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Abstract

Geometrically, the main goal of this thesis is to refine the classification of

minimal surfaces S with K2
S = 7 and pg = 4 due to Ingrid Bauer and published in

her monograph Surfaces with K2
S = 7 and pg = 4 (cf. [Bauer]). She found that they

belong to 10 families according to the behaviour of the canonical map ϕKS
. The

10 families form 3 irreducible components of moduli, but the details of how this

happens remained unknown except for a few particular cases.

Our treatment consists in studying the abstract canonical model Proj R(S,KS),

where R(S,KS) ∶= ⊕
n≥0

H0
(S,OS(nKS)) is the pluricanonical ring. Except when

∣KS ∣ is base point free, these rings are Gorenstein of codimension ≥ 4. We show that

the only previously known deformation family of such rings (constructed by Bauer,

Catanese and Pignatelli in [Bauer et al]) relating the 2 families with ϕKS
birational

can be recovered using basic arguments about halfcanonical curves. Our techniques

also allow us to construct new explicit flat families for cases on which ϕKS
is not

birational. In particular, we construct a 1-parameter flat family of Gorenstein rings

with general fibre of codimension 4 and special fibre of codimension 6. At the end

we discuss possible applications of our methods to the cases on which ∣KS ∣ defines a

2-to-1 map to a quadratic surface. We conjecture that the moduli space of surfaces

with K2
S = 7 and pg = 4 is connected.

v



Chapter 1

Introduction and Preliminaries

This chapter introduces the notation and well known results used in the rest of the

thesis. It also discusses the motivation leading to the geometric problems we are

interested in.

1.1 Notation and conventions

The base field will always be the field of complex numbers C, most of the times

denoted simply by k.

A variety is an integral separated scheme of finite type over k; a curve is a

variety of dimension 1, a surface is a variety of dimension 2, etc. Usually I will use

the letters C and S for referring to a curve and a surface respectively.

I will write Pn and An for the n−dimensional projective and affine spaces

over k. In this work however, the varieties will be more conveniently embedded in

a weighted projective space (w.p.s.); the notation Pn(wi11 , . . . ,w
is
s ), where ∑sj=1 ij =

n + 1, stands for the w.p.s. corresponding to the Proj of the ring k[x0, . . . , xn] with

its grading induced by the k×−action on kn+1 ∖ {0} given by

λ ⋅ (a0, . . . , an) ↦ (λw1a0, . . . , λ
w1ai1 , . . . , λ

wsan+1−is , . . . , λ
wsan).

Now, let X be a nonsingular variety, Y ⊂ X a nonsingular hypersurface,

D,D1,D2 divisors on X and write OX(⋅) for the corresponding invertible sheaf.

Then I write:

• D1 ∼D2 for linear equivalence of divisors.
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• H0(n1D1 + n2D2) where n1, n2 ∈ Z, as a short for

H0
(X,OX(D1)

⊗n1 ⊗OX(D2)
⊗n2),

whenever X is clear from the context.

• D∣Y or sometimes simply DY for the restriction of the divisor D to Y .

• In case X = S is a surface, D1D2 denotes the intersection number.

• In case X = C is a curve, deg(D) denotes de degree of the divisor D.

• hi(D) stands for the dimension of H0(X,OX(D)) as a k−vector space.

• χ(D) for the Euler characteristic of the sheaf OX(D), that is, ∑ni=0(−1)ihi(D).

• ∣D∣ for the linear system in which D moves.

• r(D) or simply r if there it is clear by the context, for the dimension of ∣D∣,

that is, h0(D) − 1.

• ϕD for the rational map X
ϕD
999K Pr, in case r ≥ 1.

• grd for a linear system on a curve, of degree d and dimension r.

• KX for a canonical divisor of X.

• If X = S is a surface, I write pg = pg(S) = h0(KS) for its geometric genus

and q = q(S) = h1(KS) for its irregularity. If X = C is a curve, usually

g = g(C) = h0(KC) will denote its genus. Notice that Serre duality allows

us to define in an equivalent way pg = h
2(OS), q = h

1(OS) and similarly for

curves.

• R(X,D) stands for the full graded ring of sections of the divisorial sheaves

OX(nD):

R(X,D) ∶= ⊕
n≥0

H0
(X,OX(nD)).

In particular R(X,KX) and R(X,−KX) are called the canonical and anti-

canonical rings respectively. If D is a divisor satisfying 2D ∼KX (D is a theta

characteristic, semicanonical/halfcanonical divisor, etc.), the ring R(X,D) is

called a halfcanonical ring on X.

• The notation Sa(x1, . . . , xn) stands for the set of monomials of degree a on

the xis.
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1.2 Basic facts and formulas

Here I state the results that will be used more frequently during the thesis. Since

all of them are very well known, I omit giving any specific reference for their proofs.

The reason for citing them is to make things clear afterwards, when I will simply

write by Clifford’s theorem, etc.

Theorem 1.2.1. (Riemann-Roch for curves) Let C be a nonsingular projective

curve and D a divisor on it. Then

χ(D) = 1 − g + deg(D).

Remark The equality from previous theorem can be rewritten using Serre’s duality

as:

h0(D) − h0(KC −D) = 1 − g + deg(D).

Theorem 1.2.2. (Riemann-Roch for surfaces) Let S be a nonsingular projective

surface and D a divisor on it. Then

χ(D) = χ(OS) +
1

2
D(D −KS).

I will write simply R-R for referring to a Riemann-Roch theorem.

Theorem 1.2.3. (Adjunction formula) Let X ⊂ Y be a nonsingular hypersurface

on a nonsingular variety. Then

KX = (KY +X)∣X .

More generally, if Y is a Cohen-Macaulay variety and D is an effective

Cartier divisor on Y , then

ωD = ωY (D) ⊗OD

is a dualizing sheaf for D.

Corollary 1.2.4. If C ⊂ S is a nonsingular curve contained in a nonsingular sur-

face, then:

2g − 2 = (KS +C)C

and the same is true for any curve C if we replace g for the arithmetic genus pa(C).

Theorem 1.2.5. (Bertini’s theorem) Let X be a nonsingular projective variety and

∣D∣ a linear system on X with no fixed part. Then the general member of ∣D∣ can

only have singularities at the base locus.

3



Theorem 1.2.6. (Castelnuovo’s base point free pencil trick) Let C be a smooth

projective curve, L an invertible sheaf on C and F a torsion free OC−module. Sup-

pose that {s1, s2} is a linearly independent set of sections of L and denote by V the

subspace of H0(C,L) it spans. Then the kernel of the cup-product map

V ⊗H0
(C,F ) Ð→H0

(C,F ⊗L)

is isomorphic to H0(C,F ⊗L−1(B)), where B is the base locus of the pencil spanned

by s1 and s2.

Theorem 1.2.7. (Clifford’s theorem) Let C be a smooth projective genus g curve

with an effective divisor D of degree d with d ≤ 2g − 1. Then

r(D) ≤ d/2.

Moreover, if the equality holds, then either D is zero, D is a canonical divisor or C

is hyperelliptic and D is linearly equivalent to a multiple of a hyperelliptic divisor.

Remark A curve is called hyperelliptic if it admits a hyperelliptic divisor, that is,

a divisor D with deg(D) = h0(D) = 2.

Theorem 1.2.8. (Max Noether’s theorem) If C is not hyperelliptic, then the mor-

phisms

Sym`H0
(KC) Ð→H0

(`KC)

are surjective for ` ≥ 1.

1.3 Classical Surface Theory background

Let S be a projective surface. Recall that the Kodaira dimension of S, denoted by

κ(S), is defined to be

κ(S) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

Trk[R(S,KS)] − 1 if R(S,KS) /≅ k

−∞ if R(S,KS) ≅ k,

where Trk[R(S,KS)] is the transcendence degree (over C) of the canonical ring.

The starting point of the Kodaira-Enriques classification of algebraic surfaces

is noticing the possible values for κ(S) are −∞,0,1 and 2; surfaces corresponding to

the classes defined by the first 3 values are nowadays well understood, whereas there

is still a huge number of very hard open questions about surfaces with κ(S) = 2.
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Definition S is said to be a surface of general type if κ(S) = 2.

The next step in the classification is given by the following classic result:

Theorem 1.3.1. (Castenuovo’s contraction theorem) Let C ⊂ S be a curve on a

projective surface, such that C ≅ P1 and C2 = −1. Then there exists a nonsingular

surface S0 and a morphism

f ∶ S Ð→ S0,

satisfying:

1. f(C) = P a point in S0.

2. f ∶ S ∖ {C} Ð→ S ∖ {P} is an isomorphism.

So, the following definitions make sense:

Definition Keeping the notation from previous theorem:

1. C is said to be an exceptional curve of the first kind.

2. If S is smooth and contains no exceptional curves of the first kind, then is said

to be a minimal model.

The fact that every surface of general type can be obtained from a minimal

model after blowing up a finite subset of smooth points, and moreover such minimal

model is unique up to isomorphism, can be consulted in a number of well known

references, (such as Chapter III, sections 4.4-4.6 of [BHPV]), and is one of the main

guiding results on which the celebrated Minimal Model Program for varieties of

higher dimensions is inspired.

Thus, classifying surfaces of general type leads to the study of the unique

minimal model contained in each birational class. The most important numerical

data associated to a minimal surface S is the triplet of integers formed by its geo-

metrical genus pg, the irregularity q, and the self-intersection number K2
S . With the

exception of K2
S , all of these are birational invariants.

Definition Let S be a minimal surface of general type. The numerical type of S is

the triplet (K2
S , pg, q).

Remark The numerical type determines every other classical numerical invariant

of S:
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1. The Euler characteristic of the structure sheaf is by definition:

χ(OS) = 1 − q + pg.

2. The topological Euler characteristic is (by a classical theorem of M. Noether):

e(S) = 12χ(OS) −K
2
S .

3. The plurigenera Pm(S) ∶= h0(mKS), m ≥ 2 is (by R-R and Mumford’s vanish-

ing theorem):

Pm(S) = χ(OS) + (
m

2
)K2

S .

For every minimal surface of general type S, there exists a unique normal

surface X ⊂ PP5(S)−1 birational to S that is obtained contracting to points all the

(−2)−curves of S (that is, curves E ⊂ S such that E ≅ P1 and E2 = −2). Such an X

is called the canonical model of S (cf. [Bombieri]) and in this context we know the

following result:

Theorem 1.3.2. (cf.[Gieseker]) There exists a quasi projective coarse moduli scheme

for canonical models of surfaces of general type S with fixed K2
S and e(S).

In practice, the approach is to fix a numerical type (K2
S , pg, q) and consider

the subschemeMK2
S ,pg ,q

of the scheme whose existence is given by previous theorem.

MK2
S ,pg ,q

is thus, a quasi projective scheme, in particular, it has finitely many irre-

ducible components. The ultimate goal in surface theory is to completely describe

MK2
S ,pg ,q

for as many numerical types as possible.

Remark (cf.[Debarre82],[Debarre83],[Miyaoka] and [Yau]) Of course there are re-

strictions for the possible numerical type of a surface of general type; some well

known inequalities involving these numbers are the following:

• K2
S ≥ 1.

• (Noether) K2
S ≥ 2pg − 4.

• (Debarre) if q ≥ 1, K2
S ≥ 2pg.

• (Miyaoka-Yau) K2
S ≤ 9χ(OS).
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1.4 Previous work and statement of the problem

The case we want to attack were first seriously studied by Federigo Enriques in

his famous book on algebraic surfaces [Enriques]. There he focuses on the effective

construction of surfaces S, in particular, those with pg = 4 and whose canonical map

ϕKS
is a birational morphism onto a singular surface Σ ⊂ P3. The first open case,

corresponding to K2
S = 7, has attracted the attention of several other mathemati-

cians besides Enriques himself; Franchetta ([Franchetta]), Maxwell ([Maxwell]) and

Kodaira ([Kodaira]) to mention some.

Remark By Debarre’s inequality , it follows that if S is a minimal surface of general

type with pg = 4 and K2
S = 7, then S is regular (that is, q = 0). Thus in the

subsequent, we will write simply M7,4 ∶= MK2
s=7,pg=4,q=0 for the corresponding moduli

space.

However, it was only until the beginnings of the 2000s when Ingrid Bauer, in

her monograph [Bauer], gave a complete classification of surfaces in M7,4, separating

them into 10 families as stated in the following theorem (for a detailed version,

consult Theorem 5.1, page 51 of [Bauer]):

Theorem 1.4.1. Let S be a smooth minimal surface with K2
S = 7 and pg = 4. Then

S belongs to exactly one of the following families:

• Family (0): ∣KS ∣ is base point free and the canonical map ϕKS
is a birational

morphism from S onto a surface of degree 7 in P3. These surfaces form an

open unirational, irreducible set of dimension 36 in the moduli space M7,4.

• Family (I): ∣KS ∣ has exactly one simple base point P1. Let π1 ∶ S̃ Ð→ S be

the blowup of S at P1 and let ∣H̃ ∣ be the movable part of ∣KS̃ ∣. Then we have

the following subfamilies:

– Family (I.1): ϕKS
is a birational map. Then Σ ∶= ϕH̃(S̃) ⊂ P3 is a

surface of degree 6 with the following properties:

(a) The double curve Γ ⊂ Σ is a plane conic.

(b) If γ ⊂ P3 is the plane containing Γ, then Σ has a generalised tacnode

o ∈ γ ∖ Γ with tacnodal plane α ≠ γ.

(c) ϕH̃(E) = α ∩ γ, where E is the exceptional divisor of the blowup of

P1 ∈ S.

Apart from rational double points, Σ does not have other singularities.

The surfaces of subfamily (I.1) form an irreducible unirational set of

dimension 35 in M7,4.
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– Family (I.2): ϕKS
is a map of degree 2 onto a cubic in P3 that has only

isolated singularities. These surfaces form an irreducible unirational set

of dimension 33 in M7,4.

– Family (I.3): ϕKS
is a map of degree three onto a quadric in P3. These

surfaces also form an irreducible unirational set of dimension 35 in M7,4.

• Family (III): ∣KS ∣ has exactly three pairwise different simple base points

P1, P2, P3 ∈ S. Let π′ ∶ S̃′ Ð→ S be the blowup of S at P1, P2, P3, let ∣H̃ ′∣ be the

movable part of ∣KS̃′ ∣ and let Ei ∶= π
′−1(Pi) be the exceptional divisors. Then

we have the following subfamilies:

– Family (III.α): ϕH̃′(S̃
′) = P1×P1, (embedded in P3 by the linear system

∣Γ1 + Γ2∣; where Γ2
1 = Γ2

2 = 0 and Γ1Γ2 = 1), and ϕH̃′(E1), ϕH̃′(E2),

ϕH̃′(E3) are pairwise disjoint lines. These surfaces form an irreducible

unirational set of dimension 36 in M7,4.

– Family (III.β): ϕH̃′(S̃
′) = P1×P1 and without restriction ϕH̃′(E1), ϕH̃′(E2) ≡

Γ1, ϕH̃′(E3) ≡ Γ2. These surfaces form an irreducible unirational set of

dimension 38 in M7,4.

– Family (III.γ): ϕH̃′(S̃
′) is the quadric cone. These surfaces form an

irreducible unirational set of dimension 35 in M7,4 and they are obtained

as degenerations of surfaces of family (III.α).

• Family (F): ∣KS ∣ has a non trivial fixed part F , with F 2 = −2 and KSF = 0.

Then, if ∣H ∣ is the movable part of ∣KS ∣, ∣H ∣ has exactly one simple base point

X. Let π ∶ S̃ Ð→ S be the blowup of S at X and let ∣H̃ ∣ be the movable part

of ∣KS̃ ∣. Then ϕH̃ ∶ S̃ Ð→ Q is a morphism of degree 2 onto a quadric and

ϕH̃(F ) is a line. We have the following 2 subfamilies:

– Family (F.1): ϕH̃(S̃) = P1 × P1. These surfaces form an irreducible

unirational set of dimension 35 in M7,4.

– Family (F.2): ϕH̃(S̃) is the quadric cone. These surfaces form an

irreducible unirational set of dimension 34 in M7,4 and they are obtained

as degenerations of surfaces of family (F.1).

• Family (F’): ∣KS ∣ = ∣H ∣+F ′ and here the fixed part satisfies F ′2 = −1, KSF
′ =

1 and HF ′ = 2. In this case ∣H ∣ is base point free and ϕH(S) ⊂ P3 is the quadric

cone. These surfaces form an irreducible unirational set of dimension 37 in

M7,4 and they are obtained as degenerations of surfaces of family (III.β).
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Remark In the above Theorem the roman digits indicate the number of base points

of the canonical system ∣KS ∣, whereas the arabic numbers in the case (I) indicate

the degree of the canonical map.

By Kuranishi’s theorem (cf. [Kuranishi]), the dimension of the moduli space

of all surfaces with K2 = 7 and pg = 4 in a generic point is at least 10χ − 2K2 = 36.

Whence, the moduli space M7,4 has 3 irreducible components. There are two com-

ponents of dimension 36 that Bauer denotes by M(0) and M(III.α). As the notation

suggests, the components are the Zariski closure of the sets of surfaces of types (0)

and (III.α) respectively. The third component, M(III.β), has dimension 38 and is

the Zariski closure of the set of surfaces of type (III.β).

The main result of Bauer concerning the moduli space M7,4 is the following:

Theorem 1.4.2. 1. The decomposition of the moduli space M7,4 in irreducible

components is:

M7,4 =M(0) ∪M(III.α) ∪M(III.β).

2. The surfaces of type (III.γ) are contained in M(0) ∩M(III.α).

3. The two irreducible components M(III.α) and M(III.β) have empty intersec-

tion.

Remark It follows that M7,4 has at most 2 connected components.

The next breakthrough came with the joint work of Bauer, Fabrizio Catanese

and Roberto Pignatelli. By the results obtained previously by Bauer, it follows that

is possible to find small deformations of surfaces in (I.1) falling into some of the big-

ger pieces of moduli. In their paper [Bauer et al], they show how a surface in family

(I.1) deforms into one in family (0). The main tool used to find such a deformation

is the antisymmetric-extrasymmetric format, first discovered by Duncan Dicks and

Miles Reid, when they studied surfaces with K2 = 4 and pg = 3. This format is use-

ful for the presentation of certain Gorenstein rings of codimension 4 and has been

used ever since many times to construct explicit deformation families of algebraic

varieties. The format allows to deform the ring into one with codimension 3, which

in our situation corresponds to a canonical surface of family (0). From the graded

ring perspective, the difficulties in getting any other deformation and consequently

a clearer picture of M7,4 are the following:

1. Techniques for constructing the pluricanonical ring R(S,KS) such as the

Eisenbud-Buchsbaum structure theorem for codimension 3 Gorenstein rings
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(useful for family (0) of theorem 1.4.1) or the one given in [Bauer et al] (useful

for family (I.1)) cannot be applied in any of the remaining cases.

2. Even if one manages to construct the pluricanonical ring, there are no formats

that allow us to deform it if its codimension is greater than 4.

Thus, the main problem of this thesis is:

Problem 1.4.1. Can you obtain any other explicit deformation family of rings

relevant to surfaces belonging to the cases described in Theorem 1.4.1?

1.5 Contents of the thesis

1.5.1 Main results

The main original contributions of this thesis are the following:

• (cf. Theorem 5.1.1). Consider the graded ring R ∶= k[x0, x1, x2, x3, y1, y2, z]/I,

where degxi = 1, deg yj = 2, deg z = 3 and I is the homogeneous ideal generated

by 9 elements defined as follows:

Let A ∶=
⎛

⎝

x1 x2 x3 y2

x22 + a1x0x2 + a2x
2
0 Q y1 z

⎞

⎠
,

with Q ∶= x23 + a3x1x2 + a4x
2
1 + (a5x1 + a6x2 + a7x3)x0 + a8x

2
0

and let M ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

Q1
1
2a19x

2
0

1
2(a20x0x2 + a21x

2
0)

1
2a22x0

1
2a19x

2
0 Q2

1
2a27x

2
0

1
2a28x0

1
2(a20x0x2 + a21x

2
0)

1
2a27x

2
0 Q3

1
2a35x0

1
2a22x0

1
2a28x0

1
2a35x0 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1 ∶= a9x
2
1 + a10x1x2 + a11x1x3 + a12x

2
2 + a13x2x3 + a14x

2
3

+(a15x1 + a16x2 + a17x3)x0 + a18x
2
0,

Q2 ∶= (a23x1 + a24x2 + a25x3)x0 + a26x
2
0,

Q3 ∶= a29x1x2 + a30y1 + (a31x1 + a32x2 + a33x3)x0 + a34x
2
0.

The first 6 generators are the 2× 2 minors of A and the last 3 are the distinct

entries of the symmetric 2 × 2 matrix AM(TA). Then, for a general choice of

parameters ai ∈ C, 1 ≤ i ≤ 35, R = R(S,KS) where S is a surface of general

type with pg = 4 and K2 = 7 whose canonical map is 2-to-1 onto a cubic surface

in P3, that is, S is a surface belonging to subfamily (I.2) of Theorem 1.4.1.
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• In Theorem 5.1.3 we prove that the rings described in the above result are

degenerations of canonical rings of surfaces in the stratum (I.1).

• In Section 5.2 we give a new and simpler proof of the main result obtained

by Bauer, Catanese and Pignatelli in their paper [Bauer et al]. That is, every

surface in stratum (I.1) can be obtained as a degeneration of a surface in

stratum (0).

• Let (̃I.3) be the stratum formed by surfaces defined as Proj R where R is a

ring of the form:

R ∶= k[x0, x1, x2, x3, y1, y2, y3, z1, z2]/I,

with xi, yj and z` of degrees 1, 2 and 3 respectively. P is the degree 4 homo-

geneous form:

P ∶= a1x
3
0x2 + x

2
0A0 + x

2
1A1 + x

2
2A2 + x

2
3A3 + x1x2B1 + x2x3B2, (1.1)

where

A0 ∶= a2x
2
1 + a3x1x2 + a4x1x3 + a5x

2
2 + a6x2x3 + a7x

2
3,

A1 ∶= a8x0x1 + a9x0x2 + a10x
2
1 + a11x1x2 + a12x

2
2 + a13y1 + a14y2 + a15y3,

A2 ∶= a16x0x1 + a17x0x2 + a18x0x3 + a19x1x2 + a20x1x3 + a21x2x3 + a22x
2
3 + a23y3,

A3 ∶= a24x0x2 + a25x0x3 + a26x2x3 + a27x
2
3 + a28y3

B1 ∶= a29y2 + a30y3,

B2 ∶= a31y3,

a1, . . . , a31 ∈ C and I is generated by the 2 × 2 minors of

⎛
⎜
⎜
⎜
⎝

x1 x2 y1 y2 z1

x2 x3 y2 y3 z2

y1 y2 z1 z2 P

⎞
⎟
⎟
⎟
⎠

.

Then every surface in (̃I.3) has a small deformation to either a surface in (I.3)

or (I.1) (cf. §6.3 and Theorem 6.3.2).

If we make the following definition (cf. §2.3):

Definition Let (⋆) and (●) be two families of surfaces according to the classification

of Theorem 1.4.1.
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1. If I write (⋆) Ð→ (●), I mean that there exists a flat family with base a small

disc ∆t ⊂ C whose special fibre is of type ●, whose general fibre is of type ⋆

and this family exists for every point of a stratum ●.

2. If I write (⋆) (●), I mean that there exists a flat family with base a small

disc ∆t ⊂ C whose special fibre is of type ●, whose general fibre is of type ⋆

and this family exists only for some points of a stratum ●.

Our main results together with the conjectures made in the last chapter of

this thesis lead to the following diagram:

(I.2) (̃I.3) (I.3)

(III.γ) (I.1)

(III.α) (0) (III.β)

(F.2) (F.1) (F ′)

Here, the purple arrows are conjectured to exist, whereas the 3 different colours of

names of the strata indicate the irreducible component of the moduli space they

belong to (cf. §7.1).

1.5.2 Brief description of the chapters

• Chapter 2 describes Reid’s approach to the problem. In short terms, Reid’s

philosophy is that studying surfaces is, because of the hyperplane section prin-

ciple, closely related to the study curves and threefolds. If one is to find the

deformations mentioned in Problem 1.4.1, one should study the canonical ring

R(S,KS), whose algebraic structure is closely related with that of the half-

canonical ring R(C,KS ∣C), where C ∈ ∣KS ∣ is a canonical curve.

• In Chapter 3, I start constructing the halfcanonical ring of a canonical curve

of a surface corresponding to the families of surfaces of theorem 1.4.1 whose

canonical system has no fixed part. It turns out that the rings corresponding

to the families (0) and (I), (with the exception of the subfamily (I.3)) have

codimension 3 or 4.

12



• In Chapter 4, I deal with the cases (I.3) and (III), whose corresponding Goren-

stein rings have codimension 6 and 8, respectively. The algebra of these rings

is much more subtle than that of those studied in previous chapter, but sur-

prisingly, the geometry of the curves/surfaces is somewhat simpler and allows

us to compute the rings by restricting sections of certain toric key varieties.

• Chapter 5 discusses explicit deformations of surfaces of types (I.1) and (I.2);

both subfamilies can be studied as Proj of Gorenstein codimension 4 rings

that extend the formats found in the curve case. In particular, we see that

the result of Bauer, Catanese and Pignatelli can be obtained starting from a

halfcanonical ring of a curve and then using the extension algorithm.

• In Chapter 6, it is shown that all the formats obtained in Chapter 4 for the

halfcanonical rings of curves in the canonical system of surfaces of subfamily

(I.3) extend to the surface case. These rings are Gorenstein codimension 6,

related by 20 equations yoked together in 64 syzygies and are rather compli-

cated.

• In the final Chapter we discuss a plausible strategy for treating the cases on

which the canonical system defines a 2-to-1 map to a quadratic surface. The

method is analogous to that used in previous chapter to deform the codimen-

sion 6 rings. The rings involved here have codimension 8 and although working

explicitly with them is naturally much more complicated, we believe that we

will be able to answer important questions about the connectedness of the

moduli space of surfaces with K2 = 7 and pg = 4 in the near future. In fact we

conjecture that the moduli space is connected and provide some experimental

evidence suggesting this.

• Appendix This thesis contains a series of computer algebra codes that are

sanity checks needed in several parts of the text. All of them can be run in

Magma Online Calculator (cf. [BCP-Magma]):

http://magma.maths.usyd.edu.au/calc

In addition they can be found in my personal website:

https://sites.google.com/view/juan-garza/nigromante/magma-codes
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Chapter 2

The Graded Ring Program

Reid’s suggestion to study problems on minimal surfaces of general type, is to look

at the deformations of their canonical rings. His program was carried out by Dun-

can Dicks in his PhD thesis [Dicks] for surfaces with K2
S = 4 and pg = 3 and shortly

later explained in detail in his article [Reid D-E], where he applied it to study de-

formations of Horikawa quintics and also set the challenge of applying his methods

to cases corresponding to higher values of K2
S and pg.

This fits in the framework of the more general and ambitious Graded Ring

Program; starting with a polarised variety X,L, one follows Zariski’s standard con-

struction of the graded ring R(X,L) = ⊕
n≥0

H0
(X,nL) which in many interesting

cases, turns out to be a Cohen-Macaulay, or even better, a Gorenstein ring. Know-

ing how to construct a ring R(X,L) by giving a presentation (that is by generators

and relations), can be achieved by combining algebro-geometric techniques depend-

ing on the particular choice of the pair (X,L) and gives precise answers to questions

not only on embedding X ↪ Pn and determining the equations of the image but

also, if the presentation obtained is good enough, on the deformation families of such

rings/varieties. The worked example 2.4 illustrates many features of the program

in an elementary case.

A couple of general conventions about the graded rings R that we will be

working with are the following:

1. Graded rings will be N−graded, that is, R = ⊕
n≥0

Rn.

2. The base of the ring will be k, that is, R0 = C.
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3. We do not require R to be generated over k by R1. Geometrically this im-

plies that in general, our varieties will be embedded in a weighted projective

space, algebraically this implies that the codimension (and hence the number

of equations defining the variety) remains small.

2.1 Gorenstein rings

For the purposes of this thesis, I can use the next definition of Gorenstein rings (for

a more detailed discussion see [Reid 4], §1.1):

Definition Let I ⊂ O be a graded ideal in a regular graded ring. Let R = O/I.

Consider a minimal free resolution with graded O−modules:

R ← R0 ← R1 ← ⋯← Rc−1 ← Rc ← 0 (2.1)

Then R is a Cohen-Macaulay ring if c = codimOI. If R is Cohen-Macaulay and

Rc ≅ O(−`) for some ` ∈ Z, then R is a Gorenstein ring.

Remark If R is Gorenstein, in particular one has a pairing on the resolution (2.1),

R∨
c−i(−`) ≅ Ri coming from Serre duality.

In our context, R is of the form R(X,L) with X a variety and L and

ample Cartier divisor and the following result gives a characterisation of Cohen-

Macaulay and Gorenstein rings that can be taken as an alternative definition (cf.

[Hartshorne DT], Proposition 8.6).

Proposition 2.1.1. Consider the graded ring R(X,L) = ⊕
n≥0

H0
(X,nL), with X a

projective variety and L an ample Cartier divisor. Then:

1. R is Cohen-Macaulay if and only if:

(a) hi(X,nL) = 0 for all n and every i with 0 < i < dimX,

(b) h0(X,nL) = 0 for all n < 0,

(c) hdimX(X,nL) = 0 for n≫ 0.

2. R is Gorenstein if and only if it is Cohen-Macaulay and KX = `L for some

` ∈ Z.

The following is an immediate consequence of the above criterion, the remark

in section § 1.4 and Kodaira vanishing theorem:

Corollary 2.1.2. Let S be a minimal surface of general type with invariants K2
S = 7

and pg = 4. Then R(S,KS) is a Gorenstein ring.
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2.1.1 Structure theorems

There are general structure theorems for Gorenstein rings in codimensions 2, 3 and

4 (by Serre, Buchsbaum-Eisenbud and Reid respectively) that we briefly recall next.

• In codim 2, Serre proved every Gorenstein ring is a complete intersection (see

[Serre]).

• Codimension 3 is the easiest case we will find in this thesis, and the structure

theorem is given by Buchsbaum and Eisenbud in [Buchsbaum-Eisenbud]. The

result states that R = O/I is a Gorenstein ring of codim 3, if and only if it has

a minimal free resolution of the form

R ← O ← O2m+1 φ
←Ð O

2m+1
← O ← 0, (2.2)

with φ given by a skew (2m + 1) × (2m + 1) matrix whose 2m × 2m Pfaffians

generate I. In most of the cases occurring in practice (and in particular in the

ones we will find in this thesis) it turns out that m = 2 works. For this and

further purposes, it is convenient to introduce some notation for 4×4 Pfaffians

and skew matrices:

We will always omit the diagonal of zeroes and lower triangular antisymmetric

block of any skew matrix appearing in this thesis, so for example, a skew 5×5

matrix will be written as

φ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

a12 a13 a14 a15

a23 a24 a25

a34 a35

a45

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(2.3)

And we will write Pfi(φ) for the Pfaffian of the 4×4 submatrix obtained after

deleting the ith row and column of φ. So, Buchsbaum-Eisenbud result says

that in case m = 2, following above notation, the generators of I are (modulo

plus/minus signs):

Pf1(φ) = a23a45 − a24a35 + a25a34,

Pf2(φ) = a13a45 − a14a35 + a15a34,

Pf3(φ) = a12a45 − a14a25 + a15a24,

Pf4(φ) = a12a35 − a13a25 + a15a23,

Pf5(φ) = a12a34 − a13a24 + a14a23.

(2.4)
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More generally, if we take M , a skew m ×m matrix with m ≥ 6 and entries

Mr,s we will denote simply by ij.k`, where i < j < k < `, the Pfaffian of the 4×4

matrix obtained by picking 4 rows and the corresponding columns according

to the index selection. More precisely:

ij.k` =MijMk` −MikMj` +Mi`Mjk. (2.5)

• Reid’s codimension 4 structure theorem given in [Reid 4], §2.5, is an analogous

result to that of Buchsbaum-Eisenbud in codimension 3, however, as stated

there, in terms of certain key varieties called Spin-Hom varieties, is still far

from being applicable in practice. As a substitute, we will be using certain

ad-hoc methods for computing each of the codim 4 or higher Gorenstein rings

that we find during the thesis.

2.1.2 Rolling factors

Throughout the thesis, we will come up with rings admitting a presentation that we

will say to be in rolling factors format. Although we will emphasise on this later

on, we include the definitions here for convenience of the reader.

Let I be an ideal in a polynomial ring O. Suppose that there exists a matrix

A ∈ Mat2,n(O),

A =
⎛

⎝

f11 f12 . . . f1n

f21 f22 . . . f2n

⎞

⎠

such that its (
n
2
) two by two minors are in I. We say that an element r(n

2
)+1 ∈ I can

be rolled with respect to the matrix A if it is in the ideal generated by the elements

of its first row. So r(n
2
)+1 is of the form

r(n
2
)+1 =

n

∑
i=1
aif1i for some ai ∈ O.

We call

r(n
2
)+2 ∶=

n

∑
i=1
aif2i

a rolling of r(n
2
)+1 with respect to A. If r(n

2
)+2 ∈ I and it can be rolled again with

respect to A, we say that r(n
2
)+1 can be rolled twice, etc. Finally if I is finitely

generated and its remaining generators r(n
2
)+2, . . . , r(n

2
)+m are successive rollings of

r(n
2
)+1 with respect to A, we say that O/I is in rolling factors format.
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2.1.3 The hyperplane section theorem

Gorenstein rings are well behaved under taking hyperplane sections. The general

philosophy as mentioned before is that the algebro-geometric properties of a ring/variety

are closely related to those of its hyperplane sections. The main ingredient forma-

lising these ideas is the following result:

Theorem 2.1.3. (The hyperplane section principle) Let R be a graded ring, let Rd

be the degree d component (g ≥ 1), and let x0 ∈ Rd be a non zero divisor. There

exists an exact sequence

0→ R(−d)
x0
Ð→ R

π
Ð→ R ∶= R/(x0) → 0. (2.6)

And we have:

1. If x1, . . . , xn ∈ R generate R and x1, . . . , xn ∈ R are such that π(xi) = xi for

1 ≤ i ≤ n. Then x0, x1, . . . , xn generate R.

2. Suppose

R ≅ k[x1, . . . , xn]/(f1, . . . , fm). (2.7)

Then there exists relations F1, . . . , Fm holding between x0, x1, . . . , xn, such that

π(Fi) = fi and Fi generate the ideal ker ev, where

ev ∶ k[x0, . . . , xn] → R. (2.8)

3. Similarly for syzygies, that is, if we have a syzygy σi ∶ ∑
m
j=1 ljfj ≡ 0 ∈ k[x1, . . . , xn].

Then there are Lj ∈ k[x0, . . . , xn] such that the following syzygy holds:

Σi ∶
m

∑
j=1

LjFj ≡ 0 ∈ k[x0, . . . , xn], (2.9)

and Lj reduces to lj modulo x0.
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Proof. Consider the diagram

0 0

J I

0 (x0) k[x0, . . . , xn] k[x1, . . . , xn] 0

0 R(−d) R R 0

0

x0 π

(2.10)

where the two horizontal sequences are exact and the dashed arrow is the unique

morphism making the diagram commute. Let fx0 ∈ (x0). Under the dashed mor-

phism, fx0 maps to f ∈ Rdeg(f) = R(−d)deg(fx0). This morphism is well defined

because x0 is a non zero divisor (i.e., (x0) ⊂ R is a free R−module). Moreover it is

an isomorphism. Then it follows from the snake lemma that

k[x0, . . . , xn] → R (2.11)

is surjective. In other words, R is generated by x0 and the preimages of x1, . . . , xn

under π. It follows also that I ≅ J as modules over k[x0, . . . , xn]. Suppose that

f1, . . . , fm are generators of I over k[x1, . . . , xn], then f1, . . . , fm are generators

of I over k[x0, . . . , xn]. Therefore there exist F1, . . . , Fm that generate J over

k[x0, . . . , xn]. Now, notice that the isomorphism J
≅
Ð→ I is simply the restriction of

k[x0, . . . , xn] → k[x1, . . . , xn], which is uniquely determined by xi ↦ xi for 1 ≤ i ≤ n,

and x0 ↦ 0.

Finally, let Fj = fj +x0gj for some gj ∈ k[x0, . . . , xn]. Suppose σi ∶ ∑
m
j=1 ljfj ≡

0. Then
m

∑
j=1

ljFj ≡ x0
m

∑
j=1

ljgj . (2.12)

Since ∑mj=1 ljFj ∈ J and x0∑
m
j=1 ljgj ∈ (x0) which, because x0 is a non zero divisor,

implies ∑mj=1 ljgj ∈ J , we can write ∑mj=1 ljgj = ∑
m
j=1 hjFj . Thus Σi ∶ ∑

m
j=1LjFj ≡ 0,

where Lj ∶= lj − x0hj . q.e.d.
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2.2 Extension algorithm

This section goes trough Reid’s extension theory that is clearly explained in [Reid D-E]

and Dicks’ practical approach to it.

Let S be a surface in M7,4. Roughly speaking, the hyperplane section theo-

rem says that the generators, relations and syzygies of R(S,KS) occur in the same

degrees of those of R(C,D), where C ∈ ∣KS ∣ and D =KS ∣C . Because of the geometry

of curves tends to be more tractable than that of surfaces, we will start computing

R(C,D). Suppose we find a presentation:

R(C,D) ≅ k[x1, . . . , xn]/I; where I = (f1, . . . , fm) (2.13)

Together with syzygies

σi ∶
m

∑
j=1

ljfj ≡ 0. (2.14)

Then we should aim to find

Fj = fj + x0f
′
j + x0f

′′
j +⋯ + x`0f

(`)
j +⋯ (2.15)

such that f
(`)
j ∈ k[x1, . . . , xn], and the Fj satisfy the syzygies Σj of theorem 2.1.3,

part 3, so we produce the sequence

{R(C,D)},{R(2C,D(2))}, . . . ,{R(dC,D(d))},{R(S,KS)} (2.16)

by calculating Fj in stages allowing successively higher powers of x0. Each R((` +

1)C,D(`+1)) depends in a linear way on R(`C,D(`)) and we have

{R((` + 1)C,D(`+1))/(x`0)} ⊂ {R(`C,D(`))}. (2.17)

The following definitions are given to show in greater detail how this gets

done:

Definition Suppose we have

R(C,D) ∶= R(1) ≅ k[x1, . . . , xn]/I (2.18)

and

R(`) = k[x0, . . . , xn]/(I
(`), x`0) (2.19)
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such that R(`) modulo x0 is R(1).

1. Define SR to be the graded k[x1, . . . , xn]−module with grading [SR]δ = R
(1)
δ−1

and multiplication defined by

fg = 0 for all f, g ∈ SR. (2.20)

2. Define TR(`) to be the graded k[x0, . . . , xn]−module with grading [TR(`)]δ =

[R(`)]δ and multiplication defined by

(
`−1
∑
i=0
xi0pi)(

`−1
∑
i=0
xi0qi) = x0

`−2
∑
i=0
xi0 ∑

j+s=1
pjqs, (2.21)

for all
`−1
∑
i=0
xi0pi,

`−1
∑
i=0
xi0qi ∈ TR(`) .

Then we have the following result (cf.[Lichtenbaum-Schlessinger], §4.2.5):

Proposition 2.2.1. With R(1) and R(`) as above, R(`+1) exists if and only if there

exists a degree preserving module homomorphism β` as shown in the following dia-

gram, with β` ○ ι
′
` = α

′
`.

0 Σ (f1, . . . , fm) k[x1, . . . , xn] R(1) 0

0 SR TR(`) R(`) R(1) 0

ι′`

α′` α`β`

ι` j`

(2.22)

The rows of 2.22 are exact. Σ is the k[x1, . . . , xn]−module generated by the syzygies

σ1, . . . , σt such that the top row is exact. The maps ι` and j` are given by

ι`(p) = x
`−1
0 p,

j` (
`−1
∑
i=0
xi0pi) = x0

`−2
∑
i=0
xi0pi.

(2.23)

The maps α` and α′` of previous diagram are defined inductively, they depend

on the map β`−1 defined by an analogous diagram as we will see:

Consider the first step, we have the following diagram:
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0 Σ (f1, . . . , fm) k[x1, . . . , xn] R(1) 0

0 SR TR(1) R(1) R(1) 0

ι′

α′1 α1β1

ι j

(2.24)

Where the maps α1, α
′
1 and j are all zero, and ι is the identity map. We must find

β1 ∶ I = (f1, . . . , fm) Ð→ SR, (2.25)

such that degβ1(fi) = deg fi−1 and
m

∑
i=1
liβ1(fi) = 0 whenever ι′(σj) =

m

∑
i=1
lifi for some

σj . The fact this problem always has a solution (namely the zero map), corresponds

to the fact that first order extensions are always unobstructed. The construction of

β1 allows us to define

R(2)(β1) = k[x0, . . . , xn]/(I
(2), x20), (2.26)

where I(2) is generated by F1, . . . , Fm given by Fi = fi + x0β1(fi).

To go from ring R(2) to R(3), take any map β ∶ (f1, . . . , fm) → SR such that

β(f1), . . . , β(fm) are generic polynomials making the above conditions hold. Then

this map can be lifted to

β̃ ∶ I Ð→ k[x1, . . . , xn], (2.27)

where
m

∑
i=1
liβ̃(fi) ∈ I whenever ι′(σj) =

m

∑
i=1
lifi for some σj .

Then α2 ∶ I → TR(2) is given by α2(fi) = β(fi). Consider σj such that

ι′(σj) =
m

∑
i=1
lifi, then the first step has given the expression

m

∑
i=1
liβ̃(fi) =

m

∑
s=1

psfs ∈ I. (2.28)

We define α′2(σj) ∶=
m

∑
s=1

psβ(fs), and then β2 in the diagram:
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0 Σ (f1, . . . , fm) k[x1, . . . , xn] R(1) 0

0 SR TR(2) R(2) R(1) 0

ι′2

α′2 α2β2

ι2 j2

(2.29)

must satisfy
m

∑
i=1
liβ2(fi) =

m

∑
s=1

psβ(fs) and as in the first step, the construction of β2

allows us to put

R(3)(β2) = k[x0, . . . , xn]/(I
(3), x30), (2.30)

where I(3) is generated by {F1, . . . , Fm} given by

Fi = fi + x0β(fi) + x
2
0β2(fi). (2.31)

If there are no maps β2 making diagram 2.29 commute, we say the extension

is obstructed ; when this happens, we will be forced to impose further conditions on

the general β to make the diagram commute.

The above procedure continues inductively when getting from R(`) to R(`+1),

the presence of obstructions makes clear why in general

{R((` + 1)C,D(`+1))/(x`0)} ⫋ {R(`C,D(`))}. (2.32)

Remark In practice, it is often possible to save a lot of time and effort by doing

some simplifications at each step and using the concept of flexible formats to write

the generators of I; this is explained later on in Chapter 5. Besides the worked ex-

ample at the end of this chapter, the reader is also encouraged to consult Pinkham’s

example, that can be found in [Reid D-E], §2.1.

2.3 The Main Set up

Let S be a minimal surface with K2
S = 7 and pg = 4. Let ∣H ∣ be the movable part of

∣KS ∣. For convenience of the reader, I summarise the classification given in Theorem

1.4.1 in the following table:
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Family Base locus of ∣KS ∣ Brief description of ϕH

(0) None Birational to a surface of degree 7.

(I.1) One base point Birational to a surface of degree 6.

(I.2) One base point 2-to-1 to a cubic surface.

(I.3) One base point 3-to-1 to the quadric cone.

(III.α) Three base points 2-to-1 to P1 × P1.

S admits a genus 2 pencil.

(III.β) Three base points 2-to-1 to P1 × P1.

S does not admit a genus 2 pencil.

(III.γ) Three base points 2-to-1 to the quadric cone.

(F.1) F with F 2 = −2 2-to-1 to P1 × P1.

and KSF = 0

(F.2) F with F 2 = −2 2-to-1 to the quadric cone.

and KSF = 0

(F ′) F ′ with F ′2 = −1, 2-to-1 to the quadric cone.

KSF
′ = 1 and HF ′ = 2

Definition Let (⋆) and (●) be two families of surfaces according to the classification

of Theorem 1.4.1.

1. If I write (⋆) Ð→ (●), I mean that there exists a flat family with base a small

disc ∆t ⊂ C whose special fibre is of type ●, whose general fibre is of type ⋆

and this family exists for every point of a stratum ●.

2. If I write (⋆) (●), I mean that there exists a flat family with base a small

disc ∆t ⊂ C whose special fibre is of type ●, whose general fibre is of type ⋆

and this family exists only for some points of a stratum ●.

For example, the only known situation coming from explicit deformation

of canonical rings was obtained in the work of Bauer, Catanese and Pignatelli

[Bauer et al] and is:

(0) Ð→ (I.1).

However, by easy geometric arguments, the structure of the moduli space for

the cases in which ∣KS ∣ has a non-trivial fixed part is almost completely understood.

We have the following picture:

24



(III.α)

(III.γ) (F.1)

(F.2)

(III.β)

(F ′)

(2.33)

The above considerations suggest us to focus in the cases in which the cano-

nical system has no fixed part. Guided also by the hyperplane section principle, we

propose the following Main Setup:

• In the subsequent, unless otherwise stated, S will denote a minimal surface of

general type with K2
S = 7, pg = 4 and such that ∣KS ∣ has no fixed part.

• C ∈ ∣KS ∣ will be a general canonical curve that can be assumed to be nonsin-

gular; because of Bertini’s theorem and because it is known that ∣KS ∣ can only

have simple base points.

– Let g be the genus of C. By the adjunction formula, 2g − 2 = 2K2
S , thus

g = 8.

– D will denote the restriction KS ∣C . So, again by adjunction, KC = 2KS ∣C ,

therefore D is a degree 7 halfcanonical divisor.

– Since pg = 4 and the surfaces we are considering are regular, it follows

that h0(D) = 3, so D moves in a g27.

As expected, there are exactly 5 general possibilities for a divisor D ∈ g27, namely:

1. ∣D∣ has no base points.

2. ∣D∣ has exactly one base point P . Let D′ ∶= D − P , then ϕD′ ∶ C Ð→ P2 is a

degree 6 morphism and one has 3 sub cases:

(a) ϕD′(C) is a sextic with 2 double points.

(b) ϕD′(C) is an elliptic curve.

(c) ϕD′(C) is a plane conic

3. ∣D∣ has exactly 3 base points P1, P2, P3. Let D̃ ∶=D−P1−P2−P3 so ϕD̃ ∶ C Ð→

P2 is a degree 4 morphism. In this case the only possibility for ϕD̃(C) is to

be a conic.
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Remark • The above possibilities are obtained as easy numeric consequences,

following from the factorisations 6 = 2 × 3, 4 = 2 × 2 and the degree-genus

formula (or adjunction formula).

• It can be shown that the sextic in the general case corresponding to 2.(a) is

tangent to the line joining its two singular points.

• In case 2.(c), because of the rationality of the conic, it follows that C is a

trigonal curve (that is, is non hyperelliptic curve admitting a g13).

• Similarly it follows that any curve in case 3 is a hyperelliptic curve.

Our task during the following two chapters will be to compute R(C,D) for

a polarised curve falling in each of the cases above.

2.4 Worked Example

Let C be a nonsingular projective curve of genus g(C) = h1(OC) = 2. Assuming

Riemann-Roch for curves holds, my aim is then to study C as an abstractly given

object, by means of the graded rings R(C,D) with respect to certain polarising

ample divisor D.

2.4.1 Canonical and bicanonical rings on a genus 2 curve

First consider the canonical class KC . By R-R and Serre duality:

h0(KC) = deg(KC).

This is the well known fact that every genus 2 curve is hyperelliptic, and

∣KC ∣ = g
1
2. It defines a morphism

π ∶= ϕKC
∶ C

2-to-1
ÐÐÐ→ P1,

branched, by Riemann-Hurwitz formula, at 6 (necessarily distinct, since C is non-

singular) points Bi ∈ P1, 1 ≤ i ≤ 4. This leads to the model of C as a hypersurface

in weighted projective space (w.p.s.)

P(1,1,3) = Proj k[t1, t2, u];

we have

R(C,KC) ≅ k[t1, t2, u]/(u
2
− f6(t1, t2)), (2.34)
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where f6 is a homogeneous degree 6 form in t1, t2 whose zeroes define the branch

locus. For illustrative purposes, I take

f6(t1, t2) = t
6
1 − t1t

5
2. (2.35)

This is an example of a codimension 1 Gorenstein ring; you can deduce the

presentation (2.34) in any number of ways, perhaps the easiest being simply to follow

the corresponding Riemann-Roch table (which is explained just below):

Space Dimension Generators Relations

H0(C,KC) 2 t1, t2 None

H0(C,2KC) 3 = 2 deg(KC) − 1 S2(t1, t2) None

H0(C,3KC) 5 = 3 deg(KC) − 1 S3(t1, t2), u None

H0(C,4KC) 7 = 4 deg(KC) − 1 S4(t1, t2), S
1(t1, t2) ⊗ u None

H0(C,5KC) 9 = 5 deg(KC) − 1 S5(t1, t2), S
2(t1, t2) ⊗ u None

H0(C,6KC) 11 = 6 deg(KC) − 1 S6(t1, t2), S
3(t1, t2) ⊗ u, u2 u2 − t61 − t

6
2

H0(C,nKC) 2n − 1 Sn(t1, t2), S
n−3(t1, t2) ⊗ u None

Let {t1, t2} be a basis of H0(KC). Then Sn(t1, t2), n ≥ 2 gives us n + 1

linearly independent sections of H0(nKC), because any relation would imply that

ϕKC
(C) ⊂ P1 is reducible. Now, by Riemann-Roch I only need the 3 elements of

S2(t1, t2) to get a basis of H0(2KC), however in degree 3, I need a new generator,

u, because h0(3KC) = 5 and I only have the 4 linearly independent elements from

S3(t1, t2).

Next, observe that there is no relation holding between elements of S4(t1, t2)

and u⊗ S1(t1, t2), because they belong to different factors of the decomposition of

π∗OC in ± eigensheaves: OP1 ⊕OP1(−3). Therefore the 7 elements in S4(t1, t2)∪u⊗

S1(t1, t2) form a basis of H0(4KC). For similar reasons, it follows that there are

no relations between elements of Sn(t1, t2) and u⊗Sn−3(t1, t2) for any n ≥ 4. Thus,

the only relation occurs in degree 6, and the coefficient of u2 must be non-zero.

After completing the square and possibly changing coordinates, we get the desired

presentation.

Previous computation gives for free a presentation of the bicanonical subring

R(C,2KC) = ⊕
n≥0

H0
(C,2nKC). (2.36)
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This is a codimension 3 Cohen-Macaulay ring and the following statements

are easy consequences of the presentation we obtained of the canonical ring R(C,D):

1. There is a map ϕ2KC
∶ C

2-to-1
ÐÐÐ→ C ⊂ P2, where C ≅ P1 is a nonsingular conic.

2. R(C,D) is generated in degree 2 and related in degree 4; in detail:

R(C,2KC) ≅ k[x1, x2, x3, y1, y2]/I,

where deg(xi) = 1, deg(yj) = 2 for 1 ≤ i ≤ 3, j = 1,2 and the ideal I is generated

by the following 6 elements (relations):

r1 ∶= x1x3 − x
2
2

r2 ∶= x1y2 − x2y1

r3 ∶= x2y2 − x3y1

r4 ∶= y21 − x
4
1 + x

3
2x3

r5 ∶= y1y2 − x
3
1x2 + x

2
2x

2
3

r6 ∶= y22 − x
2
1x

2
2 + x2x

3
3

(2.37)

Observe that the toric relations ri, 1 ≤ i ≤ 3, are consequences of the following

choice of generators:

x1 ∶= t
2
1, x2 ∶= t1t2, x3 ∶= t

2
2

y1 ∶= t1u, y2 ∶= t2u

and can be more conveniently presented as the 2× 2 minors of the following matrix:

M ∶=
⎛

⎝

x1 x2 y1

x2 x3 y2

⎞

⎠
, (2.38)

whereas the rolling factors1 relations rj , 4 ≤ j ≤ 6 are consequences of the unique

relation, u2 − t61 + t1t
5
2, holding between the generators of the canonical ring.

Remark We can replace relation r5 (or r4, or r6) for y1y2−x
3
1x2+x1x

3
3 and generate

exactly the same ideal, simply by adding −x22x
2
3 + x1x

3
3 ∈ I, which is a multiple

of relation r1. We call either of the monomials x22x
2
3 and x1x

3
3 renderings of the

monomial t21t
6
2 of the bigger ring and we often write:

[t21t
6
2] = x

2
2x

2
3 = x1x

3
3, etc.

This choice is sometimes important when we consider deformations of the ring.

1This term was coined by D. Dicks and will be explained later on (cf. theorem 3.2.4).
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2.4.2 Degree 4 divisors defining birational maps

The most common situation when considering a degree 4 effective divisor D on a

nonsingular genus 2 curve C in terms of the linear system ∣D∣ is that

ϕD ∶ C Ð→ C ⊂ P2,

is a birational map onto a plane degree 4 singular curve, in fact, the only case in

which this fails is precisely when D ∼ 2KC . The other 2 cases are

a) D1 ∼KC + P +Q,

b) D2 ∼KC + 2P ,

where P and Q are not ramification points of the 2-to-1 cover of P1 defined by ∣KC ∣.

Let Ci ∶= ϕDi(C) ⊂ P2 for i = 1,2. In case a), it follows from Riemann-Roch that

∣D1∣ separates any two points of C with the exception of P and Q that get mapped

into a simple node of C, whereas in case b), the linear system separates points but

not tangent vectors, and C has a cusp in ϕD2(P ).

For illustrative purposes, suppose that {x1, x2, x3} and {x1, x2, x3} are basis

of H0(C,D1) and H0(C,D2) respectively and let

C1 ∶= V (x1x2x
2
3 − x

4
1 − x

4
2), C2 ∶= V (x21x

2
3 + x

3
2x3 − x

4
1 + x

4
2). (2.39)

In particular, I choose the node (resp. cusp) to be the point with coordinates

(0 ∶ 0 ∶ 1).

By Riemann-Roch and since neither of the Ci are conics, it follows that either

ring requires only one extra generator in degree two, that I call y and y respectively.

In degree 3, we have h0(3D1) = h0(3D2) = 11. The 10 monomials of

S3(x1, x2, x3) (or S3(x1, x2, x3)) are clearly linearly independent, thus, I only need

an extra generator to get a basis, but we already own another 3 degree 3 monomials;

S1
(x1, x2, x3) ⊗ y, S1

(x1, x2, x3) ⊗ y.

Therefore, there are at least 2 relations, and it is easy to see they are of the

form
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R1 ∶= x1y − F3

R2 ∶= x2y −G3

,
R̃1 ∶= x1y − F̃3

R̃2 ∶= x2y − G̃3

, (2.40)

where F3,G3 and F̃3, G̃3 are homogeneous forms of degree 3 not involving y nor x33
and y nor x33, respectively. In fact, it follows that the equations cutting the plane

quartics are ought to be x2F3 − x1G3 and x2F̃3 − x1G̃3. Thus:

R1 ∶= x1y − x
3
2

R2 ∶= x2y + x
3
1 − x2x

2
3

,
R̃1 ∶= x1y + x

3
2 + x

2
2x3

R̃2 ∶= x2y + x
3
1 − x1x

2
3

. (2.41)

From previous pairs of equations, I can obtain a relation involving it, as

follows:

R2 says: x2(y − x
2
3) + x

3
1 ∈ I, then x2y(y − x

2
3) + x

3
1y ∈ I, but by R1, x1y − x

3
2 ∈ I.

Therefore x2y(y − x
2
3) + x

2
1x

3
2 ∈ I and since x2 is not a zero divisor, I get a new

relation:

R3 ∶= y(y − x23) + x
2
1x

2
2. (2.42)

Analogously, one gets R̃3 ∶= y
2 + (x23 − x

2
1)(x

2
2 + x2x3). The fact these gener-

ators/relations are sufficient to present the rings is left as an exercise to the reader.

This is of course an example illustrating the Hilbert-Burch theorem on the resolution

of codimension 2 Cohen-Macaulay rings. Let O ∶= k[x1, x2, x3, y], I ∶= (R1,R2,R3)

and R ∶= R(C,D1) ≅ O/I. There is a minimal free resolution

0← R ← O ← O(−3)⊕2⊕O(−4)
TA
←ÐÐ O(−5)⊕2 ← 0, (2.43)

where A is the 2×3 matrix of first syzygies, whose 2×2 minors generate I. We have:

A ∶=
⎛

⎝

x23 − y x22 x1

x21 y x2

⎞

⎠
, (2.44)

and similar for the other ring, R(C,D2). In fact, the upshot is that we managed to

present the ring in a way that allows to treat both cases at once in a flat family; let

t ∈ k be an affine parameter and consider the family of rings given by

Rt ∶= k[x1, x2, x3, y]/It, (2.45)
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where degxi = 1 for 1 ≤ i ≤ 3, deg y = 2 and It = (⋀
2At), that is, the ideal of relations

is generated by the 2 × 2 minors of the following matrix:

At ∶= (1 − t)
⎛

⎝

x23 − y x22 x1

x21 y x2

⎞

⎠
+ t

⎛

⎝

y x22 + x2x3 −x1

x21 − x
2
3 y x2

⎞

⎠
. (2.46)

Observe that for t = 0 we get the ring corresponding to case a), whereas t = 1

gives the ring of the cuspidal curve of case b). Moreover, At carries its own syzygies;

to obtain them we simply need to clone one of its rows and then write the identity:

determinant of a 3 × 3 matrix with 2 identical rows is zero; of course one can do

this in 2 different ways, giving the 2 syzygies. Since the syzygies of ring Rt reduce

modulo t to those of the central fibre ring R(C,D1), one obtains a flat family of

rings. When this happens, we say that the presentation of the ring is given by a

flexible format. The existence of such formats is a very subtle phenomenon and will

play a major role not only in finding the deformations we are looking for in this

thesis, but also the extensions (cf. extension algorithm discussed in this chapter).

2.4.3 Fun in Z/2Z
To finish this example, I give a format for the bicanonical ring we obtained in §2.4.1

that is useful to find explicit flat deformations. To keep calculations short and since

this is only for illustrative purposes, I make a unique exception on this subsection

and I will work over the finite field with 2 elements k ≅ Z/2Z. Consider the following

two 5 × 5 skew matrices:

M1 ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 x1 x2 y1

x2 x3 y2

y1 −x22x3

−x31

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, M2 ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 x1 x2 y1

x2 x3 y2

y2 −x2x
2
3

−x21x2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (2.47)
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both of weights
⎛
⎜
⎝

0 1 1 2

1 1 2

2 3

3

⎞
⎟
⎠

. Write Pf ij ; i = 1,2, 1 ≤ j ≤ 5 for the jth diagonal 4 × 4

Pfaffian of matrix Mi. We have the following identities (cf. relations in (2.37)):

Pf 1
3 = Pf 2

3 = r3,

Pf 1
4 = Pf 2

4 = r2,

Pf 1
5 = Pf 2

5 = r1,

Pf 1
1 = Pf 2

2 = r5,

Pf 1
2 = r4,

Pf 2
1 = r6.

(2.48)

Moreover, both matrices imply the 5 syzygies following from MiPf i ≡ 0,

where Pf i is the vector whose jth entry is (−1)jPf ij . Obviously there are a couple

of repetitions, the lists are:

σ1 ∶= −x1r3 + x2r2 − y1r1 σ1 ∶= −x1r3 + x2r2 − y1r1

σ2 ∶= −x2r3 + x3r2 − y2r1 σ2 ∶= −x2r3 + x3r2 − y2r1

σ3 ∶= x1r5 − x2r4 + y1r2 + x
2
2x3r1 σ6 ∶= x1r6 − x2r5 + y2r2 + x2x

2
3r1

σ4 ∶= x2r5 − x3r4 + y1r3 + x
3
1r1 σ7 ∶= x2r6 − x3r5 + y2r3 + x

2
1x2r1

σ5 ∶= y1r5 − y2r4 − x
2
2x3r3 + x

3
1r2 σ8 ∶= y1r6 − y2r5 − x2x

2
3r3 + x

2
1x2r2

(2.49)

The best way to check that these eight σi generate the module of syzygies is

by using a computer algebra program (the relevant Magma code is in the appendix

A.0 of this thesis).

Although these matrices certainly carry with the syzygies of the bicanonical

ring, it turns out that deforming them to get one of the rings of the other 2 families

is rather delicate. The procedure serves as a guide for the more complicated defor-

mation calculations that we need to perform on the halfcanonical rings on curves

and their extensions.

Both M1 and M2 have a zero of degree zero in their (1,2) entry, this sug-

gests to replace it by an affine parameter t ∈ k so the fifth diagonal Pfaffian allows

us to express either y1 or y2 in terms of the degree 1 variables. One hopes that,

after doing this and deforming the rest of the entries wisely, we get a codimension 2

Cohen-Macaulay ring corresponding to one of the cases considered previously. This

calculation is not always possible, for example if one chooses to write a relation us-

ing a non convenient rendering. Also, we obviously are not allowed to consider the
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Pfaffians of both matrices simultaneously if we decide to deform one of the degree

zero entries. Fortunately, the presentation has been purposely constructed so we

can find a flat family deforming a bicanonical ring into a ring corresponding to an

arithmetic genus 2 curve polarized by a degree 4 divisor defining a map onto a plane

quartic with a cusp:

Let t ∈ k. I choose M1 to decrease the codimension of the ring, thus I must

truncate M2 eliminating its first row and column. I will make also adjustments to

the rest of the entries so for t ≠ 0 I get a ring isomorphic to k[x1, x2, x3, y]/I1 where I1

is an ideal generated by the 2×2 minors of a matrix of the form A1 of equation (2.46).

Consider M1(t) ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

t x1 x2 y1

x2 x3 y2

y1 −x22x3 − t(x
3
2 + x2y1)

−x31 + t(x1x
2
3 − x3y1)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

and M̃2(t) ∶=

⎛
⎜
⎜
⎜
⎝

x2 x3 y2

y2 −x2x
2
3 − t(x

2
2x3)

−x21x2 − tx
2
1x3

⎞
⎟
⎟
⎟
⎠

.

Obviously the 4 × 4 Pfaffians of these matrices generate a bicanonical ideal when

t = 0. I claim that for t ≠ 0 they generate the same ideal as y1 − x1x3 + x
2
2 together

with the 2×2 minors of
⎛

⎝

y2 x22 + x2x3 −x1

x21 − x
2
3 y2 x2

⎞

⎠
. I also claim this defines a flat family

of rings. To check this is an easy but fun exercise for the reader.
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Chapter 3

Halfcanonical curves: Low

codimension cases

This chapter contains the calculation of a halfcanonical graded ring of a canonical

curve C in the 3 first cases listed in Theorem 1.4.1; that is, D = 1
2KC moves in a

g27 that defines either a birational map to a septic, a sextic or a 2-to-1 cover of an

elliptic curve. As we will see, in each case the ring has codimension at most 4.

I start by stating some basic properties, common to any of these rings (except

when clearly stated). Take R(C,D) to be a ring as in the Main Set Up, that is,

2D ∼KC and ∣D∣ = g27.

Proposition 3.0.1. R is a Gorenstein ring of codimension ≥ 3.

Proof. That R is Gorenstein is a consequence of Proposition 2.1.1. Now, we have

h0(D) = 3, so let {x1, x2, x3} be a basis ofH0(D). Since S2(x1, x2, x3) has 6 elements

we need at least two more independent generators to span H0(2D). It follows that

codim R(C,D) ≥ 3. q.e.d.

R-R says that nD is nonspecial for n ≥ 3. The following table contains the

values of the Hilbert function of R(C,D):
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Space Dimension

H0(C,OC) 1

H0(C,D) 3

H0(C,2D) 8

H0(C,3D) 14

H0(C,4D) 21

H0(C,5D) 28

H0(C,6D) 35

H0(C,nD), n ≥ 3 7(n − 1)

It follows after a simple calculation, that the Hilbert series is

PR(C,D)(t) ∶=
∞
∑
n=0

h0(nD)tn =
1 + t + 3t2 + t3 + t4

(1 − t)2
. (3.1)

Proposition 3.0.2. 1. The canonical linear system ∣KC ∣ is base point free.

2. Assume C is not hyperelliptic. Then ∣KC ∣ is also very ample.

Proof. 1. Let P ∈ C be any point, by R-R:

h0(C,KC − P ) = 1 − 8 + deg(KC − P ) + h0(C,P )

= 6 + h0(C,P ),
(3.2)

h0(C,P ) = 1 for otherwise, C would be rational. The result follows.

2. Let P,Q ∈ C be any two points. By R-R:

h0(C,P +Q) = h0(C,KC − P −Q) − 5. (3.3)

By (1) h0(C,KC − P −Q) ≤ 7, so the only possibility is h0(C,P +Q) ∈ {1,2}.

But h0(C,P + Q) = 2 implies ∣P + Q∣ is a g12, a contradiction. Therefore

H0(C,KC − P − Q) has codimension 2 in H0(C,KC), so functions in ∣KC ∣

distinguish between P and Q.

q.e.d.

Finally, because of a theorem of Reid (cf. [Reid D-E], § 3.4), we know that

R is always generated in degree at most 3, and the relations holding between its

generators happen at degree at most 6.
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3.1 The base point free family

In this section ∣D∣ is a base point free g27 on a nonsingular curve C and such that

2D = KC . The rings R(C,D) are well known because of previous work of Ide and

Mukai (cf. [Ide-Mukai]) among others. I will state the results and references for

convenience of the reader.

I start with the following Proposition which will be used afterwards a couple

of times:

Proposition 3.1.1. Let ∣D∣ be a base point free complete linear system on a non-

singular curve C of genus 8. Suppose that r = h0(D) ≥ 3 and that

ϕD ∶ C Ð→ Pr−1

is a birational morphism. Then the natural map

⊕
n≥0

SymnH0
(D) ⊗H0

(KC) Ð→ ⊕
n≥0

H0
(KC + nD)

is surjective.

Proof. See [Arbarello-Sernesi], pp. 102-103. q.e.d.

Corollary 3.1.2. The ring R(C,D) has codimension 3.

Proof. Apply previous proposition with r = 3, n = 1. q.e.d.

It follows from the Buchsbaum-Eisenbud theorem that R(C,D) is a Pfaffian

ring. In fact one may observe that the Hilbert series

PR(C,D)(t) =
1 + t + 3t2 + t3 + t4

(1 − t)2
=

1 − 2t3 − 3t4 + 3t5 + 2t6 − t9

(1 − t)3(1 − t2)2
(3.4)

suggest a free resolution of the form:

0← R(C,D) ← O ← O(−3)⊕2⊕O(−4)⊕3 ← O(−5)⊕3⊕O(−6)⊕2 ← O(−9) ← 0,

(3.5)

where O = k[x1, x2, x3, y1, y2]; degxi = 1, deg yj = 2. The symmetrizer trick allows

to write resolution (3.5) as follows:

0←Ð R(C,D) ←Ð O
Pf
←Ð P1

M
←Ð P ∨

1 ⊗O(−9) ←Ð O(−9) ←Ð 0 (3.6)
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where P1 ∶= O(−3)⊕2⊕O(−4)⊕3 and M is a skew 5× 5 matrix whose 4× 4 Pfaffians

are two cubic and three quartic homogeneous forms generating an ideal I such that

R(C,D) ≅ O/I.

The result that makes precise our previous observations is the following:

Theorem 3.1.3. Let R be the halfcanonical ring R = R(C,D), where ∣D∣ = g27 is base

point free. Then ϕD(C) ⊂ P2 is a septic with singular locus of degree 7 contained in

a conic and R is a codimension 3 Gorenstein ring isomorphic to:

k[x1, x2, x3, y1, y2]/I,

where the xi and yj have degrees 1 and 2 respectively and the ideal I is minimally

generated by 2 cubics and 3 quartics that are the 5 diagonal Pfaffians of a skew

matrix of the form

M ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

f3 q1 q3 q5

q2 q4 q6

x1 x2

x3

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

where the qi are generic quadratic homogeneous forms and f3 is a generic cubic

homogeneous form in xi, yj.

Proof. See [Ide-Mukai], pp. 9-13. q.e.d.

A similar analysis of the surface case was made by Fabrizio Catanese. It turns

out that the canonical rings of surfaces S with K2 = 7, pg = 4 and base point free

canonical system can be presented in exactly the same format as the halfcanonical

rings of the corresponding canonical curves found by Ide and Mukai. More precisely,

one has the following result:

Theorem 3.1.4. Let S be a nonsingular surface with K2 = 7, pg = 4 such that the

canonical system is base point free. Let R = R(S,KS) be the canonical ring and let

{x0, x1, x2, x3} be a basis of H0(S,OS(KS)). We set A ∶= k[x0, x1, x2, x3]. Then:

1. R has a minimal resolution as A−module given by the matrix

α ∶=

⎛
⎜
⎜
⎜
⎝

x0d1d2 + x1(d3d4 + d
2
2) + x2(d2d3 + d1d4) x1d4 x0d1 + x1d2 + x2d3

x1d4 x0 x2

x0d1 + x1d2 + x2d3 x2 x1

⎞
⎟
⎟
⎟
⎠

where d1, d2, d3, d4 are arbitrary quadratic forms in xi.
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2. α satisfies the rank condition ⋀2 α = ⋀
2 α′, where α′ is obtained by deleting the

first row of α, and therefore induces a unique ring structure on R as quotient

of O ∶= A[y1, y2] by the three relations given by

α

⎛
⎜
⎜
⎜
⎝

1

y1

y2

⎞
⎟
⎟
⎟
⎠

= 0

and three more relations expressing y21, y1y2, y
2
2 as linear combinations of the

other monomials whose coefficients are determined by the adjoint matrix of α.

3. R is Gorenstein of codimension 3. In particular, the ideal generated by the

aforementioned 6 relations is minimally generated by only five of them, which

can be written as the 4 × 4 Pfaffians of a matrix of the form

⎛
⎜
⎜
⎜
⎜
⎜
⎝

f3 q1 q3 q5

q2 q4 q6

x1 x2

x3

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(3.7)

where the qi are quadratics and f3 is a cubic form, all of them generic.

4. Conversely, let O ∶= k[x0, x1, x2, x3, y1, y2] where the xi and yj are indeter-

minates of degrees 1 and 2 respectively and let R ∶= O/I where I is the ideal

generated by the 5 diagonal Pfaffians of a skew matrix of the form (3.7). Then

under suitable open condition R is the canonical ring of a surface of type (0)

of Theorem 1.4.1.

Proof. See [Bauer et al] §4 and the references therein. q.e.d.

3.2 Family (I.1): the curve case

In this section I compute graded rings relevant to the study of surfaces S of type

(I.1) of Theorem 1.4.1. I am interested in a general member of the family. Therefore

I make some assumptions on the halfcanonical curve (C,D) to avoid multiple cases.

3.2.1 Assumptions and notation

Let (C,D) is a nonsingular curve polarised by an effective divisor D subject to the

following conditions:
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1. 2D =KC

2. D = P̃ + D′, where P̃ is the only base point of ∣D∣ and ∣D′∣ = g26 defines a

birational morphism

ϕD′ ∶ C Ð→ C ⊂ P2

with the following properties:

(a) C has 2 simple nodes; P1, P2 ∈ P2.

(b) The line ` joining the nodes P1 and P2 is the tangent of C at the point

P = ϕD′(P̃ ).

Figure 3.1: A plane sextic with two nodes

The calculation of the halfcanonical ring is organised in the following 3 propo-

sitions, all of which are summarised in Theorem 3.2.4.

Proposition 3.2.1. Let (C,D) be a polarised curve with the aforementioned pro-

perties. Then the full sections ring

R ∶= R(C,D) = ⊕
n≥0

H0
(C,nD)

has codimension 4; it is minimally generated by 6 variables: x1, x2, x3 of degree 1,

y1, y2 of degree 2 and z of degree 3.

Proof. We have h0(D) = 3. Let {x1, x2, x3} be a basis of H0(C,D). Since C is not

contained in any quadratic, the six elements of S2(x1, x2, x3):

x21
x1x2 x1x3

x22 x2x3 x23

(3.8)
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are linearly independent, so we need 2 extra generators to extend to a basis of the

8-dimensional space H0(C,KC) =H
0(C,2D), call them y1, y2.

Proposition 3.1.1 implies that the natural map:

H0
(C, g26) ⊗H

0
(C,KC) Ð→H0

(C,3D − P̃ )

is surjective. It follows that

H0
(C,D) ⊗H0

(C,KC) Ð→H0
(C,3D)

also surjects onto H0(C,3D − P̃ ). By Riemann-Roch h0(3D − P̃ ) = 13. Therefore

there are 3 degree 3 relations r1, r2, r3, holding between the 16 monomials in

S3
(x1, x2, x3) ⊕ S1

(x1, x2, x3) ⊗ S
1
(y1, y2), (3.9)

I can choose 13 elements from (3.9) forming a linearly independent set that extends

to a basis of H0(C,3D) by adding only one new degree 3 generator, z. The result

now follows from Reid’s theorem (see [Reid D-E], § 3.4).

q.e.d.

Proposition 3.2.2. Consider the map ϕg26
∶ C Ð→ C ⊂ P2. Choose coordinates so

the two nodes of C are

P1 ∶= (0 ∶ 1 ∶ 0) and P2 ∶= (0 ∶ 0 ∶ 1). (3.10)

Then we can choose bases for H0(D) and H0(2D) so that the degree 3 relations

r1, r2, r3 of proposition 3.2.1 are the 2 × 2 minors of the following 2 × 3 matrix:

⎛

⎝

x1 x2 x3

x2x3 y1 y2

⎞

⎠
(3.11)

Proof. Let

π ∶ dP7
π2
Ð→ F1

π1
Ð→ P2. (3.12)

be the composition of π1 and π2, the blowups of P2 at the nodes P1 and P2 respec-

tively. Write E1,E2 for the corresponding exceptional divisors, L for the pullback

of a line class of P2 and E0 for the strict transform of the line joining P1 and P2:
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Figure 3.2: Blowing up the nodes

Now, dP7 is a degree 7 del Pezzo surface, that is,

KdP7 = π
∗KP2 +E1 +E2 ∼ −3L +E1 +E2 (3.13)

is such that −KdP7 is very ample and K2
dP7

= 7. Moreover, by the adjunction formula:

2D =KC = (KdP7 +C)∣C (3.14)

and since C ∼ 6L − 2(E1 +E2), we have

KC = −KdP7 ∣C . (3.15)

Now H0(dP7,−KdP7) is isomorphic to

{s ∈H0
(P2, ω−1P2 ) ∣ s(P1) = s(P2) = 0} (3.16)

(cf. [Manin], §24 Theorem 24.5).

LetH0(P2,OP2) = ⟨{v1, v2, v3}⟩. Because of ω−1P2 ≅ OP2(3) and from our choice

of coordinates for P1, P2 given in (3.10), it follows that the anticanonical embedding

of dP7 is defined by the sections arranged in the following Newton polygon:

v31
v21v2 v21v3

v1v
2
2 v1v2v3 v1v

2
3

∗ v22v3 v2v
2
3 ∗

(3.17)

Let H0(C,D) ∶= ⟨{x1, x2, x3}⟩. By abuse of notation I will use the same letters for
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sections in dP7 and for their restrictions to C. Thus by (3.15) I can write:

v31
v21v2 v21v3

v1v
2
2 v1v2v3 v1v

2
3

∗ v22v3 v2v
2
3 ∗

=

x21
x1x2 x1x3

x22 x2x3 x23
∗ y1 y2 ∗

(3.18)

in particular if u ∶ OC ↪ OC(P̃ ) is the constant section we have

H0
(C,D) ≅ ⟨{uv1, uv2, uv3}⟩ (3.19)

and u2 ∶ OC ↪ OC(2P ) = OdP7(L −E1 −E2)∣C = OdP7(E0)∣C . Thus u2 = v1.

From 3.18 it follows that we have the following relations between x1, x2, x3

and y1, y2:

r1 ∶= x1y1 − x
2
2x3,

r2 ∶= x1y2 − x2x
2
3,

r3 ∶= x2y2 − x3y1.

(3.20)

That is,
2

⋀ M̃ = 0, where M̃ ∶=
⎛

⎝

x1 x2 x3

x2x3 y1 y2

⎞

⎠
. (3.21)

q.e.d.

Proposition 3.2.3. Let (C,D) be a halfcanonical curve as in Proposition 3.2.2

and assume also without loss of generality that the point of tangency of C = ϕD(C)

with the line joining P1 and P2 is (0 ∶ 1 ∶ −1). Then the canonical model of C in

P7 = P(H0(C,ωC)) is isomorphic to the curve in the w.p.s. P4(13,22) defined by the

following 4 equations:

2

⋀ M̃ = 0 and (y1 + y2)
2
+ x2x3L(y1, y2) + x

2
1C1 + x

2
2C2 + x

2
3C3 = 0,

where L(y1, y2) is a nonzero linear form and the Ci are nonzero homogeneous

quadratic forms in xi, yj, 1 ≤ i ≤ 3, j = 1,2.

Proof. It follows from proposition 3.2.2 that ⋀2 M̃ = 0 cuts out a surface in P4(13,22)

that is isomorphic to dP7. dP7 is embedded in (strictly speaking a different) P7 by

its anticanonical linear system, but because of

C ∼ 6L − 2(E1 +E2) ∼ −2KdP7 and KC ∼ −KdP7 ∣C ,
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it follows that the canonical model of C is defined by a quadratic in the monomials

of the Newton polygon (3.17):

v31
v21v2 v21v3

v1v
2
2 v1v2v3 v1v

2
3

∗ v22v3 v2v
2
3 ∗

which is of course a relation of degree 4 in the ideal of relations of R(C,D). Because

of the choice of the tangency point, it is clear that this relation is of the form

v22v
2
3(v2 + v3)

2
+ v1v2v3A3 + v

2
1B4; (3.22)

this is just prescribing the desired intersection of the canonical model of C with the

exceptional curve (v1 = 0) = E0 ⊂ dP7. It is necessary though, that the degree 3 form

A3 does not include further terms in v1 (such terms can be included in the third

summand of the relation).

By definition:

[v22v
2
3(v2 + v3)

2
] = (y1 + y2)

2, [v1v2v3] = x2x2

and it is clear that any expression of the form a1v1v
4
2v3 + a2v1v2v

4
3 + v

2
1B4 with

a1, a2 ∈ C, can be rendered as a expression of the form x21C1 + x
2
2C2 + x

2
3C3; where

the Ci are quadratics in the xi and yj . q.e.d.

Theorem 3.2.4. Let C be a nonsingular genus 8 curve admitting a linear system

∣D∣ with only one base point P̃ and satisfying the following properties:

1. ∣D∣ = P̃ + g26.

2. 2D =KC .

3. ϕg26
∶ C

birational
ÐÐÐÐÐ→ C ⊂ P2, where C is a sextic with two nodes, P1, P2.

Then the halfcanonical ring R ∶= R(C,D) = ⊕
n≥0

H0
(C,nD) is isomorphic to:

k[x1, x2, x3, y1, y2, z]/I,

where the degrees of the generators are 1,1,1,2,2,3 respectively and the ideal I is
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minimally generated by:

2

⋀
⎛

⎝

x1 x2 x3 y1 + y2

x2x3 y1 y2 z

⎞

⎠
,

plus 3 rolling factors equations:

(y1 + y2)
2
+ x2x3L(y1, y2) + x

2
1C1 + x

2
2C2 + x

2
3C3 (3.23a)

(y1 + y2)z + y1x3L(y1, y2) + x1x2x3C1 + x2y1C2 + x3y2C3 (3.23b)

z2 + y1y2L(y1, y2) + x
2
2x

2
3C1 + y

2
1C2 + y

2
2C3 (3.23c)

where L(y1, y2) is a nonzero homogeneous linear form not equal to y1 + y2 and the

Ci are nonzero homogeneous quadratic forms in xi, yj, 1 ≤ i ≤ 3, j = 1,2.

Proof. Choose coordinates so that

P ∶= (0 ∶ 1 ∶ −1), P1 ∶= (0 ∶ 1 ∶ 0), P2 ∶= (0 ∶ 0 ∶ 1); (3.24)

where P = ϕD(P̃ ) ∶= ϕg26
(P̃ ). By Propositions 3.2.1-3.2.3 I only need to show that,

keeping the same choices for the bases of H0(C,D) and H0(C,2D), I can take the

last generator z ∈H0(C,3D) as stated.

The 13 linearly independent elements of H0(3D) we already own are the

following:

x31
x21x2 x21x3

x1x
2
2 x1x2x3 x1x

2
3

x32 x22x3 x2x
2
3 x23

∗ x2y1 x2y2 x3y2 ∗

(3.25)

In terms of H0(C, P̃ ) ⊗H0(C, g26)
⊗4 (and using the notation of Proposition 3.2.3),

(3.25) is:

uv41
uv31v2 uv31v3

uv21v
2
2 uv21v2v3 uv21v

2
3

uv1v
3
2 uv1v

2
2v3 uv1v2v

2
3 uv1v

3
3

∗ uv32v3 uv22v
2
3 uv2v

3
3 ∗

(3.26)

All these sections vanish at least once at P̃ and 3D is very ample, so z must not

44



vanish at P̃ . However by M. Noether theorem, the natural map

H0
(KC) ⊗H

0
(KC) Ð→H0

(4D)

is a surjection. This imposes conditions on the choice of z that is to be taken so that

xjz = uvjz is a sextic in the v`s that vanishes 3 times at Pi for i = 1,2 and j = 2,3

respectively. It also vanishes once at P = ϕD(P̃ ). Thus, I we can choose z so that

uz = v22v
2
3(v2 + v3)

and it follows that
2

⋀
⎛

⎝

x1 x2 x3 y1 + y2

x2x3 y1 y2 z

⎞

⎠
⊂ I. (3.27)

The seventh relation,

(y1 + y2)
2
+ x2x3L(y1, y2) + x

2
1C1 + x

2
2C2 + x

2
3C3, (3.28)

was obtained already in Proposition 3.2.3, whereas the remaining 2 relations, (3.23b)

and (3.23c), hold as a consequence of (3.28) and those coming from (3.27); this is

the rolling factors format of Dicks (compare [Dicks]) and it is related to the defining

equations of a divisor in a (possibly weighted) scroll. We can think on equations

(3.27) as a way of saying that the ratio (u ∶ v2v3) between the entries of any given

column of the matrix

M ∶=
⎛

⎝

x1 x2 x3 y1 + y2

x2x3 y1 y2 z

⎞

⎠
(3.29)

is preserved. Write Mij for the corresponding entry of M . Then equation (3.28)

says:

M14(y1 + y2) =M12x3L(y1, y2) +M11x1C1 +M12x2C2 +M13x3C3

so one deduces (3.23b) observing that

uM1j = v2v3M2j , for 1 ≤ j ≤ 4,

that is, one simply substitutes one entry of the matrix appearing as a factor in a

term of the original relation by the second entry in the same column. The last

relation of the theorem, z2 + y1y2L(y1, y2) + x
2
2x

2
3C1 + y

2
1C2 + y

2
2C3, is obtained in

the same way. Finally, to show that no more relations are needed is an exercise on

counting dimensions and Riemann-Roch. q.e.d.
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The next result gives an alternative presentation of the ring R(C,D) of

Theorem 3.2.4 which will be useful later on to study deformation families. Such a

presentation is a slight variation of the symmetric-extrasymmetric format of Reid

(cf. Reid’s in [Brown et al], §9). See also the corresponding Magma code at the

appendix A.2.

Theorem 3.2.5. Let R(C,D) = k[x1, x2, x3, y1, y2, z]/I be the halfcanonical ring of

Theorem 3.2.4. Consider the following 6 × 6 skew matrix:

M ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 y2 Q1 y1 + y2 z

x3 x1 x2 + x3 y1 + y2

z + F3 x1Q2 Q1Q2

x2Q3 + x3Q4 y1Q3 + y2Q4

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where the Qi are quadratic homogeneous forms such that Q3 depends only on y1, y2

and F3 is a homogeneous form of degree 3 not involving terms of the form yjx1,

j = 1,2 nor any term with powers greater than 1 in x1 or x3. Then if Q1 ∶= x2x3,

the 4 × 4 Pfaffians of M generate I.

Proof. Once we know what matrix we should take, this is an easy but beautiful

calculation. I write simply ij.kl for the diagonal Pfaffian of the 4 × 4 skew ma-

trix obtained from M by picking the indicated 4 rows and corresponding columns.

Concretely, 1 ≤ i < j < k < l ≤ 6, and

ij.kl =MijMkl −MikMjl +MilMjk.

The matrix I want to consider is

M
′
∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 y2 x2x3 y1 + y2 z

x3 x1 x2 + x3 y1 + y2

z + F3 x1Q2 x2x3Q2

x2L + x3Q4 y1L + y2Q4

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, of weights

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 2 2 2 3

1 1 1 2

3 3 4

3 4

4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Where I substituted Q3 for the L = L(y1, y2) of Theorem 3.2.4. Before computing

its Pfaffians, let us put some names on the 9 generators of I that we know from
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Theorem 3.2.4:

r1 ∶= x1y1 − x
2
2x3

r2 ∶= x1y2 − x2x
2
3

r3 ∶= x1z − x2x2(y1 + y2)

r4 ∶= x2y2 − x3y1

r5 ∶= x2z − y1(y1 + y2)

r6 ∶= x3z − y2(y1 + y2)

r7 ∶= (y1 + y2)
2 + x2x3L(y1, y2) + x

2
1C1 + x

2
2C2 + x

2
3C3

r8 ∶= (y1 + y2)z + y1x3L(y1, y2) + x1x2x3C1 + x2y1C2 + x3y2C3

r9 ∶= z2 + y1y2L(y1, y2) + x
2
2x

2
3C1 + y

2
1C2 + y

2
2C3

The key observation is that using r5 and r6, we have (y1 + y2)
2 = z(x2 + x3).

Now the 4 × 4 Pfaffians of M′ are:

12.34 = x2x
2
3 − x1y2 = −r2

12.45 = x1(y1 + y2) − x2x3(x2 + x3) = r1 + 12.34

12.46 = x1z − x2x3(y1 + y2) = r3

12.35 = x3(y1 + y2) − (x2 + x3)y2 = x3y1 − x2y2 = −r4

12.36 = x3z − y2(y1 + y2) = r6

12.56 = (x2 + x3)z − (y1 + y2)
2 = r5 + 12.36

23.45 = x3(x2L + x3Q4) − x
2
1Q2 + (z + F3)(x2 + x3)

13.45 = y2(x2L + x3Q4) − x1x2x3Q2 + (y1 + y2)(z + F3)

13.46 = y2(y1L + y2Q4) − x
2
2x

2
3Q2 + z(z + F3)

13.56 = x1Q2z − x2x3(y1 + y2)Q2 = Q2(12.46)

14.56 = z(x2L + x3Q4) − (y1 + y2)(y1L + y2Q4) = L(12.56) + (Q4 −L)(12.36)

23.46 = x3(y1L + y2Q4) − x1x2x3Q2 + (y1 + y2)(z + F3) = 13.45 (using 12.35)

23.56 = x1Q2(y1 + y2) − (x2 + x3)x2x3Q2 = Q2(12.45)

24.56 = (x2L + x3Q4)(y1 + y2) − (x2 + x3)(y1L + y2Q4) = (12.35)(Q4 −L)

34.56 = x2x3Q2(x2L + x3Q4) − x1Q2(y1L + y2Q4) = Q2[L(12.45) + (Q4 −L)(12.34)]

Clearly, the first 6 elements generate the sub-ideal of determinantal relations

of I (that is, the same ideal as the 2 × 2 minors of the matrix M of Theorem

3.2.4, equation (3.29)) and the last 6 Pfaffians of the list are redundant (this is a
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consequence of the extra-symmetry of the matrix M′). Now the Pfaffian 23.45 is

z(x2 + x3) + x2x3L − x
2
1Q2 + (x2 + x3)F3 + x

2
3Q4,

which, after the different choice of rendering for z(x2 + x3), is of the form

(y1 + y2)
2
+ x2x3L(y1, y2) + x

2
1C1 + x

2
2C2 + x

2
3C3,

we can see here that we can take F3 as stated in the theorem. Notice that any term

of the form x1yj can be rendered as a term involving only x2 and x3. Finally, it is

clear that Pfaffians 13.45 and 13.46 can be obtained from 23.45 by rolling factors

with respect to the matrix
⎛

⎝

x1 x2 x3 y1 + y2

x2x3 y1 y2 z

⎞

⎠
. Therefore, after naming the

corresponding quadratic forms, r8 = 13.45 and r9 = 13.46. q.e.d.

3.3 Bielliptic curves

In this section we study the second possibility in which the linear system ∣D∣ = g27 has

only one base point P̃ . D will denote an effective divisor on C, a nonsingular curve

of genus 8 that moves in the canonical linear system ∣KX ∣ of a surface of general

type of family (I.2) of Theorem 1.4.1. In this, as well as in the remaining cases, the

corresponding map

ϕD ∶ C Ð→ P2

will no longer be birational but a finite cover onto a normal plane curve. Assuming

one base point, the first case is thus D = P̃ + D̃, where D̃ is a degree 6 base point

free divisor such that ∣D̃∣ defines a 2-to-1 cover:

π ∶ C Ð→ E ⊂ P2,

onto a plane elliptic curve E. The main result is Theorem 3.3.5, which gives a

presentation of the halfcanonical ring R(C,D). It turns out that rings in this family

are closely related to the rings computed in the previous section. The calculation is

based on some general theory of double covers and a careful study of the geometry

of the canonical curve C ∶= ϕKC
(C) ⊂ P7.
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3.3.1 Double covers

In this subsection we gather some well known facts about finite double covers. Given

a scheme X, such a cover is an X−scheme

Y
π
Ð→X

such that the OX−algebra π∗OY is a locally free OX−module of rank 2.

Proposition 3.3.1. Suppose 2 ∈ OX is invertible. Let Y
π
Ð→ X be a finite double

cover. Then

π∗OY ≅ OX ⊕L
−1,

where L−1 is the cokernel of the structure map OX → π∗OY .

Proof. Let U ⊂ X be open and take y ∈ OY (π−1(U)). Product by y defines a

morphism

π∗OY (U)
y
Ð→ π∗OY (U),

that, after choosing a basis for π∗OY (U), is represented by a matrix

My ∈ Mat2×2(OX(U)).

Because of 2 ∈ OX being invertible, we have a well-defined map

π∗OY (U)
ψ
Ð→ OX(U), y ↦

1

2
Trace(My).

This map gives, by construction, a splitting for the exact sequence

0→ OX → π∗OY → L
−1
→ 0.

q.e.d.

Previous result holds for any d− cover as long as d is invertible in OX ,

in particular for C−varieties. The cases of our interest however (double covers of

nonsingular complex curves/surfaces), allow further interpretations. We have a

natural involution

ι ∶ Y Ð→ Y,

(an automorphism of degree 2) such that π ○ ι = π. Then

π∗OY ≅ OX ⊕L
−1
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comes from the decomposition of the eigenspace of ι. The algebra structure on

OX ⊕L−1 is given by a multiplication map

L
−1
⊗L

−1
Ð→ OX ,

that is, a section of the line bundle L⊗2. A divisor B ⊂ X such that OX(B) ≅ L⊗2

must be then, the image under π of the invariant locus of ι, that is, the branch

divisor. In particular, OX(B) is a perfect square in Pic(X).

Remark Suppose X = E is an elliptic curve and Y = C is our genus 8 curve. We

have ωE ≅ OE and by Riemann-Hurwitz:

ωC ≅ OC(R),

where R ⊂ C is the ramification divisor of π. In particular π is ramified in 14

different points. Moreover:

π∗ωC ≅ Hom (π∗OC , ωE)

≅ Hom (OE ⊕L
−1,OE)

= OE ⊕L.

This will allow us the describe the cohomology spaces H0(nD) in terms of

cohomology spaces of divisors on E, that are rather easy to calculate with.

3.3.2 The geometry of the canonical curve

The canonical model of C, that I denote as C = ϕKC
⊂ P7, allows to define geomet-

rically the double covering map C
π
Ð→ E and hints into the similarity between the

halfcanonical rings of this and section 3.2.

We have

πgeom ∶ C Ð→ E7,

a 2-to-1 map onto an elliptic curve of degree
deg(C)

2
= 7 in P6.

Proposition 3.3.2. There is a point P0 ∈ P7 ∖C such that πgeom is the restriction

to C of the projection from P0.

Proof. For any degree 2 divisor Q+R ∈ Div(E7), let π∗geom(Q+R) ∶= Q′
1+Q

′
2+R

′
1+R

′
2.
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Since E7 is elliptic, h0(Q +R) = 2. Thus

h0(Q′
1 +Q

′
2 +R

′
1 +R

′
2) = 2;

then, by the geometric version of Riemann-Roch (cf. [Reid PC], §3.2), the four

points Q′
1,Q

′
2,R

′
1,R

′
2 are all in the same 2−dimensional plane of P7. The two lines,

`(Q′
1,Q

′
2) and `(R′

1,R
′
2), joining the corresponding points, meet at a point P0. This

point must be in the intersection of all the planes constructed in this way also by

the geometric version of Riemann-Roch (simply use it fixing Q or R and taking a

different point in E). Finally, it is clear by construction that P0 ∉ C. q.e.d.

The elliptic curve E7 = πgeom(C) ⊂ P6 of previous proposition has a smooth

extension to a degree 7 del Pezzo surface dP7 ⊂ P̃7 (do not confuse this space with

previous P7, which was the projective space of H0(KC)). dP7 is of course, the

blowup of a projective plane at two points, E7 is the pullback of a plane nonsingular

cubic passing through both points and one has

E7 ∈ ∣ −KdP7 ∣.

If H and H ′ denote the hyperplane divisor classes of P7 and P̃7 respectively,

we have:

2H ′
∣E7 ∼ πgeom∗H ∣C ,

but H ∣C = KC = R (the ramification divisor). If B is the corresponding branch

divisor, it follows that

B ∼ (−2KdP7)∣E7 .

3.3.3 Calculation of the ring

I will write again D = P̃ + D̃ for the halfcanonical divisor, π = ϕD̃ ∶ C Ð→ E for the

double cover and

π∗OC = OE ⊕L
−1.

Proposition 3.3.3. P̃ is a ramification point of π.

Proof. Because of ωC = π∗(L) with L ∈ Pic(E), it follows that OC(2P̃ ) is also of

the form π∗(E) for some E ∈ Pic(E). Thus the divisor 2P̃ is invariant under the

involution ι and it follows that P̃ is a ramification point of π. q.e.d.

Let

R = P̃ + P1 +⋯ + P13
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be the ramification divisor, write

u ∶ OC ↪ OC(P̃ ) and v ∶ OC ↪ OC(P1 +⋯ + P13)

for the constant sections and let P ∈ E be the branch point corresponding to P̃ ,

that is, π∗(P ) = 2P̃ .

Write OE(1) = OE ⊗OP2(1). Modulo changing coordinates, I can assume

OE(1) = OE(3P ),

thus

H0
(C,D) ≅ u ⋅H0

(E,3P ).

The following is a classical exercise using Riemann-Roch on an elliptic curve:

Proposition 3.3.4. 1. The graded ring R(E,P ) is isomorphic to k[a, b, c]/(f6),

where the degrees of a, b, c are 1,2,3 respectively and f6 is a degree 6 homoge-

neous polynomial of the form

c2 − b3 − αa4b − βa6, for some α,β ∈ k.

2. The subring R(E,3P ) is

k[x̂1, x̂2, x̂3]/(f3),

where x̂1 ∶= a
3, x̂2 ∶= ab, x̂3 ∶= c and f3 is just the corresponding rendering of

f6, that is:

f3 = x̂1x̂
2
3 − x̂

3
2 − αx̂

2
1x̂2 − βx̂

3
1.

I keep this notation and write

H0
(C,D) ≅ ⟨x1 ∶= ua

3, x2 ∶= uab, x3 ∶= uc⟩.

Since 2P̃ = π∗P , we have u2 = a. Moreover π∗ωC = OE⊕L, where L = OE(D7)

and D7 is a degree 7 divisor invariant under the involution. Because of my choice

of basis I have D7 ∼ 7P and it follows that

H0
(C,2D) =H0

(C,KC) ≅H
0
(E,7P ) ⊕ ⟨y2⟩,

where y2 = uv, so y22 ∈ Sym2H0(E,7P ). Therefore, we own the following basis of
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H0(C,KC):

x21 = a
7 x1x2 = a

5b x1x3 = a
4c

x22 = a
3b2 x2x3 = a

2bc y1 ∶= b
2c

x23 = ac
2 y2

,

by construction, the only degree 3 relations holding between x1, x2, x3 and y1, y2 are:

r1 ∶= x1x
2
3 − x

3
2 − αx

2
1x2 − βx

3
1

r2 ∶= x1y1 − x
2
2x3

r3 ∶= x2y1 + βx
2
1x3 + αx1x2x3 − x

3
3

,

these are the 2 by 2 minors of the following 2 × 3 matrix:

2

⋀
⎛

⎝

x1 x2 x3

x22 x23 − αx1x2 − βx
2
1 y1

⎞

⎠
.

By Riemann-Roch, we only need one more generator z in degree 3 that can

be chosen to be a section vanishing at P1, . . . , P13 and with a pole of order 2 at P̃ .

Thus, I can take z ∶= vb2. Finally, observe that in order for the branch points to be

different and since P is one of them, y22 must be of the form

y22 = x
2
3y1 + S4(x1, x2, x3), (3.30)

therefore

R(C,D) ≅ k[x1, x2, x3, y1, y2, z]/I,

with generators of degrees 1,1,1,2,2,3 respectively and I generated by

2

⋀
⎛

⎝

x1 x2 x3 y2

x22 x23 − αx1x2 − βx
2
1 y1 z

⎞

⎠
,

plus the 3 rolling factors equations coming from equation (3.30). Rolling is possible

because y1 appears only in one summand and multiplied by x23. Concretely:

r7 ∶= y22 − x
2
1Q1 − x

2
2Q2 − x

2
3(Q3 + y1)

r8 ∶= y2z − x1x
2
2Q1 − x2(x

2
3 − αx1x2 − βx

2
1)Q2 − x3y1(Q3 + y1)

r9 ∶= z2 − x42Q1 − (x23 − αx1x2 − βx
2
1)

2Q2 − y
2
1(Q3 + y1)

where the Qi are homogeneous quadratic forms depending on xi, for 1 ≤ i ≤ 3. The

next theorem summarises these results and gives a determinantal presentation of

the ring:
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Theorem 3.3.5. Let C be a nonsingular genus 8 curve admitting a linear system

∣D∣ with only one base point P̃ and satisfying the following properties:

1. ∣D∣ = P̃ + g26.

2. 2D =KC .

3. ϕg26
∶ C

2-to-1
ÐÐÐ→ E ⊂ P2, where E is an elliptic curve.

Then the halfcanonical ring R ∶= R(C,D) = ⊕
n≥0

H0
(C,nD) is isomorphic to:

k[x1, x2, x3, y1, y2, z]/I,

with generators of degrees 1,1,1,2,2,3 respectively and the ideal I is minimally gen-

erated by 9 homogeneous forms ri, 1 ≤ i ≤ 9, obtained as follows:

Let

A ∶=
⎛

⎝

x1 x2 x3 y2

x22 x23 − αx1x2 − βx
2
1 y1 z

⎞

⎠
, M ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

Q1 0 0 0

0 Q2 0 0

0 0 Q3 + y1 0

0 0 0 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Then ri, 1 ≤ i ≤ 6, are the 2 × 2 minors of A, whereas r7, r8, r9 are given by

AM(
TA) = 0.

Proof. It only remains to check that the matrix equality AM(TA) = 0 indeed gives

the rolling factors relations. This is left as an exercise to the reader (see also the

Magma code at the appendix, § A.3). q.e.d.

Remark Halfcanonical rings of family (I.1), (cf. Theorem 3.2.4), can also be pre-

sented in this way. Simply take

A ∶=
⎛

⎝

x1 x2 x3 y1 + y2

x2x3 y1 y2 z

⎞

⎠
, M ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

C1 0 0 0

0 C2
1
2L(y1, y2) 0

0 1
2L(y1, y2) C3 0

0 0 0 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

This is (modulo slight variations) one of the two flexible formats appearing in Reid’s

treatment of Horikawa quintics (cf. [Reid D-E]).
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Chapter 4

The trigonal and hyperelliptic

cases

In this chapter we study halfcanonical curves moving in the canonical linear system

of a surface belonging to the family (I.3) and the families (III) of Theorem 1.4.1.

The corresponding graded rings turn out to have codimension 6 and 8 respectively

and the calculations become longer. However, all such curves can be studied also as

Cartier divisors in a rational normal scroll, making things easier from a geometric

point of view.

4.1 Rational normal scrolls

Before I compute the rings, I collect together some well known facts about rational

normal scrolls and I introduce some useful notation. For a detailed exposition, see

Chapter 2 of [Reid PC]. This section is based on it.

Intrinsically, a rational normal scroll is a Pn−1-bundle over a rational normal

curve (that I assume to be P1):

F Ð→ P1,

this can be written as the projectivisation of a rank n vector bundle over the pro-

jective line:

F(a1, . . . , an) ∶= P(
n

⊕
i=1
OP1(ai)) , for some ai ∈ Z.

Points in F(a1, . . . , an) are in one-to-one correspondence with orbits of the
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following Gm ×Gm- action on A2
k ×Ank :

(λ,µ) ⋅ (t1, t2;u1, . . . , un) ↦ (λt1, λt2;λ
−aiµu1, . . . λ

−anµun).

Rational functions on the scroll, are quotients of homogeneous polynomials

in t1, t2, u1, . . . , un of the same bi-degree; a couple of examples:

1. The only homogeneous monomials of bi-degree (1,0) up to scalar multiplica-

tion are t1 and t2; the ratio (t1 ∶ t2) defines the morphism

π ∶ F(a1, . . . , an) Ð→ P1

that gives the scroll the structure of a Pn−1-bundle over P1; the structure group

is the diagonal subgroup of PGL(n).

2. If a1, . . . , an ≥ 0, for the bi-degree (0,1), such polynomials are the ∑ni=1(ai+1)-

dimensional k-vector space based by

n

⊕
i=1
Sai(t1, t2) ⊗ ui.

In particular, if we consider the surface case with a1 = 0, a ∶= a2 > 0, the ratio

(u1 ∶ t
a
1u2 ∶ ⋯ ∶ ta2u2) defines a morphism

Fa ∶= F(0, a) Ð→ Pa+1,

so Fa is the blowup of the cone over the rational normal curve of degree a.

Either from its definition as the projectivisation of a line bundle over P1 or

guessing from previous examples, we see that

Pic (F(a1, . . . , an)) ≅ ZL⊕ZM,

where L is the divisor class of a fibre of the projection π ∶ F(a1, . . . , an) → P1, that

is, the divisor class of any linear form in t1, t2 and M is the divisor class of any

monomial of the form tb1t
c
2ui with b + c = ai. In particular, if we take tai1 ui we get

M ∼ aiL + Fi,

where Fi is the subscroll (ui = 0) ≅ F(a1, . . . , âi, . . . , an) ⊂ F(a1, . . . , an). It is also

clear that

−KF(a1,...,an) ∼ 2L +
n

∑
i=1
Fi ∼ (2 −

n

∑
i=1
ai)L + nM.
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Example Let a ≥ 0. Consider the surface scroll Fa ∶= F(0, a). I will always choose

as generators of Pic (Fa) the divisor class of a fibre that I shall denote by A and

B ∶= F2 = div (u2).

So, using previous notation, bL + cM ∼ (ac + b)A + cB.

One can deduce the intersection pairing in Fa considering the linear system

∣D∣ ∶= ∣aA +B∣, which defines the birational morphism that we mentioned earlier,

(t1 ∶ t2;u1 ∶ u2) ↦ (u1 ∶ t
a
1u2 ∶ ⋯ ∶ ta2u2)

from the surface scroll to the cone over the rational normal curve of degree a. Such

a morphism contracts B to the vertex of the cone, and maps the curve (u1 = 0) =

F1 ⊂ Fa to a hyperplane section of the cone that obviously does not pass through

its vertex, thus B(aA+B) = 0, giving B2 = −a, because AB = 1 is obvious. It is also

clear that A2 = 0.

4.2 The trigonal family

Let us consider now a nonsingular curve C admitting a linear system ∣D∣ = g27 such

that:

1. 2D =KC , in particular g(C) = 8.

2. ∣D∣ = P + ∣D′∣ has only one base point P and

ϕD′ ∶ C
3-to-1
ÐÐÐ→ C ≅ P1

⊂ P2.

Thus, C is a trigonal curve, (that is, admits a g13, in fact ∣D∣ = P + 2g13). Our aim is

to compute R(C,D), let us start with the following observation:

Proposition 4.2.1. C cannot be hyperelliptic.

Proof. This follows from the base point free pencil trick; let D2,D3 be effective

divisors such that ∣Di∣ = g
1
i for i = 2,3. Let {t1, t2} be a basis of H0(D3). There is

an exact sequence of sheaves

0→ OC(D2) ⊗OC(−D3) → OC(D2) ⊕OC(D2)
t1,t2
ÐÐ→ OC(D2) ⊗OC(D3) → 0
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where the first map sends a section s of OC(D2)⊗OC(−D3) to the pair (st2,−st1).

Taking cohomology gives that the kernel of the natural map

t1H
0
(D2) ⊕ t2H

0
(D2) Ð→H0

(D2 +D3)

is isomorphic to H0(D2 −D3) = {0}. It follows that

h0(D2 +D3) ≥ h
0
(D2) + h

0
(D3) = 4.

Since the genus of C is 8, then D2 +D3 is a degree five special divisor and

previous inequality together with 2⋅8−1 > 5 contradicts Clifford’s theorem. Therefore

such a D2 cannot exist, (and conversely, no hyperelliptic curve of genus 8 can be

trigonal).

q.e.d.

Using previous result we can argue on the canonical model of C ϕKC
(C) ⊂ P7,

to show that it is contained in a surface scroll:

Proposition 4.2.2. ϕKC
(C) ⊂ P7 is a Cartier divisor in a rational surface scroll

Fa.

Proof. This is a well known fact from classical curve theory (cf. Proposition 3.1,

Ch. III § 3 of [ACGH]). However we can explicitly exhibit the inclusion C̃ ⊂ Fa
noticing that, by the geometric version of Riemann-Roch, 3 points move in a g13 on

C̃ if and only if they are collinear. This is the restriction of the pencil ∣A∣ to the

canonical model of C. Consider the scroll F2 ≅ F(2,4) embedded in P7 by ∣4A +B∣.

Because of the intersection pairing, we must have C ∼ bA + 3B for some b ∈ N. Now

KF2 = −4A − 2B, so the adjunction formula implies:

KC = (bA + 3B − 4A − 2B)∣C

= ((b − 4)A +B)∣C

Thus 14 = deg (KC) = ((b − 4)A + B)(bA + 3B) = 4b − 18, which finally gives C̃ ∼

8A+3B. An anologous analysis can be done to show that the general case F(3,3) ≅ F0

is not possible for ∣D∣ = P + 2g13 and 2D = KC . One would get C ∼ 5A + 3B and

KC = (3A +B)∣C which is nonsense. q.e.d.
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In particular, C ⋅B = (8A + 3B)B = 2. Now, by assumption KC = 4g13 + 2P

and on the other hand, by the adjunction formula:

KC = (8A + 3B − 4A − 2B)∣C

= (4A +B)∣C

and since the g13 is precisely ∣A∣ restricted to C, it follows that ∣2P ∣ = ∣B∣C so C is

tangent to B. Now computing R(C,D) is more or less automatic:

4.2.1 Computation of R(C,D)
Take coordinates (t1, t2;u1, u2) on F2. Whenever I write sections of sheaves on F2

without the over lines I actually mean sections of the restrictions of such sheaves to

C ⊂ F2. For instance, if I write u ∶ OC ↪ OC(P ) for the constant section then by

previous observations u2 = u2, etc.

Let us start the calculation; in degree 1, we have H0(C,D) = u⊗H0(C,2g13) =

⟨ut21, ut1t2, ut
2
2⟩. Let x1 ∶= ut

2
1, x2 ∶= ut1t2, x3 ∶= ut

2
2.

In degree 2 we already get one relation, namely x1x3 − x
2
2 which defines the

image ϕD(C) ⊂ P2. It follows that dimC Sym2(x1, x2, x3) = 5, so I need 3 new degree

2 generators that I can take from

OC(2D) = OC(KC) ≅ OF2(4A +B)∣C .

We have

OF2(4A +B) ≅ OP1(2) ⊕OP1(4),

H0
(F2,4A +B) = ⟨u1 ⋅ S

2
(t1, t2)⟩ ⊕ ⟨u2 ⋅ S

4
(t1, t2)⟩

and ⟨u2 ⋅ S
4(t1, t2)⟩ = Sym2H0(C,D), thus I can take y1 ∶= u1t

2
1, y2 ∶= u1t1t2 and

y3 ∶= u1t
2
2 to extend to a basis of H0(C,KC). This gives us already 4 new relations

in degree 3 and one in degree 4:

2

⋀
⎛

⎝

x1 x2 y1 y2

x2 x3 y2 y3

⎞

⎠
.

It follows that, with my choice of bases/generators so far, I still need 2 new

degree 3 generators z1, z2. This however is independent of the choice:

Proposition 4.2.3. R(C,D) is minimally generated by 3 generators in degree 1
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plus 3 and 2 on degrees 2 and 3 respectively. Thus C ⊂ P(13,23,32) so R(C,D) is a

codimension 6 Gorenstein ring.

Proof. Write D′ for a divisor on C such that ∣D′∣ = g13 and 1
2KC =D = 2D′+P where

P is the only base point of ∣D∣. Consider the natural map

ϕ ∶H0
(C,D′

) ⊗H0
(C,KC) Ð→H0

(C,5D′
+ 2P ).

By Castelnuovo’s free pencil trick and Riemann-Roch, kerϕ has dimension

h0(3D′
+ 2P ) = 1 − 8 + 11 + h0(D′

) = 6.

Hence dimC Im ϕ = 10, that is, ϕ is onto and it follows that the image of H0(C,D)⊗

H0(C,KC) →H0(C,3D) is the same as the image of

ψ ∶H0
(C,D′

) ⊗H0
(C,5D′

+ 2P ) Ð→H0
(C,6D′

+ 2P ),

and this, again by the pencil trick, has dimension 20 − h0(4D′ + 2P ) = 12. There-

fore we always need 2 extra generators to get a basis for the 14-dimensional space

H0(C,3D). q.e.d.

Without loss of generality, I can assume that the base point has coordinates

(0,1; 1,0) in F2 thus ϕD(P ) = (0 ∶ 0 ∶ 1). Recall that C ∈ ∣8A + 3B∣. We have

OF2(8A + 3B) ≅ O(2)P1 ⊕O(4)P1 ⊕O(6)P1 ⊕O(8)P1

so, C is defined by a section of the form

u31f2 + u
2
1u2f4 + u1u

2
2f6 + u

3
2f8;

where the f` are homogeneous forms of degree ` in t1, t2. Because of my choice of

coordinates for the base point and because B ⋅ C = 2, I can assume that f2 ∶= t
2
1.

Therefore I will write

(C ⊂ F2) ∶= V ( t
2
1u

3
1 + f4(t1, t2)u

2
1u2 + f6(t1, t2)u1u

2
2 + f8(t1, t2)u

3
2 ). (4.1)

Let z1, z2 be degree 3 generators completing a basis of H0(C,3D). By Max

Noether’s theorem, H0(C,KC) ⊗H
0(C,KC) → H0(C,4D) is a surjection. Hence
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xizj ∈H
0(C,KC) ⊗H

0(C,KC) for 1 ≤ i ≤ 3 and j = 1,2. Now

H0(C,KC) ⊗H
0(C,KC) = ⟨u21 ⋅ S

4(t1, t2)⟩ ⊕ ⟨u1u2 ⋅ S
6(t1, t2)⟩ ⊕ ⟨u22 ⋅ S

8(t1, t2)⟩.

(4.2)

Let In, 1 ≤ n ≤ 3 be the direct summands of (4.2), respectively. It is clear that

xizj ∉ In for any i, j and n ≠ 1, because otherwise zj would vanish at least once

at the base point P , which is impossible because ∣3D∣ is very ample and all the

sections in S3(x1, x2, x3) and S1(x1, x2, x2) ⊗ S
1(y1, y2, y3) vanish at least once at

P . Therefore I can choose z1/u, z2/u to be one of the following monomials:

t21u
2
1, t1t2u

2
1, t

2
2u

2
1.

Finally, it is easy to see repeating M. Noether’s argument but going to degree 6,

that the last one is impossible. Thus:

uz1 = t
2
1u

2
1, uz2 = t1t2u

2
1

and by Reid’s theorem, I need no further generators. The following 10 = (
5
2
) relations

are simple consequences of the choice of generators, we may read them as: the ratio

(t1 ∶ t2) is preserved :
2

⋀
⎛

⎝

x1 x2 y1 y2 z1

x2 x3 y2 y3 z2

⎞

⎠
, (4.3)

notice that none of the above though, allows us to write either x1z1 or x3z2 in terms

of Sym2(H0(C,KC)). This leads to a couple of rolling factors equations that are also

a consequence of the expressions defining the generators of the ring, or equivalently,

of the key variety from which we will cut C:

x1z1 − y
2
1

x1z2 − y1y2
,

x2z2 − y
2
2

x3z2 − y2y3
. (4.4)

Choosing different renderings for x1z2 and x2z2, we can write the same equa-

tions (with a couple of repetitions of relations already listed in (4.3)) as:

2

⋀
⎛

⎝

x1 x2 y1

y1 y2 z1

⎞

⎠
,

2

⋀
⎛

⎝

x3 y2 y3

y2 z1 z2

⎞

⎠
. (4.5)

Observe that we can extend the first matrix to get the 4 new relations all at
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once, together with 6 repeated relations as follows:

2

⋀
⎛

⎝

x1 x2 x3 y1 y2

y1 y2 y3 z1 z2

⎞

⎠
, (4.6)

whereas the second matrix can only be extended to give 3 of the 4 new relations (it

misses x1z1 − y
2
1):

2

⋀
⎛

⎝

x2 x3 y2 y3

y1 y2 z1 z2

⎞

⎠
. (4.7)

Finally, if follows from (4.1) that:

uy1z1 = t
2
1u2(u

2
1f4(t1, t2) + u1u2f6(t1, t2) + u

2
2f8(t1, t2)); (4.8)

it is clear that we can always render u21f4(t1, t2), u1u2f6(t1, t2) and u22f8(t1, t2) as

linear combinations of monomials in S2(y1, y2, y3), S
1(y1, y2, y3)⊗S

2(x1, x2, x3) and

S4(x1, x2, x3) respectively. Therefore:

uy1z1 = ux1P, (4.9)

where P = P (xi, yj); i, j ∈ {1,2,3} is a homogeneous form of degree 4. This gives

the following relation:

y1z1 − x1P, (4.10)

moreover, I can roll factors once using the matrix from (4.6) to get:

z21 − y1P (4.11)

and finally I can roll factors in both, (4.10) and (4.11), only that this time using the

matrix from (4.3) to get a total of 6 independent relations cutting the curve C:

y1z1 − x1P

y2z1 − x2P

y3z1 − x3P

,

z21 − y1P

z1z2 − y2P

z22 − y3P

(4.12)

this completes the picture of our matrices from (4.6) and (4.7), giving:

2

⋀
⎛

⎝

x1 x2 x3 y1 y2 z1

y1 y2 y3 z1 z2 P

⎞

⎠
,

2

⋀
⎛

⎝

x2 x3 y2 y3 z2

y1 y2 z1 z2 P

⎞

⎠
. (4.13)

It follows by comparing Hilbert series that these relations (20 independent
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ones) form a minimal generating set for the ideal of relations of R(C,D). The

following theorem summarises these results and gives another format to present all

the relations more concisely as Pfaffians:

Theorem 4.2.4. Let C be a nonsingular genus 8 curve admitting a linear system

∣D∣ with only one base point P̃ and satisfying the following properties:

1. ∣D∣ = P̃ + 2g13.

2. 2D =KC .

3. ϕg26
∶ C

3-to-1
ÐÐÐ→ C ⊂ P2, where C is a nonsingular conic.

Then the halfcanonical ring R ∶= R(C,D) = ⊕
n≥0

H0
(C,nD) is isomorphic to:

k[x1, x2, x3, y1, y2, y3, z1, z2]/I,

with generators of degrees 1,1,1,2,2,2,3,3 respectively and the ideal I is minimally

generated by the 20 different homogeneous forms given by the 2 × 2 minors of the

following 3 matrices:

A ∶=
⎛

⎝

x1 x2 y1 y2 z1

x2 x3 y2 y3 z2

⎞

⎠
,

M ∶=
⎛

⎝

x1 x2 x3 y1 y2 z1

y1 y2 y3 z1 z2 P

⎞

⎠
and N ∶=

⎛

⎝

x2 x3 y2 y3 z2

y1 y2 z1 z2 P

⎞

⎠

Or equivalently, by the 4 × 4 Pfaffians of the following 8 × 8 skew matrix:

O ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 x1 x2 y1 0 0 0

x2 x3 y2 0 0 0

x2 y1 y1 y2 z1

0 y2 y3 z2

z1 z2 P

0 0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

of weights

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 2 2 2 3

1 1 2 2 2 3

1 2 2 2 3

2 2 2 3

3 3 4

3 4

4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where P = P (xi, yj) is a generic homogeneous degree 4 form.

The Magma codes for these two presentations can be found at A.4-A.6.

Remark I will discuss later on (see Chapter 6), the conveniences and inconveniences

of the presentations of R(C,D) given in previous theorem. The main problem is

that they are not useful to deform the ring in any way that allows us to get one of
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the rings we already know from previous chapter. Fortunately, R(C,D) can also be

presented as follows (cf. computer code at A.7):

Let R(C,D) ≅ k[x1, x2, x2, y1, y2, z1, z2]/I be the halfcanonical ring from The-

orem 4.2.4. Then the ideal of relations I is generated by the 4 × 4 Pfaffians of the

following two 7 × 7 matrices:

T1 ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 z1 x1 x2 y1 y2

z2 x2 x3 y2 y3

0 P 0 0

y1 0 0

−z1 −z2

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and T2 ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 z1 x2 x1 y2 y1

z2 x3 x2 y3 y2

0 P 0 0

y2 0 0

−z2 −z1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

both of weights:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 3 1 1 2 2

3 1 1 2 2

4 4 5 5

2 3 3

3 3

4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

As it is, this presentation has no genuine 4 × 4 Pfaffians since any of them

has one or every term equal to zero. Nevertheless, the position of the degree 0 entry

suggests a way to deform the equations (see Theorem 6.3.2).

It is also important to notice here that the 2 × 2 minors of matrices A,M

and N of Theorem 4.2.4 can be obtained in a much simpler way by taking the 2× 2

minors of the following doubly symmetric matrix:

⎛
⎜
⎜
⎜
⎝

x1 x2 y1 y2 z1

x2 x3 y2 y3 z2

y1 y2 z1 z2 P

⎞
⎟
⎟
⎟
⎠

.

4.3 The hyperelliptic family

The halfcanonical curves (C,D) corresponding to the surfaces of family (III) of

Theorem 1.4.1, are nonsingular genus 8 hyperelliptic curves, because ∣D∣ having 3
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base points implies that ϕD ∶ C → P2 is a 2-to-1 map onto a nonsingular conic. Thus

D = P1 + P2 + P3 +D
′,

where ϕD = ϕD′ and ∣D′∣ = 2g12. That is, 1
2D

′ is a hyperelliptic divisor on C. In

this section I give a presentation of the ring R(C,D) for a polarised curve in this

situation. There is a clear overlap between what is done here and what I did in the

bielliptic and the trigonal case, since on one hand we have again a double cover (but

the base curve is much simpler now), and on the other hand these curves are again

contained in a rational normal scroll (namely, F9).

4.3.1 Geometry of hyperelliptic curves

In this subsection I collect together some well known facts about hyerelliptic curves

that will be needed when I compute the halfcanonical ring (cf. [Reid D-E], §4).

Consider a double cover π ∶ C Ð→ P1. I will write B and R for the branch and

ramification divisors respectively and ι ∶ C Ð→ C for the hyperelliptic involution.

Since h0(KC) = 8, the Riemann-Hurwitz formula gives

2 ⋅ 8 − 2 = deg(R) − 2 ⋅ 2,

that is, π is branched at 18 points Q1, . . . ,Q18 ∈ P1 (necessarily distinct, since C

is nonsingular). These points lift to 18 ramification points P1, . . . , P18 ∈ C that are

precisely the points P such that h0(2P ) = 2, that is, ∣2Pi∣ = g12 (the Weierstrass

points of the hyperelliptic curve C).

Proposition 4.3.1. 1. The ramification divisor of π, R ∶= ∑
18
i=1 Pi, satisfies ∣R∣ =

9g12.

2. The canonical linear system ∣KC ∣ is (g − 1)g12 = 7g12.

Proof. An affine equation of C is of the form y2 = f18(t), where f18 is a degree 18

polynomial with distinct roots, it is also harmless to assume that it has no constant

term. In such an affine patch, the rational function t9/y has divisor of zeroes equal

to 9 times a Weierstrass point counted twice and divisor of poles equal to the 18

Weierstrass points all together, hence the first part.

Using the same affine plane model, it is clear that any 1-form on C can be written

as p(t)dt/y, where p(t) is a polynomial of degree at most 7 and the second part

follows. Moreover, a basis for the space of 1-forms is {dt/y, tdt/y, . . . , t7dt/y}. It
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follows that the canonical map ϕKC
∶ C Ð→ P7 is not an embedding any more,

but the hyperelliptic map π followed by the 7th Veronese embedding of P1 into

P7. q.e.d.

Proposition 4.3.2. Let P ∈ C be a Weierstrass point. Then

R(C,2P ) ≅ k[t1, t2, y]/(y
2
− f18(t1, t2)),

where deg(t1) = deg(t2) = 1, deg(y) = 9 and f18 is a homogeneous form of degree 18

defining the branch locus Qj ∈ P1 = P(H0(C,2P )); 1 ≤ j ≤ 18.

Proof. It follows from proposition 4.3.1 and the general theory of double covers (cf.

proposition 3.3.1), that the decomposition of π∗OC into the ±1−eigensheaves of ι is:

OP1 ⊕OP1(−9);

the algebra structure is given by the polynomial f18. This defines a multiplication

map

f18 ∶ OP1(−18) Ð→ OP1 .

The calculation follows at once; we have for any n ≥ 1:

H0
(C,2nP ) ≅H0

(P1,O(n)) ⊕H0
(P1,O(n − 9)).

Therefore, all the generators of R in degree n for 1 ≤ n ≤ 8, come from Sn(t1, t2),

where {t1, t2} is a basis of H0(C, g12) ≅H
0(P1,O(1)) and the last generator needed

is of degree 9: y, which is in the −1 eigensheaf of the involution and satisfies y2 =

f18(t1, t2). q.e.d.

Remark Previous proposition gives the model of the hyperelliptic curve as a hy-

persurface in the weighted projective plane P2(1,1,9), which is isomorphic to F9,

that is, to the image of the rational surface scroll under the linear system ∣9A +B∣;

C is linearly equivalent to 18A + 2B. ∣A∣ restricted to C is the hyperelliptic class.

Finally, the canonical class of F9 is −11A − 2B. Thus KC = (7A)∣C , giving another

proof of the second part of proposition 4.3.1.

4.3.2 Halfcanonical rings

The main result of this subsection is the presentation of the halfcanonical ring

R(C,D) in Theorem 4.3.3. It is well known (cf. [ACGH], p.288) that an effective

divisor like in our situation: D = P1+P2+P3+D
′ where the Pi are base points of ∣D∣
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and ∣D′∣ = 2g12, is made out of Weierstrass points. Recall the notation R = ∑
18
i=1 Pi

for the ramification divisor of the double cover π and let

u ∶ OC ↪ OC(P1 + P2 + P3), v ∶ OC ↪ OC (
18

∑
i=4
Pi)

be the constant sections.

Since any 3 different points in P1 can be mapped to any different 3 points,

it is harmless to choose a basis {t1, t2} of H0(P1,O(1)) ≅H0(C, 12D
′) such that the

degree 3 form that defines the branch points π(Pi), 1 ≤ i ≤ 3 is given by

u2 = t21t2 − t1t
2
2.

Thus I can assume:

ϕD(P1) = (1 ∶ 0), ϕD(P2) = (1 ∶ 1), ϕD(P3) = (0 ∶ 1)

and since all the branch points are required to be different, the degree 15 form

defining the rest of the branch locus, v2 = g15(t1, t2), must have nonzero coefficients

multiplying t151 and t152 (so it does not vanish at (1 ∶ 0) nor (0 ∶ 1)). Thus in general

I can write

g15 = t
15
1 +

15

∑
i=1
ait

15−i
1 ti2,

where a15 ≠ 0 and ∑15
i=1 ai ≠ −1 (so g15 does not vanish at (1 ∶ 1)). Of course I must

further require g15 to have distinct roots. This however will not play a role when

giving useful presentations of the halfcanonical ring R(C,D).

The ring requires 3 generators in degree 1. We have

H0
(C,D) ≅ uH0

(P1,O(2)),

so I will choose the following basis:

x1 ∶= ut
2
1, x2 ∶= ut1t2, x3 ∶= ut

2
2.

In degree 2, 2D = KC and ∣KC ∣ ∼ 7g12. Thus I can construct a basis of

H0(C,2D) from any basis of H0(P1,O(7)). Choosing S7(t1, t2) has the advantage of

simplifying the way we can write the trivial relations holding between the generators
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of R(C,D). Let

w1 ∶= t71,

w2 ∶= t61t2,

w3 ∶= t51t
2
2,

w4 ∶= t41t
3
2,

w5 ∶= t31t
4
2,

w6 ∶= t21t
5
2,

w7 ∶= t1t
6
2,

w8 ∶= t72.

Because of my choice of the images of the base points, I must choose as new

generators y1 ∶= t
7
1 and y3 ∶= t

7
2. It is clear also that any choice of the form y2 ∶= t

i
1t

7−i
2

for 1 ≤ i ≤ 6 will suffice to get a basis. I will choose y2 ∶= t
3
1t

4
2. Thus I have:

w1 = t71 = y1,

w2 = t61t2 = w3 + x
2
1,

w3 = t51t
2
2 = w4 + x1x2,

w4 = t41t
3
2 = w5 + x1x3 = w5 + x

2
2,

w5 = t31t
4
2 = y2,

w6 = t21t
5
2 = w5 − x2x3,

w7 = t1t
6
2 = w6 − x

2
3,

w8 = t72 = y3.

It reemains to choose generators for H0(C,3D). Consider the divisor D̃ ∶=

∑
18
i=4 Pi − 2D′. Then O(D) ≅ O(D̃), because the rational function uv/t91 has divisor

of zeroes equal to ∑18
i=4 Pi and divisor of poles equal to P1 + P2 + P3 + 3D′. Thus

D ∼ D̃ and multiplication by it, induces the isomorphism. Clearly uv/t91 is a section

of the −1-eigensheaf of the involution. Thus the isomorphism is interchanging the

positive and negative eigensheaves. It follows that:

π∗(OC(D)) ≅ uOP1(2) ⊕ vOP1(−4),

then, tensoring with OP1(7) ≅ π∗(OC(KC)) and taking cohomology we get:

H0
(C,OC(3D)) ≅ u⊗ ⟨S9

(t1, t2)⟩ ⊕ v ⊗ ⟨S3
(t1, t2)⟩. (4.14)

We already have generators for the first direct summand of (4.14). Therefore

I only need 4 new generators in degree 3 to form a basis (and generate R(C,D)). I
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will choose them as follows:

z1 ∶= vt
3
1, z2 ∶= vt

2
1t2, z3 ∶= vt1t

2
2, z4 ∶= vt

3
2.

Finally, it is clear that the ideal of relations is generated by the obvious

relations preserving the ratio (t1 ∶ t2) plus the rolling factors relations deduced from

the identities

u2 = t21t2 − t1t
2
2 and v2 = t151 +

15

∑
i=1
ait

15−i
1 ti2.

All previous results are summarized in the following theorem:

Theorem 4.3.3. Let C be a nonsingular genus 8 curve admitting a linear system

∣D∣ with three distinct base points, P1, P2, P3 and satisfying the following properties:

1. ∣D∣ = P1 + P2 + P3 + 2g12.

2. 2D =KC .

Then the halfcanonical ring R ∶= R(C,D) = ⊕
n≥0

H0
(C,nD) is isomorphic to:

k[x1, x2, x3, y1, y2, y3, z1, z2, z3, z4]/I,

with generators of degrees 1,1,1,2,2,2,3,3,3,3 respectively and the ideal I is gen-

erated by the homogeneous forms obtained by taking the 2 × 2 minors of the 2 × 12

matrix A, where

A ∶=
⎛

⎝

x1 x2 w1 w2 w3 w4 w5 w6 w7 z1 z2 z3

x2 x3 w2 w3 w4 w5 w6 w7 w8 z2 z3 z4

⎞

⎠
,

with w1 ∶= y1,w5 ∶= y2,w8 ∶= y3 and the wi for i ∈ {2,3,4,6,7} are defined recursively:

w4 ∶= w5 + x1x3 = w5 + x
2
2,

w3 ∶= w4 + x1x2,

w2 = w3 + x
2
1;

w6 ∶= w5 − x2x3,

w7 ∶= w6 − x
2
3.

Plus 7 rolling factors relations of the form:

z21 − y
2
1 ⋅ (y1 +

7

∑
i=1
aiwi+1) − y

2
2 ⋅

⎛

⎝

8

∑
j=1

aj+7wj
⎞

⎠
,

z1z2 − y1w2 ⋅ (y1 +
7

∑
i=1
aiwi+1) − y2w6 ⋅

⎛

⎝

8

∑
j=1

aj+7wj
⎞

⎠
,
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z1z3 − y1w3 ⋅ (y1 +
7

∑
i=1
aiwi+1) − y2w7 ⋅

⎛

⎝

8

∑
j=1

aj+7wj
⎞

⎠
,

z1z4 − y1w4 ⋅ (y1 +
7

∑
i=1
aiwi+1) − y2y3 ⋅

⎛

⎝

8

∑
j=1

aj+7wj
⎞

⎠
,

z2z4 − y1y2 ⋅ (y1 +
7

∑
i=1
aiwi+1) −w6y3 ⋅

⎛

⎝

8

∑
j=1

aj+7wj
⎞

⎠
,

z3z4 − y1w6 ⋅ (y1 +
7

∑
i=1
aiwi+1) −w7y3 ⋅

⎛

⎝

8

∑
j=1

aj+7wj
⎞

⎠
,

z24 − y1w7 ⋅ (y1 +
7

∑
i=1
aiwi+1) − y

2
3 ⋅

⎛

⎝

8

∑
j=1

aj+7wj
⎞

⎠
,

or any other rendering where possible. Moreover, the constants a1, . . . a15 ∈ k are

required to satisfy:

1. a15 ≠ 0,

2. ∑15
i=1 ai ≠ −1,

3. The polynomial 1 +∑15
i=1 ait

i has 15 distinct roots.

It turns out that only 28 of the 66 elements of ⋀2A suffice to generate I,

together with its rolling factors relations. In the last chapter, I will give a format

to write these 35 equations as Pfaffians of three types of matrices. The reader can

find the Magma code for this family of rings in the appendix A.8.
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Chapter 5

Codimension 4 Surfaces

In this chapter I use the extension algorithm of §2.2 to calculate the canonical rings

of the surfaces of families (I.1) and (I.2) of Theorem 1.4.1. I start with the family

(I.2) because the canonical rings of surfaces of family (I.1) were already studied

in detail by Bauer, Catanese and Pignatelli in [Bauer et al]. Their main result

however, was obtained relying heavily in their deep understanding of the geometry

of the surfaces whereas in this chapter I show that it can be recovered using the much

simpler geometry of the halfcanonical curves of Theorem 3.2.4 and the hyperplane

section principle.

5.1 Superelliptic Rings

For convenience of the reader, I recall Theorem 3.3.5:

Theorem. Let C be a nonsingular genus 8 curve admitting a linear system ∣D∣ with

only one base point P̃ and satisfying the following properties:

1. ∣D∣ = P̃ + g26.

2. 2D =KC .

3. ϕg26
∶ C

2-to-1
ÐÐÐ→ E ⊂ P2, where E is an elliptic curve.

Then the halfcanonical ring R ∶= R(C,D) = ⊕
n≥0

H0
(C,nD) is isomorphic to:

k[x1, x2, x3, y1, y2, z]/I,

with generators of degrees 1,1,1,2,2,3 respectively and the ideal I is minimally gen-

erated by 9 homogeneous forms ri, 1 ≤ i ≤ 9, obtained as follows:
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Let

A ∶=
⎛

⎝

x1 x2 x3 y2

x22 x23 − αx1x2 − βx
2
1 y1 z

⎞

⎠
, M ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

Q1 0 0 0

0 Q2 0 0

0 0 Q3 + y1 0

0 0 0 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Then ri, 1 ≤ i ≤ 6, are the 2 × 2 minors of A, whereas r7, r8, r9 are given by

AM(
TA) = 0.

Let Q ∶= x23 − αx1x2 − βx
2
1. Consider the relation

x21Q1 + x
2
2Q2 + x

2
3(Q3 + y1) − y

2
2. (5.1)

Before starting the extension calculations it is convenient to notice that relation

x1Q − x32 allows to render any degree 4 monomial in the xi’s involving powers of x2

greater than or equal to 2 as one involving a power greater than or equal to 2 in

x1 or x3 except possibly for x1x
2
2x3. However, if this term appeared in 5.1, relation

x1y1 −x
2
2x3 would imply that y1 appears multiplied by x21, which is impossible since

it was shown that y1 must be multiplying exclusively x23 in order for the curve to

have the right genus. Therefore I can assume Q2 = 0 and for similar reasons it

follows that Q3 can not include any powers of x3 at all. Thus:

Q1 ∶= d1x
2
1 + d2x1x2 + d3x1x3 + d4x

2
2 + d5x2x3 + d6x

2
3,

Q3 ∶= ex1x2,

for some d1, . . . , d6, e ∈ C. Thus in the rest of the section I write:

A =
⎛

⎝

x1 x2 x3 y2

x22 Q y1 z

⎞

⎠
, M ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

Q1 0 0 0

0 0 0 0

0 0 ex1x2 + y1 0

0 0 0 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

The 9 relations generating the Gorenstein codimension 4 ideal I with their

corresponding degree will be named as shown in table 5.1.

5.1.1 Syzygies from the AM(TA) format

In order to construct the canonical ring of the surfaces of family (I.2), I must lift

the relations r1, . . . , r9 allowing successive powers of the new degree 1 variable x0 in
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Table 5.1: Generators of I

Name Relation Degree

r1 x1Q − x32 3

r2 x1y1 − x
2
2x3 3

r3 x1z − x
2
2y2 4

r4 x2y1 − x3Q 3

r5 x2z − y2Q 4

r6 x3z − y1y2 4

r7 x21Q1 + x
2
3(ex1x2 + y1) − y

2
2 4

r8 x1x
2
2Q1 + x3y1(ex1x2 + y1) − y2z 5

r9 x42Q1 + y
2
1(ex1x2 + y1) − z

2 6

such a way that the corresponding syzygies also lift. One can show using computer

algebra that the syzygy module of our codimension 4 ideals is minimally generated

by 16 elements. The AM(TA) format is called flexible because these syzygies are

automatically implied by the format itself as explained below.

For each of the four 2×3 submatrices of A, I can obtain 2 linearly independent

syzygies by cloning either row and taking the determinant of the resulting 3×3 matrix

that vanishes by construction. This gives table 5.2

Table 5.2: First set of syzygies

Name Syzygy Degree

σ1 x1r4 − x2r2 + x3r1 4

σ2 x22r4 −Qr2 + y1r1 5

σ3 x1r5 − x2r3 + y2r1 5

σ4 x22r5 −Qr3 + zr1 6

σ5 x1r6 − x3r3 + y2r2 5

σ6 x22r6 − y1r3 + zr2 6

σ7 x2r6 − x3r5 + y2r4 5

σ8 Qr6 − y1r5 + zr4 6
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Now consider the following matrix:

A∗
∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−x22 x1

−Q x2

−y1 x3

−z y2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Then

A∗A =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 r1 r2 r3

−r1 0 r4 r5

−r2 −r4 0 r6

−r3 −r5 −r6 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Therefore the identity A∗(AM(TA)) = (A∗A)(M(TA)) gives 8 syzygies (the

left hand side is a matrix whose entries are combinations of the relations r7, r8

and r9, whereas the right hand side is a matrix whose entries are combinations of

r1, . . . , r6). Explicitly:

A∗
(AM(

TA)) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−x22r7 + x1r8 −x22r8 + x1r9

−Qr7 + x2r8 −Qr8 + x2r9

−y1r7 + x3r8 −y1r8 + x3r9

−zr7 + y2r8 −zr8 + y2r9

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

(A∗A)(M(
TA)) =

⎛
⎜
⎜
⎜
⎝

x3(ex1x2 + y1)r2 − y2r3 y1(ex1x2 + y1)r2 − zr3

−x1Q1r1 + x3(ex1x2 + y1)r4 − y2r5 −x22Q1r1 + y1(ex1x2 + y1)r4 − zr5

−x1Q1r2 − y2r6 −x22Q1r2 − zr6

−x1Q1r3 − x3(ex1x2 + y1)r6 −x22Q1r3 − y1(ex1x2 + y1)r6

⎞
⎟
⎟
⎟
⎠

,

this gives us 8 new linearly independent syzygies that extend the set of 8 syzygies

of table 5.2 into a basis of the corresponding module. They are listed in table 5.3.

Remark A final observation before starting the extension algorithm that helps

shorten the calculations enormously consists in listing some second order syzygies

(we actually know the module of such higher syzygies has rank 9, because of the

Gorenstein palindromic free resolution of our codimension 4 ring). One verifies that
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Table 5.3: Second set of syzygies

Name Syzygy Degree

σ9 x1r8 − x
2
2r7 − x3(ex1x2 + y1)r2 + y2r3 6

σ10 x2r8 −Qr7 + x1Q1r1 − x3(ex1x2 + y1)r4 + y2r5 6

σ11 x3r8 − y1r7 + x1Q1r2 + y2r6 6

σ12 y2r8 − zr7 + x1Q1r3 + x3(ex1x2 + y1)r6 7

σ13 x1r9 − x
2
2r8 − y1(ex1x2 + y1)r2 + zr3 7

σ14 x2r9 −Qr8 + x
2
2Q1r1 − y1(ex1x2 + y1)r4 + zr5 7

σ15 x3r9 − y1r8 + x
2
2Q1r2 + zr6 7

σ16 y2r9 − zr8 + x
2
2Q1r3 + y1(ex1x2 + y1)r6 8

the following identities hold:

x2σ2 ≡ Qσ1

x2σ4 ≡ Qσ3

x2σ6 ≡ Qσ5

x2σ8 ≡ Qσ7

x2σ5 − x3σ3 + y2σ1 ≡ x1σ7

x22σ10 ≡ Qσ9

x22σ11 ≡ y1σ9

x22σ12 ≡ zσ9

,

x1σ14 ≡ x2σ13

x1σ15 ≡ x3σ13

x1σ16 ≡ y2σ13

.

In words, these identities say that every syzygy has a monomial multi-

ple that is a quasi-homogeneous linear combination of only 5 syzygies, namely:

{σ1, σ3, σ5, σ9, σ13}.

5.1.2 Extending the ring

Let S be a surface of type (I.2) of Theorem 1.4.1. By the extension algorithm of

§2.2, to construct R(S,KS) I must start by computing the ring

R(2C,D(2)) = k[x0, x1, x2, x3, y1, y2, z]/(I
(2), x20),

where I(2) is generated by 9 relations r
(2)
1 , . . . , r

(2)
9 that reduce modulo x0 to relations

r1, . . . , r9 of table 5.1 and that satisfy the syzygies σ1, . . . , σ16. However, the above

remark implies that I only need to do perform the calculations for the syzygies σi
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with i ∈ {1,3,5,9,13}. We have:

r
(2)
1 ∶= r1 + x0[a1,1x

2
1 + a1,2x1x2 + a1,3x1x3 + a1,4x

2
2 + a1,5x2x3 + a1,6x

2
3 + a1,7y1 + a1,8y2]

r
(2)
2 ∶= r2 + x0[a2,1x

2
1 +⋯ + a2,8y2]

r
(2)
4 ∶= r4 + x0[a4,1x

2
1 +⋯ + a4,8y2],

for some ai,j ∈ C, i = 1,2,4, 1 ≤ j ≤ 8. As σ1 must lift to a syzygy σ
(2)
1 with σ1 ≡ σ

(2)
1 (

mod x0) in R(C,D), I need to impose:

x1[a4,1x
2
1 +⋯ + a4,8y2] ≡ x2[a2,1x

2
1 +⋯ + a2,8y2] − x3[a1,1x

2
1 +⋯ + a1,8y2] mod I.

This leads to: a1,6 = a1,7 = a1,8 = a2,4 = a2,7 = a2,8 = a3,1 = a3,8 = 0, a3,2 = a2,1,

a3,3 = −a1,1, a3,4 = a2,2, a3,5 = a2,3 − a1,2, a3,6 = −a1,3, a3,7 = a2,5 − a1,4, a2,6 = a1,5.

Therefore, so far we have:

r
(2)
1 = r1 + x0[a1,1x

2
1 + a1,2x1x2 + a1,3x1x3 + a1,4x

2
2 + a1,5x2x3],

r
(2)
2 = r2 + x0[a2,1x

2
1 + a2,2x1x2 + a2,3x1x3 + a2,5x2x3 + a1,5x

2
3],

r
(2)
4 = r4 + x0[a2,1x1x2 − a1,1x1x3 + a2,2x

2
2 + (a2,3 − a1,2)x2x3 − a1,3x

2
3 + (a2,5 − a1,4)y1].

The next syzygy in my list of 5, σ3, involves the degree 4 relations r3 and r5,

so I need a basis for the Riemann-Roch space H0(3D) (which is 14-dimensional) to

write general extension polynomials of the form x0p, with p ∈ H0(3D). Similarly,

when I work out the effect of the remaining syzygies I will require bases for H0(nD)

for n = 4,5. Using the relations it is easy to see that the choice of monomials shown

in table 5.4 actually works.

Table 5.4: Bases of H0(C,OC(nD))

Space Dimension Elements defining a basis

H0(3D) 14 x31, x
2
1x2, x

2
1x3, x1x

2
2, x1x2x3, x1x

2
3, x

2
2x3,

x2x
2
3, x

2
3, x1y2, x2y2, x3y1, x3y2, z

H0(4D) 21 x41, x
3
1x2, x

3
1x3, x

2
1x

2
2, x

2
1x2x3, x

2
1x

2
3, x1x

2
2x3,

x1x2x
2
3, x1x

3
3, x

2
2x

2
3, x2x

3
3, x

4
3, y

2
1, y1y2,

x23y1, x
2
1y2, x1x2y2, x1x3y2, x

2
2y2, x2x3y2, x

2
3y2

H0(5D) 28 x51, x
4
1x2, x

4
1x3, x

3
1x

2
2, x

3
1x2x3, x

3
1x

2
3, x

2
1x

2
2x3,

x21x2x
2
3, x

2
1x

3
3, x1x

2
2x

2
3, x1x2x

3
3, x1x

4
3, x

2
2x

3
3, x2x

4
3,

x53, x
3
1y2, x

2
1x2y2, x

2
1x3y2, x1x

2
2y2, x1x2x3y2, x1x

2
3y2

x22x3y2, x2x
2
3y2, x

3
3y2, x

3
3y1, x3y

2
1, x3y1y2, y1z
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If I write

r
(2)
3 ∶= r3 + x0[a3,1x

3
1 + a3,2x

2
1x2 + a3,3x

2
1x3 + a3,4x1x

2
2 + a3,5x1x2x3 + a3,6x1x

2
3 + a3,7x

2
2x3

+a3,8x2x
2
3 + a3,9x

2
3 + a3,10x1y2 + a3,11x2y2 + a3,12x3y1 + a3,13x3y2 + a3,14z],

r
(2)
5 ∶= r5 + x0[a5,1x

3
1 +⋯ + a5,14z]

and I plug these in σ3 together with r
(2)
1 I get:

x1[a5,1x
3
1 +⋯ + a5,14z] ≡ x2[a3,1x

3
1 +⋯ + a3,14z]

−y2[a1,1x
2
1 + a1,2x1x2 + a1,3x1x3 + a1,4x

2
2 + a1,5x2x3] mod I.

In order for previous identity to hold, the following coefficients are ought to

be zero: a3,4, a3,7, a3,9, a3,12, a3,14, a5,1, a5,3, a5,6, a5,9. Furthermore, one gets also

these identities: a3,13 = a1,5, a5,2 = a3,1, a5,4 = a3,2, a5,5 = a3,3, a5,7 = a3,5, a5,8 = a3,6,

a5,10 = −a1,1, a5,11 = a3,10 − a1,2, a5,12 = a3,8, a5,13 = −a1,3, a5,14 = a3,11 − a1,4.

We can update our lifted relations as follows:

r
(2)
1 = r1 + x0[a1,1x

2
1 + a1,2x1x2 + a1,3x1x3 + a1,4x

2
2 + a1,5x2x3],

r
(2)
2 = r2 + x0[a2,1x

2
1 + a2,2x1x2 + a2,3x1x3 + a2,5x2x3 + a1,5x

2
3],

r
(2)
3 = r3 + x0[a3,1x

3
1 + a3,2x

2
1x2 + a3,3x

2
1x3 + a3,5x1x2x3 + a3,6x1x

2
3 + a3,8x2x

2
3 + a3,10x1y2

+a3,11x2y2 + a1,5x3y2],

r
(2)
4 = r4 + x0[a2,1x1x2 − a1,1x1x3 + a2,2x

2
2 + (a2,3 − a1,2)x2x3 − a1,3x

2
3 + (a2,5 − a1,4)y1],

r
(2)
5 = r5 + x0[a3,1x

2
1x2 + a3,2x1x

2
2 + a3,3x1x2x3 + a3,5x

2
2x3 + a3,6x2x

2
3 − a1,1x1y2

+(a3,10 − a1,2)x2y2 + a3,8x3y1 − a1,3x3y2 + (a3,11 − a1,4)z].

Repeating the process using the syzygy σ5 is completely analogous, I need

to introduce new coefficients a6,i ∈ C, i = 1, . . . ,14 to write:

r
(2)
6 ∶= r6 + x0[a6,1x

3
1 +⋯, a6,14z],

then, I demand x1[a6,1x
3
1 +⋯ + a6,14z] to be congruent to

x3[a3,1x
3
1 + a3,2x

2
1x2 + a3,3x

2
1x3 + a3,5x1x2x3 + a3,6x1x

2
3 + a3,8x2x

2
3 + a3,10x1y2

+a3,11x2y2 + a1,5x3y2] − y2[a2,1x
2
1 + a2,2x1x2 + a2,3x1x3 + a2,5x2x3 + a1,5x

2
3] mod I.

The result is that a3,8, a6,1, a6,2, a6,4, a6,7, a6,12, a6,14 all vanish, plus the

following extra conditions: a3,11 = a2,5, a6,3 = a3,1, a6,5 = a3,2, a6,6 = a3,3, a6,8 = a3,5,

a6,9 = a3,6, a6,10 = −a2,1, a6,11 = −a2,2, a6,13 = a3,10 − a2,3.

The calculations get much longer to write them down in full when one con-
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siders the syzygies σ9 and σ13, but still is a completely mechanical bookkeeping

exercise, so I will write only what I got at the end of both steps.

The current list of liftings is:

r
(2)
1 = r1 + x0[a1,1x

2
1 + a1,2x1x2 + a1,3x1x3 + a1,4x

2
2 + a1,5x2x3],

r
(2)
2 = r2 + x0[a2,1x

2
1 + a2,2x1x2 + a2,3x1x3 + a2,5x2x3 + a1,5x

2
3],

r
(2)
3 = r3 + x0[a3,1x

3
1 + a3,2x

2
1x2 + a3,3x

2
1x3 + a3,5x1x2x3 + a3,6x1x

2
3 + a3,10x1y2

+a2,5x2y2 + a1,5x3y2],

r
(2)
4 = r4 + x0[a2,1x1x2 − a1,1x1x3 + a2,2x

2
2 + (a2,3 − a1,2)x2x3 − a1,3x

2
3 + (a2,5 − a1,4)y1],

r
(2)
5 = r5 + x0[a3,1x

2
1x2 + a3,2x1x

2
2 + a3,3x1x2x3 + a3,5x

2
2x3 + a3,6x2x

2
3 − a1,1x1y2

+(a3,10 − a1,2)x2y2 − a1,3x3y2 + (a2,5 − a1,4)z].

r
(2)
6 = r6 + x0[a3,1x

2
1x3 + a3,2x1x2x3 + a3,3x1x

2
3 + a3,5x2x

2
3 + a3,6x

3
3 − a2,1x1y2

−a2,2x2y2 + (a3,10 − a2,3)x3y2]

Let r
(2)
8 = r8+x0r

′
8, where r′8 ∶= a8,1x

4
1+⋯+a8,21x

2
3y2 and the a8,i are labeled respecting

the order of the basis of H0(4D) given in table 5.4. Analogously, let r
(2)
7 ∶= r7+x0r

′
7

and r
(2)
9 ∶= r9+x0r

′
9 with r′7 ∶= a7,1x

3
1+⋯+a7,14z and r′9 ∶= a9,1x

5
1+⋯+a9,28y1z. After

considering the congruences modulo I given by σ9 and σ13:

x1r
′
8 ≡ x

2
2r
′
7 + x3(ex1x2 + y1)[a2,1x

2
1 + a2,2x1x2 + a2,3x1x3 + a2,5x2x3 + a1,5x

2
3]

−y2[a3,1x
3
1 + a3,2x

2
1x2 + a3,3x

2
1x3 + a3,5x1x2x3 + a3,6x1x

2
3 + a3,10x1y2 + a2,5x2y2 + a1,5x3y2],

x1r
′
9 ≡ x

2
2r
′
8 + y1(ex1x2 + y1)[a2,1x

2
1 + a2,2x1x2 + a2,3x1x3 + a2,5x2x3 + a1,5x

2
3]

−z[a3,1x
3
1 + a3,2x

2
1x2 + a3,3x

2
1x3 + a3,5x1x2x3 + a3,6x1x

2
3 + a3,10x1y2 + a2,5x2y2 + a1,5x3y2].

It is found that the following coefficients must be zero: a1,5, a2,5, a3,10, whereas

the terms a7,12x0x3y1 and a7,14x0z do not die, but can be omitted using a different

rendering given by relations r
(2)
4 and r

(2)
5 respectively; of course we also get necessary

conditions holding between the surviving constants, the result is that the ideal I(2)

is minimally generated by 9 relations that are more conveniently listed in 2 groups

as explained next:
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r
(2)
1 = r1 + x0[a1,1x

2
1 + a1,2x1x2 + a1,3x1x3 + a1,4x

2
2],

r
(2)
2 = r2 + x0[a2,1x

2
1 + a2,2x1x2 + a2,3x1x3],

r
(2)
3 = r3 + x0[a3,1x

3
1 + a3,2x

2
1x2 + a3,3x

2
1x3 + a3,5x1x2x3 + a3,6x1x

2
3],

r
(2)
4 = r4 + x0[a2,1x1x2 − a1,1x1x3 + a2,2x

2
2 + (a2,3 − a1,2)x2x3 − a1,3x

2
3 − a1,4y1],

r
(2)
5 = r5 + x0[a3,1x

2
1x2 + a3,2x1x

2
2 + a3,3x1x2x3 + a3,5x

2
2x3 + a3,6x2x

2
3 − a1,1x1y2

−a1,2x2y2 − a1,3x3y2 − a1,4z],

r
(2)
6 = r6 + x0[a3,1x

2
1x3 + a3,2x1x2x3 + a3,3x1x

2
3 + a3,5x2x

2
3 + a3,6x

3
3 − a2,1x1y2

−a2,2x2y2 − a2,3x3y2].

These are, modulo x20, the 2×2 minors of the matrix Ã ∶= A+x0A1, where A

is the matrix of Theorem 3.3.5:

A =
⎛

⎝

x1 x2 x3 y2

x22 Q y1 z

⎞

⎠

and A1 is defined as follows:

A1 ∶=
⎛

⎝

0 −a1,4 0 0

0 `1 `2 s

⎞

⎠
, with

`1 ∶= a1,1x1 + a1,2x2 + a1,3x3,

`2 ∶= a2,1x1 + a2,2x2 + a2,3x3,

s ∶= a3,1x
2
1 + a3,2x1x2 + a3,3x1x3 + a3,5x2x3 + a3,6x

2
3.

The remaining 3 relations are, modulo x20, the 3 distinct entries of the sym-

metric matrix ÃM̃(TÃ), where M̃ ∶=M + x0M1. Once again I kept the notation for

M :

M =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

Q1 0 0 0

0 0 0 0

0 0 ex1x2 + y1 0

0 0 0 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

while M1 is:

M1 ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

`3 0 1
2a7,5x2

1
2a7,10

0 `4 0 1
2a7,11

1
2a7,5x2 0 `5

1
2a7,13

1
2a7,10

1
2a7,11

1
2a7,13 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, with

`3 ∶= a7,1x1 + a7,2x2 + a7,3x3,

`4 ∶= a7,4x1 + a7,7x3,

`5 ∶= a7,6x1 + a7,8x2 + a7,9x3.

The 16 syzygies holding between our 9 lifted relations can be obtained in the

same way described previously for the original halfcanonical ring R(C,D). Repeat-

ing the process to extend R(2C,D(2)) to R(3C,D(3)) and so on, is actually easier
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at each step, because allowing higher powers of x0 requires to consider fewer arbi-

trary coefficients when one imposes the congruences for the corresponding syzygies

to lift. The process is particularly easy to be done by hand in the case of the first 6

relations; they can be put in the same determinantal in every degree and the final

output, after renaming the coefficients, is of the form:

2

⋀
⎛

⎝

x1 x2 − δ1x0 x3 y2

x22 − δ2x
2
0 Q + `1x0 + δ6x

2
0 y1 + `2x0 + δ10x

2
0 z + sx0 + `3x

2
0 + δ19x

3
0

⎞

⎠
, (5.2)

where:

`1 ∶= δ3x1 + δ4x2 + δ5x3,

`2 ∶= δ7x1 + δ8x2 + δ9x3,

`3 ∶= δ11x1 + δ12x2 + δ13x3,

s ∶= δ14x
2
1 + δ15x1x2 + δ16x1x3 + δ17x2x3 + δ18x

2
3.

Provided δ1δ2 ≠ 0, the first minor, x1(Q+`1x0+δ6x
2
0)−(x22−δ2x

2
0)(x2−δ1x0),

allows me to assume that there are no terms involving powers of x0 greater than 2 in

the relation involving y22 (that is, the relation that reduces to r7 mod x0, or the re-

lation defining the double cover). This makes possible to fit the remaining relations

in the same format. Before presenting the final ring, it is convenient to make coordi-

nate changes of the form: x2−δ1x0 ↦ x2, y1+⋯ ↦ y1 and z+⋯ ↦ z. These of course

have the effect of making most of the entries of the matrix given in 5.2 to be equal

to the ones of the original matrix used to define the halfcanonical ring R(C,D), the

little price I got to pay, is that I am forced to re-allow the term in x0x
3
2 when I lift r7.

All these calculations are summarized in the following result:

Theorem 5.1.1. Consider the graded ring R ∶= k[x0, x1, x2, x3, y1, y2, z]/I, where

degxi = 1, deg yj = 2, deg z = 3 and I is the homogeneous ideal generated by 9

elements defined as follows:

Let A ∶=
⎛

⎝

x1 x2 x3 y2

x22 + a1x0x2 + a2x
2
0 Q y1 z

⎞

⎠
,

with Q ∶= x23 + a3x1x2 + a4x
2
1 + (a5x1 + a6x2 + a7x3)x0 + a8x

2
0

and let M ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

Q1
1
2a19x

2
0

1
2(a20x0x2 + a21x

2
0)

1
2a22x0

1
2a19x

2
0 Q2

1
2a27x

2
0

1
2a28x0

1
2(a20x0x2 + a21x

2
0)

1
2a27x

2
0 Q3

1
2a35x0

1
2a22x0

1
2a28x0

1
2a35x0 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,
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with

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1 ∶= a9x
2
1 + a10x1x2 + a11x1x3 + a12x

2
2 + a13x2x3 + a14x

2
3

+(a15x1 + a16x2 + a17x3)x0 + a18x
2
0,

Q2 ∶= (a23x1 + a24x2 + a25x3)x0 + a26x
2
0,

Q3 ∶= a29x1x2 + a30y1 + (a31x1 + a32x2 + a33x3)x0 + a34x
2
0.

The first 6 generators are the 2×2 minors of A and the last 3 are the distinct entries

of the symmetric 2 × 2 matrix AM(TA). Then, for a general choice of parameters

ai ∈ C, 1 ≤ i ≤ 35, R = R(S,KS) where S is a surface of general type with pg = 4

and K2 = 7 whose canonical map is 2-to-1 onto a cubic surface in P3, that is, S

is a surface belonging to subfamily (I.2) of Theorem 1.4.1 and conversely, up to a

change of coordinates, the canonical ring of a surface of subfamily (I.2) is of the

aforementioned form.

5.1.3 An explicit deformation family

The superelliptic rings of Theorem 5.1.1 are presented in the AM(TA) format which

is flexible (that is, it carries not only with the 9 relations defining the ideal but

also implies all the 16 syzygies needed to generate the corresponding module, as we

explained earlier on). This implies that I can do small deformations in the entries

of the matrices involved to obtain flat families of graded rings. Formally, this is a

consequence of the following well known technical result:

Theorem 5.1.2. (cf. [Decker-Lossen], Theorem 5.12). Let D be an Artinian local

k-algebra with residue field k and maximal ideal m. Let I = (f1, . . . , fr) be an ideal of

D[x1, . . . , xn] and let f1, . . . fr ∈ k[x1, . . . , xn] be the reductions of f1, . . . , fr modulo

m. Then the following are equivalent:

1. D[x1, . . . , xn]/I is a flat D-module.

2. TorD1 (k,D[x1, . . . , xn]/I) = 0.

3. The syzygies between f1, . . . , fr are generated by the reductions modulo m of

the syzygies between f1, . . . , fr.

Exploiting this and using some computer algebra, we can prove the next

result:

Theorem 5.1.3. The canonical surfaces of general type with pg = 4 and K2 = 7

such that ∣K ∣ has only one simple base point and defines a map of degree 2 onto

a cubic surface in P3 are degenerations of surfaces with the same invariants but

whose canonical map has one simple base point and defines a birational map onto a
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surface of degree six in P3. In terms of Bauer’s classification, surfaces of type (I.2)

are degenerations of surfaces of type (I.1).

Proof. I start taking a convenient subfamily of rings from Theorem 5.1.1 (keeping

the same notation). Let t ∈ C be a small affine parameter and consider

At ∶= A +
⎛

⎝

0 0 0 0

ty2 tx1x3 0 0

⎞

⎠

along with the restriction a4 = 0 onQ = x23+a3x1x2+a4x
2
1+(a5x1+a6x2+a7x3)x0+a8x

2
0

(this forces a3 ≠ 0, otherwise the surface does not have canonical volume 7. Thus in

the sequel, I will assume a3 = 1) and let

Mt ∶= M+

⎛
⎜
⎜
⎜
⎜
⎜
⎝

ty2 0 0 0

tx22 0 0

0 0

sym −1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

with M restricted as follows:

Q1 ∶= x21 + (a15x1 + a16x2 + a17x3)x0 + a18x
2
0,

Q3 ∶= y1 + (a31x1 + a32x2 + a33x3)x0 + a34x
2
0.

, no restriction on Q2.

Define It to be the homogeneous ideal generated by ⋀2At and tr7,
t r8,

t r9

where

AtMt(
T
At) =

⎛

⎝

tr7
tr8

tr8
tr9

⎞

⎠
.

Then, by construction, R = R0 ∶= k[x0, x1, x2, x3, y1, y2, z]/I0 is the canonical

ring of a surface of type (I.2) (provided I can choose the remaining free coefficients

so that Proj R0 is not badly singular, this is a sanity check that is better done by

computer algebra). I claim that, for a small nonzero t, Rt is the canonical ring of a

surface of type (I.1). Indeed, the hyperplane section ring Rt ∶= Rt/(x0) has relations

given by
2

⋀
⎛

⎝

x1 x2 x3 y2

x22 + ty2 x23 + x1x2 + tx1x3 y1 z

⎞

⎠
,

plus x21(x
2
1 + ty2) + tx

4
2 + x

2
3y1 − y

2
2 and two rolling factors forms of degrees 5 and 6.

Eliminating variables of degrees 2 and 3 it is found that the equation of the image
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curve in P2 is given by the following sextic:

(t3 − 1)x62 − (t2 + 2)x21x
4
2 + 2tx21x

3
2x3 + 2x1x

3
2x

2
3 − x

4
1x

2
2 − t

2x1x
2
2x

3
3

+(t3 + 2t)x41x2x3 + (t2 + 2)x31x2x
2
3 + t

3x1x2x
4
3 + t

2x2x
5
3

−t2x41x
2
3 − 2tx31x

3
3 − x

2
1x

4
3,

the terms are ordered with respect to the powers of x2 purposely; the last 3 mono-

mials are the only ones not involving x2 and we can see that the sextic has 2 nodes

with a tangency at the line joining them. It follows from Theorem 3.2.4 that Rt is

the halfcanonical ring of a genus 8 curve. By construction, Rt is a flat extension

of the halfcanonical Gorenstein codimension 4 ring R. It follows that Proj Rt is a

canonical surface S with pg = 4 and K2
S = 7. Since the canonical image ϕKS

(S) ⊂ P3

is a sextic, the classification of Theorem 1.4.1 implies that S belongs to the subfamily

(I.1) as stated. It is clear that all the surfaces of Theorem 5.1.1 can be obtained as

deformations of the surfaces of the form Proj R0. Finally, the flatness of the family

Rt follows from Theorem 5.1.2 and the flexibility of the AM(TA) format. q.e.d.

Remark The reader can use the relevant Magma code in the appendix to verify

that the varieties constructed in previous theorem are indeed nonsingular. The

notation is the same and one can play around with the long lists of free coefficients

as long as the stated restrictions are respected. Magma online calculator takes only

a few seconds to test the nonsingularity for the values as they are and 0 ≤ t < 1

(the surface is still nonsingular for t = 1, but it is easy to see that the corresponding

halfcanonical ring does not give a nonsingular genus 8 curve. Thus our construction

is no longer valid as it is. Of course this is harmless for our purposes, since we are

interested in small deformations of the special fibre given by t = 0). One can also

do the sanity check for the hyperplane section rings by erasing the generator x0

from the first line of the code, then declare x0 ∶= 0; and corroborate that the one

dimensional scheme one gets is a nonsingular genus 8 curve.

5.2 The Bauer-Catanese-Pignatelli case

In section §3.2, we studied rings R = R(C, 12KC) where C ∈ ∣KS ∣ and S is a surface

of general type belonging to the subfamily (I.1) of Bauer’s classification. That is,

∣KS ∣ has only one simple base point and defines a birational map onto a sextic. In

particular, it was shown (cf. Theorem 3.2.5) that R(C,D) = k[x1, x2, x3, y1, y2, z]/I
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for an ideal I generated by the 9 independent 4×4 Pfaffians of a matrix of the form:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 y2 Q1 y1 + y2 z

x3 x1 x2 + x3 y1 + y2

z + F3 x1Q2 Q1Q2

x2Q3 + x3Q4 y1Q3 + y2Q4

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

whereQ1 ∶= x2x3, F3 is a homogeneous form of degree 3 in x2, x3 andQi are quadratic

homogeneous forms such that Q3 depends only on y1, y2 and the rest of them do not

depend on these two variables. This matrix has a shape that is somewhat friendly

to the geometry of the halfcanonical curve C as it was discussed in §3.2. However,

it can be modified in several ways to get many other results.

First observe that Pfaffian 23.45: x3(x2Q3 +x3Q4)−x
2
1Q2 +(x2 +x3)(z +F3)

can be rewritten as

x23(Q4 −Q3) − x
2
1Q2 + (x2 + x3)(z + F3 + x3Q3). (5.3)

This is the first rolling factor relation of the ring and we know that for the con-

struction to work, it is necessary for Pfaffians 13.45 and 13.46 to be rollings of (5.3)

with respect to the matrix formed by rows 1, 2 and columns 3 to 6. One sees at

once that changing the entry y1Q3 + y2Q4 for y2(Q4 −Q3) will do the trick. Thus if

F 3 ∶= F3 + x3Q3 and Q3 ∶= Q4 −Q3, the 4 × 4 Pfaffians of the following skew matrix

generate the same ideal I:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 y2 Q1 y1 + y2 z

x3 x1 x2 + x3 y1 + y2

z + F 3 x1Q2 Q1Q2

x3Q3 y2Q3

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Finally, it is natural to change coordinates y1 + y2 ↦ y1 and x2 + x3 ↦ x2 so after
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modifying the forms accordingly and re-naming them, one gets a matrix of the form:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 y2 Q1 y1 z

x3 x1 x2 y1

z +C x1Q2 Q1Q2

x3Q3 y2Q3

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.4)

where C is a form of degree 3 and the Qi are quadratics. This is precisely a ma-

trix of the form obtained by Bauer, Catanese and Pignatelli in their article, (cf.

[Bauer et al], Theorem 3.7). Thus the format of the curve contains all the informa-

tion one needs for the surface case (so one can pretend that the canonical model of

a surface of type (I.1) is unknown and perform the extension algorithm to happily

see how the liftings of the relations fit on the format at every stage of the process).

Before showing this format is flexible, I will give one last version of the matrix that

should be more mind refreshing to the reader familiar with Tom and Jerry unpro-

jections (cf. [Brown et al]). After performing row-column elementary operations,

matrix (5.4) transforms into:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 −x3 x2 y1 x1

−y2 y1 z Q1

x1Q2 Q1Q2 z +C

0 x3Q3

y2Q3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

but I can get rid of the minus signs by changing coordinates and renaming the

quadratics. Thus my final version will be as stated in next theorem, whose proof

follows immediately from our previous results and from Theorem 3.7 of [Bauer et al]:

Theorem 5.2.1. Let S be a canonical surface of general type with K2
S = 7 and pg = 4

belonging to subfamily (I.1) of Theorem 1.4.1 (that is, whose canonical system has

exactly one simple base point and maps S birationally onto a sextic). Then both, the

canonical ring R(S,KS) and R(C, 12KC), where C is a nonsingular canonical curve

of S, have a presentation of the form

k[x0, x1, x2, x3, y1, y2, z]/I, (k[x0, x1, x2, x3, y1, y2, z]/(I, x0), respectively)

with indeterminates xi, yj and z of respective degrees 1, 2, 3 and I generated by the
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4 × 4 Pfaffians of a skew matrix of the form:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 x3 x2 y1 x1

y2 y1 z Q1

x1Q2 Q1Q2 z +C

0 x3Q3

y2Q3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.5)

where all the Qi are quadratics and C is a cubic.

5.2.1 Deforming to the base point free case

The skew matrix given in (5.5) has entry (1,2) of degree 0. Take a small affine

parameter t ∈ C and consider

Nt ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t x3 x2 y1 x1

y2 y1 z Q1

x1Q2 Q1Q2 z +C

tQ2Q3 x3Q3

y2Q3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

as stated before, among its fifteen 4 × 4 Pfaffians, this matrix has 9 independent

expressions and 6 redundancies because of its extrasymmetry. The complete list is

given below:

I

12.34 = tx1Q2 − x3y1 + x2y2

12.46 = tx3Q3 − x2Q1 + x1y1

12.36 = t(z +C) − x3Q1 + x1y2

12.56 = ty2Q3 − y1Q1 + x1z

12.45 = t2Q2Q3 − x2z + y
2
1

12.35 = tQ1Q2 − x3z + y1y2

II

13.46 = x23Q3 − x2(z +C) + x21Q2

13.56 = x3y2Q3 − y1(z +C) + x1Q1Q2

23.56 = y22Q3 − z(z +C) +Q2
1Q2

III

13.45 = Q2(12.46)

14.56 = Q3(12.34)

23.45 = Q2(12.56)

23.46 = 13.56

24.56 = Q3(12.35)

34.56 = Q2Q3(12.36)

When t = 0, the first group is formed (modulo ± signs) by the 2 × 2 minors
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of the matrix
⎛

⎝

x1 x2 x3 y1

Q1 y1 y2 z

⎞

⎠
, whereas the second contains the 3 rolling factors

relations and the third is already contained in the ideal generated by previous two

groups. To see that this format is flexible, one requires to verify that the syzygy

module of the ideal generated by these 9 independent Pfaffians has rank 16 and

observe that the matrix carries with 16 independent syzygies. The first assertion

can be checked in a few seconds by a computer algebra program, whereas the second

(as noticed by Reid in [Reid D-E], § 5.9) is a consequence of skew Cramer rule. If

I take the Pfaffian adjugate of Nt, that is, the skew matrix defined by:

PNt ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

34.56 −24.56 23.56 −23.46 23.45

14.56 −13.56 13.46 −13.45

12.56 −12.46 12.45

12.36 −12.35

12.34

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

then the off-diagonal entries of NtPNt all vanish, giving the syzygies required. As

a consequence, if It is the ideal generated by the entries of PNt , the 1-parameter

family of rings

Rt ∶= k[x0, x1, x2, x3, y1, y2, z]/It

is flat. By construction, Proj R0 is a surface of type (I.1), but what happens for a

small t ≠ 0 is very interesting. Suppose that t ≠ 0. Pfaffian 12.36 allows us to write

z as a cubic in the remaining variables:

z =
1

t
(x3Q1 − x1y2) −C

and we are left with 2 more degree 3 relations and 3 degree 4 relations from the

first group of Pfaffians. It is easy to see that these 5 relations are, modulo some

negligible minus signs, the maximal diagonal Pfaffians of the following skew 5 × 5

matrix:

⎛
⎜
⎜
⎜
⎜
⎜
⎝

z tQ3 Q1 y1

−y1 −y2 tQ2

x1 x2

x3

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (5.6)
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The 3 relations in group II have now became redundant:

t13.46 = x112.34 − x212.36 + x312.46,

t13.56 = Q112.34 − y112.36 + y212.46,

t23.56 = Q112.35 − z12.36 + y212.56.

Therefore for any small t ≠ 0, Rt ≅ k[x0, x1, x2, x3, y1, y2]/J , where J is a codi-

mension 3 Gorenstein ideal (this follows also from the classic Buchsbaum-Eisenbud

structure theorem). The reader, no doubt, has noticed that matrix (5.6) defining

the generators of J is of the form of Mukai’s first syzygies matrices for halfcanonical

rings of genus 8 curves with base point free halfcanonical linear system (cf. Theorem

3.1.3). It is a well known result that this presentation extends to the surface case.

Thus every surface of type (I.1) is a degeneration of a surface of type (0).

5.2.2 An interesting question

So far, we have the following situation in the moduli space of surfaces with K2 = 7,

pg = 4:

(0) Ð→ (I.1) Ð→ (I.2),

By openness of versality it is possible for a surface in (0) to degenerate to one in

(I.2) without degenerating first to a surface of type (I.1). Can we get this degenera-

tion using graded ring calculations?. In these last lines of the chapter, I discuss the

difficulties in answering this question using our methods.

Consider a general superelliptic ring R = k[x0, x1, x2, x3, y1, y2, z]/I. The first

6 relations generating I are minors of a matrix of the form

⎛

⎝

x1 x2 x3 y2

Q1 Q2 y1 z

⎞

⎠
, (5.7)

where Q1 and Q2 are quadratic forms not involving y1 nor y2. It is easy, using the

AM(TA) format, to deform the ring by slightly perturbing the entries of M so that

the remaining 3 generators of I are rolling factors relations of the form:

y22 − x
2
1Q3 + x

2
2Q4 + x

2
3Q5,

y2z − x1Q1Q3 + x2Q2Q4 + x3y1Q5,

z2 −Q2
1Q3 +Q

2
2Q4 + y

2
1Q5.

(5.8)

For some quadratic forms Qi, 3 ≤ i ≤ 5. Next consider the deformation obtained by
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replacing y1 and y2 by y1+ ty2 and y2+ ty1 respectively. It is obvious that for t ∉ 0,1

we just get an isomorphic ring, (t = 0 gives the original ring and t = 1 leads to a

surface with K2 < 7). I like to think on (0) Ð→ (I.2) as a limit case when t → 1 of

this situation, because on the other hand, if I write ȳ ∶= y1 + y2 and I take a second

very small affine parameter s, the pathological limit case is the special fibre of the

following flat family of surfaces whose general member is of type (0):

Let Rs ∶= k[x1, x2, x3, y1, y2, z]/Js with Js generated by the 4 × 4 Pfaffians of

the following skew matrix:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s Q′
2 Q′

1 ȳ z

x2 x1 x3 ȳ

z + x3Q
′
5 x1Q

′
3 Q′

1Q
′
3

x2Q
′
4 Q′

2Q
′
4

sQ′
3Q

′
4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.9)

where the Q′
i may depend also on s. The key point is that on the limit t = 1, the

last 2 × 2 block from left to right of matrix (5.7) becomes symmetric and allows

me to render ȳ2 as x3z and consequently, to do the trick of writing the relations

as Pfaffians. One observes once again that Pfaffian 12.34 of matrix (5.9) allows to

write z in terms of the other variables and the rest of them are redundancies modulo

the 4 × 4 Pfaffians of the following 5 × 5 skew matrix:

⎛
⎜
⎜
⎜
⎜
⎜
⎝

z −Q′
1 −sQ4 ȳ

−Q′
2 −ȳ sQ′

3

x1 x2

x3

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

which define relations cutting a surface with base point free canonical linear system.
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Chapter 6

Surfaces of type (I.3)

In this chapter I show that the canonical ring of a surface of type (I.3) of Theorem

1.4.1 can be presented in any of the formats given in Theorem 4.2.4 for the corre-

sponding halfcanonical ring of the curve case. Although this can be done using the

extension algorithm, the calculations are far too long and insubstantial to be written

here in full. Thus I simply show how to write a minimal generating set for the mod-

ule of syzygies, setting the first step of the procedure in case the reader is interested

in doing the calculation. As an alternative, we can use a theorem of Zucconi that

characterises the minimal model of such surfaces to construct the canonical ring and

prove our claim. At the end, our main result (Theorem 6.3.2) shows that there is a

1-parameter flat family of rings with special fibre isomorphic to one of these trigonal

septic rings and general fibre a canonical ring of a surface of type (I.1).

6.1 The 64 syzygies

Let R be a ring as in Theorem 4.2.4, that is:

R = k[x1, x2, x3, y1, y2, y3, z1, z2]/I,

where the xi, yj and z` are indeterminates of degrees 1, 2 and 3 respectively, P =

P (xi, yj) is a homogeneous form of degree 4 and I is the ideal generated by the 2×2

minors of the following matrices:

A ∶=
⎛

⎝

x1 x2 y1 y2 z1

x2 x3 y2 y3 z2

⎞

⎠
,
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M ∶=
⎛

⎝

x1 x2 x3 y1 y2 z1

y1 y2 y3 z1 z2 P

⎞

⎠
and N ∶=

⎛

⎝

x2 x3 y2 y3 z2

y1 y2 z1 z2 P

⎞

⎠
,

then we have:

Proposition 6.1.1. The ideal I of relations of the ring R is minimally generated

by 20 elements with 64 independent syzygies holding between them.

Proof. (Sketch) I list and give names to 20 of the 35 minors of matrices A, M and

N . First take the 15 minors of M :

r1 ∶= x1y2 − x2y1

r2 ∶= x1y3 − x3y1

r3 ∶= x1z1 − y
2
1

r4 ∶= x1z2 − y1y2

r5 ∶= x1P − y1z1

r6 ∶= x2y3 − x3y2

r7 ∶= x2z1 − y1y2

r8 ∶= x2z2 − y
2
2

r9 ∶= x2P − y2z1

r10 ∶= x2z1 − y1y3

r11 ∶= x3z2 − y2y3

r12 ∶= x3P − y3z1

r13 ∶= y1z2 − y2z1

r14 ∶= y1P − z21
r15 ∶= y2P − z1z2

I only take 4 minors from matrix A:

r16 ∶= x1x3 − x
2
2 r17 ∶= x2y2 − x3y1 r18 ∶= y1y3 − y

2
2 r19 ∶= y2z2 − y3z1

and one from matrix N :

r20 ∶= y3P − z22 .

We can see that r1, . . . , r20 generate the same ideal as all the 35 minors to-

gether and that a minimal basis of the corresponding syzygy module has 64 elements

using Magma (execute the code in appendix A.10).

If interested, we can write explicitly 64 linearly independent syzygies (but we will

not for reasons of space) following this procedure:

1. The first 40 syzygies are obtained taking the 20 2×3 submatrices of matrix M

and cloning each of its rows to get a 3× 3 matrix whose determinant vanishes

by construction.

2. Repeat the above procedure with the three 2 × 3 submatrices of N that have
⎛

⎝

y3 z2

z2 P

⎞

⎠
as a submatrix. This gives 6 more syzygies involving r1, . . . r20 pro-

vided we write some of the relations appearing as 2 × 2 minors of N as linear

combinations of the ris. For example x2z2 − y1y3 is r8 − r19, etc.

3. The remaining 18 syzygies come from the following 9 submatrices of matrix

A:
⎛

⎝

x1 x2 y1

x2 x3 y2

⎞

⎠

⎛

⎝

x1 x2 y2

x2 x3 y3

⎞

⎠

⎛

⎝

x1 x2 z1

x2 x3 z2

⎞

⎠
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⎛

⎝

x2 y1 z1

x3 y2 z2

⎞

⎠

⎛

⎝

x1 y1 y2

x2 y2 y3

⎞

⎠

⎛

⎝

x2 y1 y2

x3 y2 y3

⎞

⎠

⎛

⎝

y1 y2 z1

y2 y3 z2

⎞

⎠

⎛

⎝

x1 y2 z1

x2 y3 z2

⎞

⎠

⎛

⎝

x2 y2 z1

x3 y3 z2

⎞

⎠

q.e.d.

Remark Listing the 64 syzygies was the reason because of which I found the format

that uses separately matrices M , A and N . A more beautiful way of presenting the

ideal as 2 × 2 minors of a matrix though, is to glue together A and N to get this

double symmetric 3 × 5 matrix:

S ∶=

⎛
⎜
⎜
⎜
⎝

x1 x2 y1 y2 z1

x2 x3 y2 y3 z2

y1 y2 z1 z2 P

⎞
⎟
⎟
⎟
⎠

obviously ⋀2 S generates I. S has two concatenated 3 × 3 symmetric blocks. If we

forget about our grading and set all variables to have degree 1, including P , then

Proj R, where R = k[x1, x2, x3, y1, y2, y3, z1, z2, P ]/ ⟨
2

⋀S⟩ (6.1)

is the third Veronese embedding of the blowup of P2 in one point. If I recover the

weights then (6.1) is a del Pezzo surface with two cyclic quotient singularities, one

of type 1
2(1,1) and the other 1

4(1,1). It is polarised by an ample divisor D̃ with

D̃2 = 7
4 and anticanonical divisor 2D̃. It is known that this surface is smoothable

to the ordinary del Pezzo surface of degree 7, but not while preserving the anti

semicanonical condition. Although this suggest a strategy to deform our trigonal

rings to the ones corresponding to family (I.1) of Theorem 1.4.1, the calculation

presents several difficulties. Therefore we will use a different strategy later on.

6.2 Calculation of R(S,KS)
The formats we obtained for the trigonal curve case suggest to construct surfaces of

type (I.3) as regular pullbacks from a key variety V defined by the 20 two by two

minors given in (6.1). Concretely, if V = Spec RV where

RV = k[x1, x2, x3, y1, y2, y3, z1, z2, P ]/ ⟨
2

⋀S⟩ (6.2)
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and S =
⎛
⎜
⎜
⎜
⎝

x1 x2 y1 y2 z1

x2 x3 y2 y3 z2

y1 y2 z1 z2 P

⎞
⎟
⎟
⎟
⎠

. We can consider the morphism

Spec k[x0, x1, x2, x3, y1, y2, y3, z1, z2] Ð→ Spec k[x1, x2, x3, y1, y2, y3, z1, z2, P ]

defined by xi ↦ xi, yi ↦ yi, zj ↦ zj for 1 ≤ i ≤ 3, 1 ≤ j ≤ 2; P ↦ P where P is

P (x0, x1, x2, x3, y1, y2, y3), then take the pullback of the subscheme defined by the

ideal generated by
2

⋀S and take the quotent by the k×-action defining the grading

to obtain a surface that must be of type (I.3). 1 As we will see, every surface of

type (I.3) can be obtained this way. The proof uses a result of Francesco Zucconi

that we state as the first part of the following theorem:

Theorem 6.2.1. Consider the toric variety T defined as a P(1,1,1,2)−bundle over

P1 by the variables and weights of the following table:

Variable t1 t2 X0 X1 X2 Y

Bi-degree 1 1 −1 −2 −4 −6
0 0 1 1 1 2

Let A be the divisor class of a fibre of the natural projection π ∶ TÐ→ P1 and

let T be a tautological divisor on T. Then:

1. S is a minimal surface of type (I.3) if and only if it is a complete intersection

(F,G), where F ∈ ∣ − 5A + 2T ∣, and G ∈ ∣ − 8A + 4T ∣ are given by the vanishing

of the following forms:

F ∶ t1Y −X0X2

G ∶ αY 2 +QY + c1X
4
1 +X2R

subject to the conditions:

a) c1 ∈ k
×.

b) α ∈H0(T,4A), α∣(t1=0) ≠ 0.

c) Q = c0X
2
0 + α1X0X1 + α2X

2
1 + α4X1X2 + α6X

2
2 , where c0 ∈ k× and αi ∈

H0(T, iA).

d) R = β1X
3
1 + β2X

2
1X2 + β3X1X

2
2 + β4X

3
2 , where βi ∈H

0(T,2iA).

1Probably an analogous construction could also make sense to get Calabi-Yau 3-folds, Fano
4-folds, etc.
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2. R(S,KS) is isomorphic to:

k[x0, x1, x2, x3, y1, y2, y3, z1, z2]/I,

where the xi, yj and z` have degrees 1, 2 and 3 respectively and there is a

homogeneous form P = P (xi, yj , z`) of degree 4 such that I is generated by the

2 × 2 minors of the following matrix:

⎛
⎜
⎜
⎜
⎝

x1 x2 y1 y2 z1

x2 x3 y2 y3 z2

y1 y2 z1 z2 P

⎞
⎟
⎟
⎟
⎠

.

Proof. For part 1 see [Zucconi], Main Theorem.

It remains to compute R(S,KS). Since KT = ∣11A − 5T ∣ it follows that the

canonical class of S is the restriction of ∣ − 2A + T ∣. Moreover for n ∈ N:

H0
(S,nKS) ≅H

0
(T,−2nA + nT )∣S . (6.3)

From here one sees that the canonical ring is minimally generated by the

following ordered sets (I omit the symbols of restricting sections to S for simplicity):

Degree 1: {x0, x1, x2, x3} ∶= {X1, t
2
1X2, t1t2X2, t

2
2X2} (6.4a)

Degree 2: {y1, y2, y3} ∶= {t21Y, t1t2Y, t
2
2Y } (6.4b)

Degree 3: {z1, z2} ∶= {t1X0Y, t2X0Y } (6.4c)

and it is clear that we have the following relations:

2

⋀
⎛

⎝

x1 x2 y1 y2 z1

x2 x3 y2 y3 z2

⎞

⎠
,

2

⋀
⎛

⎝

x1 x2 x3 y1 y2

y1 y2 y3 z1 z2

⎞

⎠
.

The equation F = 0 implies that t31X0Y
2 = t21X

2
0X2Y . Thus y1z1 = x1(X

2
0Y )∣S .

On the other hand, the equation G = 0 subject to the condition c) of the first part

of the theorem implies that

X2
0Y = −

1

c0
(c1X

4
1 +X2R + αY 2

+ Y (α1X0X1 + α2X
2
1 + α4X1X2 + α6X

2
2)). (6.5)

Therefore we have a relation of the form y1z1 − x1P where P is the right hand side

of equation (6.5) rendered in terms of the xi, yj and zj . The rest follows exactly as
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in the curve case from this point. q.e.d.

Remark I will call the format given in part 2 of Theorem 6.2.1, F (74)-format.

6.3 Relation with surfaces of type (I.1)

In this section I proof that the closures of the strata of canonical surfaces of type

(I.1) and (I.3) of Theorem 1.4.1 meet at a stratum in the boundary of the moduli

space. This stratum is formed by surfaces defined as Proj R where R is a ring of

the following form:

R ∶= k[x0, x1, x2, x3, y1, y2, y3, z1, z2]/I,

with xi, yj and z` of degrees 1, 2 and 3 respectively. I define P to be the degree 4

homogeneous form:

P ∶= a1x
3
0x2 + x

2
0A0 + x

2
1A1 + x

2
2A2 + x

2
3A3 + x1x2B1 + x2x3B2, (6.6)

where

A0 ∶= a2x
2
1 + a3x1x2 + a4x1x3 + a5x

2
2 + a6x2x3 + a7x

2
3,

A1 ∶= a8x0x1 + a9x0x2 + a10x
2
1 + a11x1x2 + a12x

2
2 + a13y1 + a14y2 + a15y3,

A2 ∶= a16x0x1 + a17x0x2 + a18x0x3 + a19x1x2 + a20x1x3 + a21x2x3 + a22x
2
3 + a23y3,

A3 ∶= a24x0x2 + a25x0x3 + a26x2x3 + a27x
2
3 + a28y3

B1 ∶= a29y2 + a30y3,

B2 ∶= a31y3,

a1, . . . , a31 ∈ C and I is generated by the 2 × 2 minors of

⎛
⎜
⎜
⎜
⎝

x1 x2 y1 y2 z1

x2 x3 y2 y3 z2

y1 y2 z1 z2 P

⎞
⎟
⎟
⎟
⎠

.

I will call the surfaces Proj R, with R a ring as defined above, surfaces of type (̃I.3).

Proposition 6.3.1. Every surface of type (̃I.3) has a small deformation to a surface

of type (I.3).

Proof. We are obtaining the rings corresponding to surfaces in the stratum (̃I.3)

from those of (I.3) simply by equating to zero some coefficients in the general degree
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4 form P = P (xi, yj , z`) of second part of Theorem 6.2.1. Therefore the result follows

immediately by the flexibility of the F (74)-format. q.e.d.

Remark 1. Surfaces of type (̃I.3) have singularities that are not rational double

points and therefore they are not canonical surfaces with K2 = 7 and pg = 4.

2. The key feature of the degree 4 form P defined in (6.6) is that is the most

general quartic in xi, yj , z`, up to the choice of different renderings obtained

using the toric relations given by
2

⋀
⎛

⎝

x1 x2 y1 y2 z1

x2 x3 y2 y3 z2

⎞

⎠
, that can be rolled

twice with respect to the following matrix:

⎛

⎝

x1 x2 x3 y2

y1 y2 y3 z2

⎞

⎠
.

This will play a crucial role in the next theorem.

Theorem 6.3.2. Every ring defining a surface in stratum (̃I.3) is the central fibre

of a flat family of rings over a small disc ∆0 ⊂ C whose general fibre is the canonical

ring of a surface in the stratum (I.1).

Proof. Let t ∈ ∆0 and let P be as in (6.6). Consider the following family of rings:

Rt ∶= k[x0, x1, x2, x3, y1, y2, y3, z1, z2]/It,

where It is the ideal generated by the following 3 sets of relations:

1. The 4 × 4 Pfaffians of the 6 × 6 skew matrix

G ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t z1 x1 x2 y1

z2 x2 x3 y2

0 P 0

y1 0

−z1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

2. The 4 × 4 Pfaffians of the 5 × 5 skew matrix

B ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

t x1 x2 y2

x2 x3 y3

y1 z1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.
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3. The 5 elements:
r16 ∶= x3z2 − y2y3,

r17(t) ∶= y22 − y1y3 + tP ,

r18(t) ∶= y2z2 − y3z1 + tP 1,

r19(t) ∶= y2 − x3P + tP 1,

r20(t) ∶= z22 − y3P + tP 2,

where P 1 is obtained from P by rolling factors with respect to the following

matrix:
⎛

⎝

x1 x2 x3 y2

y1 y2 y3 z2

⎞

⎠
(6.7)

and P 2 is obtained from P 1 in the same way. Explicitly:

P 1 ∶= a1x
3
0y2 + x

2
0A0,1 + x1y1A1 + x2y2A2 + x3y3A3 + y1x2B1 + y2x3B2,

P 2 ∶= a1x
3
0z2 + x

2
0A0,2 + y

2
1A1 + y

2
2A2 + y

2
3A3 + y1y2B1 + y2y3B2,

where

A0,1 ∶= a2x1y1 + a3y1x2 + a4y1x3 + a5x2y2 + a6y2x3 + a7x3y3,

A0,2 ∶= a2y
2
1 + a3y1y2 + a4y1y3 + a5y

2
2 + a6y2y3 + a7y

2
3.

By construction, the central fibre of this family is a ring whose Proj is a surface in

stratum (̃I.3) and I claim that the general fibre is isomorphic to a codimension 4

canonical ring of a surface of type (I.1). To prove this I will discuss each of the 20

relations when t ≠ 0, showing that only 11 of them are necessary to generate the

ideal and that they fit in the desired format.

The Pfaffians of G are:

12.45 = ty1 − x1x3 + x
2
2

12.56 = −tz1 − x2y2 + x3y1

12.35 = tP − x3z1 + x2z2

12.46 = x2y1 − x1y2

12.34 = x1z2 − x2z1

24.56 = −x2z1 + y1y2

12.36 = y1z2 − y2z1

13.45 = y1z1 − x1P

13.56 = −z21 + y1P

14.56 = −x1z1 + y
2
1

23.45 = y1z2 − x2P

23.56 = −z1z2 + y2P

13.46 = 0

23.46 = 0

34.56 = 0

using these, is easy to see that B gives us only 3 Pfaffians not included in previous

list that I call as follows:

r13(t) ∶= tz1 − x1y3 + x2y2 r14 ∶= x3y2 − x2y3 r15 ∶= y1y3 − x3z1.
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It is convenient start discussing these 3 relations: r14 is −

RRRRRRRRRRR

x2 x3

y2 y3

RRRRRRRRRRR

. Adding r13(t)

and 12.56 gives −

RRRRRRRRRRR

x1 x3

y1 y3

RRRRRRRRRRR

. Using 12.56 we have tx3z1 = x
2
3y1 − x2x3y2, but by the

previous 2 determinantal relations we have x23y1 = x1x3y3 and x2x3y2 = x
2
2y3. Thus

tx3z1 = x1x3y3 − x
2
2y3 and using 12.45 we get tx3z1 = ty1y3. Therefore r15 is redun-

dant, but allows me to write r17(t) as r17(t) ∶= y
2
2 − x3z1 + tP .

Next, I continue with the list of Pfaffians of G: 12.45 and 12.56 allow us

to write y1 and z1 in terms of the remaining variables. This will decrease the

codimension of the deformed ring by 2 whereas 12.35 is the degree 4 relation that

we will roll twice with respect to matrix (6.7). Moreover, substracting 12.35 to

relation r17(t) gives y22 − x2z2, which is −

RRRRRRRRRRR

x2 y2

y2 z2

RRRRRRRRRRR

.

Pfaffian 12.46 is −

RRRRRRRRRRR

x1 x2

y1 y2

RRRRRRRRRRR

whereas substracting 24.56 from 12.34 gives
RRRRRRRRRRR

x1 z2

y1 y2

RRRRRRRRRRR

.

This along with previous deduced determinantal relations and r16 gives us already

the following 6 relations in the general fibre ring:

2

⋀
⎛

⎝

x1 x2 x3 y2

y1 y2 y3 z2

⎞

⎠
.

Now using 12.56 we have ty2z1 = x3y1y2 −x2y
2
2. But by previous observation, x2y

2
2 =

x22z2 and by 24.56 and 12.34, x3y1y2 = x1x3z2. Thus ty2z1 = x1x3z2 − x
2
2z2 = ty1z2,

showing that 12.36 is redundant. Similarly, one shows that the remaining Pfaffians

of G are also redundant.

Finally, multiplying r17(t) by x3 gives tx3P = x3y1y3 − x3y
2
2, but x3y

2
2 =

x2y2y3, so using 12.56 we have tx3P = ty3z1. Thus x3P = y3z1, proving that r18(t)

and r19(t) are equivalent. Clearly r18(t) is obtained from 12.35 by rolling factors

with respect to matrix (6.7) and r20(t) is obtained from r19(t) the same way. There-

fore, the general fibre ring Rt is generated by ty1 −x1x3 +x
2
2, −tz1 −x2y2 +x3y1 and

the following 9 relations:

2

⋀
⎛

⎝

x1 x2 x3 y2

y1 y2 y3 z2

⎞

⎠
,

x2z2 − x3z1 + tP

y2z2 − y3z1 + tP 1 ≡ y2z2 − x3P + tP 1

z22 − y3P + tP 2

which proves my claim.

98



It remains to check that the family is flat. This can be done asking Magma

to verify that the Hilbert polynomial of Rt is the same as that of R0. Since this

calculation is essential for the proof, I include the codes here and not in the appendix.

The code to compute the Hilbert numerator of the general fibre ring is:

RR<t,dd,a1,a2,a3,a4,a5,a6,

a7,a8,a9,a10,a11,a12,

a13,a14,a15,a16,a17,a18,

a19,a20,a21,a22,a23,a24,

a25,a26,a27,a28,a29,a30,

b1,b2,b3,

b4,b5,b6,

b7,b8,b9,

x0,x1,x2,x3,y1,y2,y3,z1,z2> :=

PolynomialRing(Rationals(),

[0,0,0,0,0,0,0,0,

0,0,0,0,0,0,

0,0,0,0,0,0,

0,0,0,0,0,0,

0,0,0,0,0,0,

0,0,0,

0,0,0,

0,0,0,

1,1,1,1,2,2,2,3,3]);

A0:=a1*x1ˆ2+a2*x1*x2+a3*x1*x3

+a4*x2ˆ2+a5*x2*x3+a6*x3ˆ2;

A1:=a7*x0*x1+a8*x0*x2+a9*x0*x3

+a10*x1ˆ2+a11*x1*x2+a12*x1*x3

+a13*x2ˆ2+a14*x2*x3

+a15*x3ˆ2;

A2:=a16*x0*x1+a17*x0*x2+a18*x0*x3

+a19*x1*x2+a20*x1*x3

+a21*x2ˆ2+a22*x2*x3

+a23*x3ˆ2;

A3:=a24*x0*x1+a25*x0*x2+a26*x0*x3

+a27*x1*x2+a28*x1*x3

+a29*x2*x3

+a30*x3ˆ2;
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B1:=b1*y1+b2*y2+b3*y3;

B2:=b4*y1+b5*y2+b6*y3;

B3:=b7*y1+b8*y2+b9*y3;

A01:=a1*x1*y1+a2*y1*x2+a3*y1*x3+a4*x2*y2+a5*y2*x3+a6*x3*y3;

A02:=a1*y1ˆ2+a2*y1*y2+a3*y1*y3+a4*y2ˆ2+a5*y2*y3+a6*y3ˆ2;

P:=x0ˆ3*x2+x0ˆ2*A0+dd*x0*x1*x2*x3

+x1ˆ2*A1+x2ˆ2*A2+x3ˆ2*A3

+x1*x2*B1+x1*x3*B2+x2*x3*B3;

P1:=x0ˆ3*y2+x0ˆ2*A01+dd*x0*y1*x2*x3

+x1*y1*A1+x2*y2*A2+x3*y3*A3

+y1*x2*B1+y1*x3*B2+y2*x3*B3;

P2:=x0ˆ3*z2+x0ˆ2*A02+dd*x0*y1*y2*x3

+y1ˆ2*A1+y2ˆ2*A2+y3ˆ2*A3

+y1*y2*B1+y1*y3*B2+y2*y3*B3;

G:=AntisymmetricMatrix

([t,z1,z2,x1,x2,0,x2,x3,P,y1,y1,y2,0,0,-z1]);

B:=AntisymmetricMatrix([t,x1,x2,x2,x3,y1,y2,y3,z1,0]);

Pf1:=Pfaffians(G,4);

Pf2:=Pfaffians(B,4);

U:=[x3*z2-y2*y3, t*P-y1*y3+y2ˆ2,

y2*z2-y3*z1+t*P1, y2*z2-x3*P+t*P1,

z2ˆ2-y3*P+t*P2];

I1:=Ideal(Pf1);

I2:=Ideal(Pf2);

I3:=Ideal(U);

I0:=I1+I2+I3;

I:=MinimalBasis(I0);

I;

#I;

HilbertNumerator(I0);

To compute the Hilbert numerator of the special fibre one can use the same code,

erasing the degree zero generator and declaring t:=0;. In both cases one gets:

t17 − t15 −4t14 −3t13 +7t12 +10t11 +3t10 −13t9 −13t8 +3t7 +10t6 +7t5 −3t4 −4t3 − t2 +1.

q.e.d.

100



Chapter 7

Surfaces of type (III):

conjectures and future work

In this last chapter I discuss the main unsolved problems on surfaces with K2 = 7

and pg = 4. I expect these problems to be solved in the forthcoming months and I

state conjectures supported by particular examples and calculations.

I also mention a problem regarding a different class of surfaces (namely, those

with K2 = 6 and pg = 4) that should be solvable using our methods in the near future.

7.1 The moduli space MK2=7, pg=4

Our results together with previous work of Bauer, Catanese and Pignatelli, are

summarised in the following picture concerning the 10 strata of the moduli space of

surfaces with K2 = 7 and pg = 4 and the stratum (̃I.3) of Theorem 6.3.2:

(I.2) (̃I.3) (I.3)

(III.γ) (I.1)

(III.α) (0) (III.β)

(F.2) (F.1) (F ′)
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The colours indicate the irreducible component of the moduli space that each family

belongs to. Following the notation of Theorem 1.4.2, the colour correspondence is

as follows:

M7,4 =M(III.α) ∪M(0) ∪M(III.β).

It is known (also from Theorem 1.4.2) that

M(III.α) ∩M(III.β) = ∅

and Bauer claims that she proves

M(0) ∩M(III.α) ≠ ∅.

However the following 2 questions remain open:

1. Exactly how M(0) and M(III.α) intersect?

2. Is M(III.β) a connected component of the moduli space? In other words: Does

M(0) intersect M(III.β)?

7.2 Setting up a deformation of a hyperelliptic ring

A starting point to answer these questions is to consider the deformation families

of the codimension 8 rings described in Theorem 4.3.3. These rings have extensions

to surfaces belonging to (III.α), (III.β) and (III.γ):

Let C be a nonsingular genus 8 curve admitting a linear system ∣D∣ with

three distinct base points, P1, P2, P3 and satisfying the following properties:

1. ∣D∣ = P1 + P2 + P3 + 2g12.

2. 2D =KC .

Then the halfcanonical ring R ∶= R(C,D) = ⊕
n≥0

H0
(C,nD) is isomorphic to:

k[x1, x2, x3, y1, y2, y3, z1, z2, z3, z4]/I,

with generators of degrees 1,1,1,2,2,2,3,3,3,3 respectively and the ideal I is gen-

erated by the homogeneous forms obtained by taking the 2 × 2 minors of the 2 × 12
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matrix A, where

A ∶=
⎛

⎝

x1 x2 w1 w2 w3 w4 w5 w6 w7 z1 z2 z3

x2 x3 w2 w3 w4 w5 w6 w7 w8 z2 z3 z4

⎞

⎠
, (7.1)

with w1 ∶= y1,w5 ∶= y2,w8 ∶= y3 and the wi for i ∈ {2,3,4,6,7} are defined recursively:

w4 ∶= w5 + x1x3 = w5 + x
2
2,

w3 ∶= w4 + x1x2,

w2 = w3 + x
2
1;

w6 ∶= w5 − x2x3,

w7 ∶= w6 − x
2
3.

Plus 7 rolling factors relations of the form:

z21 − y
2
1 ⋅ (y1 +

7

∑
i=1
aiwi+1) − y

2
2 ⋅

⎛

⎝

8

∑
j=1

aj+7wj
⎞

⎠
, (7.2a)

z1z2 − y1w2 ⋅ (y1 +
7

∑
i=1
aiwi+1) − y2w6 ⋅

⎛

⎝

8

∑
j=1

aj+7wj
⎞

⎠
, (7.2b)

z1z3 − y1w3 ⋅ (y1 +
7

∑
i=1
aiwi+1) − y2w7 ⋅

⎛

⎝

8

∑
j=1

aj+7wj
⎞

⎠
, (7.2c)

z1z4 − y1w4 ⋅ (y1 +
7

∑
i=1
aiwi+1) − y2y3 ⋅

⎛

⎝

8

∑
j=1

aj+7wj
⎞

⎠
, (7.2d)

z2z4 − y1y2 ⋅ (y1 +
7

∑
i=1
aiwi+1) −w6y3 ⋅

⎛

⎝

8

∑
j=1

aj+7wj
⎞

⎠
, (7.2e)

z3z4 − y1w6 ⋅ (y1 +
7

∑
i=1
aiwi+1) −w7y3 ⋅

⎛

⎝

8

∑
j=1

aj+7wj
⎞

⎠
, (7.2f)

z24 − y1w7 ⋅ (y1 +
7

∑
i=1
aiwi+1) − y

2
3 ⋅

⎛

⎝

8

∑
j=1

aj+7wj
⎞

⎠
, (7.2g)

or any other rendering where possible. Moreover, the constants a1, . . . a15 ∈ k are

required to satisfy:

1. a15 ≠ 0,

2. ∑15
i=1 ai ≠ −1,

3. The polynomial 1 +∑15
i=1 ait

i has 15 distinct roots.

One sees that the ideal generated by the 2 × 2 minors of the following submatrix of
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A from (7.1):

A ∶=
⎛

⎝

x1 x2 w1 w4 w7 z1 z2 z3

x2 x3 w2 w5 w8 z2 z3 z4

⎞

⎠
(7.3)

suffice to generate the ideal

(
2

⋀A) .

I know several ways for presenting the rolling factor relations (7.2) together

with some of the relations coming from
2

⋀A. For example, we can define

Q ∶=w1 +
7

∑
i=1
aiwi+1, (7.4a)

R ∶=
8

∑
j=1

aj+7wj (7.4b)

and take the 4 × 4 Pfaffians of the following skew matrices:

B1 ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 z1 z2 z3 w1 w5 w7

z2 z3 z4 w2 w6 w8

0 0 −w5R w1Q w3Q

0 −w6R w2Q w4Q

−w7R w3Q w5Q

z1 z2

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (7.5a)

B2 ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 z1 z2 z3 w1 w5 w7

z2 z3 z4 w2 w6 w8

0 0 −w6R w2Q w4Q

0 −w7R w3Q w5Q

−w8R w4Q w6Q

z2 z4

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (7.5b)

both of weights

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 3 3 3 2 2 2

3 3 3 2 2 2

5 5 4 4 4

5 4 4 4

4 4 4

3 3

3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. As it is, this way of presenting the relations

is not useful, because the matrices do not have any zero of degree zero suggesting
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us how to deform the relations. This can be improved defining

E1 ∶=(x1 + x2 + x3)w1Q, (7.6a)

E2 ∶=E1 − x1w1Q, (7.6b)

Q1 ∶= −w1Q−w6R, (7.6c)

Q2 ∶= −w2Q−w7R, (7.6d)

Q3 ∶= −w5Q−w7R, (7.6e)

Q4 ∶= −w2Q−w8R (7.6f)

and replacing some of the 4×4 Pfaffians of (7.5) by the corresponding 4×4 Pfaffians

of one (or more) of the following skew matrices:

D1 ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 z2 x1 x2 w5

z3 x2 x3 w6

Q1 Q2 E1

0 z1

z2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (7.7a)

D2 ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 z2 x1 x2 w5

z3 x2 x3 w6

Q3 Q4 E2

0 z2

z3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (7.7b)

D3 ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 z1 x1 x2 w5

z2 x2 x3 w6

Q3 Q4 E2

0 z3

z4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (7.7c)

the three having weights

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 3 1 1 2

3 1 1 2

4 4 5

2 3

3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. This presentation suggests that is possible

to deform 5 of the relations so we can write one of the degree 2 generators and the

4 degree 3 generators in terms of the remaining variables. This would deform the

codimension 8 ring to a codimension 3 one. If we can extend such a calculation to

the surface case, it could be possible to construct flat families of rings whose special

fibre is the canonical ring of a surface in M(III.α) or M(III.β) and whose general
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fibre is the canonical ring of a surface of type (0).

I managed to do this calculation in the curve case. I deform 10 of the relations

defining the ideal of the ring of Theorem 4.3.3 and group them in two sets as follows:

Let f3 = f3(x1, x2, x3, y1, y3) be a general homogeneous form of degree 3. Let t ∈

∆0 ⊂ C be an affine parameter in a small disc around 0. Consider the following

relations:

x22 − x1x3 − t
2y2 (7.8a)

x1w2 − x2y1 − tz1 (7.8b)

x2w2 − x3y1 − tz2 (7.8c)

x2y2 − x3w4 − tz3 (7.8d)

x2y3 − x3w7 − tz4 (7.8e)

x1y2 − x2w4 + t
2x3y1 (7.9a)

x1y3 − x2w7 + t
2x3w4 (7.9b)

y1w7 −w
2
4 + tx1f3 (7.9c)

y1y3 − y2w4 + tx2f3 (7.9d)

w4y3 − y2w7 + t
3x3f3 (7.9e)

If t = 0, these 10 relations are combinations of the 2× 2 minors of matrix A of (7.1).

However if t ≠ 0, the first group implies that the general fibre ring is generated by

x1, x2, x3, y1, y3. Thus it has codimension 3. The second group of relations generate

exactly the same ideal as the 4 × 4 Pfaffians of the following 5 × 5 Mukai-type skew

matrix:

⎛
⎜
⎜
⎜
⎜
⎜
⎝

t2f3 ty1 w4 y2

tw4 w7 y3

x1 x2

tx3

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (7.10)

One then deforms the remaining relations so they become redundant with respect

to (7.8) and (7.9). Finally, it can be proved that both, the special and general fibre

rings have the same Hilbert series:

t4 + t3 + 3t2 + t + 1

t2 − 2t + 1
.
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Whence we have a flat family of Gorenstein rings.

This calculation certainly extends straightforwardly to surfaces of type (III.γ),

since the liftings of the relations (7.8) and (7.9) have the same form because of the

canonical image of the surface being the quadratic cone.

7.2.1 Stephen Coughlan’s example

One problem with the above strategy is that for surfaces of types (III.α) and

(III.β), whose canonical image is P1 ×P1, the extensions of the halfcanonical rings

are more subtle. For instance, if we want the halfcanonical ring to have the same

form as in Theorem 4.3.3, we need to start writing the first 2 × 2 minor of matrix

(7.1) in the form
RRRRRRRRRRR

sx0 + x1 x2

sx1 + x2 x3

RRRRRRRRRRR

for some constant s, or something similar. Despite

these difficulties, I think that we can perform a completely analogous deformation

calculation starting from a convenient presentation of a canonical ring of a surface

of type (III.α) or (III.β) not necessarily obtained as an extension of one of our

halfcanonical curve rings.

The evidence that makes me think that such deformations might exist comes

from some examples that I learnt from Stephen Coughlan. He constructs a surface

with S of type (III.α) in an analogous way to Zucconi’s construction of surfaces of

type (I.3) (cf. [Zucconi]):

Consider the toric variety T defined as a P(1,1,2,3)−bundle over P1 by the

variables and weights of the following table:

Variable t1 t2 X1 X2 Y Z

Bi-degree 1 1 0 0 −3 0
0 0 1 1 2 3

Let A be the divisor class of a fibre of the natural projection π ∶ TÐ→ P1 and

let T be a tautological divisor on T. Consider F ∈ H0(T,2T ) and G ∈ H0(T,6T )

given by

F ∶ t1t2(t1 + t2)Y −X1X2 (7.11a)

G ∶ Z2
− β9Y

3
− β6γ2Y

2
− β3γ4Y − γ6. (7.11b)
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Then for a sufficiently general choice of βi ∈ S
i(t1, t2) and γj ∈ S

j(X1,X2), the com-

plete intersection (F = 0) ∩ (G = 0) is a surface of type (III.α).

For illustrative purposes, take

G ∶= Z2
− (t91 + t

9
2)Y

3
−X6

1 −X
6
2 . (7.12)

We have KT = ∣A − 7T ∣. Thus KS = ∣A + T ∣S . Then one sees that the canonical ring

can be minimally generated by the following ordered sets (I omit the symbols of

restricting sections to S for simplicity):

Degree 1: {x0, x1, x2, x3} ∶= {t1X1, t2X1, t1X2, t2X2} (7.13a)

Degree 2: {y1, y2, y3} ∶= {t51Y, t
3
1t

2
2Y, t

5
2Y } (7.13b)

Degree 3: {z1, z2, z3, z4} ∶= {t31Z, t
2
1t2Z, t1t

2
2Z, t

3
2Z} (7.13c)

It is also useful to name the restrictions of S5(t1, t2) ⊗ Y to S as follows:

w1 ∶= t
5
1Y = y1 (7.14a)

w2 ∶= t
4
1t2Y (7.14b)

w3 ∶= t
3
1t

2
2Y = y2 (7.14c)

w4 ∶= t
2
1t

3
2Y (7.14d)

w5 ∶= t1t
4
2 (7.14e)

w6 ∶= t
5
2Y = y3 (7.14f)

and using F = 0 so we get the following equations:

w2 = x0x2 − y2 (7.15a)

w4 = x0x3 − y2 (7.15b)

w5 = x3(x1 − x0) + y2 (7.15c)

Then by construction, we have the following relations in the canonical ring R(S,KS):

2

⋀
⎛

⎝

x0 x2 w1 w2 w3 w4 w5 z1 z2 z3

x1 x3 w2 w3 w4 w5 w6 z2 z3 z4

⎞

⎠
. (7.16)
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These of course generate the same ideal as

2

⋀
⎛

⎝

x0 x2 w1 w2 w5 z1 z2 z3

x1 x3 w2 w3 w6 z2 z3 z4

⎞

⎠
. (7.17)

or
2

⋀
⎛

⎝

x0 x2 w1 w3 w5 z1 z2 z3

x1 x3 w2 w4 w6 z2 z3 z4

⎞

⎠
. (7.18)

Now we have a relation

z21 −w
3
1 −w

2
3w6 − x

6
0 − x

6
2 (7.19)

that can be deduced multiplying (7.12) by t61. Finally, there are another 6 relations

that can be obtained from (7.19) by rolling factors with respect to matrix (7.16),

namely:

z1z2 −w
2
1w2 −w3w4w6 − x

5
0x1 − x

5
2x3 (7.20a)

z1z3 −w1w
2
2 −w

2
4w6 − x

4
0x

2
1 − x

4
2x

2
3 (7.20b)

z1z4 −w
3
2 −w4w5w6 − x

3
0x

3
1 − x

3
2x

3
3 (7.20c)

z2z4 −w
2
2w3 −w

2
5w6 − x

2
0x

4
1 − x

2
2x

4
3 (7.20d)

z3z4 −w2w
2
3 −w5w

2
6 − x0x

5
1 − x2x

5
3 (7.20e)

z24 −w
3
3 −w

3
6 − x

6
1 − x

6
3. (7.20f)

From this point, one checks that S =Proj R where

R ∶= k[x0, x1, x2, x3, y1, y2, y3, z1, z2, z3, z4]/I (7.21)

and I is the ideal generated by the 2 × 2 minors of (7.17) and the 7 rolling factors

relations (7.19) and (7.20) is an integral scheme of dimension 2. The invariants

K2
S = 7 and pg = 4 are given by construction.

The final step is to observe that the trick to deform the halfcanonical ring

of section §7.2 can also be done in this example. Indeed, let t ∈ ∆0 ⊂ C be an

affine parameter in a small neighbourhood of 0. Let F3 = F3(x0, x1, x2, x3, y1, y3) be
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a homogeneous form of degree 3. Then the following set of relations:

x0x3 − x1x2 + t
2y2 (7.22a)

x0w2 − x1y1 + tz1 (7.22b)

x0y2 − x1w2 + tz2 (7.22c)

x0y3 − x1w5 + tz3 (7.22d)

x2w2 − x3y1 + tz4 (7.22e)

x3w2 − x2y2 + t
2x1y1 (7.23a)

x3w5 − x2y3 + t
2x1w4 (7.23b)

−w2y3 + y2w5 + t
3x1F3 (7.23c)

−w2w4 + y1w5 + tx2F3 (7.23d)

−y2w4 + y1y3 + tx3F3 (7.23e)

restrict when t = 0 to relations identical to 10 relations in the ideal I, whereas for

t ≠ 0 (7.22) imply that the general fibre ring has codimension 3 and the five relations

(7.23) generate the same ideal as the 4 × 4 Pfaffians of the 5 × 5 skew matrix

⎛
⎜
⎜
⎜
⎜
⎜
⎝

t2F3 w2 y2 ty1

w5 y3 tw4

tx1 x2

x3

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

One sees that the Hilbert series remains invariant for all t:
−t4 − t3 − 3t2 − t − 1

t3 − 3t2 + 3t − 1
.

I do not see any serious reason for an analogous calculation not being possible if

we consider some special surfaces of type (III.β). Since M(III.β) is an irreducible

component of dimension 38 of the moduli space, we cannot deform a general member

of the component to a surface in M(0) which has dimension 36. Therefore one

should start from a cleverly chosen particular subfamily for which our strategy can

be followed. This leads to conjecture that M(III.β) is not a connected component

of the moduli space, but actually intersects M(0). Although almost certainly there

are even more possible degenerations/deformations to be found, I believe that the
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ones depicted below with purple arrows exist:

(I.2) (̃I.3) (I.3)

(III.γ) (I.1)

(III.α) (0) (III.β)

(F.2) (F.1) (F ′)
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Appendix

Magma codes

A.0 Sanity check for the baby example

RRgr<x1,x2,x3,y1,y2> :=

PolynomialRing(Rationals(),[1,1,1,2,2]);

A1:= AntisymmetricMatrix

(RRgr,[0,x1,x2,x2,x3,y2,y1,y2,-x2*x3ˆ2,-x1ˆ2*x2]);

A2:= AntisymmetricMatrix

(RRgr,[0,x1,x2,x2,x3,y1,y1,y2,-x2ˆ2*x3,-x1ˆ3]);

Pf1:=Pfaffians(A1,4);

Pf2:=Pfaffians(A2,4);

I1:=Ideal(Pf1);

I2:=Ideal(Pf2);

I:=I1+I2;

J:=MinimalBasis(I);

MinimalBasis(SyzygyModule(J));
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A.1 Rolling factors presentation, sextic with two nodes

RRgr<x1,x2,x3,y1,y2,z> :=

PolynomialRing(Rationals(),[1,1,1,2,2,3]);

M:= Matrix(RRgr,2,4,[x1,x2,x3,y1+y2,x2*x3,y1,y2,z]);

M0:=Minors(M,2);

L:=y1;

C1:=x1ˆ2;

C2:=x2ˆ2;

C3:=x3ˆ2;

I1:=Ideal([(y1+y2)ˆ2+x2*x3*L+x1ˆ2*C1+x2ˆ2*C2+x3ˆ2*C3,

(y1+y2)*z+y1*x3*L+x1*x2*x3*C1+x2*y1*C2+x3*y2*C3,

zˆ2+y1*y2*L+x2ˆ2*x3ˆ2*C1+y1ˆ2*C2+y2ˆ2*C3]);

I0 := Ideal(M0);

I:=MinimalBasis(I1+I0);

X:=Scheme(Proj(RRgr), I);

IsReduced(X);

IsIrreducible(X);

IsSingular(X);

Dimension(X);

C:=Curve(X);

Genus(C);
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A.2 Extrasymmetric presentation, sextic with two nodes

RRgr<x1,x2,x3,y1,y2,z> :=

PolynomialRing(Rationals(),[1,1,1,2,2,3]);

Q1:=x2*x3;

Q2:=x1ˆ2;

Q3:=y1;

Q4:=x3ˆ2;

F3:=-x2ˆ3;

P:= AntisymmetricMatrix([0,y2,x3,Q1,x1,z+F3,y1+y2,x2+x3,

x1*Q2,x2*Q3+x3*Q4,z,y1+y2,Q1*Q2,y1*Q3+y2*Q4,0]);

Pf := Pfaffians(P,4);

I0:=Ideal(Pf);

I:=MinimalBasis(Ideal(I0));

S0:=SyzygyModule(I);

S:=MinimalBasis(S0);

S;

X:=Scheme(Proj(RRgr), I);

Dimension(X);

IsReduced(X);

IsIrreducible(X);

IsSingular(X);

C:=Curve(X);

Genus(C);
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A.3 AM(TA)-presentation, bielliptic family

RRgr<x1,x2,x3,y1,y2,z> :=

PolynomialRing(Rationals(),[1,1,1,2,2,3]);

a:=1;

b:=1;

Q1:=x1ˆ2;

Q2:=x1*x3;

Q3:=x2*x3;

A:= Matrix(RRgr,2,4,[x1,x2,x3,y2,x2ˆ2,x3ˆ2-a*x1*x2-b*x1ˆ2,y1,z]);

M:= Matrix(RRgr,4,4,[Q1,0,0,0,0,Q2,0,0,0,0,Q3+y1,0,0,0,0,-1]);

R:=A*M*(Transpose(A));

A0:= Minors(A,2);

I0:=Ideal(A0);

I1:=Ideal([R[1,1],R[1,2],R[2,2]]);

I:=I1+I0;

X:=Scheme(Proj(RRgr), I);

Dimension(X);

IsReduced(X);

IsIrreducible(X);

IsSingular(X);

C:=Curve(X);

Genus(C);
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A.4 Rolling factors for trigonal curves

RRgr<x1,x2,x3,y1,y2,y3,z1,z2> :=

PolynomialRing(Rationals(),[1,1,1,2,2,2,3,3]);

F:=y1ˆ2+y3ˆ2;

G:=x1ˆ4-x3ˆ4;

H:=x2*x3*y1-x2ˆ2*y2;

P:=F+G+H;

A:=Matrix(RRgr,2,5,[x1,x2,y1,y2,z1,x2,x3,y2,y3,z2]);

M:=Matrix(RRgr,2,6,[x1,x2,x3,y1,y2,z1,y1,y2,y3,z1,z2,P]);

N:=Matrix(RRgr,2,5,[x2,x3,y2,y3,z2,y1,y2,z1,z2,P]);

I1:=Ideal(Minors(A,2));

I2:=Ideal(Minors(M,2));

I3:=Ideal(Minors(N,2));

I0:=I1+I2+I3;

I:=MinimalBasis(Ideal(I0));

I;

X:=Scheme(Proj(RRgr), I);

C:=Curve(X);

Genus(C);
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A.5 First Pfaffian presentation of the trigonal family

RRgr<x1,x2,x3,y1,y2,y3,z1,z2> :=

PolynomialRing(Rationals(),[1,1,1,2,2,2,3,3]);

F:=y1ˆ2+y3ˆ2;

G:=x1ˆ4-x3ˆ4;

H:=x2*x3*y1-x2ˆ2*y2;

P:=F+G+H;

O:= AntisymmetricMatrix([0,x1,x2,x2,x3,x2,y1,y2,y1,0,0,0,

y1,y2,z1,0,0,y2,y3,z2,0,0,0,z1,z2,P,0,0]);

Pf := Pfaffians(O,4);

I0:=Ideal(Pf);

I:=MinimalBasis(Ideal(I0));

I;

X:=Scheme(Proj(RRgr), I);

C:=Curve(X);

Genus(C);
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A.6 Nonsingularity of the trigonal curves

RRgr<x1,x2,x3,y1,y2,y3> :=

PolynomialRing(Rationals(),[1,1,1,2,2,2]);

F:=y1ˆ2+y3ˆ2;

G:=x1ˆ4-x3ˆ4;

H:=x2*x3*y1-x2ˆ2*y2;

P:=F+G+H;

A:=Matrix(RRgr,2,4,[x1,x2,y1,y2,x2,x3,y2,y3]);

I1:=Ideal(Minors(A,2));

I2:=Ideal([y1ˆ3-x1ˆ2*P,y1ˆ2*y2-x1*x2*P,y2ˆ2*y1-x2ˆ2*P,

y2ˆ3-x3*x2*P,y2ˆ2*y3-x3ˆ2*P]);

I0:=I1+I2;

I:=MinimalBasis(Ideal(I0));

X:=Scheme(Proj(RRgr), I);

C:=Curve(X);

Genus(C);

IsSingular(C);
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A.7 Two towers presentation of the trigonal family

RRgr<x1,x2,x3,y1,y2,y3,z1,z2> :=

PolynomialRing(Rationals(),[1,1,1,2,2,2,3,3]);

F:=y1ˆ2+y3ˆ2;

G:=x1ˆ4-x3ˆ4;

H:=x2*x3*y1-x2ˆ2*y2;

P:=F+G+H;

T1:= AntisymmetricMatrix([0,z1,z2,x1,x2,0,x2,x3,P,

y1,y1,y2,0,0,-z1,y2,y3,0,0,-z2,0]);

T2:= AntisymmetricMatrix([0,z1,z2,x2,x3,0,x1,x2,P,

y2,y2,y3,0,0,-z2,y1,y2,0,0,-z1,0]);

Pf1 := Pfaffians(T1,4);

Pf2 := Pfaffians(T2,4);

I1:=Ideal(Pf1);

I2:=Ideal(Pf2);

I0:=I1+I2;

I:=MinimalBasis(Ideal(I0));

I;

X:=Scheme(Proj(RRgr), I);

C:=Curve(X);

Genus(C);

119



A.8 Rolling factors presentation, hyperelliptic family

RRgr<x1,x2,x3,y1,y2,y3,z1,z2,z3,z4> :=

PolynomialRing(Rationals(),[1,1,1,2,2,2,3,3,3,3]);

w1:=y1;

w5:=y2;

w8:=y3;

w4:=w5+x1*x3;

w3:=w4+x1*x2;

w2:=w3+x1ˆ2;

w6:=w5-x2*x3;

w7:=w6-x3ˆ2;

A:=Matrix(RRgr,2,12,[x1,x2,w1,w2,w3,w4,w5,w6,w7,

z1,z2,z3,x2,x3,w2,w3,w4,w5,w6,w7,w8,z2,z3,z4]);

I1:=Ideal(Minors(A,2));

Rf:=[z1ˆ2-y1ˆ3-y2ˆ2*y3,

z1*z2-y1ˆ2*w2-y2*w6*y3,

z1*z3-y1ˆ2*w3-y2*w7*y3,

z1*z4-y1ˆ2*w4-y2*y3ˆ2,

z2*z4-y1ˆ2*w5-w6*y3ˆ2,

z3*z4-y1ˆ2*w6-w7*y3ˆ2,

z4ˆ2-y1ˆ2*w7-y3ˆ3];

I2:=Ideal(Rf);

I0:=I1+I2;

I:=MinimalBasis(I0);

I;

X:=Scheme(Proj(RRgr), I);

Dimension(X);

IsReduced(X);

IsIrreducible(X);

C:=Curve(X);

Genus(C);
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A.9 Nonsingularity of the codimension 4 deformation

family

RR<x0,x1,x2,x3,y1,y2,z> :=

PolynomialRing(Rationals(),[1,1,1,1,2,2,3]);

t:=1/2;

a1:=1;

a2:=0;

a3:=1;

a4:=0;

a5:=0;

a6:=3;

a7:=1;

a8:=2;

Q:=x3ˆ2-a3*x1*x2-a4*x1ˆ2+x0*(a5*x1+a6*x2+a7*x3)+a8*x0ˆ2;

a9:=1;

a10:=0;

a11:=0;

a12:=0;

a13:=0;

a14:=0;

a15:=4;

a16:=0;

a17:=3;

a18:=1;

Q1:=a9*x1ˆ2+a10*x1*x2+a11*x1*x3+a12*x2ˆ2+a13*x2*x3+a14*x3ˆ2

+(a15*x1+a16*x2+a17*x3)*x0+a18*x0ˆ2;

a23:=-1;

a24:=-2;

a25:=0;

a26:=1;

Q2:=(a23*x1+a24*x2+a25*x3)*x0+a26*x0ˆ2;

a29:=0;

a30:=1;

a31:=0;

a32:=0;

a33:=3;
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a34:=3;

Q3:=a29*x1*x2+a30*y1+(a31*x1+a32*x2+a33*x3)*x0+a34*x0ˆ2;

a19:=0;

a20:=0;

a21:=0;

a22:=0;

a27:=0;

a28:=0;

a35:=0;

A:= Matrix(RR,2,4,[x1,x2,x3,y2,

x2ˆ2+a1*x0*x2+a2*x0ˆ2+t*y2,Q+t*x1*x3,y1,z]);

A1:= Minors(A,2);

I1:=Ideal(A1);

M:=Matrix(RR,4,4,[Q1+t*y2,(1/2)*(a19*x0ˆ2),

(1/2)*(a20*x2*x0+a21*x0ˆ2),(1/2)*a22*x0,

(1/2)*(a19*x0ˆ2),Q2+t*x2ˆ2,(1/2)*a27*x0ˆ2,(1/2)*a28*x0,

(1/2)*(a20*x2*x0+a21*x0ˆ2),(1/2)*a27*x0ˆ2,Q3,(1/2)*a35*x0,

(1/2)*a22*x0,(1/2)*a28*x0,(1/2)*a35*x0,-1]);

R:=A*M*(Transpose(A));

I2:=Ideal([R[1,1],R[1,2],R[2,2]]);

I:=Ideal(I1+I2);

MinimalBasis(I);

X:=Scheme(Proj(RR), I);

Dimension(X);

IsSingular(X);

J:=EliminationIdeal(I,x0,x1,x2,x3);

MinimalBasis(J);
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A.10 Generators and syzygies in codimension 6

RR<x1,x2,x3,y1,y2,y3,z1,z2,P> :=

PolynomialRing(Rationals(),[1,1,1,2,2,2,3,3,4]);

A:=Matrix(RR,2,5,[x1,x2,y1,y2,z1,x2,x3,y2,y3,z2]);

M:=Matrix(RR,2,6,[x1,x2,x3,y1,y2,z1,y1,y2,y3,z1,z2,P]);

N:=Matrix(RR,2,5,[x2,x3,y2,y3,z2,y1,y2,z1,z2,P]);

IA:=Ideal(Minors(A,2));

IM:=Ideal(Minors(M,2));

IN:=Ideal(Minors(N,2));

Ia:=Ideal([x1*x3-x2ˆ2, x2*y2-x3*y1, y1*y3-y2ˆ2, y2*z2-y3*z1]);

In:=Ideal([z2ˆ2-y3*P]);

I1:=IA+IM+IN;

I2:=Ia+IM+In;

#MinimalBasis(I1);

#MinimalBasis(I2);

#MinimalBasis(SyzygyModule(MinimalBasis(I1)));

#MinimalBasis(SyzygyModule(MinimalBasis(I2)));
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