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Abstract

The term “leverage effect,” as coined by Black (1976), refers to the tendency of an asset’s

volatility to be negatively correlated with the asset’s return. Ait-Sahalia, Fan, and Li (2013)

refer to the “leverage effect puzzle” as the fact that, in spite of a broad agreement that the effect

should be present, it is hard to identify empirically. For this purpose, we propose an extension

with leverage effect of the discrete time stochastic volatility model of Darolles, Gourieroux, and

Jasiak (2006). This extension is shown to be the natural discrete time analog of the Heston

(1993) option pricing model. It shares with Heston (1993) the advantage of structure preserving

change of measure: with an exponentially affine stochastic discount factor, the historical and

the risk neutral models belong to the same family of joint probability distributions for return

and volatility processes. The discrete time approach allows to make more transparent the

role of various parameters: leverage versus volatility feedback effect, connection with daily

realized volatility, impact of leverage on the volatility smile, etc. Even more importantly it

sheds some new light on the identification of leverage effect and of the various risk premium

parameters through link functions in closed form. The price of volatility risk is identified from

underlying asset return data, even without option price data, if and only if leverage effect

is present. However, the link functions are almost flat if the leverage effect is close to zero,

making estimation of the volatility risk price difficult and paving the way for identification

robust inference.

1 Introduction

The term “leverage effect,” as coined by Black (1976), refers to the tendency of an asset’s volatility

to be negatively correlated with the asset’s return. Ait-Sahalia et al. (2013) (ASFL henceforth) refer

to the “leverage effect puzzle” as the fact that, in spite of a broad agreement that the effect should
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be present, “at high frequency and over short horizons, the estimated correlation between the asset

returns and changes in its volatility is close to zero, instead of the strong negative value that we

have come to expect.” Several authors, including not only ASFL but also Bollerslev, Litvinova,

and Tauchen (2006) (BLT henceforth) as well as Bandi and Reno (2016) have argued that it takes

inference on continuous time models with high frequency data for a proper identification of the

leverage effect. As stressed by ASFL, ”the latency of the volatility variable is partly responsible for

the observed puzzle.” Moreover, with discrete time observations, using option-implied volatility in

place of historical volatilities may not be an answer since these implied volatilities have a complicated

relationship (involving averaging over the lifetime of the option, risk premium, market expectations,

etc.) with actual latent stochastic volatility. The starting point of this paper is to use instead the

theory of the volatility smile to identify the presence of a significant leverage effect through the

shape of this smile (and not through the actual level of implied volatility). Following an argument

formerly sketched by Renault and Touzi (1996), Renault (1997) and Garcia, Luger, and Renault

(2003, 2005), we start from a very general model for risk neutral distribution of underlying asset

return on short horizons that allows us to accommodate asymmetric volatility smiles that are the

signal of leverage effect. The discrete time framework may look similar to the popular GARCH

option pricing models (Duan (1995), Garcia and Renault (1998), Heston and Nandi (2000)) but the

key difference is precisely that we must ensure ”latency of the volatility variable.”

For this purpose, our modelling strategy must rather be seen as a discrete time extension of affine

diffusion models. Affine Jump-Diffusion models have been put forward by Duffie, Pan, and Singleton

(2000) as a convenient model for state variables to get closed- or nearly-closed form expressions for

derivative asset prices. Their model nests in particular the popular Cox, Ingersoll, and Ross (1985)

model for interest rates as well as Heston (1993) stochastic volatility model for currency and equity

prices for the purpose of option pricing.

Since then, Affine Jump-Diffusion models have often been criticized for their poor empirical fit.

The key intuition is that they maintain an assumption of local conditional normality, up to jumps.

Jumps are to some extent the only degree of freedom to reproduce the pattern of time-varying

skewness and excess kurtosis commonly observed in asset returns. As a response to this criticism,

at least two strands of literature have promoted specifications of discrete time models that remain

true as much as possible to the affine structure. The goal is to use the additional degree of freedom

provided by discrete time modeling to get a better empirical fit of higher order moments while

keeping closed- or nearly-closed form expressions for securities prices. While Duan (1995), Heston

and Nandi (2000) have initiated a strand of literature on closed-form GARCH option pricing (see

Christoffersen, Elkamhi, Feunou, and Jacobs (2010); Christoffersen, Jacobs, and Ornthanalai (2013),

and references therein for the most recent contributions), the paper by Darolles et al. (2006) has been

seminal to provide a class of discrete time affine stochastic volatility models that nests the class of
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Affine Jump-Diffusion models. The so-called “Compound Autoregressive” (CAR henceforth) model

is defined from conditional moment generating functions that, in the continuous time limit, are

consistent with affine diffusion models.

The stochastic volatility model provides a versatile framework to capture asymmetric volatility

dynamics with possibly different parameters for historical and risk-neutral dynamics. While a similar

exercise has been performed by Barone-Adesi, Engle, and Mancini (2008) in a GARCH framework

(thanks to calibration of option prices data), Meddahi and Renault (2004) have shown that affine

discrete-time volatility dynamics may be seen as a relevant weakening of the GARCH restrictions.

This weakening restores robustness to temporal aggregation, at least for the affine specification of

the first two moments.

However, Meddahi and Renault (2004) approach is only semi-parametric while a complete spec-

ification of the conditional probability distributions is called for option pricing. CAR models of

Darolles et al. (2006) provide exactly the relevant framework for doing so. However, the focus is

only on volatility dynamics and there is no attempt to specify a joint model for volatility and re-

turn process, incorporating the leverage effect as in particular in Heston (1993) model. Bertholon,

Monfort, and Pegoraro (2008) move in the direction of joint return and volatility modeling within

CAR-type framework. As an example, they develop the model with asymmetric GARCH volatility

to produce the leverage effect. Although we only consider one latent volatility factor, we may ex-

tend our model to accommodate different factors. In that sense, our modelling approach pertains

more generally to the Factorial Hidden Markov paradigm to accommodate different components of

volatility dynamics. Ideally, one would like to follow the guidance of Augustyniak, Bauwens, and

Dufays (2018) to capture both jumps in volatility and its predictive behavior through leverage and

volatility feedback effects.

The focus of interest of this paper is to extend the framework of Darolles et al. (2006) to a bivariate

model of return and volatility that allows for leverage effect and volatility feedback as well. This

provides a convenient large class of affine models for option pricing, nesting Heston (1993) model as

a particular continuous time limit. Moreover, by contrast with the debates about the right way to

define continuous time limits of GARCH models, our limit arguments are underpinned by temporal

aggregation formulas and as such, are immune to the criticism of ad hoc specification.

The challenge to provide a versatile discrete time extension of Heston (1993) option pricing with

stochastic volatility and leverage effect is twofold:

First, the discrete time approach complicates the separate identification of Granger causality and

instantaneous causality (see e.g. Renault, Sekkat, and Szafarz (1998)). This is especially important

in the context of stochastic volatility models since, as documented by Bollerslev et al. (2006), the

only way to disentangle leverage effect (as defined by Black (1976) from volatility feedback due to

risk premium, is to assess the direction of causality between volatility and return. While Bollerslev
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et al. (2006) enhanced the usefulness of high frequency data to do so, our parametric modeling must

carefully leave room for a mixture of these two effects in discrete time. Note that, on the other hand,

we maintain the assumption that returns do not Granger cause volatility. This assumption is key

(see Renault (1997)) to get option pricing formulas which, like Black and Scholes are homogeneous

of degree one with respect to underlying stock price and strike price and as a result, allow us to see

the volatility smile as a function of moneyness. The lack of such homogeneity property is another

weakness of GARCH option pricing (see Garcia and Renault (1998)).

Second, we want to keep in discrete time the main features of Heston (1993), namely volatility

dynamics that are affine for both the historical and the risk-neutral distribution, while keeping the

same leverage effect. To the best of our knowledge, the only attempt to do so in the extant literature

has been recently proposed by Feunou and Tedongap (2012). However, we note that their affine

specification with leverage effect cannot work simultaneously for the historical and the risk neutral

distribution. They can use their model either for risk neutral distribution or for the historical one,

but not both. Our specification is structure preserving (while keeping the same leverage effect) with

a general exponential affine stochastic discount factor. While the shape of volatility smile without

leverage effect is well-known (see Renault and Touzi (1996)) our closed form expressions allow us to

give new insights on distortions of volatility smiles produced by leverage.

The contribution of the paper is threefold with two general results completed by an empirical

illustration with a more restrictive econometric specification.

(i) The first general result completes a former analysis by Renault and Touzi (1996) (see also

Renault (1997) for a more transparent and general proof) that had established that the absence

of leverage was a sufficient condition for a symmetric volatility smile. We now prove that

conversely the presence of leverage will necessarily manifests itself by a smirk. In addition,

we precisely describe the shape of this smirk by showing that the volatility smile will be less

steeply increasing (or even possibly decreasing) on the out-of-the-money side. For this first

result, the only object of interest is the risk neutral distribution.

(ii) The second general result states that the price of volatility risk can be identified by using only

observations on the underlying asset return if and only if there is a significant leverage effect.

In other words, by contrast with a common belief, option price data may not be necessary to

identify the price of volatility risk.

(iii) Besides the exogeneity of the volatility factor and the affine structure of the conditional dis-

tributions (with conditional normality of returns given the path of the latent volatility factor),

these general results do not take any specific parametric model. Our main focus of interest

on leverage effect and the need to identify it from return data eventually lead us to intro-

duce some constraints between the parameters of the volatility dynamics. We end up with an

ARG(1)-Normal (Auto-Regressive-Gamma) model that is an extension with leverage of the one
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of Gourieroux and Jasiak (2006). The characterization of this model through the conditional

moment generating function provides conditional moment restrictions for statistical inference

as a discrete time version of the work of Pan (2002). Even though it is beyond the scope of this

paper, it is worth noting that this also paves the way for an extension of the semi-parametric

approach of Gagliardini, Gourieroux, and Renault (2011).

The rest of the paper is organized as follows. Section 2 proposes a general characterization of

the shape of volatility smiles through a risk neutral distribution seen as a mixture of log-normal

distributions. It is shown that only latent state variables may accommodate non-flat smiles while

the skewness of the smile is tantamount to leverage effect. Section 3 shifts the interest towards an

historical distribution coherent with the risk neutral one of Section 2 through an exponentially affine

pricing kernel. It then proves that the price of volatility risk can be identified from the historical

statistical characteristics of the underlying asset return if an only if there is a significant leverage

effect. Section 4 proposes a fully parametric model of returns and volatility. This ARG(1)-Normal

model is shown (in Appendix C) to be a discrete time version of Heston (1993) model. For the

purpose of statistical identification of leverage effect, this parametric model is a highly constrained

version of the model of Section 2 and 3. These constraints could be relaxed at the cost of a less

straightforward interpretation of the parameterization of leverage effect. In Section 5, we show

how intraday data on realized variance can be used for user-friendly GMM inference and devise a

general two-step GMM estimation procedure based on the conditional moment generating function.

We provide an empirical illustration on daily log returns and realized volatilities of the S&P500

over 16 years starting in January 2000. We use the S&P500 data to assess the accuracy of our

model specification and to check that it delivers sensible values of estimated parameters. Section 6

concludes. The mathematical proofs of theoretical results and figures are relegated to Appendices

A and B. We also show in Appendix C that our model is a discrete time version of Heston (1993)

model and discuss the choice of instruments for GMM in Appendix D.

2 Volatility smile and latency of the volatility variable

2.1 A conditionally log-normal risk-neutral model

Let St stand for the time t price of the underlying asset, say a stock, of the option contracts of

interest. The observed time series will be the continuously compounded rate of returns rt, t = 1, ..., T

in excess of the risk free rate rf,t over the period [t, t+ 1]:

rt+1 = log (St+1/St)− rf,t.

The maturity t + 1 for investments at time t must typically be understood as a short horizon,
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say a day. For a short enough horizon, it is then very little restrictive to assume that given some

possibly latent information set J(t), the (log) return rt+1 is Gaussian. In other words, the conditional

distribution of log-returns given some possibly unobserved mixture components is Gaussian. This

can be seen as the discrete time implication of the local Gaussianity of diffusion processes with

continuous paths. In particular, Mykland and Zhang (2009) show that an insightful way of thinking

about inference in the context of high frequency data is to consider that returns have a constant

variance and are conditionally Gaussian over small blocks of consecutive observations. Irrespective

of this inference strategy, it is well known ( see e.g. Garcia et al. (2005) and references therein) that

mixtures of Gaussian distributions are a very versatile way to accommodate any observed patterns

of time varying conditional variance, skewness, kurtosis and any other distributional characteristics

of interest. We will actually be even less restrictive, at least in this section, by only assuming that

this convenient conditional Gaussianity is fulfilled by the risk neutral distribution £∗(rt+1 |J(t)) at

stake for the purpose of option pricing. Therefore, with obvious notations, we maintain throughout

the following assumption:

£∗(rt+1 |J(t)) = ℵ
(
µ∗ [J(t)] , σ∗2 [J(t)]

)
.

Note that we will use throughout the subscript * to mean that (conditional) probability distributions,

their expectations, variances, etc., are computed with the risk neutral distribution.

A maintained assumption throughout the paper will be that past and current returns rτ , τ ≤ t,

belong to the information I(t) observed at time t, with I(t) ⊂ J(t). By contrast, the (risk neutral)

conditional distribution of J(t) given I(t) is assumed to be independent of the value of past and

current returns. Therefore, as in common stochastic volatility models, all the serial dependence

between consecutive returns goes through some state variables while returns are serially independent

given these state variables (see Renault (1997) and Section 3 below for a more formal setup). We

actually show that the standard continuous time option pricing model with stochastic volatility

Heston (1993) can be seen as a continuous time limit of our setup (see Section 4.3 and appendix

C).

2.2 Short maturity options

The key message of this section is that volatility smiles (for short horizon options) cannot be

accommodated if the conditional information J(t) is available to the representative investor so

that:

I(t) $ J(t)

where I(t) stands for the information that is available for investor at time t. Note that in popular

option pricing models, the complete information set J(t) becomes eventually observed at the latest
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at the maturity date of the option. For instance, in the classical stochastic volatility option pricing

models (see e.g. Heston (1993)), the volatility path is eventually observed by investors. However,

investors may not be able, given the current value of the spot volatility, to make a perfect forecast

of the integrated volatility path until the maturity of the option. With short maturities in mind

(maturity date at time t + 1), the volatility path on the time interval [t, t+ 1] will be our leading

example of the part of the information set J(t) that is not available to investor at time t.

In line with the stochastic volatility example, a maintained assumption will be:

Assumption: (Exogeneity of volatility) The risk-neutral probability distribution of J(t) given

I(t) does not depend on past and current returns.

This exogeneity of the volatility factor is fulfilled in standard stochastic volatility models while it

is violated in GARCH-type option pricing models. In order to figure out the resulting shape of the

volatility smile, it is then worth defining a latent stock price S̃t that would be the actual price if the

information set J(t) was observed at time t. We would have

r̃t+1 = log
(
St+1/S̃t

)
− rf,t

=⇒ E∗[exp(r̃t+1) |J(t)] = 1

meaning that:

S̃t = e−rf,tE∗[St+1 |J(t)]

=⇒ S̃t = St exp

(
µ∗ [J(t)] +

σ∗2 [J(t)]

2

)
.

Note that then:

St = e−rf,tE∗[St+1 |I(t)] = E∗[S̃t |I(t)] (2.1)

=⇒ E[exp

(
µ∗ [J(t)] +

σ∗2 [J(t)]

2

)
|I(t)] = 1.

We must also acknowledge that, with a general equilibrium perspective, the interest rate process

rf,t itself should be impacted by the broadening of the available information set from I(t) to J(t).

However, following the dominant tradition for option pricing on equity, we overlook the interest rate

risk and do not match the change of stock price (from St to S̃t) by a corresponding change of the

short term interest rate (see Garcia, Luger and Renault (2003) for a more comprehensive approach).

Given information J(t), option prices at time t would be conformable to the Black and Scholes

option pricing formula but with the value S̃t of the underlying stock price. Therefore, by the law

of iterated expectations, we see that the actual option price when only information I(t) is available
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is

Ct(K) = E∗[BS(t)

(
K, S̃t, σ

∗2 [J(t)]
)
|I(t)] , (2.2)

where BS(t)

(
K, S̃t, σ

∗2 [J(t)]
)

is the Black and Scholes option pricing formula for an European call

with strike price K.

It is worth noting that the conditional expectation in (2.2) is computed with respect to two sources

of randomness, namely the joint distribution of S̃t and σ∗2 [J(t)] given I(t), that is a function of

the conditional distribution of J(t) given I(t). Since this distribution does not depend on past

and current returns (our maintained assumption), the option price Ct(K) is, like the BS price

BS(t)

(
K, S̃t, σ

∗2 [J(t)]
)

, a function of the pair (St,K) that is homogeneous of degree one. As a

result, the associated BS implied volatility σimp,t(K), defined by:

BS(t) (K,St, σimp,t(K)) = E∗[BS(t)

(
K,St, σ

∗2 [J(t)]
)
|I(t)] ,

depends on (St,K) only through the moneyness (K/St), or equivalently through the net log-

moneyness:

xt(K) = log (K/St)− rf,t.

Note that (see Garcia and Renault (1998)) this homogeneity property is deduced from the above

assumption of exogeneity of volatility and would not hold in the case of GARCH option pricing. In

any case, the non-linearity of the Black-Scholes pricing formula will in general imply that σimp,t(K)

does depend on the strike price K (or on the moneyness xt(K)), leading to a non-flat volatility

smile. The following Proposition 2.1. is an immediate corollary of a general result proved in Renault

(1997):

Proposition 2.1.:

We have S̃t ≡ St (almost surely) if and only if µ∗ [J(t)]+
(
σ∗2 [J(t)] /2

)
belongs to the information

set I(t) and in this case the volatility smile, depicting implied volatilities σimp,t(K) as functions of

the log-moneyness [log (K/St)− rf,t] :

BS(t) (K,St, σimp,t(K)) = E∗[BS(t)

(
K,St, σ

∗2 [J(t)]
)
|I(t)]

is an even function, minimum at zero log-moneyness (at the money option).

It is worth realizing that the condition S̃t ≡ St is not only sufficient for a symmetric volatility

smile but also necessary in very general circumstances. To see that, it is worth contemplating a

ratio
(
S̃t/St

)
that is log-linear w.r.t. some strictly increasing function of σ∗2 [J(t)], so that we can

prove the following result:
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Proposition 2.2.:

Assume that we have a parametric model

µ∗ [J(t)] +
1

2
σ∗2 [J(t)] = A [λ, J(t)] , λ ∈ Rp

with:

A [λ, J(t)] = λ1Z̃(t) + Ã
[
λ)1(, J(t)

]
λ =

(
λ1, λ

′
)1(

)′
, Ã [0, J(t)] = 0

and:

Z̃(t) = h
[
σ∗2 [J(t)] , I(t)

]
where the deterministic function σ2 −→ h

[
σ2, I(t)

]
is strictly increasing and:

V ar[σ∗2 [J(t)] |I(t)] > 0.

Then for any out-of-the money option:

log

[
K

S(t)

]
> rf,t =⇒ ∂Ct(K)

∂λ1
(λ = 0) > 0.

In other words, for all out-of-the money options, the option price is an increasing function of the

slope coefficient λ1. Moreover, the proof of Proposition 2.2. shows that the more out of the money

the option is, the steeper is the slope of the option price as a function of λ1. Thus, we can state that

a non-zero λ1 will distort the benchmark U-shape symmetric volatility smile that we get for λ = 0.

With obvious notations, assuming to simplify that Z̃t (and λ) is unidimensional:

σimp,t(K) = BS−1
[
Ct(K)(λ=0) + λ

∂Ct(K)

∂λ
(λ = 0) + o(λ)

]
.

Increasing the moneyness (in the direction of out-of-the-money options) will amplify the impact

of a non-zero λ, producing a skewed volatility smile. It is worth noting that this skewed smile is

an illustration of a general phenomenon; as explained by Renault and Touzi (1996) and Renault

(1997), a non-zero leverage effect is the cause of a skewed smile, while a symmetric smile is obtained

in the case of no-leverage. The latent variable Z̃t that enters the first two conditional moments and

is not observed yet at time t accommodates a discrete time version of the instantaneous correlation

between return and volatility that characterizes leverage effect. In this respect, it may be said that

the occurrence of leverage effect is identified by the occurrence of a skewed volatility smile. With a

negative correlation (as well documented for leverage effect), and thus a negative factor loading λ,
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one may expect that the volatility smile will be less steeply increasing (or even eventually decreasing)

on the out-of-the-money side. This is in accordance with some well-documented stylized facts (see

also our empirical section below).

3 Statistical identification of risk premium parameters

We have proved in Section 2 that a non-flat volatility smile takes a latent state variable and that

the skew of this smile identifies the presence of leverage effect in a general conditionally log-normal

risk-neutral model. The purpose of this Section 3 is to further characterize the information content

of a skewed volatility smile. We will argue that by contrast with a common belief, risk premium

parameters on latent volatility risk may be identified without resorting to option prices data, that is

using only times series of the underlying asset returns. It is precisely when leverage effect is present,

that is when the volatility smile is skewed, this identification is possible.

3.1 An exponentially affine pricing kernel

Identification of risk-neutral parameters based only on historical data on underlying asset returns

takes a bridge between risk-neutral and historical parameters, that is a pricing kernel. This pricing

kernel will define the compensation for the different sources of risk. To keep it simple, we assume that

the information I(t) available to all investors at time t consists of only the past and present values

r (τ) , τ ≤ t, of underlying asset return, while only one latent process characterizes the difference

between the investor information and the complete, partly latent, information set J(t). Following

the discussion in Section 2, it is natural to denote this additional stochastic process σ2
t+1 and dub

it a volatility factor, even though its exact connection with the stochastic volatility of asset return

will be characterized later. For sake of clarity, we will use the following notations:

J(t) = Iσ(t) = I(t) ∨
{
σ2
t+1

}
.

The rationale for these notations is twofold: First, since the volatility factor is still latent at time

t for investors, but eventually observed by them at time (t + 1), it is natural to index by (t + 1)

the random element σ2
t+1 that makes the difference between J(t) and I(t). Second, to stress that

this difference is encapsulated in the volatility factor, we replace the notation J(t) for the complete

information set by Iσ(t).

We are then led to define a stochastic discount factor Mt+1(ς) that depends on two risk premium

parameters ς1 and ς2 that define respectively the risk compensation for the random elements σ2
t+1 and
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rt+1. As commonly done in the literature, we will then consider an exponentially affine SDF:

Mt+1(ς) = exp(−rf,t)M0,t(ς) exp
[
−ς1σ2

t+1 − ς2rt+1

]
ς = (ς1, ς2) ,M0,t(ς) ∈ I(t).

The pricing of a riskless payoff imposes the no-arbitrage restriction:

E[exp
(
−ς1σ2

t+1 − ς2rt+1

)
|I(t)] = [M0,t(ς)]

−1
. (3.1)

This restriction shows that the specification of such a pricing kernel for any possible value of the

risk premium parameters (ς1, ς2) amounts to specify the joint historical conditional probability dis-

tribution (through the conditional Laplace transform) of
(
σ2
t+1, rt+1

)
given I(t). To complete this

specification, we must specify this function by taking into account the following remarks:

First, if we maintain the assumption of exogeneity of volatility, not only for the risk-neutral

distribution but also for the historical distribution, we see that [M0,t(ς)] should depend on I(t) only

through the past and current values σ2
τ , τ ≤ t, of the volatility factor.

Second, we remain true to the common practice to assume that the state variable process is

Markov of order one. Otherwise, one would consider a higher dimensional state variable process.

Then, [M0,t(ς)] should depend on I(t) only through the value of σ2
t .

Third, if we remain true to the exponential point of view, we will specify [M0,t(ς)] as:

M0,t(ς) = exp
[
l (ς)σ2

t + g (ς)
]
.

We end up with the following exponentially affine SDF:

Mt+1(ς) = exp(−rf,t) exp
[
l (ς)σ2

t + g (ς)
]

exp
[
−ς1σ2

t+1 − ς2rt+1

]
, (3.2)

and the CAR historical model:

E[exp
(
−uσ2

t+1 − vrt+1

)
|I(t)] = exp

[
−l (u, v)σ2

t − g (u, v)
]
. (3.3)

3.2 The CAR risk-neutral model

It is worth stressing that the simple fact that we consider an exponential affine pricing kernel

with one state variable (in addition to the asset return), jointly with the assumption of exogeneity

and Markovianity of the state variable process, has led us naturally to a CAR historical model.

We are going to show in this subsection that it also necessarily leads to a CAR risk-neutral model

that must stay in the same model class. When going from the physical to the risk neutral measure
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(and vice versa) one is constrained to remain in the same parametric family, irrespective of our

preferred parametric model. The general message is that our structural point of view limits the

allowed flexibility for an empirical specification. For instance, even though Feunou and Tedongap

(2012) study a discrete time model of leverage effect germane to ours, their affine specification with

leverage cannot work simultaneously for the historical and the risk-neutral distribution, so that their

empirical specification is at odds with our structural specification.

The necessary coherency condition between the risk-neutral and the historical model is described

by the following result.

Proposition 3.1.:

(i) The risk-neutral joint distribution of
(
σ2
t+1, rt+1

)
is given by the CAR model:

E∗[exp
(
−uσ2

t+1 − vrt+1

)
|I(t)] = exp

[
−l∗ (u, v)σ2

t − g∗ (u, v)
]
,

where:

l∗ (u, v) = l (u+ ς1, v + ς2)− l (ς1, ς2) .

(ii) If the conditional mean µ∗ [Iσ(t)] and the conditional variance σ∗2 [Iσ(t)] are both affine

functions of σ2
t+1 and σ2

t , there exist quadratic functions α∗(·), β∗(·) and γ∗(·) such that:

l∗ (u, v) = a∗ [u+ α∗(v)] + β∗(v)

g∗ (u, v) = b∗ [u+ α∗(v)] + γ∗(v),

with:

a∗(u) = l∗ (u, 0) ; b∗(u) = g∗ (u, 0) .

Then the joint distribution of
(
σ2
t+1, rt+1

)
can be factorized along the two following univariate CAR

models:

E∗[exp
(
−uσ2

t+1

)
|I(t)] = exp

[
−a∗ (u)σ2

t − b∗ (u)
]
,

E∗[exp (−vrt+1) |Iσ(t)] = exp
[
−α∗ (v)σ2

t+1 − β∗ (v)σ2
t − γ∗ (v)

]
.

Several remarks are in order:

First, the assumption that both conditional mean µ∗ [Iσ(t)] and conditional variance σ∗2 [Iσ(t)]

are affine functions of σ2
t+1 and σ2

t is just a reinforcement of the assumption already maintained in

Proposition 2.2. about the combined quantity
[
µ∗ [Iσ(t)] + 1

2σ
∗2 [Iσ(t)]

]
,

12



Second, the marginal CAR model for rt+1 given Iσ(t) implies:

µ∗ [Iσ(t)] = α∗′(0)σ2
t+1 + β∗′(0)σ2

t + γ∗′(0),

σ∗2 [Iσ(t)] = −α∗′′(0)σ2
t+1 − β∗′′(0)σ2

t − γ∗′′(0),

E∗[exp (rt+1) |Iσ(t)] = exp
[
−α∗ (−1)σ2

t+1 − β∗ (−1)σ2
t − γ∗ (−1)

]
,

Third, since α∗(·), β∗(·), and γ∗(·) are quadratic functions, they all fulfil the following iden-

tity:

$(−1) =
$′′(0)

2
−$′(0), $(.) ∈ {α∗(·), β∗(·), γ∗(·)} .

The following corollary is then straightforward.

Corollary 3.2.:

The condition of symmetry of the volatility smile (dubbed ”absence of leverage effect”) can be

written equivalently as:

(i) µ∗ [Iσ(t)] + σ∗2[Iσ(t)]
2 belongs to the information set I(t)

(ii) E∗[exp (rt+1) |Iσ(t)] does not depend on σ2
t+1

(iii) We have:

α∗ (−1) = 0

(
=
α∗′′(0)

2
− α∗′(0)

)
.

Note that Corollary 3.2. allows us to reconcile two common views about what characterizes the

absence of leverage effect:

On the one hand, it is tantamount to symmetry of the volatility smile,

On the other hand, it means that the risk-neutral optimal forecast of the next asset return:

exp (rt+1) = exp(−rf,t)
St+1

St

cannot be improved by the knowledge of the contemporaneous volatility factor σt+1. By contrast,

leverage effect would be encapsulated in a positive coefficient α∗ (−1), meaning that the asset return

rt+1 and the volatility factor σ2
t+1 are negatively correlated given I(t). Note, however, that the

risk-neutral distribution must, by definition fulfil the following price identity (risk-neutral pricing of

the underlying asset):

E∗[exp (rt+1) |I(t)] = 1.

From the above formulas we deduce the following.

Corollary 3.3.:

The risk-neutral pricing of the underlying asset is tantamount to the following constraints on the
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marginal risk-neutral distributions:

a∗ [α∗(−1)] + β∗(−1) = 0,

b∗ [α∗(−1)] + γ∗(−1) = 0.

It is worth noticing that these constraints involve the volatility dynamics, that are the func-

tions a∗(·) and b∗(·) only if there is leverage effect (α∗(−1) 6= 0). Otherwise, these constraints are

tantamount to the following equalities:

α∗(−1) = β∗(−1) = γ∗(−1) = 0.

This remark will have important implications for statistical identification of risk premium parameters

from data on the underlying asset price.

3.3 Identification of risk premium parameters

Identification of risk premium parameters must be based on the CAR historical model (3.3). It is

worth noting that this model is endowed with a structure similar to the structure of the risk-neutral

model emphasized in Proposition 3.1.(ii). More precisely, we can show:

Proposition 3.2.:

If the conditional mean µ∗ [Iσ(t)] and the conditional variance σ∗2 [Iσ(t)] are both affine functions

of σ2
t+1 and σ2

t , there exist quadratic functions α(·), β(·) and γ(·) such that:

l (u, v) = a [u+ α(v)] + β(v)

g (u, v) = b [u+ α(v)] + γ(v),

with:

α(v) = α∗ (v − ς2)− α∗(−ς2)

β(v) = β∗ (v − ς2)− β∗(−ς2)

γ(v) = γ∗ (v − ς2)− γ∗(−ς2),

while:

a(u) = l (u, 0) =⇒ a∗(u) = a (u+ ς1 + α (ς2))− a (ς1 + α (ς2))

b(u) = g (u, 0) =⇒ b∗(u) = b (u+ ς1 + α (ς2))− b (ς1 + α (ς2)) .
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Then the joint historical distribution of
(
σ2
t+1, rt+1

)
can be factorized along the two following uni-

variate CAR models:

E[exp
(
−uσ2

t+1

)
|I(t)] = exp

[
−a (u)σ2

t − b (u)
]

E[exp (−vrt+1) |Iσ(t)] = exp
[
−α (v)σ2

t+1 − β (v)σ2
t − γ (v)

]
.

Then, time series data on the underlying asset return rt+1 should allow us to consistently estimate

the functions α(·), β(·), γ(·), a(·) and b(·). This may in some cases allow to identify the risk premium

parameters ς1 and ς2 insofar as arbitrage pricing relationships draw a connection with the time series

characteristics α(·), β(·), γ(·), a(·) and b(·). We set the focus in this section on the case where the

underlying stock price is the only relevant observation, so that the only available arbitrage pricing

relationships correspond to Corollary 3.3.:

a∗ [α∗(−1)] + β∗(−1) = 0 (3.4)

b∗ [α∗(−1)] + γ∗(−1) = 0

We are then led to consider two cases:

1st case: No leverage effect: α∗(−1) = 0

In this case, the two arbitrage pricing relationships (3.4) are tantamount to:

β∗(−1) = γ∗(−1) = 0.

In terms of the historical characteristics that can be estimated from the underlying asset price we

end up with the equations:

α∗(−1) = 0⇐⇒ α (ς2) = α (ς2 − 1) (3.5)

β∗(−1) = 0⇐⇒ β (ς2) = β (ς2 − 1)

γ∗(−1) = 0⇐⇒ γ (ς2) = γ (ς2 − 1) .

Two remarks are in order:

First, when there is no leverage effect, only the risk premium parameter ς2 is possibly identified

from historical data on the underlying asset price. It would take option price data to identify the

other risk premium parameter ς1. Not surprisingly, the risk premium attached to the volatility

risk σ2
t+1 through the definition of the SDF Mt+1(ς1, ς2) is not identified from observations on the

underlying asset price.

Second, the set of constraints (3.5) implies that the quadratic functions α(·), β(·), γ(·) must be
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either of degree 2, or constant, but not linear.

2nd case: Presence of leverage effect α∗(−1) 6= 0

Then, statistical identification of the two risk premium parameters may be achieved from the two

arbitrage pricing relationships (3.4) that can be rewritten:

a [ς1 + α (ς2 − 1)]− a [ς1 + α (ς2)] = β (ς2)− β (ς2 − 1)

b [ς1 + α (ς2 − 1)]− b [ς1 + α (ς2)] = γ (ς2)− γ (ς2 − 1) .

Two remarks are in order.

First, contrary to a common belief, both risk premium parameters ς1 and ς2 may be identified

through these equations. In other words, historical data on the underlying asset that would allow to

consistently estimate the functions α(·), β(·), γ(·), a(·) and b(·) would in turn deliver identification

of both parameters ς1 and ς2.

Second, not surprisingly, the strength of identification of the volatility risk premium parameter

ς1 is tightly related to the strength of leverage effect as characterized by the amplitude of the

difference:

α (ς2 − 1)− α (ς2) = α∗(−1).

However, it is worth noting that this difference would be more or less enhanced, depending on

the slope of the functions a(·) and b(·) that define the volatility factors dynamics. Admitting that

these slopes are properly assessed by their values at 0, we can interpret them from the moment

functions:

E[σ2
t+1 |I(t)] = a′(0)σ2

t + b′(0) (3.6)

V ar[σ2
t+1 |I(t)] = −a′′(0)σ2

t − b′′(0)

E
[
σ2
t+1

]
=

b′(0)

1− a′(o)
.

Not surprisingly, the identification power of leverage effect about the volatility risk parameter ς1 is

enhanced by a large volatility persistence a′(0) (0 ≤ a′(0) < 1) and a large unconditional level of

the volatility factor through large values of both a′(0) and b′(0).

4 Statistical Interpretation of Leverage Effect

Besides the exogeneity of the volatility factor and the affine structure of the conditional distribu-

tions (with conditional normality of returns given the path of the latent volatility factor), we have

maintained no restrictive assumptions yet. Our main focus of interest on leverage effect and the need
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to identify it from return data will lead us in this section to introduce some constraints between the

parameters of the functions α(·), β(·), γ(·), a(·) and b(·) that define the joint distribution of return

and volatility factor. These constraints could be relaxed at the cost of a less straightforward inter-

pretation of the parameterization of leverage effect. Before discussing the well suited constraints, it

is worth disentangling genuine leverage effect from volatility feedback.

4.1 Leverage effect vs volatility feedback

As already mentioned, leverage effect is generally understood as an instantaneous correlation

(given I(t)) between asset return and its volatility factor. Our historical model actually says that

the knowledge of σ2
t+1 would possibly allow to improve the forecast of the contemporaneous asset

return through the following conditional expectation formula:

E[exp (rt+1) |Iσ(t)] = exp
[
−α (−1)σ2

t+1 − β (−1)σ2
t − γ (−1)

]
.

In other words, the impact of σ2
t+1 on the optimal forecast of exp (rt+1) is encapsulated in the

number:

α (−1) =
α′′(0)

2
− α′(0).

It is worth realizing that this quantity does not exactly correspond to the leverage effect as

quantified in the previous section by:

Lev = −α∗ (−1) = −α
∗′′(0)

2
+ α∗′(0) < 0

with:

α(v) = α∗ (v − ς2)− α∗(−ς2)

=⇒ α′(v) = α∗′(v − ς2), α′′(v) = α∗′′(v − ς2)

so that, by taking into account that the functions α and α∗ are quadratic:

Lev = −α
∗′′(0)

2
+ α∗′(0) = −α

′′(0)

2
+ α′(ς2) = −α

′′(0)

2
+ α′(0) + α′′(0)ς2. (4.1)

Note that, according to Corollary 3.2., we define the measure Lev of leverage effect as a negative

quantity corresponding to the idea of negative risk-neutral correlation between return and volatility.

Then, (4.1) shows that this negative quantity actually encapsulates two effects:

Lev = −α (−1) + α′′(0)ς2. (4.2)
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On the one hand, the negative coefficient [−α(−1)] of σ2
t+1 in the optimal forecast of the return

exp (rt+1) ,

On the other hand, since leverage effect also reduces the variance of return rt+1 by adding the

negative quantity α′′(0)σ2
t+1, the corresponding risk compensation [−α′′(0)ς2] must be subtracted

to capture the total leverage effect.

This correction term confirms a well-known difficulty with leverage effect assessment in discrete

time. As argued by Bollerslev et al. (2006), it is hardly possible in discrete time to disentangle

leverage effect and volatility feedback. This difficulty is confirmed by identity (4.2) that shows that

the negative number [−α (−1)] encapsulates the sum of two effects. If we multiply both sides of

equality (4.2) by the current volatility factor σ2
t+1, we actually see that the total value includes:

Not only the negative number (Lev)σ2
t+1 whose absolute value measures the amplitude of leverage

effect,

But also the positive number [−α′′(0)ς2]σ2
t+1 that measures the amplitude of volatility feedback

effect, as defined by the risk premium parameter ς2 for risk on return multiplied by the additional

variance of return produced by σ2
t+1 :

E[rt+1 |Iσ(t)] = α′(0)σ2
t+1 + β′(0)σ2

t + γ′(0)

V ar[rt+1 |Iσ(t)] = −α′′(0)σ2
t+1 − β′′(0)σ2

t − γ′′(0).

4.2 Variance, correlation and leverage

The above formula suggests to introduce an alternative volatility factor more directly related to

the conditional variance of asset returns. By defining:

σ̃2
t+1 = σ2

t+1 +
β′′(0)σ2

t + γ′′(0)

α′′(0)
,

we have:

V ar[rt+1 |Iσ(t)] = −α′′(0)σ̃2
t+1.

While the initial volatility factor is by definition a Markov process of order 1, the conditional

variance of rt+1 is proportional to σ̃2
t+1 which will be an ARMA(1,1) process. In this respect, we

expect to be able to connect the volatility factor with the realized variance of returns between t and

t+ 1. The observable conditional variance of return is:

V ar[rt+1 |I(t)] = V ar{E[rt+1 |Iσ(t)] |I(t)}+ E{V ar[rt+1 |Iσ(t)] |I(t)}

= [α′(0)]
2
V ar{σ2

t+1 |I(t)} − α′′(0)E{σ̃2
t+1 |I(t)}

= V ar{σ2
t+1 |I(t)}

{
[α′(0)]

2 − α′′(0)k2t

}
,
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with:

k2t =
E{σ̃2

t+1 |I(t)}
V ar{σ2

t+1 |I(t)}
=

E{σ̃2
t+1 |I(t)}

V ar{σ̃2
t+1 |I(t)}

. (4.3)

The conditional covariance of return with the volatility factor is:

Cov[rt+1, σ
2
t+1 |I(t)] = Cov{E[rt+1 |Iσ(t)] , σ2

t+1 |I(t)}

= Cov{α′(0)σ2
t+1, σ

2
t+1 |I(t)} = α′(0)V ar{σ2

t+1 |I(t)} .

Leverage effect must be related to the conditional correlation between return and volatility fac-

tor:

Corr[rt+1, σ
2
t+1 |I(t)] =

α′(0){
[α′(0)]

2 − α′′(0)k2t

}1/2
. (4.4)

This formula nicely confirms the intuition relating leverage effect and conditional correlation

between return and volatility factor. As seen in (4.1), leverage effect involves a combination of two

effects:

On the one hand, the parameter α′(0) encapsulates the impact of the knowledge of σ2
t+1 on the

optimal forecast of rt+1,

On the other hand, the parameter α′′(0) displays how much return variance reduction is allowed

by the knowledge of σ2
t+1.

When these two parameters are combined, it is natural to use the weight:

k2t =
E{σ̃2

t+1 |I(t)}
V ar{σ̃2

t+1 |I(t)}

to transform variance units into expectation units. However, this weight may introduce some ran-

dom time variation in the conditional correlation between return and volatility factor. Following a

common practice in the option pricing literature, we rather want to assume that this correlation is

constant, which is tantamount to assuming that the volatility dynamics is such that:

Assumption (1st assumption about leverage): There exists a constant k > 0 such that:

E{σ̃2
t+1 |I(t)} = k2V ar{σ̃2

t+1 |I(t)} .

Note that by definition:

k2 =
E
[
σ̃2
t+1

]
E
[
V ar{σ̃2

t+1 |I(t)}
] .

Note that this first assumption about leverage is not overly restrictive in the context of an affine

model, where both the conditional mean and the conditional variance are affine functions of the
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volatility factor. By using (3.6), straightforward computations show that the above assumption is

tantamount to the following constraint between the parameters of the historical distribution:

1

a′′(0)

[
a′(0) +

β′′(0)

α′′(0)

]
=

1

b′′(0)

[
b′(0) +

γ′′(0)

α′′(0)

]
.

We will be even more specific by assuming that the two leverage parameters α′(0) and α′′(0) are

related as follows:

Assumption (2nd assumption about leverage):

[α′(0)]
2 − α′′(0)k2 = k2.

Thanks to these two assumptions, we end up with a nice parameterization of leverage effect by

defining:

φ = Corr[rt+1, σ
2
t+1 |I(t)] =

α′(0)

k
∈ [0, 1].

In other words, the two above assumptions about leverage allow us to characterize leverage through

the parameter φ of conditional correlation between return and its volatility factor. In particular, for

a given weight k, φ characterizes the two leverage parameters α′(0) and α′′(0):

α′(0) = kφ

−α′′(0) = 1− [α′(0)]
2

k2
= 1− φ2 ≥ 0.

The distorted assessment of leverage effect from historical data as documented by (4.1) and (4.2)

can be revisited with this reparameterization:

Lev = kφ−
(
1− φ2

)(
ς2 −

1

2

)
.

While the conditional correlation parameter φ, when weighted by k, encapsulates the statistical

notion of leverage, we must subtract the term
(
1− φ2

)
ς2 and add the term 1−φ2

2 to get the exact

measure of leverage. While the latter term can be interpreted as a correction for a Jensen effect,

the subtraction of (1 − φ2)ς2 makes leverage even more negative to compensate for perverse effect

of volatility feedback.

With our parameterization, we can then rewrite the option pricing formula (2.2) as:

Ct(K) = E∗[BS(t)

(
K, S̃t(φ),

(
1− φ2

)
σ̃2
t+1

)
|I(t)] (4.5)

S̃t(φ) = St
exp

(
kφσ2

t+1

)
E[exp

(
kφσ2

t+1

)
|I(t)]

.
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Formula (4.5) revisits in discrete time a formula first shown by Romano and Touzi (1997) (see also

Garcia, Ghysels, and Renault (2010)). The leverage effect parameter φ plays a double role in the

option pricing formula.

On one hand, the underlying asset price is distorted (from St to S̃t(φ)) by the factor exp
(
kφσ2

t+1

)
divided by its conditional mean. On the other hand, only the share

(
1− φ2

)
σ̃2
t+1 of volatility σ̃2

t+1

matters for option pricing. The rationale is that conditioning by the volatility path reduces the

variance of return by the factor φ2.

The computation of the derivative of the option price and the argument for its positivity for

out-of-the-money options is then similar to Proposition 2.2.:

xt(K) > 0 =⇒ ∂Ct(K)

∂φ
(φ = 0) > 0.

Again, we can claim that with a negative leverage effect coefficient φ, one may expect that the

volatility smile will be less steeply increasing on the out-of-the-money side. Figure 4 in Appendix

presents the shapes of volatility smiles from our SV model for different values of φ (thus, different

levels of leverage effect). As we can see, our SV model produces a symmetric volatility smile when

there exists no leverage effect (i.e., φ = 0) with the implied volatility minimized at the money, and

symmetry starts to be distorted as the leverage effect increases.

4.3 A fully parametric model

As already announced, the conditional distribution of rt+1 given Iσ(t) is assumed to be Gaussian,

and thus the functions α(·), β(·) and γ(·) that define this conditional distribution are quadratic

functions, nil at u = 0, thus characterized by the values of α′(0), α′′(0), β′(0), β′′(0), γ′(0) and γ′′(0).

These six numbers are characterized by parameters that, as previously explained, must also be

related to the parameters of volatility dynamics.

4.3.1 Volatility dynamics

As far as volatility dynamics are concerned, we specify a discrete time model inspired by Heston

(1993)’s continuous time model. Following Gourieroux and Jasiak (2006), we consider the simplest

version where transition dynamics are driven by gamma distributions as in Heston (1993) model and

its precursor Feller (1951)’s square root process. Extensions with mixture components to capture

the tail effects of continuous time jumps are beyond the scope of this paper. We use more precisely

the ARG(1) model defined by Gourieroux and Jasiak (2006) as follows:

(i) The conditional distribution of σ2
t+1 given some mixing variable Ut is gamma with a shape

parameter (δ + Ut) and a scale parameter c,

(ii) The conditional distribution of Ut given σ2
t is Poisson with parameter %σ2

t /c.
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We easily verify that this parametric model is nested in the general affine model defined with

functions a(·) and b(·) as in Section 3.3., with the specification:

a(u) =
ρu

1 + cu
, b(u) = δ log (1 + cu) .

Then:

E[σ2
t+1 |I(t)] = b′(0) + a′(0)σ2

t = δc+ ρσ2
t

V ar[σ2
t+1 |I(t)] = −b′′(0)− a′′(0)σ2

t = δc2 + 2ρcσ2
t

E[σ2
t+1] =

b′(0)

1− a′(0)
=

δc

1− ρ
.

In summary, volatility dynamics is defined by a 3-dimensional vector:

θσ = (ρ, δ, c)
′
.

Note that while the sequence of returns t = 1, 2, · · · , T , can be seen daily, the volatility factor σ is

latent. We want to take advantage of observations of daily realized variances RVt, t = 1, 2, · · · , T for

the identification of this volatility factor. But, in order to do so, we need to completely characterize

the conditional distribution of returns.

4.3.2 Return dynamics

The return process conditioning on latent volatility factor is Gaussian:

rt+1|Iσ(t) ∼ N (E [rt+1|Iσ(t)] , V ar [rt+1|Iσ(t)]) ,

with the following two conditional moments:

E [rt+1|Iσ(t)] = α′(0)σ2
t+1 + β′(0)σ2

t + γ′(0)

V ar [rt+1|Iσ(t)] = −α′′(0)σ2
t+1 − β′′(0)σ2

t − γ′′(0) = (1− φ2)σ̃2
t+1.

So far, we have parameterized the function α(·) only by characterizing the two leverage parameters

α′(0) and α′′(0) with φ given the weight k. In this section, we provide the parametric model for the

return dynamics by completing the parameterization of k, β′(0), β′′(0), γ′(0) and γ′′(0). Through

the previous sections, we developed the identification schemes for the volatility risk premium ς1 and

the leverage effect. As we have seen, they involve some constraints among the historical parameters

of returns and volatility that we must take into account.

We first set our focus on the restriction for the constant leverage effect. It is imposed by the first
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assumption about leverage, which is equivalent to imposing a constraint between β′′(0) and γ′′(0).

See that, with our parametric model of the volatility, the constraint given in Section 4.2 can be

written as:

1

2ρc

[
ρ+

β′′(0)

α′′(0)

]
=

1

δc2

[
δc+

γ′′(0)

α′′(0)

]
,

which shows that β′′(0) and γ′′(0) are determined by each other given the other parameters. Let us

define new parameters e and f as:

e =
β′′(0)

ρ(1− φ2)
and f =

γ′′(0)

δc(1− φ2)
.

Then, by rearranging the above constraint we see that f is written in terms of e such that:

γ′′(0) =
1

2

[
1 +

β′′(0)

ρ(1− φ2)

]
δc(1− φ2) ⇐⇒ f =

(1 + e)

2
.

With this, we can now provide the specification of the weight k in terms of the historical parame-

ters:

k2 =
1− e

2c
,

and rewrite the alternative volatility factor σ̃2
t+1 as:

σ̃2
t+1 = σ2

t+1 − eρσ2
t − fδc.

Now it takes the parameterization of the two numbers β′(0) and γ′(0) for the complete param-

eterization of the return dynamics. These two quantities are parameterized through the conditions

for the statistical identification of the volatility risk premium parameter ς1 provided by Corollary

3.3. From them (see the rewritten conditions), we get:

β′(0) = a [ς1 + α(ς2 − 1)]− a [ς1 + α(ς2)]− β′′(0)

(
ς2 −

1

2

)
γ′(0) = b [ς1 + α(ς2 − 1)]− b [ς1 + α(ς2)]− γ′′(0)

(
ς2 −

1

2

)
,

since:

ω̄(ς2)− ω̄(ς2 − 1) = ω̄′(0) + ω̄′′(0)

(
ς2 −

1

2

)
, ω̄ ∈ {β(·), γ(·)}.

Even though the volatility risk premium parameter ς1 is theoretically overidentified by these two

equations, our experience is that it is actually hard to estimate with data only on the underlying
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asset return and its realized volatility. Option data are definitely much more informative about this

volatility risk parameter. However, we will call return parameters the parameters θr identified by

return data, given the three volatility parameters θσ :

θr = (φ, e, ς1, ς2)
′

θσ = (ρ, δ, c)
′
.

4.3.3 Comparison to continuous-time affine models

As we show in Appendix C, our parametric model has the Heston (1993) model as its continuous

time limit. In addition, the general version of our affine model can be considered as the discrete time

extension of the continuous time affine models that are affine diffusion models (AD). In this section,

we briefly discuss the benefits and costs of modeling in discrete time rather than in continuous

time.

Both our model and AD compute the derivative prices in semi-closed form. However, discrete

time models have a more degree of freedom to reproduce the higher order moments of returns such

as negative skewness than AD since AD assumes the conditional normality of returns, up to jumps,

which are the only degrees of freedom for higher order moments. On the other hand, discrete time

models are not restricted to assume conditional normality. In fact, the third conditional moment of

the returns of our model is expressed as

st = E
[
(rt+1 − µt)3|I(t)

]
= 3(1− φ2)kφV ar{σ2

t+1 |I(t)}+ 3(kφ)3E{(σ2
t+1 − E[σ2

t+1|I(t)])3 |I(t)}

= 3(1− φ2)kφ(2ρcσ2
t + δc2) + 3(kφ)3(6ρc2σ2

t + 2δc3)

= k1σ
2
t + k2,

where k1 = 6kφρc((1 − φ2) + 3(kφ)2c) and k2 = 3kφδc2((1 − φ2) + 2(kφ)2c). The time varying

skewness is allowed unless φ = 0, i.e. no leverage effect.

However, as already discussed, it is hard to distinguish the leverage effect from volatility feedback

effect in discrete time and we leave room for a mixture of these two effects. While continuous

time modeling characterizes the leverage effect as an instantaneous correlation between returns and

volatility, the leverage effect is time-varying in nature and we have to impose a constraint on the

parameters in order to have it as a time-invariant constant (see Section 4.2) to see its effect on the

shape of volatility smile.
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5 Estimation methodology

5.1 Estimation procedure

5.1.1 Identification of the volatility factor

We develop in this section a stochastic volatility (SV) extension of the HEAVY-GARCH model

previously proposed by Shephard and Sheppard (2010). While the sequence of returns t = 1, 2, ..., T,

can be seen as daily, we want to take also advantage of observations of daily realized variances

RVt, t = 1, 2, ..., T . Strictly speaking, the availability of these observations means that the in-

formation sets contain intraday return data through observation of say n underlying asset prices

St+i/n,i = 1, 2, ..., n per day. For convenience, we will not change the notations for the information

sets I(t) and Iσ(t), assuming that the availability of additional intraday data does not modify the

conditional distributions we have described in the previous sections. Inspired by the GARCH(1,1)

model, Shephard and Sheppard (2010) have proposed the following model:

µt = E[RVt+1 |I(t)]

µt = ωR + αRRVt + βRµt−1.

Similarly to the analysis led in Meddahi and Renault (2004), we note that this GARCH-type model

is a particular case of a SV-type model defined by the AR(1) dynamics of µt = E[RVt+1 |I(t)] :

µt = ωR + (αR + βR)µt−1 + νt, E[νt |I(t− 1)] = 0.

In all cases the process RVt is ARMA(1,1):

ηt+1 = RVt+1 − µt

=⇒ (RVt+1 − ηt+1) = ωR + (αR + βR) (RVt − ηt) + νt

=⇒ RVt+1 = ωR + (αR + βR)RVt − (αR + βR)ηt + ηt+1 + νt

E[−(αR + βR)ηt + ηt+1 + νt |I(t− 1)] = 0.

However, in the general case the innovation process of this ARMA(1,1) is spanned by two not

perfectly correlated processes η and ν, while in the GARCH-type model νt and thus also µt are

deterministic functions of past and present values of RVτ , τ ≤ t, or equivalently of ητ , τ ≤ t. This

dimension two means that µt is a genuinely latent AR(1) process that may be well suited for the

identification of the space spanned by our stochastic volatility factor σ2
t . We know from Section 2

that this genuine latency of σ2
t is needed for our purpose. Then, we end up with two latent AR(1)

processes µt and σ2
t for which we may expect that they are related by an exact affine relationship.
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This will be implied by our model specification.

More precisely, we follow the logic of the introduction of the ARMA(1,1) process σ̃2
t in the former

section to assume that a similar relationship ties the ARMA(1,1) process RVt with the state variable

process sigma:

RVt+1 = σ2
t+1 −Bσ2

t −D. (5.1)

Several remarks are in order.

First, we choose a unit coefficient for σ2
t+1 in formula (5.1). This can be assumed without loss of

generality since the latent volatility factor is obviously defined up to an arbitrary scaling factor, and

a unit coefficient is consistent with the previous definition of σ̃2
t . Note that since the latent factor

σ2
t is by definition conformable to the AR(1) dynamics:

E[σ2
t |I(t)] = ω + ρσ2

t−1,

we get as already announced an affine relationship between µt and σ2
t :

µt = (ρ−B)σ2
t + ω −D.

Second, we will impose the restriction:

µt = E[RVt+1 |I(t)] = V ar[rt+1 |I(t)] . (5.2)

Note that this restriction has been extensively discussed in the HEAVY-GARCH literature. Shep-

hard and Sheppard (2010) note that the conditional variance V ar[rt+1 |I(t)] is a”close-to-close”

measure while µt = E[RVt+1 |I(t)] can be interpreted as an ”open-to-close” conditional variance

of returns. For this reason, Brownlees and Gallo (2010) have proposed the additional degree of

freedom that µt and V ar[rt+1 |I(t)] would be only related by an exact affine relationship. However,

they did not find compelling empirical evidence against the identity (5.2) that will be a maintained

assumption throughout this paper.

By the assumptions about leverage provided in the subsection 4.2, the conditional variance of

returns is:

V ar[rt+1|I(t)] = E[σ̃2
t+1|I(t)]

so that the optimal forecast of σ̃2
t+1 coincides with it. Then the maintained assumption (5.2) together

with the specification of RV in (5.1) amounts to B = eρ and D = fδc so that:

RVt+1 = σ̃2
t+1 = σ2

t+1 − eρσ2
t − fδc. (5.3)
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The equality (5.3) of RVt+1 and σ̃2
t+1 gives an easy way to check the empirical validity of the first

assumption about leverage. In Appendix A, we propose an empirical assessment of this condition.

In order to get a model-free assessment, we compute fitted values of the time series E[RVt+1 |I(t)]

and V ar[RVt+1 |I(t)] that are based on the estimation of an AR(1) model for the process RVt with

ARCH(1) innovations:

RVt+1 = ωR + αRRVt + νt

νt+1 = h
1/2
t ut+1, E[ut+1 |I(t)] = 0, E[u2t+1 |I(t)] = 1

V ar[RVt+1 |I(t)] = ht = ωh + αhν
2
t .

It is important to keep in mind that this specification for the dynamics of realized variance

is not maintained throughout this paper. It is only used as a filter for computing fitted values

of E[RVt+1 |I(t)] and V ar[RVt+1 |I(t)]. Figure 5 shows that over 16 years of daily data (realized

variance of the S&P500 from January 2000 to June 2016) it is a sensible approximation to see

the time series {E[RVt+1 |I(t)] /V ar[RVt+1 |I(t)]} as a constant close to unity. The coefficient of

variation (CV) of the ratio confirms this visual assessment: CV is only 0.21 and even drops to 0.15

when we eliminate the 5% most extreme observations.

5.1.2 Two step estimation with returns and realized variance

As explained in Section 4, our discrete time version of Heston’s model is, as far as return and

volatility data are concerned, a fully parametric model characterized by two exponentially affine

conditional distributions:

(i) The conditional distribution of σ2
t+1 given σ2

t , characterized by two parameterized functions

a(·) and b(·), indexed by unknown parameters θσ = (ρ, δ, c)
′
.

(ii) The conditional distribution of rt+1 given σ2
t+1 and σ2

t , characterized by three parameterized

functions α(.), β(.) and γ(.) indexed by unknown parameters θr = (φ, e, ς1, ς2)
′
. However, these

functions are defined only for a given value of θσ.

Even though we have a parametric model where the likelihood function exists and Maximum

Likelihood Estimation (MLE) would deliver efficient estimation, the support of volatility (σ2
t+1 > 0)

depends on the unknown parameters, which make it difficult to use MLE. Then it is convenient

to use the conditional moment restrictions directly provided by the exponential affine conditional

moment generating function for a GMM strategy.

In addition, assuming |eρ| < 1 and inverting the ARMA(1,1) realized variance given in the
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previous section, we have:

σ2
t =

∞∑
k=0

(eρ)k (RVt−k + fδc) .

Then, since (eρ)k → 0 as k → ∞ by the assumption that |eρ| < 1, we can use the approxima-

tion

σ2
t ≈

H∑
k=0

(eρ)kRVt−k +
fδc

(1− eρ)
(5.4)

for some constant H.

Using this, we implement the following two-step estimation1. Seeing that the approximated

process of realized variance is characterized by θrv = (θ′σ, e)
′ = (ρ, δ, c, e)′, we fist estimate θrv using

GMM and construct

σ̂2
t =

H∑
k=0

(êρ̂)k (RVt−k) +
f̂ δ̂ĉ

1− êρ̂
.

Then, with σ̂2
t+1 as an approximated observation of the latent volatility factor, we estimate the

returns parameters φ, ς1, and ς2 by MLE for given estimates of θrv from the first step. However, the

identification of ς1 is weak from the observations of returns. We find the estimate of it too sensitive

to the initial values that we start the nonlinear estimation with. Thus, we use the options data to

identify ς1 by finding the value that minimizes the option pricing error of the model. The option

pricing error is measured by IVRMSE put forward by Renault (1997):

IV RMSE =

√√√√ 1

N

N∑
i=1

(
IV histi − IV modi

)2
,

where N denotes the number of observations, and where IV histi and IV modi denote the i-th observa-

tion of historical implied volatility and the implied volatility generated by the model, respectively.

Then, ς1 is computed by maximizing the Gaussian IV option-error likelihood defined as:

LOp = −1

2

N∑
i=1

(
log(IV RMSE2) + e2i /IV RMSE2

)
(5.5)

where ei ≡ IV histi − IV modi .

While the returns estimation is straightforward using the conditional Gaussian likelihood, the

1Note that to take into account the correction factor AV ar[σ2
t+1 |I(t)] (i.e., A 6= 0), we should have either performed

a simultaneous estimation of all parameters θσ and θr or used a convoluted iterative approach ( see e.g. Fan, Pastorello,
and Renault (2015)).
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GMM estimation with the realized variance needs some discussion about moment conditions and

weighting matrix.

5.1.3 GMM estimation with realized variance

The purpose of this subsection is to describe the first step with the observations of realized

variance. When eρ is nonzero, we can see that the realized variance is ARMA(1,1) which is not

Markov and we cannot construct the conditional characteristic function (CF) in general. Since the

joint CF is unknown in general, the simulated method of moments can be used (e.g., Carrasco,

Chernov, Florens, and Ghysels (2007)). Instead of using simulated method, we employ GMM with

moments based on the approximated CF by inverting the ARMA(1,1) realized variance to the AR(H)

process as given in (5.4).

By plugging this into the conditional CF of volatility given in Section 4.3.1, we get

E [exp (−uRVt+1) |I(t)] ≈ exp

{
−(a(u)− eρu)

(
H−1∑
k=0

(eρ)kRVt−k

)
− b(u)− (a(u)− u)

fδc

1− eρ

}

so that the realized variance process is approximately CAR(H). We construct the unconditional mo-

ment restrictions using the instrument At = exp(−a1RVt−a2RVt−1) for some (a1, a2)′ ∈ C2:

E

[
At

(
exp (−uRVt+1)− exp

{
−(a(u)− eρu)

(
H−1∑
k=0

(eρ)kRVt−k

)
− b(u)− (a(u)− u)

fδc

1− eρ

})]
≈ 0.

This choice of unconditional moments ensures the identification of the parameters of interest. A

comprehensive discussion of identification of unknown parameters from the moment conditions is

provided in Appendix D.

Let ht(τ ; θrv) denote such moments of realized variance with τ = (a1, a2, u)′. For our empirical

exercise, we use H = 10, and a1, a2, and u are each vectors of 5 equally spaced complex numbers

on an interval [1, 10]× 1i. Then the moment conditions that we exploit are

E [gt(τ ; θrv)] = E

Re {ht(τ ; θrv)}
Im {ht(τ ; θrv)}

 = 0,

where Re{a} and Im{a} are, respectively, the real and imaginary part of a complex vector a. This

gives us 5× 5× 5× 2 = 250 number of moment conditions in total.

The GMM estimator is then defined as:

θ̂rv,T = Argmin
θrv

ḡ(τ, θrv)
′Ŵ−1T ḡ(τ, θrv), (5.6)
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where ḡ(τ, θrv) = (1/T )
∑T
t=1 gt(τ ; θrv) and ŴT is a sample analog of a positive definite matrix W

s.t. ŴT
p→ W . It is already well-established that the optimal weighting matrix that leads to the

smallest asymptotic variance among the class of a GMM estimator is

W = V = E
[
gt(τ ; θ0rv)gt(τ ; θ0rv)

′] ,
and ŴT = V̂T = (1/T )

∑T
t=1 gt(τ ; θ̃rv,T )gt(τ ; θ̃rv,T )′, where θ̃rv,T is a preliminary consistent esti-

mator of the true parameter value θ0rv. In our empirical exercise, it is computed using an identity

matrix as a weighting matrix.

However, even with a small dimensional τ , ŴT , the sample analog of the optimal weighting matrix,

may not be invertible (or very close to be singular) and this can result in unstable estimation. We,

in order to ensure consistent estimation, employ the Tikhonov method of regularization introduced

by Carrasco and Florens (2000). That is, we replace V by a perturbed version of it using a tuning

parameter α > 0 such that:

W−1 = (V 2 + αI)−1V (5.7)

where I is an identity matrix2. V is an unknown population moment and hence, we use the sample

analog of W−1:

Ŵ−1T = (V̂ 2
T + αI)−1V̂T .

Then the GMM estimator is defined as (5.6) with above Ŵ−1T , the regularized optimal weighting

matrix3.

θ̂rv,T can then be shown to be consistent and asymptotically normal under some regularity con-

ditions (e.g., conditions in theorem 2.6 and theorem 3.4 in Newey and McFadden (1994)). We

have ensured that θrv is identified from the moment conditions and W−1 is nonsingular for some

user-chosen α > 0. The asymptotic distribution of θ̂rv,T is provided as following.

√
T
(
θ̂rv,T − θ0rv

)
d→ N (0, A),

A = E
[
G′W−1G

]−1
G′W−1VWGE

[
G′W−1G

]−1
,

G = E
[
Oθrvgt(τ, θ

0
rv)
]
.

Note that we do not use or propose a data dependent selection method of a tuning parameter

α that leads to the efficient estimation since it is beyond the scope of this paper. Our focus is the

2(5.7) is computed from the solution to the Ridge regression problem

Min
g
‖V g − f‖2 + α ‖g‖

for some finite dimensional vector f , where ‖ · ‖ denotes an l2-norm.
3We use an identity weighting matrix to compute θ̃rv that V̂T is computed with.
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consistent estimation and we choose α = 0.1 that is big enough to ensure a small enough bias.

5.2 Empirical results

In this section, we present an empirical application of the our SV model applying the estimation

method discussed in Section 5.1. We first estimate the parameters using the observations of returns

and realized variance on the S&P500 index. Then, using the options data, we examine the option

pricing performance of the model. We also present the results using a GARCH-type option pricing

model that is another large class of discrete time models and make a comparison with the SV model.

For a GARCH model, we consider the Heston and Nandi (2000)’s affine GARCH(1,1) model (HN

hereafter) and the Affine RV model (ARV hereafter) by Christoffersen, Feunou, Jacobs, and Meddahi

(2014).

5.2.1 Competitor models

HN assume the following process for daily excess log returns

rt+1 = log(St+1/St)− rf,t = λht −
1

2
ht +

√
htεt+1,

where εt+1 ∼ i.i.d.N (0, 1) and λ is the risk price of returns. The conditional variance ht has the

following process

ht+1 = ω + βht + α(εt+1 − γ
√
ht)

2,

where γ captures the asymmetric relationship between returns and volatility. The persistence of

daily variance is captured by the form (β+αγ2). The covariance between returns and volatility and

the volatility of volatility can be derived as

Cov [rt+1, ht+1|I(t)] = −2αγht, V ar(ht+1|Ft) = 2α2(1 + 2γ2ht).

The correlation coefficient between returns and volatility is then

Corr (rt+1, ht+1|I(t)) =
−2αγ

√
ht√

2α2(1 + 2γ2ht)
.

It can be seen that the negative correlation between returns and volatility increases (for positive γ)

as γ gets larger (for a fixed ht).

Another model that we consider is a GARCH-type option pricing model that is developed by

Christoffersen et al. (2014) where the realized variance component plays a role in the variance
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dynamic of returns. This model is dubbed the ARV model by Christoffersen et al. (2014)4. This

model assumes the following dynamic model of daily returns:

rt+1 =

(
λ− 1

2

)
hRVt +

√
hRVt ε1,t+1,

where hRVt = E [RVt+1|I(t)], and ε1,t+1 is a standard normal return shock. It also assumes the

following affine structure of hRVt

hRVt+1 = ω + βhRVt + α2

(
ε2,t+1 − γ

√
hRVt

)2

,

where (ε1,t+1, ε2,t+1) follows jointly a bivariate standard normal distribution with correlation ρa.

The observations of realized variance are linked to hRVt as follows

RVt+1 = hRVt + σ

[(
ε2,t+1 − γ

√
hRVt

)2

−
(
1 + γ2hRVt

)]
.

The persistence of daily variance is also captured by the form (β + αγ2).

Note that λ for both models represents the risk price of returns that is the same as ς2 in our

model. ARV has an additional risk price parameter X to HN that represents the volatility risk price

that is comparable to ς1 in our model. It is identified with the options data:

γ∗ = γ −X ,

where γ∗ is the risk neutral γ that is computed, with other parameter estimates from the observations

of returns, by maximizing the Gaussian IV option-error likelihood defined in (5.5).

Both HN and ARV models are estimated using quasi-maximum likelihood (QMLE) techniques.

From the observations of returns and realized variance, the moments used for the estimation of ARV

in addition to the first moment of realized variance are:

E [rt+1|I(t)] =

(
λ− 1

2

)
hRVt

V ar [rt+1|I(t)] = hRVt

V ar
[
hRVt+1|I(t)

]
= 2α2

(
1 + 2γ2hRVt

)
Cov

[
rt+1, h

RV
t+1|I(t)

]
= −2ρaαγh

RV
t ,

4The ARV model is a special type of the GARV model (Christoffersen et al. (2014)) where the variance dynamic
of returns depends both on realized variance and returns. They show that the GARV model outperforms the ARV
model in terms of option pricing but we use the ARV model for comparison to be comparable with our affine model
that the latent volatility is identified by the observations of realized variance.
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and the conditional correlation between returns and volatility is

Corr
(
rt+1, h

RV
t+1|I(t)

)
=

−2ρaαγ
√
hRVt√

2α2
(
1 + 2γ2hRVt

) .
We estimate the two models using quasi maximum likelihood (QMLE). We use the conditional log-

likelihood of returns for HN and the conditional joint log-likelihood of returns and realized variance

for ARV. The estimation results are given in Table 1 along with them of some versions of our model.

Note that ω for ARV is estimated using the unconditional variance targeting such that:

ω = E
[
hRVt

] (
1− β − αγ2

)
− α. (5.8)

where we compute E
[
hRVt

]
as the sample mean of realized variance.

5.2.2 Parameter estimation

In this section, we estimate the model parameters from the returns and realized variance on the

S&P 500 index. The dataset was obtained from Oxford-Man Institute5 and consists of the daily log

returns and realized volatilities of the S&P 500 over the period from January 2000 to June 2016.

The sample size is 4,121. Variable rt denotes the daily log returns in excess of the risk-free rate,

which is proxied by the yield on a 30-day treasury bill6. The realized variance process {RVt} is

computed from 5-minute intraday returns.

The estimation results of the ARG(1)-Normal model (AN henceforth) in different settings from

the observations of returns and realized variance are given in Table 1 along with those of the HN

and the ARV models7. Several remarks are in order. First, both ς2 (for AN) and λ (for HN and

ARV) represent the risk price of the returns. Likewise, both ς1 (for AN) and X (for ARV) model are

the risk price of volatility. There is no volatility risk price (ς1) in the HN model since it uses only

the risk price of returns. Second, the parameter ρa from the ARV model can be roughly interpreted

as the leverage effect both in absolute value which is comparable to φ for our AN model, although

it itself does not directly determine it. The conditional correlation formula between returns and

volatility provided in Section 5.2.1 for the ARV model shows that leverage increases in ρa given α,

γ and volatility. We in fact see in Figure 1 below that the correlation in absolute value fluctuates

at around the value close to the estimate of ρa given in Table 1.

The first to the third columns of Table 1 present the estimation results of the AN models from

the daily observations of returns and realized variance. The first column (ANNL) imposes the zero

5Oxford-Man Institute’s ”realized library,” http://realized.oxford-man.ox.ac.uk
6This rate is obtained from http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
7Note that the parameter ω is directly estimated with other parameters for the HN while it is implied from the

unconditional variance formula (see (5.8)) for the ARV. We apply different estimation procedures for ω because they
lead to the best performance of those two models from our various exercises with the given data.
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leverage effect (i.e. φ = 0). The first and second columns (ANL) imposes the condition for the

constant leverage effect

f =
1 + e

2
,

while the third (ANTL) one allows the leverage effect to be time-varying. The ANTL model still

uses the restriction8

k2 =
1− e

2c
.

Note that the estimation results of ANNL and ANL only differ with the estimation of the returns

parameters since f is estimated from the observations of realized variance only. In all estimations of

the class of AN model, we use the two step estimation of the mixture of GMM and MLE described

in Section 5.1. The Figure 1 below shows the conditional correlation between returns and volatility

computed using the formula given in the equation (4.4). The top panel plots the daily realized

variance, the second panel plots the conditional correlation for the model with the constant leverage

effect, and the third to the last panels present the results of the ANTL, HN, and ARV, respectively.

The last two columns report the parameter estimates of the competitor models, the HN and ARV

models. Both models positively estimate γ and α and the ARV model positively estimates ρa, which

confirms the negative correlation between returns and volatility.

Comparing the AN, HN and ARV models, the AN and ARV models produce the similar leverage

effect while the HN shows a significant difference. As already expected, the ANL generates a time-

invariant correlation estimated at -0.1718. When the time varying feature is allowed, our model

generates the conditional correlation which looks close to that of ARV. Both ANTL and ARV

fluctuates at around a value between -0.15 and -0.16 with the shapes that are almost identical to

each other. In both models, the negative correlation is stronger when the level of volatility is higher.

The leverage effect from the HN model is much larger than the other two models with the correlation

fluctuating between -0.65 and -19. This result of the high correlation between returns and volatility

of the HN model is in fact in line with the restriction of the GARCH model that the innovations of

returns and volatility share the same process.

All models present high levels of volatility persistence (close to 0.98 for the class of AN models,

and 0.96 for the HN and ARV), which is consistent with the empirical findings in the literature.

However, the ARV model differs in the estimate of the return risk premium while the AN models

and the HN model provide similar values. The reported estimate of λ is 0.0540 and this is much

smaller than the estimates of ς2’s and λ by the HN model that are greater than 1, although they

are all statistically not significant.

As we developed in Section 2, the leverage effect is closely related to the shape of the volatility

8We also estimate our AN model with k as a free parameter and plot the conditional correlation between returns
and volatility in Figure 6. We do not report the parameter estimates because they are dependent on the value of ς1
which is not well identified and the conditional correlation does not depend on the those different parameter estimates.

9The average conditional correlation for the period of January, 2000 to June, 2016 is -0.9260.

34



Table 1: Estimates of the parameters on S&P500 index returns and realized variance

ANNL ANL ANTL HN ARV

ρ 0.9802 0.9802 0.9737 α 4.06e-6 4.74e-6
(0.0269) (0.0269) (0.0273) (3.83e-7) (1.34e-6)

δ 1.1236 1.1236 1.0773 β 0.8015 5.06e-10
(0.5132) (0.5132) (1.0429) (0.0047) (0.2738)

c 8.67e-06 8.67e-06 1.14e-05 ω 5.18e-9 2.84e-9
(1.67e-07)

e 0.7470 0.7470 0.7557 σ 9.76e-6
(0.0331) (0.0331) (0.0318) (2.71e-6)

f 0.8735 0.8735 0.0264 ρa 0.1593
(0.0165) (0.0165) (2.2060) (0.01)

φ 0 -0.1718 -0.1928 γ 199.70 450.19
(0.0140) (0.0163) (11.4435) (127.19)

ς2 0.9286 1.1236 1.2494 λ 1.4934 0.0540
(1.3420) (1.2831) (1.2815) (1.2768) (1.3552)

ς1 -1.46e-6 -0.02 -0.01 X -5.2125
(0.0991) (1.9333) (1.31e-07) (0.0843)

Persistence 0.9802 0.9802 0.9737 0.9632 0.9614

* We estimate the models using the daily observations of returns and realized variance for the
S&P500 index for the period January 1, 2000, to June 30, 2016. The volatility parameters of
the AN models, (ρ, δ, c, e, f), are estimated by GMM with the moment conditions provided in
subsection 5.1.3, and the return parameters of the AN models, (φ, ς1, ς2), are estimated by MLE
given the volatility parameter estimates. The HN and ARV models are estimated by MLE.
* The standard errors (s.e.) are given in parentheses.
* The s.e. of ς1 and X are computed using the outer product of gradient.
* In the first and second columns, f is computed as (1 + e)/2 and the s.e. is computed as
s.e.(e)/2.
* In the first to the third columns, k2 is computed as (1− e)/2c.
* In the first to third column, c is computed from the equation E[RVt+1] = (1− eρ) δc

(1−ρ) − fδc
where E[RVt+1] is estimated by the sample mean of realized variance.
* In the fifth column, ω is computed as E [ht]

(
1− β − αγ2

)
− α where E [ht] is estimated by

the sample mean of realized variance.
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smile. We expect a bigger leverage effect when the volatility smile is more pronounced. Figure

2 below plots the average implied volatilities for given intervals of log moneyness of the options

data on S&P500 from January 3, 2000 to December 31, 2006 together with those generated from the

different models. We see that the volatility smile from the market data is clearly skewed implying the

presence of significant leverage effect. In the next subsection, we carry out empirical analysis on the

options data in order to see whether the returns data identifies the desired level of leverage effect that

produces the skewed smile and how the option pricing error is affected by such identification.

Figure 1: Daily conditional correlation of returns and volatility, 2000-2016

* The top panel plots the daily observations of realized variance from January 2000 to June 2016. For Graph
B and C, which show the ANL and ANTL models, we plot the daily conditional correlation between returns
and volatility, Corrt(rt+1, σ

2
t+1). For the ANL, the constant leverage effect restriction, f = (1 + e)/2, is

imposed while it is a free parameter for the ANTL. For Graph D, which shows the HN, we plot the daily
conditional correlation between returns and volatility, Corrt(rt+1, ht+1). For Graph E, which shows the ARG,
we plot the daily conditional correlation between returns and volatility, Corrt(rt+1, h

RV
t+1).The conditional

correlations are computed using the formula given in (4.4) (for the AN models) and Section 5.2.1 (for the
HN and ARV) with the parameter estimates given in Table 1.
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Table 2: Option pricing performances

ANL ANNL HN ARV ANL* ARV*

IV RMSE 3.8758 4.2013 4.6155 3.9627 3.3830 3.3998

* The IVRSME is computed with the implied volatilities generated from the models. For ANL, ANNL, HN,
and ARV, we get the implied volatilities with risk neutral parameters computed with the parameter estimates
in Table 1. All IVRMSE values are in annualized percentage points.
* The IVRMSE for ANL* is computed with (s.e. in parenthesis) φ∗ = −0.5137 (0.0032) which is the value
that minimizes the Gaussian IV option-error likelihood, with the other parameter values in the second column
of Table 1. The s.e. is computed using the outer product of gradient.
*The IVRMSE for ARV* is computed with (s.e. in parenthesis) ρ∗a = 0.4352 (0.0044) which are the values
that minimizes the Gaussian IV option-error likelihood, with the other parameter values in the fifth column
of Table 1. The s.e. is computed using the outer product of gradient.

5.2.3 Option pricing performance

In order see option pricing performance, we use European options written on the S&P500 index.

The data was downloaded from Optionmetrics10 and the observations range from January 3, 2000

to December 31, 2006. In order to ensure that we consider liquid options, we only maintain the

ones with time to maturity11 between 15 and 180 days and restrict our data to Wednesday options.

Also, the observations with an implied volatility of more than 70% are discarded. Moreover, we only

consider out of the money call options in order to maintain the data in a manageable size. The same

analysis can be done for put options as well. The total number of observations is 12,241.

We compute the prices of each option for given K, St and time to maturity following the steps

described above for ANL, ANNL, HN and ARV models. In order to compare the option pricing

performances of these model, we use the percentage implied volatility (IVRMSE) defined in the

previous subsection as a pricing error. The results are presented in Table 3 which shows that the

ANL and ARV models have the smallest IVRMSEs with that of ANL is slightly smaller. The option

pricing error results are the worst for ANNL and HN which indicates that either no or too big

leverage effect does not do a good option pricing.

In order to see whether the leverage effect is adequately identified from the returns data, we plot

the volatility smiles of the data together with those generated from the models in Figure 2 below

where the implied volatilities are the average of them for a given interval of log moneyness over the

period January, 2000, to December, 2006. We see that none of the models with the parameter values

estimated from the returns data is able to generate the smiles as pronounced as the smiles of the

market options. Either the leverage effect is estimated to be too small or too big to reproduce the

shape of the volatility smile from the data.

We then compute the parameter estimates using the options data to see the leverage effect that

10We use zero-coupon yield curve and the index dividend yield provided by Optionmetrics in the pricing procedure.
11Calendar days
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fits the options. Although it is standard in the option pricing literature to estimate the whole risk

neutral parameters from the options data, we only estimate parts of the parameters (φ for ANL and

ρa for ARV) given the other parameter estimates presented in Table 1. Those parameters are tightly

related to the correlation between returns and volatility even though we cannot show how they are

determined jointly with the other parameters. We do not carry out this exercise for the HN because

γ is linked to the correlation in HN but it is also closely related to the persistence of volatility. It is

the same for ARV as well but ARV has an additional degree of freedom for the leverage effect, ρa,

which is the correlation parameter between the innovations of returns and volatility.

We estimate φ and ρa by maximizing the Gaussian IV option-error likelihood defined in (5.5).

The resulting IVRMSEs are given in Table 2 under ANL* and ARV* with the parameter estimates

in the caption of Table 2. This exercise identifies a much bigger leverage effect for both ANL and

ARV, with φ = −0.5137 and ρa = 0.4352, than the ones computed from the returns data. The

option pricing performance for both models improves significantly.

Figure 3 plots the average implied volatilities of ANL and ARV with the new estimates of φ

and ρa, respectively. We see that the shape of volatility smile with this larger value of φ is much

closer to that of the data but ARV fails to generate the large skewness of the smile even with a

large value of ρa (thus, a bigger leverage effect). Although the two models show different abilities

in producing the volatility smile, the IVRMSEs computed from them are similar. However, ANL

seems to over-estimate implied volatilities which is largely attributable to the over-estimation of

the latent volatility σ2
t . The volatility is filtered from the observations of realized variance using

a simple two-step procedure but this method is obviously not efficient. It seems that the option

pricing performance of the ANL could improve if we apply a more efficient estimation method that

can decrease the bias of filtering the volatility.

We categorize options according to their time to maturity and moneyness where moneyness is

defined as log(K/St) with K and St denoting a strike price and a price of the underlying asset at

time t. Table 3 presents some descriptions of the options data and IVRMSE for each maturity and

moneyness category of the ANL, HN and ARV models. In terms of IVRMSE, the option pricing

performance of the HN model is dominated by ANL in all categories. ARV also dominates HN in

almost all categories. Comparing the ANL and ARV models, ANL perform better for the options

that are not relatively deep out-of-money (OTM) and have relatively short maturities. This result

confirms our discussion in Section 2 that SV models are more flexible to produce the skewed volatility

smiles than the GARCH models where the volatility is not latent. Also, from the generated volatility

smiles in Figure 3, the outperformance of ANL over ARV with smaller moneyness is resulted from

its ability to produce the skewness closer to the actual data.
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Figure 2: Volatility smiles from the options data

* For this figure, we use out of money call options with time to maturity between 15 and 180 days and
implied volatility less than 0.7, over the period of January, 2000, to December, 2006.
*The implied volatilities are the average implied volatilities of the data and the ones implied by different
models, with certain values of log moneyness. For example, the implied volatility for log moneyness 0.01
is the average implied volatility of the options with log moneyness between 0.005 and 0.015. The implied
volatilities for log moneyness 0 and 0.1 are the average implied volatility of the options with log moneyness
between 0 and 0.005, and between 0.095 and 0.1, respectively.
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Figure 3: Volatility smiles from the options data

* For this figure, we use out of money call options with time to maturity between 15 and 180 days and
implied volatility less than 0.7, over the period of January, 2000, to December, 2006.
*The implied volatilities are the average implied volatilities of the data and the ones implied by ANL and
ARV, with certain values of log moneyness. For example, the implied volatility for log moneyness 0.01 is the
average implied volatility of the options with log moneyness between 0.005 and 0.015. The implied volatilities
for log moneyness 0 and 0.1 are the average implied volatility of the options with log moneyness between 0
and 0.005, and between 0.095 and 0.1, respectively.
* The implied volatilities for ANL are computed with φ = −0.5137 and other parameter values given in the
second column of Table 1.
* The implied volatilities for ARV are computed with ρa = 0.4352 and other parameter values given in the
sixth column of Table 1.

6 Conclusion

We have addressed in this paper two identification issues that are known to be puzzling. They

are both related to leverage effect.

First, as documented by Bollerslev et al. (2006), discrete time return data do not allow to disen-

tangle leverage effect from volatility feedback. In the context of a conditional distribution of return

that is a mixture of lognormal, we are able to pin down the parameter that properly characterizes

the amount of leverage effect since it is the only responsible for skewness of the volatility smile.

From this benchmark, we are able to write down an identification constraint that relates three

parameters:

First, a parameter for the joint occurrence of leverage and volatility feedback in conditional mean

of return given current volatility (our parameter α′(0)),

Second, the price of risk on asset return that is responsible for volatility feedback (our parameter
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Table 3: Option pricing performances by maturity and moneyness (K/S)

By Maturity Less than 30 30 to 60 60 to 120 120 to 150 More than 150

No. of obs 2,351 4,914 3,345 738 867
Ave. IV(%) 16.87 15.65 16.46 16.36 16.79

ANL
IVRMSE 3.4421 3.7644 3.9858 4.3789 4.6447

ANL*
IVRMSE 3.5365 3.2242 3.3368 3.5854 3.8159

HN
IVRMSE 4.2668 4.7610 4.6446 4.4970 4.6808

ARV
IVRMSE 3.8564 4.0088 3.9303 3.9237 4.1405

ARV*
IVRMSE 3.5997 3.3775 3.3372 3.2722 3.3078

By Moneyness Less than 1.02 1.02 to 1.04 1.04 to 1.06 1.06 to 1.1 More than 1.1

No. of obs 2,687 2,408 2,081 2,672 2,367
Ave. IV(%) 15.83 14.82 14.53 16.20 19.64

ANL
IVRMSE 3.1334 3.4233 3.8466 4.1392 4.7013

ANL*
IVRMSE 3.1160 3.1092 3.2054 3.4676 3.9491

HN
IVRMSE 4.7081 4.7022 4.4774 4.0752 5.0897

ARV
IVRMSE 3.1539 3.1755 3.7574 4.1441 5.2539

ARV*
IVRMSE 3.3849 3.1623 3.1940 3.3902 3.8095

* We use out of money call options with time to maturity between 15 and 180 days and implied
volatility less than 0.7, over the period of January, 2000, to December, 2006. We report IVRMSE from
the models by moneyness and maturity. The ANL, HN, and ARV models are estimated in Table 1.
ANL* and ARV* models are estimated with φ∗ = −0.5137 and ρ∗a = 0.4352 together with the other
parameter estimates in Table 1. All IVRMSE values are in annualized percentage points.
* Moneyness is K/S.
* IV stands for Implied Volatility.
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ς2),

Third, the leverage effect parameter φ that matters for the conditional of variance of return given

current volatility.

This constraint is devised in order that the parameter φ is sole responsible for the skewness of

the volatility smile. The direction of its impact can be characterized in closed form, at least in the

neighborhood of φ = 0.

A second classical identification issue is about the parameter ς1 of price of volatility risk. It is

often said that only option price data allow to identify this parameter. Interestingly enough, we

prove that the price of volatility risk is actually identified from return data only if and only if our

leverage effect parameter is non-zero.

Even though the paper also provides some compelling empirical evidence that the model is vali-

dated by a reasonable goodness of fit (and sensible values of estimated parameters) on the S&P500

daily data, it is obviously for statistical fit and inference that the paper paves the way for future

research.

First, even though theoretically ensured through leverage, identification of volatility risk price

without option price data is not compelling empirically. Following an argument put forward by

Bandi and Reno (2016), we suspect that our identification strategy based on leverage would be more

reliable when reinforced by jumps in both returns and volatility. While capturing jumps with a

discrete time model is a challenging task, a Factorial Hidden Markov a la Augustyniak et al. (2018)

would do the job.

Second, admitting that strong identification can be ensured, the empirical exercise on the S&P500

in index and options still shows that the leverage effect is under-estimated from the returns data and

a good deal of work remains to be done for efficient estimation. The fact that the volatility factor

should be filtered from data on daily realized variance implies complicated nonlinear interactions

between the different parts of the model. In this paper, we have simplified the estimation task by

making approximations allowing a two-step procedure: first estimation of the volatility dynamics

to filter the volatility factor and second estimation of the return dynamics is based on first stage

estimators of both filtered values of volatility and coefficients of identification constraint for lever-

age. Besides the hopefully negligible bias implied by our approximation, the multi-step estimation

procedure should be revisited in the spirit of Fan et al. (2015) to ensure asymptotic efficiency of

estimators . Since, as documented by Ait-Sahalia et al. (2013), the leverage effect puzzle is also due

to an estimation challenge, efficient estimation should be of foremost importance.
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Appendix

Appendix A

Figure 4: Volatility smiles from the SV model

* The implied volatilities are computed by inverting the model option price using the Black-Scholes formula
where the model option prices are generated from the joint model of conditionally normal returns and ARG(1)
volatility given in Section 4, with the risk-neutral parameters (ρ, δ, c, e)′ = (0.9, 1.1, 9.96e−6, 0)′ and different
values of φ. The time to maturity is 30 days and the volatility σ2

t is set to be (0.2)2/365.
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Figure 5: Time series of
√
E [RVt+1|I(t)] /V ar [RVt+1|I(t)]

* We compute fitted values of the time series E[RVt+1 |I(t)] and V ar[RVt+1 |I(t)] that are based on the
estimation of an AR(1) model for the process RVt with ARCH(1) innovations:

RVt+1 = ωR + αRRVt + νt

νt+1 = h
1/2
t ut+1, E[ut+1 |I(t)] = 0, E[u2

t+1 |I(t)] = 1

V ar[RVt+1 |I(t)] = ht = ωh + αhν
2
t

on daily data over 16 years (realized variance of the S&P500 from January 2000 to June 2016).
* The first panel excludes the 5% largest and 5% smallest values.
* The second panel excludes the 10% largest and 5% smallest values.
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Figure 6: AN model: Daily conditional correlation between returns and volatility, 2000-2016

* This graph plots the daily conditional correlation between returns and volatility from January 2000 to June
2016 generated from the AN model. The conditional correlations are computed using the formula given in
(4.4). In this version of the model, f and k2 are not restricted to be (1+e)/2 and (1−e)/2c, respectively. The
parameter estimates of (ρ, δ, c, e, f) are the same as the ones reported for ANTL in Table 1. The parameter
estimates of (φ, k2, ς1, ς2) = (−0.0042, 5.79e+ 03,−4.7807, 1.1760), which is sensitive to the initial values of
ς1 for the nonlinear estimation. However, the daily conditional correlation does not seem to depend on the
parameter estimates of (φ, k2, ς1, ς2) computed from different initial values.

Appendix B

Proof of Proposition 2.2

1st step: We first prove an intermediary result that has its own interest:

∂Ct(K)

∂λ1
(λ = 0) = StCov

∗[Z̃t,Φ
(
d1,t

(
K,σ∗2 [J(t)]

))
|I(t)]

Proof:

48



Ct(K) = E∗[BS(t)

(
K, S̃t, σ

∗2 [J(t)]
)
|I(t)]

=⇒ ∂Ct(K)

∂λ1
= E∗

[
Φ
[
d1,t

(
K,σ∗2[J(t)]

)] ∂S̃t
∂λ1
|I(t)

]

with:
∂S̃t
∂λ1

= St
∂ξt
∂λ1

and:

ξt =
exp {A [λ, J(t)]}

E∗[exp {A [λ, J(t)]} |I(t)]

=⇒ ∂ξt
∂λ1

= ξtZ̃t − exp {A [λ, J(t)]} E
∗[Z̃t exp {A [λ, J(t)]} |I(t)]

{E∗[exp {A [λ, J(t)]} |I(t)]}2

= ξt

[
Z̃t −

E∗[Z̃t exp {A [λ, J(t)]} |I(t)]

{E∗[exp {A [λ, J(t)]} |I(t)]}

]

=⇒ ∂ξt
∂λ1

(λ = 0) = Z̃t − E∗[Z̃t |I(t)]

=⇒ ∂Ct(K)

∂λ1
(λ = 0) = StCov

∗[Z̃t,Φ
(
d1,t

(
K,σ∗2 [J(t)]

))
|I(t)] .

2nd step: Sign of ∂Ct(K)
∂λ1

(λ = 0):

d1,t (K,V ) =
1√
V

[log (St/K) + rf,t] +

√
V

2

=⇒ ∂d1,t (K,V )

∂V
= − 1

2V
√
V

[log (St/K) + rf,t] +
1

4
√
V

Hence:
∂d1,t (K,V )

∂V
> 0⇔ xt(K) = log (K/St)− rf,t > −

V

2
.

Then:
∂Ct(K)

∂λ1
(λ = 0) = StCov

∗[Z̃t,Φ
(
d1,t

(
K,σ∗2 [J(t)]

))
|I(t)]

with, given I(t), both Z̃t and Φ
(
d1,t

(
K,σ∗2 [J(t)]

))
are increasing functions of σ∗2 [J(t)] when

xt(K) > −V2 . Thus, for any out-of-the money call option (xt(K) > 0), we can conclude that:

∂Ct(K)

∂λ1
(λ = 0) > 0.

Moreover, the above formulas show that the more out-of-the money the call option (the larger
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xt(K)), the steeper is the slope of the option price as a function of λ1.

Proof of Proposition 3.1.

For any real numbers u and v:

E[Mt+1(ς) exp
(
−uσ2

t+1 − vrt+1

)
|I(t)] (6.1)

= M0,t (ς)E[exp(−rf,t) exp
(
− (ς1 + u)σ2

t+1 − (ς2 + v) rt+1

)
|I(t)] (6.2)

=
M0,t (ς) exp(−rf,t)
M0,t (ς1 + u, ς2 + v)

(6.3)

However, if ς = (ς1, ς2) characterizes the true value of the risk premium parameters, we also have

by definition of the risk-neutral distribution:

E[Mt+1(ς) exp
(
−uσ2

t+1 − vrt+1

)
|I(t)]

= exp(−rf,t)E∗[exp
(
−uσ2

t+1 − vrt+1

)
|I(t)]

= exp(−rf,t))E∗[exp
(
−uσ2

t+1)E∗[exp(−vrt+1

)
|Iσ(t)] |I(t)]

= exp(−rf,t))E∗[exp
(
−uσ2

t+1)
)

exp

(
−vµ∗ [Iσ(t)] +

v2

2
σ∗2 [Iσ(t)]

)
|I(t)]

By identifying the two above formulas for (6.1) we get:

E∗[exp
(
−uσ2

t+1 − vrt+1

)
|I(t)] =

M0,t (ς)

M0,t (ς1 + u, ς2 + v)

=
exp

[
l(ς1, ς2)σ2

t + g(ς1, ς2)
]

exp [l(ς1 + u, ς2 + v)σ2
t + g(ς1 + u, ς2 + v)]

= exp
[
−l∗(u, v)σ2

t − g∗(u, v)
]

This proves part (i) of the proposition.

Now we assume that µ∗[Iσ(t)] and σ∗2[Iσ(t)] are affine in σ2
t+1 and σ2

t :

µ∗[Iσ(t)] = ω1,1σ
2
t+1 + ω1,2σ

2
t + ω1,3

σ∗2[Iσ(t)] = −ω2,1σ
2
t+1 − ω2,2σ

2
t − ω2,3.

for some constant ωi,j , i = 1, 2, j = 1, 2, 3. We define quadratic functions α∗(·), β∗(·), γ∗(·) such
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that

α∗(v) = ω1,1v +
1

2
ω2,1v

2 = α∗′(0)v +
1

2
α∗′′(0)v2

β∗(v) = ω1,2v +
1

2
ω2,2v

2 = β∗′(0)v +
1

2
β∗′′(0)v2

γ∗(v) = ω1,3v +
1

2
ω2,3v

2 = γ∗′(0)v +
1

2
γ∗′′(0)v2.

Then,

E∗[exp
(
−uσ2

t+1 − vrt+1

)
|I(t)] = E∗[exp

(
−uσ2

t+1)
)

exp

(
−vµ∗ [Iσ(t)] +

v2

2
σ∗2 [Iσ(t)]

)
|I(t)]

= E∗
[
exp

[
−
(
u+ ω1,1v +

1

2
ω2,1v

2

)
σ2
t+1

]
|I(t)

]
×

exp

[
−
(
ω1,2v +

1

2
ω2,2v

2

)
σ2
t −

(
ω1,3v +

1

2
ω2,3v

2

)]
= exp

[
−β∗(v)σ2

t − γ∗(v)
]
E∗
[
exp

[
− (u+ α∗(v))σ2

t+1

]
|I(t)

]
= exp

[
−β∗(v)σ2

t − γ∗(v)
]

exp
[
−l∗

(
u+ α∗(v), 0)σ2

t − g∗(u+ α∗(v), 0)
)]

= exp
[
− [l∗ (u+ α∗(v), 0) + β∗(v)]σ2

t − [g∗(u+ α∗(v), 0) + γ∗(v)]
]

= exp
[
− [a∗ (u+ α∗(v)) + β∗(v)]σ2

t − [b∗(u+ α∗(v)) + γ∗(v)]
]
.

We have the CAR models since:

E∗
[
exp

(
−uσ2

t+1

)
|I(t)

]
= exp

[
−l∗(u, 0)σ2

t − g∗(u, 0)
]

= exp
[
−a∗(u)σ2

t − b∗(u)
]

E∗ [exp (−vrt+1) |Iσ(t)] = exp

(
−vµ∗ [Iσ(t)] +

v2

2
σ∗2 [Iσ(t)]

)
= exp

[
−α∗(v)σ2

t+1 − β∗(v)σ2
t − γ∗(v)

]
.

This proves the second part of the proposition.

Proof of Corollary 3.3.

We have, by the CAR model given in proposition 3.1.,

E∗ [exp(rt+1)|I(t)] = exp
[
−l∗(0,−1)σ2

t − g∗(0,−1)
]

= exp
[
− [a∗(α∗(−1)) + β∗(−1)]σ2

t − [b∗(α∗(−1)) + γ∗(−1)]
]
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Thus, the risk-neutral pricing of the underlying asset:

E∗ [exp(rt+1)|I(t)] = 1,

is equivalent to

a∗(α∗(−1)) + β∗(−1) = 0 and b∗(α∗(−1)) + γ∗(−1).

Proof of Proposition 3.2.

We have first from Proposition 3.1.:

l (u, v) = l∗ (u− ς1, v − ς2) + l (ς1, ς2)

= a∗ [u− ς1 + α∗ (v − ς2)] + β∗ (v − ς2) + l (ς1, ς2)

Let us admit for the moment that , as checked below:

a∗(u) = a (u+ ς1 + α (ς2))− a (ς1 + α (ς2))

Then we deduce from above that:

l (u, v) = a [u+ α∗ (v − ς2) + α (ς2)]− a (ς1 + α (ς2)) + β∗ (v − ς2) + l (ς1, ς2)

Then, if we define functions α(.), β(.), γ(.) as in Proposition 3.2, we first note that these functions

are quadratic (since the functions α∗(.), β∗(.), γ∗(.) are quadratic) and we can rewrite l(u, v) as

:

l (u, v) = a [u+ α(v) + α∗ (−ς2) + α (ς2)]− a (ς1 + α (ς2)) + β(v) + β∗ (−ς2) + l (ς1, ς2)

However, we have by definition:

α (ς2) = α∗ (ς2 − ς2)− α∗ (−ς2) = −α∗ (−ς2)

β (ς2) = β∗ (ς2 − ς2)− β∗ (−ς2) = −β∗ (−ς2)

Therefore:

l (u, v) = a [u+ α(v)]− a (ς1 + α (ς2)) + β(v)− β (ς2) + l (ς1, ς2)
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which is consistent with:

l (u, v) = a [u+ α(v)] + β(v)

l (ς1, ς2) = a (ς1 + α (ς2)) + β (ς2)

By symmetry, we can obviously prove in an analogous way the formula of Proposition 3.2. for

g(u, v).

It remains to check that these formulas are consistent with the formulas announced for a∗(u) and

b∗(u). We have:

a∗(u) = l∗(u, 0) = l (u+ ς1, ς2)− l (ς1, ς2)

= a [u+ ς1 + α(ς2)] + β (ς2)− a [ς1 + α(ς2)]− β (ς2)

= a [u+ ς1 + α(ς2)]− a [ς1 + α(ς2)]

By symmetry, we can obviously prove in an analogous way the formula of Proposition 3.2. for

b∗(u).

Appendix C: Heston model as a continuous time limit

We want to check that the affine specification introduced in Section 3 and 4 for the joint dynamics

of
(
rt+1, σ

2
t+1

)
is a discrete time version of Heston (1993) option pricing model. As already well-

known in the GARCH/SV literature, there is no such thing as a unique way to embed a discrete

time model in a continuous model. However, our specification of joint affine dynamics of the process

σ2
t for its first two conditional moments

E[σ2
t+1 |I(t)] = ω + ρσ2

t (6.4)

V ar[σ2
t+1 |I(t)] = ω̄ + ρ̄σ2

t

obviously amounts to a vector auto-regressive VAR(1) specification for the bivariate process
(
σ2
t , σ

4
t

)
for which temporal aggregation formulas are well-known. (see Meddahi and Renault (2004) for an

extensive discussion of this approach). These temporal aggregation formulas give us an unambiguous

guidance about how to address the continuous time limit issue. For this purpose we define a volatility

factor:

σ2
t,H(N) =

1

HN

HN∑
n=1

σ2
t+ n

N
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where N is the number of subintervals in a unit interval. Our normalization by the factor HN allows

us to keep the interpretation of σ2
t,H(N) as a volatility factor on a given (the smallest possible) unit

of time.

For the sake of getting the instantaneous analog of σ2
t,H(N), we will consider that the horizon H

may go to zero, while always assuming HN ≥ 1 and (for sake of notational simplicity) maintaining

the assumption that HN is an integer.

The following lemma is then easy to guess (proof available upon request) and useful to get the

continuous time limit of our model:

Lemma C.1:

lim
H→0

E
[
σ2
t,H(N)|I(t)

]
= σ2

t

lim
H→0

1

H
V ar

(
σ2
t,H(N)|I(t)

)
=

1

2
lim
H→0

1

H
V ar

(
σ2
t+H,H(N)|It

)
.

We can then prove the following proposition:

Proposition C.2: (Continuous-time limit) If the equations in Lemma C.1 hold, then we have

for all integer N and H ∈ [1/N,∞),

lim
H→0

1

H
E
[
σ2
t+H,H(N)− σ2

t,H(N)|Ĩ(t)
]

= −log(ρ)

(
ω

1− ρ
− σ2

t

)
,

lim
H→0

1

H
V ar

(
σ2
t,H(N)|Ĩ(t)

)
= − ρ̄

ρ

log(ρ)

1− ρ

(
σ2
t +

ω − 2ω̄(ρ/ρ̄)

1 + ρ

)
,

where a information set Ĩ(t) =
{
σ2
t−kH,H(N), k ≥ 1

}
.

The proof is given below. In other words, the continuous time limit of this model is the affine

model:

dσ2
t = κ(σ̄2 − σ2

t )dt+
√
ν + ησ2

t dWt,

for some Wiener process Wt and

κ = −log(ρ) > 0,

σ̄2 =
ω

1− ρ
= E[σ2

t ] > 0,

η =
κ

ω

ρ̄

ρ
σ̄2,

ν = η
ω − 2ω̄(ρ/ρ̄)

1 + ρ
≥ 0, if ω ≥ 2ω̄(ρ/ρ̄).

In particular, if ω = 2ω̄(ρ/ρ̄) as in our example of the ARG(1) volatility model, we get for σ2
t a

54



square root process of Feller (1951), as used for interest rate by Cox et al. (1985) and for volatility

by Heston (1993). The three parameters (κ, σ̄2, η) are unconstrained (up to standard inequality

constraints) one-to-one functions of the three initial parameters12, ρ, ω̄, and ρ̄. Therefore, as fas as

the first two moments are concerned, any square root process can be seen as a continuous time limit

of our volatility factor model. More generally, if we consider a general affine volatility model, any

affine process in continuous time (Duffie et al. (2000)) can be seen as the continuous time limit of

our discrete time model thanks to the degree of freedom ω 6= 2ω̄(ρ/ρ̄).

The advantage of the discrete time specification is that, by contrast with Brownian diffusions,

the specification of the first two conditional moments does not constrain us regarding higher order

moments. This may allow us in particular to accommodate stylized facts that take jumps both in

returns and in volatility (see e.g. Bandi and Reno (2016)) to be captured by a continuous time

model.

Proof

Before we prove Proposition C.2, we first provide and prove Proposition C.1 below.

Proposition C.1:

The volatility factor σ2
t,H(N) given above satisfies two ARMA(1, 1)-type conditional moment

restrictions:

E
[
σ2
t+H,H(N)− ρHσ2

t,H(N)− ω(H)|Ĩ(t)
]

= 0,

E
[
σ4
t+H,H(N)− ρ2Hσ4

t,H(N)− a(H;N)σ2
t,H(N)− b(H;N)|Ĩ(t)

]
= 0,

for deterministic coefficients ω(H), a(H;N), and b(H;N) are given in the proof below in (6.5),

(6.16), and (6.17),and

σ4
t,H(N) =

[
1

HN

HN∑
n=1

σ2
t+n/N

]2
,

for any H,N = 1, 2, · · · , and information set Ĩ(t) =
{
σ2
t−kH,H(N), k ≥ 1

}
.

Proof of Proposition C.1

Everywhere below we use the following notation:

Et[X] = E[X|I(t)], Vt[X] = V ar[X|I(t)],

12Note that ω = 2ω̄(ρ/ρ̄) is a function of ρ, ω̄, and ρ̄ in this case.

55



for any random variable X.

From the first moment of volatility (see Section 3.2) we have

Et[σ
2
t+2] = ρEt[σ

2
t+1] + ω,

which leads to:

Et[σ
2
t+2] = ρ2Et[σ

2
t ] + ω(1 + ρ).

Then by iterating H times the same argument, we get

Et[σ
2
t+H ] = ρHEt[σ

2
t ] + ω(1 + ρ+ · · ·+ ρH−1)

= ρHEt[σ
2
t ] + ω

1− ρH

1− ρ
(6.5)

= ρHEt[σ
2
t ] + ω(H)

where

ω(H) = ω
1− ρH

1− ρ
.

Then we see that for any real h ≥ 0,

Et+h[σ2
t+H+h] = ρHEt+h[σ2

t+h] + ω(H),

and, by the law of iterated expectations,

Et[σ
2
t+H+h] = ρHEt[σ

2
t+h] + ω(H).

Adding all above equations for h = 1
N ,

2
N , · · · , HN − 1, HN , and dividing by HN , we get

Et
[
σ2
t+H,H(N)

]
= ρHEt

[
σ2
t,H(N)

]
+ ω(H).

From the second moment of volatility (see Section 3.2) we have

Et
[
σ4
t+1

]
= ρ2Et

[
σ4
t

]
+ aEt

[
σ2
t

]
+ b,

where

a = 2ρω + ρ̄

b = ω2 + ω̄, (6.6)
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and using the same argument,

Et+1

[
σ4
t+2

]
= ρ2Et+1

[
σ4
t+1

]
+ aEt+1

[
σ2
t+1

]
+ b.

Then, by the law of iterated expectations we get

Et
[
σ4
t+2

]
= ρ4Et

[
σ2
t

]
+ a

(
Et
[
σ2
t+1

]
+ ρ2Et

[
σ2
t

])
+ b(1 + ρ2)

and by iterating H times the same argument, we get

Et
[
σ4
t+H

]
= ρ2HEt

[
σ4
t

]
+ a

H−1∑
h=0

ρ2(H−1−h)Et
[
σ2
t+h

]
+ b

H−1∑
h=0

ρ2h.

By applying (6.5) to the second term in the above equation, we get

H−1∑
h=0

ρ2(H−1−h)Et
[
σ2
t+h

]
=

H−1∑
h=0

ρ2(H−1−h)
(
ρhEt[σ

2
t ] + ω(h)

)
= ρH−1

1− ρH

1− ρ
Et[σ

2
t ] + C1,

where

C1 = ω

H−1∑
h=0

ρ2(H−1−h)
1− ρH

1− ρ
= ω

1− ρH−1(1− ρH)

(1− ρ)(1− ρ)2
= ω(H)

1− ρH−1

1− ρ
. (6.7)

Hence,

Et
[
σ4
t+H

]
= ρ2HEt

[
σ4
t

]
+ aρH−1

1− ρH

1− ρ
Et[σ

2
t ] + C2,

where

C2 = aC1 + b

H−1∑
h=0

ρ2h = aC1 + b
1− ρ2H

1− ρ2
. (6.8)

Then now we see that for any h ≥ 0,

Et
[
σ4
t+H+h

]
= ρ2HEt

[
σ4
t+h

]
+ aρH−1

1− ρH

1− ρ
Et[σ

2
t+h] + C2,

which can be rewritten using lag operate L as

Et
[
(1− ρ2HLH)σ4

t+H+h

]
= aρH−1

1− ρH

1− ρ
Et[σ

2
t+h] + C2. (6.9)
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Adding all of the above equations for h = 1
N ,

2
N , · · · , HN − 1, HN , and dividing by HN , we

get

Et

[
(1− ρ2HLH)

1

HN

HN∑
n=0

σ4
t+H+n/N

]
= aρH−1

1− ρH

1− ρ
Et
[
σ2
t,H(N)

]
+ C2. (6.10)

Now we want to compute Et
[
σ4
t+H,H(N)

]
, where

σ4
t,H(N) =

[
1

HN

HN∑
n=1

σ2
t+n/N

]2

=
1

H2N2

HN∑
n=1

σ4
t+n/N +

2

H2N2

HN−1∑
j=1

HN−j∑
n=1

σ2
t+n/Nσ

2
t+(n+j)/N .

This means, after multiplying by HN and shifting time by H, that

1

HN

HN∑
n=1

σ4
t+H+n/N = HNσ4

t+H,H(N)− 2

HN

HN−1∑
j=1

HN−j∑
n=1

σ2
t+H+n/Nσ

2
t+H+(n+j)/N .

Making the corresponding substitution in (6.10) and dividing by HN , we can write

Et
[(

1− ρ2HLH
)
σ4
t+H,H(N)

]
= Et

 2

H2N2

HN−1∑
j=1

HN−j∑
n=1

(
1− ρ2HLH

)
σ2
t+H+n/Nσ

2
t+H+(n+j)/N


+ a0(H;N)Et

[
σ2
t,H(N)

]
+

1

HN
C2,

where

a0(H;N) =
1

HN
aρH−1

1− ρH

1− ρ
. (6.11)

By the law of iterated expectations and (6.5), the expectation of cross-term is

Et

[
σ2
t+H+n/Nσ

2
t+H+(n+j)/N

]
= Et

[
σ2
t+H+n/NEt+H+n/N

[
σ2
t+H+(n+j)/N

]]
= ρj/NEt

[
σ4
t+H+n/N

]
+ ω(j/N)Et

[
σ2
t+H+n/N

]
.

For h = n/N , the equation (6.9) is

Et

[(
1− ρ2HLH

)
σ4
t+H+n/N

]
= a]rhoH−1

1− ρH

1− ρ
Et

[
σ2
t+n/N

]
+ C2.
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Applying (6.5) to Et

[
σ2
t+H+n/N

]
gives us

Et

[(
1− ρ2HLH

)
σ2
t+H+n/N

]
= Et

[
σ2
t+H+n/N

]
− ρ2HEt

[
σ2
t+n/N

]
= ρH(1− ρH)Et

[
σ2
t+n/N

]
+ ω(H).

Hence, the expectation of the cross-term multiplied by
(
1− ρ2HLH

)
is

Et

[(
1− ρ2HLH

)
σ2
t+H+n/Nσ

2
t+H+(n+j)/N

]
= ρj/NEt

[(
1− ρ2HLH

)
σ4
t+H+n/N

]
+ ω(j/N)Et

[(
1− ρ2HLH

)
σ2
t+H+n/N

]
=

[
aρj/NρH−1

1− ρH

1− ρ
+ ω(j/N)ρH(1− ρH)

]
Et

[
σ2
t+n/N

]
+ C3(j), (6.12)

where

C3(j) = ρj/NC2 + ω(j/N)ω(H)

= ρj/N
[
aω(H)

1− ρH−1

1− ρ
+ b

1− ρ2H

1− ρ2

]
+ ω2 1− ρj/N

1− ρ
1− ρH

1− ρ
. (6.13)

Next, we need to express Et

[
σ2
t+n/N

]
in terms of Et

[
σ2
t,H(N)

]
. For that purpose we apply (6.5)

again:

Et

[
σ2
t+n/N

]
= ρn/NEt

[
σ2
t

]
+ ω(n/N).

We find that

Et
[
σ2
t,H(N)

]
=

1

HN

HN∑
n=1

Et

[
σ2
t+n/N

]
=

1

HN

HN∑
n=1

(
ρn/NEt

[
σ2
t

]
+ ω(n/N)

)
=

1

HN

HN∑
n=1

ρn/NEt
[
σ2
t

]
+

1

HN

HN∑
n=1

ω(n/N)

=
ρ1/N

HN

1− ρH

1− ρ1/N
Et
[
σ2
t

]
+ C4,
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where

C4 =
1

HN

HN∑
n=1

ω(n/N) =
ω

HN

(1− ρ1/N )− ρ1/N (1− ρH)

(1− ρ)(1− ρ1/N )
. (6.14)

Solving for Et
[
σ2
t

]
we have

Et
[
σ2
t

]
=
HN

ρ1/N
1− ρ1/N

1− ρH
(
Et
[
σ2
t,H(N)

]
− C4

)
.

and

Et

[
σ2
t+n/N

]
= ρn/NEt

[
σ2
t

]
+ ω(n/N)

= HNρ(n−1)/N
1− ρ1/N

1− ρH
(
Et
[
σ2
t,H(N)

]
− C4

)
+ ω(n/N).

Substituting this result to the expression (6.12) for the cross-terms, we obtain that

Et

[(
1− ρ2HLH

)
σ2
t+H+n/Nσ

2
t+H+(n+j)/N

]
is equal to(

aρj/NρH−1
1− ρH

1− ρ
+ ω(j/N)ρH(1− ρH)

)
×
(
HNρ(n−1)/N

1− ρ1/N

1− ρH
(
Et
[
σ2
t,H(N)

]
− C4

)
+ ω(n/N)

)
+ C3(j)

=

(
aρj/NρH−1

1− ρH

1− ρ
+ ω(j/N)ρH(1− ρH)

)
ρ(n−1)/N

1− ρ1/N

1− ρH
HNEt

[
σ2
t,H(N)

]
+ C5(j, n),

where

C5(j, n) =

(
aρj/NρH−1

1− ρH

1− ρ
+ ω(j/N)ρH(1− ρH)

)
×
(
ω(n/N)−HNρ(n−1)/N 1− ρ1/N

1− ρH
C4

)
+ C3(j). (6.15)

Collecting the terms, we find that the coefficients in the second part of Proposition A.1 are

a(H;N) = a0(H;N)

+
2

HN

ρH

1− ρH
(1− ρ1/N )

HN−1∑
j=1

HN−j∑
n=1

(
ρj/N

a

ρ

1− ρH

1− ρ
+ ω(H)(1− ρn/N )

)
ρ(n−1)/N ,

(6.16)
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and

b(H;N) =
2

H2N2

HN−1∑
j=1

HN−j∑
n=1

C5(j, n) (6.17)

with a0(H;N) defined above in (6.11), ω(H) defined in (6.5), the coefficients C1 through C5 defined

in (6.7), (6.8), (6.13), (6.14), and (6.15).

Proof of Proposition C.2

We deduce from the first equations in Proposition C.1 and Lemma C.1:

lim
H→0

1

H
Et
[
σ2
t+H,H(N)− σ2

t,H(N)
]

= lim
H→0

ρH − 1

H
Et
[
σ2
t,H(N)

]
+ lim
H→0

1

H
ω(H)

= log(ρ)

(
σ2
t −

ω

1− ρ

)
since

lim
H→0

1

H
ω(H) = lim

H→0

ω

1− ρ
1− ρH

H
= − ω

1− ρ
(1− ρ).

This proves the first part of Proposition C.2.

For the second part, we see from the definition of variance and the equation (6.5) that the

conditional moment restrictions given in Proposition C.1 are the same as

Vt
[
σ2
t+H,H(N)

]
= −

(
Et
[
σ2
t+H,H(N)

])2
+ ρ2HEt

[
σ4
t,H(N)

]
+ a(H;N)Et

[
σ2
t,H(N)

]
+ b(H;N)

= −
(
ρHEt

[
σ2
t,H(N)

]
+ ω(H)

)2
+ ρ2HEt

[
σ4
t,H(N)

]
+ a(H;N)Et

[
σ2
t,H(N)

]
+ b(H;N)

= ρ2HVt
[
σ2
t,H(N)

]
+
(
a(H;N)− 2ρHω(H)

)
Et
[
σ2
t,H(N)

]
+
(
b(H;N)− (ω(H))2

)
.

Next, divide this expression on both sides by H and take the limit (N → ∞ implicitly since

σ2
t,H(N) is only defined for H ≥ 1/N):

lim
H→∞

1

H
Vt
[
σ2
t+H,H(N)

]
= lim
H→∞

ρ2H

H
Vt
[
σ2
t,H(N)

]
+ lim
H→∞

a(H;N)− 2ρHω(H)

H
Et
[
σ2
t,H(N)

]
+ lim
H→∞

b(H;N)− (ω(H))2

H
.
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Using the second part in Lemma C.1, we get

lim
H→∞

1

H
Vt
[
σ2
t+H,H(N)

]
− lim
H→∞

ρ2H

H
Vt
[
σ2
t,H(N)

]
= lim
H→∞

2

H
Vt
[
σ2
t,H(N)

]
− lim
H→∞

ρ2H

H
Vt
[
σ2
t,H(N)

]
= lim
H→∞

1

H
Vt
[
σ2
t,H(N)

] (
2− ρ2H

)
= lim
H→∞

1

H
Vt
[
σ2
t,H(N)

]
,

and deduce that the above limit expression can be rewritten as

lim
H→∞

1

H
Vt
[
σ2
t,H(N)

]
= lim
H→∞,N→∞

a(H;N)− 2ρHω(H)

H
Et
[
σ2
t,H(N)

]
+ lim
H→∞,N→∞

b(H;N)− (ω(H))2

H
.

Simplifying a(H;N): Before taking the limit with respect to N → ∞, we need to simplify

a(H;N) by getting rid of summations in

a(H;N)− a0(H;N) =
2

HN

ρH

1− ρH
(

1− ρ1/N
)

×
HN−1∑
j=1

[(
ρj/N

a

ρ

1− ρH

1− ρ
+ ω(H)

)HN−j∑
n=1

ρ(n−1)N − ρ1/Nω(H)

HN−j∑
n=1

ρ2(n−1)/N

]
,

with a0(H;N) and a defined in (6.11) and (6.6) . Here the inner summations are reduced to

HN−j∑
n=1

ρ(n−1)/N =

HN−j−1∑
n=0

ρn/N =
1− ρH−j/N

1− ρ1/N
,

and
HN−j∑
n=1

ρ2(n−1)/N =
1− ρ2H−2j/N

1− ρ2/N
.

So the coefficient becomes

a(H;N)− a0(H;N) =
2

HN

ρH

1− ρH
(

1− ρ1/N
)

×
HN−1∑
j=1

[(
ρj/N

a

ρ

1− ρH

1− ρ
+ ω(H)

)
1− ρH−j/N

1− ρ1/N
− ρ1/Nω(H)

1− ρ2H−2j/N

1− ρ2/N

]
,
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or

a(H;N)− a0(H;N) =
2

HN

ρH

1− ρH

a
ρ

1− ρH

1− ρ

HN−1∑
j=1

(ρj/N − ρH) + ω(H)

HN−1∑
j=1

(1− ρH−j/N )


− 2

HN

ρH

1− ρH
ρ1/N

1 + ρ1/N
ω(H)

HN−1∑
j=1

(
1− ρ2H−2j/N

)
.

In this expression, we have three summations over j:

HN−1∑
j=1

ρH−j/N =

HN−1∑
j=1

ρj/N =
ρ1/N − ρH

1− ρ1/N
, and

HN−1∑
j=1

ρ2H−2j/N =
ρ2/N − ρ2H

1− ρ2/N

Substituting these we have

a(H;N)− a0(H;N) = − 2

HN

a

ρ

ρH

1− ρ

(
ρH(HN − 1)− ρ1/N − ρH

1− ρ1/N

)
+

2

HN

ρH

1− ρH
ω(H)

(
(HN − 1)− ρ1/N − ρH

1− ρ1/N

)
− 2

HN

ρH

1− ρH
ρ1/N

1 + ρ1/N
ω(H)

(
(HN − 1)− ρ2/N − ρ2H

1− ρ2/N

)
.

Taking the limit with N → ∞: Taking the limit with respect to N → ∞, the coefficient

becomes

lim
N→∞

a(H;N) = − 2

H

a

ρ

ρH

1− ρ

(
1− ρH

log(ρ)
+ ρHH

)
+ 2

ρH

1− ρH
ω(H)

H

(
H +

1− ρH

log(ρ)

)
(6.18)

− ρH

1− ρH
ω(H)

H

(
H +

1− ρ2H

log(ρ2)

)
.

while

lim
N→∞

a0(H;N) = lim
N→∞

1

HN
aρH−1

1− ρH

1− ρ
= 0.
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Now divide (6.18) by H:

1

H
lim
N→∞

a(H;N) = −2
a

ρ

ρH

1− ρ
1

H

(
1− ρH

Hlog(ρ)
+ ρH

)
+ 2

ρH

1− ρH
ω(H)

H

(
1 +

1− ρH

Hlog(ρ)

)
− ρH

1− ρH
ω(H)

H

(
1 +

1− ρ2H

Hlog(ρ2)

)
.

Series expansion of this expression around H = 0 gives the following result:

1

H
lim
N→∞

a(H;N) = −a
ρ

log(ρ)

1− ρ
+O(H).

Hence,

lim
H→0,N→∞

a(H;N)

H
= −a

ρ

log(ρ)

1− ρ
.

Taking the limit of the constant we obtain13

lim
H→0,N→∞

b(H;N)

H
=

(
a

ρ
− 2b

ω

)
ωlog(ρ)

1− ρ2
.

with b defined in (6.6).

Finally,

lim
H→0

(ω(H))2

H
= lim
H→0

(
ω(H)

H

)2

H = 0.

This result concludes the proof and shows explicitly that

lim
H→0,N→∞

1

H
Vt
[
σ2
t,H(N)

]
=

(
−a
ρ

log(ρ)

1− ρ
+ 2ω

log(ρ)

1− ρ

)
σ2
t +

(
a

ρ
− 2b

ω

)
ωlog(ρ)

1− ρ2

− log(ρ)

1− ρ

[(
a

ρ
− 2ω

)
σ2
t +

(
a

ρ
− 2b

ω

)
ω

1 + ρ

]
.

In case of affine first two moments as in (6.4), we have

a = 2ρω + ρ̄, b = ω2 + ω̄.

13The analytical expression for b(H;N) after taking all summations is several pages long. Taking the limit of this
expression by hand does not seem feasible. These operations were performed in Mathematica software and available
upon request.
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Hence, the limit becomes

lim
H→0,N→∞

1

H
Vt
[
σ2
t,H(N)

]
= − ρ̄

ρ

log(ρ)

1− ρ

(
σ2
t +

ω − 2ω̄(ρ/ρ̄)

1 + ρ

)
.

For the ARG(1) case, where ω = 2ω̄(ρ/ρ̄), the same limit becomes

lim
H→0,N→∞

1

H
Vt
[
σ2
t,H(N)

]
= − ρ̄

ρ

log(ρ)

1− ρ
σ2
t ,

as expected from a particular case of Gourieroux and Jasiak (2006, p.137).

Appendix D: Choice of instruments and identification

While the GMM estimation is based on realized variance data as we see in Section 5, we first

sketch what would be a GMM strategy based on the observation of the volatility factor σ2
t .

Estimation of θσ is then based on the J conditional moment restrictions:

E[exp
(
−ujσ2

t+1

)
−Ψt,θσ (uj)

∣∣σ2
t

]
= 0, j = 1, 2, ..., J

Ψt,θσ (u) = exp
(
−a(u)σ2

t − b(u)
)
, θσ = (ρ, δ, c)

′

a(u) =
ρu

1 + cu
, b(u) = δ log (1 + cu)

where {uj ; j = 1, ..., J} is a grid of J values of the real (or complex) number u. It would be theo-

retically asymptotically optimal to elicit the largest possible grid. However, there are some finite

sample bias-variance trade off.

For a given grid, the exponential affine structure is very convenient for an explicit computation

of optimal instruments. They are given by the formula:[
∂Ψ′t,θσ (u1)

∂θ
, ...,

∂Ψ′t,θσ (uJ)

∂θ

]
Σ−1t,θσ (u1, ..., uJ) (6.19)

where Σ−1t,θσ (u1, ..., uJ) is the (J × J) matrix whose (j, l) coefficient is:

Cov[exp
(
−ujσ2

t+1

)
, exp

(
−ulσ2

t+1

) ∣∣σ2
t

]
= Ψt,θσ (uj + ul)−Ψt,θσ (uj)Ψt,θσ (ul).

In other words, optimal instruments are obtained by combining functions of the type exp
(
−a(u)σ2

t − b(u)
)
.

To keep it simple, this may suggest to work with what Carrasco et al. (2007) have dubbed the Single

Index (SI) moments:

E
{

exp
(
−ujσ2

t

) [
exp

(
−ujσ2

t+1

)
−Ψt,θσ (uj)

]}
= 0, j = 1, ..., J.
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However, it is worth reminding that an arbitrary choice of instruments may not deliver identifi-

cation. As pointed out by Dominguez and Lobato (2004), even the supposedly optimal instruments

may not deliver identification. It is then worth proving (proof given below) that:

Proposition D.1:

Assume that the observations
{
σ2
t

}
follow a stationary ARG(1) process. Then, for J sufficiently

large, the J unconditional moment restrictions:

E
{

exp
(
−ujσ2

t

) [
exp

(
−ujσ2

t+1

)
−Ψt,θσ (uj)

]}
= 0, j = 1, ..., J

identify the parameters θσ of the ARG(1) model.

In spite of the positive result of Proposition D.1., we do not expect very accurate GMM estimators

since the above unconditional moment conditions are only about the marginal distribution of σ2
t and(

σ2
t + σ2

t+1

)
. While the marginal distribution of σ2

t is of course unable to identify the persistence

parameter ρ (it is actually a gamma distribution with parameters δ and c/ (1− ρ))), its comparison

with the marginal distribution of
(
σ2
t + σ2

t+1

)
does the job but in a very noisy way. It will be of

course much more efficient to consider the Double Index (DI) moments defined by:

E
{

exp
(
−ukσ2

t

) [
exp

(
−ujσ2

t+1

)
−Ψt,θσ (uj)

]}
= 0, j = 1, ..., J, k = 1, ...,K.

Figures 7 and 8 report a compelling Monte Carlo evidence about the better accuracy of the DI

method. Note that it will not provide in general the optimal instruments since we know from (6.19)

that each optimal instrument should include all the indices uj , j = 1, ..., J.
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Figures

Figure 7: Distribution of GMM estimates for ARG(1) volatility model with the SI-moments

* The true values are: (ρ0 = 0.6, δ0 = 1.5, c0 = 0.0106).
* We used 5 equally spaced u’s on [1i, 10i] on which the conditional characteristic function and the instrument
are evaluated.
* An identity is used as a weighting matrix.
* 10 randomly generated values were used as initial values for each ρ, δ, and c.
* We used 5000 replications.
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Figure 8: Distribution of GMM estimates for ARG(1) volatility model with the DI-moments

* The true values are: (ρ0 = 0.6, δ0 = 1.5, c0 = 0.0106).
* We used 5 equally spaced u’s on [1i, 10i] on which the conditional characteristic function.
* Let v be a complex number on which the DI-instrument is evaluated. The right hand side panel used v = 1i
and the left hand side one used v = 1i and v = 10i.
* An identity is used as a weighting matrix.
* 10 randomly generated values were used as initial values for each ρ, δ, and c.
* We used 5000 replications

Proof of Proposition D.1

We look for values of parameters θσ = (ρ, δ, c)
′

solution of

E
{

exp
[
−u
(
σ2
t + σ2

t+1

)]}
= E

{
exp

(
−uσ2

t

)
Ψt,θσ (u)

}
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for several possible values of the complex number u. From the moment generating function of(
σ2
t + σ2

t+1

)
and the marginal distribution of σ2

t which is, this equation can be rewritten:

(
1 + c0u

)−δ0 (
1 +

c0

1− ρ0

[
ρ0u

1 + c0u
+ u

])−δ0

=
{

(1 + cu)
δ/δ0

}−δ0 (
1 +

c0

1− ρ0

[
ρu

1 + cu
+ u

])−δ0

where
(
ρ0, δ0, c0

)
stands for the true unknown value of (ρ, δ, c). In other words, we must have

A(u) = B(u) with:

A(u) = (1 + cu)
δ/δ0

(
1 +

c0

1− ρ0

[
ρu

1 + cu
+ u

])
B(u) =

(
1 + c0u

)(
1 +

c0

1− ρ0

[
ρ0u

1 + c0u
+ u

])
= 1 + c0u+

c0

1− ρ0
[
ρ0u+ u+ c0u2

]
= 1 +

1

1− ρ0
[
2c0u+

(
c0
)2
u2
]
.

In particular:

A′(0) = B′(0)

⇐⇒ 2c0

1− ρ0
= c

δ

δ0
+

c0

1− ρ0
(1 + ρ)

⇐⇒ c0

1− ρ0
=

c

1− ρ
.
δ

δ0
.

By plugging in, we can rewrite:

A(u) = (1 + cu)
δ/δ0

(
1 +

c

1− ρ
.
δ

δ0

[
ρu

1 + cu
+ u

])
= (1 + cu)

x−1
(

1 + cu+
cx

1− ρ
[
ρu+ u+ cu2

])
= (1 + cu)

x−1
Ã(u)

where x = δ/δ0.

Note that Ã(u) and B(u) are polynomial of degree two with:

Ã (−1/c) = − ρx

1− ρ
6= 0

B (−1/c) = − ρ0

1− ρ0
6= 0.
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Therefore:

A(u) = (1 + cu)
x−1

Ã(u) = B(u),∀u

=⇒ x = 1 =⇒ Ã(u) = B(u),∀u

=⇒ ρ = ρ0 =⇒ c = c0

=⇒ (ρ, δ, c) =
(
ρ0, δ0, c0

)
.
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