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RAPID COMMUNICATION

A novel route for volume manufacturing of hollow braided composite
beam structures

Anubhav Singha, Neil Reynoldsa, Craig R. Carnegiea, Christopher Micallefa, Elspeth M. Keatinga ,
James Winnetta, Alastair E. Barnettb, Steve K. Barbourb and Darren J. Hughesa

aWMG, University of Warwick, Coventry, UK; bComposite Braiding Limited, Derby, UK

ABSTRACT
This work investigates the application of a rapid variothermal moulding process for direct proc-
essing of a braided thermoplastic commingled yarn. The process uses locally controllable,
responsive tooling which provides opportunities for optimum part quality and significantly
reduced cycle times compared with conventional processes. The proposed process was used to
directly manufacture hollow beam structures from dry commingled braided preforms. It was
demonstrated that the cycle time using the rapid process was reduced by more than 90% as
compared to a conventional bladder moulding process, resulting in a total cycle time of 14min.
Additionally, initial three point flexure test results indicated an improvement in the mechanical
performance of the resultant parts as compared to the benchmark.
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Introduction

Braiding is an effective method for manufacturing hol-
low tubular fibre-reinforced composite structures. The
method interlaces continuous fibre bundles at a prede-
fined angle resulting in the production of hollow
tubular dry fibre preforms, which can then be impreg-
nated with resin. Being an automated low-waste

process, braiding finds numerous applications in large
scale structural components in the automotive [1–3]
and aerospace [4–7] industries as well as in small
scale biomedical [8,9] and sports [10] applications.
However, a majority of the current applications utilize
thermoset matrices, which renders the curing of com-
posites as the cycle-time limiting aspect. Consequently,
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in spite of the rapid preform production ability of the
braiding process, current applications remain limited
to the high-value low-volume range. This bottleneck
could potentially be overcome by using hybrid fibre-
thermoplastic matrix material systems. They are a
blend of thermoplastic filaments with reinforcement
fibres, which could be directly processed, thus reduc-
ing the time and equipment (plant/tooling require-
ment) for resin injection. Moreover, their short
impregnation paths [11] accelerate fibre wet out and
consolidation. Hybrid systems are available in several
forms such as commingled, core-spun, co-knit, co-
wrapped etc. [12]. Among the available hybrid yarns,
commingled thermoplastic yarns are more suitable for
braiding because of their easy handleability [13,14]
and relatively superior drapeability. Previous literature
shows several instances of incorporation of com-
mingled thermoplastic yarns in a braiding pro-
cess [15–19].

Conventionally, bladder inflation moulding
(BIM) has been found feasible for producing hollow
composite components [20]. Being a simple and
effective technique for consolidation of thermoplas-
tic composites, BIM was also proposed for fabrica-
tion of hollow lightweight parts in sports [21,22]
industries. The high volume potential of using BIM
for processing braided commingled fabric was

presented in the past [23,24]. However, there was a
lack of manufacturing readiness because of the
impractical routes used for pursuing high heating/
cooling rates. This paper addresses the need for a high
volume production route and presents a rapid vario-
thermal process concept for the first time. The process
allows rapid heat up and cool down, thus providing the
potential of achieving shorter processing cycles. A con-
ventional BIM process was used as a benchmark for
comparison. Findings of this work can help industry in
developing more confidence in braided thermoplastic
composite manufacturing technologies specifically from
the high volume-manufacturing viewpoint.

Material

The braided preforms used in this work were pro-
duced by braiding three layers of a commingled fab-
ric using a 64-carrier O.M.A. maypole braider [25].
The braiding parameters were set to result in a
braid angle of 25� in the final parts. A commingled
glass/polyamide 6 yarn from Coats [26] with fibre
volume fraction of 55% was used. PA6 was chosen
because of its favourable characteristics for high vol-
ume applications in the automotive industry [27].
The melting point and recrystallization temperatures

Figure 1. (a) Step-wise illustration of BIM process (Adapted from [31]); (b) Schematic of the RVM tool faces showing segre-
gated channels & (c) Customized tool face with the PtFS setup mounted onto the press.
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of the PA6 used are approximately 221�C and
185�C respectively.

Rapid variothermal moulding

The proposed novel rapid variothermal moulding
(RVM) setup is an integration of three key components:

i. Elements of the conventional BIM process: The
steps involved in a conventional BIM process
are explained schematically in Figure 1(a).

ii. Patented PtFS (Production to Functional
Specification) [28] concept by Surface
Generation Limited: The PtFS technology ena-
bles rapid heating and cooling of customized
moulding tools. The reverse faces of the tools
are machined into an array of thin-walled
channels. Each channel has a dedicated heater
below the tool face and a supply of compressed
air. Controlling the heat and compressed air
supply to each channel separately potentially
allows for rapid heat up and cool down as well
as precise local control over the temperature in
each zone of the part being moulded. A soft-
ware facilitates real-time monitoring and

control of the process cycles across each chan-
nel. An existing compression moulding PtFS
setup [29,30] at WMG with a total of 32 chan-
nels (16 on each tool half) was used with cus-
tom-made tool faces. A three dimensional
schematic of the tool with the segregated chan-
nels is shown in Figure 1(b). As shown in the
figure, the tool has two adjacent mould cavities
out of which only one was used in this work.
Figure 1(b) also shows the top view of the tool
with marked thermocouple locations. The end
channels of the tool are also highlighted in the
figure. Monitoring the temperature of these
end channels is critical as they would incur
relatively greater heat loss to ambient atmos-
phere as compared to the other channels.

iii. Hydraulic press: The application of a press enables
rapid opening and closure of the tools, thus
reducing the time between cycles. A 100 ton
Dassett hydraulic press was used in this work.
The customized tool faces were mounted with the
PtFS setup on the press as shown in Figure 1(c).

Figure 2(a) shows a step-wise description of the
RVM process. The tool was preheated to 150�C,

Figure 2. (a) Steps involved in RVM process with pressure and temperature profile during press cycle; Average and end-chan-
nel temperature profiles of the top and bottom tool halves (b) before and (c) after employing PtFS control features. Note: the
material temperature was approximately 10�C above the plotted tool back face temperature.
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following which a braided preform with a bladder
was placed into the tool cavity and the press was
closed. The temperature was increased to 250�C at a
rate of 40�C/min and then held at 250�C for 6min.
After cooling down to 180�C, the part was
demoulded. The temperature was further reduced to
150�C and the tooling was prepared for the next
cycle. An internal bladder pressure of 0.4MPa
(4 bar) was applied. At the time of the press trials,
this was the maximum available pressure due to
limitations of the manufacturing environment. A set
of preliminary trials were performed to improve the
thermal response of the tool. The available electrical
heating power was adjusted for each channel on the
basis of the monitored temperature. Moreover, dur-
ing the cooling phase, the channel with the slowest
response was designated as the rate-governing chan-
nel for the entire tool, which resulted in a slow but
uniform cooling rate of approximately 20�C/min.
The implementation of these features resulted in a
significant improvement in temperature-time profile,
particularly in the consolidation phase, as depicted
in Figures 2(b,c). The entire part cycle lasted for
approximately 14min.

A conventional BIM process in use at Composite
Braiding Limited for industrial production of com-
ponents served as benchmark. A two-part steel tool
was designed and used for moulding of the braided
fabric, which was heated using an industrial oven.
After placing the closed mould into the oven, the
temperature was increased to 240�C and the bladder
was internally pressurized to 2MPa (20 bar). The
pressure and temperature were maintained for
10min, following which the tool was cooled and the
part was subsequently demoulded at a temperature
of approximately 140�C. The entire process cycle

including demoulding and tool separation took 4 h,
which is limiting for high volume production.

Mechanical testing

For comparing the beams manufactured using the
BIM and RVM processes, a quasi-static three-point
flexure test was used. The test was performed at a
rate of 10mm/min using an Instron 5800 R test
machine equipped with a 100 kN load cell. The test
setup is shown in Figure 3(a) with the details of the
test specimens. Three RVM beam specimens were
tested, however, only one industrially produced BIM
beam specimen was available. The load-displacement
curves are depicted in Figure 3(b). The average stiff-
ness and peak load of three RVM beam specimens
were higher by 12% and 17% as compared to the
BIM specimen. It is believed that internal thermal
stresses (generated because of uncontrolled cooling
across the part) and matrix degradation [32,33] (a
consequence of the part being above the melting point
of PA6 for long duration) play a role behind the rela-
tively poorer performance of the BIM specimen.

Conclusions

A novel RVM process was developed providing a
route for volume production of thermoplastic
braided structures. A conventional bladder mould-
ing technique was used as a benchmark. As com-
pared to a cycle time of 4 h in BIM, RVM parts
took 14min to manufacture. The ability to monitor
and control the discrete channels of the tool indi-
vidually resulted in a uniform temperature profile
throughout the part. First mechanical test results
indicated superior performance for RVM beams as

Figure 3. (a) Three-point flexure testing setup with specifications of test specimens; (b) Load-displacement response of the
BIM and RVM beams.
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compared to the single BIM specimen. The study
suggests promising prospects for braided composites
directly manufactured via the RVM process that
provides greater control over manufacturing param-
eters along with 90% cycle time reduction. Further
work aimed at establishing correlations between the
manufacturing parameters and part quality is
ongoing and will be subsequently reported.
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