainty on the sender’s side is crucial: despite her informational advantage, this

additional uncertainty keeps the sender uncertain regarding the fate of the regime,

therefore policy intervention cannot make even the highest type bank completely

‘run-proof’, although it changes incentives to run.

Related literature. The idea that simple risk management measures such
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as capital or liquidity can signal private information beyond the fact that higher

values can mechanically protect the bank against shocks has been proposed in the

literature before. For example, Hughes and Mester [1998] writes: “Since financial

capital constitutes the bank’s own bet on its management of risk, it conveys a credible

signal to depositors of the resources allocated to preserving capital and insuring the

safety of their deposit”. The signalling role of capital is also well recognized generally

in the corporate finance literature, albeit with somewhat inconclusive predictions

(Ross [1977],Brealey et al. [1977] and Harris and Raviv [1991]). Malherbe [2014]

interprets the bank’s liquid holdings as a signal of the underlying reason for asset

sales, so that a higher liquidity might increase adverse selection in asset markets. In

other papers, asymmetric information concerns the quality of assets, and banks are

sending credible signals either through proper security design (Nicolo and Pelizzon

[2008]) or by retention (He [2009]). An extensive literature in accounting surveys the

signalling role of loan loss provisioning (LLP), with many papers arguing that higher

LLP credibly signals a prudent risk management, and management’s intention to

resolve problem debt situations3.

Our model predicts a positive relationship between the level of risk manage-

ment measures and the value of the bank in case of first-best as well as whenever

separating equilibrium still prevails on the markets. In the case of capital, this

is consistent with Mehran and Thakor (2010), who present an elegant theory and

strong empirical support for a positive cross-sectional correlation between bank cap-

ital and market value. In their model, increased capital has two effects: it increases

the probability of survival and in turn, incentives to monitor (direct effect), while

increased loan monitoring enhances the value of the portfolio (indirect effect). The

overall impact of the two effects is that banks with lower monitoring costs will have

a higher marginal benefit of capital, and in turn, find it optimal to hold more.

The paper is also related to the large literature on bank runs. Since the

seminal contribution of Diamond and Dybvig [1983], it is well known that liquidity

transformation makes banks vulnerable to runs driven by agents’ self-fulfilling beliefs

regarding the behaviour of other agents. In the more recent follow-up literature,

global games theory4 has been routinely used to resolve the equilibrium selection

problem in the Diamond-Dybvig framework (Goldstein and Pauzner [2005]). It has

also been pointed out that liquidity, as well as capital – ceteris paribus – can serve

as a buffer, thereby dampening the probability of distress and increasing financial

stability (Diamond and Rajan [2000], Diamond and Kashyap [2016]).

3Some early contributions are: Beaver and Engel [1996], Scholes et al. [1990], Grammatikos and
Saunders [1990], Griffin and Wallach [1991]

4Carlsson and Van Damme [1993] and Morris and Shin [1998]
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The paper is organized as follows: we introduce our model in Section 2.

In Section 3, we analytically solve the model for a no-regulation equilibrium with

stylized functional forms. Section 4 analyses the impact of a minimum quantitative

regulation and discusses the most important welfare trade-offs. Section 5 provides

some empirical insights. Finally, we generalize some of our results to a larger class

of functional forms in the Appendices.

2.2 Model setup

We consider a two-period game played by two groups of players: a bank and its

creditors. In our model, a continuum of creditors of mass 1 hold demandable claims

of the bank, and simultaneously decide whether to run on the bank or not. The

bank, on the other hand, is incentivized to defend itself from runs by implementing

costly risk management practices.

The bank’s fundamental strength is determined by two random variables, θ1

and θ2, which we assume to be independently distributed. We interpret θ1 as the

bank’s inherent ability to manage its risks, that we dub as skill. The bank can be of

low-quality, θ1 = θL1 , with probability p, or high-quality, θ1 = θH1 , with probability

(1−p), where 0 < θL1 < θH1 . Parameter θ2 captures the financial fundamental of the

bank and is drawn from a uniform distribution with support on the interval
[
θ2, θ2

]
.

In period 1, the bank privately observes the realization of θ1, which is the

bank’s Harsanyi-type. Upon the observation, but before the realization of θ2, the

bank chooses a costly, non-negative risk management action s ∈ (0,+∞) to enhance

its ability to survive runs. The bank’s strategy, therefore, specifies a choice of s for

each possible realization of θ1. The risk management action s influences the ability

to survive runs directly, and also serves as an informative public signal for the bank’s

type.

The bank fails if sufficiently many creditors decide to run. In particular, we

capture the failure of the bank with a continuous, differentiable, and real-valued

regime switching function R(θ1, θ2, s, α). The bank fails whenever R(θ1, θ2, s, α) <

0, where α denotes the mass of creditors who run on the bank. We assume that the

regime switching function is such that the bank’s survival is more likely if any of the

fundamentals or the risk management action are higher, and less likely if the mass of

creditors who run is greater. Furthermore, the more skilled bank benefits more from

the risk management action for any given level of s,5 meaning the fundamental θ1

5These requirements imply that the derivatives of the regime switching function satisfy Rθ2 > 0,
Rθ1 > 0, Rs > 0, Rα < 0, and Rsθ1 > 0.
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is a measure of how effective the bank’s pre-emptive intervention can be in avoiding

bankruptcy.6 For the main part of the paper, we solve the model analytically for

the following functional form.

R(θ1, θ2, s,α) := θ1s+ θ2 − α

The bank’s payoff is specified as follows:

U(θ1, θ2, s, α) =

k − c · s if R(θ1, θ2, s, α) ≥ 0

0 if R(θ1, θ2, s, α) < 0

where k is the benefit of surviving the bank run, c is the unit cost of risk management,

and the payoff conditional on failure is normalized to zero. One interpretation of the

payoff structure is that k captures the charter value of the bank which would be lost

if the bank fails, while the zero payoff in case of failure reflects the fact that banks

are protected by limited liability. For simplicity, k and c are exogenous constants.

In period 2, the unit mass of creditors perfectly observe the public signal of

s, and each of them receives a private, noisy signal of the bank’s financial funda-

mental θ2. In particular, a creditor i ∈ [0, 1] receives private signal xi = θ2 + σεi,

where εi ∼ U(−1, 1) is independently and identically distributed across creditors.

The parameter σ > 0 captures the accuracy of the private signals. Based on the

information, the creditors simultaneously decide whether to run on the bank or not,

the two actions we denote by RUN and WAIT. We focus on the symmetric strategy

equilibrium, since creditors are ex ante identical. A creditor’s payoff from choosing

action RUN is normalized to a constant t ∈ (0, 1), while the payoff from action

WAIT depends on whether the bank survives the runs, and is specified as follows.

u(θ1, θ2, s, α) =

1 if R(θ1, θ2, s, α) ≥ 0

0 if R(θ1, θ2, s, α) < 0

We will assume throughout that fundamentals are such that even the strongest

banks can fail for any risk management actions which is taken in equilibrium, while

for a sufficiently high realization of the fundamental, a bank survives even if all

creditors run on the bank. These assumptions guarantee the existence of dominance

6One may interpret θ1 as the bank’s skill in screening loans and s as the bank’s capital ratio. A
better screening skill helps the bank to maintain a higher asset quality that is privately observed,
and the same level of capital helps a bank better if the bank has higher asset quality. Alternatively,
one may consider s being the amount of liquid asset held by the bank and θ1 being the market
liquidity of those asset in a crisis, or θ1 being the bank’s human capital in advanced risk modelling
and s being IT infrastructure required in its implementation.
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regions, where creditors find it dominant to run (resp. wait).

Assumption 1 We assume that the following parameter restrictions are satisfied:

• For every θ1 ∈ Θ, and for every s ∈ S?, θ2 < −θ1s := θ? where S? is the set

of equilibrium values of signal s

• For every θ1 ∈ Θ, and for every s ∈ S?, θ2 > 1− θ1s := θ?

Assumption 1 implies that the creditors’ bank run game has two dominance regions:

there exist θ? and θ? such that when θ2 < θ?, RUN is a dominant strategy for cred-

itors independent of their private signals. And when θ > θ?, WAIT is a dominant

strategy for creditors independent of their private signals.

The timeline is summarized in Figure 2.1. Note that the sequence of the game

has a natural interpretation: a bank’s skill for risk management can be slow-moving

and affects the bank’s risk management decisions. In the model, this is reflected in

the exogenous type θ1 and the timing that s is chosen based on the private informa-

tion of θ1. The financial fundamental (e.g., the default rate of the loan portfolio), on

the other hand, can fluctuate more frequently and therefore not (fully) revealed to

the bank when the risk management decision is made. While the creditors’ decision

to run on the bank may be instantly triggered by contemporaneous changes of the

financial fundamental, the bank may not be able to change its amount of liquidity

or capital equally fast in the presence of financial market frictions.

Figure 2.1: Timeline

The simple functional forms for the regime switching function as well as

for the payoff functions are selected to sharpen the intuition and emphasize the

interaction between the signalling and coordination stages of the game.7 In 2.B,

we analyse some of the consequences of these modelling choices and generalize the

results to a broader set of functional forms.
7Indeed, the coordination stage can be straightforwardly recast as a backbone global game of

regime change where imperfectly informed atomistic players (creditors) play a game with strategic
complementarities whether to attack (WAIT) or not (RUN) a regime (the bank) whose survival
depends on its fundamentals (θ1, θ2), actions (s), and the mass of atomistic players attacking the
regime (α).
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2.3 Equilibrium analysis

We use Perfect Bayesian Equilibrium as a solution concept. Let s(θ1) ∈ [s,∞)

denote the strategy of the bank, i.e. the risk management action chosen by type

θ1, a(xi, s) denote the action of an agent receiving private signal xi and publicly

observing risk management s, and α(θ1, θ2, s) denote the mass of creditors who run.

We define an equilibrium as follows.

Definition 1 A symmetric, Perfect Bayesian Equilibrium of the signalling-global

game consists of (1) a strategy s?(θ1) : {θL1 , θH1 } → [s,∞) for the bank, (2) a strategy

a?(xi, s) : X× [s,∞)→ {RUN,WAIT} for creditors; (3) posterior beliefs on {θ1, θ2}
for creditors upon observing {xi, s}: µi(θ1, θ2|xi, s) : X× [s,∞]→ [0, 1], such that

(1) Bank’s strategy is profit-maximizing given aggregate runs:

s?(θ1) ∈ arg max
s

EU(θ1, θ2, s, α(θ1, θ2, s))

(2) Creditors’ decision whether to run is profit-maximizing given their information

set

a?(xi, s) ∈ arg max
a

Eu(t, θ1, θ2, s|xi, s)

where aggregate attack α is consistent with individual decisions

α(θ1, θ2, s) =

∫ 1

0
a?(xi, s)di

(3) Beliefs are updated using Bayes’ rule whenever possible. Strategies are sequen-

tially rational, and consistent with beliefs.

We solve the model backwards: First, we solve the coordination game for any

given risk management level s, then determine the bank’s (sender) optimal choice

of risk management, given the second stage equilibrium.

2.3.1 Symmetric information benchmark

Our model parsimoniously captures the combination of two informational frictions:

first, there is informational asymmetry between the bank and the creditors regard-

ing the value of θ1. Second, there is incomplete information leading to strategic

uncertainty regarding creditors’ beliefs about each others’ actions.

To set up a benchmark, we start the analysis with a version of the game

where the value of θ1 is observed by the creditors as well. Without information

asymmetry regarding θ1, there is no signalling role for risk management action.

Notice that in the complete information version of the game, i.e. in the

one where θ2 is also perfectly observed by the creditors, there would be multiple
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equilibria of the subgame whenever the value of θ2 is outside of the dominant regions,

that is, θ2 ∈ (θ?, θ
?). This is caused by the strategic complementarities in the

coordination problem of creditors. We obtain uniqueness of the equilibrium using

standard global games refinement (Morris and Shin [1998], Morris and Shin [2001])

in Lemma 1.

Lemma 1 When parameter θ1 is perfectly observed by the creditors, the unique

equilibrium of the coordination-stage that survives iterated elimination of strictly

dominated strategies is characterized by two thresholds8

x̂ (θ1, s) = t− θ1s+ 2σt− σ (2.1)

θ̂2 (θ1, s) = t− θ1s (2.2)

such that creditor i runs if and only if xi < x̂, and the bank fails if and only if

θ2 < θ̂2.

Both thresholds are decreasing in type θ1 and in action s, which implies that

higher fundamental, as well as higher intervention, make survival of the bank more

likely.

Proof. See Appendix

As stated by Lemma 1, the equilibrium of the subgame is characterized by a

pair {θ̂2, x̂} which jointly solves two equations: (i) a creditor who receives signal x̂

is just indifferent between RUN and WAIT, and (ii) the bank just fails at θ̂2. The

proof in the Appendix derives these two conditions and proves that the solutions

constitute the unique equilibrium of the subgame.

Next, we solve for optimal risk management, given that the bank anticipates

correctly the equilibrium in the second stage. For any choice of s, the equilibrium

quantities {θ̂2(θ1, s), x̂(θ1, s)} determine the mass of agents who run on the bank

(α), and in turn, the probability of survival. Therefore the expected profit, which is

the bank’s objective function, can be expressed as a function of the exogenous type

θ1 and the endogenous risk management action s:

π(θ1, s) := E[U |θ1, s] = Pr[θ2 > θ̂2(θ1, s)](k − cs)

The first order condition of bank’s optimal action s? trades off the higher cost of

risk management with an increased probability of survival. Lemma 2 establishes

8Following the literature, we will refer to (variants of) θ̂2 as ‘fundamental threshold’, while x̂ as
‘strategic threshold’.
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optimal risk management action s?(θ1) and the associated payoff.

Lemma 2 When type θ1 is public information, a bank of type θ1 optimally sets

s?(θ1) and obtains payoff π?(θ1) as defined below:

s?(θ1) =
1

2

(
k

c
− θ2 − t

θ1

)
(2.3)

π?(θ1) =

(
c
(
θ2 − t

)
+ θ1k

)2
4cθ1

(2.4)

Provided that k
c > θ2−t

θ1
, both the optimal action and the optimal expected profit

increase in parameter θ1.

Proof. See Appendix

Figure 2.2 illustrates expected profits as a function of the risk management

action s. The optimal s under complete information is higher for the H-type, which

is a direct consequence of the higher marginal benefit of action. The condition in

Lemma 2 is a necessary and sufficient condition for the positivity of the optimal

action, which we will assume in order for the problem to be interesting.

Figure 2.2: Expected profit as a function of risk man-
agement action

H profit

L profit

s High

s Low

s

π

Expected profit is increasing in type, and the optimal

risk management action satisfies s?L < s?H
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2.3.2 Separating equilibrium

Moving towards analysing asymmetric information, we first characterize separating

equilibrium. In any pure-strategy separating equilibrium the two types send different

signals

s(θ1) :=

sL if θ1 = θL1

sH if θ1 = θH1

and the chosen signal reveals the type perfectly to creditors. Separating equilib-

rium can be maintained if no sender has incentives to deviate. Before formalizing

the incentive compatibility constraints, the first step is to compute payoffs off-the-

equilibrium path.

2.3.2.1 Off-equilibrium payoffs

First, consider the case where a bank of type L chooses an off-equilibrium action

and mimics type H by sending the signal sH . The creditors - believing that they

are facing a H-type bank - behave accordingly as if they were facing H-type with

certainty. Therefore, their optimal response given these beliefs is described by the

strategic threshold defined under Lemma 1 Equation 2.1 for type H:

x̂H := x̂(θH1 , sH) = t− θH1 sH + 2σt− σ

This implies that the mass of agents who would run upon any realization of θ2 is

exactly the same as if it is under type H, that is, α(x̂H , θ2)9. The off-equilibrium

fundamental threshold for the deviating type, denoted by θ̂L.H2 , is the value of θ2

which solves

θL1 sH + θ2 − α(x̂H , θ2) = 0

which implies, after substituting the expression for α and rearranging terms:

θ̂L.H2 =
x̂H + σ − 2σsHθ

L
1

2σ + 1

After substituting x̂H , defining the type difference ∆θ1 = (θH1 −θL1 ), and introducing

the notation θ̂L2 := θ̂2(θL1 ) and θ̂H2 := θ̂2(θH1 ), we obtain

θ̂L.H2 = θ̂H2 +
2σsH∆θ1

1 + 2σ
= θ̂L2 −

sH∆θ1

1 + 2σ
(2.5)

9The expression for that can be found in the proof of Lemma 1, Equation 2.3.
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Analogously, by replacing indices but keeping the definition of ∆θ1 = (θH1 − θL1 )

fixed, it is possible to define off-equilibrium thresholds for the case when H mimics

L10

θ̂H.L2 = θ̂L2 −
2σsL∆θ1

1 + 2σ
= θ̂H2 +

sL∆θ1

1 + 2σ
(2.6)

To conclude, by mimicking the other type’s action in an off-the-equilibrium

path of the candidate separating equilibrium, the bank can influence the behaviour

of creditors and induce them to behave according to the strategy what they would

follow under the other type. However, he cannot achieve the same fundamental

threshold, since the true type enters directly into the regime change function R,

which determines the threshold.

Before characterizing the equilibrium, we discuss an alternative interpreta-

tion of the off-equilibrium thresholds (2.5) and (2.6). For any given (not necessar-

ily equilibrium) s, the functions θ̂L.H2 (s) and θ̂H.L2 (s) can be understood as failure

thresholds for type L (respectively H), if its creditors believe it to be the other type.

These functions define an additive decomposition of the difference between the two

types’ complete information fundamental thresholds for a given s. For example,

using Equation (2.5), we can write

θ̂L2 (s)− θ̂H2 (s) =
2σs∆θ1

1 + 2σ︸ ︷︷ ︸
Direct effect

+
s∆θ1

1 + 2σ︸ ︷︷ ︸
Indirect effect

(2.7)

Equation 2.7 decomposes the difference between the fundamental thresholds under

complete information into a sum of a direct effect, attributable to the fundamental

difference between types L and H, and an indirect effect, which is solely due to

creditors’ beliefs. As we show in the next section, the larger the indirect effect is, the

more a low-type can potentially benefit from mimicking the high type, and similarly,

the larger is the potential loss for a high type for not being able to distinguish himself

from a low type.

If type L is believed to be11 type H at some signal s, she obtains the following

expected payoff:

π(s, θL1︸︷︷︸
true

, θH1︸︷︷︸
perceived

) = Pr
[
θ2 > θ̂L.H2

]
(k − c · s) (2.8)

The optimal off-equilibrium action (that is, optimal action if type L is believed to

10As will be clear in the equilibrium analysis, H would never want to mimic L. Yet, he might find
it optimal to go ‘off-path’, in which case his payoffs are characterized by θ̂H.L2

11that happens if she successfully mimics type H
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Figure 2.3: On- and off-path equilibrium payoffs

H eqm

L eqm

L off-path

H off-path

s

π

be type H) is derived from the first-order condition ∂π/∂s = 0, which implies the

optimum off-equilibrium intervention and expected profits:

s?L.H =
1

2

(
k

c
+

(1 + 2σ)(t− θ2)

2σθL1 + θH1

)
= 0 (2.9)

π?L.H = π(s?L.H , θ
L
1 , θ

H
1 ) =

(
−c(2σ + 1)

(
t− θ2

)
+ k(2σθL1 + θH1 )

)2
4c(2σ + 1)

(
2σθL1 + θH1

) (2.10)

Analogous expressions can be derived for s?H.L and π?H.L. It is straightforward to

show that the following relationships hold:

s?L < s?L.H and s?H > s?H.L (2.11)

π(s, θL1 , θ
L
1 ) < π(s, θL1 , θ

H
1 ) and π(s, θH1 , θ

H
1 ) > π(s, θH1 , θ

L
1 ) ∀s (2.12)

Off-equilibrium payoffs and optimal actions are critical in analysing the existence

of equilibrium. In particular, the profit π?H.L is H-type’s minimax payoff: even with

the most adverse beliefs of creditors (if all believe he is of bad type), he can obtain

payoff at least π?H.L. Therefore, in any proposed equilibrium, type H’s payoff must

exceed π?H.L. Note that in contrast, the low type’s (L) minimax payoff is π?L.

Figure 2.3 illustrates on- and off-equilibrium payoffs as a function of an ar-

bitrary policy intervention s. In the next section we establish the values of s which

can be maintained as separating equilibrium.
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2.3.2.2 Characterization of separating equilibrium

Our equilibrium concept does not place any restrictions on the beliefs off-the-

equilibrium path, which are never reached to verify those beliefs. Following the

standard signalling literature, we impose the following belief system: if creditors

observe any off-equilibrium risk management action s 6= {sL, sH}, they believe that

the regime is of low type. Otherwise, if they observe an equilibrium action, they

believe that they are facing with the appropriate type with certainty. Under this

specification, every equilibrium signal which gives at least as much profit to both

types as they would get under ‘low type’ beliefs can be maintained.

Equilibrium requires that no types have incentives to deviate from the pro-

posed equilibrium actions {sL, sH}. First, note that in any separating equilibrium,

types are revealed, so the L-type will find it optimal to set sL = s?L, and obtain

profit π?L. A separating equilibrium in which the high-type sets some value sH and

the low type sets her optimum value s?L can be maintained if and only if

πeq(s?L, θ
L
1 ) ≥ πoff (sH , θ

L
1 , θ

H
1 ) (ICL)

πeq(sH , θ
H
1 ) ≥ πoff (s?H.L, θ

H
1 , θ

L
1 ) (ICH)

where πeq is equilibrium payoff given the specified belief system, while s?H.L is the

best deviation for the high-type, specified in the previous section. Let us denote by

scriL the value of sH which solves [ICL], that is, the value of a separating signal at

which the L-type is just indifferent between mimicking the high type, or setting s?L
and obtaining her minimax profit. This is the value of s which solves

Pr
[
θ2 > θ̂L2 (s?L)

]
(k − c · s?L) ≥ Pr

[
θ2 > θ̂L.H2 (s)

]
(k − c · s)

The right-hand-side is a quadratic function with a negative coefficient of the quadratic

term and with maximum value exceeding the constant on the left-hand-side, so the

corresponding equality has two solutions
(
scriL,1 < scriL,2

)
. Incentive compatibility re-

quires that sH /∈ [scriL,1, s
cri
L,2], otherwise L-type would have an incentive to mimic the

H-type. In this case πeq(scriL.1, θ
H
1 ) < πeq(scriL.2, θ

H
1 ) implying that the individually

rational choice for the good type is to send a high signal, and the level which can

maintain a separating equilibrium must fulfil sH ≥ scriL.2.

Similarly, define scriH to be the critical s which is incentive-compatible for

type H and solves [ICH ]. This is the level of intervention at which the profit for a

H-type in a separating equilibrium is at least as much as his best achievable profit

if he is believed to be of low-type. This latter utility is the high-types’ minimax
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payoff - irrespectively of creditors’ beliefs, he can always achieve at least π?H.L by

setting the off-equilibrium profit-maximizing level of s.12 After substituting the

profit functions, [ICH ] leads to:

Pr
[
θ2 > θ̂H2 (s?H)

]
(k − c · sH) ≥ Pr

[
θ2 > θ̂H.L2 (s?H.L)

]
(k − c · s?H.L)

which, by similar argument,, has two solutions: scriH.1 and scriH.2. We can characterize

the existence of a separating equilibrium in terms of the thresholds derived above

as follows.13

1. A separating equilibrium exists and it restores the symmetric information

benchmark if and only if scriL.2 ≤ s?H .

2. A separating equilibrium exists and in this equilibrium the high-type sets

inefficiently high risk management action if and only if s?H < scriL.2 ≤ scriH.2.

3. A separating equilibrium does not exist if and only if scriH.2 < scriL.2.

We derive closed form analytical formulas for the critical values in the Ap-

pendix along with some limiting cases, which we will use in the following discussion.

Theorem 1 establishes the link between the cost of risk management, precision of

private signals, and the existence of separating equilibrium.

Theorem 1 There exists an ‘efficient’ separating equilibrium in which signals coin-

cide with the symmetric information benchmark if and only if the noise in creditors’

private observation is sufficiently large, that is, if and only if

σ ≥ σ

Whenever σ < σ, and c > ĉ, there exists an ‘inefficient’ separating equilibrium in

which the bank must choose a higher-than-the-first-best risk management interven-

tion, where ĉ is defined as

ĉ =

√
∆θ1(kθL1 )2(

3θL1 + θH1
) (
θ2 − t

) (2.13)

Whenever c < ĉ, there exists a lower boundary σ(c) such that separating equilibrium

does not exists for every σ < σ(c).

12Note the difference here: L-type’s minimax payoff is π?L while type H’s minimax payoff is π?H.L
under the specified beliefs.

13We concentrate only on the ‘upper’ regions, which is relevant for our application. It is straight-
forward to extend the analysis to the lower part.
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Figure 2.4: Separating Equilibrium
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Equilibrium with high σ (low precision)
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(b) High-type sends inefficiently high inter-
vention with low σ (high precision)

Proof. See Appendix

The Theorem is illustrated in Figure 2.4. The precision of creditor’s sig-

nal (1/σ) has a critical role in determining which type of equilibrium can survive.

If information is less precise, the potential benefit/loss from mimicking the other

type decreases. This is because if type L mimics type H, the (off-the-equilibrium-

path) strategic threshold x̂ is pinned down according to the equilibrium of type

H, but the fundamental threshold, which enters directly into the integral bound-

ary of the expected profit, is not.14 More noisy private information pushes the

realized fundamental threshold upwards, which decreases the profit which can be

obtained by mimicking type H. This, in turn, decreases the critical threshold of

low-types incentive compatibility constraint, scriL.2, which approaches s?L as σ → ∞.

Since lim scriL.2 < s?H , due to continuity there exists an σ (denoted by σ) at which

scriL.2(σ) = s?H . Consequently, if and only if the fundamental is observed with large

enough noise (σ > σ) the separating equilibrium is efficient (i.e. restores bank-

optimal first-best). If the equilibrium is inefficient, the distortion increases as the

noise becomes more precise.

Intuitively, the more precise receivers’ private observation is, the more cor-

related is creditors’ behaviour. This implies, with higher precision the effective

strategy, defined as the probability of run for any realization of fundamental θ2, is

more ‘extreme’ (see Figure 2.5). In particular, with σ → 0, the effective strategy

converges to a limiting case where all creditors run if and only if xi ≤ θ̂1, and no

14A way to think about this is: in the standard global game, the fundamental threshold is fixed
when precision in varied, and the strategic threshold adapts to the changes. In contrast, when L
mimics H, the strategic threshold is fixed and the realized fundamental threshold varies. When the
strategic threshold of H shifts to the left due to increased noise, the fundamental threshold must
shift to the left as well.
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agents attack otherwise (2.5a). However, the more extreme is the effective strategy,

the more important it is to ‘get the other parameters right’. The aggregated strate-

gic error by following a certain strategy which happens to be wrong is largest when

the information which determines the strategy is the most precise. On the other

hand, with lower precision the effective strategy is more ‘flat’, and the effect of not

knowing the other parameter (θ1) correctly is smoothed out by the relative flatness

of the effective strategy (2.5b). This decreases the potential benefit of mimicking

the H-type.

Figure 2.5: Equilibrium determination as a function of noise
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(a) High precision leads to highly coordi-
nated behaviour...
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(b) ...while low precision maintains uncer-
tainty regarding creditor’s behaviour.

2.3.3 Regulation in separating equilibrium

In this section we show how a minimum threshold regulation can eliminate sepa-

rating equilibria. Let us denote the regulatory minimum by sp. Under a binding

risk management regulatory regime the action space of the bank is restricted to the

interval s ∈ [sp,∞).

A minimum requirement changes minimax payoffs for both types. We will

assume that minimum policy is high enough to be binding for both types in the

sense that it exceeds their minimax strategies, i.e.

sp ≥ s?H.L

This single condition is sufficient, since s?L < s?H.L, so the constraint will always be

binding for L-type. Then, we can reformulate IC’s for a separating equilibrium as

πeq(sp, θ
L
1 ) ≥ πoff (sH , θ

L
1 , θ

H
1 ) (ICL)

πeq(sH , θ
H
1 ) ≥ πoff (sp, θ

H
1 , θ

L
1 ) (ICH)
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Figure 2.6: Impact of regulation on the equilibrium
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(b) Regulation is effective: separating equilib-
rium fails

where sH denotes the signal an H-type sends in a separating equilibrium. Similarly

to the previous (no-regulation) case, we can define scriL (sp) and scriH (sp) as the value

of s which solves the two IC’s respectively with equality, now both regarded as a

function of regulatory threshold sp. Then, the critical regulatory threshold level

which guarantees that separating equilibrium does not exist is determined by the

equation:

scriL (sp) = scriH (sp) (2.14)

Theorem 2 As long as the regulatory minimum policy sp exceeds a critical reg-

ulatory minimum scrip as defined by equality 2.14, that is, sp ≥ scrip , separating

equilibrium does not exist. The critical regulatory level is defined as follows:

scrip =

(
(1 + 2σ)(θ2 − t)

∆θ1
+
k

2c

)
−

√[
(1 + 2σ)(θ2 − t)

∆θ1

]2

+

[
k

2c

]2

(2.15)

The pooling equilibrium in which all types of banks set scrip Pareto-dominates from

the banks’ perspective all other pooling equilibria.

Proof. See Appendix

Figure 2.6a depicts a situation where, despite a quantitative minimum reg-

ulation for policy being in place, a separating equilibrium still survives, as scriL (the

policy which is just incentive-compatible for the low type) is lower than scriH (just

incentive-compatible for the high type). The regulator must increase the minimum

policy to at least scrip , where scriL = scriH , so no separating equilibrium exists anymore

(figure 2.6b).

Now we state a result which has interesting implications for the effect of

regulation during a crisis situation.
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Corollary 1 The critical regulatory threshold decreases in precision 1/σ

The intuition behind this result is straightforward. We have seen that with

high precision, the inefficiency in a separating equilibrium is very high as high-quality

institutions are sending excessively high signals to distinguish themselves from low-

quality institutions. However, this is exactly the situation when it is relatively easy

for a regulator to squeeze out the separating equilibrium by setting a relatively low

pooling threshold. Since the incentive compatibility constraints for the H-type are

already close to binding, a little bit more pressure induced by the regulator can

be sufficient to break down separation. Figure 2.7 illustrates the level of critical

regulatory minimum as a function of noise (σ) in private information.

Figure 2.7: Critical regulation
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Critical regulatory threshold increases

in the noise of private information

It is possible to interpret this result in the context of the cyclicality of banking

regulations. Noisy private signals are consequences of turbulent economic periods, as

increased uncertainty amplifies strategic uncertainty and information asymmetries

among creditors. In this case, as we discussed before, there is relatively little to gain

from mimicking the other type, so it is easier to maintain a separating equilibrium.

On the other hand this means that a regulator must maintain a relatively strict

minimum policy if he wants to squeeze out separation. In contrast, in normal

times - represented by a small idiosyncratic noise in our model - there is more

temptation to mimic high-types, leading to highly inefficient separating signal levels.

An already high risk management signal is however relatively easy to squeeze out.

This effect can explain why - observationally - signalling seems to be more prevalent

during turbulent times. A regulation in place which is just sufficient to impose

pooling in a normal market environment, might not be sufficient to achieve the
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same during turbulent times, when strategic uncertainty is greater, so financial

institutions engage more and more in costly signalling as the markets shift towards

a crisis period.

2.3.4 Pooling equilibrium

In any pooling equilibrium the same signal is chosen by both types of banks, which

conveys no information to the creditors. Equilibrium of the coordination stage is

determined analogously to a standard global game with an important twist: given

creditors’ strategy, represented by the threshold x̂, which must be the same under

both types of banks in a pooling equilibrium, the fundamental threshold for the

two types will be different. This has to be taken into consideration by the creditors

when calculating equilibrium strategies. In conclusion, any pooling equilibrium

is characterized by a common strategic threshold for creditors x̂, and a distinct

fundamental threshold for each type of banks, θ̂L2 6= θ̂H2 , such that (i) creditors run

if and only if xi ≤ x̂, and (ii) a bank of type L (resp. H) fails if and only if θ2 ≤ θ̂L2
(resp. ≤ θ̂H2 ). The equations determining the equilibrium of the global game change

accordingly: (i) a creditor who receives private signal x̂ should be just indifferent

between actions RUN and WAIT, given that banks of type {L,H} fails if and only

if the fundamental θ2 is below the respective threshold and the (posterior) beliefs

are (pL, pH), and (ii) a bank of type L(resp. H) fails exactly at θ̂L2 (resp. θ̂H2 ) if

creditors run if and only if xi < x̂. Pooling equilibrium thresholds are characterized

by Lemma 3.

Lemma 3 In any pooling equilibrium where banks follow the same risk management

strategy sp, the equilibrium of the stage 2 subgame (coordination stage) is charac-

terized by fundamental thresholds θ̂L,P2 and θ̂H,P2 and strategic threshold x̂ where

θ̂L,P2 (sp) = t− spθ1

1 + 2σ
− 2σspθ

L
1

1 + 2σ

θ̂H,P2 (sp) = t− spθ1

1 + 2σ
− 2σspθ

H
1

1 + 2σ

and

x̂ = 2σt− σ + pLθ̂
L,P
2 + pH θ̂

H,P
2

Proof. See Appendix

27



From Lemma 3, the thresholds can be rewritten as

θ̂L,P2 (s) = θ̂L,FI2 (s)− pH∆θ1

1 + 2σ
s

θ̂H,P2 (s) = θ̂H,FI2 (s) +
pL∆θ1

1 + 2σ
s

where FI index stands for the full-information threshold. Some consequences can be

seen immediately. First, for every s we obtain that θ̂H,FI1 (s) < θ̂H,P2 (s) < θ̂L,P2 (s) <

θ̂L,FI1 (s). In this sense, pooling among the two types of banks implements a cross-

subsidy across types, as for any given level of risk management, increases L-type’s,

while decreases H-type’s payoff. Second, as the noise of private information in-

creases, the pooling thresholds continuously approach the full-information thresh-

olds, so the cross-subsidy effect of pooling decreases. Intuitively, similarly to the

case with separating equilibrium, with an increasing noise in the private signals,

fundamental thresholds become less-and-less responsive to other parameters of the

game, dampening the effect of the shift in the strategic threshold. Finally, as the

ex-ante percentage of low (high) types increases, the strategic threshold in pooling

approaches the full information low (high) threshold.

The following Corollary will turn out to be useful to characterize welfare

effects:

Corollary 2 The average fundamental threshold in any pooling equilibrium is a

linear function of the average type θ1 = pLθ
L
1 + pHθ

H
1 . Precisely,

θ
P
2 (s) = t− s(pLθ

L
1 ) + pHθ

H
1 )

1 + 2σ
− pL

2σsθL1
1 + 2σ

− pH
2σsθH1
1 + 2σ

= t− θ1s

Now we turn to the question of which risk management actions can be main-

tained in a pooling equilibrium. The complication arises from the fact that the

equilibrium concept we used so far does not place any restrictions on the beliefs

off-the-equilibrium path, which are never reached to verify those beliefs. First, we

assume that agents’ beliefs are characterized as follows:

• (Equilibrium path) If agents observe the pooling level intervention, sp they

play according to respective coordination game, as defined above;

• (Off-the-equilibrium path) if agents observe any other intervention s 6= sp they

believe that the regime is of low type.

This belief system is often used in the signalling literature as a benchmark. Under

this specification, every level of risk management which gives at least as much profit
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to both types as they would get under ‘low type’ beliefs can be maintained. Since the

privately optimal levels for the two types are different, there is no Pareto-dominant

pooling equilibrium.15 However, any policy intervention sp /∈
[
sL?p , sH?p

]
is Pareto-

dominated by some intervention level sp ∈
[
sL?p , sH?p

]
.

Banks may be pooling on various values of action s, which potentially leads

to a continuum of pooling equilibria. This set of equilibria is limited by the usual

incentive compatibility constraints: in any proposed equilibrium, both types should

get a higher payoff than in any off-equilibrium path. Because according to the spec-

ified belief system, on any off-equilibrium path banks are perceived to be low-types,

their best deviation is to implement the optimal action, given that the perceived

type is ‘low’. Thus, any candidate equilibrium sp is such that

πoff
(
s?L; θL1 , θ

L
1

)
≤ πpeq(sp; θ

L
1 ) (2.16)

πoff
(
s?H.L, θ

H
1 , θ

L
1

)
≤ πpeq(sp, θ

H
1 ) (2.17)

These incentive compatibility constraints select a critical value — denoted

by smaxp — as a maximum incentive-compatible signal in a pooling equilibrium16.

Theorem 3 There exist a pooling equilibrium where both types of banks send a sig-

nal sp for every sp ∈ [s?, s
?], where the critical values solve the incentive compatibility

constraints in Equation 2.16 and 2.17.

Proof. Follows from above.

2.4 Payoffs and incentive-compatible regulations

In this section we analyse ex-ante expected payoffs for the bank and the creditors

separately, and draw some conclusions regarding the welfare effects of regulation. For

the ease of exposition let’s denote any equilibrium as Q := {sL, sH , θ̂L2 , θ̂H2 , x̂L, x̂H},
where {sL, sH} are equilibrium first-stage strategies of a bank of type L,H, {x̂L, x̂H}
are strategic thresholds and {θ̂L2 , θ̂H2 , } are fundamental thresholds of type L,H.17

15This is in contrast to, for example, a simple Spence-model, where zero education by both types
Pareto-dominates all other pooling equilibria.

16Precisely, they will select also an sminp and for the lower boundary the first IC may be binding,
but the upper boundary is the interesting one for our application.

17If Q is a pooling equilibrium, {sL = sH} and {x̂L = x̂H}
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2.4.1 Bank’s expected payoff

Let πQL (resp. πQH) denote the low (high) type’s ex-post expected payoff in any

equilibrium Q, and p the probability mass of low-type banks. Then the expected

payoff for a bank from ex-ante point of view (i.e. before learning his type) can be

formulated as:

E
[
πQ
]

= pπQL + (1− p)πQH (2.18)

Recall that (irrespectively how the threshold and in turn the probability of survival

is calculated) the bank’s payoff can be written generally for τ ∈ {L,H} as

πQτ =
1

2η

(
θ2 − θ̂τ,Q2 (sQτ )

) (
k − csQτ

)
where the variables θ̂τ,Q2 and sQτ are the equilibrium-Q values for type τ .

Pooling equilibrium [PE]: In any PE sQτ = sp for all τ , so for an arbitrary sp,

EπPE = pπL(sp) + (1− p)πH(sp) = π(θAV1 , sp)

=
1

2η

(
θ2 − θ̂2(θAV1 , sp)

)
(k − csp)

The simple formula facilitates easy comparative statics: the ex-ante expected payoff

in pooling is not a function of noise, and is decreasing in p 18.

Separating equilibrium [SE]: We focus only on the least-costly SE, which is

well defined by exogenous parameters. Recall that in this equilibrium the separating

action by the low-type is the optimum value according to the symmetric information

benchmark s?L, and she obtains her minimax profit, while the high-type sets the

appropriate critical value scriH.2 and obtains a profit which is (weakly) less than the

benchmark value. The ex-ante expected payoff to the bank is therefore always

(weakly) below the symmetric information value, and the welfare loss relative to

this benchmark is concentrated on the high-type. Formally, we have:

EπSE = pπL(s?L) + (1− p)πH(scriH.2),

From ex-ante point of view the bank prefers pooling over separation if and only if

EπPE(sp) > EπSE (2.19)

This can be calculated analytically, however, is tedious due to the complicated

formula for separating equilibrium expected payoffs, and we resort to numerical

18The derivative is ∂
∂p

= − 1
2η

(k − csp)sp∆θ1 < 0
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Figure 2.8: Illustration of banks’ ex-ante expected payoff

Expected payoff is larger in pooling then in separation from ex-ante point of view,
and for the both types separately (dashed and dotted lines)

analysis. The ex-ante expected pooling profit is a concave function of sp (blue

curve in Figure 2.8). As long as the optimal pooling, derived analytically in 2.A.6.1,

exceeds profits from separating equilibrium (red), there exists a compact interval of

risk management actions at which pooling is ex-ante preferred to separation. We

focus on the upper threshold of this region which we denote by notation scrip . If this

threshold exists, pooling is preferred by the banks from ex-ante point of view for all

sp < scrip .

In the context of the welfare impact of regulations, this implies that pooling is

preferred by banks whenever the regulatory requirement required to induce pooling

is not too large. From the banks’ point of view, the optimal regulatory threshold

would be the one which is just sufficient to squeeze out incentives for inefficient

signalling, but not too large yet to impose an extra burden for both types of banks

in the form of a too restrictive regulation. Notice that as can be seen from the figure,

similar conclusions follow not just from ex-ante point of view (when types are not

known), but after the realization, for the two types separately. The high-type bank

benefits from the reduction of costly signalling, why the low-type benefits from the

cross-subsidy effect in the resulting pooling equilibrium.

The critical value scrip strictly decreases in p. In particular, in the limit where

p → 0 (almost all banks are H-types), scrip = scriH.2, that is, the critical regulatory

level equals the risk management level in a least-costly separating equilibrium. This

means every pooling below this value is welfare-improving (Figure 2.9a). It might

be useful to note that the least-costly separating equilibrium does not depend on
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Figure 2.9: Illustration of banks’ ex-ante expected payoff:
Limiting cases

(a) Banks’ ex-ante payoff as p→ 0 (b) Banks’ ex-ante payoff as p→ p?

the type distribution: maintaining separation is just as costly if there is only one

single low-type bank as if there are many19. Consequently, being in a separating

equilibrium is more ‘inefficient’, therefore more costly overall, when the mass of

low-type banks is low (small p).

In the other limit, as p→ 1 the critical value scrip converges to the low-type’s

minimax payoff, and pooling is never welfare-improving. The intuitive reason is that

pooling is not particularly desirable for either types when very large number of low-

type banks are present, as low-types have little to gain while high types have much

to loose. Using continuity arguments it is possible to show the existence of a critical

probability level p? such that a (critical) regulatory threshold which just imposes

pooling improves ex-ante payoff if and only if p < p? (this situation is depicted in

Figure 2.9b). Formally, this is the value of p which solves expression (2.19) with

equality.

Finally, the critical value scrip strictly decreases in the creditors’ private noise

σ, and this implies the existence of a critical noise σcri such that pooling is beneficial

if and only if σ < σcri. Intuitively, pooling is more likely to be preferred by banks

if the noise in creditors’ private information is not too large, because in this case

maintaining separation is relatively costly, just as discussed before in more details.

To sum up the intuition, we can conclude the followings: (i) ex ante, banks

may (but do not necessarily) prefer pooling on not too large risk management

actions. This prevents them from sending inefficiently high signals in a separating

equilibrium, and boosts payoff due to cross-subsidy. (ii) Lower noise / higher preci-

sion increases the costs of inefficient separation for the high-type. This makes banks

19The difference compared to a hypothetical payoff in a pooling equilibrium, however, is not
distribution-independent.
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to like pooling even more, and to prefer it over separation at even higher (regulatory)

levels. In addition, lower noise in private information pushes down the minimum

threshold which is required to force out separating equilibria. (iii) With more high

type banks in the population, costly signalling happens more often, therefore banks

prefer pooling even more from ex-ante point of view.

2.4.2 Creditors’ expected payoff

The creditor’s payoff is t if she withdraws, 1 if the bank survives and she stays, and 0

in case of bankruptcy. The expected payoff reflects that (i) higher risk management

action has a fundamental stabilizing role, so ceteris paribus creditors would always

prefer higher signals; (ii) when comparing pooling with separation, the benefits of

high-types’ (excessive) risk management signals are weighed against low-type’s lower

action.

Separating equilibrium: In Appendix we derive creditors’ ex-ante expected

payoff analytically. Because in any separating equilibrium types are perfectly re-

vealed, the ex-ante payoff is the probabilty-weighted average of the symmetric in-

formation benchmark payoffs using the prior probability distribution (p) as weights.

Lemma 4 The (conditional) expected payoff to the creditors of a bank with known

(or correctly deduced) type τ ∈ {L,H} who exert an arbitrary risk management

action s is

E1[u|τ ] =
1

2η

(
(θ2 − tθ2)− σt(1− t)− (t− θτ1s)(1− t)

)
, where θ2 = θ2 − 2η.

Proof. See Appendix

We are particularly interested in the unique, least-costly separating equilib-

rium, in which the risk management signals send by low (high) type respectively

are given by s?L and scriH.2. The ex-ante expected payoff in the least-costly separating

equilibrium is

E0u = pE1[u(s?L)|L] + (1− p)E1[u(scriH.2)|H]

=
1

2η

(
(θ2 − tθ2)− σt(1− t)− (1− t)

(
t− pθL1 s?L − (1− p)θH1 scriH.2

))
Ceteris paribus creditors prefer higher risk management action because of their

stabilizing role. In a separating equilibrium the high-type sends higher signals which
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directly improves creditors’ payoff, but the low-type’s low action decreases creditors’

payoff compared to pooling on some higher value.

Lower precision of creditors’ private signal decreases payoff, as it increases

strategic threshold, while keeping the fundamental threshold fixed. That increases

the likelihood of making both types of errors (withdrawal if the bank eventually

survives or stay while it fails). Lower precision has another indirect effect which

points to the same direction: it decreases the separating signal level, which decreases

payoff of the creditors.

Pooling equilibrium: Expected payoff in a pooling equilibrium is slightly

more tedious to calculate because we have to take into account that the two types of

banks are facing a mass of creditors who follow the same strategy in equilibrium, but

the banks have different failure thresholds. Nevertheless, the calculations are fairly

straightforward using the expressions derived under Pooling Equilibrium section.

Lemma 5 In any feasible pooling equilibrium when banks pool at risk management

signal s, creditors facing the type {L,H} respectively obtain the following expected

payoffs:

E1[u|L] =
1

2η

(
(θ2 − tθ2) + (t2(1 + 2σ)− tθAV1 s− 2σt) + tσ − σ(t− spH∆θ1

1 + 2σ
)2 − θ̂LP

)
E1[u|H] =

1

2η

(
(θ2 − tθ2) + (t2(1 + 2σ)− tθAV1 s− 2σt) + tσ − σ(t+

spL∆θ1

1 + 2σ
)2 − θ̂HP

)
The ex-ante expected payoff is therefore

E0u =
1

2η

(
(θ2 − tθ2) + t2(1 + 2σ) + θAV1 s(1− t)− σt− σpL

(
t− spH∆θ1

1 + 2σ

)2

− σpH
(
t+

spL∆θ1

1 + 2σ

)2

− t

)

where pL = p and pH = 1− p.

Proof. See Appendix.

It is possible to analytically determine the region where a pooling equilibrium

is preferred by creditors from ex-ante point of view, but the calculations are tedious.

When p = 1 (all types are low-types), the SE-payoff equals to the PE-payoff if s

is set to s?L. Pooling on every other value higher than that improves the creditors’

payoff. In contrast, when p = 0 (all types are high-types), the SE-payoff equals

the pooling payoff if pooling were set to the separating (high) level action. In this

situation imposing pooling at any level s < scrii reduces the payoff to creditors (but

leaves more profit to the banks). In every point between those extremes, there exists

a pooling level s0
p which is just sufficient to make sure that EuSE < EuPE . This

value is decreasing in p (with more low-type banks, a lower pooling level is sufficient
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Figure 2.10: Illustration of creditors’ payoff

to increase utility of creditors).

Creditors’ payoff is increasing in precision in all equilibria. This is due to the

decrease in both types of errors what creditors make due to the effective strategy.

Higher precision means higher separating signal for the high type, as established

in the ‘separating equilibrium’ section. That means, a higher sp is required to

‘compensate’ creditors. Higher precision pushes s0
p upwards.

2.5 Empirical analysis

We illustrate our model with two simple empirical analyses. The first example builds

on the recent introduction of Liquidity Coverage Ratio (LCR) in the US. In essence,

the LCR places a quantitative lower bound on the amount of liquid assets which

must be held by financial institutions at all time. In the analysis we exploit the fact

that the rule only applies to ‘large, internationally active’ bank holding companies

and show that - consistently with the idea of squeezing out separating equilibrium

- the introduction of LCR regulation was followed by a larger decrease of volatility

of cash ratios for holding companies which were subject to the newly introduced

regulation, compared to those below the threshold of qualifying for regulation.

Our second example investigates changes in equity ratios around the intro-

duction of the first generation of Basel capital regulations in 1988. Interestingly,

the data shows a significant increase of the number of banks with high capital ratios

after the introduction of the new regulatory regime. According to our theory, this

is consistent with a quantitative regulatory requirement set too low, and therefore

being unable to squeeze out separating equilibrium.
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2.5.1 Liquidity Coverage Ratio

As part of its regulatory reform package in response to the financial crisis known

as Basel III, the Basel Committee of Banking Supervision has put forward a series

of measures concerning the liquidity risk framework of financial institutions. The

agenda consists of two key elements: the Liquidity Coverage Ratio (LCR) requires

banks to hold an adequate amount of highly liquid assets to cover outflows in a

crisis scenario over a 30 days period, while the Net Stable Funding Ratio (NSFR)

supplements this measure by ensuring a sustainable asset-liability maturity structure

over a longer time horizon. In our analysis we focus on the former measure.

The Basel Committee announced the final version of LCR in January, 201320

and adopted a gradual approach for implementation, with the full version in effect

from January 2019. In November 2013, US authorities proposed an LCR regulation

largely consistent with the guidelines set forth by the Basel Committee. The final

rule was adopted in September 2014, being in effect from January 2015, with a much

shorter transition period than the Basel III proposal “to preserve the strong liquidity

positions many U.S. banking organizations have achieved since the recent financial

crisis”.

For our analysis, we have constructed a ‘treatment’ sample consisting of in-

ternationally active bank holding companies (BHC’s) with Total Assets more than

$50bn, and we look at changes of cash ratios (defined as Cash / Total Assets) from

2011 to 2016, based on FR-Y-9C filings. Our control sample consists of BHC’s with

Total Assets between $10bn and $40bn, which consistently reported throughout the

whole sample period. Table 2.1 summarizes the treatment and control sample.

treatment control

nrBanks 32 73
avgCashRat 0.0142 0.0143

stDevCashRat 0.0067 0.0082
totalAsset 441 765 936 16 799 271

Table 2.1: Overview of treatment and control samples

Findings

We find that both the mean and the standard deviation of cash ratios de-

creased during the period for both the treatment and the control sample. However,

following the announcement of Basel III LCR, and especially around the introduc-

20Basel III, B.C.B.S. “The Liquidity Coverage Ratio and liquidity risk monitoring tools.” Bank
for International Settlements (2013).
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Figure 2.11: Distribution of cash-ratios of large BHC’s
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tion of the follow-up US regulation, the standard deviation of cash ratios in the

treatment sample started to decrease significantly more sharply than that of the

control sample (see Figure 2.12). This was mainly driven by the disappearance of

larger values (i.e. BHC’s with too high cash ratios, see Figure 2.11), which, in the

context of our model, can be interpreted as an elimination of separating equilibrium.

We plot the six BHC’s with the biggest cash drops on average before/after the event

date in Figure 2.13a. To further emphasize this finding, in Figure 2.13b we plot the

difference of average standard deviation for the sample and treatment group before

and after the date of announcement of US regulation. The increasing difference jus-

tifies the larger clustering of observations in the treatment sample relative to control

as an effect of introducing liquidity regulation.

Finally, we perform a Kolmogorov-Smirnov test to mechanically compare the

distributions of treatment and control samples. Before the announcement of LCR

regulation, we cannot reject the null-hypothesis that the two distributions are the

same (p-value: 0.79), while it can be rejected after the event (p-value: 0.01).
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Figure 2.12: Standard deviation of cash ratios
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Dispersion of cash-ratios decreased more sharply for BHC’s above
the regulation threshold than those of below the threshold.

Figure 2.13: Impact of LCR regulation
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(b)

2.5.2 Basel I Capital Regulation

Our second empirical analysis focuses on the introduction of minimum capital reg-

ulations under Basel I. The Basel Committee of Banking Supervision (BCBS) pub-

lished the requirements in 1988 and required banks to maintain a minimum ratio of

capital over total risk-weighted asset. Although we do not attempt reconstruct the

nominator (weighted sum of various elements of banks’ capital) or the denominator

(risk-weighted assets), we believe that for our purposes the plain equity ratio defined
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Figure 2.14: Distribution of equity ratios
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Total Equity

Total Assets

will suffice. Figure 2.14 plots the distribution of equity ratios of the top 100 (by

Total Asset) US-regulated bank in the period 1985-1996. Even without any formal

statistical analysis, a significant structural change is recognizable around the intro-

duction of Basel I (although announced in 1988, the capital requirements were bind-

ing from 1992). First, the bottom-end of the distributions notably shifted upwards,

consistently with the regulatory intention behind the new set of rules.21 Another

visible characteristic however, which was certainly not an explicit regulatory aim,

an increase in variance, and especially an increase of the number of ‘outliers’, i.e.

institutions maintaining significantly larger equity ratios.

In the context of our model, this effect is consistent with a quantitative

regulatory minimum which is not sufficiently large to squeeze out separating equi-

librium. Indeed, as we have shown in Section 2.3.3, an insufficiently high regulatory

minimum can preserve the incentives for signalling and even increase the minimum

signal which is required to maintain separation.

21Note that this notable upward shift is missing from the time series of distributions of cash
ratios. This is due to the fact that cash holdings have significantly increased during the financial
crisis, but already were on a downward trajectory, and one of the reasons of the swift introduction
of LCR in the US was to prevent the elevated levels to fall below pre-crisis levels.
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2.6 Conclusions

In this paper we proposed a model which combines signalling and global games to

understand the informational impact of risk management measures and the possible

effect of regulation in banking. We established two main results: (i) absent regu-

lation, banks have incentives to signal their quality and may engage in ‘excess risk

management’, which is inefficient; (ii) a financial regulation can squeeze out ineffi-

cient separation and improve welfare by introducing a quantitative minimum of the

given risk measure. Our results provide a novel perspective on understanding some

consequences of financial regulation.

The model has testable empirical predictions: for example, in the context of

liquidity holdings, in the absence of quantitative regulation in place, we expect high

dispersion of liquidity ratios, which is consistently found in bank as well as mutual

fund databases. Introducing liquidity regulation neutralizes this incentive, so we

expect clustering of observations around the requirement. We find that changes in

cash ratios following the recent introduction of LCR ratios in the US are consistent

with this hypothesis. Changes in equity ratios, however, around the introduction of

Basel I regulatory capital regime are rather consistent with an insufficiently large

regulatory minimum, unable to squeeze out separation.
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2.A Appendix A - Proofs

2.A.1 Proof of Lemma 1

We prove the Lemma in two steps. First, we focus on equilibria in monotone strate-

gies, and show the existence of a unique threshold equilibrium in monotone strate-

gies. The proof uses the contraction mapping theorem to show that the result holds

for a large class of functional forms for R. Then, we apply the procedure of itera-

tive elimination of strictly dominated strategies (ISD) and show that this threshold

equilibrium is the unique equilibrium which survives ISD, therefore, no other equi-

libria exist. We will assume throughout the proof that fundamental uncertainty is

such that with some probability even the strongest banks can fail, while even the

weakest bank can survive for any risk management actions which may be taken in

any equilibrium.

Assumption 2 We assume that there exists θ2? and θ?2 such that

• Lower dominance region: ∀θ1 ∈ {θL1 , θS1 }, and ∀s ∈ S?, ∃θ2? > θ2 such that

∀θ2 < θ2?:

R(θ1, θ2, s, 0) < 0

• Upper dominance region: ∀θ1 ∈ {θL1 , θS1 }, and ∀s ∈ S?, ∃θ?2 < θ2 such that

∀θ2 > θ?2:

R(θ1, θ2, s, 1) > 1

where S? is the set of equilibrium values of signal s.

Part 1: Equilibrium in monotone strategies:

Suppose that creditors run on the bank if and only if their private signal

satisfies xi < x̂. Given this strategy, let us denote the aggregate size of the run

for any realization of the fundamental θ2 ∈ [θ2, θ2] by A(x̂, θ2). Now we define

the expected difference in utilities between actions WAIT and RUN for a creditor

receiving signal x as

V (x, x̂) :=E [u(θ1, θ2, s,A(x̂, θ2))− t|x]

=Prob[R(θ1, θ2, s,A) < 0|x](0− t) + Prob[R(θ1, θ2, s,A) > 0|x](1− t)
(2.1)

Let us introduce the notation ν(x, x̂) for the posterior probability assessment of

the bank’s survival by a creditor who receives a private signal x, given that the
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equilibrium is that creditors run if and only if x < x̂.

ν(x, x̂) := Prob[R (θ1, θ2, s,A(x̂, θ2)) > 0|x]

With this notation, we can rewrite the difference utility function as

V (x, x̂) = ν(x, x̂)− t (2.2)

For every θ2 ∈ [θ2, θ2] the aggregate size of a run is

A(x̂, θ2) = Prob[xi ≤ x̂|θ2] = Prob(θ2 + σεi ≤ x̂|θ2) = Prob

(
εi ≤

x̂− θ2

σ

)
Given our assumption on the stochastic structure of the game, that ε is distributed

uniformly, this implies

A(x̂, θ2) = min

(
max

(
x̂− θ2 + σ

2σ
; 0

)
; 1

)
(2.3)

As A(x̂, θ2) monotone decreases in θ2, and R strictly monotone decreases in A, the

function R monotonically and continuously increases in the fundamental θ2. Fur-

thermore, due to the existence of lower and upper dominance regions (Assumption

2), by the Intermediate Value Theorem, there exists a unique value of θ2, denoted

by θ̂2, which is the implicit solution of the following equation:

R(θ1, θ̂2, s,A(x̂, θ̂2)) = 0 (2.4)

As a consequence, the bank fails if and only if θ2 < θ̂2(x̂) (existence of fundamental

threshold).

BecauseA(x̂, θ2) is strictly monotone increasing in x̂, the fundamental thresh-

old θ̂2(x̂) is increasing in x̂.

Given the existence of a unique θ̂2, the posterior probability that a credi-

tor receiving signal x and correctly anticipating equilibrium strategic threshold x̂

attaches to the event of bank’s survival is

ν(x, x̂) = Prob[θ2 > θ̂|x] = 1− Pr[θ2 ≤ θ̂2|x] = Pr

(
ε ≤ x− θ̂2

σ

)
=
x− θ̂2(x̂) + σ

2σ

The function ν(x, x̂) is decreasing in x̂, increasing in x, and is continuous in x.

Therefore, it is possible to define a unique function h(x̂), such that the solution of
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the equation x = h(x̂) also solves

V (x̂, x̂) = 0

The function h(x̂) summarizes best responses of the game, is continuous and in-

creasing in x̂, therefore its fixed points coincide with the monotone equilibria of the

game.

The last step of the proof is to show the existence of a unique fixed point of

the function h(x̂). For simplicity we show this first to the main example functional

form, then generalize. With R = θ1s+θ2−A(x̂, θ2), we can solve 2.4 explicitly, and

we obtain

θ̂2(x̂) =
x̂

1 + 2σ
− 2σ

1 + 2σ
θ1s+

σ

1 + 2σ
(2.5)

Recall the function V (x, x̂):

V (x, x̂) =
x− θ̂2 + σ

2σ
− t (2.6)

which implies that the function h(x̂) can be written explicitly as

h(x) := 2σt− σ + θ̂2(x̂) (2.7)

Solving for the fixed point of h amounts to solving the equation x = h(x), which

gives the unique solution

x̂ = t− θ1s+ 2σt− σ (2.8)

Substituting back gives the result for equilibrium fundamental threshold

θ̂2 = t− θ1s (2.9)

This concludes the existence proof for the example functional form.

The general proof: Now we generalize the last part of the proof to an

arbitrary function R(·) satisfying certain conditions. Notice that the critical part is

to show the existence of a unique fixed point of function h(x). We will demonstrate

this by showing that the best response function is a contraction. A sufficient condi-

tion for contraction is that the derivative of a function is less than 1 everywhere on

its domain. We are therefore looking for the derivative

∂h(x)

∂x
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Notice that the generic functional form 2.7 is valid for an arbitrary R, therefore

∂h(x̂)

∂x̂
=
∂θ̂2(x̂)

∂x̂
(2.10)

The function θ̂2(x̂) is implicitly defined in Equation 2.4. First, suppose that R only

depends on θ2 directly and through the effect on A, but not interacting with other

variables. We can use Implicit Function Theorem to write

∂θ2

∂x
= − ∂R/∂x

∂R/∂θ̂2

= −
∂R
∂A

∂A
∂x

∂R
∂θ2

+ ∂R
∂A

∂A
∂θ2

Because ∂A/∂x = 1/2σ and ∂A/∂θ2 = −1/2σ it simplifies a little bit:

∂θ2

∂x
= − ∂R/∂x

∂R/∂θ̂2

= −
1

1σ
∂R
∂A

∂R
∂θ2
− 1

2σ
∂R
∂A

The assumptions ∂R/∂A < 0 and ∂R/∂θ2 > 0 are sufficient to guarantee that this

expression is smaller than 1, and that is sufficient condition for contraction mapping.

We have established the existence of a threshold-equilibrium in monotone

strategies for an arbitrary function of R satisfying the assumptions of our model.

Part 2: Uniqueness of equilibrium.

First, we maintain as an assumption that for all s ∈ S?, there exists θ2(s)

such that R(θ1, θ2(s), s, 0) < 0, where S? is the set of values of intervention s which

may be taken in any equilibria. In this lower dominance region the bank defaults

even with no runs (α = 0). Denote this critical value by H0(s).22 Under the

most optimistic beliefs, a creditor whose posterior belief over the fundamental θ2

places some positive weight on θ2 < H0(s) believes that the bank fails if and only

if θ2 < H0(s). Because the conditional probability Pr(θ2 < ξ|xi) is decreasing in

xi (a lower signal increases the probability of a lower θ2), it decreases the difference

utility under these beliefs. Therefore, there exists a critical signal, denoted by h0(s)

such that all creditors with signal xi < h0(s) find it dominant to run on the bank.

The critical signal ho(s) is determined implicitly by the indifference condition of

that creditor:

Pr[R(θ1, θ2, s,A) > 0|ho(s)] = t

where

Pr[R(θ1, θ2, s,A) > 0|ho(s)] = Pr[θ2 > H0(s)|h0(s)] =
h0(s)−H0(s) + σ

2σ

22For the example functional form of R: H0(s) = −θ1s
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therefore

h0(s) = H0(s) + 2σt− σ

We have established that it is always strictly dominant to run whenever xi < h0(s).

For n ≥ 0 define the sequences Hn(s) and hn(s) as follows:

R(θ1, Hn(s), s,A(hn−1(s), Hn(s)) = 0 (2.11)

and
hn(s)−Hn(s) + σ

2σ
= t (2.12)

Equation 2.11 implicitly defines a sequence for the value of fundamental θ2 which

solves R(·) = 0, given that only creditors with xi < hn−1(s) run on the bank.

Because R is increasing in θ2 and decreasing in A, and A is increasing in x̂ and

decreasing in θ2, we conclude that Hn(s) is increasing in hn−1(s). The sequence

hn(s) in Equation 2.12 defines the value of a private signal x, such that for a creditor

it is strictly dominant to run, given he believes that the bank fails if and only if

θ2 < Hn(s). The sequence hn(s) is clearly monotonically increases in Hn. Because

both sequences are bounded and monotonically increasing, they converge to some

value h and H. But h must be a fixed point of the function h(x̂) defined previously.

What we have proven: even creditors with the most optimistic beliefs regard-

ing other creditors’ behaviour will find it iteratively dominant to run on the bank if

xi < x̂.

Analogously, it is possible to construct iterative deletion of strictly dominated

strategies from above: this will show that even with the most pessimistic beliefs,

that means, RUN always whenever it is not strictly dominant to WAIT, it is never

rationalizable to RUN if xi > x̂. The two parts together implies that the unique,

rationalizable action profile for creditors is RUN if and only if xi < x̂.

2.A.2 Proof of Lemma 2

The objective function of the bank is to maximize expected profit, conditional on

the equilibrium in the second stage. That is, the bank’s program is

max
s

π(θ1, s)

where π(θ1, s) = Pr[θ2 > θ̂2|θ1, s] (k − cs)
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Let η = θ−θ
2 denote the “prior noise”, and introduce ρ(·) to denote the probability

of survival:

ρ(θ1, s) = Pr[θ2 > θ̂2|θ1, s] =
1

2η

(
θ2 − θ̂2(θ1, s)

)
Then we can write the expected profit for any given signal s as

π(θ1, s) =

∫ θ2

θ̂2

(k − c · s)µ(·)dθ2 = ρ(θ1, s)(k − cs)

where µ(·) denotes the prior on θ2. The bank’s optimal risk management action

trades off cost of the signal with an increased probability of survival. The first-order

condition

∂π

∂s
=
∂ρ

∂s
(k − c · s)− ρc =

1

2η

(
θ1(k − c · s)− cθ2 + c(t− θ1s)

)
= 0

implies the optimal intervention s?(θ1) and the associated optimal profit π?(θ1) as

s?(θ1) =
1

2

(
k

c
− θ2 − t

θ1

)
π?(θ1) =

(
c
(
θ2 − t

)
+ θ1k

)2
4cθ1

Next, we calculate the first derivatives with respect to θ1 for both the optimal signal

and the optimal profit. For the optimal signal:

∂s?

∂θ1
=

1

2

θ2 − t
θ2

1

This is always strictly positive whenever the problem satisfies the natural parametric

assumptions θ2 > 1 > t. For the optimal profit:

∂π?

∂θ1
=
k2θ2

1 − [c(t− θ2)]2

4cθ2
1

=
1

4

(
k2

c
− c2(t− θ2)2

θ2
1

)
the derivative is strictly positive whenever the following condition holds.

k

c
≥ θ2 − t

θ1

Note that the condition trivially implies s? ≥ 0. �
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2.A.3 Proof of Theorem 1

Separating equilibrium can be maintained if the following two incentive compatibil-

ity constraints are satisfied:

πeq(s?L, θ
L
1 ) ≥ πoff (sH , θ

L
1 , θ

H
1 ) (ICL)

πeq(sH , θ
H
1 ) ≥ πoff (s?H.L, θ

H
1 , θ

L
1 ) (ICH)

where the functions πeq(s, θ) and s?L(·) are defined in Lemma 1, while πoff (s, θ, θ)

and s?L.H are derived in equations 2.8 and 2.9 in the main text. Let us denote

by ρi(s) the probability that a bank of type i ∈ {L,H} survives if they creditors

believe that it is of type i with action s, while ρi.j the probability that a bank of

type i ∈ {L,H} survives if they creditors believe that it is of type −i:

ρi(s) := Pr[θ2 > θ̂i2(s)] ∀i ∈ {L,H}

ρi.j(s) := Pr[θ2 > θ̂i.j2 (s)] ∀i ∈ {L,H}

With this notation the incentive compatibility constraint for ICL can be written as:

ρL(s?L)(k − cs?L)− ρL.H(s)(k − cs) ≥ 0 (2.13)

After substitution of the expressions for probabilities, we have

1

2η

(
θ2 − θ̂L2 (s?L)

)
(k − cs?L)− 1

2η

(
θ2 − θ̂L.H2 (s)

)
(k − cs) ≥ 0

Recall that θ̂L2 (s) = t − θL1 s, s?L = 1
2

(
k
c −

θ2−t
θL1

)
and θ̂L.H2 (s) = t − s

(
θH1 +2σθL1

1+2σ

)
=

t− sΘ, where for simplicity, we introduce Θ :=
(
θH1 +2σθL1

1+2σ

)
. Then it follows that

θ2c(s− s?L)− tc(s− s?L)− cθL1 [s?L]2 + cΘs2 − k
(
sΘ− θL1 s?L

)
≥ 0

cΘs2 +
(
c(θ2 − t)− kΘ

)
s−

(
c(θ2 − t)− kθL

)
s?L − cθL1 [s?L]2 ≥ 0

After substitution we have

(
c(θ2 − t)− kθL

)
s?L − cθL1 [s?L]2 =

cθL1
4

(
k

c
− θ2 − t

θL1

)2

“C”

Θ2c2

(
k

c
− θ2 − t

Θ

)2

“B2”
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So the expression B2−4AC
4A2 takes a particularly simple form:

1

4

((
k

c

)2 [Θ− θL1
Θ

]
+
(
θ2 − t

)2 [ 1

Θ2
− 1

ΘθL1

])

Putting together the formula for solving a quadratic equation and substituting the

expression for Θ we get

scriL.2 =
1

2

(
k

c
− (1 + 2σ)(θ2 − t)

2σθL1 + θH1

)
+

1

2

√
∆θ1(

2σθL1 + θH1
)
√√√√(k2

c2
− (1 + 2σ)(

2σθL1 + θH1
) (θ2 − t)2

θL1

)

With similar algebra it is possible to derive the solution of ICH

scriH.2 =
1

2

(
k

c
− θ2 − t

θH1

)
+

1

2

√
∆θ1

(
k2

c2

1

(1 + 2σ)θH1
− (θ2 − t)2

θH1

1

θL1 + 2σθH1

)
Both thresholds are decreasing functions of the creditors’ noise σ.

Limit of large noise: We start with the limit of large noise where σ →∞.

lim
σ→∞

scriL.2 =
1

2

(
k

c
− (1 + 2σ)(θ2 − t)

2σθL1 + θH1

)
+ 0 = s?L

Explanation: all terms under the square-root trivially converge to 0. The second

term within the brackets — it is easy to calculate the limit of the inverse:

2σθL1 + θH1
(1 + 2σ)(θ2 − t)

=
(1 + 2σ)θL1 + θH1 − θL1

(1 + 2σ)(θ2 − t)
=

θL1
θ2 − t

+
∆θ1

(1 + 2σ)(θ2 − t)
→ θL1

θ2 − t

This implies the result. The limit for the high-threshold is trivial to calculate:

lim
σ→∞

scriH.2 =
1

2

(
k

c
− θ2 − t

θH1

)
= s?H

Since scriL.2 continuously and monotonically approaches s?L as σ →∞, and s?L < s?H ,

by the intermediate value theorem there exists a unique value of σ, denoted by σ,

such that

scriL.2(σ) = s?H

Whenever σ > σ, the pair {s?L; s?H} is incentive-compatible for the low (L) and high

(H) types as well, and the first-best can be maintained as a separating equilibrium.
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Limit of small noise: Now we turn to the analysis of the case of small noise, as

σ → 0. First, calculate the limit of critical signals as σ → 0. After some algebraic

manipulations it is possible to show that the critical incentive-compatible signals

converge to the same expression:

lim
σ→0

scriL.2 = lim
σ→0

scriH.2 =
1

2

(
k

c
− θ2 − t

θH1

)
+

1

2

√
∆θ1

θH1

(
k2

c2
− (θ2 − t)2

θL1 θ
H
1

)
Conditions for existence of the equilibrium

A ‘constructive’ approach to prove the statement of the theorem by solving

the equation scrii = scrij is not possible due to the analytical complexity of the

non/limiting case. Instead, we prove the theorem using the following steps, which

are analytically easier to calculate:

1. Calculate the partial derivatives
∂scriL
∂σ and

∂scriH
∂σ

2. Consider the value of the derivatives at σ = 0. If (scriL )
′
(0) < (scriH )

′
(0) then

scriH approaches the limit faster, meaning that for sufficiently small σ, we must

have scriL > scriH . Note that from the limiting cases at σ →∞ it is obvious that

for large enough σ, scriL < scriH .

3. Analytically, we solve the equation (scriL )
′
(0) = (scriH )

′
(0) for c. This gives a

critical cost level ĉ such that scriL > scriH for sufficiently small σ

We omit the detailed calculations to save space. The solution for ĉ is

ĉ =

√
∆θ1(kθL1 )2(

3θL1 + θH1
) (
θ2 − t

) (2.14)

2.A.4 Proof of Lemma 3

We prove a more general version of Lemma 3, with an arbitrary N banks, from

which the version in the main text will be trivial. Suppose the number of banks

is N ≥ 2, each with types θn1 . Without loss of generality we can determine the

indexing of banks such that ni < nj ⇔ θni1 < θ
nj
i . Let the prior distribution of types

be Pr[θ1 = θn1 ] = pn. It is useful to interpret N = 1, 2... as quality classes and the

probability pn representing the mass of institutions belonging to this quality class.

Suppose that a closed subset of institutions N := n < n < n are pooling on the

same risk-management signal sp. Let us define the conditional distribution of banks
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belonging to N as P̃ := {p̃n}nn, it is straightforward that

p̃n =
pn∑
n∈N pn

Conditional on observing sp, p̃n represents creditors’ posterior probability of the

event that the bank is of type n. We define the (conditional) average type as

θ
n
1 :=

∑
n∈N

p̃nθ
n
1

Equation 1: we start with the creditors’ indifference condition. A creditor is

indifferent between actions WAIT and RUN if

Pr[Failure] · (0− t)︸ ︷︷ ︸
p/o wait-run

+Pr[Survive] · (1− t)︸ ︷︷ ︸
p/o wait-run

= 0

Because Pr(Failure) = 1− Pr(Survive), we can rewrite this equation as

Pr[Survive] = t

Using creditors’ posterior probability, we can write

Pr[Survive] =

n∑
n

p̃nΦ

(
x̂− θ̂n1
σ

)

After substitution

n∑
n

p̃n
x̂− θ̂n1 + σ

2σ
= t

this can be rewritten as∑
p̃nx̂−

∑
p̃nθ̂

n
1 +

∑
p̃nσ = 2σt

x̂− θ̂n1 + σ = 2σt

x̂ = 2σt− σ + θ̂n1

Equation 2: Given strategic threshold x̂, the fundamental threshold solves

R = θ1s+ θ2 − α = 0. After substituting α and rearranging the equation, we have

for each n ∈ N
θ̂n2 =

x̂+ σ − 2σθn1 s

1 + 2σ
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We can calculate θ̂2 as

θ̂2 =
x̂+ σ − 2σsθ1

1 + 2σ

Substituting back to x̂,

x̂ = 2σt− σ +
x̂+ σ − 2σsθ1

1 + 2σ

x̂ =
1 + 2σ

2σ

(
2σt− σ +

σ

1 + 2σ
− 2σ

1 + 2σ
sθ1

)
then back to θ̂n2 :

θ̂n2 = t− 1

2
+

1

2(1 + 2σ)
− sθ1

1 + 2σ
+

σ

1 + 2σ
− 2σθn1 s

1 + 2σ

= t− s
(

1

1 + 2σ
θ1 −

2σ

1 + 2σ
θn1

)
The formulas for N = 2 trivially follows. We note that Corollary 1 also follows in

the N ≥ 2 general case, this can be seen with trivial algebra.

—

For the N=2 case which we discuss in the main text, the incentive-compatibility

constraints can be solved analytically. The binding constraint will give the following

upper boundary for the set of pooling equilibria which can be maintained:

sp :=
1

2

(
k

c
− (1− 2σ)(θ2 − t)

θ1 + 2σθL1
+

√
pH∆θ1

θ1 + 2σθL1

(
k2

c2
− (1 + 2σ)(θ2 − t)2

θL1 (θ1 + 2σθL1 )

))

2.A.5 Proof of Theorem 2

As explained in the main text, critical regulation level is described by equation 2.14:

scriL = scriH (2.14 revisited)

The analytical solution to this equation is

scriP =
2c(1 + 2σ)(θ2 − t) + k∆θ1 −

√(
2c(1 + 2σ)(θ2 − t) + k∆θ1

)2 − 4kc(1 + 2σ)(θ2 − t)∆θ1

2c∆θ1

=
2c(1 + 2σ)(θ2 − t) + k∆θ1 −

√(
2c(1 + 2σ)(θ2 − t)

)2
+ (k∆θ1)2

2c∆θ2

=

(
(1 + 2σ)(θ2 − t)

∆θ1
+
k

2c

)
−

√[
(1 + 2σ)(θ2 − t)

∆θ1

]2

+

[
k

2c

]2
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2.A.6 Proofs for Section 2.4

2.A.6.1 Bank-optimal pooling

Substituting to the ex-ante formula shows that total ex ante payoff is a decreasing

function of the average of thresholds in any given equilibrium. We denote this by

θ̂AV2 (s). The threshold θ̂2(s) is always a decreasing function of s (ceteris paribus a

bank’s survival is more likely with higher s). The derivative of the expected profit:

∂Eπ
∂s

= −k∂θ̂
AV
2

∂s
− cθ2 + cs

∂θ̂AV2

∂s
+ cθ̂AV2 =

∂θ̂AV2

∂s
(−k + cs)− c(θ2 − θ̂AV2 ) (2.15)

In any pooling equilibrium, from Corollary 2 we have θ̂AV2 = t− sθAV1 so the partial

derivative (2.15) is −θAV1 and the total expected payoff as a function of s is

∂Eπ
∂s

= θAV1 (k − cs)− c(θ2 − t+ sθAV1 )

This allows us to calculate the pooling equilibrium which maximizes total bank

welfare: this is pooling on the value of s which solves

θAV1 (k − cs) = c(θ2 − t+ sθAV1 )

so the optimal pooling level is

s?pool = −c(θ2 − t)− θAV1 k

2cθAV1

=
1

2

(
k

c
− θ2 − t

θAV1

)
It is obvious that s?i < s?pool < s?j , that is, the best pooling equilibrium is between

the symmetric information benchmark intervention levels.

2.A.6.2 Creditors in separating equilibrium

The mass of creditors who run at θ2 is α(θ2). We denote by θ?2 the value of θ2 where

α(θ2) = 0 and by θ2? where α(θ2) = 1. The total payoff to creditors is

Eu =
∫ θ2?

θ2

tν(·)dθ2︸ ︷︷ ︸
All withdraw

+
∫ θ?2

θ2?

tα(θ2)ν(·)dθ2︸ ︷︷ ︸
α withdraw

+
∫ θ2?

θ̂2

1− α(θ2)ν(·)dθ2︸ ︷︷ ︸
1−α stay and survive

+
∫ θ2

θ?2

1ν(·)dθ2︸ ︷︷ ︸
all stay and survive

where for example in the benchmark case

θ?2 = t(1 + 2σ)− θ1s

θ2? = x̂− σ = t(1 + 2σ)− θ1s− 2σ
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With straightforward algebra it is possible to calculate the followings:

θ̂2 = t− θ1s

θ̂2 − θ2? = 2σ(1− t)

θ2? − θ̂2 = 2σt

α(θ̂2) = t

The value of integrals follows:

∫ θ̂2

θ2?

α(θ2)dθ2 = (1− t2)σ∫ θ?2

θ̂2

α(θ2)dθ2 = t2σ∫ θ?2

θ2?

α(θ2)dθ2 = σ

so putting together we obtain:

Eu =
1

2η

(
t(θ2? − θ2) + σt− t2σ + (θ − θ̂2)

)
We can calculate the derivative with respect to the risk-management action:

∂Eu

∂s
=

1

2η
((1− t)θ1) > 0

this means creditors always prefers a higher action. After rewriting:

Eu =
1

2η

(
(θ2 − tθ2)− σt(1− t)− (t− θ1s)(1− t)

)
All payoff difference is captured by the second term, the first term depends on ex-

ogenous parameters only. We can define the following measure of creditors’ welfare,

keeping only the endogenous variable (s) and the interesting parameters (σ, θ1)

WR = (θ1s− σt) (1− t)

Creditors’ payoff in the least-costly separating and in pooling equilibrium is

WRSE =
(
pθi1s

FB
i + (1− p)θj1s

cri − σt
)

(1− t)

WRPE = θ1s
P (1− t)
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2.A.6.3 Banks in a Pooling equilibrium

Payoffs under pooling equilibrium. Given the fundamental thresholds we can

characterize the bank’s payoff. For any i ∈ {L,H}:

ΠP
i =

∫ θ2

θ̂Pi

k − csiµ(·)dθ2 = (k − csi)
(
θ2 − θ̂Pi

)
Given the formula for the threshold, this can be written as

ΠP
L (s) = ΠFI

L (s) + (k − c · s)
(
spH∆θ1

1 + 2σ

)
ΠP
H(s) = ΠFI

H (s)− (k − c · s)
(
spL∆θ1

1 + 2σ

)
The difference between the two types’ profit is

∆Π =
2σ

1 + 2σ

(
θH1 − θL1

)
(k − c · s)s

∂∆Π

∂s
=

2σ

1 + 2σ

(
θH1 − θL1

)
(k − 2c · s)

The profit difference is increasing in s as long as k
2c > s and decreasing thereafter.

The total payoff given the prior type distribution is∑
Π = (k − c · s)

(
θ2 − (pLθ̂

L
2 + pH θ̂

H
2 )
)

we can rewrite the second term

(pLθ̂
L
2 +pH θ̂

H
2 ) = t−s(pLθ

L
1 ) + pHθ

H
1 )

1 + 2σ
− 2σs

1 + 2σ

(
pLθ

L
1 + pHθ

H
1

)
= t−

(
pLθ

L
1 + pHθ

H
1

)
s

Implication: the total payoff to the bank in a pooling equilibrium equals the total

profit which would occur with full information, for the given unique intervention

level. That is, although agents are unable to distinguish the two types, the bank’s

ex-ante expected profit is exactly as if they were distinguishable. The only welfare

loss (on the bank’s side) stems from the fact that in a pooling equilibrium they are

unable to set their first-best. This difference can be quantified

∆Π = Π(s?)−Πs = (k − c · s?)(θ2 + s?θ1 − t)− (k − c · s)(θ2 + sθ1 − t)

= kθ1∆s− c(θ2 − t)∆s− cθ1(∆s)2
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2.A.6.4 Creditors in a Pooling equilibrium

Substituting pooling thresholds we obtain:

α(θ2) =
x̂− θ2 + σ

2σ
=
t(1 + 2σ)− θ1s− θ2

2σ

θ?2 = t(1 + 2σ)− θ1s

θ2? = x̂− σ = t(1 + 2σ)− θ1s− 2σ

θ̂i2 = t− θi1s−
spj∆θ1
1 + 2σ

; θ̂j2 = t− θj1s+
spi∆θ1
1 + 2σ

θ̂i2 − θ2? = 2σ(1− t) + s(θ1 − θi1)− spj∆θ1
1 + 2σ

= 2σ(1− t) + spj∆θ1
2σ

1 + 2σ

θ̂j2 − θ2? = 2σ(1− t) + s(θ1 − θj1) +
spi∆θ1
1 + 2σ

= 2σ(1− t)− spi∆θ1
2σ

1 + 2σ

θ?2 − θ̂i2 = 2σt+ s(θi1 − θ1) +
spj∆θ1
1 + 2σ

= 2σt− spj∆θ1
2σ

1 + 2σ

θ?2 − θ̂
j
2 = 2σt+ s(θj1 − θ1)− spi∆θ1

1 + 2σ
= 2σt+ spi∆θ1

2σ

1 + 2σ

α(θ̂i2) = t− spj∆θ1
1 + 2σ

α(θ̂j2) = t+
spi∆θ1
1 + 2σ

∫ θ?2

θ̂i2

α(θ2)dθ2 = σ

(
t− spj∆θ1

1 + 2σ

)2

∫ θ̂i2

θ2?

α(θ2)dθ2 = σ − σ
(
t− spj∆θ1

1 + 2σ

)2

∫ θ?2

θ̂j2

α(θ2)dθ2 = σ

(
t+

spi∆θ1
1 + 2σ

)2

∫ θ̂j2

θ2?

α(θ2)dθ2 = σ − σ
(
t+

spi∆θ1
1 + 2σ

)2

Substituting to the welfare function:

Eui =
1

2η

(
t(θ2? − θ2) + tσ + (θ?2 − θ̂2)− σ(t− spj∆θ1

1 + 2σ
)2 + (θ2 − θ?2)

)
=

1

2η

(
(θ2 − tθ2) + (t2(1 + 2σ)− tθ1s− 2σt) + tσ − σ(t− spj∆θ1

1 + 2σ
)2 − θ̂2

)
Euj =

1

2η

(
t(θ2? − θ) + tσ + (θ?2 − θ̂2)− σ(t− spj∆θ1

1 + 2σ
)2 + (θ2 − θ?2)

)
=

1

2η

(
(θ2 − tθ2) + (t2(1 + 2σ)− tθ2s− 2σt) + tσ − σ(t+

spi∆θ1
1 + 2σ

)2 − θ̂2
)
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2.B Appendix B - Generalizations

2.B.1 Generalized functional forms

We leave the payoffs to the creditors and the bank unchanged, and generalize two

components of the model: (1) The cost of action is a generic function c(s) with the

assumptions ∂c(s)
∂s > 0 and ∂2c(s)

∂s2
> 0 that is the cost function is increasing and

strictly concave in the signal s. This implies the net payoff for the bank is

U(θ, α) =

k − c(s) if R(θ1, θ2, s, α) ≥ 0

0 if R(θ1, θ2, s, α) < 0

(2) The regime change function is a generic function R(θ1, θ2, s, α) with assumptions

∂R
∂θ1

> 0;
∂R
∂θ2

> 0;
∂R
∂s

> 0;
∂R
∂α

< 0;
∂2R
∂θ1∂θ2

= 0;
∂2R
∂s∂θ1

> 0;

where the last condition plays the role of a single crossing condition. All other

components of the model remain unchanged.

Symmetric information benchmark: The indifference condition remain

unchanged since the generalization does not alter the creditors’ problem. The mass

of agents who attack is:

α =
x̂− θ̂2 + ε

2ε
= t

The failure condition solves - after substituting α = t -

R(θ1, θ2, s, t) = 0

from which

θ̂2 = f(t, θ1, s)

x̂ = f(t, θ1, s) + 2σt− σ

We want to establish that the thresholds are decreasing in both θ1 and s. This can

be shown using implifit function theorem (IFT)

∂θ̂2

∂s
= − ∂R/∂s

∂R/∂θ2
= − [+]

[+]
< 0

∂θ̂2

∂θ1
= − ∂R/∂s

∂R/∂θ2
= − [+]

[+]
< 0
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This generalizes the result that higher signal as well as higher type decreases thresh-

old, therefore improves stability and increases probability of survival of the regime.

Optimal action: The expected profit for any risk-management choice s is:

π(θ1, s) = ρ (k − c(s))

Optimum risk management is determined by the FOC

∂π(θ1, s)

∂s
= (k − c(s)) ∂ρ

∂s
− ρ∂c(s)

∂s
= 0

from the formula for ρ = 1
2η (θ2 − θ̂2)

∂ρ

∂s
= − 1

2η

∂θ̂2

∂s
> 0

so the FOC of optimality using IFT is (to simplify notation: ∂xR = ∂R
∂x )

− k

2η

∂θ̂2

∂s
=
∂c(s)

∂s

k

2η

∂sR
∂θ2R

=
∂c(s)

∂s

The question is how s? changes with θ1. For that we use IFT on the FOC. The

second term doesn’t change with θ1. The first term

∂
∂sR
∂θ2R

/∂θ1 =
∂sθ1R∂θ2R− ∂θ2θ1R∂sR

∂2
θ2
R

∂
∂sR
∂θ2R

/∂s =
∂ssR∂θ2R− ∂θ2sR∂sR

∂2
θ2
R

using the assumptions ∂θ2θ1R = 0 and ∂ssR ≥ 0 and ∂θ2R > 0 and ∂θ2sR = 0 this

implies

sign[∂[RHS]/∂θ1] = sign[∂sθ1R] = [+]

sign[∂[RHS]/∂s] =
[+]

[+]

∂c(s)/∂(s) ≥ 0

Another application of IFT implies for the case sign[∂θ2s] > 0

∂s?

∂θ1
= −∂θ1FOC

∂sFOC
= − +

[+]− [+]
> 0
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as long as R is not too convex in s compared to the cost function. Precisely, it must

be the case that
∂ssR∂θ2R− ∂θ2sR∂sR

∂2
θ2
R

=
∂ssR
∂θ2

<
∂c′(s)

∂s

2.B.2 Separating equilibrium

Summary: For any arbitrary function R(θ, s, α) we derive a first-order approxi-

mation of failure thresholds off-the-equilibrium path, i.e. when agents act as if the

type is j while the actual type is i. Alternatively, this threshold can also be seen

as a decomposition of the difference between equilibrium thresholds for type i and

j into two components - a direct effect through regime change function, and an

indirect effect which is purely belief-based. The main result is that as the noise be-

comes more precise (σ → 0), the indirect effect dominates the direct effect, pushing

the off-equilibrium threshold towards the other type’s threshold. Intuitively, this

increases the potential gains for the low type from mimicking the high type.

We know that

α(x̂, θ2) =
x̂− θ2 + σ

2σ

x̂ = θ̂2 + 2σt− σ

The relevant thresholds on- and off-equilibrium path respectively solve

R(θi1, θ2, s
i, α(x̂i, θ2)) = 0 [θ̂i2]

R(θi1, θ2, s
j , α(x̂j , θ2)) = 0 [θ̂i.j2 ]

R(θj1, θ2, s
j , α(x̂j , θ2)) = 0 [θ̂j2]

R(θj1, θ2, s
i, α(x̂i, θ2)) = 0 [θ̂j.i2 ]

Using implicit function theorem (IFT) we can calculate the derivative of the full-

information fundamental threshold with respect to θ1

∂θ̂2

∂θ1
= −∂θ1R

∂θ2R
=

∂R
∂θ1

+ ∂R
∂α

∂α
∂x̂

∂x̂
∂θ̂2

∂θ̂2
∂θ1

∂R
∂θ2

+ ∂R
∂α

∂α
∂θ2

This derivative can be used to approximate the change when type changes from

θi1 to θj1 in ‘full information’ model, keeping signal s fixed. This defines a natural
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decomposition

∂θ̂2

∂θ1
=

∂R
∂θ1

∂R
∂θ2

+ ∂R
∂α

∂α
∂θ2︸ ︷︷ ︸

Direct effect

+

∂R
∂α

∂α
∂x̂

∂x̂
∂θ̂2

∂θ̂2
∂θ1

∂R
∂θ2

+ ∂R
∂α

∂α
∂θ2︸ ︷︷ ︸

Indirect effect

The difference between θ̂i2 and θ̂i.j2 is only through the second term, while the dif-

ference between θ̂i.j2 and θ̂j2 is only through the first term, which allows us to write

θ̂i.j2 = θ̂j2 +
∂R
∂θ1

∂R
∂θ2

+ ∂R
∂α

∂α
∂θ2

∆θ1 = θ̂j2 +
∂R
∂θ1

∂R
∂θ2
− 1

2σ
∂R
∂α

∆θ1

θ̂i.j2 = θ̂i2 −
∂R
∂α

∂α
∂x̂

∂x̂
∂θ̂2

∂θ̂2
∂θ1

∂R
∂θ2

+ ∂R
∂α

∂α
∂θ2

∆θ1 = θ̂i2 −
1

2σ
∂R
∂α

∂x̂
∂θ̂2

∂θ̂2
∂θ1

∂R
∂θ2
− 1

2σ
∂R
∂α

∆θ1

From here we can immediately generalize two results of the main text

1. As σ → 0 the direct effect goes to zero, thereby θ̂i.j2 → θ̂j2

2. Due to assumptions on the derivatives, both effect terms are always positive,

guaranteeing θ̂i2 ≤ θ̂
i.j
2 ≤ θ̂

j
2 (i and j interchangeable, = only in limiting cases).

Example: Apply to exampleR the derivatives give precise solutions because

of linearity.
θ̂2

θ̂1

=
s+ 1

2σ (s)

1 + 1
2σ

= s

which implies

θ̂j2 − θ̂
i
2 = s∆θ1

which is correct because from the formula t − θj1s − t + θi1s = s∆θ1. From the

decomposition

θ̂i.j2 − θ̂
j
2 =

s

1 + 1
2σ

∆θ1 =
2σs

1 + 2σ
∆θ1

θ̂i2 − θ̂
i.j
2 =

1
2σs

1 + 1
2σ

∆θ1 =
s

1 + 2σ
∆θ1

which is exactly what we have in the main text.
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2.B.3 Pooling equilibrium

Equation 1 is unchanged:

x̂P = 2σt− σ + piθ̂
i
2 + pj θ̂

j
2

Equation 2 can only be expressed implicitly:

R(θ1, θ2, s, α(x̂, θ2)) = 0

Write the Taylor-approximation of the difference between θ̂i2 (full-information thresh-

old) and θ̂iP2 (pooling threshold).

∂θ̂2

∂x̂
= −

∂R
∂x̂
∂R
∂θ2

= −
∂R
∂α

∂α
∂x̂

∂R
∂θ2

+ ∂R
∂α

∂α
∂θ2

= −
1

2σ
∂R
∂α

∂R
∂θ2
− 1

2σ
∂R
∂α

> 0

θ̂iP2 = θ̂2
i
+
∂θ̂2

∂x̂
∆x̂

where

∆x̂ = x̂P − x̂i = (1− p)∆θ̂2 = −pjs∆θ1 = −s(θ1 − θi1)

The derivative goes to zero as 1
σ → 0. That implies, low precision pushes pooling

thresholds (respectively, profits) towards the full-information thresholds. This is

consistent with the ’smoothing out differences’ intuition. The results are symmetric

for type j. First define

∆x̂j = x̂jP − x̂j = piθ̂
i
2 − piθ̂

j
2 = −p∆θ̂2 = ps∆θ1 = −s(θ1 − θj1)

then approximate the average thresholds

θ
P
2 = piθ

iP
2 + pjθ

jP
2
∼= θ̂2 +

∂θ̂2

∂x̂
∆x̂ = t− sθ1 +

∂θ̂2

∂x̂
(−s)(θ1 − θ1) = t− sθ1

This is again the same result as for the specific case, but now proven generally!

Example: Using this result on the example R = θ2 + θ1s− α = 0 we have

∂θ̂2

∂x̂
=

1

2σ + 1

θ̂iP2 = t− sθ1

1 + 2σ
− 2σ

1 + 2σ
sθi1
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2.B.4 Regulation

The incentive compatibility constraints for an arbitrary level of (minimum) pooling

πi.j(s) ≤ πi(sp) [ICi]

πj(s) ≥ πj.i(sp) [ICj ]

These inequalities say that s must not be profitable for the low-type even if it

is believed to be of high type, but must be profitable for the high-type, if otherwise

is believed to be of low-type.

All 4 functions in the IC’s reach zero at slim = c−1(k). Suppose our conjec-

ture is correct. This is equivalent with the existence of some sp < s such that both

inequalities are satisfied with equality at the same critical s, which just solves ICi

and just fail to solve ICj . This critical situation, if exist, therefore characterized

equivalently by a pair {sp; s} where sp < s which solves both inequality with equal-

ity. Consider all possible pairs of {sp; s}, not just those which solves the IC’s, and

define the following profit-differences

∆πi(s) = πj(s)− πi.j(s) := ϕ(s)

∆πj(s) = πj.i(s)− πi(s) := ϕ(s)

Viewed as a function of an arbitrary s, these are both the same concave functions

with zeroes at {0, slim}, which we denoted by ϕ(s). If a critical pair {sp; s} exists,

it must satisfy ϕ(sp) = ϕ(s), call this the ‘critical condition’. In addition, if a

candidate critical pair {sp, s} satisfies the critical condition and at least one IC, say

[ICi], then automatically satisfies the other one. This follows from the definition of

‘critical condition’.

We know that both scrii (sp) → slim from below, and scrii (sp) increases in sp

and its image is a compact interval [scrii.2 , s
lim]. It is obvious to see that the solution

of the critical condition (that is an explicit expression of pairs sp, s viewed as a

function), s(sp) is continuously decreasing in sp with the image [smax, slim] where

smax is a value which maximizes ϕ(s), the difference between profits. A sufficient

condition for the existence of a critical sp, s is that smax < scrii.2 , for which, we only

have to prove that s?j < smax. This is tivial (although some more formality would

be nice here) as long as π(s = 0) > π(s = slim) = 0
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Chapter 3

Current Account and Overdraft

Pricing in Retail Banking

3.1 Introduction

In this research we investigate equilibrium pricing of personal current accounts

(checking accounts) and overdrafts in retail banking. In some markets, especially

in the US and the UK, the predominant personal current account (PCA) scheme is

the so-called ‘free-if-in-credit’ (FIIC) pricing, sometimes loosely referred to as ‘free

banking’. Under this price schedule, banks charge zero monthly or regular fee for

the access to the account and for basic services. However, accounts are usually

bundled together with an overdraft-service — essentially a short-term borrowing

facility — which allows the customer to go into debit in her account, incurring ex-

tensive charges in the form of service fees or interest payments. These charges are

sizeable enough to make overdrafts one of the most expensive forms of short-term

customer credit. The purpose of this research is to better understand the equilib-

rium consequences of some underlying market frictions, such as customer naiveté

and information asymmetry, on prices, profits, and on the market structure.

Many observers point out that FIIC-pricing is consistent with a cross-subsidy

across business lines as well as across various groups of customers, with significant

potential welfare consequences. According to the common narrative, hidden and

expensive overdraft fees exploit poorer households — more likely in need of extra

liquidity — to support more sophisticated, wealthier clients, and to generate indus-

try rents. This view has generated a massive policy debate on the potential role and

shape of regulatory intervention.

Two structural characteristics of retail banking have been identified as the
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root cause of this exploitative innovation1: first, the overdraft facility, being closely

linked to payment services which is the primary use of a current account, can be

seen as an add-on product, and — at least to the extent as the aftermarket is tech-

nologically or otherwise linked to the base product — banks have market power

and can exert monopoly pricing on the market for overdrafts. Second, this market

power is exacerbated by customers’ behavioural biases, such as their limited abil-

ity to comprehend contractual terms ex ante (Gabaix and Laibson [2006]), limited

attention to track their own account usage (Grubb [2014]), or the lack of switching

behaviour due to perceived or genuine switching costs.

In turn, FIIC pricing leads to two main policy concerns. First, although

on the surface ‘free-banking’ appears to be the result of strong competition, it may

mask non-competitive distortions and market power, leading to inefficient outcomes.

Second, as FIIC pricing essentially amounts to below-marginal-cost base-good and

above-marginal-cost add-on prices, to the extent different groups of customers differ

in their use of the two services, it leads to potential distributional concerns and

welfare effects. To be specific, if overdraft users tend to be poorer households more

likely in financial trouble and in the need of short-term financing, FIIC-pricing

implies a wealth-transfer ‘from the poor to the rich’, leading to an overall reduction

in social welfare.

In this paper we describe a model of overdraft pricing which captures some

relevant characteristics of the retail banking sector to illustrate how FIIC-pricing

can emerge as an equilibrium phenomenon. We define FIIC equilibrium as a market

equilibrium in which a base product (current account) is priced at its lower bound

at least by some players, while connected services — specifically, overdrafts — are

sold to customers at a mark-up (above marginal cost). In our benchmark model we

consider a two-stage duopoly model, where two banks compete for a continuum of

customers by selling two products, a ‘personal current account’ (PCA) in the first,

and a connected overdraft-facility in the second stage.

Deviating from much of the theoretical literature, we assume that competi-

tion for customers is possible even in the second stage. This captures the idea that

customers’ lock-in is not perfect in a financial services context. Indeed, the nature of

an existing relationship to one’s bank is distinctively different from a typical indus-

trial aftermarket situation - the most cited example being the market for printers

and cartridges - where technological linkages tie customers strongly to the primary

supplier, while high initial investment costs prevent switching to another provider.

Strictly speaking there is no such technological reason to link payment services (the

1The term ‘exploitative innovation’ is based on Heidhues et al. [2016a]
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primary market) to the provision of short-term customer credit (the aftermarket),

yet the market shows similar characteristics: lack of switching behaviour, and ‘ex-

ploitative’ aftermarket prices.

Traditionally, there has been two oft-cited sources of banks’ market power

over existing customers. First, naive customers’ lack of attention to other deals after

establishing the first relationship may lead to banks’ exploitation of those customers.

Second, relationship banks obtain relevant information regarding their customers’

creditworthiness, which may lead to adverse selection on the market for customer

credit. Both issues are at the centre of recent regulatory innovations: requiring

insider banks to disclose information on request may moderate the adverse selec-

tion problem, while automatized switching services and price-comparison websites

potentially decrease psychological and material costs associated with low switching

behaviour, which is closely related to the concept of customer naiveté. Regulatory

interventions also induced changes in banks’ behaviour: instead of ‘shrouding’ the

information on fees and other contractual terms which potentially impose additional

costs, they tend to heavily advertise up-front, thereby compete much more strongly

on overdraft terms as well.

We begin our analysis with a model of banking competition featuring cus-

tomer naiveté. In the first stage, banks compete for a group of naive and sophisti-

cated customers. In the second stage, they charge different overdraft prices for own

customers and for customers of the other bank. Banks have some market power

over customers (this is captured by a Hotelling-model) in the first stage, but the

lock-in is imperfect in the second-stage, so overdraft fees emerge endogenously in a

Bertrand-competition. Naive customers are sticky after their initial choice of bank,

and won’t consider the possibility of switching when an overdraft facility is required.

This creates market power, which distorts standard competitive pricing outcome.

Our results demonstrate that, despite the possibility of competition in the

second-stage, the presence of naive customers turns to be an important source of

market power and economic profit. Specifically, we show that for an arbitrary low

number of naive customers, prices deviate from marginal-costs, and the unique Nash-

equilibrium of the Bertrand-game on the overdraft market is a mixed-strategy Nash-

equilibrium, where both insider and outsider banks earn positive profit. This makes

overdraft a profitable business, and induces competition in the first stage (on the

market for PCA) to expand market share. When primary markets are sufficiently

competitive, there exist a symmetric ‘FIIC-equilibrium’ for a significant subset of the

parameter space - specifically, FIIC-pricing can prevail even with relatively modest

number of naive customers, and on highly competitive markets.
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In the rest of the paper we extend the baseline setup with adverse selection,

and show how the combination of adverse selection and customer naiveté, being the

two most important frictions on banking markets, affect equilibrium pricing, profits,

and customer behaviour. The presence of adverse selection makes it more difficult for

the outsider to enjoy the benefits on the aftermarket. As a consequence, the profits

will be tilted towards the bank’s role as an insider. This increases the incentives

to obtain more customers on the primary market, so it decreases first-period PCA

prices even further — making it even more likely that an FIIC-pricing prevails as

an equilibrium. In our model differences in the mass of myopic customers is not the

only possible explanation anymore for the observed differences across countries: ‘free

banking’ may or may not develop depending on the severity of adverse selection, or

the extent of primary market competition as well.

Our approach is a novelty in the theoretical banking literature from a crucial

aspect, which we emphasize here again. Although various models of add-on pric-

ing have been proposed recently to explain exploitative overdraft pricing practices

(Gabaix and Laibson [2006], Armstrong and Vickers [2012], Heidhues et al. [2016a]),

these models usually stipulate ex-post monopoly power on the aftermarket, in our

case, on the market for overdrafts. Although that assumption is a good approxi-

mation of the short-term behaviour and first-time overdrafting — in which case the

main behavioural bias to consider is that inattentive customers, being unaware of

their potential overdraft usage2, indeed face a de-facto monopolist seller — it cannot

provide an explanation for the long-term lack of switching behaviour and the persis-

tence of exploitation of a certain group of customers. Furthermore, recent observed

pricing schemes by major UK banks seem to be consistent with the presence of a

(limited) aftermarket competition.

We believe that the new modelling approach is useful to properly address

these recent changes in retail banking. Due to increased pressure from customer

protection groups and policy makers, it is hard to argue anymore that overdraft fees

are ‘shrouded’, as the literature usually assumes, and not transparent at the time of

contracting — in contrast, in the UK, overdraft conditions seem to be one of the most

heavily advertised selling points of PCA’s offered to new customers. Comparison

websites, easy switching services make the implicit assumption of full monopoly

power on the aftermarket less-and-less tenable. At the same time, this seem to have

little effect (for now) on the exploitative charges on those who are permanently in

overdraft. Our model takes a first step towards a more robust explanation of the

large-scale existence of these schemes even with competitive aftermarkets.

2Models of bill-shock regulation: Grubb [2014]
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The dominant theoretical explanation usually invoked to explain FIIC-style

pricing is the framework by Gabaix and Laibson [2006], which combines aftermar-

ket pricing of an add-on product with a homogeneous base-good, in the presence

of naive customers3. In a typical equilibrium of this modelling tradition a bank is

facing a perfectly inelastic demand function on the overdraft market, whenever a

specific group of customers decides to participate and consume the overdraft facility.

Naive customers always ‘decide to use’ the add-on, while sophisticated customers

substitute away if they find it too expensive. The bank must decide whether it

wants to serve only naive, or all types of customers, and then set the appropri-

ate monopoly price which just preserves the applicable participation constraints of

the customers. Aftermarket monopoly profits are then competed away in the base-

good market, if possible4. If there is a sufficiently large number of sophisticated

customers, the bank’s optimal decision is to serve all customers, and the add-on

price will be relatively modest (bounded by the participation constraint of sophisti-

cated customers). In this equilibrium, there is no cross-subsidy across the groups of

customers, and there is no FIIC-pricing5. With relatively large number of myopes,

however, a bank decides to serve only myopic customers, leading to excessive add-on

price, low base-price, and possibly severe cross-subsidy. As sophisticated customers

must exert effort which is more costly than producing the overdraft service to sub-

stitute away, the equilibrium is inefficient. If the base-price hits the lower bound,

aftermarket profits cannot be eliminated by competition on the base-good market,

and this will be the source of monopoly profit for banks. This equilibrium, referred

to as ‘shrouding equilibrium’ in Gabaix and Laibson [2006]6 is loosely identified with

FIIC-banking in the relevant banking literature.

We believe there are two shortcomings of this theory which makes it prob-

lematic to apply directly to the retail banking sector, and which calls for additional

research work. First, the theory would predict FIIC-pricing whenever the mass of

naive customers (which is routinely identified with financial illiteracy) is sufficiently

large. However, there is no evidence that UK and US customers are significantly dif-

ferent in this respect from their European peers. While FIIC with overdraft is com-

mon and standard package in the UK, it is not particularly widespread in countries

3The GL2006 framework is directly applied to the UK retail banking sector by Armstrong and
Vickers [2012], and extended among others in Heidhues et al. [2016a], Heidhues et al. [2016b].

4The early literature on aftermarket pricing (Shapiro [1994]) recognizes that monopoly profits are
distributed back to the customers if prices can be decreased sufficiently on a competitive base-good
market. However, a lower bound on the price can prevent competing away these profits (Heidhues
et al. [2016a]). This lower bound can arise endogenously in certain markets (Miao [2010]).

5However, above-marginal-cost add-on and below-marginal-cost base good price still prevails.
6In this equilibrium firms are incentivized to hide information regarding the add-on prices and

conditions in the first stage, to make the myopic population as large as possible
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like France or Italy. Second, identifying shrouding equilibrium with FIIC-banking is

not straightforward. It is true, that the shrouding equilibrium is disproportionally

costly for naive customers and might lead to positive profits. However, these two

frictions do not typically occur within the same parameter range. The base-good

price decreases continuously and linearly with the mass of naive customers, so ‘FIIC’

and the associated positive profits would be observed only with very large number

of myopes. The relative ‘exploitation’, however, is particularly concerning when the

number of naive customers is moderate (close to the critical threshold), because

redistributing profits in the form of lowered base-good price does not ease yet the

extra burden caused by the excessive add-on price.

3.1.1 Related literature

Behavioural theories for overdrafts: The concept of shrouding equilibrium with naive

customers put forward in Gabaix and Laibson [2006] has formed the basis of sev-

eral theoretical and empirical contributions. In two strongly related recent papers,

Heidhues et al. [2016a] and Heidhues et al. [2016b] develop new insights which are

directly applicable to financial markets. First, they show that a binding price floor

in the market for the base-product leads to positive economic profit in a shroud-

ing equilibrium. Then, they demonstrate how these profits, emerging in a shrouding

equilibrium, can lead to various welfare-reducing market practices: in Heidhues et al.

[2016a], firms choose between investing into value-enhancing or ‘exploitative’ inno-

vations, and the paper shows that the incentives for the latter are stronger, as — in

contrast to the former one — it raises other participants’ incentives to maintain the

shrouding equilibrium. The authors note that binding price floor leading to positive

profits is likely to hold for consumer financial products. In a similar vein, Heidhues

et al. [2016b] argues that socially wasteful products are more likely to survive on the

market, as in this case it is more likely that shrouding prevails as a unique equilib-

rium and guarantees the positivity of profits, which then cannot be competed away

due to binding price floors. They interpret these findings in the context of financial

markets as an explanation for (i) why banks invest effort to develop complex pricing

practices (like overdraft) which can maintain exploitation, and (ii) why seemingly

inferior (expensive, active) mutual funds can survive. Our research loosely links to

these papers by showing that the additional profit which can be obtained on the

overdraft market is limited by the presence of adverse selection.

Grubb [2014] follows a distinct, but related modelling approach and empha-

sizes another behavioural bias, customers’ inability to closely track their ‘usage’ of

the base product (i.e. spending from your account), which leads to a surprise (‘bill-
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shock’) overdraft usage. Instead of this surprise-effect, our naive customers proxy

rather customers’ sticky behaviour on the long term, despite potentially significant

benefits from switching7.

The paper is also related to recent research on the possibility of price discrim-

ination based on customer naiveté, in the context of financial services (Kosfeld and

Schüwer [2017]), or more generally (Heidhues and Kőszegi [2017]). The first of these,

Kosfeld and Schüwer [2017] shows that educating customers may have unintended

welfare consequences if naivete-based discrimination is possible on the aftermarket.

Heidhues and Kőszegi [2017] also focuses on the welfare aspects in a more general

settings, and provide conditions where naiveté-based discrimination negatively af-

fects welfare. In our model we exclude naiveté-based price discrimination, but allow

for price discrimination based on other payoff-relevant and observable qualities.

There are other approaches to explain exploitation of customers’ bounded

rationality. Carlin [2009] describes a model of oligopoly banking where complexity

arises as part of an equilibrium pricing structure, as it can be a source of market

power. The endogenous complexity choices of banks determine the mass of unin-

formed players on the market, and all banks share the demand of uninformed players,

independently of the price. The unique equilibrium is in mixed strategies, so the

model also predicts price dispersion. However, the model is static and does not

capture either the relationship-banking nature or the cross-subsidy characteristics

of FIIC accounts, which is at the center of our research agenda.

To my knowledge, the only theoretical model which specifically addresses the

overdraft fees (or more generally, contingent charges) in the retail banking sector

is Armstrong and Vickers [2012], building on a simplified version of Gabaix and

Laibson [2006]. This version allows the authors to transparently focus on possible

regulatory interventions, such as price caps, overdraft warnings or restrictions of

negative balances altogether. We focus rather on a different type of equilibrium,

where fundamental assumptions of the model are altered.

Empirically, Alan et al. [2018] provides direct evidence of the exploitation of

naive customers from Turkey using an overdraft market experiment: by randomiz-

ing messages which affect consumers’ attention in various ways they demonstrate

unawareness of prices and underestimation of future usage, and that firms indeed

respond to this behaviour with shrouding. Adams [2017] confirms on US data that

overdraft prices consist a significant part of banks’ revenue, which tend to be larger

in low-income regions. He finds total expenditure to be higher for “poorer, younger

7The Competition and Market Authority in the UK estimates (‘Retail banking market investi-
gation’, Final report, 9 August 2016) the potential annual gains from switching in the UK retail
banking sector to be more than £4bn.
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or less educated” populations — a finding which seems to be consistent with the

theory, if those groups can be characterized as relatively more naive.8

Adverse selection in Banking: The adverse selection component of our model

largely follows the ideas presented in the seminal paper by Sharpe [1990] which in-

troduces the concept of relationship banking. This paper illustrates how information

which is created during customer-bank relationship can generate ex-post monopoly

power and lead to an endogenous emergence of switching barriers. Von Thadden

[2004] points out a mistake in the original paper and proves the existence of a unique

mixed-strategy equilibrium with partial informational lock-in where switching oc-

curs with positive probability. Rajan [1992] makes a similar point regarding the

importance of relationships, but his work is based on moral hazard instead of ad-

verse selection, and also emphasizes possible benefits of control by insider bank. Our

benchmark adverse selection model in Section 4 can be considered as a much sim-

plified, backbone version of Sharpe’s model which still delivers the same equilibrium

structure and characteristics.

Price dispersion: Our work predicts price dispersion both as a result of

adverse selection and customer naiveté. As mentioned before, the former is a well-

known result in the literature. The latter, to my knowledge, has not been explicitly

addressed in a theoretical contribution before. However, the common behavioural

notion of customer naiveté / myopia is a close cousin of some earlier research ideas

with boundedly rational customers. To start with, customers who do not switch

despite a cheaper price available on the market are reminiscent to the ‘uninformed’

customers who do not search in Varian [1980], which also initiates price dispersion.

Burdett and Judd [1983] shows that this can happen even with identical and ratio-

nal agents and homogeneous search costs, with nonsequential search or with noisy

sequential search. Narasimhan [1988] studies brand-loyalty in a duopoly framework

and shows that the presence of loyal customers initiates price dispersion, due to

similar reasons, as loyal customers won’t consider buying a competitor’s product.

The rest of the paper is structured as follows. In Section 2 we introduce

our model in its most complete form. Section 3 derives equilibrium for a reduced

setup where customer naiveté without adverse selection is addressed. Section 4

describes benchmark results for the model version with adverse selection but without

customer naiveté, while Section 5 derives equilibrium of the full model. Section 6 is a

discussion of the results and possible policy consequences, while Section 7 concludes.

8Other notable empirical studies on overdraft fees and customer naiveté are Stango and Zinman
[2009], Stango and Zinman [2014], Morgan et al. [2012], Melzer and Morgan [2015],Williams [2016].
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3.2 Model setup

Consider the following two-stage competition game representing a retail banking

market. Two banks (j ∈ {1, 2}) are offering a uniform personal current account

(PCA) in stage one, and a liquidity facility (overdraft) in stage two. A unit measure

of customers with a fixed demand for one product in each stage are located uniformly

over the interval [0, 1], while the two banks are located at the two opposite ends of

the interval. Let `j denote the location of Bank j, that is, `1 = 0 and `2 = 1.

In the first stage only, a customer i located at γi ∈ [0, 1] incurs a transportation

cost τ × dij where τ is exogenous constant, while dij = |lj − γi| is customer i’s

distance from Bank j. In the second stage, products are homogeneous, and there is

no transportation cost.

At t = 1 each bank j simultaneously announces a fee pj ≥ 0 for the current

account, which is observable for all customers. Following the price announcement,

customers choose exactly one bank, which we then refer to as their insider bank.

In period t = 2 all customers are hit by a liquidity shock, and want to consume

the overdraft service. In this period they can decide whether to switch to the other

bank, so their action space is {“stay”, “switch”}. As noted at t=2 the consumers

do not incur a transport cost in selecting their bank. This assumption implies that

the overdraft service provided – the lending of money to cover a liquidity need – is

homogeneous across the banks.

Customers ex-ante differ in two aspects: (i) sophistication and (ii) profitabil-

ity (riskiness). Sophisticated customers (type S, fraction 1 − α) are fully rational,

and in both stages choose the bank with lower expected total outlay, including trans-

portation costs. If the expected payment is equal, they choose randomly in the first

stage, or remain with the insider in the second stage. Naive customers (type N ,

fraction α) fail to predict their future demand for the overdraft facility, therefore

they base their decision only on the observable first-period prices. Furthermore, in

the second stage, they do not consider the possibility of switching and always stay

with their insider bank.9

A proportion of β of customers yields low-profit to the bank (type L), while

a fraction (1 − β) is highly profitable (type H). The information on profitability

(but not on naiveté) is observed by the insider bank during the first stage of the

customer-banking relationship, and is contractable in the second period. Profitabil-

ity is captured concisely by parameters rL < rH , representing exogenous revenues

generated from the relationship in the overdraft-stage. Formally, let the customers’

9One possible justification is that without planning they become involuntary overdraft users.
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type space be Θ := {S,N} × {L,H}. The joint probability mass function of a

customer type θ ∈ Θ is completely characterized by parameters α and β, which

are treated as exogenous throughout the analysis. We assume that the two types

(naiveté and profitability) are independently distributed.

Customers’ valuation of the account is ν, while on the overdraft service is

ν ′. We will assume that these valuations are sufficiently high so that all customers

decide to consume in all equilibria which we focus on in the main text.

Bank j can condition the price of the overdraft service for its insider cus-

tomers on profitability, but not on sophistication. Therefore, overdraft is offered at a

price φ
L,(j)
in and φ

H,(j)
in for type L (type H) insider customers of Bank j respectively.

Furthermore, Bank j offers the service for customers of the other bank (outsider

customers) at an on-demand price φ
(j)
out. Other than that, it is not possible to price-

discriminate based on the location of the customer. Overdraft fees are exogenously

capped at φ. Marginal cost of opening and maintaining a PCA is normalized to 0,

while overdraft is offered at a marginal cost cod.

We solve the game for Perfect Bayesian Equilibrium. Let ppp ∈ R2
+ denote

the PCA price vector, φφφ ∈ R6
+ the overdraft fee vector, while a1 ∈ {1, 2} and

a2 ∈ {“stay”, “switch”} denote customers’ decisions in the first and the second

stage respectively. Then

Definition 1 A Perfect Bayesian Equilibrium of the overdraft-pricing game consists

of

1. A first-period PCA price offer by the two banks: ppp? := {p?1; p?2};
2. Customers’ decision over which bank to choose in the first stage: a?1(θ, γ,ppp) :

Θ× [0, 1]× R2
+ → {1, 2};

3. A second-period overdraft fee by the two banks: {φL,j?in ;φH,j?in , φj?out} for all j ∈
{1, 2}

4. Customers’ decision whether to switch: a?2(θ, a1(θ, γ,ppp),φφφ) : Θ×{1, 2}×R6 →
{“stay”, “switch”}.

where decisions are sequentially rational:

(i) each bank maximizes profit at each stage, and

(ii) customers’ decisions a1 and a2 are optimal given their appropriate subjective

beliefs regarding equilibrium prices.

Notice that the full model is a 4-stage strategic-form game, but it is useful

to interpret it as a game which unfolds in two periods: in period 1 banks offer

current accounts and customers engage with exactly one of them, while in period 2

banks offer an add-on liquidity service and customers decide whether to switch. This
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game is solvable by backward induction: first, we determine 2nd-period equilibrium

taking the prices and customer-bank relationships from period 1 as given. Then,

we consider deviations in the first stage, and analyse customers’ reaction to such

deviations. We find PBE if no such profitable deviation exists.

It is useful to introduce some further notation to simplify algebra. First, let

us define net cost from serving a customer in the overdraft-stage as:

cL = cod − rL
cH = cod − rH
cLH = cod − βrL + (1− β)rH

The new variable c conveniently captures all exogenous components of the profit

from a unit mass of customers who are respectively low, high or both (reflecting

population probabilities) types in the second stage.

In the following, we first derive two special cases: (i) the case without adverse

selection (β = 0), and (ii) the case without customer myopia (α = 0).

3.3 Overdraft with customer naiveté

We start by deriving the equilibrium for the special case where β = 0. Clearly, in

this case there is no information asymmetry between insider and outsider, so there

is no adverse selection problem. This version illustrates how the presence of naive

customers with an add-on product distorts standard competitive pricing results.10

As with β = 0 we have only one (high) type of customers, we can drop profitability

indices and simplify notation: {φ(j)
in , φ

(j)
out} denotes overdraft fees by Bank j for

insider and outsider respectively, and c denotes net costs.

3.3.1 Second-stage equilibrium

Suppose that Bank j starts with a mass γj of customers11, and within these cus-

tomers, the percentage of naive types is αj . Notice first that the second-period

game is separable into two distinct components: banks compete for the insider cus-

tomers of Bank j through the choice of φ
(j)
in and φ

(−j)
out , for all j ∈ {1, 2}. Given this

observation, we can formulate the subgame from an arbitrary bank’s perspective

as follows: (i) two banks jointly announce an overdraft fee {φ(j)
in , φ

(−j)
out }, and (ii) all

10Note that without naive customers the pure-strategy Nash-equilibrium of the pricing game is
trivially a competitive equilibrium.

11Note that these are not necessarily the customers ‘closest’ to Bank j.
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sophisticated customers of j, that is, γj(1−αj) mass of customers switch if and only

if φ
(−j)
out < φjin. Since indices are clearly pinned down when looking at the problem

from the perspective of any of the two banks, we can omit for further analysis.

Charging the maximum value φ is always a feasible strategy for both insider

and outsider banks. Whenever the outsider charges φ, it loses the competition

for sophisticated customers with certainty, and makes zero profit on overdrafts.

Therefore, in any equilibrium, outsider must only be willing to offer a fee which

leads to a nonnegative profit from overdraft business, that is,

φout ≥ c

The insider bank is bounded by a similar incentive compatibility constraint. Charg-

ing φ is always a feasible strategy, and even if at this fee it loses the competition for

sophisticated customers with certainty, it obtains the following profit12:

π0
in := α(φ− c)γ

This quantity can be regarded as insider’s minimax payoff : in any proposed equi-

librium, its profit from overdrafts must be at least π0
in. Now suppose that the equi-

librium is such that for a sufficiently low offer φ insider wins the price competition

with probability 1. Even in this case, the offer φ must satisfy the inequality

(φ− c) γ ≥ α(φ− c)γ

Let φ′in denote the value of φ which solves the corresponding equation, and we refer

to this as the incentive-compatible overdraft fee13. By rearranging we obtain:

φ′in := αφ+ (1− α)c (3.1)

According to this expression, the incentive-compatible overdraft fee is a weighted

average of the maximum fee and the break-even fee where the weights are the mass

of naive (resp. sophisticated) customers. We proceed with a formal proof that there

is no pure-strategy Nash-Equilibrium.

Lemma 1 If α > 0, no Pure-strategy Nash-equilibrium exists.

Proof. At stage 2 we have Bertrand-competition. Insider’s offer must be such that

φin ∈ [φ′in, φ], while outsider’s offer is φout ∈ [c, φ]. Given α > 0, we have φ′in > c.

12We don’t know yet whether this is a binding constraint, but we will see that later.
13We don’t know yet whether it is played in equilibrium by any of the players.
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Then outsider’s best response to any offer φin is φin − ε with some ε > 0. Insider’s

best response to any offer φout ∈ [φ′in, φ] is φout, and to any offer φout < φ′in is φ.

The mapping has obviously no fixed point, so there is no PSNE.

Notice that the Lemma is true for every α > 0 but fails for α = 0. For

α = 0 we have φ′in = c and its easy to see that playing φ′in by both players is the

unique PSNE of the game, which is also the competitive (zero-profit) outcome. This

verifies our previous claim that without customer naiveté the unique equilibrium is

the competitive outcome. It is the presence of customer naiveté which initiates price

dispersion in the overdraft market.

As there is no pure-strategy Nash-equilibrium, we look for a mixed-strategy

equilibrium (‘MSNE’). Suppose both outsider and insider mix according to CDFs

Fout and Fin, with support [F out, F out] and [F in, F in] respectively. The following

lemma establishes boundaries for the distributions.

Lemma 2 The supports of the CDFs Fout and Fin must satisfy

1. F out = F in = φ′in
2. F in = φ

Proof. See Appendix 3.A.1

The expected payoff from any action which is played in equilibrium must be

equal over the range of equilibrium actions (‘indifference condition’ ). The MSNE

is established in two steps: first, we apply the indifference condition to outsider’s

strategies to derive Fin, then, apply it to insider’s strategies to derive Fout.

Lemma 3 The insider bank is mixing according to a continuous distribution Fin(φ)

with support [φ′in, φ], and is placing a probability mass α on φ, where

Fin(φ) = 1− αφ− c
φ− c

(3.2)

Proof. First, we establish that there is no probability mass by the insider on φ′in.

Suppose Pr[φin = φ′in] > 0. Then outsider can charge φout = φin − ε for some ε > 0

and win all sophisticated customers with probability 1. By continuity, he would

make strictly larger profit than by winning at φ′in with some probability strictly less

than 1. Contradiction to equilibrium.

Because of that, by playing the lower boundary φ′in the outsider wins, all
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sophisticated customers switch with probability 1, and the bank’s profit is

π0
out = (1− α)

(
φ′in − c

)
γ

For any higher bid φ > φ′in it must be that

πout(φ) = Prob(φ < φin)︸ ︷︷ ︸
O wins

∗ (1− α)π(φ)γ︸ ︷︷ ︸
profit|win

+Prob(φ ≥ φin)︸ ︷︷ ︸
I wins

∗0 = π0
out

where the function π(φ) := φ− c denotes the profit from serving a unit measure of

customers with overdraft. The indifference condition in equilibrium is therefore:

(1− Fin(φ)) (1− α) (φ− c) γ = (1− α)
(
φ′in − c

)
γ

After substituting the value of φ′in from Equation (3.1), we obtain insider’s CDF:

Fin(φ) =
φ− αφ+ (1− α)(−c)

φ− c
= 1− αφ− c

φ− c

This CDF satisfies Fin(φ′in) = 0 and Fin(φ) = 1 − α, which implies that insider is

mixing over [φ′in, φ] and is placing a probability mass of α on φ.

Lemma 4 uses insider’s indifference property to derive outsider’s fee dispersion:

Lemma 4 The outsider bank is mixing according to a continuous distribution Fout(φ)

with support [φ′in, φ] where

Fout(φ) =
1

1− α
− α

1− α
φ− c
φ− c

(3.3)

Proof. We know from the proof of Lemma 2 that there is no probability mass on

φ by the outsider, implying

π0
in = α

(
φ− c

)
γ

The indifference property implies

Prob(φ ≤ φout)︸ ︷︷ ︸
I wins

∗ (φ− c) γ︸ ︷︷ ︸
profit from all

+Prob(φ > φout)︸ ︷︷ ︸
O wins

∗ α(φ− c)γ︸ ︷︷ ︸
profit from myopes

= π0
in

Leading to the following equality:

(1− Fout(φ)) (φ− c) γ + Fout(φ)α (φ− c) γ = α
(
φ− c

)
γ
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Figure 3.1: Overdraft fee dispersion
Customer naiveté
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This defines the CDF for outsider :

Fout(φ) =
1

1− α
− α

1− α
φ− c
φ− c

This CDF satisfies Fout(φ
′
in) = 0 and Fout(φ) = 1

From the two Lemmas, immediately follows the characterization of the unique

MSNE, which we summarize in Theorem 1 and illustrate in Figure 3.1.

Theorem 1 The unique mixed-strategy Nash equilibrium of the overdraft pricing

game with β = 0 is as follows: both insider and outsider mix between [φ′in, φ],

outsider according to Fout as defined in Equation 3.3, and insider according to Fin

as defined in equation 3.2. Insider is placing a positive mass of α on φ.

3.3.2 Equilibrium characterization

3.3.2.1 Overdraft fee dispersion

We can make probabilistic statements regarding expected fee and switching be-

haviour in equilibrium. For easy readability all proofs are in appendix. First, we

establish the probability that outsider wins.

Lemma 5 The probability that outsider wins is a linear function of the mass of

naive customers (α)

Prob[φout < φin] =
1 + α

2

Proof. See Appendix 3.A.2
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As α → 0, there is no ‘naive distortion’ effect, and competition guarantees

that outsider wins with probability 1/2. As the mass of naive customers increases,

the insider places more-and-more emphasis on ‘exploitation’ (i.e. φ = φ) which

increases the probability of winning by the outsider. As α→ 1 the probability mass

on φ goes to 1, and outsider wins with probability 1. It is useful to mention that the

total probability that outsider wins is the sum of two probabilities: when the banks

play mixture (1−α
2 ) and when the insider plays the mass-point and outsider always

wins (α). The appendix also shows formally that conditional on both mixing, the

outsider wins with probability 1/2.

Next, we calculate expected overdraft fees conditional on switching or stay-

ing. This is an interesting characterization on its own, and also an important ingre-

dient for later calculations.

Lemma 6 Conditional on switching, the (sophisticated) customers are expected to

pay an overdraft fee of

E[φout|φout < φin] = c+
2α

1 + α

(
φ− c

)
Conditional on remaining with insider, the (sophisticated) customers are expected

to pay

E[φin|φin ≤ φout] = c+
2α

1− α

(
1 +

α ln[α]

1− α

)(
φ− c

)
Proof. See Appendix 3.A.3

The lemma is illustrated in Figure 3.2. Blue (solid) line is expected overdraft

fee conditional on staying, as a function of α, while red (dashed) line is expected

fee conditional on switching. Sophisticated customers are facing with an actual

realization from the distribution, not this expected value. As α→ 0, overdraft fees

converge to the competitive outcome φout = φin = c14 and both insider and outsider

obtain zero-profit from overdraft business. With α > 0, banks randomize, while

insider is placing more-and-more weight on larger fees, increasing the expected fee

conditional on winning. This allows the outsider bank also to (probabilistically)

raise its offers. It is straightforward to interpret the expressions for expected fees in

Lemma 6 as a mark-up pricing formula: in the presence of naive customers, banks

can increase overdraft fees in expectation relative to the break-even, competitive

fee (c). The mark-up is proportional to the difference between the maximum price

and the break-even price, is increasing in α, and is always higher for the outsider

14Both CDF’s converge to a mass-point on c

77



Figure 3.2: Conditional expected overdraft fees
Customer naiveté
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3.3.2.2 Second period profit

From the indifference conditions, we know that bank j’s expected profit from its role

as an insider and as an outsider is

π
(j)
in = γjαj

(
φ− c

)
π

(j)
out = γ−j(1− α−j)

(
φ
′−j
in − c

)
Notice that the ‘outsider’ profit comes entirely from sophisticated customers who

switch, while insider profit consists of two components: sophisticated customers who

stay in equilibrium, and naive customers who always stay by assumption. In the

Appendix we derive a decomposition of the two latter terms. The following Lemma

provides results for the overall bank profit, calculated as an appropriately weighted

sum of the components defined above.

Lemma 7 For arbitrary values of γj and αj, Bank j’s profit is

π(j) =

[
α− (α− αjγj)2

1− γj

] (
φ− c

)
(3.4)

In two specific cases we have simpler expressions. Whenever the naive customers

are evenly distributed among the two banks in the second stage, that is, α1 = α2 = α,

15This can be proven by showing that their difference is decreasing and is 0 as α→ 1.
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Figure 3.3: Expected profits as a function of α
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(a) Decomposition of bank’s profit
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(b) % decomposition of bank’s profit

banks obtain the following overall profit in the second stage:

π(j) = α(1− α) + γjα
2

Whenever also the market share’s are equal, that is γ1 = γ2 = 1/2, the banks obtain

the following second-period profit

π(j) =
1

2
α (2− α)

(
φ− c

)
This symmetric equilibrium profit can be decomposed as

Eπmyop = α2 (1− ln[α])
(
φ− c

)
Eπsoph,switch = (1− α)α

(
φ− c

)
Eπsoph,stay = α (1− α+ α ln[α])

(
φ− c

)
Profits in the most general case are increasing in market share whenever 2αj >

γjα−j. When the naive customers are evenly distributed, profits always increase in

market share, in the maximum fee (φ), and decrease in net costs (c).

Proof. See Appendix 3.A.4

Figure 3.3a illustrates sources of expected profits as a function of α from

myopic (blue,solid) and from sophisticated customers who switch (red,dashed) and

stay (pink, dotted), while Figure 3.3b shows the percentage distribution of those

profits.
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3.3.3 First-stage equilibrium

3.3.3.1 Equilibrium first-period prices

Naive customers: As naive customers only take into account the first-period

announced price vector ppp, they follow a threshold strategy: a naive customer chooses

Bank 1 if and only if she is located at γ < γN , where γN is determined by the

indifference condition:

p1 + τγN = p2 + τ(1− γN )

The value of the threshold is:

γ̂N =
1

2
+

∆p

2τ
(3.5)

Sophisticated customers: Sophisticated customers predict second-period equi-

librium overdraft fees to calculate expected payment. As the equilibrium expected

fee conditional of choosing Bank j is the function of the mass of myopic customers

within Bank j, the following is always an equilibrium:

Lemma 8 For any PCA price vector ppp such that γ̂N (ppp) ∈ (0, 1) there exist an

equilibrium of the induced 3-stage subgame where (i) both sophisticated and naive

customers follow a common threshold defined in Equation (3.5) — now denoted as

γ̂ —, so that only customers with γi < γ̂ choose Bank 1, and (ii) second-period

overdraft fees are determined according to Proposition 1, with α1 = α2 = α.

Proof. Whenever α1 = α2 = α, according to Lemma 6, the expected second-

period overdraft fee for sophisticated customers if choosing Bank 1 or Bank 2 is

exactly equal, as it only depends on the fraction of naive customers within the

bank. Therefore, if they predict that in equilibrium α1 = α2, they will base their

decision only on first-period prices. Consequently, their decision will be identical to

that of naive customers, following a threshold strategy with γ̂ = γ̂N , which justifies

the belief that α1 = α2.

As a consequence, in this equilibrium, decreasing price always increases mar-

ket share. This is illustrated in Figure 3.4, where blue (solid) line represents expected

payment for sophisticated customers when choosing Bank 1, while red (dashed) is

expected payment from choosing Bank 2.

Bank 1’s total (ex-ante expected) profit, using Lemma 7, is

Π1 = γ̂p1 + π1
t=2 = γ̂(p1, p2)p1 +

(
α(1− α) + γ̂(p1, p2)α2

) (
φ− c

)
(3.6)
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Figure 3.4: Equilibrium market share
Customer naiveté
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For any given p2, the optimal choice of p1 is given by the first-order condition:

∂Π1

∂p1
=

∂γ̂

∂p1
p1 + γ̂ + α2

(
φ− c

) ∂γ̂
∂p1

= 0

Note that
∂γ̂

∂p1
= − 1

2τ

therefore:

−p1

2τ
+

(
1

2
+
p2 − p1

2τ

)
−
α2
(
φ− c

)
2τ

= 0

p1 =
1

2

(
p2 + τ − α2

(
φ− c

))
Solving for symmetric equilibrium:

p

t
=

1

2
+
p

2t
−
α2
(
φ− c

)
2t

p = τ − α2
(
φ− c

)
Whenever τ < α2(φ − c) this is negative. In that case, within the feasible range

of parameters, decreasing first-period price would always be a profitable deviation,

therefore first-period prices hit the lower bound. Rearranging this expression for

α, we obtain that FIIC prevails whenever the mass of naive customers exceed a

threshold value, and this threshold converges to zero as the first-period competition

parameter (τ) converges to perfect competition. Theorem 2 formalizes the result,

which we analyse further in the next section.
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Theorem 2 Symmetric equilibrium in the first stage:

• Suppose τ ≤ α2
(
φ− c

)
. Then decreasing prices is always a profitable devia-

tion, so the only symmetric equilibrium is p1 = p2 = 0

• Suppose τ > α2
(
φ− c

)
. Then there exist a unique symmetric-price equilib-

rium, defined by

p? = τ − α2
(
φ− c

)
(3.7)

3.3.3.2 Equilibrium profits

Equilibrium profits can be computed using Equation (3.6).

Figure 3.5: Equilibrium profit and PCA price
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Figure 3.6 illustrates that — in contrast to the Gabaix and Laibson [2006]-

tradition — strictly positive profits emerge for any mass of naive customers. The

distorted Bertrand-competition in the second stage of our game guarantees that

prices are jointly determined in equilibrium so that banks can enjoy the benefits of

their market power. In turn, the relative market power in first-stage (τ) and in the

second stage (α) then determines whether prices are positive, or hit the lower bound:

the more competitive are banks in the first-period, the more likely that a zero-price

equilibrium develops, as a result of their competition for market share. In particular,

as τ → 0, so does this threshold α — at the limit, there is zero-price for all possible

values of α. However, the equilibrium profits remain positive everywhere, not only

when the price bound is hit.
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3.4 Overdraft with adverse selection

In this section we switch off customer naiveté, set α = 0 (all customers are sophisti-

cated), and introduce the adverse selection problem β > 0. To simplify analysis, we

derive equilibrium by assuming that the insider bank follows a pure-strategy against

low-types by charging the maximum (supremum) fee which is offered to the other

type in equilibrium. Formally, let

φLin = sup{φ : FHin (φ) < 1}

where FHin (φ) denotes the CDF of the fees insider offers to high-type customers. This

assumption intuitively places a simple and plausible restriction on the equilibrium

structure, namely that any outcome must be such that low-types are being charged

a higher fee than high-types16. We introduce the notation πL(φ) := φ−cL, πH(φ) :=

φ − cH and πLH(φ) = φ − cLH for the 2nd-period profit of serving a unit measure

of customers of type Low/High/Mixed (according to population probabilities) at an

overdraft fee φ.

3.4.1 Second-stage equilibrium

The subgame has obviously no pure-strategy Nash-Equilibrium. The first Lemma

establishes boundaries for the distributions of the mixed strategies FHin and Fout:

Lemma 9 Both outsider and insider mix over the interval [cHL, cL]. Outsider’s

profit must be zero in equilibrium.

Proof. See Appendix 3.B.1

Intuitively, the Lemma establishes that because all L-types switch whenever outsider

tries to undercut insider by offering a lower fee, outsider’s offer cannot be below cLH

(participation constraint). On the other hand, the fees cannot be above cL, because

outsider cannot make profit in equilibrium.

Outsider’s indifference condition: At any fee φ < φLin outsider obtains all low-

types, therefore the indifference condition is:

Pr
[
φ < φHin

] (
βπL(φ) + (1− β)πH(φ)

)
+ Pr

[
φ > φHin

]
βπL(φ) = 0(

1− FHin (φ)
) (
βπL(φ) + (1− β)πH(φ)

)
+ FHin (φ)βπL(φ) = 0

16The more general proof of the next section proves that the assumption of degenerate distribution
for the low-type is without loss of generality, as it arises as a limiting case. For this section, this is
assumed for simplicity.
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This can be solved for the CDF of insider-H’s price dispersion:

FHin (φ) =
1

1− β
− β

1− β
∆c

φ− cH

where ∆c = cL − cH . This expression satisfies

FHin (cL) = 1 and FHin (cLH) = 0

So the insider is mixing continuously between cLH and cL, without a mass-point.

Insider’s indifference condition: The insider can make a positive profit by charg-

ing cLH to the high-types, and winning the competition with probability 1:

π0
in = (1− β)

(
cLH − cH

)
= (1− β)β∆c

The indifference condition at any given offer φ

Pr [φ < φout] ·
(
(1− β)πH(φ)

)
+ Pr [φ > φout] · 0 = π0

in

(1− Fout) ·
(
(1− β)

(
φ− cH

))
+ Fout · 0 = (1− β)

(
cLH − cH

)
This implies the mixed strategies of the outsider in equilibrium:

Fout(φ) =
φ− cLH

φ− cH
= 1− cLH − cH

φ− cH
= 1− β ∆c

φ− cH

This CDF trivially satisfies Fout(c
LH) = 0. We can also calculate that

Fout(c
L) = 1− β

which implies that the outsider’s mixed strategy is given by Fout(φ) over [cLH , cL),

and a mass point of β on cL. It might be useful to rewrite Fout as17

Fout(φ) = (1− β)Fin(φ)

The results are summarized in Theorem 3, which is illustrated in Figure 3.6.

Theorem 3 The unique mixed-strategy Nash equilibrium of the overdraft-stage of

the game with α = 0 and β > 0 is as follows: both insider and outsider mix between

17πLH(cLH) = 0 by definition. The relationship between Fin and Fout is obvious from the
formulas as well. This simple relationship is reminiscent to von Thadden (2004).

84



Figure 3.6: Overdraft fee dispersion
Adverse selection
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, outsider according to Fout and insider according to Fin as defined below.

FHin (φ) =
1

1− β
− β

1− β
∆c

φ− cH
(3.8)

Fout(φ) = 1− β ∆c

φ− cH
(3.9)

Outsider is placing a strictly positive probability mass of β on cL (the upper boundary

of the distribution), while insider charges cL to the low-types with probability 1.

3.4.2 Equilibrium characterization

3.4.2.1 Fee dispersion

We calculate expected fees conditional on switching versus staying with the insider

bank. A careful examination of the CDF’s and the payoff structure reveals similari-

ties with the case of customer naiveté, which is reflected in the following expressions.

The probability of winning by insider is a linearly increasing function of the mass of

low-type customers. In the limits, the CDF’s become degenerate, and bank’s charge

the respective fees: as β → 0, and banks charge cL, while they charge cH as β → 1

(see Figure 3.7). The profit is zero in both extreme cases. The formulas below

already foreshadows an interesting but intuitive result which is formally established

in the next step: possible profit due to adverse selection is the highest when the

uncertainty regarding the underlying types is the highest - that is, when β = 1/2.
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Figure 3.7: Conditional expected overdraft fees
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Lemma 10 The probability that insider (outsider) wins is

Prob[φHin < φout] =
1 + β

2
and Prob[φout < φHin] =

1− β
2

The expected fees conditional on winning are

E[φHin|φHin < φout] = cH +
2β

1 + β
∆c

E[φout|φout < φHin] = cH +
2β

1− β
∆c+

2β2

(1− β)2
ln[β]∆c

Proof. See Appendix 3.B.2

3.4.2.2 Banks’ profits

The outsider makes zero profit: First, verify that in equilibrium the outsider

obtains zero profit. In any equilibrium profit comes from two parts which might also

be negative: (1) low-types who switch (with certainty) and pay φout, that is E[φout]

(the unconditional expected fee) in expectation (2) High-types who switch whenever

outsider wins the bid, and pay φout, that is Pr[φout < φin]E[φout|φout < φin] in

expectation. Denoting πLout and πHout the profits from the bank’s role as an outsider

from low/high types respectively, we can write

πLout = β

(1− β)cH + βcL − β ln[β]∆c︸ ︷︷ ︸
overdraft fee

− cL︸︷︷︸
cost


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Figure 3.8: Expected profit
Adverse selection
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
After straightforward algebra we obtain

πout := πLout + πHout = 0

Intuitively, the expected loss from low-type customers who switch regardless of pric-

ing conditions (formally because insider is charging a very high fee) is exactly offset

by the expected profit on high-type customers who switch because the outsider is

winning the price competition. The outsider makes zero profit, therefore all profit

in equilibrium comes from its ‘role’ as an insider bank.

The insider makes positive profit: We have proven that all positive

profit (if it exist) comes from the insider, and it therefore must come from high-

types when the bank wins the competition. This happens when they mix and the

insider wins, and also whenever the outsider plays the probability mass.

πHin = (1− β)Pr[φHin < φout]×
(
E[φHin|φHin < φout]− cH

)
= (1− β)

(
cH +

2β

1 + β
∆c− cH

)
This expression simplifies to the following:

πHin = β(1− β)∆c

Expected profits are illustrated in Figure 3.8. We can also verify that πHin = π0
in.
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3.5 Overdraft with naiveté and adverse selection

Now we turn to the main model and analyse the interaction between customer

naiveté and adverse selection. In this case we pursue an equilibrium in the following

generic form: insider sets a price for low-types and high-types according to distribu-

tions FLin and FHin , while outsider’s price dispersion is given by Fout.
18 The model is

solved backwards: we start with the equilibrium for the second-stage, then iterate

back to the first-stage.

3.5.1 Second-stage equilibrium

Recall that with adverse selection but without customer naiveté in equilibrium in-

sider follows a pure-strategy against low-types by charging cL with probability 1.

As part of the proof for the main theorem of this section, we show first that this

simple equilibrium structure cannot survive when naive customers are also present

in the economy and α < β. Then, we demonstrate the existence of a specific type

of equilibrium where for α < β insider randomizes independently for high-types and

low-types over some non-overlapping intervals [φ
′′
in, φ̂] and [φ̂, φ], while outsider ran-

domizes according to a piecewise-defined, continuous distribution over the union of

those intervals. The analytical values of φ
′′
in and φ̂ will be exactly determined. The

proof consists of two main steps: first we show that any equilibrium must satisfy this

structure; then, we derive overdraft fee dispersion taking the structure as given. In

the main text below we give an overview of steps and intuition, while rigorous proof

and analytical calculations are relegated to Appendix. The proposed equilibrium is

depicted in Figure 3.9.

For this section, let us introduce the following notation: π(θ, φ, ρ) denotes

profit from serving customers of type θ ∈ {L,H,LH} with overdrafts, when over-

draft fee is φ, and the bank wins with probability ρ. Subscripts in and out refer

to profit for insider and outsider respectively. π(θ) stands for a minimax payoff

according to an alternative strategy.

First, notice that insider bank can always revert to the strategy of serving

naive customers only, and charging the fee cap φ. This defines two candidate ‘min-

imax’ payoffs for insider, for low and for high types independently. It will be clear

later that as they are facing with the same outsider distribution Fout, only one of

these can be binding.

Suppose first that the minimax payoff from low-types, πin(L) is binding,

18The only assumption we make is that insider sets the prices indifferently for low-types and
high-types.
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Figure 3.9: Overdraft price dispersion
Naiveté and adverse selection
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which must be the case if insider places a positive probability mass at φ in FLin. This

pins down the upper piece of outsider’s piecewise-defined CDF (denoted FLout
19)

through insider’s indifference condition against the low-type customers, that is, in-

sider is willing to offer an arbitrary φ to low-types only if its expected profit by

charging φ equals to its minimax profit:

πin (L, φ, Pr[φ ≤ φout]) = πin (L)

Suppose now that we know the cutoff value of the distributions, φ̂. Then it is

possible to formulate the profit for insider from serving high-type customers. By

playing φ̂, insider wins with probability Pr[φout ≥ φ̂], which we denote by ρ̂out for

simplicity:

ρ̂out := 1− FLout(φ̂)

By playing φ̂, insider’s payoff from serving high-types is πin(H, φ̂, ρ̂out). Due to

insider’s indifference property, this must be equal to its expected payoff at the lower

boundary F . As by playing F insider wins with probability 1, F is the value of φ

which solves

πin(H,F , 1) = πin(H, φ̂, ρ̂out)

Notice that this equality defines the lower boundary of the support as a function of φ̂.

By charging F (φ̂) outsider wins the competition with probability 1 and obtains both

(sophisticated) types, leading to profit πout

(
LH,F (φ̂), 1

)
. Due to the indifference

19Note that although we use parallel notation, FLin and FHin denote two different distributions,
while FLout and FHout is one piecewise-defined CDF!
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condition for outsider, this must be equal to its profit when charging φ − ε (with

ε→ 0). In the latter case outsider wins the low-type customers with the probability

that insider is placing on φ. Let this probability be ρin, which can also be written

as a function of φ̂, and the associated profit is πout(L, φ, ρin(φ̂)).

The next step is to determine the function ρin(φ̂). We know that for an arbi-

trary φ̂ insider’s CDF against low-types must reach zero in equilibrium. Therefore,

outsider’s indifference condition at the two boundaries of the support of FLin is

πout(L, φ̂, 1) = πout(L, φ, ρin(φ̂))

This equation allows us to express insider’s probability mass at φ as a function of

φ̂, so we have an analytical expression for ρin(φ̂).

The final step of the proof combines the lower and upper-part of outsider’s

indifference condition to solve for the (unique) threshold value φ̂. At the equilibrium

value of φ̂ outsider must be indifferent between charging F (φ̂) and win the low-types

with probability 1, or charging φ− ε and win the low-types with probability ρin(φ̂).

That is

πout(LH,F (φ̂), 1) = πout(L, φ, ρin(φ̂))

The Appendix derives the analytical value of φ̂:

φ̂? = cL +
α

β

(
φ− cL

)
The result is very intuitive, and shows immediately that the equilibrium described

here emerges for α ∈ (0, β) only. As α → 0, φ̂? → cL and we get back the solution

for the ‘adverse selection only’ benchmark case. Whenever α = β, φ̂? = φ and the

insider’s mixture over low-types becomes degenerate. For every value of α > β the

fee cap is binding for the low-types, leading to a different type of equilibrium, which

is more straightforward to derive (see Appendix for details).

The rest of the proof is straightforward. First, we can use the equilibrium

threshold value φ̂? to pin down insider’s equilibrium profit: at φ̂? insider wins the

high-types with probability
(

1− Fout(φ̂?)
)

, and this defines its new, modified equi-

librium payoff πH,?in . We show in Appendix formally that πH,?in > πHin whenever α < β,

verifying the claim that only the minimax payoff for the low-type is binding (which

is indeed binding by construction of the equilibrium). As the equilibrium payoff is

pinned down, we can write insider’s indifference condition against high-types:

πin(H,φ, Pr[φ < φout]) = πH,?in
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This equation defines the functional form for Fout(φ) on the interval [F , φ̂?].

Insider’s distributions are derived using outsider’s indifference condition: at

every φ, outsider must be indifferent between playing φ or its alternative payoff,

which is pinned down by the mass-point by insider on φ. That leads to the two

independent indifference conditions in a straightforward way. Theorem 4 fully char-

acterizes second-stage equilibrium.

Theorem 4 The equilibrium of the second-stage overdraft pricing game is as fol-

lows:

• If α > β, insider charges a fee for low-types according to a degenerate dis-

tribution and places all probability mass at φ. For high-types, insider mixes

over [φ′in, φ] according to FHin (φ), while outsider mixes over the same interval

according to Fout(φ). Insider places a positive probability mass ρHin := α−β
1−β on

φ, where

FHin =
1

1− β
− α

1− β
φ− cH

φ− cH

Fout =
1

1− α
− α

1− α
φ− cH

φ− cH

• If α ≤ β, insider mixes over [φ
′′
in, φ̂] according to FHin (φ) for high-types, and

over [φ̂, φ] according to FLin(φ) for low-types. Outsider mixes over [φ
′′
in, φ] ac-

cording to Fout, without mass-point. Insider places a positive mass ρin on φ,

where

FHin (φ) =
1

1− β
− α(φ− cL) + β∆c

(1− β)(φ− cH)

FLin(φ) = 1− α

β

φ− cL

φ− cL

Fout is piecewise defined as

Fout(φ) =

 1
1−α −

α(φ−cH)+(β−α)∆c
(1−α)(φ−cH)

if φ ≤ φ̂
1

1−α −
α

1−α
φ−cL
φ−cL if φ > φ̂

Proof. Appendix, which also defines analytically the boundaries φ′′in and φ̂.

The following figure illustrates how the proposed equilibrium approaches

simpler models as limiting cases. The left figure in 3.10 depicts the limit as α → 0

(adverse selection only). The lower-bound of the distributions approaches cLH , while
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Figure 3.10: Overdraft price dispersion - limits
Naiveté and adverse selection
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(b) α→ β

the upper bound of FHin approaches cL. At the same time, the distributions on the

upper range (for φ ∈ (cL, φ) converge to a mass-point on cL for both insider and

outsider. This is exactly the distribution we derived in Section 3.

The right figure illustrates that as α→ β, the upper part of the distributions

‘disappear’ and FLin becomes degenerate. The lower part of the distributions then

will be similar to Section 2, where β = 0 and α > 0, which is clearly a specific case

of β < α.

3.5.2 Equilibrium characterization

Switching probabilities and expected equilibrium overdraft fees are characterized 20

in Appendix. Here in the main text we only focus on bank’s profits from their role

as insider and outsider, as this is sufficient to characterize the symmetric first-stage

equilibrium what we introduce below.

Banks’ second-period equilibrium profits can be decomposed into a sum of

the profit from their role as outsider and insider bank. The insider profit is further

decomposed into profits from high-types and from low-types. That is if Bank j have

market share γ(j), its profit is

πj = γ(j)π
L(j)
in + γ(j)π

H(j)
in + γ(−j)πjout (3.10)

Notice that the superscript of the market share for bank’s outsider role is (−j), as

it obtains the other bank’s customers as outsider. The components can be obtained

20We provide for this section only a partial characterization, as in some cases the analytical
solutions are difficult.
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directly from the respective indifference conditions. From Appendix, we have for

the case of α ≤ β

πL,jin = α(j)β(j)
(
φ− cL

)
πH,jin = (1− β(j))

(
β(j)

(
cL − cH

)
+ α(j)

(
φ− cL

))
πjout = α(−j)

(
1− α(−j)

) (
φ− cL

)
Whenever αj = α−j = α and β(j) = β(−j) for an arbitrary γj (and noting that

∀j γj = 1− γ−j ), this simplifies to

π = γ(1− β)β∆c− α2(1− γ)(φ− cL) + α(φ− cL)

With symmetric γ = 1
2 and α we obtain

π
(2)
α≤β =

1

2

(
α(2− α)(φ− cL) + β(1− β)∆c

)
(3.11)

which in the special case of α = 0 equals the parallel expression in Section 3.

For the case of α > β, the appropriate profits are:

πL,jin = α(j)β(j)
(
φ− cL

)
πH,jin = α(j)(1− β(j))

(
φ− cH

)
πjout = (1− α−j)

(
φ′in − cLH

)
= (1− α−j)

(
α−jφ+ (1− α−j)cH − cLH

)
Whenever αj = α−j = α for an arbibrary γj (and noting that ∀j γj = 1 − γ−j ),

this simplifies to

π = αγj
(
φ− cH − β∆c

)
+ (1− α)(1− γj)

(
α(φ− cH)− β∆c

)
With symmetric γ = 1

2 and α we obtain

π
(2)
β<α =

1

2

(
α(2− α)

(
φ− cH

)
− β∆c

)
(3.12)

which in case of β = 0 equals the parallel expression in Section 2.
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3.5.3 First-stage equilibrium

Naive customers’ decision is simply the threshold value calculated from first-period

prices:

γ̂N =
1

2
+

∆p

2τ

Sophisticated customers first correctly predict the equilibrium value of their thresh-

old strategy, that’s γ̂S . In turn, this will pin down the parameters required to

calculate equilibrium overdraft fees, that is (potentially), αj and βj , and γj . This

allows to calculate customers’ expected payment conditional on that everyone fol-

lows the equilibrium strategy. Every candidate γ̂S generates some expected payment

— equilibrium is found where the sophisticated customer located at γ̂S is indeed

indifferent between choosing Bank 1 and Bank 2. This raises the possibility of mul-

tiple equilibria as well. In the rest of the chapter we focus on a relatively simple

symmetric equilibrium, which circumvents the need for calculating overdraft fees.

More detailed analysis of the first-stage, including the case of multiple equilibria, is

left for future work.

3.5.3.1 Symmetric equilibrium

Establishing the equilibrium consists of two steps. First, we will show that for any,

not necessarily equal21 values of p1 and p2, following the exact same behaviour by

sophisticated and naive customers in the first stage is still an equilibrium. The ar-

gument is similar to the one in the previous section with naiveté. By assumption,

low-types and high-types make the same first-period choice22, therefore, for any

strategy of sophisticated customers, the fraction of low and high types will be the

same within the two banks. In addition, if sophisticated customers follow the same

strategy as naive customers, the mass of naive customers will also be the same. As

the two bank has the same ‘structural’ parameters, and (overdraft-) pricing is scale-

free in the sense that it is independent of the market share, given this predicted

equilibrium, sophisticated customers predict the same equilibrium expected over-

draft fee payment. Therefore, they will base their decision solely on the first-period

payout, and would follow the same strategy as naive customers, justifying this as

an equilibrium action.

Next, taking this behaviour as given, we look at the banks’ total profit func-

tion, and calculate the first-order condition for optimum PCA-price. The first-order

21such that γ̂N ∈ (0, 1) is maintained
22customers do not know ex-ante whether they will be perceived low or high-types by the bank,

that would require them to know the bank’s behavioural scoring system, which is unlikely
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condition captures an intuitive trade-off: as first-period prices decrease, a bank can

increase its market share, but obtains lower profit from each individual customers.

This leads to a first-period price which is unique in this symmetric equilibrium.

We restrict attention to symmetric equilibrium with p1 = p2. The Bank’s

profit is given by Equation (3.10), and below we derive the fixed point of the best-

response mapping to the two cases, α ≤ β and α > β. The overall profit-functions

for both period - as a sum of first-period profit from PCA-deals and second period

profit on overdrafts - in the case of a symmetric equilibrium can be constructed

using (3.11) and (3.12) for example from Bank 1’s point of view as follows:

πα≤β = γ1 (p1, p2) p1 + π
(2)
α≤β

πα>β = γ1 (p1, p2) p1 + π
(2)
α>β

We substitute γ1 = γN and calculate the best response by Bank 1 to any p2 as a

solution of the following first-order conditions:

∂πα≤β
∂p1

=
1

2τ

(
β2∆c− β∆c− 2p1 + p2 − α2(φ− cL) + τ

)
= 0

∂πα>β
∂p1

=
1

2τ

(
2αβ∆c− β∆c− 2p1 + p2 − α2(φ− cH) + τ

)
= 0

this gives us the best-response function:

p̃1,α≤β(p2, ·) =
1

2

(
−β∆c+ β2∆c+ p2 − α2

(
φ− cL

)
+ τ
)

p̃1,α>β(p2, ·) =
1

2

(
−β∆c+ 2αβ∆c+ p2 − α2

(
φ− cH

)
+ τ
)

The symmetric equilibrium we are after here is given by the fixed-point equations:

p =
1

2

(
−β∆c+ 2αβ∆c+ p− α2

(
φ− cL

)
+ τ
)

p =
1

2

(
−β∆c+ β2∆c+ p− α2

(
φ− cH

)
+ τ
)

which gives the symmetric equilibrium solution:

p?α≤β = β2∆c− β∆c+ τ − α2
(
φ− cL

)
(3.13)

p?α>β = 2αβ∆c− β∆c+ τ − α2
(
φ− cH

)
(3.14)

Whenever α = β the two predicted PCA prices coincide, so p? is continuous at this

point of the parameter space.
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Theorem 5 There exist a symmetric equilibrium in the first stage, characterized

as follows:

• Whenever α ≤ β, the symmetric equilibrium is ‘FIIC’ with p? = 0 whenever

τ ≤ α2(φ− cL)− β(1− β)∆c. Otherwise there exist a positive price given by

Equation (3.13).

• Whenever α > β, the symmetric equilibrium is ‘FIIC’ with p? = 0 whenever

τ ≤ α2(φ− cH)− β(1− 2α)∆c. Otherwise there exist a positive price given by

Equation (3.14).

The difference between the equilibrium fee in (3.14) and the case of customer naiveté

only is exactly β∆c(2α− 1), which is zero if β = 0 or if ∆c = 0 — that is, if there is

no adverse selection. Furthermore, the difference is negative whenever α < 1
2 . On

the other hand, the difference between ‘naiveté only’ PCA-price and Equation (3.13)

is always negative. Recall that relatively low α values are typically the parameter

regions where PCA prices may turn positive as a result of first-stage market power

(relatively high value of τ), as the potential to exploit naive customers is extremely

limited. This is inherent in all Gabaix-Laibson-style models, but also verified by our

approach. The comparison above implies the following corollary:

Corollary 3 The presence of adverse selection typically decreases first-period prices

and makes FIIC-pricing more likely. Specifically, whenever τ > 0, any adverse

selection (which requires β > 0 and ∆c > 0) decreases any positive PCA prices

whenever α < β, and also if β < α < 1
2 .

Figure 3.11 provides an illustration of how the presence of information asym-

metry and adverse selection affects equilibrium outcome. We choose the parameters

so that the expected (net) cost of the overdraft business is exactly equal (that is,

βcL+(1−β)cH is constant). The left-side figure depicts an already known situation

with customer naiveté only (β = 0). The presence of naiveté raises profits over

the whole interval α ∈ (0, 1), imposing FIIC for a significant part of the parameter

space, except for lower values of α. In contrast, the right-hand figure depicts a sit-

uation where β = 0.5. Despite the expected cost of overdraft business being equal,

information asymmetry tilts the sources of profits towards insider role, leading to

further increase of PCA prices even for low values of α.
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Figure 3.11: Bank profit and PCA price
Without / with adverse selection
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Positive PCA prices without information asymmetry (left-hand figure) are
competed away as adverse selection makes insider role of a bank more

prominent compared to its outsider role.

3.6 Discussion

In this section we revisit the most important results of the preceding analysis and

emphasize the contribution from economic theory point of view, as well as our

message to banking research in the context of overdraft markets.

We started the research by changing an important component of the eco-

nomic literature on aftermarket-pricing, namely that the seller of the primary good

has monopoly power on the aftermarket. Instead, we take an almost opposite view

by modelling a homogeneous add-on good with Bertrand-competition on the after-

market. We argued that this is a more accurate description of retail banking, as

there are no conventional technological constraints linking the aftermarket-good to

the base-market good, like for example in the case of a printer and its cartridges.

In the meantime, we certainly acknowledge that there is market power in retail

banking: however, its source is rather attributable to behavioural biases (customer

naiveté), or informational frictions (adverse selection). We therefore constructed a

stylized model which is able to capture the interaction of these two effects in an

otherwise competitive aftermarket environment.

We believe that this approach is more suitable to address the potential im-

pact of recent policy developments in the Banking sector. Due to an increasing

pressure from customer protection groups, policy makers recently started to look

more seriously at some prevalent retail banking practices, such as FIIC-pricing. As
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a result of this scrutiny, new measures - such as the 2nd Payment Services Directive

in the EU, or the Open Banking Programme in the UK - have been implemented

to address the potentially welfare-reducing consequences. The most important el-

ements of these changes seem to target customers’ behavioural biases, like naiveté

— possibly exacerbated by exploitative practices such as shrouding —, and banks’

information monopoly over customers, which gives rise to adverse selection and pre-

vents potential competitors to enter the market and improve efficiency. Professor

Alasdair Smith from the UK’s Competition and Market Authority summarizes this

point neatly as23

The Open Banking programme (...) tackle the central problem in retail

banking competition. That central problem is not “free banking”; it’s the

fact that bank customers don’t have the information or tools they need

to get the best deal from their banks.

The implemented measures among others make it easier for customers to shop

around using price comparison websites, switch to a competitor bank using switch-

ing services, and force banks to share customer account information on request to

alleviate the potential adverse selection problem. As a result, banks’ seem to have

started to advertise heavily their overdraft conditions (instead of shrouding this in-

formation in advance), and introduced temporarily discounted overdraft fees as a

selling-point.24

We started the analysis with a simple duopoly model where in the sec-

ond stage naive customers can be exploited, while there is Bertrand-competition

for sophisticated customers. We showed that there exist no pure-strategy Nash-

equilibrium of the overdraft-pricing stage, and in the mixed-strategy equilibrium

both insider and outsider bank randomizes its overdraft fees. We have demon-

strated that the mixed-strategy equilibrium has intuitive limits: as α → 0 the

equilibrium converges to a competitive (zero-profit) equilibrium, while with α → 1

it converges to a maximum-exploitation monopoly pricing. An interesting property

of the mixed-strategy equilibrium is that insider’s price dispersion allows the out-

sider bank as well to increase their prices, and obtain positive profit. When a bank

decides whether to decrease prices it faces the following trade-off: it increases its

market-share, therefore it obtains more profit in the first-period and from its role

as insider, but it will obtain less profit from its outsider role. The equilibrium PCA

23Financial Times, FEBRUARY 21, 2017, https://www.ft.com/content/

72de5dc0-f79c-11e6-bd4e-68d53499ed71
24Recall that the first, ‘authentic’ interpretation of price dispersion of homogeneous goods in

economics was ’the model of sales’, by Varian (1980).
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price trades off these two forces. As the insider role is profitable, the equilibrium

price will always be below the price which would arise on the market for PCA with-

out the aftermarket (the latter is positive as banks have some market power derived

from product differentiation in the first-stage), but it is limited by the presence of

outsider profits, and therefore positive second-period profits are not competed away

in the first-stage, even with positive prices. Therefore, in contrast to the literature,

in this model the source of the positivity of bank’s profits is not the binding lower

boundary constraint, but a direct consequence of endogenous price determination

with customer naiveté.

The presence of adverse selection changes this picture in an important way.

As our analysis with adverse selection only (Section 4) points out, the information

monopoly gives rise to an equilibrium with similar price dispersion, but this price

dispersion only lets the insider to profit from its information advantage - outsider

would get zero profit in equilibrium. This is a restatement of known results from the

domain of relationship-banking literature (see for example, von Thadden (2004)).
25

This intuition carries through to the full model where we combine customer

naiveté and adverse selection. The appearance of adverse selection prevents the

outsider to enjoy the extra profits from naiveté. As a result, the source of profit will

be tilted towards insider customers, so the bank would compete more strongly for

them in the first stage. This effect pushes the PCA prices downward, making FIIC-

equilibrium even more likely. In particular, with the same mass of naive customers,

low adverse-selection might lead to positive prices, while high adverse selection to

zero-bound pricing and FIIC equilibrium. Adverse selection influences exploitation-

ability in a nontrivial way.

Another aspect of this interaction links to the question of why overdraft

markets develop in the first place.26 The following high-level argument is motivated

by Heidhues et al. [2016a], who study the incentives to ‘innovate’ pricing practices

designed to exploit naive customers on the market — the overdraft segment itself

being a prime example. Without much formality, and admitting that this argument

may be subject to criticism, we say that there is ‘incentive to innovate’ and enter

into a new market, if the new equilibrium (after sufficient convergence including

follow-up entries) promises a higher equilibrium payoff, than the current status

quo. Let this status quo be a banking market where overdrafts do not exist. Does

25Our version of the relationship-banking model presented here is essentially an extremely parsi-
monious version of the classic relationship-banking problem with adverse selection.

26This is not addressed formally in the model, but the discussion here can be a basis of a poten-
tially important extension.
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Figure 3.12: Bank profit and PCA price
Without / with adverse selection (2)

Profit

p

Profit,no overdraft

α=β

α

profit

/price

Profit

p
Profit,no overdraft

α=β

α

profit

/price

Market power (larger τ) in the first period makes overdrafts less profitable
compared to an equilibrium where only PCA’s are offered, without overdrafts.

the banking sector has incentives to make an investment to introduce this new

product and move to a new equilibrium?27 Figure 3.12 illustrates the effect of first-

period PCA-price competition. Without adverse selection (left figure) — for an

arbitrary level of α — overdrafts generate additional profits, therefore the answer is

positive: there is always ‘incentive to innovate’ and introduce the overdraft business

segment into the market. The presence of adverse selection (right figure) makes

profits much less responsive to the presence of naive customers, especially for low α

values. Although the profits obtained in the new equilibrium are still positive, the

extra profit compared to the case where banks only sell PCA’s and exploit product

differentiation shrinks, and for sufficiently high τ , it even converges to zero. This

means there is less incentives to innovate. Whenever the banks have large first-

period market power (a more concentrated, oligopolistic retail banking market),

equilibrium PCA prices tend to be larger, so it is less likely that the equilibrium is

FIIC. The presence of adverse selection can bring this to the extreme, when banks

have no incentives to innovate and introduce overdrafts at the first place.

To conclude, more concentrated, less competitive markets with higher prod-

uct differentiation in Europe compared to the large and competitive banking sector

in the US and the UK might be the the reason why FIIC is much more prevalent

in the latter countries. In addition, higher adverse selection (more uncertainty re-

27Even if there is a generic demand for a certain type of product - like an overdraft-style liquidity
facility -, it is not immediate, and not costless to introduce a new banking product unknown to
customers, and start fulfilling the potential demand.
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garding the borrowers’ creditworthiness) makes FIIC more-likely, which suggest that

FIIC might be more prevalent in countries with relatively higher income inequality

and lower social safety net. These potential explanations which are suggested by

our model are invariant to the level of customer naiveté, so FIIC can prevail or not

even with the exact same number of naive customers - a puzzle which motivated

our research at the beginning.

3.7 Conclusions

In this paper we proposed a novel way of thinking about bank’s overdraft prices and

aftermarket pricing in general. Even with competitive aftermarkets, behavioural

frictions such as customer naiveté - the presence of customers who do not switch,

despite a cheaper product is available on the market, and there are no other bar-

riers to switch -, or informational frictions such as adverse selection can generate

an equilibrium which is reminiscent to pricing schemes observed in retail banking.

Specifically, the model predicts free-if-in-credit pricing (‘free banking’) for a large

subset of parameters. In contrast to alternative models, FIIC arises with moderate

number of naive customers, and as long as the market is subject to more severe

adverse selection, even with small number of naive customers. Higher competition

on the primary market also raises the possibility of the emergence of FIIC-pricing.

These are novel findings in the theoretical literature, and help to explain better the

observed differences in retail banking markets around the world. Our modelling

framework is also better suited to analyse the potential impact of certain regula-

tory interactions, such as price-comparison websites, ‘open banking’, or switching

services. Most of this analysis, and further comparative exercise on cross-country

differences is left for future research work.
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3.A Appendix A - Proofs, Customer myopia

3.A.1 Proof of Lemma 2

The Lemma is established through a series of claims.

Claim 1 Insider will never bid any φin < φ′in, so F in ≥ φ′in. Furthermore, Pr[φin =

φ′in] = 0.

Proof. (i) Charging φ is always a feasible action for insider, and even if she wins

at some φin < φ′in with probability 1 and loses at φ with probability 1, the latter

still gives higher profit by the definition of φ′in. (ii) Suppose there is a mass point

at φ′in by the insider, that is, Pr[φin = φ′in] > 0. This can only be equilibrium

if F out ≤ φ′in, otherwise insider would have incentives to increase the price. In

addition, insider must win at φ′in with certainty (otherwise would find it better to

charge φ by the definition of φ′in). This implies outsider loses at φout = φ′in with a

strictly positive probability. In that case, outsider is better off by charging φ′in − ε
with probability 1, winning with certainty, and obtaining a profit of α (φ′in − c) γ−ε.
Insider would lose at φ′in. Contradiction to equilibrium.

Claim 2 Outsider will never bid below φ′in, so F out ≥ φ′in

Proof. Suppose the bid is φ < φ′in. Because of claim 1, he wins with certainty, but

than he would be better off by bidding
φ′in+φ

2 . Contradiction.

Claim 3 Whenever φ′in > c outsider makes positive profit in equilibrium.

Proof. For any bid φout ∈ (c, φ′in) outsider would win with certainty and make

positive profit. As this is a feasible deviation, there must be positive profit in

equilibrium.

Claim 4 Outsider never places positive mass on any φ ≥ F in. In particular,

Pr[φout = F in] = 0.

Proof. In this region he would lose with certainty, implying zero profit and contra-

dicting Claim 3.

Claim 5 F in = φ and insider’s profit is α
(
φ− c

)
γ

Proof. Claim 4 implies that insider loses the bid with probability 1 at F in. There-

fore, her profit when playing F in can be at most α
(
F in − c

)
γ. Because the minimax

payoff is α
(
φ− c

)
γ, and the profit is increasing in φ, it follows immediately that

F in = φ and the profit throughout the mixture is α
(
φ− c

)
γ.
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Claim 6 Outsider’s lower boundary must be exactly Fout = φ′in

Proof. Suppose F out > φ′in. Then there exist a strategy for insider to bid F out,

win the competition with probability 1, and make profit (F out − c) γ > π0
in. This

contradicts to Claim 5.

Claim 7 Insider’s lower boundary must be exactly F in = φ′in

Proof. Suppose F in > φ′in. Then outsider could win all customers at φout =

F in − ε, and would never bid anything below. Insider would then find it profitable

to undercut this by bidding F in − ε.

Claim 8 The constant profit to outsider over the mixture is πout = (φ′in − c) γ.

Proof. At φ′in outsider wins with probability 1, because there is no mass by insider.

3.A.2 Proof of Lemma 5

We want to calculate Prob(φout < φin). Start with the continuous part of the

distributions where both players mix, ignoring the mass points. With the joint

CDF fio it is possible to write formally

Pr[φout < φin] =

∫ φ

φ′in

∫ φin

φ′in

fiodφoutdφin

From earlier lemmas we can calculate the two PDF’s:

fin(φ) = F ′in(φ) = α · φ− c
(φ− c)2

fout(φ) = F ′out(φ) =
α

1− α
· φ− c

(φ− c)2

The joint distribution because of the independence assumption is:

fio(φin, φout) = fin(φin) · fout(φout) =
a2

1− a
·

(
φ− c

)2
(φout − c)2(φin − c)2
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The internal integral, with respect to φout is∫
fiodφout = − a2

1− a
· (φ− c)2

(φout − c)(φin − c)2∫ φin

φ′in

foidφout =
a2

1− a
· (φ− c)2

(φin − c)2
·
(

1

(φ′in − c)
− 1

(φin − c)

)
=

α

1− α
φ− c

(φin − c)2
− α2

1− α
(φ− c)2

(φin − c)3

After integrating each components we get:

˜Prob[φout < φin] =
α

1− α
(φ− c)

[
−1

φin − c

]φ
φ′in

− α2

1− α
(φ− c)2

[
−1

2(φin − c)2

]φ
φ′in

After substitutions of the integral boundaries, we get the formula for the probability:

˜Prob[φout < φin] =
1− a

2

This probability only considers the mass over the continuous-part of the two distri-

butions, so it gives the probability mass of winning when insider plays mixture. In

addition, outsider wins with certainty whenever insider plays φ. Together with the

mass-point we obtain

Prob[φout < φin] =
1− α

2
+ α =

1 + α

2

Prob[φin < φout] = 1− 1 + α

2
=

1− α
2

3.A.3 Proof of Lemma 6

We calculate the expected fee offered by insider resp. outsider conditional on winning

the price competition, that is, E[φout|φout < φin] and E[φin|φin ≤ φout]. Because

there are mass-points by the insider placed on φ, we have

E[φout|φout < φin] =
1

1+α
2

(∫ φ

φ′in

∫ φin

φ′in

φoutfiodφoutdφin + α

∫ φ

φ′in

φoutfoutdφout

)
(3.15)

E[φin|φin ≤ φout] =
1

1−α
2

(∫ φ

φ′in

∫ φout

φ′in

φinfiodφindφout

)
(3.16)
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Because the joint distribution is symmetric in the two variables, the double-integral

components are symmetric and equal. For example,

∫ φ

φ′in

∫ φin

φ′in

φoutfiodφoutdφin = αφ+
1

2

(
2α2 ln[α](φ− c)

1− α
− (3α− 1)(c)

)
The details of this calculation are included below:

1. The internal integral

∫ φin

φ′in

φoutfφout,φindφout =
α2

1− α

(
φ− c

)2
(φin − c)2

∫ φin

φ′in

φout

(φout − c)2dφout

=
α2

1− α

(
φ− c

)2
(φin − c)2

[
−c

φout − c
+ ln(φout − c)

]φin
φ′in

=
α2

1− α

(
φ− c

)2
(φin − c)2

(
−c

φin − c
+ ln(φin − c) +

c

α(φ− c)
− ln(α(φ− c))

)

2. The full integral: required ”ingredients”:

∫
1

(x− c)3
dx = − 1

2 (x− c)2 ⇒

[
1

2
(
α(φ− c)

)2 − 1

2
(
φ− c

)2
]

=

[
1− α2

2α2

1(
φ− c

)2
]

∫
ln(x− c)
(x− c)2

dx = − ln(x− c) + 1

x− c
⇒
[

ln(α(φ− c)) + 1

α(φ− c)
− ln(φ− c) + 1

φ− c

]
=

ln(φ− c)
φ− c

(
1− α
α

)
+

1

φ− c

(
1− α
α

)
+

lnα

α(φ− c)

=

[
1− α

α(φ− c)
(
ln(φ− c) + 1

)
+

lnα

α(φ− c)

]
∫

1

(x− c)2
dx =

−1

x− c
⇒
[
−1

φ− c
+

1

α(φ− c)

]
=

[
1− α

α(φ− c)

]
Therefore∫ φ

φ′in

[...]dφin =
α2
(
φ− c

)2
1− α

(
−c

[
1− α2

2α2

1(
φ− c

)2
]

+

[
1− α

α(φ− c)
(
ln(φ− c) + 1

)
+

lnα

α(φ− c)

]
+

((
c

α(φ− c)

)
− lnα− ln(φ− c)

)[
1− α

α(φ− c)

])
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This simplifies significantly:

∫ φ

φ′in

[...]dφin =
−(1 + α)c

2
+ α(φ− c)

(
ln(φ− c) + 1

)
+
α lnα(φ− c)

1− α

+ c− α(φ− c)
(
ln[α] + ln(φ− c)

)
= αφ+ α(φ− c)

(
− ln[α]

1− α
− ln[α]

)
+ c− (1 + α)c

2
− αc

= αφ+ α(φ− c)
(
α ln[α]

1− α

)
+ c

(
1− α− 1 + α

2

)
= αφ+

α2 ln[α]

1− α
(φ− c) + c

(
1− 3α

2

)

The calculation of the unconditional expected value is relatively straightfor-

ward, so we omit details:

∫ φ

φ′in

φoutfoutdφout = c− α(φ− c) log[a]

1− a

After combining the two expressions:

E[φout|φout < φin] =
1

1 + α

(
2φ+ (1− α)(c)

)
This can be rewritten as

E[φout|φout < φin] = c+
2α

1 + α

(
φ− c

)
which is reminiscent to a markup-pricing formula. Similarly,

E[φin|φin ≤ φout] = c+
2α

1− α
(
φ− c

)(α ln[α]

1− α
+ 1

)
= c+

2α

1− α

(
1 +

α ln[α]

1− α

)(
φ− c

)
Because α < 1, the mark-up is always smaller for the insider.
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3.A.4 Proof of Lemma 7

Bank’s profit

The outsider profit can be rewritten for j ∈ {1, 2} as

πout = γ−j(1− α−j)
(
α−jφ+ (1− α−j)c− c

)
= γ−jα−j(1− α−j)

(
φ− c

)
The overall profit:

πj = πjin + πjout = (γjαj + γ−jα−j(1− α−j))
(
φ− c

)
(3.17)

Notice that

γjαj + (1− γj)α−j = α ⇒ α−j =
α− γjαj

1− γj

therefore

πj = (γjαj + γ−jα−j(1− α−j))
(
φ− c

)
= −

α2 + α2
jγ

2
j − α(1− γj + 2αjγj)

1− γj
(
φ− c

)
=

[
α−

α2 + α2
jγ

2
j − 2ααjγj

1− γj

] (
φ− c

)
=

[
α− (α− αjγj)2

1− γj

] (
φ− c

)
whenever αj = α:

[
α− (α− αjγj)2

1− γj

]
= −α

2(1 + γj)− 2α2γj
1− γj

+ α = −
α2
(

1 + γ2
j − 2γj

)
1− γj

+ α

= −α
2 (1− γj)2

1− γj
+ α = α− α2(1− γj) = α(1− α(1− γj))

= α(1− α) + γjα
2

as we have
∂π

∂γj
= α2

(
φ− c

)
> 0

,the profit always increases in own market share.

Whenever γ1 = γ2 = 1/2,

πj = α(1− 1

2
α)
(
φ− c

)
=

1

2
α(2− α)

(
φ− c

)
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Decomposition of profits

We decompose profits in a symmetric equilibrium into three parts: (i) profit

from myopic customers, who always stay with the Bank, irrespectively of prices; (ii)

profit on sophisticated customers because they decide to stay in equilibrium (and

pay φin), or (iii) because they switch from the other bank (and pay φout). That is,

for any given pair of equilibrium overdraft fees {φin, φout}

Eπ(φin, φout) = απ(φin)︸ ︷︷ ︸
Profit from myopes

+ pow(1− α)π(φout)︸ ︷︷ ︸
Profit switching sophisticates

+ piw(1− α)π(φin)︸ ︷︷ ︸
Profit from staying sophisticates

where pout.w and pin.w are the probabilities that outsider and insider wins the com-

petition.

Using results from previous section, it is possible to rewrite expected profit

from serving a unit myopic / sophisticated switcher / sophisticated remainer cus-

tomer as

Eπmyop = α (E[φin]− c)

Eπsoph,switch = Pr[switch] (E[φout|switch]− c)

Eπsoph,stay = Pr[stay] (E[φin|stay]− c)

where

E[φin] =

∫ φ

φ′in

φinfφindφin + αφ

and the other variables are defined in the previous Lemma. The total expected

income from sophisticated customers is

Eπsoph = p+R+ E[φ|switch] · Pr[switch] + E[φ|stay] · Pr[stay]

After substitution and algebraic simplifications:

Eπmyop = α2 (1− ln[α])
(
φ− c

)
Eπsoph,switch = (1− α)α

(
φ− c

)
Eπsoph,stay = α (1− α+ α ln[α])

(
φ− c

)
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3.B Appendix B - Proofs, Adverse selection

3.B.1 Proof of Lemma 9

The Lemma is established through a series of claims.28 Let F θ and F θ denote the

infimum and the supremum of the support of the probability distributions Fθ for

θ ∈ {“in”, “out”}.

Claim 1 (Participation constraints) (i) Insider would never offer any φHin < cH

for the high types, therefore FHin ≥ cH . Similarly, it would never offer any φLin < cL,

so φLin ≥ cL. (ii) Outsider would never offer any φout < cHL, so F out ≥ cLH .

Proof. (i )The bank would get negative profit if it wins. (ii) By (i), φLin ≥ cL,

and because cL > cLH , by bidding cLH or below, the outsider gets all low-types.

Therefore, even if it wins all high-types with probability 1, it would make a loss at

any φ < cLH .

Claim 2 (Common lower boundaries) (i) The lower boundaries of insider-H’s

and outsider’s distributions must coincide: F out = FHin := F (ii) There must be no

probability mass by outsider at the lower boundary.

Proof. (i) Suppose FHin < F out. Then insider would win at F out with probability 1,

and make strictly larger profit, contradicting equilibrium. Similarly, there cannot be

any F out < F in, since outsider could raise it to
F out+F

H
in

2 , still win with probability

1, and obtain larger profit.

(ii) Suppose F > cLH and outsider places a positive probability mass on F .

Then insider would lose at F + ε with ε→ 0 with a probability strictly larger than

0. Instead, she could improve her payoff by playing F − ε and win with probability

1.

Claim 3 Insider makes strictly positive profit.

Proof. Because of Claim 2, by playing F the insider wins with probability 1.

Because F ≥ cHL due to Claim 1, insider obtains a profit at least cHL − cH > 0 on

each (high-type) customer.

Claim 4 There is a common upper boundary of the continuous parts of the distri-

butions: F i = F o := F = cL

28This is an existence-proof, and does not address the uniqueness of equilibrium. In particular,
we ‘guess’ some properties of the equilibrium — namely that the insider fee to low-types is a
degenerate distribution at cL — and then verify that this is indeed an equilibrium. Also, continuity
of the distributions is imposed. We believe that this simplified proof carries the main intuition
while avoids less interesting technical details.
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Proof. That the upper boundaries are common is trivial. Suppose F > cL. Then

outsider obtains positive profit. By playing F outsider loses with certainty, contra-

dicting positive profit, therefore there must not be probability mass by the outsider

on F . This implies insider loses competition for high-types at F with probability

1, and makes zero profit on high-types. That cannot be part of an equilibrium, as

there is a profitable deviation to charge cHL − ε and obtain strictly positive profit.

Contradiction to F > cL. Now suppose F < cL. Given that φLin = cL, outsider

would get all low-types. If there is no mass-point by insider on F , outsider would

also lose all high-types and make negative profit, contradicting equilibrium. But

insider cannot have mass point at F , as in that case outsider must have zero mass

on F , and insider loses with certainty, and obtains lower profit than at cHL.

Claim 5 Outsider is making zero profit.

Proof. By charging cL outsider loses with certainty and obtains zero profit.

3.B.2 Proof of Lemma 10

Switching probabilities and expected fees

From the CDF’s in Theorem 3 we can calculate the PDF’s and the joint

PDF:

fin(φHin) =
β

1− β
cL − cH(
φHin − cH

)2
fout(φout) = β

cL − cH

(φout − cH)2

fio(φ
H
in, φout) =

β2

1− β

(
cL − cH

)2(
φHin − cH

)2
(φout − cH)2

The following computations are similar to the case with customer naiveté. The

truncated probability (over the mixture) that insider vs. outsider wins is:

P̃ r[φHin < φout] =

∫ cL

cLH

∫ φout

cLH
fiodφ

H
indφout =

1− b
2

P̃ r[φout < φHin] =

∫ cL

cLH

∫ φHin

cLH
fiodφoutdφ

H
in =

1− b
2
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The (unconditional) probabilities are

Pr[φHin < φout] =
1− β

2
+ β =

1 + β

2

Pr[φout < φHin] =
1− β

2

Note that the conditional probability that insider/outsider wins given mixture is:

Pr[φHin < φout|mix] = Pr[φout < φHin|mix] =
1− β

2
/(1− β) =

1

2

The expected fee of insider conditional on winning is

E[φHin|φHin < φout] =

∫ cL
cLH

∫ φout
cLH

φHinfiodφ
H
indφout + β

∫ cL
cLH φ

H
infindφ

H
in

P̃ r[φHin < φout]

=

[
1

2

(
(1− β)(cH) + 2β∆c

)
+
β2 ln[β]∆c

1− β
+ β

(
c− β ln[β]

1− β
∆c

)]
∗ 2

1 + β

= cH +
2β

1 + β
∆c

The expected fee of outsider conditional on winning:

E[φout|φout < φHin] =

∫ ub
lb

∫ φout
lb φoutfiodφoutdφ

H
in

P̃ r[φout < φHin]

=

[
1

2

(
(1− β)cH + 2β∆c

)
+
β2 ln[β]∆c

1− β

]
∗ 2

1− β

= cH +
2β

1− β
∆c+

2β2

(1− β)2
ln[β]∆c

Finally, we need to know the (unconditional) expected fees:

E[φout] = Ẽ[φout] + β(cL) = (1− β)cH + βcL − β ln[β]∆c

E[φHin] = cH − β ln[β]∆c

1− β
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3.C Appendix C - Proofs, Full model

3.C.1 No pure-strategy for L-types

For didactic reasons we give a proof sketch for the claim that for α < β there is

no equilibrium in which insider follows a pure strategy (degenerate distribution) for

low-types. For α > β, there is an equilibrium with φLin = φ. Although this also

follows from the main theorem below, this short proof provides important insight.

Proof. (Sketch) Suppose that insider’s strategy to bid for low-types is a degenerate

distribution, and it places probability mass 1 on some value φLin.

Suppose first that α < β, and φLin > FHin . There will be no probability mass

by insider on FHin , but to guarantee at least the minimax payoff to insider, outsider

must have probability mass at FHin , loses with certainty, and makes zero profit on

high-types. Given that pricing, outsider would find it optimal to move all mass

instead to φLin − ε, and obtain larger profit. (At FHin and φLin − ε outsider would

serve the same set of customers, but at a higher price). This is a possible deviation

whenever φLin > FHin . Now suppose (with slightly imprecise but intuitive notation)

that FLin = FHin+, so that outsider cannot profitably raise its prices as previously

described. This however cannot be equilibrium either: in this case insider would

have a profitable deviation, as by raising to FLin = φ it would obtain higher profit.

Finally, suppose α < β and φLin < FHin . Outsider cannot be indifferent

between φLin− ε and φLin, as in the first case it would get all, in the second case none

of the low-type customers. It can be indifferent only if the profit from low-types

is zero, that is, if FLin = cL. However, in this case insider would have a profitable

deviation to raise φ and serve only naive customers. Contradiction.

Notice that if insider charges φLin = φ and there is no mass by the outsider

on φ. Then low-types always switch. For any α > β we can show that under those

conditions there exist an equilibrium with some distributions FHin and Fout. These

distributions satisfy that sup{φ|FHin (φ) < 1} = φ and Pr[φo = φ] = 0 (that is, φ

is the upper boundary of insider-HIGH, but not played by outsider with positive

probability). Under those conditions insider cannot decrease prices for low-types

because given outsider’s distribution, the profit would be lower. Therefore, outsider

indeed obtains all low-type customers, and the proposed pricing is equilibrium.

3.C.2 Proof of Theorem 4

The Theorem is proven in 4 parts.First, we characterize the structure of equilibrium.

Then, we show that only one ‘minimax payoff’ can be binding. Finally, we derive

the distributions for α ≤ β and for α > β separately.
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3.C.2.1 PART A — Equilibrium structure

Recall that we solve for three generic, independent distributions: Fout, F
H
in and FLin.

We start by establishing some claims regarding the equilibrium:

Lemma 11 The three distributions, Fout, F
H
in and FLin must satisfy that (1) the

supports of insider’s distributions for high and low types do not overlap; (2) The

supports of insider’s distributions for high and low types cannot be disjoint. (3)

The support of Fout coincides with the union of the supports of FHin and FLin. 29(4)

There is no probability mass by the insider at the minimum boundary for any of the

distributions.

The claims are proven separately below.

Claim 1 Insiders’ two distributions for low and high type cannot have overlapping

parts, that is, F
H
i ≤ FLi .

Proof. Intuitively, the proof establishes that insider cannot be indifferent between

two fees offered to high-types to low-types at the same time, while facing with

the (same) probability distribution Fout. Suppose FL < F
H

. As we restrict to

independent randomizations, at any φ ∈
(
FL, F

H
)

, insider must be indifferent

independently for the low-types and the high-types. That means, for an arbitrary

φ and φ′ ∈
(
FL, F

H
)

(1− Fout(φ))(1− α)(1− β)(φ− cθ) + α(1− β)(φ− cθ)

= (1− Fout(φ′))(1− α)(1− β)(φ′ − cθ) + α(1− β)(φ′ − cθ)

and

(1− Fout(φ))(1− α)β(φ− cθ) + αβ(φ− cθ)

= (1− Fout(φ′))(1− α)β(φ′ − cθ) + αβ(φ′ − cθ)

29One must be careful with the mathematical language here, because the randomization does
not necessarily happens over a compact interval. Notice however that the usual definition of the
support of a distribution, supp(F ) is the closure of the set of possible values with nonzero mesure.
That is, specifically, F := sup{x : F (x) < 1} ∈ supp(F ) even if F is never played.
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After simplifications, and rearranging terms, for each θ ∈ {L,H} we obtain:

(1− Fout(φ))(1− α)(φ− cθ) + α(φ− cθ) = (1− Fout(φ′))(1− α)(φ′ − cθ) + α(φ′ − cθ)

(1− α)(φ− φ′)− (1− α)
[
Fout(φ)(φ− cθ)− Fout(φ′)(φ′ − cθ)

]
= α(φ′ − φ)[

Fout(φ)(φ− cθ)− Fout(φ′)(φ′ − cθ)
]

= −α(φ′ − φ)

(1− α)
+ (φ− φ′)

cθ
(
Fout(φ

′)− Fout(φ)
)

= −α(φ′ − φ)

(1− α)
+ (φ− φ′)− Fout(φ)(φ) + Fout(φ

′)φ′

From the last equation the contradiction is obvious, as the RHS is constant, while

the LHS is different for H and L.

Claim 2 Insider’s low and high distributions cannot be disjoint with a gap between

the two intervals, i.e. F
H
i ≥ FLi .

Proof. Suppose they are disjoint, F
H
in < FLin. There cannot be any probability mass

by outsider on any φ < FLin, as it would find optimal to put this mass on FLin − ε
instead. However, this cannot be optimal for insider. As insider would win with

the same probability over high types for every [F
H
in, F

L
in), it would find it optimal

to move some probability mass to the left, and increase its payoff. Contradiction to

equilibrium.

Notice that Claim 1 and 2 together implies that F
H
in = FLin.

Claim 3 FHin = Fout and FLin = Fout

Proof. The proof is analogous to previous results. Whenever FHin < F out, insider

has incentives to put the probability mass on [FHin < F out) to Fout instead. Similarly,

if FHin > F out, outsider would place the mass - for example - on (F out,
F out+F

H
in

2 to
F out+F

H
in

2 instead. The equality of upper boundaries can be seen analogously.

Claim 4 There is no probability mass by the insider at the minimum boundary for

any of the distributions.

Proof. (Sketch) Suppose there is mass on FHin by insider-high. Then outsider

loses at FHin with some positive probability. Instead of playing FHin, it could put all

probability mass to F −ε, and win with probability 1. Contradiction to equilibrium.

Suppose there is mass on φ̂ by insider-low. Then outsider loses low-types

with some positive probability. Instead, it could place all mass at φ̂ − ε, win all

low-types, and not lose on high-types. Contradiction to equilibrium.
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3.C.2.2 PART B - Only one binding minimax payoff

Lemma 12 Only one of insider’s “minimax-profit” can be binding. To be specific,

either π(L) or π(H) is binding, where

π0
L = αβ

(
φ− cL

)
π0
H = α(1− β)

(
φ− cH

)
Proof. Suppose that some φ (denoted φ̂) is played under both H and L distribution.

This exists, and as a consequence of previous claim, φ̂ = F
H
i = FLi . Then the

required probability mass on Fo from the right of φ̂ to make the bank indifferent

between playing φ̂ and their minimax payoff for low and high type respectively is

different, as follows:

ρLoutβ(φ̂− cL) = αβ
(
φ− cL

)
ρHout(1− β)(φ̂− cH) = α(1− β)

(
φ− cH

)
As ρLout 6= ρHout, (it can be shown that ρL < ρH) only one of them can be binding.

Specifically, if insider plays φ with positive mass for the low-type, then π(L) must

be the binding one.

3.C.2.3 PART C - The main proof, case α ≤ β

As per our assumption, insider randomizes independently for low-type and for high-

type, facing with the same probability distribution Fout. This generates two indepen-

dent indifference conditions. Suppose30 that π(L) is binding. Then the indifference

condition for low-types is:

(
1− FLout(φ)

)
(1− α)β

(
φ− cL

)
+ αβ

(
φ− cL

)
= αβ

(
φ− cL

)
This defines the upper part of the outsider’s CDF (against ‘low’-types):

FLout(φ) =
φ− cL − α

(
φ− cL

)
(1− α)(φ− cL)

=
1

1− α
− α

1− α
φ− cL

φ− cL

Suppose that the cutoff-point between FHin and FLin is some cL < φ̂ < φ and that

the outsider’s CDF over
(
F , φ̂

)
takes the functional form FHout(·). In what follows,

we write everything as a function of an arbitrary cutoff-value φ̂.

30This is the only guess-and-verify in equilibrium part left in the proof, which is enough for
existence, but cannot guarantee the uniqueness.
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The insider’s indifference condition for the HIGH-types can be written as

(
1− FHout(φ)

)
(1− α)(1− β)

(
φ− cH

)
+ α(1− β)

(
φ− cH

)
= (1− α)(1− β)(1− FLout(φ̂))

(
φ̂− cH

)
+ α(1− β)

(
φ̂− cH

)
We can express the CDF FHout(φ) as a function of the extra argument φ̂.

FHout(φ, φ̂) =
(−φφ̂+ cL(φ− αφ̂) + αφ̂φ+ cH((−1 + α)cL + φ̂− αφ))

((−1 + α)(cH − φ)(cL − φ̂))

Now we calculate the lower bound of the distribution, again, as a function of φ̂,

through the following equation:

FHout(φ, φ̂) = 0 (3.18)

This gives the (unique) solution for the lower boundary F out:

F out(φ̂) =
(αφ̂(cL − φ) + cH(cL − acL − φ̂+ αφ))

(cL − φ̂)

As at the lower boundary the outsider wins with probability 1 , we can compute

outsider’s payment as a function of φ̂, denoted by π0
out.

π0
out =

((−1 + α)(−β(cH − cL)(cL − φ̂) + α(cH − φ̂)(cL − φ)))

(cL − φ̂)

The critical threshold value φ̂ must also fulfil that at this value, the insider-low

distribution has no mass-point:

FLin(φ̂) = 0

Recall outsider’s indifference condition, adapted to these two specific points:

(1− α)β(φ̂− cL) = ρin(1− α)β
(
φ− cL

)
which gives the value of the mass-point of insider’s LOW-distribution, as a function

of φ̂.

ρin =
φ̂− cL

φ− cL

Whenever outsider charges φ− ε, with ε→ 0, it obtains profit

ρ(1− α)β(φ− cL)
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Let π0,L
out the limit of this profit with ε → 0. Finally, φ̂ is determined through the

following indifference condition equation:

π0,H
o =

φ̂− cL

φ− cH
(1− α)β(φ− cL)

The solution of this equation is

φ̂? = cL +
α
(
φ− cL

)
β

Substituting back φ̂? into FHout gives the probability mass from the left of the

critical value, that is, the probability that insider loses the high-types by playing φ.

This probability is

FHout(φ̂) =
1− β
1− α

which implies that insider wins the complementary probability (β−α1−α ), generating

the following profit from high-types:

πin = (1− β)(α(φ− cL) + β∆c)

Notice that this new equilibrium payoff exceeds the “minimax payoff” α(1−β)(φ−
cH) whenever α > β. This confirms the claim that the minimax payoff for the low-

type is binding whenever α > β. The insider can achieve larger profit in equilibrium,

than it could do with serving only naive high-types!

—Outsider-HIGH distribution—

Based on this, we can write insider’s indifference condition as

(1− FHo )(1− α)(1− β)(φ− cH) + α(1− β)(φ− cH) = (1− β)(α(φ− cL) + β∆c)

This pins down the outsider’s CDF over the interval [F , φ̂).

FHout(φ) =
φ− cH − β∆c− α(φ− cL)

(1− α)(φ− cH)

=
1

1− α
− α(φ− cL) + β∆c

(1− α)(φ− cH)

=
1

1− α
− α(φ− cH) + (β − α)∆c

(1− α)(φ− cH)
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—Insider’s distributions—

Insider’s distributions are derived using outsider’s indifference condition: at

every φ, outsider must be indifferent between playing φ or its alternative payoff,

which is pinned down by the mass-point by insider on φ. That leads to the two

independent indifference conditions:

(
1− FHin (φ)

)
(1− α)(1− β)(φ− cH) + (1− α)β(φ− cL) = (1− α)α(φ− cL)(

1− FLin(φ)
)

(1− α)β(φ− cL) = (1− α)α(φ− cL)

so the respective distributions are:

FHin (φ) =
(φ− cH − β∆c− α(φ− cL))

((1− β)(φ− cH))

=
1

1− β
− α(φ− cL) + β∆c

(1− β)(φ− cH)

and

FLin(φ) =
β(φ− cL)− α(φ− cL)

β(φ− cL)

= 1− α

β

φ− cL

φ− cL

—Verify distributions —

It is useful to check some properties of the derived distributions. With simple

algebra it is possible to check that (i) FHin (φ) = 0 and Fout(φ) = 0 has the same

solutions; (ii) FHin (φ̂) = 1 and FLin(φ̂) = 0; and (iii) Fout(φ) = 1.

3.C.2.4 PART D - The main proof, case α > β

The anticipated equilibrium: insider is mixing over (φ′in, φ) for the High-type, and

according to a degenerate distribution φLin = φ for the Low-type. Outsider plays Fo

over φ′in, φ. Insider will be placing a probability mass on φ.

Customers’ behaviour: given this pricing equilibrium, low-type customers

switch to outsider with probability 1, while low-type customers according to some

probability.

Next, we establish overdraft fee distributions using the outsider’s and the

insider’s indifference property.

Outsider’s indifference property: Because there is no mass-point by the in-

sider at F , by bidding the lower boundary φ′in the outsider wins and sophisticated
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customers switch with probability 1. The profit for outsider in this case is:

π0
out = (1− α)

(
β(φ′in − cL) + (1− β)(φ′in − cH)

)
For any φ > φ′in it must be the case that

E(πout(φ)) = π0
out (3.19)

where

E (πout(φ)) =

O wins︷ ︸︸ ︷
Pr
[
φ < φHin

]
∗

profit from both types︷ ︸︸ ︷
(1− α)πLH(φ) +

I wins︷ ︸︸ ︷
Pr
[
φout > φHin

]
∗

profit from low types︷ ︸︸ ︷
(1− α)βπL(φ)

= (1− Fin(φ))(1− α)
(
βπL(φ) + (1− β)πH(φ)

)
+ Fin(φ)(1− α)βπL(φ)

= (1− α)πLH(φ)− Fin(φ)(1− α)(1− β)πH(φ)

So the equilibrium equation (3.19) simplifies to

πLH(φ′in) = πLH(φ)− Fin(φ)(1− β)πH(φ)

Leading to the following outsider CDF:

Fin(φ) =
πLH(φ)− πLH(φ′in)

(1− β)πH(φ)

According to our specification πLH(φ) = φ− cLH , so after substitutions:

Fin(φ) =
φ− φ′in

(1− β)(φ− cH)
=

1

1− β
− α

1− β
· φ− c

H

φ− cH
(3.20)

This satisfies the requirement that Fin(φ′in) = 0. Solving Fin(φ) = 1 for φ gives:

φmax =
φ′i
β
− 1− β

β
(cH) = φ+

α− β
β

(
φ− cH

)
, from which it is clear that

φmax < φ ⇔ α < β and φmax > φ ⇔ α > β

This implies that whenever α > β, the upper boundary of the mixture is φ, and

there is a mass-point by insider on φ. In this case the CDF at φ is

Fin(φ) =
1− α
1− β
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therefore, the probability mass on φ must be

pin = 1− 1− α
1− β

=
α− β
1− β

(3.21)

Insider’s indifference property: Outsider will never bid above φ, so when in-

sider’s offer is
(
φ, φ

)
then it serves only myopes for both types and its profit is

π0
in := απLH(φ) = α

(
βπL(φ) + (1− β)πH(φ)

)
To account for the possibility that F in < φ, suppose outsider is mixing over [φ′in, u]

according to Fout. For any offer by the insider to the high types φ ∈ {φ′in, u} the

insider wins with probability Pr(φ < φout) = 1− Fout(φ) and obtains profit

Eπ = (1− Fout)
(
(1− β)πH(φ) + αβπL(φ)

)
+ Foutα

(
(1− β)πH(φ) + βπL(φ)

)
= αβπL(φ) + (1− β)πH(φ)− Fout(1− α)(1− β)πH(φ)

The equilibrium condition:

(1− β)πH(φ)− Fout(1− α)(1− β)πH(φ) = α(1− β)πH(φ)

Fout(φ) =
πH(φ)− απH(φ)

(1− α)πH(φ)
=

1

1− α
− α

1− α
· φ− c

H

φ− cH

Solving Fout(φ) = 0 gives

φ = αφ+ (1− α)cH = φ′in

which implies the density satisfies F (φ′in) = 0 and F (φ) = 1, so there is no mass-

point in outsiders’ CDF if they mix over [φ′in, φ].
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3.C.3 Probabilities and expected values

This section provides some additional analytical characterization of the equilibrium

of the full model. The first result establishes switching probabilities. In the limit

of α → 0 and β → 0 we get back the results from the pure Adverse Selection and

Customer naiveté models respectively.

Lemma 13 The probability that outsider (insider) wins is as follows:

• Whenever α > β (mass point by insider for low-types)

Prob[φout < φHin] =
1 + α− 2β

2(1− β)
Prob[φHin ≤ φout] =

1− α
2(1− β)

• Whenever α < β, outsider (insider) wins HIGH types with probability:

Prob[φout < φHin] =
1− β

2(1− α)
Prob[φHin ≤ φout] =

1 + β − 2α

2(1− α)

and wins LOW types with probability:

Prob[φout < φLin] =
α2 + (β − 2)β

2(α− 1)β
Prob[φLin ≤ φout] =

(β − α)2

(2(1− α)β)

Proof. We want to calculate Prob[φout < φHin]. First, suppose α > β. Insider is

playing φ with probability ρin, in that case outsider wins with probability 1. In case

insider is mixing (with probability 1− ρin) continuously, we have

Prob[φout < φHin] =

∫ φ

φ′in

∫ φHin

φ′in

fo,idφoutdφ
H
in (3.22)

where

fin = F ′in =
α

1− β
φ− cH

(φ− cH)2

fout = F ′out =
α

1− α
· φ− cH

(φ− cH)2

The joint PDF is, due to the independence assumption:

fo,i(φout, φ
H
in) :=

α2

(1− α)(1− β)
·

(
φ− cH

)2
(φout − cH)2 (φHin − cH)2
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The internal integral of (3.22), (with respect to φout) is31

∫ φHin

φ′in

foidφout = − α2

(1− α)(1− β)
· (φ− cH)2

(φout − cH)(φHin − cH)2

= − α2

(1− α)(1− β)
·
(
φ− cH

)2(
φHin − cH

)2 · ( 1

φHin − cH
− 1

φ′in − cH

)

For the full integral we use the following interim results:

∫ φ

φ′in

1

(φHin − cH)3
dφHin =

[
− 1

2(φHin − cH)2

]φ
φ′in

= −1

2

α2 − 1

α2

1

(φ− cH)2∫ φ

φ′in

1

(φHin − cH)2
dφHin =

[
− 1

φHin − cH

]φ
φ′in

= −α− 1

α

1

φ− cH

This leads to the following formula for the likelihood that outsider wins:

LIK[φout < φHin] =
1− α

2(1− β)

The overall probability, including the mass point, is:

Prob[φout < φHin] =
1 + α− 2β

2(1− β)

Now suppose α < β. In this case outsider is playing φmax with probability mass

defined in Theorem 4. If playing the mass point, outsider loses with certainty. With

the complementary probability, both insider and outsider is mixing continuously over

(φ′in, φ
max] and the expression for the likelihood, the joint PDF is exactly as before,

but with an outer integral boundary changed to φmax.

Prob[φout < φHin] =

∫ φmax

φ′in

∫ φin

φ′in

foidφoutdφin

This has the following solution for the likelihood, using the same steps as before:

LIK[φout < φHin] =
1− β

2(1− α)

Next, we calculate conditional expected payments.

31We use here the formula
∫
f ′

f2
= − 1

f
, in the expression f ′ = 1.
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Lemma 14 Conditional on winning the competition, the outsider and insider ob-

tains the following expected overdraft fee if α ≥ β:

E[φout < φHin](1) = cH +
2α

1 + α− 2β

(
φ− cH

)
+

2αβ ln[α]

(1− α)(1 + α− 2β)

(
φ− cH

)
E[φHin < φout]

(1) = cH +
2α

1− α
(
φ− cH

)
+

2α2 ln[α]

(1− α)2

(
φ− cH

)
Expected overdraft fees in principle can be calculated for the α ≤ β case, but it is

analytically very difficult, and left for future work.

Proof.

We calculate expected fee offered by insider resp. outsider conditional on

winning the price competition, that is, the following conditional expected values:

E[φout|φout < φHin]

E[φHin|φHin ≤ φout]

Whenever mass points are present at the boundary, we need to consider the total

expected value as a sum of two components. From Theorem 4, if a > b insider places

a positive mass ρin = α−β
1−β on φ and in this case outsider wins at every value φout

over the mixture. The expected values are:

E[φout|φout < φHin] =
1

Pr[φout < φHin]

(∫ φ

φ′in

∫ φHin

φ′in

φoutfoidφoutdφ
H
in + ρi

∫ φ

φ′in

φoutfφoutdφout

)

=
2(1− β)

1 + α− 2β

(
Φ +

α− β
1− β

E[φout]

)
and

E[φHin|φHin < φout] =

∫ φ
φ′in

∫ φout
φ′in

φinfoidφindφout∫ φ
φ′in

∫ φout
φ′in

foidφindφout

Because the joint PDF is symmetric in the two variables, the double-integral part
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is also symmetric, and we have

Φ :=

∫ φ

φ′in

∫ φin

φ′in

φoutfoidφoutdφin =

∫ φ

φ′in

∫ φout

φ′in

φinfoidφindφout

=
1

2

(
(3α− 1)(−cH) + 2αφ

1− β
+

2α2 ln(α)(φ− cH)

(1− α)(1− β)

)
=

1

2(1− β)

(
(1− α)c+ 2α

(
φ− cH

)
+

2α2 ln(α)(φ− cH)

1− α

)
It is relatively easy to calculate the expected φout over the entire mixture

E(φout) :=

∫ φ

φ′in

φoutfφoutdφout = cH − α ln(α)

1− α
(
φ− cH

)
Therefore the overall expectations are:

E[φout|φout < φHin] :=
2(1− β)

1 + α− 2β

(
Φ +

α− β
1− β

E(φout)

)
=

2(1− α)2

(1− β)2
Φ +

α− β
1− β

E(φo)

E[φHin|φHin < φout] :=
2(1− β)

1− α
Φ
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Chapter 4

Fire-sale in a liquidation game

with leverage requirements

4.1 Introduction

In the aftermath of the financial crisis, the view that interconnectedness is an im-

portant determinant of financial stability became conventional wisdom among aca-

demics and policy-makers. A large theoretical and empirical literature on systemic

risk started to emphasize how various forms of business relations in the financial

sector can turn to a transmission channel through which shocks propagate in the

financial system, eventually leading to systemic bank failures and causing real eco-

nomic losses. For example, since the seminal contribution of Allen and Gale (2000),

it is well known that interbank markets facilitate liquidity risk sharing, but can also

be the source of ‘direct’ contagious failures which may eventually destabilize the

financial system as a whole.

Another potential layer of interconnectedness, which is the subject of this

paper, is indirect linkages through common investments, or ‘asset commonalities’.

If an investor is forced to liquidate their asset due to some funding pressure, prices

may depart from fundamental values. Mark-to-market evaluation of portfolios forces

other investors of the same asset to re-evaluate their portfolio, which decreases equity

value. In turn, the drop in equity induces additional funding pressure, and those -

otherwise healthy - institutions may be forced to engage in further asset liquidation.

With multiple owners of the same asset class, the situation is exacerbated by a

coordination problem: if many investors find it optimal to liquidate their asset at

the same time, the price drop may be severe enough forcing even more institutions

to sell, and pushing prices into a downward price spiral. Furthermore, institutions
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trying to avoid losses may find it optimal to sell other (otherwise unaffected) assets,

transmitting the shock to even more sectors and institutions, expanding isolated

problems to a potentially system-wide contagion. There is a strong feedback-effect

towards the direct contagion mechanism as well: depressed asset prices and increased

volatility raises haircuts on these contaminated assets in the overnight repo market,

which accelerates the ‘dry-up of liquidity’ on the interbank market, and reinforces

the need for forced asset sale at the first place.

In this paper we explicitly model the asset liquidation decision of financial in-

stitutions under funding pressure in a duopoly settings, when multiple asset classes

are available to adjust the portfolio. In the model, the ‘funding pressure’, which

is the key market friction behind this phenomenon, is captured by a leverage con-

straint: following an asset-price shock, the banking system may be forced to engage

in systemic deleveraging to restore leverage targets by selling assets and repaying

debt.1 The relevance of this mechanism in propagating crises is convincingly demon-

strated - both empirically and theoretically - in an influential paper by Adrian and

Shin [2010]. The investment portfolio on banks’ balance sheets differ in ex-ante liq-

uidity, measured as the market price impact following an asset sale during ‘normal

times’. Equity-maximizer financial institutions adjust their portfolio by choosing to

sell assets such that the impact on equity is minimized. In the presence of asset

commonalities, if all banks end up selling the same asset class (‘commonality’), liq-

uid assets suddenly may appear illiquid and can be sold only at a significant fire-sale

discount, a phenomenon which was widely observed during the financial crisis. This

endogenous determination of the fire-sale price has to be taken into consideration

by rational financial institutions.

The joint deleveraging decision of interlinked financial institutions induces

a non-cooperative game which we dub ‘the liquidation game’. The main result

of this paper is that as long as the equilibrium liquidation decision of the banks

is non-trivial in the sense that liquidating only one single asset does not strictly

dominate, the emerging Nash-equilibrium is not Pareto-optimal. Individual banks

could achieve higher ex-post equity value by choosing another feasible liquidation

strategy, which, however, cannot be maintained as an equilibrium. The market

outcome in equilibrium is reminiscent to a Prisoner’s dilemma: cooperation, which in

this context would mean self-restraint in selling the more liquid asset commonalities

and relying more on idiosyncratic but less liquid assets to restore leverage, could

increase the payoff for each players, but cannot be maintained as an equilibrium. In

1The model can be generalized to other sources of similar funding frictions: for example, there is
strong empirical evidence that decreasing value of asset-under-management induces fund outflows
for investment funds, which forces them to liquidate part of the portfolio, even at diminished prices.
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the unique Nash-equilibrium banks ‘defect’, and over-liquidate the commonality.

The comparison of the equilibrium and the social planner’s optimal solution

reveals an even more striking feature: the potential loss from the inefficient equilib-

rium may even be larger, if markets appear to be ex-ante more liquid. Intuitively,

more liquid commonality raises the incentives to tilt the liquidation strategy towards

that asset class, which leads to an even larger equilibrium price effect, and further

diminishes equity. This finding has slightly uncomfortable consequences for financial

stability: higher liquidity, although almost unanimously called for by policy-makers

after the crisis, can even be detrimental in highly integrated markets, if fire-sale

decisions following a potential shock are jointly determined in an equilibrium.

There is a growing literature on deleveraging and asset liquidation strate-

gies. Many of these papers extend the now-standard framework of Eisenberg and

Noe [2001], originally designed to characterize a payment equilibrium in a network

of borrowing-lending relationships between economic agents. The general models

provide important characterization of existence and uniqueness of equilibrium, but

do not emphasize the strategic inefficiencies arising as a consequence of decentralized

decision making, which is the main contribution of this paper. Specifically, in most

of the existing models banks respond deterministically to shocks, and strategic in-

teractions are not taken into consideration. In contrast to the existing literature and

complementing some recent results, the purpose of this paper is to characterize the

welfare aspects of equilibrium deleveraging, and demonstrate possible inefficiencies.

We focus on contagion due to asset fire sale in a multiple asset commonality settings,

and ignore direct contractual obligations or interbank markets and cross-holdings

on the liability side. Although we acknowledge the importance of the mutually

reinforcing effects between contagion channels due to multiple network layers, our

focus is the welfare loss caused by the behaviour in crisis, namely the deleveraging

decisions, instead of mechanical network externalities and other contagious effects

which are more extensively studied elsewhere.

4.2 Literature review

Asset-price contagion: Theoretical models of deleveraging financial institutions de-

scribe how the presence of asset commonalities and mark-to-market evaluation can

lead to negative fire-sale spillovers as a source of contagion in the banking sector.

The seminal work is due to Cifuentes et al. [2005], who extend the Eisenberg-Noe

framework (Eisenberg and Noe [2001]) of financial contagion with an illiquid as-

set and leverage-targeting banks. They prove the existence of clearing vector and
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fire sale prices as a solution of a fixed point problem.2 The fixed-point technique

of these papers become standard in the systemic risk and network literature. A

highly influential paper by Acemoglu et al. [2015] shows that small shock and large

shock regimes may have different effect on regular network structures in a framework

which incorporates the possibility of early liquidation of banks’ investment, and ex-

ogenous liquidation prices. Glasserman and Young [2015] considers various network

structures and shock distributions to characterize the network effects of contagion.

In a recent paper, Awiszus and Weber [2015] incorporates the contagious effects

of bankruptcy costs, fire sale losses, interbank networks and cross-holdings into a

comprehensive structural model of systemic risk. All of the above mentioned papers

however feature only one illiquid asset, and banks are not strategic, decision-making

actors. The recurring scheme in the literature is to assume proportional repayment

on interbank loans, limited liability, and in case of cash shortage, a liquidation of

the single illiquid investment, which may or may not be partial. Multiple asset

extensions are rare in the literature since they complicate the analysis considerably.

Greenwood et al. [2015] considers a fairly general framework with multiple

assets classes, but they assume that the bank maintains a fixed portfolio structure

during deleveraging, and instead of solving for equilibrium, they consider domino-

like contagion effects. Furthermore, they do not analyse the impact of heterogeneity

in the ex-ante illiquidity of the assets. The model is designed for empirical appli-

cations, and their illustrative calculations, as well as the application and extension

by Duarte and Eisenbach [2014] demonstrate the sizeable impacts of fire-sale losses

on banks’ equity. By making the proportional deleveraging assumption, however,

in this model the bank is still a passive participant in the sense that it only suffers

the exogenous shock and respond according to a deterministic rule. Therefore the

methodology of these papers is insufficient to study equilibrium actions.

A similar model by Caccioli et al. [2014] focuses on the stability of various

network structures. Using simulation techniques they demonstrate that the system-

wide stability is ‘hump-shaped’ as a function of diversification (a result similar to

Elliott et al. [2014]), and crucially depends on the leverage and the ‘crowding’ pa-

rameter (number of assets versus institutions) of the network. Their theoretical

analysis of stability, which borrows its methodology from the epidemics literature,

leads to similar results. In contrast to our paper, banks have no active role and

an insolvent bank always liquidates all of its assets. Caccioli et al. [2015] applies

a stress-testing framework to emphasize the importance of interactions of the two

main contagion channels (and the two layers of networks), and show that the pres-

2The uniqueness of this equilibrium under mild conditions is proven by Amini et al. [2016].
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ence of counterparty risk (direct connections), although not considered very risky

on its own, strongly amplifies the risk inherent in common asset holdings.

A significant step toward genuinely multi-asset extensions is Chen et al.

[2014], who study asset-price contagion with the possibility of rebalancing the in-

vestment portfolio. Their model characterizes the contagion chain caused by an

exogenous change of the state of the economy. Fire-sale prices are determined en-

dogenously through asset market equilibrium conditions. The authors’ focus is op-

timal asset holding network structures, and they show that in a low-leverage regime

more diversification, while in the high-leverage regime more idiosyncratic asset hold-

ings are beneficial for the systemic contagion perspective. The most closely related

papers to ours are Feinstein [2015] and Feinstein and El-Masri [2015] who consider

equilibrium liquidation strategies as an explicit generalization of the Eisenberg-Noe

framework, prove the existence of equilibrium, and characterize the equilibrium via

numerical examples. Our paper considers a simpler setup, but goes further in char-

acterizing the equilibrium outcomes and its inefficiency under certain circumstances,

by comparing the equilibrium with a social optimum benchmark.

The network externalities also question the standard risk-mitigating effect

of diversification, by introducing excess covariance due to common assets. For ex-

ample, Raffestin [2014] derives analytically the covariances in a framework where

banks are subject to stochastic shocks and connected by a network with home bi-

ases. He finds that intermediate number of bankruptcies are less likely under high

diversification, but the probability of extreme failures is large, therefore little diver-

sification may be socially optimal. Tasca et al. [2014] brings in leverage into the

picture by using the Merton-model to calculate joint default probability of banks,

and focus on the trade-off between the effects of leverage and diversification (asset

commonalities). In the ‘safe’ regime diversification can compensate for increased

leverage, but not in the ‘risky’ regime. The key regulatory insight is that the in-

dividually optimal diversification might be systemically under-diversified. Wagner

[2011] shows that the risk of joint liquidation (essentially the coordination problem

with asset commonalities) and the resulting fire-sale prices (due to limited cash in

the market) creates incentives for investors to hold heterogeneous portfolios, so the

classical optimality of full diversification breaks down.

Financial Networks and Systemic Risk: The paper is also related more

generally to the research on network effects and systemic risk. Studies on the impact

of interconnections between financial institutions and their role in propagating crises

have been booming in the last decade, and it might be surprising why recognizing
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its importance and formal modelling started relatively late. The sluggish start of

this stream of research may be attributable to the fact that mainstream economists

had to overcome the classical view on the ‘macroeconomic effects of microeconomic

shocks’, namely, that small idiosyncratic shocks cancel each other out on average,

and macroeconomic consequences are negligible. Solid theoretical background to

disprove this view is only given in the influential papers by Gabaix [2009] and

Acemoglu et al. [2012]. Similarly, Stiglitz [2010] describes a fairly general framework

to emphasise that full integration - as a tool for risk sharing - is generally not optimal

in the presence of nonconvexities.

In the banking research, a large body of empirical and theoretical literature

focuses on the direct (interbank) linkages as a mechanism for facilitating contagion.

Early papers include Allen and Gale [2000] and Freixas et al. [2000]. For example,

Allen and Gale [2000], building on their previous liquidity-based crisis models [Allen

and Gale, 1998] show that the effect of liquidity shocks and the extent of a crisis

depends crucially on the connections within banks: a more completely connected

market is more robust than an incomplete network structure. On the contrary, oth-

ers argue -especially the branch of literature which considers contagion in financial

market as an ‘epidemic’ and draws the analogy that a systemic crisis is similar to

the spreading out of a disease - that dense interconnections increase the likelihood

of a system-wide contagion. This approach naturally led to an extensive search for

the ‘key player’ (see Zenou [2014] for a recent comprehensive review), the banks

who are ‘too-interconnected-to-fail’, and a vast simulation-based literature (Upper

[2011]). Conflicting views are somewhat reconciled in the recent papers by Acemoglu

et al. [2015] and Elliott et al. [2014] who give novel characterization of the effect of

interbank network connections to systemic risk. Acemoglu et al. [2015] distinguishes

two shock-size regimes, and shows that completely connected networks go through a

phase transition, becoming from the most resilient to the least resilient networks as

the shock switches from small to large. The basic intuition is that for small shocks

the system-wide excess liquidity is sufficient to absorb it, and more connected net-

works can facilitate the utilization of system-wide cash reserves. However, for a

large shock, ‘weakly connected’ networks turns out to be more resilient, because a

second shock-absorber - senior claimants - can be forced to bear losses to protect

the rest of the system. Elliott et al. [2014] explores the integration and diversifi-

cation properties of network structures, and shows that intermediate levels of both

integration and diversification makes the network more suspicious to system-wide

contagion. Similarly to earlier intuition, larger diversification helps to utilize more

counterparties to bear the losses of external shocks.
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Fire-sale spillovers: Early theoretical models of fire sale go back to Shleifer

and Vishny [1992], who characterize fire sale as a situation in which assets are sold

on a price lower than their ‘value in best use’ (i.e. fundamental value). In this

sense the concept is a strong relative to asset illiquidity. Their classic interpretation

is the following: when firms under distress are forced to sell assets, it is likely

that similar firms - potentially the highest valuation users of the asset - are also

under pressure, and likely not be able to raise sufficient funding to purchase it.

Therefore, it must be sold to outsiders, with lower valuation (for example, because

of information asymmetries, or the lack of expertise to operate the given asset). In

their original model the inability to raise funding by the insider firm comes from

debt overhang (Hart [1993], Hart and Moore [1995]). Exacerbating the situation, it

is very likely that under a sectoral shock all owners of a specific asset type has to

liquidate simultaneously, causing an even larger downward price pressure.

This paper was followed by a large empirical and theoretical literature on

fire sale and its consequences on asset prices, emergence of financial crises and

the real macroeconomic feedback effects. This literature is recently reviewed by

Shleifer and Vishny [2011]. Notable follow-up research in the context of recent

crisis emphasizes the connection to the limits of arbitrage (e.g. Shleifer and Vishny

[1997], Gromb and Vayanos [2002]): when fire sale occurs, financiers may not be

able to distinguish illiquidity from fundamental price drop and withdraw funds from

arbitrageurs exactly when they need it to exploit the mispricing. If this withdrawal is

simultaneous, investors unwind positions simultaneously exacerbating the mispricing

and causing severe fire sales.

Diamond and Rajan [2011] extends the literature with many interesting as-

pects. Fire sale offers highly profitable investment opportunities to arbitrageurs

with liquid cash. In anticipation of future fire sale, those investors find it optimal

to withhold from buying the asset now. As a result, prices should decrease immedi-

ately - even before the actual insolvency -, increasing the expected rate of return for

the whole market, which explains the ’adverse effect of future illiquidity on current

lending’. They show that management has strong incentives to risk-shifting: ’hold

on’ to the illiquid asset and risking the future fire sale and insolvency (’illiquidity

seeking’).

The fire sale phenomenon also links to the literature emphasizing the con-

nections between market liquidity and funding liquidity. Acharya and Viswanathan

[2011] emphasizes how the possibility of risk shifting implied by the combination of

short-term debt and leverage leads to credit rationing and forced deleveraging, which

- in the framework of limited market participation a’la Shleifer and Vishny [1992]
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and cash-in-the-market pricing a’la Allen and Gale [1994] leads to the increased

severity of crises. Brunnermeier and Pedersen [2009] connects the market liquidity

and funding liquidity more directly: tightening funding liquidity makes investors

reluctant to open capital-intensive positions, which lowers the market liquidity and

increases volatility. In response to the growing illiquidity, financiers - following their

risk models - increase margins, reinforcing the negative spillover of prices.

Empirical evidence on asset-price contagion: There exists considerable em-

pirical evidence that asset-price contagion exists. For example, De Marco [2013]

estimates how the European sovereign debt crisis spilled over to a supply shock

on commercial bank’s asset side causing a contagion from one asset class to the

other. Manconi et al. [2012] provides evidence of the contagion from securitized

bonds to corporate bond market: when securitized bonds became toxic, institu-

tional investors sold corporate bonds, lowering prices on an otherwise healthy asset

class. Duarte and Eisenbach [2014] estimates that an exogenous price shock of repo-

financed assets leads to a significant drop on the equity, using a panel-extension of

the cross-sectional framework in Greenwood et al. [2015]. Jotikasthira et al. [2012]

considers international fund flows and shows that global funds reallocate invest-

ments on fire sale prices as a reaction of changing fund flows and this reallocation

takes place on fire sale prices especially on emerging markets, inducing a sizeable

excess correlation between those markets, and also with the domestic country of the

global funds.

Focusing a bit more closely to our research question, Merrill et al. [2014]

analyses the residential mortgage-backed securities market during the crisis and

shows that some institutions were in many cases indeed incentivized to sell the

illiquid (i.e. further from fundamental price) asset due to the risk-sensitive capital

requirement regulations: if the illiquid asset induces high capital requirements, the

bank might be better off selling it rather than the liquid, but non-risky asset.

As an interesting insight, Cella et al. [2013] traces back the issue to the

different objectives between agents with different investment horizons: during crisis

periods short-term investors -in the fear of short-term price declines - are expected to

coordinate on selling, which is not offset by the amount of liquidity provided by long-

term investors (who, as usually argued, are probably also facing equity problems ).

Empirical tests show significant differences between price impact functions of assets

primarily held by investors with various investment horizon. An implication for

the theoretical research stream is to keep in mind that not only network structure,

but the type of nodes (here: short- or long term investors) could be an important
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determinant of systemic risk.

Hau and Lai [2012] documents compelling evidence for significant price con-

tagion via common asset ownership in the US stock market. They show that funds

with large exposure to distressed financials were forced to sell nonfinancial assets on

fire sale prices, mainly because of funding constraints, and find that discounts are

the largest for those stocks that performed well during (i.e. were fundamentally not

exposed to) the crises. This implies that banks indeed optimize and choose assets to

avoid capital losses (i.e.: sell liquid assets, as illiquidity is understood as deviation

from fundamentals), with obvious real-economic consequences.

The direct network connections also matter in selling decision: for exam-

ple Favara and Giannetti [2015] shows that lenders differ in internalizing fire sale

externalities: those with a larger share of collateralized debt internalize more the

feedback effects on collateral values, and have more incentives to renegotiate debt

instead of turning to asset sales.

The research question of optimal deleveraging during a crisis is only relevant,

if crises are at least partially related to the solvency of institutions. I discuss to

empirical contributions which confirm this view. Boyson et al. [2014] directly tests

two competing hypotheses on the nature of crises namely whether the crisis of origin

on individual bank level is liquidity shortage, or insolvency-driven, and the evidence

provided supports rather the latter one. Consistently with this view, they find that

banks asset selling choice reflects ’cherry picking ’, namely they select asset for sale

where the selling do not deplete the capital, and in effect, stabilize solvency position

in the first place.

Finally, I close the empirical background review with a great insight by

Adrian and Shin [2010]. This paper provides direct empirical evidence for the

connection between deleveraging and fire sales. The authors show that leverage

is procyclical in financial institutions, that is, bank’s increase leverage during good

times and -more importantly- deleverage during bad times, when prices fall. On

aggregate the consequences could be massive fire-sale.

The rest of the paper is organized as follows: section 2 introduces the model

and assumptions. Section 3 solves for equilibrium and for social optimum. Section

4 provides a numerical characterization of the results, while Section 5 concludes.
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4.3 Model

4.3.1 Motivating example

To fix ideas, we start with a stylized, illustrative example. Consider an economy with

two banks and two asset classes: a ‘pooled’, or ‘common’ asset (e.g. treasury bonds),

which represents the asset commonality, and a ‘bank-specific’ asset class (e.g. loan

portfolio), the idiosyncratic, uncorrelated assets of the two banks. The structure is

illustrated in Figure 4.1. We assume that ex ante the common asset is perceived

as more liquid, that is, in the ’business-as-usual’ regime it can be liquidated with a

smaller price impact.

Figure 4.1: A stylized banking system.

Bank 1

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝑎𝑠𝑠𝑒𝑡

𝑐𝑜𝑚𝑚𝑜𝑛
𝑎𝑠𝑠𝑒𝑡

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝑎𝑠𝑠𝑒𝑡

Bank 2

We start by emphasizing the game-theoretic nature of the problem. The two

banks simultaneously decide whether to sell their illiquid specific assets, or the more

liquid common asset. By this we model a hypothetical ‘crisis’ situation when the

whole banking system is engaged in a systematic de-leveraging, after the economy is

hit by an (unmodelled) shock. Let the payoff matrix of the induced non-cooperative

game be as follows:

S C

S -3,-3 -5,-2

C -2,-5 -4,-4

where ‘S’ and ‘C’ denote the action of liquidating the specific or common asset re-

spectively. This illustrative payoff matrix is intuitively plausible in a crisis situation:

selling the specific asset is costly (-3), but does not impose any negative external-

ities to the other player. Selling the (more liquid) common asset is less costly, as

long as only one player chooses to do so, but in this case the other player suffers

both from the high price impact of the specific asset (-3) and is hit by the negative

price shock as a result of the other player’s liquidation of the common asset (-2). If,
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however, the players coordinate on selling the liquid asset, they both suffer from the

externality and the liquid asset becomes ex post illiquid, as a result of the coordina-

tion problem. The payoff matrix describes a standard prisoners’ dilemma situation:

the only Nash-equilibrium of the (one-shot, not repeated) game is (C,C), and the

equilibrium outcome is not Pareto-optimal.

From this illustrative discussion one would expect that to the extent that

optimal decision of banks exhibit similar characteristics, there will be too much liq-

uidation in equilibrium from the liquid asset, which is therefore not Pareto optimal.

In the following we build foundations for the payoff-matrix arbitrarily imposed in

this section to demonstrate that this is indeed the case.

4.3.2 The banking model

Consider the following environment: Banks are financed with a combination of debt

and equity, and invest into two asset classes: a ‘specific’ (type s) and a ‘common’

(type c) asset.3 Banks are subject to a leverage constraint: the ratio of total asset

over equity must not exceed a pre-defined, bank-specific level `i. We do not interpret

this necessarily as a regulatory requirement: it could be an internal target chosen

by the bank’s investment strategy. We consider a two-period model (t ∈ {0, 1}).
In period 0 the leverage target is not satisfied (following for example an exogenous,

unmodelled drop of asset prices). Banks respond by liquidating some of their assets,

from which the proceeds are fully used to repay debt and thereby shrink their balance

sheet, and importantly, decrease leverage, as documented in Adrian and Shin [2010]

(see Figure 4.2). Asset prices in period 1 (denoted by p(1)) are determined for each

asset independently, by an inverse demand function which depends on the total

liquidated asset. We start the analysis with a two-bank two-asset economy, which

we refer to as the ‘2x2 model’.

Figure 4.2: Shrinking balance sheet
as a result of deleveraging

3An alternative interpretation is that common assets are investments into highly correlated
portfolios, or for example in a market index.
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In the model the banks are free to choose the liquidated quantities from

each assets and rebalance the portfolio during the deleveraging process, which is

consistent with empirical evidence discussed earlier (for example, Hau and Lai [2012],

Boyson et al. [2014]). Banks’ liquidation decisions are restricted only by being non-

negative4, and by a short-selling constraint.

We introduce the notation p
j(t)
i for the price in period t ∈ {0, 1}, for asset

j ∈ {s, c} of bank i ∈ {1, 2} where i may be omitted for the common asset. The

total assets of bank i in period 0, with initial quantities wsi , w
c
i from specific and

common asset respectively is therefore

A0
i := wsi p

s(0)
i + wcip

c(0)

while in period 1, after liquidating quantities xsi , x
c
i it is

A1
i := (wsi − xsi )p

s(1)
i + (wci − xci )pc(1)

All proceeds from liquidation are used to repay debt, so if D0
i denotes initial debt

for bank i, the new debt level in period 1 is:

D1
i = D0

i − xsip
s(1)
i − xcipc(1)

Equity (E) is expressed as total assets minus debt. Each equity-maximizer bank

i ∈ {1, 2} maximizes after-liquidation equity, subject to the leverage constraint,

resource constraints and the no short-selling constraint. Formally, the problem of

Bank i is:

maximize
xci ,x

s
i

(wsi − xsi )p
s(1)
i + (wci − xci )pc(1) − (D0

i − xsip
s(1)
i − xcipc(1))

subject to
(wsi − xsi )p

s(1)
i + (wci − xci )pc(1)

(wsi − xsi )p
s(1)
i + (wci − xci )pc(1) − (D0

i − xsip
s(1)
i − xcipc(1))

≤ `i

0 ≤ xsi ≤ wsi
0 ≤ xci ≤ wci

(4.1)

Intuitively, banks maximize after-sale equity which satisfies the leverage constraint

under the new equilibrium asset prices. The objective function simplifies to wsi p
s(1)
i +

wcip
c(1) (see Appendix), which also implies that banks’ objective is equivalent to

4Relaxing this constraint by allowing negative liquidation (i.e. asset buy) would simplify the
mathematical problem, but make the interpretation of results less straightforward, due to the
possibility of positive price impacts and the emergence of ‘bubbles’ due to the extra demand.
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minimizing (subject to constraints) the weighted price impact where the weights

are the initial asset holdings. This is an economically important observation: the

banks’ loss, which must be written off against equity, is only the value loss due to

decreasing prices; asset liquidation and debt repayment per se do not change equity

value.

Our goal is to identify equilibrium selling strategies as a solution of each

bank’s optimization problem, which are linked by the joint determination of asset

prices. This is formally the Nash-equilibrium of induced non-cooperative game.

Definition 1 (Liquidation equilibrium.) A ‘liquidation equilibrium’ in the 2x2

model is a pair of selling vectors x1 ∈ R2, x2 ∈ R2 such that each vector is a solution

of the maximum problem (4.1) ∀i ∈ {1, 2}, taking the other player’s action x−i as

given. It is thereby the Nash-equilibrium of the induced game.

In a liquidation equilibrium, none of the banks have incentive to deviate from the

current liquidation strategy, taking the other player’s decision as given.

Our objective is to analyse the effect of strategic behaviour and equilibrium

decision of banks. Therefore, we restrict attention to environments where the equi-

librium action is not constrained by the bank’s original endowments, or any other

parameters of the model in a trivial way. Before stating the assumptions on the pa-

rameter space, we introduce a convenient notation for the leverage constraint. Let

wi := (wsi , w
c
i ), xi := (xsi , x

c
i ) and p

(t)
i := (p

s(t)
i , pc(t)), and a subscript (−i) denote

the player other than i. Then rearranging the leverage constraint leads to

Λi(xi,x−i) := (1− `)wi
′p

(1)
i − x′ip

(1)
i + `iDi ≤ 0

Assumption 1 (Sufficient resources.) Each bank i can restore leverage even if

the other bank (−i) liquidates all of its assets. Furthermore, for any liquidation

choice of the other bank (−i), each bank i can restore leverage either by selling only

specific, or by selling only common assets. Formally5:

∀i : Λi((w
s
i , 0),x−i) < 0 ∀0 ≤ x−i ≤ w−i

and

∀i : Λi((0, w
c
i ),x−i) < 0 ∀0 ≤ x−i ≤ w−i

Assumption 1 ensures that the leverage constraint can be satisfied by selling either

the common or the specific asset. It guarantees that the equilibrium action pro-

5We apply the convention that ≤ denotes element-wise relation when applied to vectors.
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file is not restricted by the available resources in the economy. As a result, our

analysis focuses on social inefficiencies which characterize banks’ optimal equilib-

rium behaviour. The assumption as stated ensures that our results does not simply

reflect unbalanced investments on the asset side of the bank’s balance sheets.

Now we formalize the ‘interesting problem’ assumption. We will require that

each bank is forced to liquidate a non-negative amount from at least one asset. This

should be seen as a rather technical assumption ensuring that banks start from

a situation in which the constraints are not satisfied, i.e. from a ‘shocked’ state

- thereby it replaces the explicit modelling of an economic shock. Typically, this

could be the result of a system-wide drop in asset prices.

Assumption 2 (Interesting problem.) Without selling any assets, the leverage

constraint is not satisfied.

∀i : Λi(0,x−i) > 0 ∀x−i ≤ w−i

By assumption 2 we formally restrict the parameter space such that banks are

forced to engage in strictly positive deleveraging, thereby make the formal problem

interesting and consistent with our narrative. The next assumptions characterize

the price impact function.

Assumption 3 (Linear price impact.) The price impact is a linear function of

the total quantities offered for sale. That is, for each assets j

p
j(1)
i = p

j(0)
i + ξji

(
2∑

k=1

xjk

)
(4.2)

where p
j(0)
i is the original price, ξji is a price impact coefficient, xj1 and xj2 are

liquidated quantities, pj(1) is the updated (equilibrium) price of asset j for j ∈ {c, s}.

Assumption 4 (Small price impact) We assume that the price impact is rela-

tively small. Precisely, we assume the following expression to be positive:

∀i ∀j : p
j(0)
i + ξj

(∑
i

wji

)
+ liw

j
i ξ
j > 0

Intuitively this assumption requires that even a hypothetical ‘leveraged’ short sale

(which means more liquidation that is allowed by our constraints) would keep the

prices in the positive range.
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4.3.3 Model solution

We start solving the model with a detailed characterization of the mathematical

problem:

Lemma 1 The maximum problem 4.1

(i) under assumptions 1, 2, and 3, maximizes a linear functional over a convex

set. Thereby, the optimum must be at the boundary of the constraint set.

(ii) The constraint Λi (·) is monotonously decreasing in xi under the (sufficient)

assumption (4).

(iii) Under assumptions 1 and 2, in optimum, the leverage constraint is binding,

and fulfils with equality. The ‘no-short-selling’ constraint wj > xj is always

non-binding.

Proof. See Appendix 4.A.1

The Lemma is illustrated in Figure 4.3. The formal proofs are in Appendix,

here we discuss only the intuition. Item (i) follows from simple algebraic manipu-

lations. Item (ii) is a key technical condition to ensure that asset liquidation and

debt repayment indeed improves leverage. Item (iii) intuitively says that since the

objective function by construction is decreasing in the quantity offered for sale, it

is never optimal to liquidate more assets than the minimum quantity which just

restores leverage. As a consequence, it will be binding in optimum.

Figure 4.3: Illustration of the geometry of the optimum problem

The fact that in optimum the leverage constraint is binding makes it possible

to consider an equivalent problem, in which the value of required liquidation of
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specific assets is given as a function of the liquidated quantity of common assets.

This formalization allows us to express the induced game in an equivalent form

with one-dimensional strategy spaces. In this equivalent model bank’s choose the

quantity of common assets (the ‘liquidation game’), and the required quantity of

specific assets for liquidation is determined as the minimum quantity which solves

the leverage constraint with equality for each banks. This, in turn, determines the

payoff of a given strategy profile.

Lemma 2 For each action profile xc ∈ [0, wc1]× [0, wc2] ⊂ R2 there is a unique value

of xs1 and xs2 which solves the model. It will be denoted by the function x̃s (xc) :

[0, wc1]× [0, wc2]→ [0, ws1]× [0, ws2], and can be expressed in analytical form as:

x̃s =
ps − (1− `)wsξs −

√
[ps − (1− `)wsξs]2 + 4ξs ((1− `) (wsps(0) + wcpc(1))− xcpc(1) + `d)

−2ξs

Proof. See Appendix 4.A.3

Lemma 2 states that xsi can be written as a function of the strategy profile

xc := (xci , x
c
−i). Substituting back to the optimization problem, for each player

i, taking the action of (−i) as given, it becomes a one-dimensional, parametric,

constrained maximization, equivalent with our original problem:

maximize
sci

wsi p
s(1)
i (x̃si (x

c)) + wcip
c(1)(xc)

subject to wci ≥ xci ≥ 0 < µ >

wsi ≥ x̃si (xc) ≥ 0 < λ >

(4.3)

The optimization problem of the reduced-form 2x2 model can be solved an-

alytically using the Kuhn-Tucker conditions for optimality. The optimum is charac-

terized with the following first-order conditions (i suppressed for simplicity):

∂L
∂xc

= wsξs
∂xs

∂xc
+ wcξc + λ

∂xs

∂xc
≤0

λ ≥ 0;xs ≥ 0 but λ(−xs) = 0 < CS >

xc ≥ 0 but xc
(
∂L
∂xc

)
= 0 < CS >

We solve these conditions in the next Lemma. The optimum solution for

each player i, viewed as a function of other player’s (−i) selling decision, is the

best-response function of the liquidation game.
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Lemma 3 (Best response function) The best response function of the induced

liquidation game, — a solution of problem 4.3 as a function of sc−i —, is a contin-

uous, piecewise defined quadratic expression. The analytical form can be found in

Appendix 4.A.4

Proof. See Appendix 4.A.4

Figure 4.4: Some best response functions
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Figure 3 provides an illustration of a range of best response functions for

some values of the ex-ante perceived illiquidity of the common asset. For small

price impact, only the common asset is liquidated, and therefore the best response

function is increasing as the price shock by other player’s action hits the player. For

intermediate price impact (0.11−0.13 in the figure), the common asset is liquidated

exclusively only as long as the counterparty liquidates relatively little: for large

enough actions of player 2, player 1 gradually substitutes it by liquidating the specific

asset. In the range 0.135 − 0.15 both assets are liquidated and the best response

function turns to decreasing. Clearly, in this range the player partially substitutes
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liquidation of common assets with idiosyncratic assets. Finally, for the largest price

impacts on the diagram, Player 1 liquidates only the specific asset, and the best

response function changes to flat at zero.

The illustrative best response functions illuminate a key aspect of the liq-

uidation game. When player 2 increases the amount of liquidated common assets,

there are two effects in force, which are reminiscent to standard microeconomic

theory. First, there is an ‘income effect’, which is the straight network externality

caused by common asset ownership: increased liquidation by some investors hurt

other investors due to market price impact and mark-to-market evaluation, so they

need to increase asset sale, which induces strategic complementarity. For sufficiently

high ex-ante liquidity the optimum is to liquidate exclusively the common asset, and

this is the only effect in place, therefore, the best response functions are increasing.

However, in a multiple asset settings we can identify a second effect, which we can

dub as ‘substitution effect’: as a result of increased liquidation by other market

participants, investors may find it more attractive to increase the weight of specific

assets in the liquidated portfolio and decrease liquidation from the common asset.

The substitution effect may dominate the income effect, which leads to decreasing

best response function and the appearance of strategic substitutes.

Our first theorem proves the existence of Nash-equilibrium of this game.

Theorem 1 In the 2x2 model with linear price impact (assumption 3), for a given

set of parameters Θ := {W,p0, D0, `, ξ} fulfilling assumptions 1 and 2, there exist a

liquidation equilibrium as a fixed point of the best-response correspondence.

Proof. Consider the best-response correspondence

Φ(sc1, s
c
2) : [0, wc1]× [0, wc2]→ R2

Our assumptions 1 and 2 guarantee that

Im Φ(·) ⊆ [0, wc1]× [0, wc2]

That is, the image of the fixed point correspondence is a subset of the domain of

Φ(·). Lemma 3 establishes continuity of best response functions, so the mapping

Φ(·) is a continuous function. We have a continuous function which maps a compact

convex set into itself, so the Brouwer fixed point theorem guarantees the existence

of a fixed point.
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4.3.4 The social planner’s problem

The key insight from this paper is the inefficiency of the Nash-equilibrium of the

liquidation game. To illustrate this point, we compare the equilibrium outcomes

with a solution to a social planner’s problem who maximizes joint equity of the

two banks. The main result of this section demonstrates that a social planner, for a

significant subset of the parameter space, could achieve a strictly better outcome and

improve on the coordination failure in a market equilibrium. This is improvement

in a a Pareto-sense, not just on aggregate equity, as in the social planner’s optium

solution all individual players will be better off.

We start with formalizing the social planner’s problem which maximizes the

joint equity subject to the leverage constraints, no-short-selling and nonnegativity

assumptions. To write the problem compactly we extend the notation with

W =
(ws1,0,wc1

0,ws2,w
c
2

)
, X =

( xs1,0,xc1
0,xs2,x

c
2

)
, d =

(
D1
D2

)
and p =

(
ps1,p

s
2,p

c
)′

The social planner’s problem can be written as

maximize
X

1′
(
Wp(1) −D

)
subject to (1− `i)wi

′p(1) − si
′p(1) + `iDi ≤ 0 ∀i ∈ {1, 2} < λi >

wji ≥ s
j
i ≥ 0 ∀i ∈ {1, 2}∀j ∈ {s, c} < ηji >

where 1 = (1, 1, 1)′. The objective function is the total after-liquidation equity of the

financial system. The first set of constraints are the rearranged leverage constraints,

which must hold for all institutions individually. The last set of constraints are the

usual ‘no-short-selling’ and ‘no-buy’ constraints.

The solutions of the social planner’s problem are characterized with the usual

first order conditions (see Appendix 4.A.5). The main result of this section com-

pares the socially optimal solution with the liquidation equilibrium in the previous

subsection:

Theorem 2 The liquidation equilibrium is not Pareto-optimal in all such cases in

which in equilibrium a positive quantity is chosen from both assets for liquidation.

Proof. See Appendix 4.A.5

Intuitively, we are in a prisoners’-dilemma like situation as demonstrated in

the introduction: the Pareto-optimal liquidation strategy is not individually optimal,

therefore cannot be maintained as equilibrium, since banks have incentives to deviate

and sell more from the relatively liquid common asset. However, if both are doing
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this, the asset becomes relatively illiquid, and the total payoff is lower.

Theorem 2 only characterizes the situation in which a positive quantity is

chosen from both assets. The following theorem establishes the optimality of corner-

solutions as well:

Theorem 3 The ‘liquidation equilibrium’ coincides with the social planner’s solu-

tion in all such cases when

i zero quantity is chosen from the common assets for liquidation in equilibrium.

ii zero quantity is chosen from the specific asset by the social planner

Proof. See Appendix 4.A.6

4.4 Model analysis

In this chapter we analyse and illustrate the equilibrium solution and compare with

social planners’ outcome. The derivation of our main result has no restriction what-

soever on the parameter values of the economy apart from Assumptions 1...4. To

make the comparison more transparent, without loss of generality, we can introduce

a few normalizations on the parameter space.

First, note that absolute price levels do not play a role in this context, only

relative price changes determine the result. Therefore, we can normalize all initial

prices to one:

p(0) := 1

We cannot, however, normalize all initial quantities, since that would pin down

the investment proportions of idiosyncratic versus common asset. Without loss of

generality, however, we can normalize idiosyncratic asset quantities to one, and

leave the total quantities of common assets as a variable. In this section we focus

on symmetric equilibrium with ex-ante identical banks. 6 We set wc = wc as a

parameter, and normalize

ws = 1

In the main model, the debt amount D0 was also treated as a free parameter.

It is however easier to interpret and compare the outcomes for different parameter

settings if instead of the amount of initial debt, the initial leverage (following the

initial shock) is parameterized. In particular, we define (without loss of generality)

6Otherwise another parameter would be required which determines the allocation of common
asset between the two banks.
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a new variable, ‘shock size’, defined as κ := `0

`
. With this definition, the initial debt

level is:

D0 = A− A

κ`

For example, if we normalize all p
j(0)
i = 1, wji = 1 and l = 2, a ’10% shock ’

corresponds to a shock-size of κ = 1.1 which implies an initial debt of 1.1, and an

initial leverage of `0 = 2.22. This should be restored to ` = 2, a 10% decrease in

leverage.

Finally, we can slightly modify the definition of the price impact parameter

(ξ). So far ξs and ξp could be arbitrary numbers. For the purpose of numerical

analysis, it is better to tie their values to total asset quantities. Intuitively one

would expect that a given (numerical) quantity for sale must have smaller price

effect, if it is a relatively small portion of the total asset. In order to incorporate

this to the model without any affect to the validity of proofs, we introduce a new

variable

φj =
ξj

W j

with W j being the total quantity of asset j, and in all numerical illustrations we

apply the price impact formula with φ in place of ξ.

p(1) = p(0) + φXj

To sum up, after introducing the normalizations the economy can be described by

the following parameters:

ΘN := {ξ,W c, κ, l}

The most critical assumption of this model is the ‘sufficient resources’ assumption,

which allows us to ignore cases where a selling decision is made due to inefficient asset

holdings, not by optimal choice. Intuitively, this requirement can be interpreted as

a constraint on the price impact coefficients which we can meaningfully consider in

the numerical analysis. The larger the leverage (left) or the larger the total asset

commonality in the economy (right), the smaller price impact coefficients is sufficient

to satisfy the assumptions.

In the following sub-sections we illustrate the effect of various parameters

of the economy on the equilibrium liquidation quantity (thick blue and red) and

the social optima (dashed blue and red) curves (top figures). Further, we calculate

the value of equity in equilibrium (blue) versus social optimum (red) equity levels,

expressed as a percentage of the original equity (bottom figures).
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Figure 4.5: Equilibrium as a function of common asset price impact
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4.4.1 Common asset price impact

We start by varying the common asset price impact coefficient (ξc), while keeping

other parameters, notably the price impact for the specific asset, fixed. As discussed

before, the portfolio is symmetric and normalized (ws1 = ws2 = 1, wc1 = wc2 = 1) and

initial prices are normalized (pc = ps = 1). By the symmetry of the problem, the

figures can be understood as the outcome for both i = 1, 2. The leverage constraint

is set to ` = 3 and the banking sector starts from a ‘shocked’ state where the leverage

constraint is not fulfilled by a factor of κ = 1.1 which we can interpret as the size

of shock. Therefore, `0 = κ`.

Figure [4.5] presents liquidated quantities (top figure) for equilibrium (solid)

and socially optimal (dashed) solution, and after-liquidation equity for optimum

(red) and equilibrium (blue) as the specific asset’s price impact is fixed at ξs = 0.15

and the common price impact varies in the range ξc ∈ {0.05, 0.2}.
For very high ex-ante common asset price impact (the right of axis x), the

equilibrium action is to liquidate only specific asset. In this region, obviously, any

further increase of the common price impact coefficient ξc has no further effect on

the optimal choice or the equity value. Note however, that this region does not

comply with the ‘narrative’ of the paper, that is, that usually the common asset is
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perceived as ex ante more liquid. As the price impact decreases to the interesting

region (towards the left of x axis), the equilibrium action is to sell a combination of

the two assets (there is an internal solution to the optimum problem). In this case

the negative externality pushes down the new equity value below previous levels.

As the price impact coefficient of common asset further decreases, it becomes

more-and-more attractive to substitute for it, which exacerbates the coordination

problem. As a result, counter-intuitively, banks’ fire-sale losses increase as the (ab-

solute) price impact decreases, that is, more liquid markets eventually hurt the

banks. Intuitively, assets which are perceived as more liquid attracts more sellers,

therefore they become more illiquid ex post. That means formally, the derivative

of the objective function at optimum with respect to the price impact function of

common asset is negative.7 This is a key result, so we state this as a theorem8:

Theorem 4 Let

Φ(x) = (wsi − xsi )p
s(1)
i + (wci − xci )pc(1) − (Di − xsip

s(1)
i − xcipc(1))

denote the objective function of maximum problem (4.1). Then, under assumption

4 we have
∂Φ?

∂ξc
< 0

for the interior optimum region, where Φ? = Φ?(x?(ξ?)) is the optimum value of the

objective function viewed as a function of equilibrium selling quantities.

Proof. See Appendix 4.A.7.

In contrast to the equilibrium outcome, a social planner could avoid the

increased fire-sale losses by selling the specific asset for both banks for the critical

range of price impact coefficients.

Finally, the left-side of the diagram illustrates that for sufficiently low levels

of common asset price impacts the optimum is the same as the equilibrium, as

predicted by Theorem 3. If the common asset is sufficiently liquid, the benefits from

liquidity outweigh the costs associated with network externalities.

So far the the price impact for the specific asset was fixed at an arbitrary

level. Figure 4.6 illustrates the role of overall liquidity profiles (combinations of

price impact coefficients). The left figure is the equilibrium of the liquidation game

7This is not obvious, since ∂Φ
∂ξc

> 0.
8In the appendix, I formulate the statement of the Theorem and give an analytical condition

which guarantees the Theorem to hold. Unfortunately, this condition cannot be expressed in a closed
analytical form, so instead of a full analytical proof, I provide an illustration that the condition
indeed holds in the interesting parameter region.
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Figure 4.6: Equilibrium as a function of price impacts
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(common assets offered for sale), while the right figure demonstrates the associated

equity loss. It is not surprising that higher overall illiquidity leads to larger equity

losses. The notable result is that increasing illiquidity of specific assets largely

extends the problematic region in both directions, but more significantly, for larger

(absolute) common price impacts. The conclusion is that an overall deterioration of

market liquidity involving all assets in the market, makes it more likely (for a larger

subset of parameters) that banks end up in an inefficient liquidation spiral, an effect

which is beyond the simple consequences of deteriorating liquidity.

4.4.2 Weight of the common asset

In this chapter we vary the total quantity of common asset in the market keeping the

weight of specific assets normalized at wsi = 1, and all other parameters constant.

The total quantity of common asset W c can be interpreted as a simple measure of

diversification on the market: since wsi is normalized, the larger W c is, the higher

percentage of wealth is invested in the (perfectly correlated) common asset, so the

larger is the correlation between the two banks’ total asset portfolio. To interpret

the results we note that by the normalization we adopted for numerical analyses,

varying quantity of common asset on the balance sheet while keeping prices and all

other parameters fixed also changes the absolute size of the balance sheet.

The diagram is topologically similar to varying the price impact parameter.
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Figure 4.7: Equilibrium as a function of asset commonality
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The reason is fundamental: as it is obvious from the form of the objective function,

bank’s are concerned about weighted price impacts, so increasing weight of common

asset has a similar effect as increasing price impact of common assets. The interpre-

tation is, however different, and is analogous to earlier findings in the literature (e.g.

Elliott et al. [2014]), which points out that financial networks are most susceptible

for contagion for intermediate levels of diversification.

Although this model is based on completely different principles than earlier

literature, the intuition is the same: for high levels of diversification, banks inter-

nalize a relatively high proportion of network externalities, and optimally choose to

sell the specific asset, and reach the optimal outcome. For relatively low levels of

diversification, the network externality is small, and does not dominates the bene-

fits from better liquidity of the common asset. The banking system is subject to a

possibly inefficient equilibrium outcome for intermediate levels of diversification.

4.4.3 Varying leverage

Next we analyse the effect of varying leverage levels of banks (see figure 4.8). We

start the graph from the limiting case ` = 1. By definition in this case d0 = 0
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Figure 4.8: Equilibrium as a function of leverage
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(c) Low-ξc regime
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(d) High-ξc regime

so there is no liquidation, and no equity loss.9 Note how Theorem 2 holds for the

depicted case: optimal liquidation of common asset are always below the equilibrium

levels. The relative equity levels (bottom figure) show that the inefficiency sharply

increases for larger levels of leverage. Note that we kept the relative shock size

constant in the numerical analysis, and not the absolute shock size. I repeated the

analysis with fixed absolute shock size, and the results are similar (although the

absolute magnitude is obviously smaller).

In figure 4.9 we illustrate the effect of leverage and market diversification

(total asset commonality) on the relative equity loss of prevailing equilibrium com-

pared to the social optima. It is not surprising based on the previous figure that

larger leverage may have significantly larger negative effect, and this diagram also

makes clear that the potential parameter region susceptible to inefficient equilibrium

is much larger as well. In addition, if leverage is higher, the ’worst outcome’ tend

to occur for lower levels of market diversification.

4.4.4 Varying shock size

The shock in this context should be understood as how far the initial position is

from fulfilling the leverage requirement. The effect on equity is straightforward:

higher shocks induces more liquidation. The composition of optimal selling vector

in figure 4.10 demonstrates that it is not scale-free with respect to the shock size.

9Formally our assumptions are not fulfilled at this point, so we consider it as a limiting case.
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Figure 4.9: Equilibrium as a function of leverage and commonality
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For small shock, it is optimal to sell only the specific asset, while for larger shocks,

a substitution towards common asset starts.

4.5 Conclusions

In this paper we analysed a simple banking system with fire-sale spillovers due

to common illiquid asset holdings when banks have multiple illiquid assets and

choose the liquidation strategy optimally. Even the very simple, two-bank model

can produce interesting and counter-intuitive results. Our main theorem states

that for a large range of parameter values the only prevailing equilibrium of the

’liquidation game’ is in which banks sell too much of the common asset, compared

to what a social planner would find optimal. The most striking result is that in

these situations, at least under symmetric equilibrium, the socially optimal solution

is a Pareto-improvement as well, that is, banks individually would get better off by

choosing the liquidation strategy designed by the social planner, but this cannot

be maintained as a Nash-equilibrium. Even more counter-intuitively, the efficiency

losses due to coordinating on the inefficient equilibrium are larger when the market

conditions improve: if the common assets are perceived more liquid, the temptation

to coordinate on selling it is higher, and the ex-post illiquidity and induced equity

losses are higher.

Our illustrative numerical analysis indicate that even this simple model can
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Figure 4.10: Equilibrium as a function of shock size
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suggest two findings which are analogous to earlier theoretical results in the finan-

cial contagion literature. First, the equity losses are most severe for intermediate

levels of market diversification; in contrast, for very large diversification the fire sale

externalities are sufficiently internalized, while for very low levels of diversification

the externalities are sufficiently small and do not influence outcomes. Note that

our setup intentionally excludes the ’extremes’ (like a perfectly diversified banking

sector), in which pure resource constraints would alter our conclusions. By exclud-

ing those parameter regions by assumption, our results are purely due to bank’s

strategic considerations. The second result is a weak confirmation of the findings of

Chen et al. [2014]: as the system becomes more leveraged, it can benefit more from

less diversification and more idiosyncratic portfolios.
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4.A Appendix - Proofs

4.A.1 Notation

Consider the optimum problem 4.1. After straightforward algebraic simplifications,

and switching to matrix notation the problem of bank i can be written as:

maximize
xi

w′ip
(1)
i (xi)−Di

subject to (1− `i)w′ip
(1)
i − x′ip

(1)
i + `idi ≤ 0 < λ >

xi ≥ 0 < η >

wi − xi ≥ 0 < µ >

(4.4)

where the t=1 price p
(1)
i is determined by the linear price impact (Assumption 3)

p
(1)
i (xi + x−i) = p

(0)
i + 〈ξiξiξi〉 (xi + x−i)

The vectors {wi,xi} denote Bank i’s asset endowment and liquidation decision, x−i

is the other bank’s (total) liquidation from the same assets, pi denotes prices of

these assets, while 〈ξξξ〉 is a diagonal matrix constructed from the price impact vector

ξξξ. To simplify discussion we introduce some further notation. Let Λi(xi) : R2 → R
denote the ex-post (after liquidation) leverage constraint (RHS of the constraint

associated with λ) in the optimization problem of Bank i given that a selling vector

xi is chosen, that is,

Λi (xi) := (1− `i)wi
′p

(1)
i (xi)− xi

′p
(1)
i (xi) + `iDi

Furthermore, let the objective be

Φi (xi) := w′ip
1
i (xi)− di

Note that p
(1)
i = p

(1)
i (xi, x−i) is a function of the liquidated asset quantities in both

expressions. With this notation we can describe the decision problem of each banks

i in a compact form, as a standard constrained maximum problem:

maximize
xi

Φi(xi)

subject to − Λi(xi) ≥ 0 < λ >

xi ≥ 0 < η >

wi − xi ≥ 0 < µ >

(4.5)
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These optimum problems are linked by the joint determination of asset prices

p
(1)
i = p

(0)
i + 〈ξξξ〉 (xi + x−i)

For notational simplicity we suppress the dependency of value function and con-

straint on all other parameters describing the economy until the chapter dealing

with comparative statics. For completeness, these parameters are

Θ := {ξ,p(0),W,d, `}

Both the objective and constraint, therefore the optimum depends on the liquidation

choice of the players, x−i. If we want to emphasize this relationship, we write

Φ(xi, x−i) and Λ(xi, x−i) respectively. The object of interest is the set of maximizers,

interpreted as a function of other bank’s decision, denoted by x?i (x−i). This is the

best response function of the game.

4.A.2 Proof of Lemma 1

Proof. (item i)

The objective function Φi(xi) is obviously a linear functional. Substituting

the price equation into the constraint we get

Λi(xi) = (1− `i)w′i
(
p

(0)
i + 〈ξξξ〉 (xi + x−i)

)
− x′i

(
p

(0)
i + ξ (xi + x−i)

)
+ `idi (4.6)

The right-hand-side is a 2-variable continuous, twice differentiable function. We

compute the Hessian with respect to the two variables x
(j)
i : j ∈ {s, c}:

∂Λi(xi)

∂xji
= (1− l)wji ξ

j
i −

(
p

(0),j
i + ξji

(
xji + xj−i

))
− sji ξ

j
i

∂2C

∂x(j)2 = −2ξji > 0

∂2C

∂x(j1)∂s(j2)
= 0

By definition the price impact is negative (ξ < 0), so the Hessian is positive semi-

definite10. This proves that Λi(xi) is convex. The epigraph of a convex function is

convex by definition of convexity, so the (leverage) constraint set is convex in R2.

Proof. (item iia)

We state conditions under which Λ(x) is decreasing in x, that is, selling assets

10The geometric figure is an infinite paraboloid, the epigraph is ellipsoid

154



and repaying debt is leverage-decreasing. A sufficient condition is ∀j ∈ {s, c}:

∂Λi(xi)

∂xj
= (1− l)wji ξ

j − (p
(0),j
i + ξj(xji + xj−i))− x

j
i ξ
j < 0

This holds whenever the price impact is sufficiently small, that is:

p
(0),j
i + 2ξjxji + ξjxj−i − (1− l)wji ξ

j > 0

We replace x with w > x to get a sufficient restriction on exogenous the parameter

space instead of restricting the endogenous action space:

pj + 2ξjwji + ξjwj−i − (1− l)wji ξ
j > 0

which is stated in assumption 4.

Proof. (item iib)

The sufficient resources assumptions make the constraint associated with µ in the

general set-up obsolete. The choices (wsi , 0) and (0, wci ) is clearly in the attainable

set of the optimization problem, by Assumption 1. Take the first case (the second is

proven analogously). Assume the optimum is some (xs?i > wsi , x
c?
i > 0). This, how-

ever, cannot be optimum, because Φ(xi) is strictly decreasing in xi. Contradiction.

Furthermore, Assumption 1 and the continuity and monotonicity of Λ implies

the existence of unique values xci and xsi which exactly solves the leverage constraint.

Λ(xci , 0) = 0 and Λ(0, xsi ) = 0

Clearly any choice xji > xj cannot be optimal.

Proof. (item iii) Assumption 1 and 2 together guarantees that

R2
− ∩ {xi : Λ(xi) ≤ 0} = ∅

To sum up, we formalized the assumptions in such a way which ensures

that (i) the problem can be solved if and only if banks liquidate a positive amount

of assets, (ii) optimum is always on the boundary of the constraint set (iii) this

boundary is always given by the leverage constraint, which is fulfilled with equality.
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4.A.3 Proof of Lemma 2

Focus on bank i = 1 decision problem, taking bank i = 2 decision as given. Since the

leverage constraint fulfils with equality (lemma 1), any choice of xp1 clearly defines

the required sale from xs by the equation

Λ(xc1, x
s
1, ·) = 0

Denote this quantity for each bank i by x̃si (x
c
i ) : [0, w(c)]→ [0, w(c)]

Assumption (1) and consequently 1 ensures that s̃si (s
c) can be derived ana-

lytically by solving the constraint as equality for ss as a function of sp and sp−i:

0 = (1− `i)wi
′p1 − x′ip

1 + `di

0 = (1− `)ws (ps + ξsxs) + (1− `i)wc
(
pc + ξcxc + ξcxc−i

)
− xs(ps + ξsxs)− xc(pc + ξcxc + ξcxc−i) + `d

0 = [−ξs] (xs)2 + [(1− `)wsξs − ps]xs + (1− `)wsps

+ (1− `)wc
(
pc + ξcxci + ξcxc−i

)
− xc

(
pc + ξcxc + ξcxc−i

)
+ `d

This is

x̃s =

ps − (1− `)wsξs −
√

[ps − (1− `)wsξs]2 + 4ξs
(

(1− `)
(
w′p + wcξc(xci + xc−i)

)
− xc

(
pc + ξc

(
xc + xc−i

))
+ `d

)
−2ξs

The geometry of the problem implies that we only need to consider the (-) sign.

Note that the expression for s̃si (s
c) is not guaranteed to be positive for every

possible action profile sc. It is just the quantity which solves the constraint with

equality. Negative values will be ruled out as possible solutions as part of the solution

of the ’reduced’ optimum problem discussed as part of the next lemma.

4.A.4 Proof of Lemma 3

From the previous Lemma xsi can be written ∀i ∈ {1, 2} as a function of the strategy

profile xc := {xci , xc−i}. Let this function be x̃si (x
c) : R2 → R. Substituting back

to the optimization problem, for each player i taking the action by −i as given, it

becomes a one-dimensional, parametric constrained maximization program, which
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is equivalent with our original problem. For all i,

maximize
xci

wsi p
1s(x̃si (x

c)) + wcip
1c(xc)

subject to 0 ≤ xci ≤ wci < µ >

0 ≤ x̃si (xc) ≤ wsi < λ >

(4.7)

This leads to the following KKT first-order conditions (i and function arguments

suppressed for simplicity):

∂L
∂sc

= wsξs
∂x̃s

∂xc
+ wpξp + λ

∂xs

∂xc
≤ 0

λ ≥ 0;xs ≥ 0 but λ(−xs) = 0 < CS >

xc ≥ 0 but xc
(
∂L
∂xc

)
= 0 < CS >

The usual ’generic’ approach to analytically solve the Karush-Kuhn-Tucker con-

ditions is to evaluate all possible combinations with respect to the positivity of

Lagrange-multipliers, then check whether the results are consistent with the im-

posed conditions. Finally, eliminate those which are not consistent, and evaluate

the objective function over the set of candidate solutions. Following this method,

we have to consider four cases:

λ η Intuition

Case 1 λ = 0 η = 0 Non-binding constraints: xs > 0 and xc > 0

Case 2 λ > 0 η = 0 Binding constraint on xs ⇒ xs = 0

Case 3 λ = 0 η > 0 Binding constraint on xp ⇒ xp = 0

Case 4 λ > 0 η > 0 Both constraints binding: ruled out by assumption

Note that Case 4 is ruled out by the ’interesting problem’ assumption. Below we

solve case 1 to 3 in turn.

Case 1 If λ = 0 the first-order condition gives the interior optimum:

∂L
∂xc

= 0

from which we obtain the solution

∂xs

∂xc
= −w

cξc

wsξs
(4.8)
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This can be solved analytically. First, we calculate the partial derivative

∂xs

∂xc
= −

(1− l)wcξc −
(
pc + ξxc−i

)
− 2ξcxc√

[(1− l)wsξs − ps]2 + 4ξs
[
(1− l)wsps + (1− l)wc

(
pc + ξc

(
xc + xc−i

))
− xc

(
pc + ξc

(
xc + xc−i

))
+ ld

]

After rearranging equation (4.8), we obtain

[
wsξs

wcξc

]2 (
[(1− l)wcξc − (pc + ξxc−i)]

2 − 4 [(1− l)wcξc − (pc + ξxc−i)] ξ
cxc + 4 (ξcxc)2

)
=

= [(1− l)wsξs − ps]2+4ξs [(1− l)wsps + (1− l)wc (pc + ξc (xc + xc−i))− xc (pc + ξc (xc + xc−i)) + ld]

We express the solution for xc implicitly as

A[xc]2 +B[xc] + C = 0 (4.9)

where after solving the previous equation,

A = 4(ξc)2

[
wsξs

wcξc

]2

+ 4ξsξc

B = −4ξc
[
(1− l)wcξc −

(
pc + ξxc−i

)] [wsξs
wcξc

]2

− 4ξs
(
(1− l)wcξc − pc − ξcxc−i

)
C =

[
(1− l)wcξc −

(
pc + ξxc−i

)]2 [wsξs
wcξc

]2

− [(1− l)wsξs − ps]2

− 4ξs
[
(1− l)wsps + (1− l)wc(pc + ξcxc−i) + ld

]
The value of xc in 4.9 is the optimum solution as long as x̃s(xc?) > 0

Case 2 The first complementarity slackness condition implies with λ 6= 0

(that is, if the constraint is binding and ss = 0) that sp is a similar quadratic formula

with the coefficients.11

A = −ξc

B = [(1− l)wcξc − (pc + ξcxc−i)

C = [(1− l)wsps + (1− l)wc(pc + ξcxc−i) + ld

Corollary: The best response function is continuous.

Proof. Both xccase1 and xccase2 are piecewise continuous. Furthermore, x̃s(xc) is

also continuous and monotone by assumption 4. We need to prove that there

11The easiest way to calculate these coefficients is to solve the leverage constraint Λ with equality
and with xsi = 0.
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are no ’jumps’ when the optimal solution switches from case1 to case2. We have

xs(xccase2) = 0 by construction. The continuous, monotonic function xs(xc) crosses

zero at most once, and at this point, by construction, xccase2 = xccase1

Case 3 Finally, with η 6= 0 therefore xc = 0. We note that the corresponding

value for xs is coming from equation 4.A.3.

To sum up, the optimal solution of the problem is:

xc?i (Θ, xc−i) =


xc?case1

(
Θ, xc−i

)
if xc > 0 and xs > 0

xc?case2
(
Θ, xc−i

)
if xc > 0 and xs = 0

0 otherwise

In this highly parametric form it is impossible to decide more precisely ana-

lytically which of the three cases are consistent with the condition and which of them

provide the global maximum. Numerical methods are implemented for illustration

in section 4.4.

4.A.5 Proof of Theorem 2

The Pareto-optimal outcome maximizes the joint equity subject to the leverage

constraints and nonnegativity. To formalize this problem we extend the notation

with W =
(w′1
w′2

)
and X =

( x′1
x′2

)
. The problem can be written as

maximize
X

1′(W′p1 − d)

subject to (1− `i)wi
′
0p

? − xi
′p? + `di0 ≤ 0 ∀i ∈ {1, 2} < λi >

xji ≥ 0 ∀i ∈ {1, 2}∀j ∈ {s, c} < ηji >

Similarly to the equilibrium case, this also can be written in a reduced form, maxi-

mizing with respect to xc

maximize
xc

(w1
s + w2

s)ps + ws1ξ
s
1s
s
1 + ws2ξ

s
2s
s
2 + (wc1 + wc2)pc + wc1ξ

c(xc1 + xc2) + wc2ξ
c(xc2 + xc1)

subject to xc ≥ 0 < η >

xs ≥ 0 < λ >
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The Kuhn-Tucker method leads to the following first-order and complementarity

slackness conditions:

ws1ξ
s∂x

s
1

∂xc1
+ ws2ξ

s∂x
s
2

∂xc1
+ (wc1 + wc2)ξc + λ1

∂xs1
∂xc1

+ λ2
∂xs2
∂xc1

= 0

ws1ξ
s∂x

s
1

∂xc2
+ ws2ξ

s∂x
s
2

∂xc2
+ (wc1 + wc2)ξc + λ1

∂xs1
∂xc2

+ λ2
∂xs2
∂xc2

= 0

λi ≥ 0;xs ≥ 0 but λi(−xsi ) = 0 < CS >

xc ≥ 0 but xc
(
∂L
∂xc

)
= 0 < CS >

(Interior optimum): Consider the case where λ1 = λ2 = 0 (interior opti-

mum). Using the analytical expression for xi and earlier results we start by deriving

the partial derivatives:

∂xsi
∂xci

= ±
(1− li)wci ξc − (pc + ξxc−i)− 2ξcxci√

[(1− li)wsi ξs − ps]2 + 4ξs [(1− li)wsi ps + (1− li)wcipc? − xcipc? + lidi]

∂xsi
∂xc−i

= ± (1− li)wci ξc − ξcxci√
[(1− li)wsi ξs − ps]2 + 4ξs [(1− li)wsi ps + (1− li)wcipc? − xcipc? + lidi]

This is a sufficient implicit characterization of the social planner’s solution.

(Compare with equilibrium): Recall that the conditions for an interior opti-

mum (i.e. non-binding constraints, λ = 0) of the liquidation equilibrium (see 4.A.4):

∀i ∈ {1, 2}

wsi ξ
s∂x

s
i

∂xci
+ wci ξ

c + λ
∂xsi
∂xci

= 0

Consider i = 1. The difference between the equilibrium and optimum FOC’s is

D1 := ws2ξ
s∂x

s
2

∂xc1
+ wc2ξ

c

clearly D1 < 0 as long as
∂xs2
∂xc1

> 0

Consider the first FOC. Assumption 4 guarantees that
∂xs1
∂xc1

< 0. The terms not

containing the partial derivatives are constant - only depend on parameters. As

long as D1 < 0 the first order conditions imply that[
∂xs1
∂xc1

]OPT
>

[
∂xs1
∂xc1

]EQ
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This implies [xc1]OPT > [xc1]EQ as long as the derivative is increasing in xc, that is,

∂xsi
∂xci∂x

c
i

> 0

Consider the partial derivative
∂xsi
∂xci

. Denote by (arg) the expression under
√

in the

expression for
∂xsi
∂xci

for simplicity. Then

∂xsi
∂xci∂x

c
i

=

(
−2ξc

√
(arg)−NOM ∗ 1

2
√

(arg)

∂(arg)

∂xci

)
∗ 1
√
arg2

This is positive as long as

∂(arg)

∂xci
= 4ξs ((1− li)wci ξc − pc? − xciξc) > 0

which is positive by Assumption 4. Therefore, the second derivative is positive.

4.A.6 Proof of Theorem 3

Proof. There is only one value of xsi which solves Λi(x
s
i , 0) = 0, so the theorem is

trivial if both equilibrium and optimum induces zero liquidation of common asset.

We just need to prove that

(i) it is never optimal to sell common asset by the social planner if it is not optimal

by the individual banks.

(ii) it is never equilibrium action to sell specific asset if the social planner does

not sell it

Proof of part (i):

The second complementarity slackness condition of bank’s problem implies that

xc = 0⇒ ∂L
∂xc

< 0

that is

wsξs
∂xs

∂xc
+ wcξc + λ

∂xs

∂xc
< 0

but by Assumption 2 here λ = 0, so the condition for interior optimality of the

social planner’s problem implies:

D1 > 0

but D1 < 0 was established under the proof of earlier Theorem. Contradiction.
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Proof of part (ii):

We need to prove that λsoc > 0⇒ λeq > 0. That is, a binding constraint (xs = 0) in

the social planner’s problem implies binding constraint in the equilibrium problem.

The social planner’s problem first order conditions rearranged:(
ws1ξ

s∂x
s
1

∂xc1
+ wc1ξ

c

)
+

(
ws2ξ

s∂x
s
2

∂xc1
+ wc2ξ

c

)
+

(
λ1
∂xs1
∂xc1

+ λ2
∂xs2
∂xc1

)
= 0

We have established earlier that
∂xs1
∂xc1

< 0 and
∂xs2
∂xc1

> 0 by assumption 4. We also

know that |∂x
s
1

∂xc1
| > |∂x

s
2

∂xc1
|. In a symmetric equilibrium λ1 = λ2 so the third bracketed

term is negative. The second term is also negative. The first term must be therefore

positive. As a consequence, the optimum-problem can only be fulfilled if λopt is

positive.

4.A.7 Proof of Theorem 4

Consider the objective function

Φ = w′ip
(1) − di

We write out explicitly (without indices for simplicity):

Φ = ws(ps + ξsxs) + wc(pc + ξc(xc + xc−i))− d

In optimum, we can write the derivative w.r.t. ξc as

dΦ

dξc
= wsξs

dx̃s?

dξc
+ wcξc

(
dxc?1
dξc

+
dxc?2
dξc

)
+ wc(xc?1 + xc?2 ) (4.10)

As we focus on symmetric equilibrium, we can impose the following identities:

∂xc?1
∂ξc

=
∂xc?2
∂ξc

:=
∂xc?

∂ξc

xc?1 = xc?2 := xc?

Recall that x̃s is a function of xc (and xc−i), which also hold in any equilibrium. We

write the total derivative w.r.t. ξc as

dss?

dξc
=
∂x̃s?

∂ξc
+
∂x̃s?

∂xc
∂xc

∂ξc
+
∂x̃s?

∂xc−i

∂xc−i
∂ξc
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The term ∂x̃s?

∂ξc and ∂x̃s?

∂xc−i
is straightforward to calculate. The term ∂x̃s?

∂xc is given by

the equilibrium condition which must be hold for equilibrium quantities:

∂x̃s?

∂xc
= −w

cξc

wsξs

Using this, we can rewrite the first term in (4.10) as:

wsξs
(
∂x̃s?

∂ξc
− wcξc

wsξs
∂xc

∂ξc
+
∂x̃s?

∂xc−i

∂xc−i
∂ξc

)
= wsξs

∂x̃s?

∂ξc
+

(
wsξs

∂x̃s?

∂xc−i
− wcξc

)
∂xc

∂ξc

The condition for the theorem becomes therefore

Ψ := wsξs
∂x̃s?

∂ξc
+

(
wsξs

∂x̃s?

∂xc−i
+ wcξc

)
∂xc

∂ξc
+ 2wcxc < 0 (4.11)

This can be fully calculated analytically in a straightforward way. We proceed with

calculating the term ∂xc?

∂ξc . We depart from the implicit analytical expression for xc?.

Since we study symmetric equilibrium here, we can replace x−i by xc and so the

implicit equation takes the form of (note that the arguments of A,B,C stand for

the other player’s action here):

A(xc)[xc]2 +B(xc)[xc] + C(xc) = 0

For notation let the LHS be function g(ξc, ·). Using the implicit function theorem:

∂xc

∂ξc
= −∂g/∂ξ

c

∂g/∂xc

The two partial derivatives are:

∂g

∂ξc
=
∂A

∂ξc
[xc]2 +

∂B

∂ξc
[xc] +

∂C

∂ξc

∂g

∂xc
=
∂A

∂xc
[xc]2 + 2A(xc)[xc] +

∂B

∂xc
[xc] +B(xc) +

∂C

∂xc

All elements of the expression are trivial to calculate. The derivatives w.r.t. ξ:

∂A

∂ξc
= 4ξs

∂B

∂ξc
= 4

(
xc − (1− l)wc −

[
ξsws

ξcwc

]2

pc

)
∂C

∂ξc
= −

2ξs
(
(l − 1)ξcξspcwc[ws]2 − 2(l − 1)ξc3[wc]3xc + ξspc[ws]2(pc + ξcxc)

)
ξc3[wc]2
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The derivatives w.r.t. x

∂A

∂xc
= 0

∂B

∂xc
= 4ξsξc + 4

(
ξsws

wc

)2

∂C

∂xc
=

2ξs
(
2(l − 1)ξc2wc3 + (l − 1)ξcξswcws2 + ξsws2(pc + ξcxc)

)
ξcwc2

Using these numerical results it is possible to establish analytically the first two

terms in Ψ are negative. Unfortunately, it is not possible to analytically show that

Ψ < 0, so I use numerical illustrations. The following figure shows that whenever

the conditions for an interior equilibrium holds, the value of Ψ (green, thick curve)

remains negative. This is true for every parameter combinations tested during

numerical analysis.

Figure 4.11: Value of Ψ in an interior equilibrium
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Chapter 5

Concluding remarks

This thesis included three essays on banking theory.

The first essay described a novel mechanism which demonstrates how bank-

ing regulation might affect banks’ incentives to exert risk management through an

informational channel. Our research contributes to the broad literature on bank

liquidity and capital management, and their role in financial stability. The mecha-

nism we uncover in the paper is potentially of great interest for central banks and

other regulatory bodies, as it investigates nontrivial, and possibly overlooked general

equilibrium consequences of micro-prudential regulatory interventions. A potential

follow-up research could extend significantly our preliminary empirical work. The

new liquidity regulation introduced in Basel III is gradually rolled out to more and

more countries, which creates the potential for extensive empirical research. It is

important to mention that liquidity regulation is also being introduced in the asset

management industry, which also creates a laboratory for empirical testing. Method-

ologically, the paper combines signalling with global games in a novel and tractable

way. We consider the paper primarily a contribution to the banking literature,

rather than to economic methodology, and keep the complexity of the interaction

between signalling and global games as simple as possible. It is, however, of great

interest to study the universe of possible models this machinery could produce in

follow-up research.

The second essay departs from the empirical observation that pricing of retail

banking products is significantly different across countries with otherwise compa-

rable level of financial development. It is especially puzzling that these differences

persist within the European Union, inside the single market for services. We be-

lieve there is no plausible theory yet to explain those country-wise differences. The

model we propose in this paper takes the same basic view on retail banking mar-
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kets as the previous theoretical literature, namely that personal current accounts

are loss-leader primary markets, and banks recoup the costs on less competitive

aftermarkets. However, we model this with an important distinction by incorporat-

ing aftermarket competition, and explicitly modelling two sources of market power

which are specific to banking: customer naiveté, and adverse selection. We demon-

strate that the competitive aftermarket assumption guarantees the existence of ‘free

banking’ equilibrium even with relatively low number of naive customers, an effect

which is not present in the previous literature. Furthermore, we show that the two

forces in the model interact in equilibrium and reinforce each other. Specifically, the

presence of adverse selection makes even more likely that base prices hit the lower

bound. We believe the paper could be a starting point to a more in-depth analysis of

the possible impacts of recently introduced regulations, both empirically and theo-

retically. For example, the Payment Services Directive introduced by the European

Commission, and the ‘Open banking’ program in the UK specifically aims to reduce

adverse selection in banking markets by requiring banks to develop API-s to access

customer data by third parties as per the customers’ request. The model predicts

that this effort might lead to the end of free banking - which, perhaps surprisingly

for many, is actually a welfare-improving intervention. The current version of our

work leaves open further theoretical analysis of the welfare effects and the impact

of regulatory intervention, which is left for future work. The gradual introduction

of new programs in the EU offers an opportunity for extensive empirical research in

understanding the nature of competition in retail banking.

The third essay identifies a ‘liquidity trap’ situation in the presence of asset

commonalities. When financial institutions engage in selling part of their correlated

portfolio as a result of a systemic shock, strategic interactions generate a game which

is reminiscent to a Prisoners’ dilemma, where players over-liquidate the more liquid

asset commonality. In this thesis I derive the results for a simple case in a duopoly

model of banking with an idiosyncratic asset and a common asset. Preliminary

calculations, not included in the dissertation suggest that the results can be gener-

alized to an arbitrary bipartite network structure of asset holdings. Perhaps even

more interesting follow-up work could be to empirically test the economic relevance

of the uncovered effects. The mutual fund portfolio database provides an excellent

laboratory for these tests, which could be a basis of a follow-up empirical project.
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