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Energy and Vorticity Spectra in Turbulent Superfluid 4He from T = 0 to Tλ.
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We discuss the energy and vorticity spectra of turbulent superfluid 4He in the entire temperature
range from T = 0 up to the phase transition “λ point”, Tλ ≃ 2.17K. Contrary to classical developed
turbulence in which there are only two typical scales, i.e. the energy injection L and the dissipation
scales η, here the quantization of vorticity introduces two additional scales, the vortex core radius
a0 and the mean vortex spacing ℓ. We present these spectra for the super- and the normal-fluid
components in the entire range of scales from L to a0 including the cross-over scale ℓ where the
hydrodynamic eddy-cascade is replaced by the cascade of Kelvin waves on individual vortices. At
this scale a bottleneck accumulation of the energy was found earlier at T = 0. We show that even
very small mutual friction dramatically suppresses the bottleneck effect due to the dissipation of the
Kelvin waves. Using our results for the spectra we estimate the Vinen “effective viscosity” ν′ in the
entire temperature range and show agreement with numerous experimental observation for ν′(T ).

I. INTRODUCTION

Superfluidity was discovered by Kapitza and by Allen
and Misener in 1938 who demonstrated the existence of
an inviscid fluid flow of 4He below Tλ ≃ 2.17K. In the
same year, London linked the properties of the superfluid
4He to Bose-Einstein condensation.

Soon after, Landau and Tisza offered a “two fluid”
model in which the dynamics of the superfluid 4He is
described in terms of a viscous normal component and an
inviscid superfluid component, each with its own density
ρn(T ) and ρs(T ) and its own velocity field un(r, t) and
us(r, t). Already in 1955, Feynman realized 1 that the
potential appearance of quantized vortex lines will result
in a new type of turbulence, the turbulence of superfluids.
The experimental verification of this prediction followed
in the paper by Hall and Vinen a year later 2.

An isolated vortex line is a stable topological defect
in which the superfluid density drops to zero and the
velocity vs ∝ 1/r. Here r > a0 is the radial distance
from the center that exceeds a core radius a0 ≃ 10−8 cm
in 4He. The existence of quantized vortex lines3–5 in
superfluid tubulence introduces automatically additional
length scales that do not exist in classical turbulence. In
addition to a0, the density of vortex lines L defines an
“inter-vortex” average spacing denoted as ℓ ≡ 1/

√
L.

The pioneering experimental observation of Maurer
and Tabeling 6 showed quite clearly that the large-scale

energy spectrum of turbulent 4He above and below Tλ

are indistinguishable. This and later experiments and
simulations gave rise to the growing consensus that on
scales much larger than ℓ the energy spectra of turbu-
lent superfluids are very close to those of classical fluids
if they are excited similarly 7. The understanding is that
motions with scales R ≫ ℓ correlate the vortex lines, or-
ganizing them into vortex bundles. At these large scales
the quantization of the vortex lines becomes irrelevant
and the large scale motions are similar to those of con-
tinuous hydrodynamic eddies. Obviously, since energy is
cascaded by hydrodynamic eddies to smaller and smaller

scales, we must reach a scale where the absence of viscous
dissipation will require new physics.
Evidently, when the observation scales approach ℓ and

below, the discreteness of the quantized vortex lines be-
comes crucial. Indeed, on such scales the dynamics of the
vortex lines themselves become relevant including vortex
reconnections and the excitation of Kelvin waves on the
individual vortex lines. Kelvin waves exist also in clas-
sical hydrodynamics but here they become important in
taking over the role of transferring the energy further
down the scales. Their nonlinear interaction results in a
so-called “weak wave turbulence” 8,9 supporting a mean
energy flux towards shorter and shorter scales. Finally
when the cascade reaches the core radius scale the energy
is radiated away by quasiparticles (phonons in 4He ) 10.
Although the overall picture of superfluid turbulence

described above seems quite reasonable, some impor-
tant details are yet to be established. A particularly
interesting issue is the physics on scales close to the
crossover between the eddy-dominated and the Kelvin
wave-dominated regimes of the spectrum. It was pointed
out in Ref. 11 that the nonlinear transfer mechanism of
weakly nonlinear Kelvin waves on sparse vortex lines is
less efficient than the energy transfer mechanism due to
strongly nonlinear eddy interactions in continuous flu-
ids. This may cause an energy cascade stagnation at the
crossover scale.
The present paper is motivated by some exciting new

experimental and simulational developments12–35 that
call for a fresh analysis of the physics of superfluid turbu-
lence in a range of temperatures and length scales. These
developments include, among others, cryogenic flow visu-
alization techniques by micron-sized solid particles and
metastable helium molecules, that allow, e.g. direct ob-
servation of vortex reconnections, mean normal and su-
perfluid velocity profiles in thermal counterflow 12,13; the
observation of Andreev reflection by an array of vibrating
wire sensors shedding light on the role of vortex dynam-
ics in the formation of quantum turbulence, etc. 14; the
measurements of the vortex line density by the atten-
uation of second sound15–18 and by the attenuation of

http://arxiv.org/abs/1504.00632v2
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ion beams19,20. An important role in the recent develop-
ments is played by large-scale well-controlled apparata,
like the Prague15–17 and the Grenoble wind tunnels18 ,
the Manchester spin-down19,20, the Grenoble Von Kar-
man flows21, the Helsinki rotating cryostat22–24, and
some other experiments. Additional insight was provided
by large-scale numerical simulations of quantum turbu-
lence by the vortex-filament and other methods that gives
direct access to detailed picture of vortex dynamics which
is still unavailable in experiments, see also Refs.30–35.
The stagnation of the energy cascade at the intervor-

tex scale mentioned above is referred to as the bottle-
neck effect. This issue was studied in Ref. 11 in the ap-
proximation of a “sharp” crossover. Ref. 36 introduced
a model of a gradual eddy-wave crossover in which both
the eddy and the wave contributions to the energy spec-
trum of superfluid turbulence at zero temperature Es(k)
(see Eq. (10a)) were found as a continuous function of
the wave vector k. The main message of Ref. 36 is that
the bottleneck phenomenon is robust and common to all
the situations where the energy cascade experiences a
continuous-to-discrete transition. The details of the par-
ticular mechanism of this transition are secondary. In-
deed, most discrete physical processes are less efficient
than their continuous counterparts87. On the other hand,
particular mechanisms of the continuous-to-discrete tran-
sition can obviously lead to different strengths of the bot-
tleneck effect.
The main goal of the present paper is to develop a

theory of superfluid turbulence that analyzes the dy-
namics of turbulent superfluid 4He and computes its
energy and vorticity spectra in the entire temperature
range from T → 0 up to the phase transition, “λ point”
Tλ ≃ 2.17K, and in the entire range of scales R, from
the outer (energy-containing, or energy-injection) scale
L down to the core radius a0. We put a particular fo-
cus on the crossover scales R ∼ ℓ, where the bottleneck
energy accumulation is expected 11,36.
The main results of this paper are presented in Sec. II.

Its introductory subsection,

II A Basic approximations and models,

overviews the basic physical mechanisms, which
determine the behavior of superfluid turbulence
and describes the set of main approximations and
models, used for their description.

The rest of Sec. II is devoted to the following
problems:

II B. Temperature dependence of the energy spectra and
the bottleneck effect in turbulent 4He;

II C. Temperature dependence of the vorticity spectra;

II D. Correlations between normal and superfluid mo-
tions and the energy exchange between compo-
nents;

II E. Temperature dependence of the effective superfluid
viscosity in 4He.

Clearly, the basic physics of the large scale motions,
differ from that of small scale motions. The same can
be said about different regions of temperature: zero tem-
perature limit, small, intermediate and large tempera-
tures. It would be difficult to follow the full description of
the physical picture of superfluid turbulence in all these
regimes without clear understanding of the entire phe-
nomenon as a whole. Therefore in Sec. II A we restricted
ourselves to a panoramic overview of the main approx-
imations and models, leaving detailed consideration of
some important, but in some sense secondary issues, to
the next two sections of the paper (Sec. III and Sec. IV).
These include the analysis of the range of validity of the
basic equations of motions, of the main approximations
made in the derivation, and of the numerical procedures.
These sections consist of the following subsections:

III A. Coarse-grained, two-fluid, gradually-damped Hall-
Vinen-Bekarevich-Khalatnikov (HVBK) equations;

III B. Two-fluid Sabra shell-model of turbulent 4He;

IVA. Differential approximations for the energy fluxes
of the hydrodynamic and Kelvin wave motions;

IVB. One-fluid differential model of the graduate eddy-
wave crossover;

In the final Section V we summarize our results on the
temperature dependence of the energy spectra of the
normal and superfluid components in the entire region
of scales. We demonstrate in Fig. 5 that the computed
temperature dependence of the effective viscosity ν′(T )
agrees qualitatively with the experimental data in the en-
tire temperature range. We consider this agreement as a
strong evidence that our low-temperature, one fluid dif-
ferential model and the high temperature coarse-grained
gradually damped HVBK model capture the relevant ba-
sic physics of the turbulent behavior of 4He.

II. UNDERLAYING PHYSICS AND THE

RESULTS

A. Basic approximations and models

1. Coarse-grained, two-fluid, gradually-damped HVBK

equations

As we noticed in the Introduction, the large-scale mo-
tions of superfluid 4He (with characteristic scales R ≫ ℓ)
are described using the two-fluid model as interpene-
trating motions of a normal and a superfluid compo-
nent with densities ρn(r, t, T ), ρs(r, t, T ) and velocities
un(r, t), us(r, t). Following Ref. 37 we neglect variations
of densities by considering them as functions of the tem-
perature T only, ρn(T ) and ρs(T ). We also neglect both
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the bulk viscosity and the thermal conductivity. This re-
sults in the simplest form of the two incompressible-fluids
model for superfluid 4He that have a form of the Euler
equation for us and the Navier-Stokes equation for un,
see e.g. Eqs. (2.2) and (2.3) in Donnely’s textbook3. As
motivated below, we add an effective superfluid viscosity
term also in the superfluid equation, writing

∂ us

∂t
+ (us ·∇)us −

1

ρs
∇ps = ν′s ∆us − Fns , (1a)

∂ un

∂t
+ (un ·∇)un −

1

ρn
∇pn = νn∆un +

ρs
ρn

Fns . (1b)

Here pn, ps are the pressures of the normal and the su-
perfluid components:

pn =
ρn
ρ
[p+ ρs|us − un|2] , ps =

ρs
ρ
[p− ρn|us − un|2] ,

ρ ≡ ρs + ρn is the total density, νn is the kinematic vis-
cosity of normal fluid.
The term Fns describes the mutual friction between

the superfluid and the normal components mediated by
quantized vortices, which transfer momentum from the
superfluid to the normal subsystem and vice versa. Fol-
lowing Ref.38, we approximate it as follows:

Fns ≃ αρsω̄s(us − un) , (1c)

where ω̄s is the characteristic superfluid vorticity.
The equations (1) are referred to as the Hall-Vinen-

Bekarevich-Khalatnikov (or HVBK) coarse-grained
model. The relevant parameters in these equations,
are the densities ρs(T ) and ρn(T ), the mutual friction
parameters α(T ) and the kinematic viscosity of the
normal-fluid component νn(T ) normalized by ρn.
The original HVBK model does not take into account

the important process of vortex reconnection. In fact,
vortex reconnections are responsible for the dissipation
of the superfluid motion due to mutual friction. This ex-
tra dissipation can be modeled as an effective superfluid
viscosity ν′s(T ) as suggested in Ref. 10:

ν′s(T ) ≈ ακ . (1d)

We have added a dissipative term proportional to ν′s to
the standard HVBKmodel and the resulting Eqs. (1) [dis-
cussed in more details in Sec. III] will be referred to as
the “gradually damped HVBKmodel”. We use this name
to distinguish our model from the alternative “truncated
HVBK model” suggested in Ref. 39 which was recently
used for for numerical analysis of the effective viscosity
ν′(T ) in Ref. 17. We suspect that the sharp truncation
introduced in the latter model creates an artificial bot-
tleneck effect that is removed in the gradually damped
model. The difference in predictions between the models
will be further discussed in Sec. III A 3.

2. Two-fluid Sabra shell-model of turbulent 4He

The gradually damped HVBK Eqs. (1) provide an ad-
equate basis for our studies of the large-scale statistics

of superfluid turbulence. However their mathematical
analysis is very difficult because of the same reasons that
make the the Navier-Stokes equations40 difficult. The in-
teraction term is much larger than the linear part of the
equation (their ratio is the Reynolds number, Re≫ 1),
the nonlinear term is nonlocal both in the physical and
in the wave-vector k-space, the energy exchange between
eddies of similar scales, that determines the statistics of
turbulence, is masked by much larger kinematic effect of
sweeping of small eddies by larger ones, etc.

Direct numerical simulations of the HVBK Eqs. (1) are
even more difficult than the Navier-Stokes analog, being
extremely demanding computationally, allowing there-
fore for a very short span of scales. A possible simpli-
fication is provided by shell models of turbulence 41–56.
They significantly simplify the Navier-Stokes equations
for space-homogeneous, isotropic turbulence of incom-
pressible fluid. The idea is to consider the equations in
wave vector k-Fourier representation and to mimic the
statistics of u(k, t) in the entire shell of wave numbers
km < km+1 by only one complex shell velocity vm. The
integer index m is referred to as the shell index, and the
shell wave numbers are chosen as a geometric progression
km = k0λ

m, with λ being the shell-spacing parameter.
This results in the ordinary differential equation

( d

dt
+ νk2m

)
vm = NLm{vm′} . (2a)

Here the nonlinear term NLm{v′m} is linear in k and
quadratic in vm′ ( a functional of the set {v′m}), which
usually involves shell velocities with |m −m′| ≤ 2 . the
kinetic energy is preserved by the nonlinear term. For ex-
ample, in the popular Gledzer-Ohkitani-Yamada (GOY)
shell model41,42

NLm{vm′} = ikm(aλvm+2vm+1 + bvm−1vm+1

+cvm−1vm−2)
∗ , GOY , (2b)

where the asterisk ∗ stands for complex conjugation. In
the limit ν → 0 and with a+ b+ c = 0, Eqs. (2) preserve
the kinetic energy E =

∑
m |vm|2 and has a second in-

tegral of motion H =
∑

m(a/c)m|vm|2. The traditional
choice a = λ|b| allows to associate H with the helicity in
the Navier-Stokes equations.

Note that the simultaneous rescaling a ⇒ ap, b ⇒ bp
and c ⇒ cp with some factor p results in a straightfor-
ward rescaling of the the time variable t ⇒ t/p without
any effect on the instantaneous stationary statistics of
the model. Thus, the shell model (2) has only one fitting
parameter λ, which has only little effect on the resulting
statistics. The traditional choice λ = 2 allows to reason-
ably model the interactions in k-space with an efficient
energy exchange between modes of similar index m.

We stress that with the above choice of parameters,
a+ b+ c = 0, a = λ|b|, and

λ = 2 , a = 1 , b = c = −0.5 , (3)
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the shell models reproduced well various scaling prop-
erties of space-homogeneous, isotropic turbulence of in-
compressible fluids, see Ref.51 and references therein. To
mention just a few:
– the values of anomalous scaling exponents (see, e.g.

Table I in 46);
– the viscous corrections to the scaling exponents 47;
– the connection between extreme events (outliers) and

multiscaling 48;
– the inverse cascade in two-dimensional turbulence 49;
– the strong universality in forced and decaying

turbulence,50, etc 52–56.
Therefore, we propose shell models are a possible alter-

native to the numerical solution of the HVBK Eqs. (1).
This option was studied in Ref.57 which proposed a two-
fluid GOY shell model for superfluid turbulence with an
additional coupling by the mutual friction.
In our studies of superfluid turbulence 58–60 and below,

we use the so-called Sabra-shell model 46, with a different
form of the nonlinear term:

NLm{vm′} = ikm(aλvm+2v
∗
m+1 + bv∗m−1vm+1

−cvm−1vm−2) , Sabra . (4)

The advantage of the Sabra model over the GOY model
is that the resulting spectra do not suffer from the un-
physical period-three oscillations, thanks to the strong
statistical locality induced by the phase invariance 46,51.
We solved numerically the two-fluid Sabra-shell model

form of the HVBK equations (2a) and (4) coupled by the
mutual friction, for the shell velocities. Gathering enough
statistics, we computed the pair- and cross-correlation
functions of the normal- and the super-fluid shell veloc-
ities. This led to the energy spectra En (k) and Es (k)
together with the cross-correlation Ens(k).
In the simulations we used 32 shells. All the results are

obtained by averaging over about 500 large eddy turnover
times. The rest of details of the numerical implementa-
tion and simulations are given in Sec. III B.

3. Low temperature one-fluid eddy-wave model of

superfluid turbulence

As we just explained, in the high-temperature region
the fluid motions with scales R < ℓ are damped and
motions with R > ℓ are faithfully described by the Sabra-
shell model (2a) and (4). In this approach we first solve
the dynamical equation and then perform the statistical
averaging numerically.
In the low temperature regime, T . Tλ/2, where the

Kelvin wave motions of individual vortex lines are impor-
tant this approach is no longer tenable. Instead, we adopt
a different strategy, in which we first perform the statis-
tical averaging analytically and then solve the resulting
equations for the averaged quantities numerically.
To this end we begin with the dynamical Biot-Savart

equation of motion for quantized vortex lines. Then we

applied the Hamiltonian description to develop a “weak
turbulence” formalism to the energy cascade by Kelvin
waves8. This approach results in a closed form expression
for the Kelvin wave energy spectra, derived in Ref. 61:

EKW(k) =
CLN

Ψ2/3

Λ κ ε
1/3
KW

k5/3ℓ4/3
, LN-spectrum. (5a)

Here εKW is the energy flux over small-scale region, R < ℓ,
and Λ ≃ ln(ℓ/a0). The value of the universal constant
CLN ≈ 0.304 was estimated analytically in Ref. 62. The
dimensionless constant Ψ may be considered as the r.m.s.
vortex line deflection angle at scale ℓ and is given by

Ψ ≡ 8π EKWℓ2

Λ κ2
. (5b)

In the low-temperature region, T . Tc/2, the den-
sity of the normal component is very small and due to
very large kinematic viscosity it may be considered at
rest. Therefore the large scale motions of 4He, R > ℓ,
are governed by the first of HVBK Eq. (1a), which coin-
cides with the Navier-Stokes equation in the limit T → 0.
Therefore, in the hydrodynamic range of scales, R > ℓ,
we can use the Kolmogorov-Obukhov 5/3–law63 for the
hydrodynamic energy spectrum:

EHD(k) = CK41ε
2/3
HD k−5/3 , KO-41 . (6)

Here εHD is the energy flux over large scale range and
CK41 ∼ 1 is the Kolmogorov dimensionless constant.
Both spectra, (5) and (6) have the same k-dependence,

∝ k−5/3, but different powers of the energy flux. A way
to match these spectra in the T → 0 limit was suggested
in Ref. 36. The idea was to adopt the differential approxi-
mations to the Kelvin-wave 64 and hydrodynamic-energy
flux 65, based on their spectra (5a) and (6):

εHD(k) = −1

8

√
k11EHD(k)

d

dk

EHD(k)

k2
, (7a)

εKW(k) = −3 E2
KW

(k)Ψ2k6ℓ4

5(CLNΛκ)3
d EKW(k)

dk
, (7b)

and to construct a differential approximation for the su-
perfluid energy flux ε that is valid for all wave numbers
(including the cross over scale):

ε(k) = εHD(k) + εKW(k) + ε
KW

HD
(k) + ε

HD

KW
(k) . (7c)

The additional cross-contributions ε
KW

HD
(k) and ε

HD

KW
(k)

originate from the interaction of two types of motion,
hydrodynamic and Kelvin waves.
For T → 0 the total energy flux should be k-

independent, ε(k) =const. As explained in Ref. 36 this
leads to an ordinary differential equation for the total
superfluid energy Es(k) = EHD(k) + EKW(k). In this pa-
per we generalize this approach to the full temperature
interval with the help of the energy balance equation

∂Es(k, t)
∂t

+
∂εs(k, t)

∂k
= ν′sk

2Es(k, t) . (8)
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The right-hand-side of this equation originates from the
Vinen-Niemella viscosity in Eq. (1a) and accounts for the
dissipation in the system.
Much more detailed description of this procedure can

be found in Sec. IV.

B. Temperature dependence of the energy spectra

and the bottleneck effect in turbulent 4He

To discuss our results we define the energy spectrum
E(k) of isotropic turbulence (in one-dimensional k-space)
such that

E =

∞∫

0

E(k) dk =
1

2

〈
|u(r, t)|2

〉
, (9)

is the energy density E of 4He per unit mass. Hereafter
〈. . .〉 stands for the “proper averaging” which may be
time averaging over long stationary dynamical trajectory
or/and space averaging in the space-homogeneous case,
or an ensemble averaging in the theoretical analysis. As-
suming that the Navier-Stokes dynamics are ergodic, all
these types of averaging are equivalent.
In the low temperature range, where 4He consists

mainly of the superfluid component, we distinguish the
spectrum of large scale hydrodynamic motions with kℓ ≪
1, denoted as Es

HD
(k), from the spectrum of small scales

Kelvin waves (with kℓ ≫ 1), denoted as Es
KW

(k). The
total superfluid energy spectrum is written as

Es(k) ≡ Es
HD

(k) + Es
KW

(k) . (10a)

In the high temperature range, where the densities of
the super-fluid and normal-fluid components are compa-
rable, but Kelvin waves are fully damped, we will distin-
guish the spectrum of hydrodynamic motions of the su-
perfluid component at large scales as Es(k), from that of
the normal-fluid component, En(k), omitting for brevity
the subscript “HD”. In this temperature range, the total
energy spectrum of superfluid 4He is written as

E(k) ≡ Es(k) + En(k) . (10b)

The resulting energy spectra Es
HD

(k), Es(k) and En(k)
for a set of eleven temperatures from T = 0.32K to
T = 2.16K are shown in Fig. 1.

1. Low-temperature one-fluid energy spectra

First, we discuss the results for the eddy-wave model
of superfluid turbulence [cf. Sec. II A 3], for the low
temperature range T . Tλ/2 ≃ 1.08K, which is shown
in Fig. 1a. These spectra are compensated by a fac-
tor (kℓ)5/3 such that both the Kolmogorov-Obukhov-
41 spectrum Es

HD
(k) ∝ k−5/3, Eq. (6) (for the hydro-

dynamic scales kℓ ≪ 1) and the Lvov-Nazarenko spec-
trum Es

KW
(k) ∝ k−5/3, Eqs. (5a) show up as a plateau.

These plateaus are clearly seen for the lowest shown tem-
perature T = 0.32K. Moreover, the full energy spec-
trum (solid blue line) Es(k) demonstrates the existence
of an important bottleneck energy accumulation. We ob-
serve a large cross over region connecting the HD re-
gion κℓ < 1, where Es(k) → Es

HD
(k) with a much higher

plateau Es
KW

(k) for kℓ > 50 where Es(k) → Es
HD

(k).
In the cross over region the compensated energy spec-

trum is close to (kℓ)5/3 (cf. the black dashed line), mean-
ing that Es(k) depends on k only weakly. In this re-
gion the energy spectrum is dominated by Kelvin waves,
Es(k) ≃ Es

HD
(k), while the energy flux in dominated by

the HD eddy motions. Therefore we have here a flux-less
regime of Kelvin waves. Without flux the situation re-
sembles thermodynamic equilibrium, in which the Kelvin
waves energy spectrum corresponds to energy equiparti-
tion between the degrees of freedom, i.e. Es

KW
(k) ∼const,

as observed.
For kℓ > 2 · 104 the Kelvin waves energy spectrum

at T = 0.32K is suppressed by the mutual friction, as
explained in Sec. IVA. In Fig.1a this part of the spectrum
is not shown; however one sees progressive suppression
of the energy spectra with temperature increasing from
0.44K (around kℓ ≃ 400) to T = 1.07K (around kℓ ≃ 2).
It is important to notice that for T ≥ 0.49K the HD part
of the spectrum is practically temperature independent;
only the Kelvin waves energy spectra are suppressed by
the temperature, cf. the coinciding dashed lines in Fig. 1a
for T = 0.32 , 0.44 and 0.49 K.
For T > 0.5K, the Kelvin wave contributions to the

energy spectra are very small – the solid and the dashed
lines for the same temperature are fairly close. Finally,
the dashed and the solid lines for T = 1.07K practically
coincide, i.e. the Kelvin waves are fully damped. This
means that for T & Tλ ∼ 1K there is no need to account
for the Kelvin wave motions on individual vortex lines,
and the full description of the problem is captured by the
coarse-grained HVBK.

2. High-temperature two-fluid energy spectra

The energy spectra, obtained with the Sabra-shell
model form of HVBK equations (2a) and (4), for tem-
peratures T & Tλ/2 ≃ 1.08K, are shown Fig. 1b for
T = 1.07K (in blue), T = 1.3K (in magenta), 1.8K (in
green) and T = 2.16K (in red). The lowest temperature
in this two-fluid approach, T = 1.07K, was chosen for
comparison with the highest temperature 1.07K in the
one-fluid approach; see Fig. 1a. At T = 1.3K, which is a
frequently used temperature in numerical simulations of
superfluid turbulence, the normal fluid component is not
negligible (ρn/ρ ≃ 0.045), and the normal fluid kinematic
viscosity is still much larger than that of the superfluid:
νn/ν

′
s ≃ 23. For T = 1.8, when ρn/ρ ≃ 0.3, the kinematic

viscosities are close to each other (see Tab. I). At higher
temperatures the normal fluid components play more and
more important role until they dominate at T > 2.0K,
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T , K 0.43 0.55 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.16

ρn/ρ – – 9.3 · 10−4 0.003 0.007 0.014 0.026 0.045 0.0728 0.111 0.162 0.229 0.313 0.420 0.553 0.741 0.907

α 10−6 10−5 6.5 · 10−4 0.0025 0.0056 0.011 0.026 0.034 0.051 0.072 0.097 0.126 0.160 0.206 0.279 0.48 1.097

αρ/ρn – – 0.70 0.83 0.80 0.78 1.00 0.76 0.70 0.65 0.60 0.55 0.51 0.49 0.53 0.65 1.209

ν/κ – – 1.09 0.43 0.27 0.17 0.12 0.10 0.10 0.09 0.09 0.09 0.09 0.093 0.101 0.124 0.154

νn/κ – – 1179 148 38 11.1 4.62 2.34 1.32 0.84 0.56 0.39 0.29 0.22 0.182 0.167 0.170

ν′
s/κ – – 0.0067 0.022 0.040 0.061 0.099 0.101 0.135 0.171 0.207 0.234 0.237 0.280 0.312 0.427 0.815

TABLE I: The parameters of the superfluid 4He, taken from Refs. 10,66: the relative density of the normal component ρn/ρ,
the mutual friction parameter α, the combination αρ/ρn [which weakly depends temperature and is responsible for the mutual
friction density in Eq. (1)], He-II kinematic viscosity ν ≡ µ/ρ (µ is the dynamic viscosity) and the kinematic viscosity of the
normal-fluid component νn ≡ µ/ρn; the effective superfluid viscosity ν′

s (inter- and extrapolation of Ref. 10 results).

(a) Low T . Tλ/2, one-fluid model (b) High T & Tλ/2, two fluid model
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FIG. 1: Color online. Log-Log plots of the energy spectra in superfluid 4He compensated by the inertial range scaling at
different temperatures (shown as labels). Panel (a): Plots of the (compensated by k5/3 and normalized by their values at
kℓ = 0.1) full superfluid energy spectra (solid lines) E s(κℓ) and their hydrodynamic (large scale) parts E s

HD(κℓ) (dashed lines)
for the one-fluid model (Sec. IVB). Panel (b): Plots of the (compensated by the anomalous scaling k1.72 and normalized by
their inertial range value) shell energies of the normal fluid component |un

m|2 = kEn(kmℓ) (solid lines) and of the superfluid
component |us

m|2 = kE s(kmℓ) (dashed lines) for the two-fluid shell model (Sec. III B).

when ρn > ρs. At the highest temperature in this simula-
tion, T = 2.16K, close to Tλ, we have ρn ≈ 0.9ρ, and the
effective superfluid kinematic viscosity ν′s is even larger
than νn.

Shell-model simulations reproduce intermittency ef-
fects and therefore the scaling exponent ξ2 of the en-
ergy spectra E(k) ∝ k−ξ2 slightly differs from the KO-
41 prediction, ξ2 6= 5/3. For the chosen shell-model
parameters46,60 ξ2 ≈ 1.72 which is quite close to the ex-
perimental observations. For better comparison with the
low-temperature one-fluid results of Fig. 1a, we show in
Fig. 1b the normal (solid lines) and superfluid (dashed
lines) energy spectra En(kℓ) and Es(kℓ), compensated by
(kℓ)1.72 so that they exhibit a plateau in the inertial in-
terval of scales.

As expected, for T = 1.8K, when νn ≈ ν′s, the super-
fluid and normal fluid spectra are very close, and similar
to the spectra of classical fluids. In the inertial range they
demonstrate the anomalous behavior Es ∝ En ∝ k−ξ2

[|un
m|2 ∝ k1−ξ2

m ] with the scaling exponent ξ2 ≈ 1.72.
Moreover, due to the strong coupling between the normal
and superfluid component (discussed below in Sec. II D)
the energy fluxes in both components are equal (see, e.g.
Fig. 4), and therefore the energies are equal in the iner-
tial interval as well, Es(k) = En(k). Non-trivial behavior
occurs only in the inertial-viscous crossover region; there-
fore the inertial interval is not shown in Fig. 1.

For T = 1.07, when νn ≃ 180 ν′s, the viscous cutoff
of the normal fluid’s spectrum, kmax,n, occurs at much
smaller k than the cutoff of the superfluid spectrum,
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(a) Low T . Tλ/2, one-fluid model (b) High T & Tλ/2, two fluid model
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FIG. 2: Color online. Color online. Linear-log plots of the vorticity spectral densities, (kℓ)Ω2(kℓ), normalized by their kℓ = 0.1
values, at different temperatures. The total mean-square vorticity

〈

ω2
〉

is proportional to the area under the plot. Panel (a):

Superfluid vorticity spectra (kℓ) Ω2
s (kℓ) at low temperatures in the one-fluid model, Sec. IVB. Panel (b): Normal and superfluid

vorticity spectra (kℓ) Ω2
n(kℓ) (solid lines) and (kℓ)Ω2

s (kℓ) (dashed lines) at high temperatures in the two-fluid model, Sec. III B.

kmax,s. To estimate the ratio kmax,s/kmax,n, notice that
in the KO-41 picture of turbulence kmax may be found
by balancing the eddy-turnover frequency,

γ(k) ≃ ε1/3k2/3 ≃ k3/2
√
E(k) , (11)

with the viscous dissipation frequency νk2. This gives
the well known result

kmax ≃ ε1/4/ν3/4 . (12)

In our case εs = εn. Therefore, neglecting the energy
exchange between the super- and the normal-fluid com-
ponents, we get an estimate:

kmax,s

kmax,n
≃

(νn
ν′s

)3/4

. (13)

For T = 1.07, when νn ≃ 180 ν′s this gives
kmax,s/kmax,n ≃ 50—in a good agreement with the re-
sult in Fig. 1b. For T = 1.3K, the ratio of the viscosities
is smaller (about ≃ 23, see Tab. I). Therefore the dif-
ference in cutoffs is less pronounced. As expected, for
T = 2.16K, when νn ≃ 0.2ν′s the situation is the oppo-
site, and the superfluid component is damped at a smaller
k than the normal one.
Notice that there is no bottleneck energy accumula-

tion in the spectra (see Figs. 1b) obtained using the shell
model approximation of the gradually damped HVBK
equations. This is qualitatively different from the results
of the truncated HVBK model 39, which demonstrated a
very pronounced bottleneck both in the normal and the
superfluid components, e.g. at T = 1.15K. The latter
would lead to a huge contribution to the mean square
superfluid vorticity

〈
|ωs|2

〉
and, as a result, to a very

small effective Vinen’s viscosity ν′s. This would definitely
contradict the experimental observation shown in Fig. 5.
We will discuss this issue in greater detail in Sec. II E.

C. Temperature dependence of the vorticity

spectra in turbulent 4He

At this point we cannot compare our predictions for
energy spectra with experimental observations, especially
in the cross-over and in the small scale regions. This
stems from the lack of small probes, see cf. the review7.
On the other hand, the attenuation of second sound or
ion scattering may be used to measure the mean vortex
line density L = 1/ℓ2 in 4He or even its time and space
dependence7. In turn, the value L2 can be expressed in
terms of the mean-square superfluid vorticity

〈
|ωs|2

〉
via

the quantum of circulation κ67:
〈
|ωs|2

〉
≈ (κL)2 . (14)

Therefore, the information about the vorticity is very im-
portant from the viewpoint of comparison with available
and future experiments.
By analogy with the energy spectra (9), let us define

the power spectra of vorticity Ω2(k) so that the mean-
square vorticity

〈
|ω|2

〉
is given by the integral:

〈
|ω|2

〉
=

∞∫

0

Ω2(k) dk =

∞∫

0

k Ω2(k) d ln k . (15)

In isotropic incompressible turbulence Ω2(k) =
2k2EHD(k). Therefore we define

Ω2
s (k) = 2k2Es

HD
(k) , Ω2

n(k) = 2k2En(k) . (16)
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For brevity, we omit the subscript “HD” for the normal
component; En

HD
(k) ⇒ En(k).

Plots of kΩ2
s,n(k) for different temperatures are shown

in Figure 2. According to Eq. (15), the area under these
plots is proportional to the total mean square vorticity,〈
|ωs,n|2

〉
. Fig. 2a shows the results for the eddy-wave

model (the corresponding energy spectra for the same
temperatures are shown in Fig. 1a). One sees that the
largest (and temperature independent) value of

〈
|ωs|2

〉

is reached for T < 0.49K: plots for T = 0.32 0.44 and
0.49K practically coincide. Accordingly, the temperature
range T < 0.49K may be considered as zero-temperature
limit with the maximal value of

〈
|ωs|2

〉
(and correspond-

ingly, the smallest value of νs(T ), as we will discuss later).
At temperatures above 0.5K the area under the plots de-
creases (and correspondingly, νs(T ) increases).
In Fig. 2b we show vorticity spectra (kℓ)

〈
|ωs,n|2(kℓ)

〉

of the normal-fluid (solid lines) and the superfluid compo-
nents (dashed lines) for different temperatures obtained
in the framework of the Sabra-shell model (the corre-
sponding spectra are shown in Fig. 1b). Again, the area
under the plots is proportional to the total mean square
vorticity

〈
|ωn,s|2

〉
. One sees that for the lowest temper-

ature T = 1.07K the normal fluid vorticity (blue solid
line) is fully suppressed by the huge normal viscosity,
while the superfluid vorticity is very large. At this tem-
perature one can describe the superfluid 4He in the range
of scales kℓ ∼ 1 using a one-fluid approximation with zero
normal-fluid velocity. This provides the main contribu-
tion to the vorticity. To some extent, this situation per-
sists up to T ≈ 1.3K, when the superfluid vorticity is still
larger than the normal one, see Fig. 1b. As expected, for
T ≃ 1.8, when the normal and superfluid viscosities are
compatible, the normal and superfluid vorticities are very
close. For these and higher temperatures the analysis of
our problems definitely calls for a two-fluid description.

D. Correlations of normal and superfluid motions

and energy exchange between components

1. Correlations of the normal and superfluid velocities

It is often assumed (see e.g. Ref.10) that the normal
and superfluid velocities are “locked” in the sense that

un(r, t) = us(r, t) , (17)

(at least in the inertial interval of scales). For quan-
titative understanding to which extent this assumption
is statistically valid we consider the simplest possible
case of stationary, isotropic and homogeneous turbulence.
Here we introduce a cross-correlation function (in 1D
k-representation) of the normal and the superfluid ve-
locities Ens(k). This correlation function is defined us-
ing the simultaneous, one-point cross-velocity correlation
〈un(r, t) · us(r, t)〉 similarly to Eq. (9):

∫
Ens(k) dk =

1

2
〈un(r, t) · us(r, t)〉 . (18)

High T & Tλ/2, two-fluid model
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FIG. 3: Color online. Cross-correlation coefficients K1(kℓ),
Eq. (20a) (solid lines) and K2(kℓ) , Eq. (20b) (dashed lines)
for different temperatures. Color code is the same as in Fig. 1b
and Fig. 2b: T = 1.07K – blue, T = 1.3K – cyan, T = 1.8K
– green, and T = 2.16K – red.

If, for example, motions of the normal and the superfluid
components at a given k are completely correlated, then
Ens(k) = En(k) = Es(k). If this is true for all scales, then
Eq. (17) is valid.
It is natural to normalize Ens by the normal and the

superfluid energy densities, En and Es. This can be rea-
sonably done in one of two ways:

K1(k) ≡
2 Ens(k)

En(k) + E s(k)
, (19a)

or K2(k) ≡
Ens(k)√

En(k) · E s(k)
. (19b)

Both coefficients are equal to unity for fully locked su-
perfluid and normal velocities, Eq. (17), and both van-
ish if the velocities are statistically independent. How-
ever, if un(r, t) = Cus(r, t), with C 6= 1 then K1(k) =
2C/(C2 + 1) < 1, but still K2(k) = 1. In any case
K1(k) 6 K2(k).
In shell models, the coefficients K1(k) and K2(k) can

be written as follows:

K1(kmℓ) ≡ 2Re
〈
vs*mvnm

〉
〈
vs*mvsm

〉
+
〈
vn*m vnm

〉 , (20a)

K2(kmℓ) ≡ Re
〈
vs*mvnm

〉
√〈

(vs*mvsm
〉 〈

vn*m vnm
〉 . (20b)

These objects are shown in Fig. 3. At first glance, it is
surprising that the correlations K2(kmℓ) (dashed lines in
Fig. 3) for T ≶ 1.8K persist for much larger wave vectors
than K1(kmℓ), approaching kmℓ ∼ 102. For example, for
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T = 1.07K (blue lines) K1(kmℓ) vanishes at kmℓ ≃ 1,
while K2(kmℓ) > 0.95 all the way up to kmℓ ≃ 100. In
this range of scales (1 . kmℓ . 100) vnm ≪ vsm, but
vnm(t) ∝ vsm(t), meaning that strongly damped normal
velocity does not have its own dynamics and should be
considered as “slaved” by the superfluid velocity. The
damped velocity (normal or superfluid) at any tempera-
ture T ≶ 1.8K would follow this ”slaved” dynamics.
A model expression of the cross-correlation Esn in

terms of the self-correlation functions Es and En was
found in Ref. 37. In current notations it reads:

Esn(k) =
α ω̄s[ρn En(k) + ρs Es(k)]

α ω̄sρ+ ρn[(ν′s + νn) k2 + γn(k) + γs(k)]
, (21)

where the characteristic interaction frequencies (or
turnover frequencies) of eddies in the normal and super-
fluid components, γn(k) and γs(k), are given by Eq. (11)
and ω̄s is defined as:

ω̄s ≡
√
〈|ωs|2〉 . (22)

The derivation of Eq. (21) in Ref. 37 involves diagram-
matic perturbation approach and is rather cumbersome.
However the simplicity of the final result (21) motivated
us to re-derive it in a simple and transparent way which
is presented in the Appendix.
Let us analyze first Eq. (21) in the inertial interval of

scales, where according to Fig. 1b, Es = En and the terms
with the viscosities in the denominator may be neglected.
In this case

K1(k) →
[
1 +

2ρnγs(k)

αρ ω̄s
)
]−1

(23)

≃
[
1 +

2 ρn
αρ

( k

kmax,s

)2/3]−1

,

where the viscous cutoff of the superfluid inertial interval
kmax,s is given by estimate (12). First of all we see that
the correlation coefficient is governed by the dimension-
less parameter αρ/ρn which involves the mutual friction
coefficient α, as expected. What is less expected, is that
this parameter, according to Tab. I, depends on the tem-
perature only weakly and is close to unity. Therefore, in
the inertial interval k ≪ kmax,s we have:

K1(k) ≃
[
1 +

2 ρn
α ρ

( k

kmax,s

)2/3]−1

(24)

≃ 1−
( k

kmax,s

)2/3

,

and this expression is very close to unity. In the other
words, in the inertial interval we expect the full locking
of the normal and the superfluid velocities for all temper-
atures. This prediction fully agrees with the observations
in Fig. 3.
Consider now case T = 1.07K, when kmax,s ≃

50 kmax,n according to the data in Fig. 1b and esti-
mate (13). For kmax,n < k < kmax,s we have:

Es(k) ≫ En(k) , and νn ≫ γs(k) ≫ γn(k) ≫ ν′s . (25)

High T & Tλ/2, two fluid model
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FIG. 4: Color online. Temperature dependence of the ratios:
εs/εn – horizontal black line; Rs, Eq. (28a), – blue line with
triangles, Rn, Eq. (28a), – green line with diamonds, Rs+n,
Eq. (28b), – red line with circles.

Then Eq. (21) simplifies to the following form,

K1(k) ≃
[
1 +

ρn
αρ

νnk
2

ω̄s

]−1

,

and it may be analyzed as follows:

K1(k) ≃
[
1 +

ρn
α ρ

νnk
2

ω̄s

]−1

≃
[
1 +

νnk
2

ν′s k
2
max,s

]−1

Using (13), for k ∼ kmax,s we get

K1(k) ≃
[
1 +

k
4/3
max,s

k
4/3
max,n

]−1

∼ k
4/3
max,n

k
4/3
max,s

≪ 1 , (26)

We see that the velocities decorrelate in the interval
kmax,n < k < kmax,s, as expected.

Estimating K2(k) in the regime (25) is less simple, be-
cause it requires knowledge of the ratio Es(k)/En(k) in
terms of νn, ν

′
s, γn(k) and γs(k). Instead, we can directly

use Eq. (A9b), which in regime (25) may be simplified
(in the (k, t)-representation) as follows:

un(k, t) =
αρs ω̄s

ρnνnk2
us(k, t) ≪ us(k, t) . (27)

i.e. un(k, t) is slaved by us(k, t). Equation (27) immedi-
ately gives K1(k) ≪ 1, but K2(k) = 1 in full agreement
with our results in Fig. 3. In particular, this means that
our simple model of correlations between un and us, sug-
gested in the Appendix, quantitatively correctly reflects
the basic physics of this phenomenon.



10

2. Energy dissipation and exchange due to mutual friction

Strong coupling of the normal and the superfluid ve-
locities suppresses the energy dissipation and the energy
exchange between the normal and the superfluid com-
ponents caused by the mutual friction (which is propor-
tional to us − un, Eq. (1c)). Nevertheless, some dissipa-
tion due to the mutual friction is still there. Consider
the ratio of the total injected energy to the total energy
dissipated due to the viscosity in the normal and the su-
perfluid components:

Rs+n =
ρsεs + ρnεn

ρsν′s 〈|ωs|2〉+ ρnνn 〈|ωn|2〉
, (28a)

a quantity plotted in Fig. 4 (red line with circles). Here εn
and εs are the inertial range normal and superfluid energy
fluxes. This ratio exceeds unity by about 10%, meaning
that ∼ 10% of the injected energy is dissipated by the
mutual friction. As expected, this effect disappears at
T ≈ 1.8K, when the effective superfluid and normal fluid
kinematic viscosities are matching (and therefore us ≈
un).
The mutual friction has a significantly more important

influence on the energy exchange between the normal and
the superfluid components. The energy exchange can
be quantified by a similar ratio defined for each fluid
component,

Rs =
εs

ν′s 〈|ωs|2〉
, Rn =

εn
νn 〈|ωn|2〉

, (28b)

shown by a green line with diamonds and a blue line
with triangles respectively in Fig. 4. At the lowest shown
temperature T = 0.8K, we have Rn < 0.1 meaning that
only about 10% of the energy density (per unit mass)
which is dissipated by the normal fluid component comes
from the direct energy input. The rest ≃ 90% of the
energy density dissipated by viscosity (at large k) was
transferred from the superfluid component by the mutual
friction. This is because for T . 1.8K, we have νn > ν′s
and therefore the normal velocity becomes more damped
at lower wavenumbers than the superfluid velocity, see
Fig. 1b. Such an energy transfer by mutual friction from
the superfluid component to the normal one increases
Rs (blue line with triangles) above unity. This effect is
smaller than the one for Rn because at low temperatures
ρs ≫ ρn and the energy per unity volume ρsεs + ρnεn
is approximately conserved. As expected, there is no
energy exchange between the components at T ≈ 1.8K,
when νn = ν′s and us = un). At this temperature Rs =
Rn = Rn+s = 1. Again, as expected for T > 1.8K, when
νn < ν′s (see Tab. I) we have Rs > 1, Rn < 1 meaning that
the energy goes from the less damped normal component
to the more damped superfluid one.
To understand why the energy exchange due to the

mutual friction is larger than the energy dissipation
by the mutual friction, notice that the energy ex-
change is proportional to the (small) velocity difference,

〈un · (un − us)〉, while the energy dissipation is propor-
tional to the square of this parameter,

〈
|un − us|2

〉
.

E. Temperature dependence of the effective

superfluid viscosity in 4He

The temperature-dependent effective (Vinen’s) viscos-
ity ν′(T ) is defined 26 by the relation between the rate of
energy-density (per unit mass) flux into turbulent super-
fluid, ε, and the vortex-line density, L:

ε = ν′(T )(κL)2 ≈ ν′(T )
〈
|ωs|2

〉
. (29)

According to Eq. (15),
〈
|ωs|2

〉
is proportional to the area

under the plots kΩ2
s (k) vs. log k, shown in Fig. 2 and

discussed in Sec. II C. These results allow us to determine
the viscosity ν′(T ) (analytically and numerically) in the
entire temperature range from T → 0 up to T → Tλ.

1. Low temperature range T . Tλ/2

Consider first the temperature dependence of ν′(T ) in
the low temperature range T . Tλ/2 ≈ 1.1K, shown in
Fig. 5 by the solid blue line. This dependence is found
in Sec. IVB in the framework of one-fluid model of grad-
ual eddy-wave crossover Eqs. (51). As we mentioned, the
largest (and temperature independent) value of

〈
|ωs|2

〉

(at fixed value of εs) is reached for T < 0.49K. Ac-
cordingly, the temperature range T < 0.49K may be
considered as a zero-temperature limit, at which ν′(T )
reaches its smallest value. The results of the Manchester
spin-down experiment 19 are temperature independent as
well (within the natural scatter of the data). The par-
ticular value of ν′exp(T → 0) ≃ 0.003 κ found in these
experiments is probably accurate up to a numerical fac-
tor (13 ÷ 3) due to uncertainty in the determination of

the outer scale of turbulence, taken in Ref.19 for sim-
plicity as the size of the cube. Our low-temperature,
one-fluid model (51) involves one fitting parameter, which
determines the crossover scale in the blending func-
tionEq.(48). This parameter affects the resulting value
of ν′mod(T → 0) and was chosen such as to meet its ac-
cepted experimental value ν′exp(T → 0) ≃ 0.003 κ.
At temperatures above 0.5K, the area under the

kΩ2
s (k) plots in Fig. 2a become smaller and smaller. This

is caused by the suppression of the Kelvin wave spectra,
which is more pronounced at larger temperature, as seen
in Fig. 1a. The value of

〈
|ωs|2

〉
decreases with the tem-

perature resulting in a progressive increase in ν′(T ) as
shown by the solid blue line in Fig. 5 together with the ex-
perimental (Manchester spin-down19 and ion-jet20) val-
ues of ν′exp(T ). There is a reasonably good agreement be-
tween the temperature dependence of ν′(T ) found in the
framework of the one-fluid model of eddy-wave crossover
at low temperatures and the experiments. Importantly,
in the modeling we have used only one phenomenological
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Low T . Tλ/2, one-fluid model High T & Tλ/2, two-fluid model
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density) – see also Tab. I. Thin black dash line – effective viscosity for the random vortex tangle ν′

rnd, estimated by Eq. (31);
Thick dot-dashed black line – the Vinen-Niemela estimate 10 of the effective superfluid viscosity, ν′

s, given by Eq. (32). Blue
solid line – ν′(T ) at T < 1.1K from numerical solution of Eqs. (51b) for the one-fluid differential model of gradual eddy-wave
crossover; Red solid line – ν′(T ) at T > 0.9K from numerical simulations in Sec. III B of gradually damped two-fluid HVBK
Eqs. (1) in the Sabra shell-model approximation (33).

parameter to fit the zero-T limit of ν′exp(T ), while the
temperature dependence of the latter follows from the
model without any additional fitting.

2. High temperature range T & Tλ/2

At T & 1K, Kelvin waves are already fully damped;
see Fig. 1a. This means that for these temperatures we
can use the coarse-grained HVBK Eqs. (1). Using the
shell model approximation we find the temperature de-
pendence of νs(T ) in the temperature range T > 0.8K

as shown in Fig. 5 by the solid red line. In the inter-
mediate temperature range 0.9K< T < 1.1K this line
overlaps with the blue solid line, showing the one-fluid
results. The reason for this overlap is very simple: for
0.9K< T < 1.1K, the Kelvin waves are already damped
(see Fig. 1a), and the normal-fluid eddies at scales kℓ ∼ 1
are still damped. Therefore, in this range both the one-
fluid model and the coarse-grained model describe the
physics equally well. Moreover, the effective viscosity ν′

in the one-fluid approximation, suggested in Ref.10 and
shown as the black dot-dashed line in Fig. 5, gives the
same result as the two our approaches. At T < 0.9K the
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coarse-grained (blue and black) results deviate below the
one-fluid prediction which also accounts for the energy
transfer to the Kelvin waves. This results in a slower
decrease of ν′(T ) with temperature, and finally, in the
zero temperature limit (i.e. below 0.5K) this predicts
the plateau which is fully determined by the bottleneck
energy accumulation at the crossover between the hydro-
dynamic and the Kelvin wave regimes of the superfluid
motions.
For temperatures above 1.1K, the normal fluid con-

tribution to the two-fluid dynamics becomes important,
and the two-fluid results in Fig. 5 (red solid line) deviate
above the value of ν′s(T ) which is determined by the su-
perfluid component alone, cf. Ref.10. This is because
in this temperature interval the normal-fluid viscosity
νn(T ) (dashed green line) is much higher than its su-
perfluid counterpart ν′s. Therefore there exists an energy
flux which is induced by the mutual friction from the less
damped superfluid component to the normal fluid com-
ponent. This is seen in Fig. 4, were Rs > 1 and Rn < 1.
Thus

〈
|ωs|2

〉
is suppressed and correspondingly ν′(T ) de-

viates above ν′s (the black dot-dashed line) that does not
account for the energy exchange. Clearly, at T ≃ 1.8K ,
when there is no energy exchange, ν′(T ) should be equal
to ν′s. Also it is clear that for T & 1.8K, when the energy
flows in the opposite direction (from the normal- to the
super-fluid component), one expects that ν′(T ) should
be smaller than ν′s. All these expectations are confirmed
by the results shown in Fig. 5.
In Fig. 5 we also show the results for ν′(T ) of the

Prague counterflow15 and co-flow decay16 experiments
and those of the Oregon towered grid26,27 experiments.
These high-T experimental data have a significant scatter
for reasons discussed in Refs. 15–17.
Taking into account the scatter of the experimental

data, our computed dependence of ν′(T ) agrees reason-
ably well with experiments in various flows in the entire
range of temperatures from T → 0 up to T → Tλ.

III. COARSE-GRAINED, TWO-FLUID

DYNAMICS OF SUPERFLUID TURBULENCE

This Section concentrates on the high-temperature
regime, say T & Tλ/2, when the small-scale motions
(Kelvin waves) are effectively damped and we can restrict
ourselves to a coarse-grained description of the super-
fluid dynamics in the continuous-media approximation.
In most of this temperature range both the normal and
the superfluid components play important role and the
two-fluid description is required.

A. Coarse-grained, two-fluid, gradually-damped

HVBK equations

In this subsection we discuss in more details the
gradually-damped HVBK model, presented by Eqs. (1).

1. Simple closure for the large-scale energy dissipation due

to mutual friction

Originally in HVBK equations the mutual friction force
has the form:

Fns = α ω̂s × [ωs × (un−us)] +α′ωs × (us −un) . (30)

Here ωs ≡ ∇×us is the superfluid vorticity and the unit
vector ω̂s ≡ ωs/ωs is pointing in the direction of the vor-
ticity. The dimensionless phenomenological parameters
α and α′ describe the dissipative and the reactive mu-
tual friction forces acting on a vortex line as it moves
with respect to the normal component.
In our Eqs. (1) we used the simplified form (1c) of the

mutual friction which accounts for the fact that the vor-
ticity in developed turbulence is usually dominated by
the smallest eddies in the system, with the Kolmogorov
viscous scale η and with the largest characteristic wave-
vector kη ∼ 1/η. These eddies have the smallest turnover
time τη which is of the order of their decorrelation time.
On the contrary, the main contribution to the velocity in
the equation for the dissipation of the k-eddies with in-
termediate wave-vectors k, k ≪ kη, is dominated by the
k′-eddies with k′ ∼ k. Because the turnover time of these
eddies τk′ ≫ τη, we can justify the approximation (1c)
by averaging the vorticiy in Eqs. (30) during the time in-
tervals of interest (τη ≪ τ ≪ τk′ ). Thus the vorticity
ωs may be considered as uncorrelated with the velocities
us,un, which are the dynamical variables. More detailed
analysis72 shows that the approximation (1c) directly fol-
lows from the Kraichnan’s Direct Interaction Approxima-
tion in the Belinicher-Lvov sweeping-free representation
for the velocity triple-correlations.

2. Vinen-Niemela model for the superfluid energy

dissipation

The energy dissipation term involving ν′s in Eq. (1a)
for the superfluid velocity attempts to take into account
the existence of quantized vortex lines in an essentially
classical regime of motion. An early approach to this
dissipation term 68 was based on a picture of a random
vortex tangle moving in a quiescent normal component.
With the definition (29) this picture leads to the simple
equations for the effective viscosity 17:

ν′rnd = αρs
/
ρ , (31)

shown by a black thin dashed line in Fig. 5. One sees
that this result is much lower than the experimental data.
Moreover, the picture of a random vortex tangle moving
in a quiescent normal fluids predicts a higher dissipation
compared to the realistic situation in which the normal
and superfluid velocities are almost locked together as
discussed in Sec. II D. The missing physics that needs to
be considered to resolve this contradiction is that of vor-
tex reconnections.
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During reconnections, sharp angles necessarily appear
on the vortex lines, leading to their fast motion. This
motion is uncorrelated with the motion of other vortex
lines (except the ones involved in the reconnection) as
well as with the (relatively slow) motion of the normal-
fluid component. This leads to large local energy dissi-
pation events due to the mutual friction, which smoothes
the vortex lines and removes the regions of high curvature
appearing after the reconnection events. A detailed anal-
ysis of this and related effects led Vinen and Niemela 10

to suggest the effective superfluid (kinematic) viscosity
ν′s which in our notations reads:

ν′s = β(T )ακ , β(T ) ≡ s
(c2Λ
4π

)2

. (32)

Here, the parameter c2 relates the vortex line density
and the mean-square curvature69,70, and the parameter
s < 1 accounts for the suppression of effective line den-
sity due to partial polarization of vortex lines and was
roughly estimated in Ref.10 as 0.6. The temperature de-
pendence of ν′s(T ) estimated with the help of Tab. III of
Ref. 10 is presented in Tab. I. The resulting plot of ν′s(T )
is shown in Fig. 5 by a thick black dot-dashed line. Be-
sides the clear and definitely relevant physics underlying
Eq. (32), it agrees well with the experiments. That is why
in our analysis we will include effective damping (32) in
our gradually damped HVBK model Eq. (1a).

3. Truncated vs. gradually-damped HVBK models

A previous model which is referred to as the “trun-
cated HVBK model” of superfluid turbulence was sug-
gested in Ref. 39. The idea was to account for the strong
suppression of Kelvin waves at high temperatures by sim-
ply truncating the HVBK equation for the superfluid at
a cutoff wavenumber kℓ = β̃/ℓ (at which the normal fluid
is expected to be well damped by the viscosity), using

a fitting parameter β̃ of the order of unity. An obvious
limitation of this model is the abruptness of the trunca-
tion. An attempt to use this model for the calculation of
the effective viscosity 17 shows that the resulting ν′ [de-
noted in Ref.17 as νeff] may vary by a factor of about

five, when β̃ changes by the same factor (see Fig. 4, Top,
in Ref.17). Moreover, due to the strong temperature de-
pendence of the normal-fluid viscosity νn, the truncation
scale depends strongly on temperature, as illustrated in
our Fig. 1b. This means that the fitting parameter β̃
should be temperature dependent. If so, the truncated
HVBK model looses its predictive power. We remark
however that the experimental values of the effective vis-
cosity presented in Ref.17 unaffected by issues with the
truncated HVBK equations discussed here.
Unfortunately, this is not the only problem in the anal-

ysis of νeff in Ref. 17. For interpreting the results of the
numerical simulations of the truncated HVBK model the
authors of Ref. 17 use Eq. (31) for ν′rnd which presumes the
random vortex tangle. The values of ν′rnd are shown in

Fig. 5 by a black thin dashed line. As we already noticed
in Sec. III A 2 these values are smaller by one order of
magnitude as compared to the experimental points. The
physical reason for this discrepancy is very simple. The
truncated HVBK model ignores the energy dissipation
in the reconnection events, that, according to our sim-
ulations of gradually-damped HVBK model illustrated
in Fig. 4, constitute more than 90% of the total energy
dissipation in the system.

B. Two-fluid Sabra shell-model of turbulent 4He

1. Sabra-shell model equations

Following 56 we can present gradually damped HVBK
Eqs. (1) for isotropic space-homogeneous turbulence as
the system of two shell model equations for the normal vnm
and superfluid vsm shell velocities coupled by the friction
force term. In the dimensionless form it may be written
as follows:

[ d

dτ
+ ν̃n k

2
m

]
vnm = NLm{vnm′}+ ρs

ρn
Fm + fn

m ,(33a)

[ d

dτ
+ ν̃′s k

2
m

]
vsm = NLm{vsm′} − Fm + f s

m , (33b)

ν̃n =
νn

κReκ
, ν̃′s =

ν′s
κReκ

, (33c)

Reκ =
LUT

κ
, U2

T
= 2

[
ρsKs + ρnKn

]

ρ
,

Ks =
1

2

∑

m

|vsm|2 , Kn =
1

2

∑

m

|vnm|2 , (33d)

Fm = αωs(v
s
m − vnm) , ω2

s,n ≡
∑

m

k2m|vs,nm |2. (33e)

Here NLm{vm′} is the Sabra nonlinear term, given by
Eq. (4). The dimensionless shell wave numbers km are
chosen as a geometric progression km = k02

m, wherem =
1, 2, . . . M are the shell indices, and the dimensionless
reference shell wave number is normalized by the inverse
outer scale of turbulence 1/L (to be specific, in our sim-
ulations we have chosen k0 = 1/16).

The NLm{vm′} term (4) conserves the kinetic energy
(per unite mass) Ks and Kn (33d) provided a+ b+ c = 0
(which is our choice: b = c = −a/2, a = 1). The shell
energies |vn,sm |2 correspond to the normal- and the super-
fluid energy spectra En,s(k) as follows:

|vn,sm |2 = kmEn,s(km) , km = k0λ
m . (34)

Here, the factor km originates from the Jacobian of trans-
formation from dk to d ln k = (1/k)dk in the integrals for
the total energy. In particular, the KO-41 spectra with
En,s(k) ∝ k−5/3 correspond to |vn,sm |2 ∝ k−2/3 spectra for
the shell energies.
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2. Choice of parameters and numerical procedure

A random δ-correlated in time “energy-only” forc-
ing 46, f s

m and fn
m, was added to the first two shells

in equations for both the normal- and the super-fluid
componentsEqs. (33a) and (33b) respectively. Its ampli-
tude was chosen such that the total dimensionless energy
Ks + Kn ≃ 1. The standard relation between physical
velocity fields un(r), us(r) and shell velocities vnm, vsm
is a bit involved and will not be displayed here. Note
only that the dimensionless time τ in Eqs. (33) is nor-
malized by the turnover time of the energy-containing
eddies. What is more important here is the normaliza-
tion of the viscosities by κ and Reκ; see Eqs. (33). The
Reynolds number Reκ is a free parameter of the simula-
tions that determines the width of the inertial interval:
λM ∝Re

3/4
κ .

The mean effective viscosity in the superfluid subsys-
tem, 〈ν′〉, is calculated from the mean superfluid energy
flux, 〈εs〉, and the mean enstrophy,

〈
ω2
s

〉
. According to

definition (29) and Eqs. (33), we have:

〈ν′〉
κ

= Reκ
〈εs〉
〈ω2

s 〉
. (35a)

Here, ωs is given by Eqs. (33e), and the energy fluxes
through shell m, εs,n(km), are as follows,

εs,n(km) = km Im[aλSs,n
3 (m+ 1)− c Ss,n

3 (m)](35b)

Ss,n
3 (m) = vs,nm−1v

s,n
m vs,nm+1

∗
. (35c)

Eqs. (33) were solved using the 4th order Runge-Kutta
method with an exponential time differentiation71.

The shell velocities vs,nm were initiated to have the am-

plitudes proportional to k
1/3
m and random phases. The

simulations were carried out for temperatures from T =
0.8K to T = 2.15K using Reκ = 108 and N = 32 shells.
All other parameters are given in Table I. All observables
were obtained by averaging over about 500 large eddy
turnover times. The mean energy fluxes εs,n(km) were
calculated by additional averaging over shells 5÷ 13.

The results of these simulations are shown in Figs. 1b,
2b, 3, 4 and 5 and were discussed in Sec. II A 3.

IV. LOW-TEMPERATURE, ONE-FLUID

STATISTICS OF SUPERFLUID TURBULENCE

In Sec. II A 3 we presented an overview of one-fluid de-
scription of superfluid turbulence, based on the differ-
ential approximation for the energy flux in terms of the
energy spectrum itself. In this section we discuss this
differential closure procedure in much more details and
derive second-order ordinary differential equation for the
superfluid energy spectra Es(T ) in the entire range of
scales, but for T . Tc/2.

A. Differential approximation for the energy fluxes

of hydrodynamic and Kelvin wave motions

In this subsection we discuss the analytic form of the
energy flux ε(k) from small k motions toward the largest
possible k motions presenting an overview of results for
ε(k) obtained in Refs. 36,61,62,64 and required for further
developments. In Sec. IVA1 we begin with the analy-
sis of the expression for ε(k) for the Kelvin wave region,
kℓ ≪ 1, in terms of its energy spectra EKW(k) and then,
in Sec. IVA 2, we discuss the expression for ε(k) for large
scale hydrodynamic motions in terms of the hydrody-
namic energy spectra.

1. Small scale motions of Kelvin waves

It is now recognized that the typical turbulent state
of a superfluid consists of a complex tangle of quantized
vortex lines 69 swept by the velocity field produced by
the entire tangle according to the Biot-Savart equation 3.
Motions of the superfluid component with characteristic
scales R ≪ ℓ may be considered as motions of individual
vortex lines, i.e. Kelvin waves. An important step in
studying Kelvin-wave turbulence was done by Sonin 73

and later by Svistunov 74, who found a Hamiltonian
form of the Biot-Savart Equation for a slightly perturbed
straight vortex line. The final form of this Hamiltonian,
found in Ref. 75 served as a basis for consistent statis-
tical description of Kevin wave turbulence by Lvov and
Nazarenko 61 in the framework of standard kinetic equa-
tions for weak wave turbulence 8,9. This approach61,62,64

led to the spectrum of Kelvin waves E
KW

(k). Below we
present a brief overview of these and other pertinent re-
sults.
a. Zero temperature limit. The total “line-energy

density” of Kelvin waves E
KW

(per unit length of the
vortex line and normalized by the superfluid density) is
given by the k-integral of the energy spectrum E

KW
(k):

E
KW

=

∫
E

KW
(k) dk , E

KW
(k) = 2ω(k)n(k) . (36a)

Here n(k) is the wave action, in the classical limit related
to the occupation numbers Nk as follows: n(k)/~ →
N(k); ω(k) is the frequency of Kelvin waves. For
our purposes it is sufficient to use Local-Induction-
Approximation (LIA)69 for ω(k):

ω(k) =
Λκ

4π
k2 , Λ ≡ ln

( ℓ

a 0

)
, (36b)

A previous model of gradual eddy-wave crossover11,36

was based on the Kozik-Svistunov (KS) spectrum of
Kelvin wave turbulence76

E
KS

KW
(k) = C

KS

Λ κ7/5 ǫ1/5

k7/5
, KS-spectrum . (37)
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Here C
KS

∼ 1 is a dimensionless constant and ǫ is the flux
of E

KW
(k) in the one-dimensional k-space. The KS spec-

trum (37) was obtained in the framework of the kinetic
equation8,9 for weakly interacting Kelvin waves under the
crucial assumptions that the energy transfer in Kelvin
wave turbulence is a step-by-step cascade, in which only
Kelvin waves of similar wave numbers effectively interact
with each other. However in Ref.75 it was shown that
this locality assumption is not satisfied. This means that
KS-spectrum is NOT a solution of the kinetic equations
and thus physically irrelevant.
The Kelvin wave turbulence theory was corrected and

a new local Kelvin wave spectrum was derived by L’vov
and Nazarenko (LN) in Ref. 61:

EKW(k) =
CLN

Ψ2/3

Λ κ ǫ1/3

k5/3
, LN-spectrum. (38)

Here CLN ≈ 0.304 62 and the dimensionless constant Ψ is
given by Eq. (5b).
This KS vs LN controversy triggered an intensive de-

bate (see e.g. Refs77–81), which is outside the scope of
this article. The two predicted exponents, 7

5 = 1.4 and
5
3 ≈ 1.67 are very close to each other; indeed vortex-

filament simulations82 could not distinguish them (prob-
ably because in this numerical experiment the regime
of weak turbulence on which the theory is based and
which requires a small ratio of the amplitude of the
waves compared to the wavelength, was not the suffi-
ciently realized). Nevertheless, more recent simulations
by Krstulovic83, based on the long time integration of
the Gross-Pitaevskii equations and averaged over an en-
semble of initial conditions (slightly deviating from a
straight line), support the LN spectrum. The most recent
vortex-filament simulations by Baggaley and Laurie84 ob-
serve a remarkable agreement with the LN spectrum with
Cnum

LN
≈ 0.308 close to Canal

LN
≈ 0.304 while Cnum

KS
≈ 0.009

differs from the KS-estimate CKS ∼ 1. Based on these re-
sults we will use LN-spectrum (5) in further discussions
of the bottleneck effect.
b. Differential approximation for the Kelvin-wave

energy flux. In Ref. 64, the LN spectrum of Kelvin
waves (5) allowed to formulate a differential approxima-
tion for the energy flux,

ǫKW(k) = − Ψ2k6

5(CLNΛκ)3
∂E3

KW
(k)

∂k
, (39a)

which is an important ingredient of the low-temperature,
one-fluid differential model. It was constructed by anal-
ogy with Eq. (7a) such as to reproduce the LN spec-
trum (5) together with the thermodynamical equilibrium
solution EKW(k) =const. The approximation (39a) plays
an important role in the discussion of the temperature
dependence of the effective superfluid viscosity ν′(T ).
To analyze the temperature suppression of the Kelvin

waves energy spectrum, consider the energy balance
equation

dǫKW(k)

dk
= −αΛ

4 π
κk2EKW(k) , (39b)

whose right-hand-side accounts for the dissipation of the
Kelvin waves in the simplest form suggested by Vinen in
Ref. 85. The approximate solution of Eqs. (39), found in
Ref.64, is as follows:

EKW(k, T ) ≈ CLN

Ψ2/3

Λ κ ǫ
1/3
0

k5/3

[
1−

( k

kmax

)4/3]
,(40a)

1/ℓ 6 k 6 kmax .

Here ǫ0 ≡ ǫKW(1/ℓ) is the energy influx into system of
KWs at k ∼ 1/ℓ. Notice that all the temperature depen-
dence of EKW(k, T ) is absorbed in kmax(T ) given by:

kmax = kmax(T ) ≈
14

√
Ψǫ0

[√
α(T )CLNΛκ

]3/2 . (40b)

The analytical solution (40) is in qualitative agreement
with the numerical results shown in Fig. 1a.

2. Large-scale hydrodynamic region

In the hydrodynamic range of scales, the Biot-Savart
description of superfluid turbulence is too detailed for our
purposes and we can return to the continuous medium
approximation, Eqs. (1), used in the high temperature
regime. The difference with Sec. III is that now we
will first perform the statistical averaging of the velocity
field, and only then analyze the resulting equations for
the energy spectra in the one-fluid approximation. This
different strategy is dictated by a natural requirement
that Kelvin waves and hydrodynamic eddies have to be
treated in a similar formal scheme in order to describe
the intermediate region of scales where one type of mo-
tion continuously turns into the other. As a candidate for
this scheme we choose a differential closure that allows
us to express the energy flux as a differential form of the
energy spectra. For the Kelvin waves this approximation
was given by Eq. (39a) and for hydrodynamic eddies it is
discussed below.
The simplest approximation for the hydrodynamic en-

ergy flux εHD(k), based on the Kolmogorov idea of the
locality of the energy transfer and dimensional reasoning
goes back to Kovasznay 1947 paper86:

εHD(k) ≃ C[EHD(k)]
3/2k5/2 . (41)

Here C ∼ 1 is a dimensionless constant. The basic idea
of such models is that the nonlinear terms, being of the
simplest possible form, should preserve the original tur-
bulence scalings and, in particular, predict correctly the
Kolmogorov cascade. Indeed, in the stationary case and
in the absence of dissipation the energy flux becomes k-
independent, εHD(k) ⇒ εHD. Then Eq. (41) turns into
the Kolmogorov-Obukhov 5/3–law for EHD(k), given by
Eq. (6).
Unfortunately, the simple relation (41) does not de-

scribe the thermodynamic equilibrium (with equiparti-
tion of energy between states), when the energy flux van-
ishes for EHD ∝ k2. This disadvantage is corrected in the
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Leith-1967 differential model65, given by Eq. (7a). This
approximation coincides dimensionally with the Kovasz-
nay model (41), but has a derivative d[EHD(k)/k

2] that
guarantees that εHD(k) = 0, if EHD(k) ∝ k2. The nu-
merical factor 1

8 , suggested in? , gives the value of the

Kolmogorov constant CK41 = (24/11)2/3 ≈ 1.7 in Eq. (6)
that is reasonably close to the experimentally observed
value.
A generic hydrodynamic spectrum with a constant en-

ergy flux was found in? as a solution to the equation
εHD(k) = εHD = const:

EHD(k) = CK41

ε
2/3
HD

k5/3

[
1 +

( k

keq

)11/2
]2/3

, (42)

in which keq is as yet a free parameter describing the
crossover between the low-k KO41 spectrum (6) and the
thermalized part of the spectrum, EHD(k) ∝ k2 with
equipartition of energy at large k.
Notice, that Eq. (42) does not account for the energy

dissipation due to the mutual friction and the viscosity.
We will do this later, introducing dissipation terms in the
energy balance equation and numerically solving them.

B. One-fluid differential model of gradual

eddy-wave crossover

1. “Line-” and “volume-” energy densities, spectra and

fluxes

Our goal here is to formulate a model which will al-
low to describe in a unified form the hydrodynamic en-
ergy flux εHD(k) at small k and the corresponding ob-
jects for the Kelvin waves. However we cannot do it
straightforwardly using the equations for ǫKW(k) and the
spectrum EKW(k). The reason is simple: the hydrody-
namic and Kevin wave objects have different physical
meaning and different dimensions. Indeed, the hydrody-
namic motions fill the three-dimensional space (volume),
their energy density EHD per unit mass has a dimension
[EHD]=cm2/sec2. Accordingly, the dimensions of energy
spectrum EHD(k) and the energy flux εHD(k) are as fol-
lows:

[EHD(k)] = cm3/sec2 , [εHD(k)] = cm2/sec3 . (43a)

On the other hand, Kelvin waves propagate along one-
dimensional lines – vortex filaments. Therefore the en-
ergy density of Kelvin waves on individual vortex fila-
ment EKW is normalized by unit vortex length and (for
the sake of convenience) by superfluid density. Therefore
its dimension is [EKW]=cm4/sec2. Then the dimensions
of the corresponding energy spectrum and the energy flux
are:

[EKW(k)] = cm5/sec2 , [ǫKW(k)] = cm4/sec3 . (43b)

Different normalization of the same objects dictates
the relation between them in a statistically homogeneous

and isotropic vortex tangle with the line density L = 1/ℓ2

E
KW

(k) =
E

KW
(k)

ℓ2
, ε

KW
=

ǫ
KW

ℓ2
. (44)

2. Energy balance equation

Consider a general form (8) of the continuity equa-
tion for the energy density Es(k, t) of the isotropic space-
homogeneous turbulence of the superfluid component
which accounts for the energy dissipation with the help
of the Vinen-Niemella viscosity. The remaining phys-
ical problem here is how to describe the energy density
Es(k, t), the energy flux over scales εs(k, t), and the damp-
ing term D(k, t) in the entire range of wave vectors k,
including the intervortex scales k ∼ 1/ℓ. A step toward
this direction was suggested in Ref. 11 in the form of
the “Eddy-wave model” in which the superfluid motions
with scales R ∼ ℓ are considered as a superposition of
two coexisting and interacting types of motion: random
eddies and Kelvin waves. In some sense the problem
here is similar to the description of the mechanics of the
matter at intermediate range of scales, where it behaves
like particles and waves simultaneously. In quantum me-
chanics it was suggested to formulate explicitly the basic
equation of motion (the Schrödinger equation) and to
compare its prediction with observations. We are not
so ambitious, our goal is to discuss below a set of un-
controlled approximations, based currently only on our
physical intuition, which leads to an explicit set of model
equations having a predictive power. As we will see be-
low, our model predicts that in the range R ∼ ℓ, due
to the bottleneck energy accumulation, the energy dis-
tribution between scales is close to the energy equipar-
tition, like in the thermodynamic equilibrium. It is well
known that in thermodynamic equilibrium the statistics
is universal and independent of the details of interac-
tion. Therefore we hope that many details of the vortex
dynamics (including the vortex reconnections), that are
ignored in our model, do not affect the model results: we
believe that these results are closer to the reality than
the model itself.

3. Gradual model for the energy spectra of superfluid

component

The basic physical idea is to approximate the total tur-
bulent superfluid energy density Es(k, t) as a sum of the
hydrodynamic energy spectrum Es

HD
(k, t) and the energy

spectrum of the Kelvin waves EKW(k, t), with the energy
distribution between the components depending only on
the dimensionless blending function g(kℓ) of the dimen-
sionless wave-number kℓ:

Es(k, t) = Es
HD

(k, t) + EKW(k, t) ,

Es
HD

(k, t) = g(kℓ) Es(k, t) , (45)

EKW(k, t) = [1− g(kℓ)] Es(k, t) .
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In order to find a qualitative form of the blending func-
tion g(kℓ) we follow Ref11. Consider a system of locally
near-parallel vortex lines (in the vicinity of some point
r0), separated by the mean distance ℓ. Denote the indi-
vidual vortex lines by an index j. Notice that in principle
the same vortex line can go far away and come close to r0
several times. To avoid this problem one should assign
the same vortex line a different index j if it leaves (or en-

ters) the ball of radius ℓ
√
Λ centered at r0. Each vortex

line produces a superfluid velocity field us
j(r), which can

be found by the Biot-Savart Law.
The total superfluid kinetic energy density (per unit

mass) Es = 1
2

∑
i,j

〈
us
i · us

j

〉
may be divided into two

parts, Es = E1s + E2s, where

E1s ≡ 1

2

∑

j

〈
(us

j)
2
〉
, (46)

E2s ≡ 1

2

∑

i6=j

〈
us
i · us

j

〉
=

∑

i<j

〈
us
i · us

j

〉
.

The same subdivision can also be made for the en-
ergy spectrum in the (one-dimensional) k-space, Es(k) =
E1s(k)+E2s(k), with two terms, that may be found via k-
Fourier components of the superfluid velocity fields vs

j(k)
similar to Eq. (46). Now the idea is as follows: the energy
E1s(k) is defined by the form of the individual vortex lines
that is determined by the Kelvin waves, while the energy
E2s(k) depends on correlations in the form of different
vortices, that produce collective, hydrodynamic type of
motions. Therefore E1s(k) may be associated with the
Kelvin waves energy, E1s(k) ⇒ EKW(k), while E2s(k) has
to be associated with the superfluid hydrodynamic en-
ergy, E2s(k) ⇒ Es

HD
(k). This allows us to conclude that

g(kℓ) =
[
1 + E1s(k)/E2s(k)

]−1
. (47)

The rest are technical details presented in Ref. 11, where
it was concluded that in practical calculations it is rea-
sonable to use an analytical form g(kℓ) of the blending
function

g(kℓ) = g0
[
c1 ln(Λ + 7.5) kℓ

]
, (48)

g0(kℓ) =
[
1 +

(kℓ)2 exp(kℓ)

4π(1 + kℓ)

]−1

,

where c1 ≈ 0.32 is the fitting parameter, chosen in11.

4. Gradual model for the superfluids energy flux εs(k, t)

Modeling the total superfluid energy flux over scales,
εs(k, t), is less straightforward than the model (45) for the
energy itself, Es(k, t). We first assume that εs(k, t) may
be presented as the sum of the fluxes over hydrodynamic
and Kelvin wave components,

εs = ε̃s
HD

+ ε̃KW , (49a)

however the fluxes ε̃s
HD

and ε̃KW are not equal to the fluxes
εs
HD

, Eq. (7a), and εKW in isolated hydrodynamic and
Kelvin wave systems. Equation (39a) for ǫKW(k) in the
volume normalization (44) takes the form (7b).
The fluxes ε̃s

HD
and ε̃KW contain additional cross-

contributions ε
KW

HD
(k) and ε

HD

KW
(k) that originate from the

interaction of two types of motion, hydrodynamic and
Kelvin waves:

ε̃s
HD

= εHD + ε
KW

HD
, ε̃KW = εKW + ε

HD

KW
. (49b)

We modeled the cross-terms in the linear approximation
with respect to the energies (i.e. the Hydrodynamic en-
ergy affecting the Kelvin waves flux and vice versa):

ε
KW

HD
(k) = FHD{Es

HD
} d [EKW(k)/k2en]/dk

2 , (49c)

ε
HD

KW
(k) = FKW{EKW} d [Es

HD
(k)/k2]/dk2 ,

where ken is the wave number, at which g(kenℓ) = 1
2 .

The differential form of these contributions follows from a
physical hypothesis that these terms should disappear (or
become negligibly small) when the influencing subsystem
is in thermodynamical equilibrium, i.e. when Es

HD
∝ k2

and EKW ∝ k0 =const. Functionals of the correspond-
ing energies, F...{. . . } may be modeled by dimensional
reasoning, in the same way as Eqs. (7a) and (39a) were
formulated for the fluxes. The resulting equations for
FHD and FKW may be written in the form:

FHD{Es
HD

} = CHD

√
k11Es

HD
(k) , (49d)

FKW{EKW} = CKW(kℓ) k2enE4
KW

(k)κ−7 .

Here

CHD = −1/8 , CKW(kℓ) = −5(kℓ)8/7Λ5 . (49e)

as explained in Ref.11. The resulting model for the total
energy flux ε(k) follows from Eqs. (49):

εs(k) = −
{1

8

√
k11g(kℓ)Es(k)

+
3

5

Ψ2 (kℓ)6k2en[1− g(kℓ)]2Es(k)2
(CLNΛ κ)3

}
(50)

× d

dk

{
Es(k)

[g(kℓ)
k2

+
1− g(kℓ)

k2en

]}
.

Only with the choice (49e) the resulting Eq. (50) for εs(k)
vanishes in thermodynamic equilibrium (with Es(k) ∝
k2 in the hydrodynamic regime, k < ken and with
Es(k) =const. in the Kelvin waves regime, k > ken,)
as required.

5. Dimensionless form of the gradual one-fluid model

The resulting Eqs. (8), (45), (48) and (50) represent our
eddy-wave model of superfluid turbulence in the one-fluid
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approximation, which neglects motions of the normal-
fluid component, assuming un = 0. Now we introduce
dimensionless variables:

x = kℓ , e(x) =
ℓ Es(x)
κ2

, ǫ(x) =
εℓ4

κ3
(51a)

and express Eq. (50) in a dimensionless form which is
convenient for numerical analysis:

d

dx

{[1
8

√
x11g(x)e(x) +

3

5

[
Ψxenx

3(1− g(x)e(x))
]2

(CLNΛ)3

]

× d

dx

{
e(x)

[g(x)
x2

+
1− g(x)

x2
en

]}}
(51b)

= α
{
ωTg(x) + x2β(T )

}
e(x) ,

xen ≡ kenℓ ≃ 6.64
/
ln(Λ + 7.5) . (51c)

In the dimensionless form there is a constraint on the
energy flux:

2

∫ ∞

0

x2g(x)e(x)dx = 1 , (51d)

following from the assumption that the vorticity is dom-
inated by the scales of order 1/ℓ, given by Eq. (31b) in
Ref. 36. The function Ψ defined by Eq. (5b) in dimension-
less variables should be found self-consistently by enforc-
ing the following condition,

Ψ =
8π

Λ

∫ ∞

x1/2

[1− g(x)]e(x)dx , g(x1/2) =
1

2
. (51e)

6. Numerical procedure

We solved the integro-differential Eq. (51b) numeri-
cally starting from the large x region.
To formulate two boundary conditions at large x, we

use an analytical form of the Kelvin waves spectrum. In
dimensionless form Eq. (40a) reads:

eKW(x → xmax) =
CLNΛǫ

1/3
0

Ψ2/3x5/3

[
1−

( x

xmax

)4/3]
, (52a)

xmax ≈ 14
√
Ψǫ0

(αCLNΛ2)3/4
. (52b)

Now we can take as the boundary conditions the values
of eKW(x) at two points, ǫ(xmax − x1) and ǫ(xmax − x2)
with some appropriate values of x1 and x2 (say 5 and
10) for very small α. The results of these simulations are
shown in Figs. 1a, 2a, and 5 and were discussed in Sec. I.

V. SUMMARY AND DISCUSSION

In this paper, we have generalized the zero tempera-
ture theory11,36 of the energy and the vorticity spectra

in superfluid turbulence to non-zero temperatures up to
T → Tλ, accounting for the effect of the mutual friction
and motion of the normal fluid component. In particular
we describe the influence of the temperature on the bot-
tleneck energy accumulation near the inter-vortex scales.

• The gradually damped HVBK Eqs. (1) include the
Vinen-Niemela superfluid viscosity (32) with a fitting pa-
rameter s ≈ 0.6 which was chosen in their paper 10. Be-
sides this, our Sabra-model Eqs. (33) which is based on
Eqs. (1) and is used in the T > Tc/2 range, has no addi-
tional fitting parameters.
• The differential one-fluid model of superfluid tur-

bulence Eqs. (51b), used in the T < Tc/2 range, has
only one fitting parameter c1 ≈ 0.32, entering into the
blending function (48) and chosen in Ref. 36. Besides this
the model has no additional fitting parameters. Thus in
the entire approach we used only two fitting parameters
which were chosen in previous papers.
• We have shown that for T . 0.5K Kelvin waves are

excited in the range of scales from kℓ ∼ 1 up to some tem-
perature dependent cutoff kmax (40b); see Fig. 1a. For
kℓ & 20 Kelvin waves have the LN-energy spectrum (5)
with a constant energy flux, Es

KW
(k) ∝ k−5/3, while in

the crossover region (about one decade around kℓ ∼ 1)
there exists a flux-less spectrum Es

KW
(k) ≈const corre-

sponding to the thermodynamic equilibrium with the en-
ergy equipartition between Kelvin waves with different k.
In this temperature range the effective superfluid viscos-
ity may be considered as temperature independent and
equal to its zero-temperature limit, ν′(T ) ≈ ν′(0). Also,
a minor amount of the normal-fluid component may be
completely ignored.

• When T exceeds ≃ 0.5K, the constant energy flux
range of Kelvin waves disappears and the flux-less range
(with Es

KW
(k) ≈const) begins to shrink; see Fig. 1a. This

leads to the temperature suppression of the bottleneck
energy accumulation. As a result, the superfluid square
vorticity,

〈
|ωs|2

〉
, decreases (see Fig. 2a), leading to in-

crease in ν′(T ), in accord with the experimental obser-
vations; see Fig. 5. Up to T ≃ 1.1K, a small amount
(below 1%) of the normal-fluid component may be con-
sidered as being at rest, at least in the region kℓ ∼ 1,
which determines the leading contribution to

〈
|ωs|2

〉
. As

a result, both our models (the one-fluid gradual model of
the bottleneck crossover, which account for the presently
negligible energy flux by Kelvin waves, and the gradu-
ally damped HVBK model, that ignores Kelvin waves,
but accounts for the presently negligible normal-fluid
motions) are valid for 0.5K . T . 1K. The temper-
ature dependence of ν′(T ) predicted by these models
(red and blue solid lines in Fig. 5) practically coincide
for 0.5K. T . 1.1K.

• In the high temperature regime, T & Tλ/2 ≃ 1.1K,
the normal fluid component begins to play some role in
the temperature dependence of ν′(T ). In spite of the
almost full super- and normal-fluid velocity locking (see
Fig. 3) there is a significant energy exchange between the
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components (see Fig. 4), caused by the mutual friction
and the velocity decorrelation near kℓ ∼ 1. This physical
effect is important by itself, although it leads only to a
small, (but visible) deviations of the resulting tempera-
ture dependence of ν′(T ) (solid red line in Fig. 5) from
the Vinen-Niemella model10 of ν′(T ) = ν′s(T ), Eq. (32),
shown by black dot-dashed line.
• Since there is no detailed information on the su-

perfluid and normal fluid energy spectra, especially for
large k and low temperatures (see e.g. review7), we
compare our results with the experiments for the tem-
perature dependence of the effective kinematic viscosity
ν′(T ). The latter was measured in the temperature range
from 0.08K to 2.15K by the Manchester spin-down19 and
ion-jet20 experiments, as well as the Oregon towed-grid26

and the Prague counter-flow15 experiments, all shown in
Fig. 5. Our computed temperature dependence of the
effective viscosity ν′(T ) agrees qualitatively with the ex-
perimental data in the entire temperature range: from
T → 0 up to T → Tλ. We consider this agreement as
a strong evidence that our low-temperature, one-fluid
differential model and high temperature coarse-grained
gradually damped two-fluid HVBK model capture the
relevant basic physics of the turbulent behavior of 4He.
•The models considered in this paper are intended

for systems whose anisotropy effects are not substantial.
Strong external rotation may change the behaviour by
enforcing a strong polarisation of the superfluid vortex
bundles leading to the suppression of reconnections. In
turn, suppressed reconnections result in an enhanced bot-
tleneck accumulation of the turbulent spectrum near the
crossover scale ℓ and, as a result, in a decrease of the ef-
fective viscosity ν′. We leave the study of such an effect
of strong polarisation on the bottleneck phenomenon to
future.
• In this paper, we have ignored the effect of mu-

tual friction on the small k region of scales in the low
temperature regime, when the normal component is rare
and motionless due to a very large kinematic viscosity
(νn > 38 κ for T 6 1K). This is justified when the range
of scales greater that ℓ is not very wide, as in all existing
4He experiments. Theoretically, the mutual friction effect
grows as k is decreased and, if the low-k range is wide,
the spectrum would inevitably reach a friction-dominated
scaling regime with a power-law exponent equal −3, see
Ref. 38. Such a regime, which is even more natural in 3He
turbulence, may lead to a vortex tangle decay law with
L ∼ 1/t. We leave the study of this dissipative regime
for the future.
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Appendix A: Simple model of cross-velocity

correlations in superfluids

Our goal here is to suggest a relatively simple and phys-
ically transparent model of the cross-correlation function
of the normal and superfluid velocities, that leads to
Eq. (21) in the simplest case of homogeneous, isotropic
turbulence of incompressible turbulent motions of 4He.

To start, we recall some definitions and relationships,
required for our derivation, which are well-known in sta-
tistical physics. The first one is Fourier transform in the
following normalization:

vn,s(k, t) ≡
∫

dk

(2π)3
un,s(r, t) exp(−ik · r)] . (A1)

Next we define simultaneous correlations and cross-
correlations in the k-representation, [proportional to
δ(k − k′) in homogeneous case]:

〈vn(k, t) · v∗
n(k

′, t)〉 = (2π)3Gnn(k) δ(k − k′) ,(A2a)

〈vs(k, t) · v∗
s (k

′, t)〉 = (2π)3Gss(k) δ(k − k′) , (A2b)

〈vn(k, t) · v∗
s (k

′, t)〉 = (2π)3Gns(k) δ(k − k′) .(A2c)

It is known that their k-integration produces one-point
correlations:

∫
dk

(2π)3
Gnn(k) =

〈
|un(r, t)|2

〉
, (A3a)

∫
dk

(2π)3
Gss(k) =

〈
|us(r, t)|2

〉
, (A3b)

∫
dk

(2π)3
Gns(k) = 〈un(r, t) · us(r, t)〉 . (A3c)

In isotropic case, each of three correlations G...(k) is in-
dependent of the direction of k: G...(k) = G...(k) and∫
. . . dk = 4π

∫
. . . k2 dk. Together with Eqs. (18) and

(A3) this gives:

En(k) =
k2

4π2
Gnn(k) , Es(k) =

k2

4π2
Gss(k) ,

Ens(k) ≡ k2

4π2
Gns(k) . (A4)

To begin with the derivation of Eq. (21), we simplify
Eqs. (1) for the superfluid and the normal velocities,
vs(k, t) and vn(k, t), by modeling the nonlinear terms
in the spirit of the Langevin approach, i.e. replacing
them by a sum of respective damping terms γsvs(k, t)
or γnun(k, t) and random, delta-correlated in time force
terms fs(k, t) or fn(k, t) with Gaussian statistics and
zero cross-correlations:

〈fs(k, t) · f∗
s (k

′, t′)〉 = (2π)3δ(k − k′)δ(t− t′)f2
ss(k) ,

〈fn(k, t) · f∗
n (k

′, t′)〉 = (2π)3δ(k − k′)δ(t− t′)f2
nn(k) ,

〈fs(k, t) · f∗
n (k

′, t′)〉 = 0 . (A5)
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In the k-representation, the resulting equations read:

∂vs(k, t)

∂t
+ Γsvs(k, t) = αω̄svn(k, t) + fs(k, t), (A6a)

∂vn(k, t)

∂t
+ Γnvn(k, t) =

αρs
ρn

ω̄svs(k, t) + fn(k, t), (A6b)

Γn = γn +
αρs
ρn

ω̄s + νnk
2 , Γs = γs + α ω̄s + ν′sk

2 . (A6c)

Multiplying Eqs. (A6a) and (A7b) by vs, and vn, respec-
tively and averaging, one gets equations for velocity cor-
relations Gnn, Gss and cross-correlation Gsn, defined by
Eqs. (A3):

[ ∂

∂t
+ 2Γs

]
Gss = 2α ω̄sGsn + 2Re

[
Φss

]
, (A7a)

[ ∂

∂t
+ 2Γn

]
Gnn = 2

αρs
ρn

ω̄sGsn + 2Re
[
Φnn

]
, (A7b)

[ ∂

∂t
+ Γs + Γn

]
Gsn = ω̄s

[αρs
ρn

Gnn + αsGss

]
+ (A7c)

Re
[
Φsn +Φns

]
.

These equations involve yet unknown cross-correlations
of the velocities and the forces, Φ..., defined similarly to
Eqs. (A2):

〈fn(k, t) · v∗
n(k

′, t)〉 = (2π)3Φnn(k) δ(k − k′) , (A8a)

〈fs(k, t) · v∗
s (k

′, t)〉 = (2π)3Φss(k) δ(k − k′) , (A8b)

〈fn(k, t) · v∗
s (k

′, t)〉 = (2π)3Φns(k) δ(k − k′) , (A8c)

〈fs(k, t) · v∗
n(k

′, t)〉 = (2π)3Φsn(k) δ(k − k′) . (A8d)

To find these correlations, we rewrite Eqs. (A6) in Fourier
ω-representation:

[
iω + Γs

]
ṽs(k, ω) = αsω̄sṽn(k, ω) + f̃s(k, ω) , (A9a)

[
iω + Γn

]
ṽn(k, ω) =

αρs
ρn

ω̄sṽs(k, ω) + f̃n(k, ω) , (A9b)

were ṽ. . . and f̃. . . denote Fourier transforms of the cor-
responding functions. The solution of linear Eqs. (A9)
reads:

ṽs = −
[
(iω + Γn)f̃s + αsω̄sf̃n

]
/∆ , (A10a)

ṽn = −
[
(iω + Γs)f̃n + αsω̄sf̃s

]
/∆ , (A10b)

∆ ≡ ω2 +
α2ρs
ρn

ω̄2
s − ΓsΓn − iω(Γs + Γn) , (A10c)

where for brevity we skipped the arguments (k, ω) in all

functions. Multiplying the two Eqs. (A10) by f̃n and

f̃s, respectively and averaging, we get four equations

for (cross)-correlations Φ̃...(k, ω) in ω-representations via
two correlations f2

ss(k) and f2
nn(k) of random forces,

Eqs. (A5). By integration of the results over ω one may,
in principle, get the simultaneous cross-correlation func-
tions Φnn(k), Φss(k), Φsn(k) and Φns(k), expressed via
f2
ss(k) and f2

nn(k). However, it suffices to realize that
Φsn(k) = Φns(k) = 0. This instantly simplifies the sta-
tionary (∂/∂t = 0) Eq. (A7c) to

[
Γs + Γn

]
Gsn = ωs

[αρs
ρn

Gnn + αsGss

]
, (A11)

and we get a relationship between Gnn(k), Gss(k) and
Gsn(k), that is equivalent [with account of Eqs. (A4)] to
Eq. (21).
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