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We use a stochastic frontier analysis (SFA) model to investigate the impact of domestic and foreign 

R&D on agricultural productivity for a sample of 30 sub-Sahara African (SSA) countries during 

the period 1981-2011. The results reveal that total factor productivity is strongly influenced by 

both domestic and foreign R&D spending in the agricultural sector, albeit the former plays a more 

important role. The decomposition of TFP and its components show an annual average rate of 

productivity growth of 4.8%, driven mainly by technical change with an average annual 

improvement of 3.2%. Efficiency change had a negative impact on productivity and generally 

exhibited a net reduction in TFP growth at an average annual growth rate of -0.8%. Our sub-

regional analyses indicate the West African region recorded the highest performance productivity 

growth during the period under consideration. Overall, our findings highlight the crucial role of 

knowledge stocks in driving agricultural productivity in the SSA region. 
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1. Introduction 

Investments in R&D are generally seen as crucial to achieving productivity growth through new 

knowledge and innovation (Alston et al, 1999; Hall and Scobie, 2006; Alene, 2010; Rahman and 

Salim, 2013). This notion is also well established within the Sub-Saharan African (SSA) context 

(see Masters et al., 1998; Maredia et al., 2000; Beintema and Stads, 2011) where agriculture 

significantly contributes to household income and country GDP. Meanwhile, there is also a long-

standing consensus that growth in the use of conventional inputs do not account for much of the 

productivity growth in agricultural output (Schultz,1956; Fan et al. 2004; Timmer, 2005). Hence, 

there is a need for clearer understanding of mechanisms linking R&D investments and agricultural 

productivity. In this study, we evaluate the impact of domestic and foreign R&D on agricultural 

productivity by investigating the role of knowledge shocks as a mechanism of effect. Although, a 

relatively sparse body of literature suggests that total factor productivity (TFP) in the agricultural 

sectors of developing countries is shaped by both domestic and foreign R&D investments (Johnson 

and Evenson, 1999; Gutierrez, 2003; Luh et al., 2008), the available body of evidence does not 

provide compelling evidence on the relative contributions of both R&D investment sources across 

the agricultural sector in the SSA region.  

For instance, while Luh et al. (2008) focus on eight East Asian economies, Gutierrez (2003) 

and Johnson and Evenson (1999) used only six SSA countries (Kenya, Malawi, South Africa, 

Tanzania, Zambia and Zimbabwe) in their data samples. In addition, the above studies also tend 

to adopt a two-stage approach in which TFP is treated as exogenous and estimated using the 

traditional growth-accounting procedure in the first stage. In the second stage, it is then regressed 

on measures of domestic and foreign R&D. This approach has been criticized for its logical 

inconsistency and a potential to result in substantial regressor problems since the first stage treats 
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TFP as exogenous, while the second stage treats it as a function of a range of endogenous 

determinants such as R&D investments (Koop et al., 1999; Liao et al., 2009). Moreover, the 

methodology and estimation methods in these studies are largely dominated by non-parametric 

productivity techniques (e.g. data envelopment analysis (DEA)) 1  that do not allow for 

measurement error and random shocks such as bad luck. In this paper, study the extent to which 

domestic and foreign R&D contributes to agricultural productivity across the SSA region. The 

reasons are two-fold.  

First, rather than the parametric productivity analysis previously employed by extant 

studies, we use a stochastic frontier analysis (SFA). The SFA confers the relative advantage of 

analyzing the efficiency and productivity of economic units while also permitting the incorporation 

of random measurement error and random shocks such as bad luck. At the same time, the SFA 

approach employs a single-step evaluation of the relationship between R&D and agricultural 

productivity, which overcomes the methodological inconsistency observed in the two-step 

estimation described above. Further, within the SFA framework, we are able to decompose TFP 

growth into its components: returns to scale (RTS), technological progress (TP) and technical 

efficiency change (TEC). 

Second, an evaluation of the relative contributions of domestic and foreign R&D to 

agricultural productivity in the SSA region could shed new light on the hitherto unclear mechanism 

through which knowledge and innovation shape agricultural productivity in the SSA. At first blush, 

one could argue that the SSA region is likely to benefit more from foreign knowledge spillovers.  

For instance, Pardey and Alston (2010) showed that the research-intensity gap between developed 

                                                           
1 For an extensive review of this non-parametric approach, see Hatami-Marbini et al. (2011) 
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and developing countries is growing at the rate of more than tenfold. Given the non-excludability 

nature of knowledge, it is plausible for knowledge spillovers to occur across national boundaries, 

thereby enabling countries to access foreign knowledge stocks from other countries in addition to 

its own knowledge stock.2 However, there is a counter argument that the SSA region is better off 

focusing on domestic innovation efforts since it suffers from a relative dearth of systems and 

institutions required to facilitate the transfer of foreign technology (Johnson and Evenson, 2000; 

O’Gorman, 2015). Consequently, we believe that a comprehensive scorecard on the contributions 

of R&D investments to agricultural productivity could prove to be a valuable tool for guiding 

innovation policy in the SSA region (Spielman et al., 2009). With adequate information on these 

productivity effects, it may well be possible to differentiate and benchmark countries in a way that 

policy interventions can be better targeted (Balzat and Hanusch, 2004; Grupp and Mogee, 2004; 

OECD, 2005; Spielman et al., 2009). This is made all the more important by the reality that 

agriculture is front and center in the region’s economy3.  

 The remainder of the paper proceeds as follows. Section 2 presents a review of the extant 

literature. Section 3 contains the basic analytical model which offers a framework to the R&D and 

productivity nexus, as well as the methodological approach adopted in this paper.  Section 4 details 

the data description and source and section 5 provides the empirical result and discussion.  Section 

6 presents the concluding remarks and policy recommendation. 

 

2.  Literature review 

                                                           
2 There is a large literature on the contributions of foreign R&D to domestic productivity growth at different levels 
of aggregation and across different industry contexts (see Coe and Helpman, 1995; Coe et al, 1997; Keller, 2002; 
Wang and Tsai, 2003; Eaton and Henry et al., 2009; Le, 2013; Ulku and Pamukcu, 2015; Glass et al., 2016).  
3 Majority of the SSA region’s population live in often deprived areas such as rural settlements where the main 
source of economic livelihood depends directly or indirectly on agriculture (Diao et al., 2010). 
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A plethora of studies have explored the performance and changes in agricultural productivity 

across sub-Saharan Africa in the context of country-level and cross-country analyses, different 

methodological approaches, variable choices and samples. One strand of these studies provides 

evidence of poor aggregate performance of African agricultural productivity in the 1960s and 

1970s (see Nkamleu, 2004). The other strand (e.g. Block, 1994; Lusigi and Thirtle, 1997; Fulginiti 

et al., 2004, Nin-Pratt and Yu, 2008; Alene 2010) reveals a significant recovery and positive gain 

in African productivity since the mid-1980s. In addition, empirical evidence also identifies 

technical progress (technological change) as the main source of the agricultural total factor 

productivity in the sub-Sahara Africa (Alene, 2010; Yu and Nin-Pratt 2011). Consistent with these 

studies is that fact they all acknowledge the significant impacts of agricultural research and 

development (R&D) on agricultural productivity in the region.  

The wider literature generally suggests that R&D investments in agricultural research 

create new knowledge and innovation that drive improvement in agricultural productivity 

(Griliches, 1979; Alston et al, 1999; Hall and Scobie, 2006; Binenbaum et al., 2008; Alene, 2010; 

Rahman and Salim, 2013). Most of these studies also demonstrate that public and private research 

show increasing rate of return. However, Binenbaum et al., (2008) found evidence of a decline in 

the rate of return on public R&D investment in Australian agriculture.  Nevertheless, the common 

consensus that emerges from the existing empirical studies is that R&D investments substantially 

fuel improvement in agricultural productivity.  

Studies focusing on identifying the sources of agricultural productivity growth for sub-

Saharan Africa over the past decades reveal that R&D expenditure is one of the principal sources 

of productivity growth. The returns on agricultural research investments in SSA have also been 

shown to be reasonably high (see Masters et al., 1998; Maredia et al., 2000). Beintema and Stads 
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(2011) showed that investment in agricultural R&D remains crucial to increasing agricultural 

productivity and reducing poverty in Africa, while also addressing other challenges such as rapid 

population growth, poor nutrition, and adaptation to climate change.  

Following the seminal work of Coe and Helpman (1995), there have been growing interests 

in assessing the influence of foreign R&D spill over on productivity growth4. For instance, Sachs 

and Warner, (1995); Coe et al., (1997); Keller, (2000) and Liao et al (2009) confirmed the impact 

of foreign R&D spillovers on productivity using industry level analysis. They identified that both 

domestic and foreign capital stock have significant effects on total factor productivity. Their 

findings suggest that foreign R&D spillovers through trade imports are major determinants of TFP 

growth. Studies which focus on agricultural sector found the presence of robust international 

spillovers when analysing the effects of foreign R&D spillovers and domestic R&D on agricultural 

productivity growth (see Johnson and Evenson, 1999; Schimmelpfenning and Thirtle, 1999, 

Gutierrez and Gutierrez, 2003; Luh, et al., 2008; Le, 2012).  

Using Data Envelopment Approach (DEA) to first compute Malmquist TFP, Gutierrez and 

Gutierrez, (2003) show that total factor productivity is strongly influenced by domestic as well as 

foreign public research and development (R&D) for a sample of 47 countries. Similarly, Luh et 

al., (2008) compute Malmquist TFP using DEA and regressed the TFP on other variables including 

both the domestic R&D and international spillovers for 8 East Asian economies. Johnson and 

Evenson (1999) show that both international and inter-industrial spillovers add to agricultural total 

factor productivity and distinguishes between the direct and indirect effects of spillovers as well 

as public and private, domestic and foreign sources. Le (2012) also reveals that import and tertiary 

                                                           
4 It is assumed that accumulated spending on R&D by a country and its trade partners helps to explains productivity. 
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student flows can effectively transmit technological knowledge from industrialized countries to 

African countries.  

Considering the studies above, a prominent theme in the productivity literature has been 

the relative roles that technology and efficiency may play in explaining productivity growth across 

countries. Whilst past studies (e.g, Alene, 2010; Beintema and Stads, 2011; Mohan, 2014) have 

examined the impact of domestic R&D on agricultural productivity, this paper offers three 

contributions to the literature. First, we incorporate foreign R&D in our model in order to examine 

if it is an important channel for the spillover of international knowledge stock. Second, this study 

is closely related to Le (2012) which used panel cointegration estimation techniques to investigate 

the impact of technological knowledge from industrialized countries on agricultural productivity 

in Africa. However, this paper differs from Le (2012) as we employ a stochastic frontier analysis 

technique which enables us to uncover the contribution of efficiency (an equally important source 

of TFP growth), in addition to accounting for the impact of technology on TFP.  Third, by 

unbundling the different components of TFP growth across regions and sampled countries, we 

provide a more comprehensive analysis of agricultural productivity. 

 

3. Methodology 

The empirical approach used in this study to analyse the impact of domestic and foreign R&D on 

agricultural productivity in sub-Sahara African countries is the parametric stochastic frontier 

analysis (SFA) (Aigner et al., 1977; Meeusen and van den Broeck, 1977). Unlike the non-

parametric techniques such as the data envelopment analysis (DEA), SFA models allow for 
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measurement error and other random effects such as luck5 (see Kumbhakar and Lovell 2000; 

Matousek and Taci, 2004 for extensive reviews and discussions on non-parametric and parametric 

approaches to estimating efficiency and productivity). To motivate the empirical framework of the 

approach used in the study, we briefly describe a model that can be used to characterize the 

relationship between domestic R&D, foreign R&D and productivity growth. The model is similar 

to the formulations proposed by Kneller and Stevens (2006) and Liao et al (2012).  

For simplicity, the starting point for our analysis is a functional relationship between output 

and three input factors which characterises the agricultural production processes. Let i index 

country and let t index time, and let 𝑌𝑖𝑡 denote the time-t agricultural value added produced by 

country i in period t. Similarly, let 𝐾𝑖𝑡 denote the time-t capital stock of country-i, and 𝐾𝑖𝑡 and 𝑁𝑖𝑡 

denote its cultivated area and labor force, respectively. In what follows, when convenient, we will 

suppress the country and time subscripts. The production function can be expressed as shown in 

equation (1):  

 𝑌𝑖𝑡 = 𝑓 (𝐾𝑖𝑡, 𝐿𝑖𝑡, 𝑁𝑖𝑡; A𝑖𝑡 )    [1] 

 

where  A𝑖𝑡, is a coefficient that denotes the level of technology i.e. total factor productivity in 

country i. 

 

Drawing from the vast literature on R&D and productivity growth (e.g. Grossman and Helpman, 

1991; Coe and Helpman, 1995; Coe et al., 1997; van Pottelsberghe and Lichtenberg, 2001), it is 

                                                           
5 In the application of frontier modelling techniques to agricultural and manufacturing in developing countries, 
stochastic frontier analysis is adjudged to be more appropriate than DEA where the data are considerably 
influenced by measurement error (see Liao et all, 2007)  



9 
 
 

assumed that technology is factor-neutral but is a function of domestically generated knowledge, 

𝐷𝑖𝑡 and knowledge generated by a producer that lie on the technical frontier 𝑃𝑖𝑡. Then   

 

A𝑖𝑡 = 𝑔(𝐷𝑖𝑡, 𝑃𝑖𝑡 )      [2] 

 

Therefore equation (1) becomes,  

 

 

 𝑌𝑖𝑡 =  𝑔(𝐷𝑖𝑡, 𝑃𝑖𝑡)(𝐾𝑖𝑡, 𝐿𝑖𝑡, 𝑁𝑖𝑡)       [3] 

 

 

The literature on innovation and national systems of innovation (see Schumpeter 1934; Freeman 

1987) has advocated the vital role of investment in research and development. In variant with the 

neoclassical exogenous growth model, Romer (1990) extended Grossman and Helpman (1991) 

and Aghion and Howitt (1992) with the endogenous growth theory showing that advances in 

technical knowledge are generated by investing resources in R&D. Therefore, innovation feeds on 

the level of domestic knowledge which is assumed to be a function of the cumulative investment 

in R&D i.e. the stock of domestic R&D6. 

𝐷𝑖𝑡 =  𝐷𝑅𝐷𝑖𝑡
𝜃 , 0 < 𝜃 < 1                   [4] 

 

                                                           
6 For notational convenience, the stock of domestic R&D is expressed as DRD in the paper. The stock of domestic 

R&D is measured by accumulating R&D expenditures devoted to agricultural research extracted from Agricultural 

Science and Technology Indicators (ASTI) database for the period 1981–2011. It only considers expenditures on R&D 

as there is no available data on the actual adopted technology. According to ASTI,  they only consider  actual spending 

data which are processed in accordance with the standard procedures and definitions developed by the Organisation 

for Economic Co-operation and Development (OECD) and the United Nations Educational, Science, and Cultural 

Organization (UNESCO), as described in the Frascati Manual, the Oslo Manual, and the Canberra Manual. The 

perpetual inventory method is used to produce R&D stocks from this expenditure flow data. Details of how R&D 

stock is constructed is provided under in section 4; data description and sources. 
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where 𝐷𝑅𝐷𝑖𝑡  is the stock domestic R&D in country i at time t and  𝜃 measures the return to 

domestic R&D. 

Additionally, it is also widely accepted that a country’s productivity as well as its economic 

growth performance depends on the level of technology transfers from innovation leaders and the 

efficiency with which they are absorbed and diffused (Blomstrom et al, 1994; Eaton & Kortum, 

1999; Kneller & Stevens, 2006). Hence, if a country’s domestically generated knowledge is a 

function of the stock of R&D, then we can assume that frontier technology is, in turn, a function 

of the R&D stock in the foreign country, which can be spread via various channels, notably 

international trade etc. Knowledge spillovers across production units occur because producers that 

lie behind the technical frontier attempt to imitate the technologies adopted by producers that lie 

on the technical frontier, as the marginal costs of knowledge incurred are almost negligible, and 

therefore they benefit from these positive externalities (Liao et al, 2012). 

 
                                            𝑃𝑖𝑡 = ℎ(𝐹𝑅𝐷𝑖𝑡)                                    [5]    

 

where 𝐹𝑅𝐷𝑖𝑡 is foreign R&D stock in country i at time t7. Intuitively, two insights emerge from 

the theoretical formulation. First, an economy’s productivity depends on stock of knowledge 

resulting from the sum of previous investment in R&D.  Secondly, a country’s productivity is 

equally a function of R&D stock of its trade partner. So far, we have presumed knowledge 

spillovers are fully internalized by recipient producer, and there is no inefficiency in knowledge 

flow. Admittedly, having access to technology transfer from foreign countries is not necessarily 

                                                           
7 The expression is valid to the extent that we our model is based on the assumption that the trade partners are 
countries which are technologically advanced that African countries. In effect, the R&D in those countries are more 
advanced than those of our sampled countries rather than being on par or below. Hence a foreign producer is 
assumed to lie on the technical frontier. The relationship will no longer hold if the domestic R&D is greater than the 
foreign R&D. In this case, a domestic producer will occupy the frontier position. 
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equivalent to productivity growth. However, it is crucial to understand whether the technology 

transfer can be utilized efficiently in a domestic country. Hence, the actual output (Y) can be given 

as  

  𝑌𝑖𝑡 =  𝑔(𝐷𝑖𝑡, 𝑃𝑖𝑡)(𝐾𝑖𝑡, 𝐿𝑖𝑡, 𝑁𝑖𝑡)𝜓𝑖𝑡                   [6]                                                

 

Where 𝜓𝑖𝑡  (0 < 𝜓 ≤ 1 ) denotes technical efficiency, reflecting the difference in the outcome 

from the application of technical knowledge. If  𝜓 = 1, a country uses efficiently all of the inputs 

in the production process and it is 100% efficient; otherwise, impediments to absorption will cause 

the country to produce within the industry frontier. The frontier approach enables us to capture 

efficiency change, technological change and scale change as components of productivity change.  

 

3.1 Decomposition of TFP 

We employ stochastic frontier analysis for the productivity decomposition which assumes an 

existence of an unobservable production possibility frontier with production-unit one sided 

deviation from the frontier. Consider the following generalization of empirical framework of 

stochastic production frontier; 

     𝑌𝑖𝑡 =  𝑓(𝑋𝑖𝑡, 𝑡: β)exp(𝑣𝑖𝑡 − 𝑢𝑖𝑡)                  [7]                                                          

 

where 𝑌𝑖𝑡 denotes the agricultural value added by country i in year t, 𝑋𝑖𝑡  is the set of inputs and β  

is a vector of parameters to be estimated. As is often done in the literature, we include a linear time 

trend variable t, representing technological progress (TP) arising from other exogenous sources.  

 

The error term 𝑢𝑖𝑡  is non-negative random variables which are assumed to be independently 

distributed and associated with technical inefficiency of production which restrain producer from 

achieving the maximum output from their given inputs and technology. The error term  𝑣𝑖𝑡 , 
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represents all random disturbances that are not within the control of the producer such as weather, 

civil unrest and are assumed to be independent and identically distributed with mean zero and 

variance. According to Jondrow et al. (1982), the technical efficiency level of production of unit i 

at time t is the obtained viz; 

  𝑇𝐸𝑖𝑡 =  exp(−𝐸[𝑢𝑖𝑡|𝑣𝑖𝑡 − 𝑢𝑖𝑡])                        [8]                                                                                            

 

According to Kumbhakar, and Lovell (2000), in the primal approach, total factor productivity 

changes can be split into three components when price information is not available. The rate of 

technical change is given by the partial differentiation of the deterministic component, 𝑓(𝑥𝑖𝑡, 𝑡, β).,    

   𝑇𝐶 =
𝜕𝑙𝑛𝑓(.)

𝜕𝑡
        [9] 

       

The rate of change in efficiency is given by;  

       

   𝐸𝐶 = −
𝜕𝑢

𝜕𝑡
          [10] 

TFP growth can be expressed as output growth unexplained by the input growth i.e. subtracting 

the weighted growth of factor inputs from the growth rate of output. 

 

    𝑇𝐹𝑃̇    =  𝒴̇ − ∑ 𝑆𝑗

𝑗

𝑥𝑗̇            

            [11] 

where a dot over a variable indicates its rate of change, 𝑆𝑗  is the expenditure or observed 

expenditure on input 𝑥𝑗. Total differentiation of equation [7] with respect to time and using the 

expression of  𝑇𝐹𝑃̇  in (11), and after some algebraic manipulations, we get: 

𝑇𝐹𝑃̇  =  
𝜕𝑙𝑛𝑓(. )

𝜕𝑡
+ (ℇ − 1) ∑ ξ𝑗𝑥𝑗̇

𝑗

∑(ξ𝑗 − 𝑆𝑗)𝑥𝑗
̇

𝑗

 −
𝜕𝑢

𝜕𝑡
                                                         [12]     
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where ℇ = ∑ ℇ𝑗𝑗  are the elasticities of output with respect to each of the inputs,   ξ𝑗 = ℇ𝑗 ℇ⁄ .  

 

However, since price information is not available, the allocative component cannot be calculated 

empirically regardless of whether or not allocative inefficiency exists. In this case it is implicitly 

assumed that 𝑆𝑗 =  ξ𝑗   ∀𝑗 , and the decomposition in equation (12) simplifies to  

 

𝑇𝐹𝑃̇  =  
𝜕𝑙𝑛𝑓(.)

𝜕𝑡
+ (ℇ − 1) ∑ ξ𝑗𝑥𝑗̇𝑗  −

𝜕𝑢

𝜕𝑡
               [13] 

 

Thus, equation (13) represents a decomposition of the conventional measure of total factor 

productivity change into three components: technological progress, technical efficiency change, 

and scale change.   The first term, 
𝜕𝑙𝑛𝑓(.)

𝜕𝑡
, corresponds to technical change, where 

𝜕𝑙𝑛𝑓(.)

𝜕𝑡
> 0, 

represents an upward shift of the production frontier (technical progress). The second term 

captures the scale change (ℇ − 1) ∑ ξ𝑗𝑥𝑗̇𝑗  . Finally, the last term represents efficiency change, −
𝜕𝑢

𝜕𝑡
 

, where  −
𝜕𝑢

𝜕𝑡
 > 0 represents a reduction of inefficiency. This decomposition of TFP growth offers 

policy implication for differentiating between innovation or adoption of new technology by “best 

practise” producer from the diffusion of technology. In the event that a high rate of technological 

progress and a low rate of change of technical efficiency are contemporaneous, this could indicate 

the failures in achieving technological mastery or diffusion (Kalirajan et al., 1996). 

 

3.2 Model specification 

We model our production function, Eq. (7), with more flexible translog function. The translog 

functional form is a preferred functional form for frontier analysis given that it provides a good 

first-order approximation and it does not impose constant elasticity of substitution (see Kumbhakar 
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and Wang 2005). Given that the suitability of Cobb-Douglas has been questioned following the 

work of Duffy and Papageorgious, (2000), the Battese and Coelli (1992) time-varying production 

frontier is adopted in this study. Notwithstanding the discussions above on functional forms, we 

avoid arbitrariness in our modelling exercise by estimating both Cobb-Douglas and Translog 

specifications in our study. We then selected the preferred specification based on likelihood ratio 

(LR) tests. The Translog production frontier can be expressed as follows: 

            

             ln 𝑌𝑖𝑡 =         𝛽0 + ∑ 𝛽𝑗

5

𝑗=1

ln𝑋𝑗𝑖𝑡  +  𝛽𝑡𝑇 +  
1

2
∑ ∑ 𝛽𝑗𝑘

5

𝑘=1

ln𝑋𝑗𝑖𝑡 ln𝑋𝑘𝑖𝑡 

5

𝑗

+  
1

2
 𝛽𝑡𝑡𝑇2

+ ∑ 𝛽𝑗𝑡 ln𝑋𝑗𝑖𝑡 𝑇

5

𝑗

+   𝛼𝐻𝐻𝐶𝑖𝑡 +  𝛼𝐼𝐼𝑁𝑆𝑇𝑖𝑡 + 𝛼𝑟𝐷𝑟 +  𝑣𝑖𝑡 − 𝑢𝑖𝑡                [14] 

 

where 𝑌𝑖𝑡 is the agricultural value added of country i in time t, 𝑋𝑗𝑖𝑡   is the jth factor inputs including 

R&D variables by the country i in time t to produce Y.  The five inputs included in the production 

process are capital, land, labour, domestic R&D and foreign R&D, T is time trend, 𝐻𝐶𝑖𝑡 is human 

capital, 𝐼𝑁𝑆𝑇𝑖𝑡 is institution and output and factor inputs remain as previously defined. Eq. (14) 

also contains regional dummies  (𝐷𝑟 ) which captures unobserved characteristics such as weather. 

The distribution of the technical inefficiency effect, 𝑢 , is taken to be non-negative 

truncation of the normal distribution, following Battese and Coelli (1992), as expressed below; 

  

                                𝑢𝑖𝑡 =  𝑢𝑖 . exp {−𝜂(𝑡 − 𝑇)} 

                               𝑢𝑖  ~ 𝑁+(0, 𝜎𝑣
2) 

                                   𝑣𝑖𝑡 ~ 𝑁(0, 𝜎𝑣
2)                                                                                        [15]                               
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The parameter 𝜂 represents the rate of change in technical efficiency, and the non-negative random 

variable 𝑢𝑖 is the technical inefficiency effect for the i-th production unit. A negative value of 𝜂 

implies that there is no improvement in the level of technical efficiency in the production unit 

overtime. A value of 𝜂 = 0 means no time effect. 

 

4. Data description and sources 

This study is based on a panel dataset, constructed for 30 African countries8 over the period 

beginning from 1981 and extending through 2011, totaling 705 observations as reported in Table 

1. The dataset is an unbalanced panel as we eliminated years for which data are unavailable. The 

selection of the countries in our sample is determined primarily by data availability, especially by 

data on our main variable of interest, public agricultural R&D expenditure which is extracted from 

the Agricultural Science and Technology Indicators (ASTI) database9. We only consider public 

agricultural R&D expenditure as there are no documented data on private agricultural R&D 

investment in Africa. An important feature of our dataset is that the countries in our study share 

symmetries in that they are largely agrarian with similar patterns of agricultural production 

practice. Weather conditions across the sample countries are reasonably comparable, especially 

within their respective regional blocks, with less weather variability. Hence, we include regional 

dummy variables to capture the regional heterogeneities in addition to the institutional variable 

that controls for country-specific institutional differences.    

 

                                                           
8 Benin, Botswana, Burkina Faso, Burundi, Congo Republic, Côte d'Ivoire, Ethiopia, Gabon, Gambia, Ghana, Kenya, 
Lesotho, Madagascar, Malawi, Mali, Mauritania, Mauritius, Mozambique, Namibia, Niger, Nigeria, Rwanda, 
Senegal, Sierra Leone, South Africa, Tanzania, Togo, Ugandan, Zambia, Zimbabwe. 
9 This is necessary to avoid the unlikely assumption of random data omission across all sub-Saharan African 
countries as such omission mighty be indicative of lack of R&D investment spending in these countries. 
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Agricultural output is expressed as the net agricultural production value added in millions 

of 2004-2006 “international dollars”. Specifically, international commodity prices are used in 

aggregating agricultural production to facilitate cross-country comparative analysis of productivity. 

The net production value added had been compiled by multiplying gross production in physical 

terms by output prices at farm gate less the intermediate uses within the agricultural sector (seed 

and feed). For the analysis of the agricultural production, a range of conventional agricultural 

inputs (land, labour, fertilizer, machinery and livestock) are commonly used in the literature due 

to unavailable capital stock variable. In this study, we employ the newly constructed and consistent 

net capital stock variable 10 by the FAO and specify a three-factor inputs following Echevarria 

(1998) and Guitierrez & Guitierrez (2003). 

Net capital stock is available in millions local currency units before deflating to base year 

2005 country –specific implicit gross domestic deflator primarily taking from the UN National 

Accounts Main Aggregate database. Net capital stock now in constant (real) local currency units, 

were then converted to base year 2005 international dollars using purchasing power parity 

conversion from the IMF World Economic Outlook11.  Land is an indicator for agricultural area 

cultivated, which is measured as the sum of arable land and the area used for permanent crops and 

pastures. This gives us a broadly-based measure of total land used in agriculture than alternative 

arable land measures. Labour is a major input in agricultural production in Africa, with more than 

                                                           
10 The net capital stock consists of several agricultural sectors’ components of production assets such as machinery 

& equipment, livestock, orchards, land improvement. The data is measured by the System of National Account 

concept of Gross Capital Formation (GCFC) and depreciated using perpetual inventory method.  We are grateful to 

the FAO Statistician, Marie Vander Donckt, for making the data available. 

11  See Pardey, Roseboom and Craig (1992) on the analytical support for using this “deflate-first-then-convert” 

approach. 
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half of Sub-Saharan African countries’ total labour force are employed in agriculture (Barrios et 

al, 2008). It is measured in thousands of total numbers of economically active population engaged 

in agricultural production at the end of the year. The primary source of the output and inputs data 

is the website of the Food and Agricultural Organization of the United Nation, and especially the 

statistics provided by FAOSTAT database.  

 

Table 1: Descriptive statistics 

 

                                                           
12 Constructed as OECD domestic R&D stock weighted by imports share and measured in million $2005PPP. 

705 Observations Variable Mean SD Min  Max 

      

Agricultural production ($2005PPP)   Y 3062998 4940015 64875.29 3.32e+07 

Capital Stock ($2005PPP) 𝐾 7786.033 21462.81 1.118 301050.70 

Land (hectare) 𝐿 22786.93 22975.79 89.00 98125 

Labour (‘000 people) 𝑁 4138845 5253082 44000 3.42e+07 

Domestic R&D ($2005PPP) DRD 339.800 549.890 13.480 2715.343 

Foreign R&D12   FRD 9.41e+07 4.18e+08 44300.44 3.75e+09 

Human Capital (%) HC 28.989 20.601 2.490  95.7 

Institutions (index) INST 4.275 1.832 1  7 
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Annual data series on public resources devoted to agricultural research were extracted from 

Agricultural Science and Technology Indicators (ASTI) database.  In the same manner with net 

capital stock, domestic R&D expenditures data are available in millions local currency units before 

deflating to base year 2005 country –specific implicit gross domestic deflator primarily taking 

from the UN National Accounts Main Aggregate database. Thereafter, domestic R&D 

expenditures in constant (real) local currency units were then converted to base year 2005 

international dollars using purchasing power parity. To obtain domestic R&D capital stock, we 

convert the domestic R&D expenditure in million 2005 international dollars into stock using 

perpetual inventory method13.   

On the assumption that international technology spillover is based on trade as a major 

channel of knowledge diffusion, we consider 15 developed OECD countries (OECD15)14 as the 

source of international knowledge stock owing to the fact that global research and development 

activities tend to be concentrated in these countries15.  Following international R&D spillover 

studies (see Keller, 1998; Lichtenberg and de la Potterie, 1998, Henry et al; 2009), we build on a 

weighting framework used in the literature in computing foreign R&D stock to reflect not only the 

direction of R&D spillovers but also their intensity. The weighting scheme expressed the stock of 

foreign R&D spillover through import by African country i from foreign country j (OECD15) as 

a bilateral-imports-share weighted sum of the OECD15. Therefore, for any year t; 

 

 

                                                           
13We assume a depreciation rate of 10% for the perpetual inventory method (see Gutierrez & Gutierrez, 2003). 
14 These 15 OECD countries are Australia, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, Netherlands, 
Norway, Spain, Sweden, United Kingdom and United States. 
15 Approximately 60% of World total R&D expenditure originated from the US, Japan, Germany, France and United Kingdom (see 
UNESCO, 2009). 
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𝐹𝑅𝐷𝑖𝑡 = ∑
𝑀𝑖𝑗𝑡

𝑌𝑗𝑡
𝑗∊{𝑂𝐸𝐶𝐷15}

𝐷𝑅𝐷𝑗𝑡 , for 𝑗 ≠ 𝑖    

            [16] 

 

 

where 𝐹𝑅𝐷𝑖𝑡  is stock of foreign R&D spillover, 𝐷𝑅𝐷𝑗𝑡   is level of domestic agricultural R&D 

capital stock in country j  for  𝑗 ∊ {𝑂𝐸𝐶𝐷15}, 𝑀𝑖𝑗   is import of goods and services of country 𝑖 

from country 𝑗; 𝑀𝑖 represents total imports of sub-Sahara African country 𝑖 from OECD country 𝑗 

and 𝑌𝑗𝑡 is the GDP of the OECD country. To construct a series of domestic R&D stock for each of 

the OECD15 countries, we employ data expenditure on agricultural R&D extracted from various 

sources such as OECD Science and Technology Statistics, Alston et al. (1999) and Pardy et al, 

(2016). To ensure international comparisons, the domestic R&D capital stock for the OECD 

countries was constructed in a manner analogous to the domestic R&D stock for African countries 

and are measured in million 2005 international dollars.  GDP is measured in million 2005 

international dollars and obtained from Penn World Table 7.1.  Data on bilateral trade is taken 

from the IMF’s Direction of Trade Statistics16.  

 

 

                                                           
16 According to IMF Direction of Trade Statistics, there are inconsistencies between exports to a partner and the 

partner's recorded imports from a particular country, i.e. the exports from Country A to B do not always equal the 

imports of Country B from A. This is due to the different ways countries report their trade, i.e. differences in 

classification concepts and detail, time of recording, valuation, and coverage, as well as processing errors. To capture 

the actual import of African countries from the OECD countries and to avoid estimation bias due to measurement 

error, we use export valued free on board (f.o.b) from OECD countries to African countries as proxy for import by 

our sampled countries from their trade partners. This helps to address the inconsistencies as the study considers 

technology transfer from exporting country to importing countries and not the other way round. 

 



20 
 
 

One critical aspect required for an understanding of the production performance of African 

economies pertains to institutional quality. We use the index of the level of political rights as an 

indicator for country institutional factors which account for political interference of government 

on trade and agricultural policies. Data on the ranking of political rights within a country is 

obtained from Freedom House Database which ranks countries on integers range from 1 (most 

freedom) to 7 (least freedom). Many of our sampled countries are ranked very low on these 

institutional quality indicators, except Benin, Botswana, Ghana, South Africa, Senegal and 

Mauritius which are considered more relatively free and democratic. Democratic institution is 

required to facilitate polices that promote international trade and investments. 

Finally, we augment the estimated production technology with a human capital variable, 

defined as the stock of skills that individuals accumulate through schooling, experience, on-the job 

training, etc, to make them productive. This important extension allows us to control for quality 

of labour, a key determinant of capacity to absorb new knowledge (Nelson and Phelps 1966; König 

et al., 2016; Acemoglu and Restrepo, 2018; Caicedo, 2018). Part of TFP heterogeneity across 

countries may be explained by the facts that different countries possess different quantities of 

human capital. One type of that is commonly relatively straightforward to incorporate into the 

model is education. Nelson and Phelps (1966) propose a hypothesis that the rate of technology 

diffusion depends upon educational attainment.  Education also speeds the process of adopting of 

new technologies among farmers. Well educated farmers are more receptive to innovative 

technologies and adopt them quicker than non-educated farmers. Therefore, we use secondary 

school-enrollment rates as proxy for human capital extracted from WDI.  
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5. Empirical results 

 

The main results of this study are presented in this section. Before proceeding to any estimation, 

we attempt to confirm the structure of the production technology in order to avoid placing any a 

priori and unnecessary restrictions on the characteristic of the technology. We perform a set of 

specification tests to check for functional form, technical change and the presence of inefficiency. 

The hypotheses tests were obtained using the generalized likelihood statistic. This is defined 

by   𝜆 = −2[𝑙𝑛(𝐿𝐻0  −  𝑙𝑛(𝐿𝐻1)]  with a chi-square  distribution 𝜒𝑝
2  where  𝑝  is the degree of 

freedom equal to the difference between the number of parameters estimated under H0 and  H1.   

Table 2 presents the test results of the null hypotheses17.  First, we test for appropriate functional 

form by comparing Cobb-Douglas functional form with the translog form. The LR test indicates 

that the null hypothesis of the Cobb-Douglas can be rejected at 1%, implying that the translog 

function better describes the technology. The finding is consistent with Duffy and Papageorgiou 

(2000) who argue that the Cobb–Douglas form of the production function estimation is incorrectly 

specified. 

 

 

 

 

 

 

                                                           
17 For each hypothesis, a restricted model is nested in the unrestricted model by imposing a set of restriction on the 

parameter of the unrestricted model. 
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Note: The critical values for the tests are obtained from table1 of Kodde and Palm (1986) 

Secondly, we test for the hypothesis on the presence of technical inefficiency effects in the 

production function expressed as  𝐻0: =  𝜇 = 𝜂 = 0 .  Conventional OLS estimation excludes the 

non-negative random, u, and assumes perfect efficiency in production. The LR test shows that the 

null hypothesis of no inefficiency is strongly rejected at 1% significance level. Thus, the test result 

provides evidence for the presence of the one-sided error, suggesting that the stochastic frontier 

model is an adequate representation of the data and it is preferred to traditional OLS.  Third, we 

test the hypothesis of Hick-neutral technological progress that technology change has no effect on 

factor augmenting. The null hypothesis that technological change is Hick-neutral is rejected, 

indicating non-neutral technological progress over time in our model.  

 

 

 

 

 

Table 2:  Likelihood ratio tests 

     
Null Hypothesis LR-Test Statistics Critical value Decision 

   (𝜶 = 0.01)   

Cobb-Douglas specification    

𝐻0 : all the 𝛽s are equal to zero 

(df=10) 
         

187.156  22.525 Reject  

No inefficiency effects    

𝐻0: 𝛾 =  𝜇 = 𝜂 = 0   (df=3) 
760.407  10.501 Reject  

Hicks neutral technical change    

𝐻0 = 𝛽𝐾𝑡 = 𝛽𝐿𝑡 = 𝛽𝑁𝑡 = 0  (df=3) 
37.704  10.501 Reject  
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Table 3: Production function estimation results18       
     

     

 Variable Coef. Std. Error        Variable  Coef.                     Std. Error 

        
Capital  0.0307* (0.0165) DRD  ∗  𝑡𝑖𝑚𝑒   - 0.0009 (0.0010) 

Land  0.5534*** (0.0537) FRD ∗  time    -0.0023** (0.0008) 

Labour  0.2528*** (0.0652) Human Capital    -0.0026*** (0.0009) 

DRD  0.1146*** (0.0233) Institution      0.0018 (0.0037) 

FRD  0.0226* (0.0121)  Regional Dummy      Yes  

Capital squared  0.0023 (0.0036)   Constant     0.8602*** (0.0815) 

Land squared -0.0235 (0.0355)    𝛾     0.9930 (0.0043) 

Labour squared -0.0268 (0.0331)     𝜇     0.9027* (0.5164) 

DRD squared  0.0302*** (0.0108)     η      -0.0076***  (0.0020) 

FRD squared  0.0086** (0.0039)     Log-Likelihood     543.48  

Capital ∗ Land   0.0052 (0.0158)      

Capital ∗ Labour  0.0293 (0.0200)      

Capital ∗ DRD -0.0039 (0.0118)      

Capital ∗ FRD  -0.0249*** (0.0057)      

Land   ∗  Labour  0.0403 (0.0419)      

Land   ∗  DRD  0.0377* (0.0229)      

Land   ∗  FRD  0.0210** (0.0088)      

Labour ∗ DRD -0.0458** (0.0222)      

Labour ∗ FRD  0.0151 (0.0115)      

DRD ∗  FRD  -0.0190* (0.0111)      

Time  0.0312*** (0.0019)      

Time squared  0.0000*** (0.0001)      

Capital ∗ time -0.0026*** (0.0006)      

Land ×  time -0.0043*** (0.0012)      

Labour ×  time  0.0073*** (0.0013)      

        

 Notes: *, **, *** denote statistically significant at 10%, 5% and 1% respectively 
 

 

Based on the specification tests favoring the translog model with time-varying inefficiency effect, 

we proceed to discuss the empirical results of the production function in Table 3. Since the output 

                                                           
18 The dependent variable is the log of agricultural output. All input variables are also expressed in logarithmic form. 
Human capital variable is measured in percentage and institution variable is proxied by the index of the level of 
political rights which ranges from 1 to 7. Hence, both human capital and institution variables are not logged. 
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and input variables are in logarithmic form, the estimated coefficients can be directly interpreted 

as elasticities. The average elasticity of agricultural output with respect to capital (𝛼𝐾) is 0.03, 

implying that, other things being equal, a 1% increase in capital stock will, on average, result in a 

0.03% increase in output. The average elasticity with respect to land (𝛼𝐿) is 0.55, meaning that a 

1% increase in land will on average result in a 0.55% increase in output while elasticity of output 

with respect to labour (𝛼𝑁) is 0.25, which indicate that a 1% increase in labour will likely increase 

output by 0.25%. We now offer some discussions on the elasticities as follows. First, all the 

elasticities estimated have expected signs and are statistically significant. Second, on average, our 

results suggest that agricultural output is most sensitive to a change in agricultural land than a 

change in labour and capital. Thus, we can conclude that the land input is used more intensively 

in agricultural production compared with other factor inputs. This finding is consistent with the 

studies of Sherlund et al (2002), Barrett et al, (2008) and Barrios et al (2008) who argued that 

output is most responsive to land under cultivation in SSA. 

Our next concern relates to the effect of R&D stocks on productivity. As expected, the 

estimated coefficient on domestic R&D stock is positive and statistically significant at the 5% 

level, suggesting that the domestic stock of knowledge positively associated with agricultural 

productivity. Similar results have been reported in past analyses of the productivity of agriculture 

in African countries; for example, see Alene and Coulibaly (2009), Alene (2010) and Mohar et al 

(2014)19. The coefficient on the foreign R&D transferred through imports (FRD) is also positive 

and significant, which implies that international R&D diffusion through imports helps improve a 

                                                           
19 Although these studies used a two-stage modelling approach, the application of frontier approach contrasts with 

the methodology used in the literature where a two-stage modelling strategy is adopted. Hence, we model both the 
frontier and the determinants in one stage. See Kumbhakar et al. (1991) and Reifschnieder and Stevenson (1991) for 
detailed discussion on the drawback of a two-stage method. 
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country’s productivity and is congruous with the findings in Gutierrez and Gutierrez (2003) and 

Liao et al (2009). What is immediately apparent is that the magnitude of the coefficient of domestic 

R&D stock is substantially larger than that of foreign R&D stock. According to our results, a 1% 

increase in domestic R&D stock would raise agricultural productivity by 0.12% while the same 

percentage increase in foreign R&D stock through trade flow will boost productivity by 0.02%, 

other things being equal. Interestingly, the coefficient on the interaction term between both the 

domestic and foreign R&D stocks is negative, implying that both knowledge stocks could be 

substitutes in the agricultural productivity performance across our sample.  

Furthermore, the positive coefficient estimate for the time trend indicates continued 

improvement via technological progress over the sample period. The coefficient on the interaction 

between time and labour is positively significant while the coefficient on the interaction between 

time and capital negative. In theory, our results imply that technical change has been labour saving 

and capital using. In other words, technologies cause producers to shift input proportions by 

increasing the relative use of capital and decreasing the relative use of labour inputs. In terms of 

our findings, these capital-consuming and labor-saving technologies shift agricultural production 

function thereby increasing agricultural productivity (see FAO, 2003). These findings also 

reinforce our earlier hypothesis test that production technology is non-neutral technological 

change. 

Regarding human capital, the coefficient is statistically significant but has a negative sign, 

suggesting a higher level of human capital leads to lower output. The negative coefficient appears 

counter-intuitive, but is not overly surprising, especially in the context of SSA agriculture 

production function. This finding is consistent with Aboagye and Gunjal (2000) and Aboagye 

(1998). We are of the opinion that this negative coefficient possibly reflects the higher labour 
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turnover associated with SSA agriculture as educational attainment improves. For instance, 

Bryceson (1996) identifies the increasingly less rural character and increasingly prevalent national 

industrialization policies across SSA as contributors to the process of “deagrarianization”. Another 

potential critical factor includes the need for rural income diversification, prompted by changing 

structures of the macroeconomy and economic hardships; which have resulted in 

“depeasantization” as reflected by the transitory effects from agrarian employment towards other 

employment in other sectors (see Bryceson, 1996). Hence, increases in educational attainment 

could conceivably lead to a large shift in labour away from agriculture to other high paying sectors, 

thereby decreasing agricultural productivity. Although not statistically significant, we establish a 

positive relationship between agricultural output and institution.  

Finally, we estimate returns to scale as the sum of the elasticities of output and our result 

shows that the production technology exhibits decreasing returns to scale. We check for linear 

homogeneity by testing the null hypothesis that the sum of the elasticities is not statistically 

different from one. If we reject the null hypothesis, then we can confirm that the technology has 

decreasing returns to scale as the sum of the elasticities is below unity. Table 4 reports the results, 

which show that the hypothesis of constant returns to scale can be rejected, in favour of decreasing 

return to scale. The implied scale diseconomies suggest that, all else equal, an increase in the 

sampled agricultural sectors’ size or input usage yields a less than proportionate increase in output.  

 

Table 4:  Return to scale: sum of elasticity of output vector 

Model             RTS   

 Test:  

RTS = 1 

 

     [(𝜶𝑲 +  𝜶𝑳 +  𝜶𝑵)]  Standard error  p-value  

       

Model 1         0.974   0.0404  0.5204  
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5.1 Total Factor Productivity and its Decomposition 

The changes in the indices in total factor productivity and its components for the sample period 

are reported in Table 5. The estimates of TEC, TP and SEC are derived by applying the techniques 

mentioned in Section 3. The TFP growth is not measured as residual growth of total output but 

obtained as the sum of technical progress (measured by a shift in the production frontier), changes 

in technical efficiency and scale change.   

We identify which TFP component is the major source of productivity growth in the 

agricultural sectors in Africa. Where the values of either productivity or any of its components are 

greater than one, the results imply improvement in the total productivity and its components. 

However, the values less than one represent deterioration in productivity performance which 

means that the country is not able to produce as much outputs as before, given the same amount 

of inputs. All the cross-country averages reported here are weighted by the agricultural output. 

It is evident from the decomposition of average TFP growth that, technical change is the major 

source of TFP growth with an average growth rate of 3.2% per year. The technical change is 

characterized by a continuously rising trend throughout the study period. This trend could 

potentially stem from increasing spending on agricultural R&D investment for innovation 

generation by sample countries during the study period and technologies induced through imports. 

 

 

 

 

 

 

 



28 
 
 

Table 5: Annual productivity growth, technical change, efficiency change and scale change 

                                    

Year20 TC                        EC                RTS 

                         

TPF 

1982 1.0283 0.9952 1.0346 1.0589 

1983 1.0283 0.9950 1.0246 1.0484 

1984 1.0279 0.9953 1.0547 1.0795 

1985 1.0279 0.9952 1.0409 1.0650 

1986 1.0280 0.9951 1.0773 1.1026 

1987 1.0279 0.9951 1.0166 1.0400 

1988 1.0282 0.9952 1.0106 1.0340 

1989 1.0283 0.9952 1.0161 1.0398 

1990 1.0284 0.9953 1.0201 1.0442 

1991 1.0289 0.9955 1.0204 1.0451 

1992 1.0295 0.9953 1.0231 1.0483 

1993 1.0303 0.9945 0.9919 1.0164 

1994 1.0299 0.9946 1.0220 1.0468 

1995 1.0302 0.9945 1.0393 1.0647 

1996 1.0310 0.9940 1.0028 1.0276 

1997 1.0313 0.9934 1.0209 1.0459 

1998 1.0312 0.9934 1.0359 1.0612 

1999 1.0311 0.9934 1.0249 1.0498 

2000 1.0310 0.9935 1.0027 1.0271 

2001 1.0306 0.9931 1.1268 1.1535 

2002 1.0299 0.9929 1.0314 1.0547 

2003 1.0302 0.9931 1.0456 1.0697 

2004 1.0334 0.9898 1.0321 1.0556 

2005 1.0338 0.9895 1.0270 1.0505 

2006 1.0346 0.9892 1.0139 1.0377 

2007 1.0332 0.9923 1.0544 1.0809 

2008 1.0335 0.9923 1.0325 1.0589 

2009 1.0340 0.9919 1.0136 1.0395 

2010 1.0341 0.9918 1.0446 1.0714 

2011 1.0344 0.9916 1.0411 1.0679 

Mean 1.0317 0.9917 1.0246 1.0483 

     

 

                                                           
20 Please note that 1982 refers to the change between 1981 and 1982, etc. Mean value is expressed in geometric 
mean 
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The improvement in scale change with annual average growth rate of 2.5% also made a 

considerable contribution to TFP growth, except in year 1992 when the scale change was negative. 

However, efficiency change made a negative impact on productivity and generally drags down the 

TFP growth due to persistent decline in efficiency throughout the sample period, averaging -0.8% 

per year. The worsening efficiency change could be an indication of inefficient subsistence 

agricultural practice in SSA.  We find a positive average productivity growth rate of 4.8% per 

annum over the sample period. The estimated annual productivity growth in our study is slightly 

higher that the TFP growth rate findings in earlier studies (see Alene, 2010, Avila and Evenson, 

2010, Heady et al, 2010; Nin and Yu, 2008). The improved SSA agricultural productivity gains 

in our study is not surprising as we adopt a different analytical approach as opposed to non-

parametric method of these studies. The study by Heady et al, (2010) confirmed that estimates 

of SSA agriculture productivity based on frontier approach yields a much higher TFP growth 

than estimates based on DEA.  The inclusion of both domestic R&D and foreign R&D as factor 

inputs in our model also provides some confidence in the robustness of our TFP growth 

estimates.  

 Figure 1 shows the time series annual average total factor productivity change across 

our data sample. As illustrated in the figure, the average productivity increased during the early 

1980s, until around 1986 when it declined sharply; remaining fairly stable in the 1990s with 

annual growth rates in the region of 4%. Between 2000 and 2002, there was a sharp increase and 

decline in average productivity, after which the productivity growth rates largely remained 

within the 5-8% ballpark.  
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Fig. 1: Annual average total factor productivity change  

 

We disentangle the estimate of the total factor productivity and its decomposition by region 

in order to understand the heterogeneity of these regions in terms of the productivity indices. 

Table 6 reports the estimate of the total factor productivity and its decomposition by region from 

1981-2011.  For brevity, we discuss the productivity growth rate for the regions as the result 

clearly shows that there are obvious differences between country’s performances. All the regions 

experienced positive productivity growth. The West Africa region is atop the production 

technology frontier with an average productivity growth rate of 6.1%, slightly higher than that 

the sample average TFP. This suggests that the region exhibit the best practice production 

technologies. It is interesting to note that the East Africa recorded the highest technological 

progress over the sample period, with an average yearly TFP growth rate of 3.6%. Tellingly, the 

finding lends credence to the deployment of technological innovation into agricultural sector in 

past few years in countries in this region such as Rwanda, Kenya. The country-level productivity 
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decomposition results in Table A2 of the appendix reinforces our findings as Rwanda recorded 

the highest growth in technical progress, with an average annual growth of 5.2%. This finding also 

seems consistent with past studies that confirm Rwanda as one of the hubs for science and 

technology in Africa (see Webersik and Wilson, 2009). 

 

Table 6: Average total factor productivity and its decomposition by region 

 
Region            TC            EC                 SC             TFP 

Central Africa 1.0241 0.9975 1.0107 1.0324 

     

East Africa 1.0361 0.9851 1.0142 1.0351 

     

Southern Africa 1.0274 0.9966 1.0226 1.0418 

     

West Africa 1.0326 0.9944 1.0331 1.0608 

     

Mean  1.0317        0.9917 1.0246 1.0483 

 

5.2 Robustness checks 

Since our panel data is unbalanced; we used the Fisher-type tests to examine the stationarity of 

dataset which reject the presence of unit roots in the majority of the data. It is therefore assumed 

that this is not a problem despite the relative statistical significance of our estimated parameters in 

our model. We also check the robustness of our results by investigating whether the results do not 

change when R&D variables are treated as technology shifter as opposed to input as adopted in 

our study. Consistent with treating domestic and foreign R&D as technology shifters, we 

introduced non-logged R&D into the model. However, the model failed to converge. We also 

estimated an alternative model in which labour is adjusted for human capital. The result is 

presented in Table A1 in the appendix. While most of the model parameters are qualitatively 
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similar to those in our baseline model, this alternative specification violates the monotonicity 

condition, given that output is found to be decreasing in labour. 

Finally, we lagged the R&D variables by one period in order to take into consideration the time 

lag from R&D to adoption21. Again, the main results were not fundamentally affected, with an 

annual TFP figure averaging 4.7%, which is quite similar to the annual average TFP figure of the 

original model, 4.8%.  The regression results and the TFP decomposition results are reported in 

Tables A3 and A4 in the appendix. 

 

6 Conclusion and policy recommendations 

This study examines agricultural productivity of 30 sub-Saharan Africa countries from 1981-2011 

using a stochastic frontier analysis (SFA). Specifically, we evaluate the impact of domestic and 

foreign R&D on agricultural productivity in the SSA region. The results suggest that domestic 

stock of knowledge is positively associated with productivity growth of SSA agriculture. This 

effect is statistically significant at the 1% level. This result is qualitatively similar to the findings 

in Alene and Coulibaly (2009), Alene (2010) and Mohar et al (2014). Furthermore, in line with 

Gutierrez and Gutierrez (2003), foreign R&D transferred through import channels was also found 

to have a positive impact on productivity, albeit this effect is only significant at the 10%- level.  

The average rate of productivity growth for the sample period was estimated at 4.8% per 

year. The decomposition of TFP growth shows that technical change is the source of TFP growth 

with an average growth rate of 3.2% per year. The technical change is characterized by a 

continuously rising trend throughout the study period.  However, technical efficiency change made 

a negative impact on productivity and generally drags down TFP growth due to persistence decline 

                                                           
21 We are very grateful to the anonymous reviewer for suggesting a time lag on the R&D variables. 
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in efficiency throughout the sample period, averaging -0.8% per annum. The worsening efficiency 

change could be an indication of inefficient subsistence agriculture and low technological 

innovation utilisation in SSA agriculture. Thus, a plausible way for enhancing farmers’ production 

efficiency is to augment land use through increased application of capital stock and research 

expenditures for output expansion.   

Overall, our results highlight that total factor productivity is strongly influenced by both 

domestic and foreign public research and development (R&D) spending in the agricultural sector, 

although the impact of domestic R&D is statistically and qualitatively stronger. Based on the 

estimated impacts of the R&D variables, it appears that the productivity returns on the domestic 

knowledge stocks exceeded those on their foreign counterparts across sampled SSA countries 

during the study period. One possible interpretation from the relatively larger impact from 

domestic R&D stock is that innovation and knowledge exhibit decreasing returns to scale (Bitzer 

and Kerekes, 2008). Additionally, it is plausible that the local conditions (e.g. weather conditions, 

level of development) and other institutional bottlenecks may inhibit the full absorption of foreign 

innovation efforts (see Aitken et al., 1999; Johnson and Evenson, 2000; O’Gorman, 2015). This 

potentially raises the question of whether it might be more beneficial to focus on domestically-

driven innovation efforts, complemented by foreign R&D spillovers (D’Agostino and Santangelo, 

2012). In this context, an appreciable increase in public R&D spending through extra budgetary 

allocation to R&D investment will have a far-reaching impact at improving the performance of 

SSA agriculture. Although, SSA agricultural R&D is still largely publicly funded while the private 

sector is slowly investing in crop R&D, especially in the area of agricultural biotechnology.  

Hence, we suggest that there is a need to complement the existing government R&D 

expenditure with increasing private R&D investments to boost agricultural productivity. Given 
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that innovation generated from R&D investment is non-rivalrous and often has positive 

externalities, private companies tend to invest less. Specifically, policies such as targeted subsidies 

or tax break that foster greater private sector investments in new innovations that improve 

productivity performance should form the core of national agricultural research strategies.   
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Appendix 
 

 

Table A1: Estimation results- Effective Labour22       
     

     

 Variable Coef. Std. Error        Variable  Coef.                 Std. Error 

        
Capital  0.0356** (0.0170) DRD  ∗  𝑡𝑖𝑚𝑒   - 0.0013 (0.0012) 

Land  0.7289*** (0.0488) FRD ∗  time     0.0014* (0.0008) 

Labour -0.0217 (0.0553) Institution    -0.0010 (0.0038) 

DRD  0.1348*** (0.0235) Regional Dummy     Yes  

FRD  0.0182 (0.0125)   Constant     1.4370*** (0.2556) 

Capital squared  0.0026 (0.0040)    𝛾     0.9953*** (0.0011) 

Land squared  0.0078 (0.0309)   𝜇     1.3599** (2.7433) 

Labour squared 
 0.0329 (0.0233)     η      -0.0055*** 

 

(0.0023) 

DRDsquared  0.0356*** (0.0118)     Log-Likelihood     527.148  

FRD squared  0.0200*** (0.0038)      

Capital ∗ Land  0.0090 (0.0156)      

Capital ∗ Labour  0.0233 (0.0209)      

Capital ∗ DRD -0.0064 (0.0126)      

Capital ∗ FRD  -0.0278*** (0.0055)      

Land   ∗  Labour -0.0032 (0.0335)      

Land   ∗  DR𝐷  0.0535** (0.0235)      

Land   ∗  FRD   0.0225** (0.0955)      

Labour ∗ DR𝐷 -0.0732*** (0.0250)      

Labour ∗ FRD  0.0182 (0.0113)      

DRD ∗  FRD -0.2040 (0.0107)      

Time  0.0317*** (0.0023)      

Time squared -0.0001* (0.0001)      

Capital ∗ time -0.0030*** (0.0006)      

Land ×  time -0.0026* (0.0016)      

Labour ×  time  0.0060*** (0.0018)      

        

 Notes: *, **, *** denote statistically significant at 10%, 5% and 1% respectively 

 
 

                                                           
22The estimation is based on human capital adjusted labour. However, the result is inconsistent with economic theory 

due to the violation of monotonicity condition as labour is non-decreasing in output. The dependent variable is the log 

of agricultural output. All input variables are also expressed in logarithmic form. Institution variable is not logged 

because the variable is proxied by the index of the level of political rights which ranges from 1 to 7.  
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Table A2: Average productivity growth and its components, by country. 

Country                 TC                 EC                    RTS                       TFP 

Benin 1.0360 0.9998 1.0470 1.0844 

Botswana 1.0128 0.9849 1.0326 1.0300 

Burkina Faso 1.0389 0.9933 1.0352 1.0683 

Burundi 1.0401 0.9856 0.9867 1.0116 

Congo 1.0256 0.9955 1.0207 1.0421 

Cote d'Ivoire 1.0289 0.9983 1.0055 1.0329 

Ethiopia 1.0422 0.9819 1.0295 1.0534 

Gabon 1.0225 0.9996 1.0007 1.0228 

Gambia 1.0350 0.9900 1.0129 1.0378 

Ghana 1.0315 0.9985 1.0474 1.0787 

Kenya 1.0352 0.9824 1.0272 1.0447 

Lesotho 1.0220 0.9872 0.9986 1.0075 

Madagascar 1.0330 0.9797 1.0221 1.0344 

Malawi 1.0349 0.9979 1.0305 1.0643 

Mali 1.0268 0.9912 1.0326 1.0510 

Mauritania 1.0210 0.9843 1.0673 1.0726 

Mauritius 1.0295 0.9964 0.9539 0.9785 

Mozambique 1.0355 0.9889 1.0420 1.0669 

Namibia 1.0141 0.9852 1.0447 1.0437 

Niger 1.0325 0.9888 1.0455 1.0675 

Nigeria 1.0292 0.9997 1.0516 1.0820 

Rwanda 1.0515 0.9870 1.0178 1.0562 

Senegal 1.0348 0.9929 1.0064 1.0340 

Sierra Leone 1.0422 0.9917 1.0607 1.0962 

South Africa 1.0213 0.9960 0.9993 1.0165 

Tanzania 1.0375 0.9812 1.0567 1.0757 

Togo 1.0338 0.9942 1.0180 1.0463 

Uganda 1.0381 0.9856 1.0541 1.0785 

Zambia 1.0443 0.9918 1.0244 1.0610 

Zimbabwe 1.0296 0.9931 1.0231 1.0461 

Total 1.0317 0.9917 1.0246 1.0483 
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 Table A3: Estimation results with R&D lagged variables       
     

     

 Variable Coef. Std. Error        Variable  Coef.              Std. Error 

        
Capital  0.0332** (0.0165) DRDt−1 ∗  𝑡𝑖𝑚𝑒   -0.0011 (0.0011) 

Land  0.6958*** (0.1179) FRDt−1 ∗  time    0.0021*** (0.0007) 

Labour  0.2388*** (0.0667) Institution    -0.0010 (0.0038) 

DRDt−1  0. 0933*** (0.0236) Regional Dummy     Yes  

FRDt−1  0. 0165 (0.0120) Constant     0.8912*** (0.1353) 

Capital squared  0.0006 (0.0038) 𝛾     0.9921*** (0.0046) 

Land squared  0. 0628 (0.0442) 𝜇     1.0673** (0.4201) 

Labour squared - 0.0568 (0.0351) η       0.0066*** (0.0013) 

DRDt−1 squared  0.0174 (0.0115) Log-Likelihood     532.053  

FRDt−1 squared  0.0079** (0.0038)      

Capital ∗ Land  -0.0196 (0.0164)      

Capital ∗ Labour  0.0217 (0.0206)      

Capital ∗ DRDt−1 0.0115 (0.0122)      

Capital ∗ FRDt−1  -0.0253*** (0.0059)      

Land   ∗  Labour 0.0401 (0.0467)      

Land   ∗  DRDt−1  0.0351 (0.0234)      

Land   ∗  FRDt−1  0.0144 (0.0089)      

Labour ∗ DRDt−1 -0.0225 (0.0224)      

Labour ∗ FRDt−1  0.0050 (0.0113)      

DRDt−1 ∗ FRDt−1 -0.0098 (0.0111)      

Time 0.0312*** (0.0019)      

Time squared 5.94e-05 (7.80e-05)      

Capital ∗ time -0.0017*** (0.0006)      

Land ×  time -0.0043*** (0.0026)      

Labour ×  time  0.0069*** (0.0015)      

        

 Notes: *, **, *** denote statistically significant at 10%, 5% and 1% respectively 
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Table A4: Annual productivity growth and it components with R&D lagged variables 

      

Year* 

                         

ETC     EEC  ERTS 

                                    

EGMI 

1983  1.0281 0.9946 1.0283 1.0515 

1984  1.0277 0.9948 1.0850 1.1099 

1985  1.0275 0.9947 1.0561 1.0797 

1986  1.0275 0.9947 1.0781 1.1022 

1987  1.0275 0.9947 1.0136 1.0360 

1988  1.0280 0.9947 1.0097 1.0326 

1989  1.0283 0.9947 1.0215 1.0449 

1990  1.0284 0.9947 1.0206 1.0441 

1991  1.0288 0.9949 1.0266 1.0508 

1992  1.0294 0.9949 1.0118 1.0362 

1993  1.0299 0.9949 1.0204 1.0456 

1994  1.0307 0.9942 1.0244 1.0498 

1995  1.0307 0.9942 1.0541 1.0804 

1996  1.0308 0.9942 1.0125 1.0376 

1997  1.0316 0.9940 1.0120 1.0376 

1998  1.0320 0.9935 1.0317 1.0577 

1999  1.0319 0.9935 1.0261 1.0519 

2000  1.0320 0.9935 1.0159 1.0416 

2001  1.0318 0.9933 1.0604 1.0869 

2002  1.0314 0.9931 1.0164 1.0411 

2003  1.0315 0.9932 1.0467 1.0724 

2004  1.0324 0.9932 1.0032 1.0285 

2005  1.0344 0.9906 1.0244 1.0498 

2006  1.0350 0.9905 1.0164 1.0420 

2007  1.0342 0.9926 1.0279 1.0552 

2008  1.0345 0.9927 1.0238 1.0514 

2009  1.0353 0.9924 1.0037 1.0312 

2010  1.0356 0.9923 1.0348 1.0634 

2011  1.0358 0.9921 1.0383 1.0671 

Mean  1.0317 0.9924 1.0222 1.0466 

      

*Please note that 1983 refers to the change between 1982 and 1983, etc. Because of the one period R&D lagged 
variables, the change between 1981 and 1982 is missing. Mean value is expressed in geometric mean 

 

 


