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Abstract

We investigate the electrostatic stabilization of a viscous thin film wetting the underside of a hori-

zontal surface in the presence of an electric field applied parallel to the surface. The model includes

the effect of bounding solid dielectric regions above and below the liquid-air system that are typically

found in experiments. The competition between gravitational forces, surface tension and the non-local

effect of the applied electric field is captured analytically in the form of a nonlinear evolution equation.

A semi-spectral solution strategy is employed to resolve the dynamics of the resulting partial differ-

ential equation. Furthermore, we conduct direct numerical simulations (DNS) of the Navier-Stokes

equations using the volume-of-fluid methodology and assess the accuracy of the obtained solutions in

the long-wave (thin film) regime when varying the electric field strength from zero up to the point

when complete stabilization occurs. We employ DNS to examine the limitations of the asymptotically

derived behavior as the liquid layer thickness increases, and find excellent agreement even beyond

the regime of strict applicability of the asymptotic solution. Finally, the asymptotic and computa-

tional approaches are utilized to identify robust and efficient active control mechanisms allowing the

manipulation of the fluid interface in light of engineering applications at small scales, such as mixing.
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I. INTRODUCTION

Rayleigh-Taylor instabilities of liquid layers have been studied by numerous authors both

theoretically and experimentally. Linear stability analysis and two-dimensional nonlinear com-

putations can be found in [1–3], for example, where it is found that dripping transitions take

place for sufficiently thick layers with fingers of heavy fluid penetrating lighter fluid. In the

case of films thinner than the capillary length (σ/ρg)1/2 (here σ is the surface tension coeffi-

cient, ρ is the density and g the gravitational acceleration), dripping does not take place, but

instead drops are formed that are connected by slowly draining thinning regions. The thin film

models describing such phenomena were derived and studied by Yiantsios & Higgins [1], and

interestingly the equations are identical to the axisymmetric capillary film draining equations

first studied by Hammond [4] that are driven by capillary instabilities in the absence of gravity.

The dynamics of drop formation become much more intricate on longer domains that can allow

drops to move within the domain, as shown by accurate computations and analysis by Lister et

al. [5]. Motivated by the experiments and weakly nonlinear analyses of Limat and co-workers

[6, 7], the one-dimensional patterns studied in [5] were extended to two-dimensional ones by

Lister et al. [8] who found new behavior such as droplet coalescence or bouncing.

The stabilization of the gravity-driven Rayleigh-Taylor instability has also been considered

by several authors. Babchin et al. [9] showed that a nonlinear saturation is possible in the

presence of a constant background shear - this is analyzed for a two-fluid Couette flow with a

thin lighter film beneath a heavier upper fluid. Stabilization was also demonstrated by Halpern

& Frenkel [10] for cases when the shear arises due to zero-mean time-periodic oscillations of the

upper plate of a two-fluid Couette flow. Stabilization has also been predicted theoretically in

[11] for liquid films coating the outside surface of a horizontal cylinder performing time-periodic

oscillations along its axis.

The present study considers the utilization of electric fields in the linear and nonlinear ma-

nipulation of the Rayleigh-Taylor instability and its ultimate stabilization. It is known from

early work by Melcher [12, 13] that a tangential electric field has a stabilizing effect on interfa-

cial waves and the use of electric fields in linearly stabilizing Rayleigh-Taylor instabilities was

considered by Eldabe [14] and more recently by Joshi et al. [15]. Several nonlinear studies and

direct numerical simulations have been carried out. Barannyk et al. [16, 17] used an symp-

tomatic theory valid for thin layers to derive reduced models in the case of inviscid dielectric

fluids; they show that above a critical value of the applied electric field the flow can be com-

pletely stabilized, whereas at subcritical values the fluid layer thins and the interface touches

the wall in finite time. The mathematical structures of such touching singularities (including
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self-similar forms and their confirmation via numerical computations) were explored in detail

in [17], both in the presence and absence of surface tension. If surface tension is present the

local geometry of the touching interface maintains bounded gradients but unbounded curva-

ture (a corner singularity) with electric field effects being of higher order; for electrified flows

with zero surface tension the touching singularities are worse in the sense that cusps form with

interfacial gradients blowing up locally. One of the objectives of the present study is to include

viscosity and also more realistic electric field configurations. We also note that direct numerical

simulations for electrified Rayleigh-Taylor flows that are unbounded in the vertical direction

were carried out by Cimpeanu et al. [18] who find complete stabilization of finite wavelength

perturbations and in addition quantify the effect of the field on the formation and dynamics of

finger formation and propagation of the heavier fluid into the lighter one.

The structure of the paper is as follows. Section II describes the mathematical model and

carries out an asymptotic analysis to derive an evolution equation for the dynamics of thin

films. Section III presents computations based on the model equation and describes the effect

of the electric field on the solutions. Section IV presents direct numerical computations of the

problem valid for arbitrary thickness fluid layers and arbitrary Reynolds numbers. A direct

comparison between the asymptotic and numerical solutions is also presented. Section V uses

the results to suggest an application of utilizing electric fields to produce controlled interfacial

oscillations that do not rupture the layer and do not produce dripping. We conclude with a

discussion in Section VI.

II. MATHEMATICAL MODEL

II.1. Governing equations

We consider two superposed immiscible fluid layers placed in the gap between two solid

dielectric slabs of infinite vertical extent - see the schematic in Fig. 1; the flow is assumed to

be two-dimensional. A horizontal electric field driven by lateral electrodes far away is assumed

to be present both in the fluids as well as the solid dielectric bounding slabs as shown in the

schematic. The dynamics are driven by the competition between gravitational, surface tension

and electric field effects, with the latter two acting to stabilize Rayleigh-Taylor instability in

an initially quiescent flow.

The overhanging layer (region 2) wetting the underside of the upper slab is a dielectric

Newtonian liquid with constant density ρ∗2, viscosity µ∗2 and permittivity ε∗2 and lies in h∗ ≤

y∗ ≤ h∗u; here y∗ = h∗(x∗, t∗) is the liquid-liquid interface and y∗ = h∗u is the position of the
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FIG. 1. Schematic of the problem with fluid 2 lying above fluid 1 and separated by the interface

y∗ = h∗(x∗, t∗). A uniform electric field of size E∗ = V̄ ∗/L∗D is applied horizontally as shown.

flat lower boundary of the upper solid slab region 3, y∗ > h∗u. The lower dielectric fluid region

1 in 0 ≤ y∗ ≤ h∗ is much less dense and viscous and is hydrodynamically passive to leading

order (the negligible physical properties simplify the governing equations to describe a region

of zero velocities and uniform pressure); its electrical permittivity is ε∗1. This is bounded below

by another solid slab denoted by region 0 and lying in y∗ < 0. The dielectric permittivities in

regions 0 and 3 are ε∗0 and ε∗3, respectively. In addition surface tension is present with constant

coefficient σ∗, and gravity is acting in the vertical direction with constant acceleration g∗. The

velocity field in the upper liquid layer is u∗2 = (u∗2, v
∗
2) and the pressures in regions 1 and 2 are

p∗1,2. The electrodes are kept at constant voltage potentials φ∗ = V̄ ∗ on the left and φ∗ = 0

on the right as shown in Fig. 1, resulting in a uniform horizontal electric field of magnitude

E∗ = V̄ ∗/L∗D in the undisturbed configuration.

The Navier-Stokes and continuity equations hold in region 2

ρ∗2(u∗2t + (u∗2 · ∇)u∗2) = −∇p∗2 + µ∗2∆u∗2 − ρ∗2g∗j, (1)

∇ · u∗2 = 0, (2)

and voltage potentials φ∗0,1,2,3 are present in each region producing an electric field E∗i = −∇φ∗i
there. In the absence of volume charges, the voltage potentials satisfy Laplace equations in
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each region (this follows from the electrostatic limit of Maxwell’s equations)

∇2φ∗0,1,2,3 = 0, (3)

where ∇2 = ∂2
x∗ + ∂2

y∗ . At the interface y∗ = h∗(x∗, t∗) we must impose the balance of normal

and tangential stresses,

[n · T ∗ · n]12 = σ∗κ, [t · T ∗ · n]12 = 0, (4)

where [(·)]12 = (·)1 − (·)2 denotes the jump across the interface, n = (−h∗x∗ , 1)/(1 + h∗2x∗)1/2, t =

(1, h∗x∗)/(1+h∗2x∗)1/2 are the unit normal and tangent to the interface, and κ = h∗x∗x∗/(1+h∗2x∗)3/2

is the interfacial curvature. The stress tensor T ∗ contains electric and fluid parts and is given

by

T ∗ij = −p∗δij + µ̃∗
(
∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)
+ ε∗Ẽ∗i Ẽ

∗
j −

1

2
ε∗|E∗|2δij, (5)

where it is understood that the appropriate subscript is used in different regions. As a result

of the fluids being perfect dielectrics with constant permittivities, there are no charges present

in the flow, and hence the Lorentz force has no contribution in the momentum conservation

equation (1). Instead, the jump in Maxwell stresses manifests itself nonlinearly in the stress

balance conditions (4). In addition we have a kinematic condition

v∗2 = h∗t∗ + u∗2h
∗
x∗ at y∗ = h∗(x∗, t∗) (6)

and no-slip conditions at the solid wall,

u∗2 = v∗2 = 0 at y∗ = h∗u. (7)

The interfacial boundary conditions for the electric field are Gauss’s law and continuity of the

tangential component,

[ε∗E∗ · n]i+1
i = 0, [t · E∗]i+1

i = 0, i = 0, 1, 2. (8)

The second condition is equivalent to

[φ∗]10 = 0, [φ∗]21 = 0, [φ∗]32 = 0. (9)

We non-dimensionalize velocities using the scale U∗ =
√
g∗L∗ so as to retain the gravity-

driven Rayleigh-Taylor instability. The lower fluid layer height L∗ is used as a reference length-

scale, time is scaled by L∗/
√
g∗L∗, and pressure is scaled according to p∗ ∼ ρ∗2U

∗2 ∼ ρ∗2g
∗L∗.

The voltage potentials are non-dimensionalized using V ∗0 . (In what follows we use the same sym-

bols for dimensionless variables but they are un-starred.) The following dimensionless groups

emerge from the manipulation of the equations and boundary conditions

g̃ =
g∗L∗

U∗2
≡ 1, µ̃ =

µ∗2
ρ∗2L

∗(g∗L∗)1/2
, We =

σ∗

ρ∗2g
∗L∗2

, Eb =
ε∗1V

∗2
0

ρ∗2g
∗L∗3

. (10)
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These represent the unit inverse square Froude number g̃, an inverse Reynolds number µ̃,

an inverse Weber number We and an electric dimensionless group Eb. Note that we have used

quantities in the upper fluid layer 2 as reference for hydrodynamic values, while the permittivity

ε∗1 of region 1 is selected as reference, leading to the following relevant relative permittivity ratios

εB = ε∗0/ε
∗
1, εp = ε∗2/ε

∗
1, εT = ε∗3/ε

∗
1. (11)

Hence, the dimensionless Navier-Stokes equations in region 2 become

ut + (u · ∇)u = −∇p2 + µ̃∆u− g̃j, (12)

∇ · u = 0, (13)

where we have removed the subscript 2 since the bottom layer region 1 is hydrodynamically

passive. The normal and tangential stress balances at y = h(x, t) (recall eq. (4)) reduce to

−(1 + h2
x)(p1 − p2) + 2µ̃hx(vx + uy)− 2µ̃(vy + h2

xux)− 2hxEb
∂φ1

∂x

∂φ1

∂y
+ (14)

+2εpEbhx
∂φ2

∂x

∂φ2

∂y
+

1

2
Eb(h

2
x − 1)

[(
∂φ1

∂x

)2

−
(
∂φ1

∂y

)2]
−

−1

2
εpEb(h

2
x − 1)

[(
∂φ2

∂x

)2

−
(
∂φ2

∂y

)2]
= We

hxx
(1 + h2

x)
1/2
,

2hx(ux − vy)− (1− h2
x)(uy + vx) = 0. (15)

Finally, the kinematic condition reads

v = ht + uhx at y = h(x, t). (16)

The Laplace equations (3) for the voltages are unchanged and so are the voltage continuity

conditions (9). The latter are simple at the fixed solid boundaries y = 0 and y = hu, while at

the deforming interface voltage continuity takes the form

∂φ2

∂x
+ hx

∂φ2

∂y
=
∂φ1

∂x
+ hx

∂φ1

∂y
at y = h(x, t). (17)

Finally, the Gauss law conditions (continuity of the electric displacement field) become

εB
∂φ0

∂y
=
∂φ1

∂y
at y = 0, (18)

−hxεp
∂φ2

∂x
+ εp

∂φ2

∂y
= −hx

∂φ1

∂x
+
∂φ1

∂y
at y = h(x, t), (19)

εp
∂φ2

∂y
= εT

∂φ3

∂y
at y = hu. (20)

Using bars to denote the undisturbed state characterized by a flat interface, the above system

admits the following exact solution

h̄ = 1, ū = v̄ = 0, φ̄0,1,2,3 = x. (21)
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This solution is unstable and in what follows we present a nonlinear theory valid for thin fluid

layers and describe the spatiotemporal dynamics under the action of electric fields. Direct

numerical simulations are considered later - see Section IV.

II.2. Evolution equation for thin liquid films

Assume that the upper liquid layer region 2 has mean thickness ε � 1, so that in its

undisturbed state it is bounded between y = h̄ = 1 and y = hu = 1 + ε. We consider interfacial

deflections that have order one wavelengths and order ε amplitudes, i.e. fully nonlinear in the

sense that they scale with the fluid layer thickness. We write the interfacial position as

y = h(x, t) = 1 + ε h̃(x, t), h̃(x, t) = O(1). (22)

It is useful to introduce a stretched inner coordinate η given by y = 1 + ε − εη, so that

∂y → −ε−1∂η. The order ε deflection produces equivalent perturbations to the voltage potentials

and the pressure jump contribution due to surface tension. The appropriate expansions are,

therefore,

p1 = p̄1, p2 = p̄2 + 1− y + εp̃+ . . . , φj = x+ εφ̃
(0)
j + ε2φ̃

(1)
j + . . . , (23)

where j = 0, 1, 2, 3, and p̄1, p̄2 are constants - in fact p̄2 − p̄1 = Eb(1 − εp)/2 as follows from

(14) for the base state solution. Note also that the term 1 − y in the expression for p2 is the

hydrostatic contribution. The Navier-Stokes equations are used next to obtain the scalings for

the velocities required for the viscous terms to balance pressure. Under the assumption that

the Reynolds number Re = µ̃−1 = O(1), we find

u = ε3ũ0 + ε4ũ1 + . . . , v = ε4ṽ0 + ε5ṽ1 + . . . , (24)

with the scaling for v being a direct consequence of mass conservation. Finally, the relevant

timescale for the dynamics is found from the kinematic condition, which to leading order reads

ε3ṽ0 = h̃t + ε3ũ0h̃x at η = 1− h̃, (25)

which leads to a slow time scale

τ = ε3µ̃−1t. (26)

After solving for u0 and v0 from the leading order contributions of the Navier-Stokes equations,

and substituting into (25), the following evolution equation for the interface is found

h̃τ +
∂

∂x

[
p̃x

(1− h̃)3

3

]
= 0. (27)
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It remains to determine p̃x at the interface in terms of h̃ to obtain a closed system. This is

achieved by expanding the normal stress balance condition (14) to obtain, at leading order,

p̃ = h̃+Weh̃xx + Eb

(
φ̃

(0)
1x

∣∣∣
y=1
− εpφ̃

(0)
2x

∣∣∣
η=1−h̃

)
. (28)

Note that in this expression we have used the solution (35) derived below which ensures that the

Maxwell stress contribution φ2
2y to (14) is of order ε2 at most and does not contribute to (28).

The horizontal electric field terms φ̃
(0)
1x and φ̃

(0)
2x need to be determined by solving the system (3)

and (20) and their appropriate boundary conditions. The voltage potential in region 1 can be

readily solved in Fourier space:

d2̂̃φ(0)
1

dy2
− k2̂̃φ(0)

1 = 0 ⇒ φ̂
(0)
1 = α(k) cosh(ky) + β(k) sinh(ky), (29)

with α(k) and β(k) to be found (hats denote Fourier transforms in the usual way). The

potentials φ̃1 and φ̃2 are linked through (19), which on use of the expansions (22) and (23)

becomes

− εpφ̃(0)
2η

∣∣
η=1−h̃ − ε εp

(
h̃x + φ̃

(1)
2η

∣∣
η=1−h̃

)
+O(ε2) = −ε

(
h̃x − φ̃(0)

1y

∣∣
y=1

)
+O(ε2). (30)

In the thin film region 2, the Laplace equation becomes ε2φ2xx + φ2ηη = 0, and from the

expansions (23) we have

φ̃
(0)
2ηη = 0, φ̃

(1)
2ηη = 0, (31)

whose solutions are

φ̃
(0)
2 = A0(x, τ)η +B0(x, t), φ̃

(1)
2 = A1(x, τ)η +B1(x, t), (32)

with A0, A1, B0, B1 to be found. An additional coupling to the fields in the slab regions 0 and

3 is present due to the voltage continuity conditions at y = 0, 1 + ε, and the Gauss laws (18)

and (20). Following [19] we use the fact that the complex functions ∂xφj − i∂yφj with j = 0, 3

are analytic in their respective domains, and apply Cauchy’s theorem in region 0 and 3 in

turn. Imposing the voltage continuity conditions at the walls leads to the following non-local

boundary conditions, written in unscaled form for the moment,

−εB
π
PV

+∞∫
−∞

φ1x(x
′, 0)

x′ − x
dx′ =

∂φ1

∂y

∣∣∣∣
y=0

,
εT
π
PV

+∞∫
−∞

φ2x(x
′, 1 + ε)

x′ − x
dx′ = εp

∂φ2

∂y

∣∣∣∣
y=1+ε

, (33)

where PV denotes the principal value of the integral. Introducing the expansions (23) and the

inner variable η into (33)b, we find at order 1 and order ε, respectively,

− εpφ̃
(0)
2η

∣∣∣
η=0

= 0,
εT
π
PV

∫ ∞
−∞

φ
(0)
2x (x′, η = 0)

x′ − x
dx′ = − εpφ̃(1)

2η

∣∣∣
η=0

. (34)
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The first condition implies that A0(x, τ) = 0 in (32) so that

φ̃
(0)
2 = B0(x, τ), (35)

while the second condition yields

εT
π
PV

∫ ∞
−∞

B0x(x
′, τ)

x′ − x
dx′ = −εpA1(x, τ). (36)

Using solutions (32) and (35) into the Gauss law (30) gives

φ̃
(0)
1y

∣∣∣
y=1

= (1− εp)h̃x − εpA1, (37)

and substituting (29) and (36) and going into Fourier space we find

kα(k) sinh(k) + kβ(k) cosh(k) = ik(1− εp)̂̃h− εT |k|B̂0. (38)

Two more conditions connecting the unknowns α(k), β(k) and B̂0(k) arise from the order ε con-

tributions of condition (33)a and continuity of voltage potentials across the fluid-air interface.

These are

εB|k| φ̂(0)
1 =

dφ̂
(0)
1

dy

∣∣∣∣∣∣
y=0

, φ̂
(0)
1

∣∣∣∣
y=0

= B̂0. (39)

Solving (38) and (39) allows us to express B0 in terms of h̃:

B̂(k) = i(1− εp)
k cosh(k) + εB|k| sinh(k)

(εB + εT )|k| cosh(k) + (1 + εBεT )k sinh(k)
̂̃h. (40)

It also follows from the solutions just obtained that (28) takes the form p̃ = h̃+Weh̃xx+Eb(1−

εp)B0x and hence the evolution equation (27) becomes

ht +
1

3

[
(1− h)3

(
hx +Wehxxx + Eb(1− εp)Bxx

)]
x

= 0, (41)

where for simplicity we have dropped the tilde decoration and τ has been replaced by t. The

interface will touch the wall if h → 1 from below. We describe our numerical solution of (41)

in Appendix A. Note that in the absence of the lower dielectric slab (region 0), the non-local

expression (40) simplifies to a form that shares strong similarities with the corresponding term

in the evolution equation previously derived by Tseluiko & Papageorgiou [20]. In the respective

case the sign is shifted due to their destabilizing vertical electric field configuration, while the

prefactor is also different, as here we include the influence of the upper solid region 3 through

εT . The same result can be retrieved by considering the small wavelength (large k) limit of the

present setup.
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III. NUMERICAL RESULTS FOR THE THIN-FILM EQUATION

In order to gain a fundamental understanding of the competition of the modeled physical

phenomena and provide a quantitative basis for subsequent nonlinear computations, we first

conduct a linear study of the long-wave evolution equation (41), focusing on the effects of

varying the electric field strength. Linearizing about h ≡ 0 and seeking solutions proportional

to exp(ωt+ ikx), yields the following dispersion relation

ω(k) =
1

3
k2 − 1

3
Wek

4 − 1

3
(1− εp)2Ebk

3 k cosh(k) + εB|k| sinh(k)

k sinh(k)(1 + εBεT ) + |k| cosh(k)(εB + εT )
. (42)

The first term on the right-hand-side is destabilizing and originates from the gravitational

acceleration; the second term accounts for the stabilizing effect of surface tension, while the

final term corresponds to the electric field. The five parameters in the system, We, Eb, εp, εB

and εT , are selected as far as possible to correspond to realistic values that could be found in

desktop experiments. Note that in many practical contexts we find that the bounding solid

regions are fabricated from the same material, implying εB = εT , and thus reducing the number

of parameters even further.

(a) We = 0.5, εp = 1.5, εB = εT = 1.0625. (b) We = 0.35, εp = 3.0, εB = εT = 1.5.

FIG. 2. Linear growth rates, as defined in equation (42), for two example cases, illustrating the

stabilizing effect of the electric field with adjustable strength via the Eb parameter.

We consider two typical but distinct example cases: a) We = 0.5, Eb varying from 0 to

5.0, εp = 1.5 and εB = εT = 1.0625; and, b) We = 0.35, Eb varying from 0 to 0.5, εp = 3.0

and εB = εT = 1.5. The resulting growth rates R(ω(k)) are illustrated in Fig. 2(a)-2(b). The

anticipated behavior of long wave instability over a finite number of unstable modes is observed,

with long waves (small k) remaining unstable irrespective of the parameter values and short

waves (large k) eventually stabilized by surface tension. Increasing Eb has a stabilizing effect

- the maximum growth rate and band of unstable waves decrease. In each case, the largest
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value of Eb was selected so that all waves with k ≥ 1 are linearly stable. In the nonlinear

calculations that follow we fix matters by taking a periodic domain of length 2π so that the

mode k = 1 is stable or slightly unstable, depending on the value of Eb. This in turn enables

us to use extensive nonlinear calculations to probe the interaction of near-wall dynamics with

the electric field.

FIG. 3. Evolution of maximum hmax(t) and minimum hmin(t) positions of the interface in time for

We = 0.5, εp = 1.5, εB = εT = 1.0625 and varying Eb.

For case a) above, an electric field strength of Eb = 4.5 is found to be sufficient to completely

suppress the instability. Hence we carry out a number of calculations of (41) for 0 ≤ Eb ≤ 4.5

in order to study features beyond the linear regime. The domain is fixed to be 2π−periodic

and the initial condition used is

h(x, 0) = −5 · 10−4 cosx, (43)

so that its minimum is in the center of the computational domain and its amplitude is small

enough to allow the instability to grow through its linear stage when unstable.

Fig. 3 presents the dynamics of the interface as a function of time and electric field strength.

The left panel depicts the interfacial maximum denoted by hmax and the right panel the inter-

facial minimum hmin. In the cases where Eb < 4.5, an initial linear exponential growth occurs

until the interface encounters the upper wall and then converges slowly to a state where hmax(t)

is asymptotically close to y = 1; at the same time, hmin(t) reaches a value which depends on Eb.

The extracted linear growth rates are in excellent agreement with the analytically predicted

values - differences do not exceed 0.01%, and graphical results are omitted here for brevity. As

expected, the presence of the electric field acts to delay the motion of the interface towards the
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wall. For example, the number of dimensionless time units required for the interfacial maximum

hmax to reach y = 0.9 is 94 when Eb = 0.0, and increases to 2000 when Eb = 4.0 which is the

final computation considered before Eb becomes sufficiently high so as to stabilize the interface

to a flat state. Several points in the figure have been marked with symbols to serve as points

of comparison with subsequent direct numerical simulations. We define ti to denote the first

time at which hmax exceeds a given threshold yi, with four such values chosen as y1 = 10−2,

y2 = 6 · 10−2, y3 = 5 · 10−1 and y4 = 9 · 10−1; the last value is sufficiently close to the wall

such that nonlinear features become prominent. We emphasize that the nonlinear draining be-

haviour described in this confined system is in qualitative contrast with the evolution into the

well-known ”mushroom” shape of the Rayleigh-Taylor instability found in vertically unbounded

domains [18]. In the present study the liquid films are not thick enough to support dripping

dynamics; instead the fluid gathers into structures comprising of collars and smaller amplitude

secondary lobes separated by slowly thinning regions [5].

(a) |hmin(t)|/|hmax(t)|. (b) Interfacial shape at hmax = 0.9.

FIG. 4. Shape dynamics for We = 0.5, εp = 1.5, εB = εT = 1.0625.

Our computations indicate that one of the main properties affected by the electric field is

the geometry of the evolving interface as measured by aspect ratio χ = |hmin(t)|/|hmax(t)|, for

example; this serves as a measure of the distortion of the interface when compared to its initial

regular cosine profile. Results corresponding to case a) parameters are given in Fig. 4(a). In

the absence of electric effects, Eb = 0, the nonlinear stage starts at t ≈ 20.0 and we find a

sharp increase in χ from 1.0 to almost 1.8. This alludes to a motion of interfacial maxima

inwards from the sides of the domain to accommodate the extension of the minimum further

down. Indeed, by observing the shapes when the maximum reaches y = 0.9 (see Fig. 4(b)), we

notice a shift of the maxima from ±π to approximately ±2.25, with further inward migration

as time progresses. The main fluid body is complemented in this case by the formation of a
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secondary lobe containing a (relatively) small amount of fluid. The electric field acts towards

a delay in the onset of the formation of this structure, which also leads to a reduction in size

of the volume of fluid within. Comparing interfacial shapes with the same hmax during their

evolution, we find that as Eb increases the two maxima are found closer to ±π, and for Eb = 4.0

the initial cosine shape is actually retained until the end of the computation. Referring back

to Fig. 4(a), |hmin(t)|/|hmax(t)| decreases steadily as a function of Eb down to unity, which

indicates regularization to a sinusoidal shape of the interface as the electric field contribution

is increased.

(a) |hmin(t)|/|hmax(t)|. (b) Interfacial shape at hmax = 0.9.

FIG. 5. Shape dynamics for We = 0.35, εp = 3.0, εB = εT = 1.5.

A similar trend is found for the second choice of parameters, case b) above, with the inter-

facial extrema dynamics shown in Fig. 5(a)-Fig. 5(b). In this case the surface tension effects

are smaller and the nonlinearity in the interface becomes more pronounced, with χ reaching

2.2 when no electric field is present. The instability threshold for this set of parameters is

Eb ≈ 0.416, and χ→ 1 at all values of Eb above this.

The nonlinear computations extend to O(103−104) time units, which enables further insight

into the long term dynamics of the system. Quantifying the regularization of the interfacial

shapes as a function of the electric field strength is best illustrated by considering the aspect

ratios χ of the saturated profiles, which are extracted from the final time of each computation.

At this stage all maxima are within 10−2 of the wall and going beyond this minimum thickness

requires prohibitively long computations. Fig. 6 illustrates the ratio χ = |hmin|/|hmax| as a

function of Eb for both example cases discussed up to this point. The same salient feature is

observed in both scenarios, namely that up to the point at which Eb is sufficiently large to

stabilize the flow, the aspect ratios vary linearly with Eb; the final profiles used to extract these

data, start from distorted nonlinear profiles in the absence of a field and end up with χ = 1
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(a) We = 0.5, εp = 1.5, εB = εT = 1.0625. (b) We = 0.35, εp = 3.0, εB = εT = 1.5.

FIG. 6. Aspect ratio as a function of the electric field strength for the saturated profiles.

which corresponds to a regular cosine shape when Eb is large enough to be close to its complete

stabilization value. The negative slope varies depending on the remaining parameters We, εp,

εB, εT ; however once a critical value of Eb is reached (close to the linear stability threshold), χ

becomes unity and remains so beyond the threshold.

The modification in the interfacial shape characteristics may also be understood in view

of the amount of liquid contained in the primary structures of the profile. When the electric

field is absent we find a large collar and a small amplitude lobe coexisting after sufficiently

long times. The lobes are centered symmetrically at x = ±π and extend to x = ±a where

a < π; the interface has local maxima at x = ±a. To facilitate comparisons between different

computations, we consider the interfacial profiles at final times when 1− hmax < 0.01, i.e. the

interface is at a distance of 0.01 from the wall. Using this condition we find that when Eb = 0

the lobe edges are at the coordinates ±2.24. The main collar formed between these points

contains 98.77% of the total liquid in the film, with the remaining small quantity shared by the

secondary lobes.

As the electric field strength is increased the lobe edge coordinates move towards the domain

edges. This is illustrated in Fig. 7(a) for case a) and up the value Eb = 4.0 when the stabilizing

action of the non-zero voltage prevents lobe formation. In general, an increase in Eb reduces

the volume of the secondary lobes; these disappear completely and all the liquid is in the

main collar beyond a certain threshold value of Eb. The second parameter study for case b)

reveals a similar behavior, with anticipated quantitative differences. Fig. 7(b) indicates a more

pronounced displacement of the maxima, with the secondary lobes being more prominent for

smaller values of Eb. Less than 94.24% of the liquid lies inside the main collar when no voltage

potential difference is applied, with the stronger distortion owing to the reduced contribution of
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(a) We = 0.5, εp = 1.5, εB = εT = 1.0625. (b) We = 0.35, εp = 3.0, εB = εT = 1.5.

FIG. 7. The interfacial maxima horizontal coordinate considered in absolute value as the distance

from the origin at x = 0 in a domain of size [−π, π] for (a) We = 0.5, εp = 1.5, εB = εT = 1.0625 and

(b) We = 0.35, εp = 3.0, εB = εT = 1.5. All data has been extracted at the timestep at which the

interfacial maxima first approach the upper wall to within a distance of less than 0.01.

surface tension. When Eb ≥ 0.4, the secondary lobe disappears with the liquid draining inside

a single collar occupying the entire horizontal extent of the domain.

(a) Distance from wall of hmax(t). (b) Draining rate.

FIG. 8. Asymptotic behavior of the interfacial maximum hmax as the interface approaches the wall

for We = 0.5, εp = 1.5, εB = εT = 1.0625 and a selection of electric field strength values Eb.

Finally we consider the draining rate of the fluid which is the rate at which the interfacial

maximum approaches the wall. In accord with the similarity solutions of [21] and [4], and also in

good agreement to the more recent exploration of [5], we find this rate to be (1−hmax) ∝ t−1/2;

these results are presented using a log-log scale in Fig. 8 for the first set of parameters, case

a). The second test case b) follows a similar pattern. While the number of time units required
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to reach this rate increases with Eb, we find that for all values of Eb tested where instability

is supported, the algebraic thinning rate follows the 1/2 power law, thus suggesting that the

electric field does not enter into the dominant asymptotic balances.

IV. DIRECT NUMERICAL SIMULATIONS

To complement our asymptotic study and to further explore the dynamics in the fully non-

linear non-slender regime, we carry out direct numerical simulations of the problem using the

volume-of-fluid software Gerris ([22],[23]). The second-order accuracy in both time and space of

the finite volume formulation, coupled with computational capabilities such as adaptive mesh

refinement (AMR) and parallelization features, all contribute to a highly efficient numerical

methodology. We refer the interested reader to our previous work [18] for an outline of relevant

numerical aspects in the context of a related electrohydrodynamical problem.

IV.1. Methodology

A sketch of the problem has been given in Fig. 1. In the direct numerical simulations

the action of the lower and upper solids is retained and these are modeled as highly dense and

viscous fluids. In addition, the associated surface tension between fluids 0 and 1, as well as 2 and

3, is taken to be large. The bottom and top layers emulate the effects of solids playing a passive

role in the fluid dynamical solution, with only the electric problem being of interest there. The

direct numerical simulation (DNS) setup is two-dimensional and all fluids are considered to be

incompressible, immiscible and viscous. They are also considered to be perfect dielectrics.

A different non-dimensionalization procedure is followed for the DNS in order to improve

the stability of the discretization scheme involved. In what follows stars are used to denote

dimensional quantities. The governing equations are the Navier-Stokes equations (1) and the

Laplace equation for the voltage potentials (3), where it is understood that these now hold in

each domain 0, 1, 2 and 3. Electric contributions appear in the form of jumps at the interface in

the Maxwell stresses in the appropriate terms of the normal stress balance - see [18] for details

on how these are incorporated as source terms in the momentum equations.

We use the horizontal length of the channel L∗D as reference length and U∗ =
√
g∗L∗D as

reference velocity. With the exception of permittivity, the physical properties of fluid 2 are

used as reference, and pressures are scaled by ρ∗2U
∗2. The permittivities are scaled with respect

to the values in fluid 1. There are four main dimensionless groups arising:

g̃ =
g∗L∗D
U∗2

≡ 1, µ̃ =
µ∗2

ρ∗2
√
g∗L∗DL

∗
D

, σ =
σ∗12

ρ∗2g
∗L∗2D

, Eb =
ε∗1V

∗2
0

ρ∗2g
∗L∗3D

≡ 1. (44)
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The quantity g̃ represents an inverse squared Froude number and setting it to 1 allows us to

recover a suitable reference velocity; µ̃ is an inverse Reynolds number acting as dimensionless

viscosity.; an inverse Weber number σ acts as dimensionless surface tension. The dimensionless

electric field group Eb is set to 1 in and provides a reference voltage in the system given by

V ∗0 =
√
ρ∗2g
∗L∗3D /ε

∗
1. The quantity V̄ = V̄ ∗/V ∗0 (note that the electric field is E∗ = V̄ ∗/L∗D)

measures the magnitude of the applied voltage potential difference. For notational convenience

we introduce the following physical property ratios:

r0 = ρ∗2/ρ
∗
0, r1 = ρ∗2/ρ

∗
1, r3 = ρ∗2/ρ

∗
3, m0 = µ∗0/µ

∗
2, m1 = µ∗1/µ

∗
2, m3 = µ∗3/µ

∗
2, (45)

εB = ε∗0/ε
∗
1, εT = ε∗3/ε

∗
1, εp = ε∗2/ε

∗
1, s10 = (σ∗10/σ

∗
12)σ, s32 = (σ∗32/σ

∗
12)σ. (46)

The quantities σ∗10, σ∗12 and σ∗32 denote the surface tension coefficients between the fluids in

regions 1 and 0, 1 and 2, 3 and 2, respectively. The dimensionless domain has unit horizontal

extent and lies in −1/2 < x < 1/2. For the hydrodynamics at the end points x = ±1/2 we

impose impermeability u(±1/2, y, t) = 0 and free-slip vy(±1/2, y, t) = 0. A voltage potential

difference V̄ is maintained by prescribing a non-zero voltage φ
∣∣
x=−1/2

= V̄ on the left boundary,

with φ
∣∣
x=+1/2

= 0 on the right. The dimensionless liquid layer region 2 has mean thickness ε

while region 1 lying below it has dimensionless mean thickness 1
2π

. The bounding slab regions 0

and 3 are taken to have a finite vertical thickness of dimensionless size L0 = 1
2
(1−ε− 1

2π
), rather

than the semi-infinite extent employed in the analysis. More specifically in their undisturbed

states, region 0 occupies −1
2
< y < −1

2
+L0, region 1 occupies −1

2
+L0 < y < −1

2
+L0 + 1

2π
=

1
4π
− ε

2
, region 2 occupies 1

4π
− ε

2
< y < 1

4π
+ ε

2
, and region 3 occupies 1

4π
+ ε

2
< y < 1

2
. At

the outer walls y = −1
2

and y = 1
2

we impose no-slip conditions u = v = 0 and a zero vertical

electric field component ∂yφ0(x,−1/2, t) = 0 and ∂yφ3(x, 1/2, t) = 0. Note that while in the

asymptotic model regions 0 and 3 are considered to be semi-infinite, we found that imposing a

wall at a finite distance L0 away has inconsequential effects on the flow; furthermore numerical

experiments showed that L0 = O(10−1) is sufficient. For completeness the schematic of the

domain utilized in the DNS is included in Fig. 9.

A sinusoidal initial perturbation of the fluid interface y = h(x, t) is imposed

h(x, 0) = −A cos(2πqx), (47)

where A is the amplitude and the integer q ≥ 1 enables variation in the wavenumber. In

all the runs presented here we have taken q = 1 which corresponds to a wave as long as the

domain size. In addition we select small A = O(10−5) so that the interfacial minimum is

located at x = 0 when q is odd. In the following subsection we present results that compare the

interfacial dynamics obtained in the long-wave asymptotic framework with the direct numerical

simulations.
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FIG. 9. Schematic of the computational domain utilized in the direct numerical simulations.

IV.2. Comparison of DNS with thin film model results

Recall that the solutions of the evolution equation (41) depend on five dimensionless physical

parameters, the surface tension parameter We, the electric field strength Eb and the permittivity

ratios εB, εT and εp. The thin liquid layer assumption, along with the passive nature of the

fluid in region 1, enabled analytical progress and derivation of a tractable partial differential

equation which retains desired physical effects. By contrast, the direct numerical simulations

employing the volume-of-fluid methodology introduce additional complexity. Firstly, the small

liquid layer height ε � 1 was scaled out of the analysis, however a suitable choice is required

when modeling the full two-dimensional computational domain. It is anticipated that if ε

in the DNS is sufficiently small, then the qualitative impact on the solution will be limited.

However quantitative differences, as well as timescale discrepancies in the evolution of the flow,

will arise when considering thresholds for instability windows. A second element absorbed

within the theoretical derivation is the O(1) Reynolds number, which is embedded in the time

derivative of the interface. This implies that variation of the inverse Reynolds number µ̃ defined

in (44), affects the timescale and growth rate of the instability but only has a marginal effect
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on the interfacial shape and other nonlinear features. Finally, concrete choices must be made

for the density ratios r0, r1 and r3, and the viscosity ratios m0, m1 and m3, so that the fluid

system is Rayleigh-Taylor unstable and the contrast in physical quantities is sufficiently strong

to reflect the idealized configuration of an upper liquid layer with a passive fluid underneath.

The challenges described above render a one-to-one correspondence with the asymptotic

solutions very difficult to attain. Furthermore, the DNS are made even more expensive due

to the slow timescale of the flow for small ε and as wall touching takes place. Resolving such

layer thinning dynamics for the model equation required O(103 − 104) time units (see Fig. 8).

Noting the ε−3 rescaling in the time variable - see equation (26) - and the smallness of ε, it is

anticipated that the number of time units needed to observe the same features in the DNS will

increase prohibitively by a factor of at least 103 for ε smaller than 0.1. Two simplifications, that

arose from extensive numerical experimentation, were introduced to surmount these difficulties.

The value for ε has been set to 0.2L = 0.2/(2π), which was found to be sufficiently small to

reproduce the findings of the model. Secondly, the Reynolds number used in the computations

has been increased by a factor of approximately three, so that when re-cast into the non-

dimensionalization (44), its inverse becomes µ̃ = 0.02 instead of 0.0635 which would directly

coincide with Re = 1 used in the model. These parameter choices accelerate the computations

significantly and provide results from direct numerical simulations that can be compared with

the asymptotic model solutions. Adaptive grid refinement is used, which is set to increase

resolution in the vicinity of the interface and the thin liquid layer. Adaptivity allows for

coarser grids away from the thin layer but a large number of degrees of freedoms emerge still.

For example, prescribing the highest level of refinement around the interface to be 256 cells,

adaptivity yields approximately 5 · 103 degrees of freedom; this is an order of magnitude less

than what it would be over a uniform grid at the resolution of the interface. Nonetheless, to

capture the dynamics of the interface as it gets close to the wall we require at least 1000 CPU

hours for each run.

For the first test case we take a surface tension coefficient σ = 0.012665 and permittivity

ratios εp = 1.5 and εB = εT = 1.0625, all being equivalent to the values used in the study

of the long-wave model in subsection III. The imposed voltage potential difference V̄ varies

from 0.0 to 0.46, with the threshold for instability for a wavenumber of 2π is found to be of

V̄ ≈ 0.42. A considerably higher surface tension coefficient is used for the lower and upper

interfaces between layers 0 and 1, and layers 2 and 3, respectively, with s10 = s32 = 39.47. As

intended, the hydrodynamic interaction between the lower two layers is very limited, with the

stably stratified system, strong surface tension and flat interface all contributing to replicating

the boundary between a liquid and a solid in which the electric terms are the only non-negligible
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contribution. The second test case is characterized by σ = 0.008865, εp = 3.0, εB = εT = 1.5

and V̄ varying from 0.0 to 0.235, with s10 = s32 = 56.5. The remaining physical parameters

pertaining to the direct numerical simulations in both studies are density ratios r0 = 1.0,

r1 = 80.0, r3 = 10.0, viscosity ratios m0 = 5.0, m1 = 1.0, m3 = 1.0 and inverse Reynolds

number µ̃ = 0.02.

FIG. 10. Evolution of maximum hmax(t) and minimum hmin(t) positions of the interface in time for

σ = 0.012665, εp = 1.5, εB = εT = 1.0625 and varying V̄ . The remaining physical parameters for

the DNS are µ̃ = 0.02, s10 = s32 = 39.47, r0 = 1.0, r1 = 80.0, r3 = 10.0, m0 = 5.0, m1 = 1.0 and

m3 = 1.0.

The time evolution of the scaled interfacial maximum and minimum are depicted in Fig. 10,

to be compared to the analogous Fig. 3 in the asymptotic study. To enable comparisons with the

model computations, the interfacial position for the DNS is written as h(x, t) = 1
4π
− ε

2
+εh̃(x, t)

and hence the scaled interface is h̃(x, t) = (h(x, t) − 1
4π

+ ε
2
)/ε, where ε = (0.2/2π) in the

simulations; it follows that −5 < h̃ < 1, with the lower bound due to the upper limit of

fluid region 0 at y = −0.5 + L0. The results of Fig. 10 also show that an increase of V̄

reduces the instability and complete stabilization is achieved above a critical value of V̄ ≈ 0.42.

Interestingly, due to the imposition of a combination of Neumann and Dirichlet lateral boundary

conditions for the fluid velocities (as opposed to periodic boundary conditions in the long-wave

model), the flow eventually becomes unstable since subharmonic instabilities are now supported

- i.e. even though the k = 1 mode is stable, the k = 1/2 mode is unstable and is allowed by

the boundary conditions. Numerically we can see subharmonic instabilities appearing even

when the interfacial perturbation drops below 10−8 due to the stabilization of the k = 1 mode
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introduced by the initial condition.

FIG. 11. Interfacial shape comparison as hmax = 0.9 for increasing values of Eb (dots labeled t4 of

Fig. 3 for the long-wave model) and V̄ (dots labeled t4 of Fig. 10 for the direct numerical simulations)

for the first choice of parameters - σ = 0.012665, εp = 1.5, εB = εT = 1.0625. Top left Eb = 0.0, top

right Eb = 1.0, bottom left Eb = 2.0, bottom right Eb = 3.0.

FIG. 12. Interfacial shape comparison as hmax = 0.9 for increasing values of Eb and V̄ for the second

choice of parameters - σ = 0.008865, εp = 3.0, εB = εT = 1.5. Top left Eb = 0.0, top right Eb = 0.1,

bottom left Eb = 0.2, bottom right Eb = 0.3.

21



The shapes of the interface obtained from the DNS are compared to their counterparts from

the long-wave model in Fig. 11 and Fig. 12 for the two different cases investigated. The four

panels show the superimposed interfaces when hmax first exceeds 0.9, indicated by circles in

Fig. 3 and Fig. 10. Excellent agreement is found between long-wave and DNS results, with the

nonlinearity in the shape being regularized to a cosine shape as the electric field is increased.

More pronounced features are observed in the second case due to a smaller value of σ. For

values of the field near the stabilization threshold, our results indicate that nonlinear distortion

is reduced and the shapes grow towards the wall retaining their initially sinusoidal profiles.

(a) σ = 0.012655, εp = 1.5, εB = εT = 1.0625. (b) σ = 0.008865, εp = 3.0, εB = εT = 1.5.

FIG. 13. Aspect ratio as a function of the electric field strength for the saturated profiles based on

results originating from the direct numerical simulations.

The dependence between the interfacial shape aspect ratio χ = |hmin|/|hmax| as a function of

the electric field strength is summarized in Fig. 13. Given the linear dependence of χ to Eb once

saturation is reached in the long-wave model (see Fig. 6), we anticipate a similar behavior in

the DNS. Noting that V̄ ∼
√
Eb with Eb defined by (10), we expect a linear variation of χ with

V̄ 2. This is indeed the case in the results of Fig. 13; the slope and intercept vary as a function

of the numerous parameters in the flow. The slopes of the two datasets do not match exactly

as we do not anticipate a one-to-one correspondence of the results at finite ε. We also note that

it is very difficult to obtain data for moderate to large values of V̄ where the flow is very close

to the stability threshold; due to very slow development of the instability, this requires O(104)

CPU hours for each computation. In such cases the advantages of employing the asymptotic

model become evident. Making ε bigger reduces computational times but can also violate the

assumptions underlying the long-wave model that we are trying to compare with. Given the

excellent agreement between the model and the DNS, we consider next in section IV.3 the

range of validity of the model by carrying out detailed DNS studies as ε increases. We note
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(results not shown) that when we increase the vertical extent of the lower side of the domain

and remove the lower fluid from the system, dripping can occur should ε exceed a threshold

value for a given V̄ .

IV.3. Using DNS to test the validity of the long-wave equations

Even though the evolution equation (41) is valid for ε � 1, the numerical simulations of

section IV.2 have shown that agreement is excellent for ε = 0.2/(2π). In what follows we

examine numerically the solution dependence on the liquid film height and characterize the

dynamics at progressively larger values of ε in order to evaluate the validity of the model (41).

In order to reduce the number of parameters we concentrate on the non-electrified case V̄ = 0.

We take parameters similar to those of the first case described in subsection IV.2, with

density ratios r0 = 1.0, r1 = 80.0, r3 = 10.0, viscosity ratios m0 = 5.0, m1 = m3 = 1.0 and

surface tension coefficient σ = 0.012665, while s10 = s32 = 39.47 (permittivity ratios are no

longer relevant). In order to promote a shorter timescale of the dynamics for the smaller values

of ε, the dimensionless viscosity is reduced to µ̃ = 0.001.

FIG. 14. Evolution in time of the scaled maximum hmax(t) and minimum hmin(t) positions of the

interface as the liquid film height ε is increased.

Fig. 14 presents results for ε varying between (0.1/2π) and (0.49/2π). Here we plot the

interfacial extrema hmax and hmin for all test cases, normalizing each by the appropriate value

of 2πεi, i = 1, . . . , 11 - as previously, this normalization implies that the interface touches the

upper wall when hmax → 1. In addition, the initial amplitude is A = 5 · 10−3 in all test cases,
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and so its normalized value varies appropriately. We find that larger values of ε promote a faster

growth of the instability, while the added fluid mass also affects interfacial shapes sufficiently

close to the upper wall. More specifically, by plotting interfacial shapes as they first reach the

maximum value of y = 0.9 (circles at t4 in Fig. 14), we find that the increase in fluid mass pushes

the maxima further inward in the domain, supporting a stronger deformation of the interface

at its minimum point where x = 0.0 - see Fig. 15(a). This resembles the effect obtained

when reducing the surface tension coefficient in the comparison between the two different cases

analyzed previously. Quantifying the shape aspect ratio χ = |hmin|/|hmax| once the shapes

have saturated, shows a significant increase in the nonlinearity with χ changing from 1.78 for

the smallest value of ε = (0.1/2π) to almost 2.4 as ε reaches values closer to (0.5/2π) - see

Fig. 15(b). Values of 2πε ≤ 0.25 are estimated to be in good agreement (errors of less than

5%) with the asymptotic model based on this property.

(a) Scaled interfacial shapes as hmax = 0.9. (b) Aspect ratio of scaled saturated shapes.

FIG. 15. Interfacial shape properties as a function of varying liquid film height ε.

FIG. 16. Pressure field for a large ε = (0.49/2π) case with a close-up of the region where the active

fluid interface approaches the lower fluid layer and a thin region (cushion) is created between them.

Beyond this stage the fluid simply extends laterally.

For sufficiently thick fluid layers characterized by ε > 0.45, approximately, the interface

reaches the lower surface, forms a thin film there and drains slowly - see Fig. 16. The adaptive
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mesh refinement illustrated in the figure, ensures that such dynamics is computed accurately

even as the thickness of this intermediate layer becomes very small. At this stage the upper

liquid layer effectively rests on the lower surface; further increases in ε lead to the lateral

spreading of the upper liquid on top of this (slightly compliant) surface. We note that as a

result of the modeling, a small level of deformation of the lower interface is present. Further

increases in the viscosity, density and surface tension coefficient in the lower passive layer

would alleviate this artifact, however the deformation is found to be sufficiently small to have

a negligible effect on the overall dynamics of the system.

The results presented indicate that the asymptotic model captures the main features of the

flow well even for relatively large values of ε. Qualitatively there are only minor modifications

in the flow even until the lower surface is reached, while quantitatively we find good agreement

between the results based on the long-wave evolution equations and the DNS for 2πε ≤ 0.25.

The results thus far consider systems with relatively strong surface tension that are confined

from below, and hence pendant drop formation, elongation and subsequent dripping have not

been observed. We have investigated such phenomena (details omitted here for brevity) by

removing the lower fluid 0 and extending region 1 vertically so that bottom wall effects become

negligible; all other parameters described earlier in this subsection are kept fixed. We find that

for ε ≤ 0.4, the results coincide with the confined case. When ε ≈ 0.45, minor differences

emerge as the liquid layer interacts with the lower interface when the latter is present. As ε

exceeds a value of approximately 0.5 the formation of a pendant drop and eventual dripping

is observed - pinching can only happen if additional effects such as van der Waals forces are

included. It is useful to compare the critical value of ε found for dripping, with the capillary

length `c =
√
σ∗12/(ρ

∗
2g
∗). Taking layer 1 to be air, i.e. ρ∗1 ≈ 1.225 kg/m3 and taking parameters

as in the DNS performed in this section, we have the density of the liquid layer region 2 being

ρ∗2 = r1 ρ
∗
1 ≈ 98 kg/m3. In addition, assuming a surface tension coefficient σ∗12 = 72 · 10−3N/m

(this is a typical value for water-air interfaces), we find `c ≈ 8.6mm. The value of L∗D can

be found from the dimensionless surface tension formula σ = (σ∗12/ρ
∗
2g
∗L∗2D ) which was set to

σ = 0.012665 in the present computations. We find LD ≈ 7.7 cm, and since the critical value of

ε that gives dripping is between (0.45/2π) and (0.5/2π), it follows that its dimensional thickness

is approximately 6mm which is consistent with the capillary length estimated earlier.

25



V. APPLICATION: ACTIVE CONTROL OF THE RAYLEIGH-TAYLOR INSTABIL-

ITY

In what follows we use a time-dependent electric field to produce controlled interfacial oscil-

lations, with no moving mechanical parts, with possible implications for mixing at small scales.

Simple control protocols have already been investigated in a geometry of infinite vertical extent

[18] and then tailored towards mixing studies in two and three dimensions [24] when the walls

were placed far away from the undisturbed position of the interface. The latter study uses

vertical electric fields to introduce instability in otherwise stably stratified flows; here we use

horizontal electric fields to arrest gravitational instabilities. Results using both the long-wave

model and DNS will be presented.

To fix matters we solve the evolution equation (41) with the same parameters as in case

b) in section III, i.e. We = 0.35, εp = 3.0 and εB = εT = 1.5. The electric field strength Eb

is chosen to alternate between 0 and 0.75, which is above the stability threshold predicted by

linear theory and is selected to induce stabilization even when outside the linear regime.

(a) Evolution of interfacial minimum hmin and

maximum hmax in time.

(b) Interfacial shapes immediately prior to switching

on the electric field in four different cycles.

FIG. 17. On-off electric field with the electric field activated when hmax exceeds the threshold value

yt = 0.5 and switched off when the interface maximum reaches the same level as in the initial condition.

The suggested mechanism is summarized as follows. Starting from a k = 1 initial pertur-

bation and an initial amplitude of 5 · 10−4, we allow the Rayleigh-Taylor instability to evolve

naturally until a certain threshold level yt is reached by the interfacial maximum hmax(t). As

soon as yt is exceeded, the electric field is switched on and, after an initial transient, a strong

stabilization occurs which, if sustained, would ultimately drive the interface to a flat state.

Before this happens however, we switch the electric field off as soon as hmax(t) drops below its
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initial amplitude, and repeat this cycle over several periods.

Fig. 17(a) shows the evolution of the interfacial extrema hmin(t) (dashed curve) and hmax(t)

(solid curve) over the duration of the nonlinear calculation. The background is colored in white

when the electric field is switched off, allowing the instability to grow over tens of time units.

Once hmax reaches the threshold level, the electric field is switched on as illustrated with a

dark gray background. Under the stabilizing action of the field, both extrema decrease to their

initial amplitudes as seen in the Fig. 17(a). A threshold value yt = 0.5 is sufficient for nonlinear

effects to emerge, and Fig. 17(b) presents the interfacial shapes one time-step before the electric

field is switched on. The results strongly suggest a robust time-periodicity of the phenomena.

The duration of the periods when the field is off is toff ≈ 36.26, while the on-periods are

slightly smaller with ton ≈ 32.7. The interfacial shapes are virtually indistinguishable between

consecutive on-off cycles. The robustness of the dynamics suggests that we can repeat the

oscillations over several tens or hundreds of cycles to reach competitive mixing designs. We

also note that even though a time-dependent electric field is proposed in the context of a quasi-

static approximation, the scales involved ensure the validity of such an approach (see Appendix

B of [18] for details).

(a) Interface maximum as a function of time for different values of V̄ when

switching the electric field on at t = 245.5 (single cycle).

(b) hmin(t) and hmax(t)

evolution.

FIG. 18. On-off electric field with the electric field activated when hmax exceeds the threshold value

yt = 0.5 and switched off when the interface maximum reaches the same level as in the initial condition.

The evolution of the interfacial extrema hmax(t) and hmin(t) is compared to the dynamics obtained in

the equivalent configuration in the long-wave model, presented previously in Fig. 17(a).

The sustained oscillations are also faithfully reproduced in the direct numerical simulations.
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We use the same parameter values as in the second test case in subsection IV.2. For the

parameters of Fig. 17(a)-17(b), the equivalent stabilizing voltage to be imposed is V̄ ≈ 0.3.

Results with a number of different values of V̄ are illustrated in Fig. 18(a); it can be seen that

voltages V̄ > 0.25 stabilize the interface and return it to its almost flat state by the end of the

computation. For values of V̄ ≈ 0.3 the relative duration of off- and on-cycles as well as shapes

are in good agreement between the long-wave model and the DNS.

Next we turn to a more stringent threshold yt = 0.9 that allows the interface to get closer

to the wall before the field is turned on to cause stabilization and sustained oscillations. We

proceed with computations based on the model (41) due to the prohibitive cost of the DNS

in this case. Figures 19(a) and 19(b) indicate that once again the on-off cycles are sustained

robustly even in this more challenging regime. Here the off-periods increase from 36.25 time

units to approximately 85.64 time units in order to accommodate the growth closer to the wall.

By comparison, the on-periods only require a mild increase in order to steer the interface back

to its initial perturbation.

(a) Evolution of interfacial minimum hmin and

maximum hmax in time.

(b) Interfacial shapes immediately prior to switching

on the electric field in four different cycles.

FIG. 19. On-off electric field with the electric field activated when hmax exceeds the threshold value

yt = 0.9 and switched off when the interface maximum reaches the same level as in the initial condition.

VI. CONCLUSIONS

This study derived and used model long-wave equations as well as direct numerical sim-

ulations to study the effect of horizontal electric fields on the Rayleigh-Taylor instability of

viscous dielectric fluids. Small scale channels are typically enclosed within polymer slabs, and

our model took into account the electrostatics in these slabs and their electrohydrodynamic
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coupling with the fluids inside the channel. The analysis leading to equation (41) was carried

out for bounding slabs of infinite extent, and this is appropriate since the channel thickness

is typically smaller than that of the slabs. The theory can be modified in a straightforward

way for slabs of finite thickness, at the expense of more complicated Fourier symbols of the

non-local term in (41). In addition, direct numerical simulations that necessarily use finite slab

geometries, were found to be in excellent agreement with the model. We also demonstrated

the possibility of using the imposed electric field as an active control parameter to induce sus-

tained time-periodic nonlinear oscillations of the interface that may have relevance in mixing

in small-scale geometries - see [24] for related approaches.

There are several research directions that can be pursued based on this work, including the

effect of topographical structures (e.g. of finite extent for simplicity) on the wall wetted by the

liquid layer as well as the addition of pressure-driven flow as encountered in microfluidic devices,

for instance. In the former case the effect of wall topography will induce a non-uniform field

locally and hence non-uniform base states as opposed to the flat ones studied here. Adding flow

coupled with horizontal field stabilization is expected to produce active-dissipative dynamics

reminiscent of the Kuramoto-Sivashinsky equation, for example.
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Appendix A: Numerical method for the thin-film equation

We consider the problem of numerically solving (41) in the form

Ht + [f1(H)Hxxx]x + [f2(H)]xx + [f3(H)(B[H](x))xx]x = 0, (A1)

where B[H](x) is the non-local term due to the electric field known in Fourier space as (40),

and the polynomial functions fi(H); i = 1, 2, 3 are as follows

f1(H) =
We

3
(1−H)3, f2(H) = − 1

12
(1−H)4, f3(H) =

Eb(1− εp)
3

(1−H)3, (A2)

by discretizing it on a periodic domain x ∈ [−L,L] using the finite difference method pre-

sented in [20] and modified as described below in order to include the new electric field term,

[(f3(H)B[H](x))xx]x.

We first briefly describe the discretization of the fluid part (Eb = 0) of (A1) with second-order

accurate finite differencing on a fixed grid xm = (m −M)∆x,m = 1, 2, ..., 2M , ∆x = L/M .
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Using the convention xm+1/2 = (xm + xm+1)/2, we obtain the following system of ordinary

differential equations

dHm

dt
+
f1(Hm+1/2)∂3(H)m+1/2 − f1(Hm−1/2)∂3(H)m−1/2

∆x
+ ∂2(f2(H))m = 0, (A3)

where we note that ∂i represents a standard second-order accurate finite difference approxi-

mation to the ith spatial derivative. The ODE system (A3) is discretized in time with the

second-order accurate Crank-Nicolson scheme as

Hn+1 +
∆t

2
Ffluid(Hn+1) = Hn − ∆t

2
Ffluid(Hn). (A4)

and, at every time step, we solve a nonlinear algebraic system for Hn+1 with Newton iteration

for which the Jacobian matrix is

J = I +
∆t

2

∂Ffluid

∂H
, (A5)

where the elements of the ∂Ffluid

∂H
matrix are known explicitly.

Next, our modification of the scheme in [20] is described by considering the following evolu-

tion PDE

Ht + [f3(H)(B[H](x))xx]x = 0, (A6)

with periodic boundary conditions. We let Hn be the discretization of H at time tn on the

computational grid. The Crank-Nicolson discretization in time is then, using the product rule,

Hn+1 −Hn

∆t
+

1

2
[f ′3(h)(DxH)Bxx + f3(H)Bxxx]

n+1
+

1

2
[f ′3(H)(DxH)Bxx + f3(H)Bxxx]

n
= 0,

where the vector-vector products are computed point-wise, and the Dx operator is the discrete

differentiation operator. We now need a method for calculating the Jacobian of the function

evaluations and we cannot use the FFT to compute the non-local term. We thus rewrite the

equation above in the following way

Hn+1 +
∆t

2

[
f ′3(H)(DH)(GH) + f3(H)(G̃H)

]n+1

= −∆t

2

[
f ′3(H)(DH)(GH) + f3(H)(G̃H)

]n
,

where we made the operator substitutions in notation: Dx =: D, Bxx =: GH, Bxxx =: G̃H. We

identify the bracketed term in the left-hand side of the above equation with Felectric(Hn+1),

and see that we now have a nonlinear system of equations to solve, and need an explicit formula

for ∂Felectric

∂H
to perform Newton iteration. To this end we denote the discrete Fourier transform

matrix as MF , k is the wavenumber, and write out our operators in matrix form as

G := M−1
F Σ1MF , Σ1 := diag(−k2λ(k)),

D := M−1
F Σ2MF , Σ2 := diag(ikλ(k)),

G̃ := M−1
F Σ3MF , Σ3 := diag(−ik3λ(k)),

(A7)
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and define di, gi, and g̃i as the i-th row of D,G, G̃ respectively, where

λ(k) = i(1− εp)
k cosh(k) + εB|k| sinh(k)

(εB + εT )|k| cosh(k) + (1 + εBεT )k sinh(k)
(A8)

is the symbol in Fourier space of the convolution kernel deduced from (40). Using this notation

we derive the following relationships for the elements of the Jacobian, J.

m 6= j :
∂Felectric

m

∂Hj

=
∆t

2
(f ′3(Hm)Dmj(gm ·H) + f ′3(hm)(dm ·H)Gmj + f3(Hm)G̃mj),

m = j :
∂Felectric

m

∂Hj

= 1 +
∆t

2
(f ′′3 (Hm)(dm ·H)(gm ·H) + f ′3(hm)Dmj(gm ·H)

+ f ′3(Hm)(dm ·H)Gmj + f ′3(Hm)(g̃m ·H) + f3(Hm)G̃mj).

(A9)

Adding the matrix (A9) to the ∂Ffluid

∂H
matrix allows us to perform Newton iterations to solve

for Hn+1 in the presence of both the fluid and the electric field terms.

In our implementation we refine the spatial grid whenever a finer discretization is detected

to be required in order to accurately resolve finer features of the evolving solution. Specifically,

we take a Fourier transform of the solution in each time step and examine the magnitudes of the

Fourier modes. When more than a threshold, for example, 2
3

of the Fourier modes are larger than

a tolerance εx we double the number of grid points. Note that this implies we are implementing

global adaptivity, not adaptivity only in regions with finer features. Implementing our upscaling

method is straightforward with Fourier interpolation; we take our Fourier transformed solution

ĥM on a grid with M gridpoints, pad M higher wavenumbers with zero, and then transform

back to obtain a solution h2M defined on 2M gridpoints. We also control the timestep by

employing a local error indicator em which approximates ∆tn−1

Hn
m

d2Hn
m

dt2
[20, 25]:

em =
2∆tn−1

∆tn−2

∆tn−2H
n+1
m + ∆tn−1H

n−1
m − (∆tn−2 + ∆tn−1)Hn

m

(∆tn−2 + ∆tn−1)Hn
m

. (A10)

We increase ∆t by 10% whenever em < 3
4
εt for all m and decrease it when em > εt, where et is

the time accuracy to be maintained throughout the computation time interval. For solving the

linear systems in the nonlinear Newton iterations, we additionally use a GMRES solver with a

preconditioner derived from the linearized form of equation (A1) [26].
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