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Abstract

Discrete time analogues of ergodic stochastic differential equations (SDEs) are one of
the most popular and flexible tools for sampling high-dimensional probability measures.
Non-asymptotic analysis in the L2 Wasserstein distance of sampling algorithms based on
Euler discretisations of SDEs has been recently developed by several authors for log-concave
probability distributions. In this work we replace the log-concavity assumption with a log-
concavity at infinity condition. We provide novel L2 convergence rates for Euler schemes,
expressed explicitly in terms of problem parameters. From there we derive non-asymptotic
bounds on the distance between the laws induced by Euler schemes and the invariant laws
of SDEs, both for schemes with standard and with randomised (inaccurate) drifts. We also
obtain bounds for the hierarchy of discretisation, which enables us to deploy a multi-level
Monte Carlo estimator. Our proof relies on a novel construction of a coupling for the Markov
chains that can be used to control both the L1 and L2 Wasserstein distances simultaneously.
Finally, we provide a weak convergence analysis that covers both the standard and the ran-
domised (inaccurate) drift case. In particular, we reveal that the variance of the randomised
drift does not influence the rate of weak convergence of the Euler scheme to the SDE.

1 Introduction

Our primary aim is to study non-asymptotic properties of Markov chains that typically arise
as approximations of ergodic solutions of stochastic differential equations on Rd. The simplest
example is a process (Xk)

∞
k=0 defined as{
Xk+1 = Xk + b(Xk)h+

√
hξk+1 , k ≥ 0 ,

X0 ∼ µ0 ,
(1.1)

where h > 0 is the discretisation parameter and (ξk)
∞
k=1 are i.i.d. random variables with the stan-

dard normal distribution N(0, I). Here µ0 ∈ P2(Rd), the space of square integrable probability
measures on Rd, and b : Rd → Rd is a drift function. We use the notation L(Xk) := Law(Xk)
and our main goal is to quantify convergence of L(Xk) using the Lp-Wasserstein distance with
p ∈ {1, 2}, defined for probability measures µ, ν ∈ Pp(Rd) as

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
Rd×Rd

|x− y|p π(dx dy)

)1/p

, (1.2)

where Π(µ, ν) denotes the family of all couplings between µ and ν, i.e., all measures on
B(Rd × Rd) such that π(B × Rd) = µ(B) and π(Rd × B) = ν(B) for every B ∈ B(Rd).
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Here | · | =
√
〈· , ·〉 is the Euclidean distance on Rd. We will also work with a special class of L1-

Wasserstein (pseudo) distances denoted byWf in which the Euclidean distance |x−y| is replaced
by f(|x − y|) for some increasing function f : [0,∞) → [0,∞). Namely, we put Wf (µ, ν) :=
infπ∈Π(µ,ν)

∫
Rd×Rd f(|x − y|)π(dx dy). We remark that Wasserstein distances are typically pre-

ferred metrics when quantifying the quality of sampling methods, see [ACB17, DK19, GDVM16].
Convergence in Wasserstein distances is typically investigated under the contractivity con-

dition on the drift, i.e., under the assumption that there exists a constant K > 0 such that

〈x− y, b(x)− b(y)〉 ≤ −K|x− y|2 for all x, y ∈ Rd . (1.3)

If b(x) = −∇U(x) for a function U ∈ C2(Rd), this condition corresponds to strong convexity
of U , whereas a probability measure µ such that µ(dx) ∝ exp(−U(x))dx is then called log-
concave. Convergence analysis for several sampling algorithms under condition (1.3) and the
Lipschitz continuity of the drift has been recently performed in the L2-Wasserstein distance in
papers such as [DK19, BFFN19, DM16, CFM+18].

In this work instead of (1.3) we work with the following assumptions.

Assumptions 1.1 (Contractivity at infinity). Function b : Rd → Rd satisfies the following con-
ditions:

i) Lipschitz condition: there is a constant L > 0 such that

|b(x)− b(y)| ≤ L|x− y| for all x, y ∈ Rd . (1.4)

ii) Contractivity at infinity condition: there exist constants K, R > 0 such that

〈x− y, b(x)− b(y)〉 ≤ −K|x− y|2 for all x, y ∈ Rd with |x− y| > R . (1.5)

This enables us to cover a much wider class of SDEs, including e.g. equations with drifts
given by double-well potentials (see the example in Section 2.1). We will show in Section 2.1
that tools typically used in the global contractivity setting to study convergence in Wasserstein
distances, such as the synchronous coupling and Talagrand’s inequality, do not necessarily work
under Assumptions 1.1. This forces us to look for an alternative approach.

Our method is based on the idea of controlling the standard Wasserstein distances W1 and
W2 by specially constructed (pseudo) distances Wf based on functions f : [0,∞)→ [0,∞) that
are concave on a compact interval and strictly convex at infinity. In order to briefly introduce
our approach, let us focus on a single step Xx

h of an Euler scheme started at x ∈ Rd, i.e.,
Xx
h = x+ b(x)h+

√
hξ, where ξ ∼ N(0, I). If we now choose y ∈ Rd, y 6= x and consider Y y

h =

y+ b(y)h+
√
hη with an arbitrarily chosen η ∼ N(0, I), then L(Y y

h ) = L(Xy
h) and straight from

the definition of the Wasserstein distance Wf we see that Wf (L(Xx
h),L(Xy

h)) ≤ Ef(|Xx
h − Y

y
h |),

since the joint law of (Xx
h , Y

y
h ) is a coupling of L(Xx

h) and L(Xy
h). Hence in order to obtain sharp

upper bounds on Wf (L(Xx
h),L(Xy

h)), one needs to be able to find pairs (Xx
h , Y

y
h ) that make

Ef(|Xx
h − Y

y
h |) as small as possible by choosing the joint distribution of (ξ, η) in an appropriate

way. However, in the present paper we are interested not only in quantifying distances between
laws of Euler schemes started at different points, but also in distances between laws of Euler
schemes and their perturbed versions. Namely, let Ỹ be an arbitrarily chosen random variable.
Under Assumptions 1.1 we are able to prove the following inequality (see Theorem 2.5 and the
comments after its proof) for all sufficiently small h > 0 with constants c, C > 0.

Ef(|Xx
h − Ỹ |) ≤ (1− ch)f(|x− y|) + C(1 + |x− y|)(E|Ỹ − Y y

h |+ E|Ỹ − Y y
h |

2) . (1.6)
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The idea behind this result is that if Ỹ is chosen as a perturbation of Y y
h such that we can control

the distance between Ỹ and Y y
h in the L1 and L2 norms, then we can also control the distance

between Ỹ and Xx
h , via an auxiliary pseudo distance function f that dominates all Lp distances

for p ∈ [1, 2]. The exact form of the function f and all the constants will be given in Theorem
2.5. The important fact is that the function f is chosen in such a way that there exist constants
a, A such that r < af(r) and r2 < Af(r) for r ∈ [0,∞) (see Lemma 2.3) and hence (1.6) yields
bounds for W1 and W2 distances.

Our inequality (1.6) is related to other perturbation results for Wasserstein distances, see
the discussion in Section 2.3 of [EM19] and papers such as [RS18, PS14, HZ17]. As we explain
in the sequel, examples of processes that we consider in this paper as perturbed versions of
Euler schemes include an SDE (Section 2.3), an Euler scheme with a randomised drift (Section
2.4) and an Euler scheme with a different discretisation level (Section 2.5).

The Markov chain given by (1.1) arises as a discretisation of a diffusion process given by

dYt = b(Yt) dt+ dWt , (1.7)

where (Wt)t≥0 is a standard Brownian motion. Assumptions 1.1 guarantee that the solution
does not blow up on [0,∞), see Chapter 3 in [Kha12]. It can be shown that the corresponding
semigroup is Feller and consequently the Krylov-Bogolyubov theorem yields the existence of
a unique invariant measure π. We remark that the asymptotic results on the discretisation of
(1.7) in the context of approximating invariant measures are rather well understood. We refer
to [Tal90, LP02, Pan08, PP12] for a thorough overview on that topic.

Working with the global contractivity (1.3) assumption and the Euler discretisation (1.1)
with either constant or variable time-step, several authors in a series of papers [Dal17, DM17,
DM16, CB18] obtained precise bounds on W2(L(Xk), π) in terms of dimension and problem
parameters. These bounds have been then improved in [DK19]. Here we obtain precise con-
vergence rates in the L1 and L2-Wasserstein distances working only with Assumptions 1.1. In
particular, our bound is reminiscent of the bounds in [DK19, DM16] for the constant step size
algorithms. Indeed we show the following result.

Theorem 1.2. Suppose that Assumptions 1.1 are satisfied. Then there exist a function f and
constants h0, ĉ1, ĉ2, C1, C2, c̃1, c̃2 > 0 such that for all h ∈ (0, h0)

W2(L(Xk), π) ≤ C2(1− ĉ2h)k/2 (Wf (L(X0), π))1/2 + c̃2h
1/4 (1.8)

and
W1(L(Xk), π) ≤ C1(1− ĉ1h)kWf (L(X0), π) + c̃1h

1/2 . (1.9)

The precise values of all the constants and the formula defining the function f in Theorem
1.2 will be given in Section 2.3.

Our next observation is that the perturbation inequality (1.6) sheds light onto stochastic
gradient algorithms or Langevin models with inaccurate/randomised gradients. Examples of
such processes have been used in [WT11] in the context of sampling and studied in [DK19,
RRT17, TTV16, VZT16, NDH+17]. We remark that randomisation is a successful technique
that is known to improve convergence properties for problems with non-smooth coefficients
[KW17, PM14, JN09]. We define a function b̄ : Rd × Rn → Rd. Consider an Rn-valued random
variable U such that E[b̄(x, U)] = b(x) for all x ∈ Rd. Let (ξk)

∞
k=1, as before, be i.i.d. with

ξk ∼ N(0, I) and take i.i.d. copies (Uk)
∞
k=0 of U that are independent of (ξk)

∞
k=1. We define the

following Markov chain{
X̄k+1 = X̄k + b̄(X̄k, Uk)h+

√
hξk+1 , k ≥ 0 ,

X̄0 ∼ µ0 .
(1.10)
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Note that for each k, the random variable X̄k is independent of Uk and that E[b̄(X̄k, Uk)|X̄k] =
b(X̄k). For each k we consider the conditional variance V[b̄(X̄k, Uk)|X̄k] := E[|b̄(X̄k, Uk) −
b(X̄k)|2|X̄k], which as we shall see plays a key role in our analysis in Section 2.4. We need
to impose the following assumption.

Assumption 1.3 (Variance of inaccurate drift). There exist constants σ, α > 0 such that for any
x ∈ Rd, any h > 0 and any random variable U such that E[b̄(x, U)] = b(x), we have

E
∣∣b̄(x, U)− b(x)

∣∣2 ≤ σ2(1 + |x|2)hα . (1.11)

Note that the dependence on h of the right hand side of (1.11) is related to the choice of the
estimator b̄. On the other hand, the constants σ and α do not depend on h. We will discuss how
to verify Assumption 1.3 in the case where the drift is estimated by subsampling in Example
2.15.

We can study properties of (X̄k)
∞
k=0 by treating it as a perturbed version of (Xk)

∞
k=0 given

by (1.1). This allows us to study convergence of L(X̄k) to π. Indeed, using the fact that W2

satisfies the triangle inequality, we have W2(L(X̄k), π) ≤ W2(L(X̄k),L(Xk)) + W2(L(Xk), π)
and the bound on W2(L(X̄k),L(Xk)) will follow from inequality (1.6). Hence we obtain the
following result.

Theorem 1.4. Let Assumptions 1.1 and 1.3 hold. Then there exist constants h0, C̄1, C̄2 > 0 such
that for all h ∈ (0, h0)

W2(L(X̄k), π) ≤W2(L(Xk), π) + C̄2h
α/4 (1.12)

and
W1(L(X̄k), π) ≤W1(L(Xk), π) + C̄1h

α/2 . (1.13)

The precise values of the constants and the proof of Theorem 1.4 can be found in Section 2.4.
Note that our bounds in Theorem 1.4 are of similar form as the bounds obtained in Theorem
4 in [DK19] in a setting corresponding to the global contractivity assumption (1.3), i.e., in
[DK19] the distance W2(L(X̄k), π) is also bounded by W2(L(Xk), π) plus an additional error
term coming from the use of an inaccurate drift. However, the error term in W2 in the global
contractivity case in [DK19] is obtained under an assumption similar to our (1.11) with α = 0
and is of order σh1/2, whereas our error term is of order σhα/4 in W2 and σ2hα/2 in W1 for
α ≥ 0 (dependence on σ of the constants C̄1 and C̄2 can be easily traced in Section 2.4). We
believe that the worse order of the constants in our case is a necessary consequence of the
much more general contractivity at infinity assumption, however, it remains an open question
whether our constants are actually optimal. To our knowledge, the only related result without
assuming global contractivity of the drift was obtained in [RRT17], see Proposition 10 therein,
by using functional inequalities. However, the estimates in [RRT17] are not uniform in time.

Note that the bounds we obtain in Theorem 1.4 depend on the variance of the estimator b̄ of
the drift b via hα appearing in (1.11). This is in contrast with the following weak convergence
result, which at least in the context of randomised Euler schemes seems to be new.

Theorem 1.5. Let Assumption 1.3 hold. Let g ∈ C∞(Rd,R) with polynomial growth and assume
that b ∈ C3 has bounded derivatives and that there are constants M1, M2 > 0 such that for all
x ∈ Rd we have

〈x, b(x)〉 ≤M2 −M1|x|2 . (1.14)

Furthermore, assume that for any p ≥ 1 there is a constant Cp
b̄
> 0 such that for any x ∈ Rd and

for any random variable U with E[b̄(x, U)] = b(x) we have

E|b̄(x, U)|p ≤ Cp
b̄
(1 + |x|p) . (1.15)
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Then there exists a constant cw > 0 independent of h such that

sup
k∈N

∣∣E[g(Ykh)]− E[g(X̄k)]
∣∣ ≤ cwh .

Note that condition (1.14) is implied by (1.5), see also Lemma 2.11. Moreover, condition
(1.15) for all p ≥ 1 is a relatively weak assumption that is implied e.g. by the Lipschitz conti-
nuity of b̄(·, U) (cf. (1.16)) and a moment bound on b̄(0, U) for all U as in (1.15). The proof
of Theorem 1.5, unlike all the other results in this paper, does not rely on the perturbation
inequality (1.6) and instead uses PDE methods and estimates from [Tal90]. The proof can be
found in Section 4. The above result, in addition to being interesting on its own, will be also
applied in our analysis of Multi-level Monte Carlo (MLMC) in Section 2.5.

Non-asymptotic results on the L2-Wasserstein distance pave the way to the analysis of the
MLMC method, which is a variance reduction technique introduced in [Hei01], [Keb05] and
[Gil08]. Let π be the invariant measure of (1.7) and let g ∈ C∞(Rd,R) be Lipschitz. Our frame-
work allows us to consider multi-level type estimators of

∫
Rd g(x)π(dx), involving Euler schemes

with inaccurate drifts, which have been treated before only in [GMS+19]. However, the authors
of [GMS+19] considered exclusively the globally contractive case, whereas in the present paper
we employ the coupling method in order to deal with the more general contractivity at infinity
setting. The multi-level estimator will be introduced in detail in Section 2.5. For our results on
MLMC with inaccurate drift we need to impose additional assumptions.

Assumptions 1.6 (MLMC with inaccurate drift). The function b̄ : Rd × Rn → Rd satisfies the
following conditions:

i) Lipschitz condition: There is a constant L̄ > 0 such that for all x, y ∈ Rd and all random
variables U such that E[b̄(x, U)] = b(x) and E[b̄(y, U)] = b(y) we have

|b̄(x, U)− b̄(y, U)| ≤ L̄|x− y| a.s. (1.16)

ii) Contractivity at infinity condition: There exist constants K̄, R̄ > 0 such that for all x,
y ∈ Rd with |x − y| ≥ R̄ and for all random variables U such that E[b̄(x, U)] = b(x) and
E[b̄(y, U)] = b(y) we have

〈x− y, b̄(x, U)− b̄(y, U)〉 ≤ −K̄|x− y|2 a.s. (1.17)

We have the following result.

Theorem 1.7. Let all the assumptions of Theorem 1.5 hold. Additionally, suppose that Assump-
tions 1.6 are satisfied and that g is Lipschitz. Then for the estimation of

∫
Rd g(x)π(dx) by MLMC

with inaccurate drift we have computational complexity O(ε−2−(1−min{1,α}/2) log ε) with α given in
(1.11), as opposed to complexity O(ε−3 log ε) in the standard Monte Carlo approach.

The proof of Theorem 1.7 and a detailed description of our MLMC estimator can be found in
Section 2.5. Note that our results apply also to MLMC for Euler schemes with non-randomised
drifts. There α =∞ and we obtain a gain in complexity fromO(ε−3 log ε) toO(ε−5/2 log ε) under
Assumptions 1.1.

Remark 1.8. While we were working on the present paper, Fang and Giles in [FG19] indepen-
dently obtained results on MLMC for SDEs with non-globally contractive drifts using a change
of measure argument. Their approach, contrary to ours, does not aim at obtaining bounds on
the variance that are uniform in time. While their variance grows linearly with time, they have
better strong convergence rates and hence in the accurate drift case overall complexity of their
algorithm is better than here. However, our framework is more flexible and allows us to cover
also Euler schemes with inaccurate drifts.
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Remark 1.9. While completing this work, the paper [CCA+18] appeared, where results analo-
gous to our Theorem 1.2 were obtained under assumptions on the drift similar to ours, although
only in the L1-Wasserstein distance. More precisely, the focus in [CCA+18] is on determining the
smallest number of iterations of the Euler scheme required to approach the invariant measure
of the SDE (1.7) in the W1 distance with precision ε. In our setting, we can infer from our The-
orem 1.2 that this number of iterations is of order O(d/ε2), which is the same as in [CCA+18].
To see this, note that the constant c̃1 in (1.9) is of order O(

√
d), cf. (2.29) and (2.35), and

hence a similar analysis as in the proof of Theorem 2.1 in [CCA+18] gives the required result.
Interestingly, for an analogous problem in the L2 Wasserstein distance, our estimates give us a
required number of iterations of order O(d2/ε4), since the constant c̃2 in (1.8) is also of order
O(
√
d), but is multiplied by h1/4 instead of h1/2. However, we do not know whether this result

is sharp or just an artifact of our proof. We are not aware of any comparable estimates in the W2

distance in the non-convex setting in the literature. Furthermore, we remark that determining
optimality of such bounds is usually a non-trivial task, as it requires finding lower bounds for
the Wasserstein distances, see e.g. Example 4 in [Ebe16] for a related discussion in the diffusion
case.

2 Contractivity of Euler schemes and applications

Before we present our results in detail, let us briefly discuss why the classical methods may
fail if we do not assume global log-concavity.

2.1 Motivation

Synchronous coupling It is well known that under the global convexity assumption (1.3) on
the drift, we can show that Euler schemes are contractive in the L2 distance just by applying
the synchronous coupling. Namely, if we have

X ′ := x+ hb(x) +
√
hZ =: x̂+

√
hZ , (2.1)

where Z ∼ N(0, I) and we define

Y ′ := y + hb(y) +
√
hZ =: ŷ +

√
hZ ,

then for all sufficiently small h we obtain

E|X ′ − Y ′|2 = |x̂− ŷ|2 ≤ (1− ch)|x− y|2

for some constant c ∈ (0, 1). However, under the dissipativity at infinity assumption (1.5) the
synchronous coupling is no longer sufficient. As a one-dimensional example, consider the func-
tion

U(x) := x2(gn(x))2 + a2 − 2axgn(x)

for some parameters a > 0 and n ≥ 1, where

gn(x) :=


−n if x ∈ (−∞,−n)

x if x ∈ [−n, n]

n if x ∈ (n,∞)

.

The function U is constructed by truncating the function x 7→ (x2 − a)2 so that U ′ is Lipschitz.
We consider the drift

b(x) = −U ′(x) .

6



It is easy to check that b satisfies the dissipativity at infinity assumption. Indeed, when |x|,
|y| ≤ n then we have

〈x− y, b(x)− b(y)〉 = −4(x− y)2(x2 + xy + y2 − a) (2.2)

and we see that there exist constants R0, C > 0 such that we have

〈x− y, b(x)− b(y)〉 ≤ −C(x− y)2

when |x− y| > R0. Similarly, when |x|, |y| ≥ n, we get

〈x− y, b(x)− b(y)〉 = −2n(x− y)2 + 2an

(
x

|x|
− y

|y|

)
(x− y)

and again if the distance |x − y| is large enough, then the desired inequality holds. When
y > n > x then the dissipativity condition(

−4x3 + 4ax+ 2ny − 2an
y

|y|

)
(x− y) ≤ −C(x− y)2

is equivalent to
−4x3 + (4a+ C)x+ (2n− C)y − 2an

y

|y|
≥ 0 ,

which we can make sure is satisfied by choosing the parameters in an appropriate way, and the
other cases follow by symmetry. However, from (2.2) we also see that there exist constants R1,
R2 > 0 such that when |x|, |y| ≤ R1 and |x− y| ≤ R2, we have

〈x− y, b(x)− b(y)〉 ≥ C1(x− y)2

for some constant C1 > 0. Hence we see that if we use the synchronous coupling for our Euler
scheme, we end up having

E|X ′ − Y ′|2 = |x̂− ŷ|2 = |x− y|2 + h2|b(x)− b(y)|2 + 2h(b(x)− b(y))(x− y)

≥ |x− y|2 + 2hC1|x− y|2

and thus we cannot have a contraction.

Talagrand inequality An alternative approach to proving contractivity of Euler schemes in
the L2-Wasserstein distance in the global convexity setting relies on the fact that the Gaussian
measure µ with covariance matrix Σ satisfies the Talagrand inequality with the constant being
the largest eigenvalue λmax(Σ), i.e., for any measure ν absolutely continuous with respect to µ
we have

W2(ν, µ)2 ≤ 2λmax(Σ)H(ν|µ) = 2λmax(Σ)

∫
log

dν

dµ
dν , (2.3)

see e.g. [Tal96] or page 2726 in [DGW04] and the references therein. Namely, taking ν =
N(x+ hb(x), hI) and µ = N(y + hb(y), hI) we have

H(ν|µ) =

∫
log exp

(
−(z − (x+ hb(x)))2

2h

)
exp

(
(z − (y + hb(y)))2

2h

)
ν(dz)

=
1

2h

∫ (
−z2 + 2z(x+ hb(x))− (x+ hb(x))2

)
+
(
z2 − 2z(y + hb(y)) + (y + hb(y))2

)
ν(dz)

=
1

2h

(
(x+ hb(x))2 − 2(x+ hb(x))(y + hb(y)) + (y + hb(y))2

)
=

1

2h
(x+ hb(x)− y − hb(y))2
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and hence the right hand side of (2.3) is equal to (x̂ − ŷ)2. In the global convexity setting this
can be bounded from above by (1− ch)|x− y|2 for all sufficiently small h > 0. However, in the
non-convex setting we can use the same example as the one presented above, where (x̂− ŷ)2 is
bounded from below by |x−y|2 + 2hC1|x−y|2 with some C1 > 0. This shows that the approach
via Talagrand’s inequality fails as well.

2.2 Coupling and Wasserstein (pseudo) distances

The random vector (Xx
h , Y

y
h ) in (1.6) is an example of a coupling of random variables. Con-

structing different random objects with the same distributions is a widely applied tool in proba-
bility theory, see e.g. [Lin92, Tho00] for general overview and [EM19, NP19] and the references
therein for other examples of applications of couplings to sampling algorithms.

In a series of works [Ebe11, Ebe16], Eberle used the reflection coupling for diffusions to
prove W1 contractivity for the SDE (1.7) under Assumptions 1.1. More precisely, he proved that
there exists a constant λ > 0, expressed explicitly in terms of problem parameters, such that

W1(L(Y µ
t ),L(Y ν

t )) ≤ e−λtW1(µ, ν) , (2.4)

where Y µ
t denotes the solution to (1.7) with Y0 ∼ µ. By taking ν = π in (2.4), i.e., by initialising

the process at the invariant measure π, one immediately obtains geometric convergence rate of
the law of the process (Yt)t≥0 to its stationary measure.

In the present paper we extend the ideas from [EM19], where results analogous to the ones
from [Ebe16] have been obtained directly on the level of the Markov chain (1.1) in W1, by
employing a suitably chosen coupling and constructing a special Kantorovich (L1-Wasserstein)
distance, see Section 2.4 therein. Here we introduce a novel coupling construction and a new
Wasserstein-type pseudo-distance, which allows us to obtain L2 bounds on (1.1) as well as on its
perturbed version, and hence to analyse convergence of several sampling algorithms presented
below.

One of the benefits of working with the L2-Wasserstein distance is that through the Kan-
torovich duality theory (see e.g. Theorem 5.10 in [Vil09]) it significantly extends the class of
functions g for which we can obtain explicit convergence rates of functionals g(Xk) of Eu-
ler schemes (1.1). When working with the L1 Wasserstein distance, duality theory gives access
only to Lipschitz functions, whereas in our setup we can also consider e.g. functions of quadratic
growth. Moreover, L2 bounds are necessary for our analysis of the variance of multi-level Monte
Carlo estimators in Section 2.5.

We fix h > 0 and we consider one step of the Euler scheme for the equation (1.7), started at
a point x ∈ Rd, i.e., we have a random variable X ′ given by

X ′ = x̂+
√
hZ , (2.5)

where
x̂ = x+ hb(x)

is the deterministic movement due to the drift b and Z ∼ N(0, I), where I is the d× d identity
matrix. Hence we have X ′ ∼ N(x+ hb(x), hI). For a given point y 6= x, we want to construct a
new random variable Y ′ that will have the distribution N(y + hb(y), hI). We define

ŷ = y + hb(y)

and
r̂ = |x̂− ŷ| .

8



We want to define a coupling of the random movement (x̂, ŷ) 7→ (X ′, Y ′). Note that in [EM19]
bounds in L1 were obtained by choosing

Y ′ =

{
X ′ , if ζ ≤ (ϕŷ,hI(X

′) ∧ ϕx̂,hI(X ′)) /ϕx̂,hI(X ′) ,
ŷ +Rx̂,ŷ

√
hZ , if ζ > (ϕŷ,hI(X

′) ∧ ϕx̂,hI(X ′)) /ϕx̂,hI(X ′) .
(2.6)

Here ζ is a uniformly distributed random variable on [0, 1] independent of Z, Rx,y = I − 2(x−
y)(x − y)T /|x − y|2 is the reflection operator with respect to the hyperplane spanned by (x −
y)/|x− y| (note that if the dimension d = 1 then Rx,yu = −u for any u ∈ R) and ϕz,A(u) is the
density of N(z,A) for z ∈ Rd and A ∈ Rd×d. We call (2.6) the mirror coupling.

Note that this type of coupling is related to the one used in the optimal transport theory
in [McC99], where it was shown to be the optimal coupling for all concave costs in the one-
dimensional case, for a class of probability measures that includes Gaussian measures (but is in
fact much broader). This makes (2.6) the right choice of coupling for obtaining optimal bounds
in concave Wasserstein distances. However, it needs to be modified to work for convex distances
such as W2.

In the present paper we use a combination of the synchronous coupling and the coupling
given by (2.6), defined in the following way.

We choose two parametersH > 0 andm > 0. If r̂ > H, we choose the synchronous coupling,
i.e., we set Y ′ = ŷ +

√
hZ. If r̂ ≤ H, we compare the size of the jump (i.e., the size of

√
hZ)

with the parameter m. If |
√
hZ| > m, we again define Y ′ synchronously. Otherwise, we use the

variable ζ to apply the mirror coupling defined by (2.6) to the Gaussians truncated by m.
To be precise, we have

X ′ = x̂+
√
hZ

Y ′ =


X ′ , if ζ ≤

(
ϕmŷ,hI(X

′) ∧ ϕmx̂,hI(X ′)
)
/ϕmx̂,hI(X

′) and |
√
hZ| < m and r̂ ≤ H ,

ŷ +Rx̂,ŷ
√
hZ , if ζ >

(
ϕmŷ,hI(X

′) ∧ ϕmx̂,hI(X ′)
)
/ϕmx̂,hI(X

′) and |
√
hZ| < m and r̂ ≤ H ,

ŷ +
√
hZ , if |

√
hZ| ≥ m or r̂ > H .

(2.7)

Here ϕmz,A(u) := 1{|u−z|≤m}ϕz,A(u). Note that we only need to evaluate ϕmx̂,hI(X
′) when

|
√
hZ| < m (or, equivalently, when |X ′ − x̂| < m) and hence we always have ϕmx̂,hI(X

′) 6= 0,
which implies that all the quantities in (2.7) are well-defined. It is easy to prove that (2.7) is
indeed a coupling of N(x+ hb(x), hI) and N(y + hb(y), hI), see Theorem 6.1 in the Appendix.

Note that Y ′ defined above can be thought of as a function of the initial points x, y ∈ Rd and
the random variable Z. It also depends on the truncation parameters m and H. In the sequel
we will use the shorthand notation

ψm,H(x, y, Z) := Y ′ (2.8)

for the random variable Y ′ defined by (2.7).
Our goal is to expand on the methods introduced in [EM19], where, under the same as-

sumptions on the drift b as in the present paper, the coupling (X ′, Y ′) given by (2.6) was used
in order to obtain estimates of the form

Ef(|X ′ − Y ′|) ≤ (1− ch)f(|x− y|)

for a specially constructed increasing, concave function f . Since the function f in [EM19] is
comparable both from above and from below with a rescaled identity function, this implies
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bounds for the first moment E|X ′−Y ′|, as well as contractivity of the laws of the Euler scheme in
a Kantorovich (L1 Wasserstein) distance. The latter is a strong property with multiple important
consequences, see e.g. [JO10] or the discussion in [EM19]. Here we use a modified coupling
and a different construction of a distance function f : [0,∞) → [0,∞), which in our case is
concave up to some r2 > 0 and convex afterwards. This allows us to get upper bounds for the
second moment E|X ′ − Y ′|2, cf. Lemma 2.3.

Related work in the diffusion case has been done in [LW16], where the authors adapted the
L1 bounds from [Ebe16] and obtained Lp bounds for p ≥ 1 under similar assumptions as in
[Ebe16]. Here, however, we use a different, more direct construction of the auxiliary distance
function f . We also introduce a novel coupling construction, which is specific to the discrete
time case.

Before we formulate our main result, let us introduce some notation. We define positive
constants

c0 := 4 min

(∫ 1/2

0
u2(1− eu−1/2)ϕ0,1(u)du, (1− e−1)

∫ 1/2

0
u3ϕ0,1(u)du

)
,

where ϕ0,1 is the density of N(0, 1), and

h0 := min

(
K

L2
,

4

K
,

1

2L
,

2c0 ln 3
2

27L2R2
,
R2

4
,
c2

0(ln 2)2

144L2R2

)
, (2.9)

where the constants L, K and R > 0 are all specified in Assumptions 1.1. Then we put r1 :=
(1 + h0L)R and r2 := r1 +

√
h0. Finally, we choose the parameter

a :=
6Lr1

c0
(2.10)

and we construct our function f : [0,∞)→ [0,∞) by setting

f(r) :=

{
1
a(1− e−ar) if r ≤ r2

1
a(1− e−ar2) + 1

2r2
e−ar2(r2 − r2

2) if r > r2

. (2.11)

Then we have the following result.

Theorem 2.1. Let Assumptions 1.1 hold. For the coupling (X ′, Y ′) given by (2.7) with parameters
m =

√
h0
2 and H = r1 and the function f given by (2.11), we have

Ef(|X ′ − Y ′|) ≤ (1− ch)f(|x− y|) (2.12)

for all h ∈ (0, h0), where

c = min

(
e−ar2

K

4
,

1
2e
−ar2r2

1
a (1− e−ar2)

K

4
,
9L2r2

1

2c0
e
− 6Lr21

c0 ,
3Lr1

16
√
h0

)
. (2.13)

The proof will be presented in Section 3. As an immediate consequence, we obtain bounds
in the Wf Wasserstein (pseudo) distance.

Corollary 2.2. Let p(x,A) for x ∈ Rd and A ∈ B(Rd) denote the transition kernel of X ′ given by
(2.5) and let µp(dy) :=

∫
µ(dx)p(x, dy) for any probability measure µ on Rd. Under the assump-

tions of Theorem 2.1, we have

Wf (µp, νp) ≤ (1− ch)Wf (µ, ν)

for all h ∈ (0, h0) and for all µ, ν ∈ P2(Rd).
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The above result is a straightforward consequence of (2.12) and the definition of Wf , see
also the proof of Lemma 2.1 in [EM19].

An important feature of the function f given by (2.11) is that it is comparable from below
with the identity and the square functions. This allows us to obtain both L1 and L2 bounds as
an immediate consequence of Theorem 2.1.

Lemma 2.3. We have
r2 ≤ Af(r) and r ≤ ear2f(r) (2.14)

for all r ∈ [0,∞), where

A := max

(
ar2

2

1− e−ar2
, 2r2e

ar2

)
. (2.15)

Proof. The second bound in (2.14) is obvious since f ′(r) ≥ e−ar2 for all r ≥ 0. Now let us try to
look for a constant A > 0 such that

r2
2 ≤ Af(r2) = A

1

a
(1− e−ar2) . (2.16)

If this holds, then for any r ≤ r2 we have r2 ≤ Af(r). Hence we need A ≥ ar2
2/(1 − e−ar2).

Moreover, we need r2 = r2
2−r2

2 +r2 ≤ A 1
a(1−e−ar2)+A 1

2r2
e−ar2(r2−r2

2) for any r ≥ r2, hence,
using (2.16), we see that we need r2− r2

2 ≤ A 1
2r2
e−ar2(r2− r2

2), which implies A ≥ 2r2e
ar2 .

Corollary 2.4. Under the assumptions of Theorem 2.1, we have

W2(µp, νp) ≤ A(1− ch)Wf (µ, ν) and W1(µp, νp) ≤ ear2(1− ch)Wf (µ, ν)

for all h ∈ (0, h0) and for all µ, ν ∈ P2(Rd), where A is given by (2.15) and all the other constants
are as in Theorem 2.1.

An important consequence of Theorem 2.1 that turns out to be crucial for our applications,
is the following inequality.

Theorem 2.5. Let (X ′, Y ′) be the coupling given by (2.7) with parameters m =
√
h0
2 and H = r1

and let f be the function given by (2.11), where all the constants are as specified in Theorem 2.1.
Let X̃ be a random variable. Then

Ef(|Y ′ − X̃|) ≤ (1− ch)f(|y − x|) + E
[

1

r2
e−ar2 |X ′ − X̃|2

]
+ E

[(
1 +

1

r2
e−ar2

(
|y − x|(1 + hL) +

√
h0

))
|X ′ − X̃|

]
.

(2.17)

Proof. We have

Ef(|Y ′ − X̃|)− f(|y − x|) = Ef(|Y ′ − X̃|)− Ef(|Y ′ −X ′|) + Ef(|Y ′ −X ′|)− f(|y − x|) .

By (2.12) we know that Ef(|Y ′ −X ′|)− f(|y − x|) ≤ −chf(|y − x|) and hence it is sufficient to
focus on the expression Ef(|Y ′ − X̃|)− Ef(|Y ′ −X ′|). Since f is increasing, we have

Ef(|Y ′ − X̃|)− Ef(|Y ′ −X ′|) ≤ Ef(|Y ′ −X ′|+ |X ′ − X̃|)− Ef(|Y ′ −X ′|) . (2.18)

We can now apply the Taylor formula to see that the right hand side of (2.18) is equal to
Ef ′(ζ)|X ′ − Ỹ |, where ζ ∈ (|Y ′ − X ′|, |Y ′ − X ′| + |X ′ − X̃|). From the definition of f we get
f ′(ζ) ≤ 1

r2
e−ar2 |ζ|+ e−a|ζ| ≤ 1

r2
e−ar2 |ζ|+ 1 and hence

Ef ′(ζ)|X ′ − X̃| ≤ E
[(

1

r2
e−ar2

(
|Y ′ −X ′|+ |X ′ − X̃|

)
+ 1

)
|X ′ − X̃|

]
.
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Now observe that due to our construction of the coupling (X ′, Y ′) we have |Y ′−X ′| ≤ |ŷ− x̂|+
2m. This is because an increase in the distance between the two coupled processes can happen in
the random step (x̂, ŷ) 7→ (X ′, Y ′) only due to reflection. However, reflection happens only if the
normal random variable Z takes a sufficiently small value and hence that increase is bounded by
2m. Moreover, due to the Lipschitz condition (1.4) of the drift we have |ŷ− x̂| ≤ |y−x|(1+hL).
Recall that in order for (2.12) to hold, we choose m =

√
h0/2. Combining all our estimates

together, we arrive at (2.17).

From the result above we see that if we choose X̃ in such a way that we have control on
the first and the second moment of the distance between X̃ and X ′, then we can get a good
bound on the distance between Y ′ and X̃. Hence our result is useful for random variables X̃
that are small perturbations of X ′. Note that the role of X ′ and Y ′ in the proof of Theorem
2.5 is symmetric, hence we immediately obtain (1.6). The reason for our choice of the form of
inequality (2.17) will become apparent in the proofs in Sections 2.3, 2.4 and 2.5.

We can also obtain a related perturbation result based on Theorem 2.12 from [EM19], which
is a result similar to our Theorem 2.1 but with a globally concave function f . This allows us to
get simpler formulas in cases where we only need L1 bounds. Let us define q = 7c−1

0 LR and

f1(r) :=

{
1
q (1− e−qr) if r ≤ r1

1
1
q (1− e−qr11) + e−qr

1
1(r − r1

1) if r > r1
1

, (2.19)

where r1
1 := (1 + h1

0L)R with h1
0 specified in Theorem 2.6. Then we have the following result.

Theorem 2.6. Let Assumptions 1.1 hold. Then for the coupling (X ′, Y ′) given by (2.7) with pa-
rameters m =∞ and H =∞ and the function f1 given by (2.19), we have

Ef1(|X ′ − Y ′|) ≤ (1− c1h)f1(|x− y|) (2.20)

for all h ∈ (0, h1
0), where

c1 = min

(
K

2
,

245

24c0
L2R2

)
exp

(
− 49

6c0
LR2

)
and

h1
0 =

1

L
min

(
1

6
,
K

L
,

1

3
LR2,

c2
0

970

1

LR2

)
.

(2.21)

Note that the exact statement of Theorem 2.12 in [EM19] is slightly different than Theorem
2.6 above, since the metric in [EM19] depends on h. This can be easily modified by replacing
the constant Λ = Λ(h) defined by (2.59) in [EM19] with L and r1 = r1(h) defined by (2.65)
therein with r1

1 := (1 + h1
0L)R. Then the proof in [EM19] easily carries over to our setting and

we obtain Theorem 2.6. We leave the details to the interested reader. More importantly, from
inequality (2.20) we can easily derive another perturbation result.

Theorem 2.7. Let Assumptions 1.1 hold and let X̃ be a random variable. Then for all h ∈ (0, h1
0)

we have
Ef1(|Y ′ − X̃|) ≤ (1− c1h)f1(|y − x|) + E|X ′ − X̃| .

Proof. Note that the function f1 defined in (2.19) is concave (and hence subadditive), increasing
and its derivative is such that f ′1(x) ∈ [e−qr

1
1 , 1] for all x ∈ R+. Thus we get

Ef1(|Y ′ − X̃|) ≤ Ef1(|Y ′ −X ′|+ |X ′ − X̃|) ≤ Ef1(|Y ′ −X ′|) + Ef1(|X ′ − X̃|)

≤ (1− c1h)f1(|y − x|) + E|X ′ − X̃| .
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Even though most results in the present paper are based on the contractivity and the pertur-
bation theorems presented above for Euler schemes X ′ = x + hb(x) +

√
hZ, it may sometimes

be useful to be also able to couple processes with inaccurate drift and obtain respective counter-
parts of Theorems 2.1 and 2.5. In the sequel we will need such results only in Section 2.5 where
we treat Multi-level Monte Carlo algorithms for the inaccurate drift case. To this end, consider

X̄ ′ = x+ hb̄(x, U) +
√
hZ (2.22)

and define x̂ = x+ hb̄(x, U) and ŷ = y+ hb̄(y, U), where the random variable U is independent
of Z and such that Eb̄(x, U) = b(x) for all x ∈ Rd. Hence, we can still use the prescription (2.7)
to define a coupling (X̄ ′, Ȳ ′) of two copies of (2.22) started from arbitrary points x, y ∈ Rd by
substituting x̂ and ŷ defined for b that appear in (2.7) with our new x̂ and ŷ defined for b̄. In
other words, using similar notation as in (2.8), we have a new transformation

Ȳ ′ = ψ̄m,H(x, y, U, Z) (2.23)

that we can use to couple two copies of the process given by (2.22). Since the statement about
equality of marginal laws in the coupling given by (2.7) is actually a statement about the Gaus-
sian steps x̂ 7→ X ′ and ŷ 7→ Y ′ and we assume independence of U and Z, in order to prove that
the pair (X̄ ′, Ȳ ′) obtained via (2.23) is indeed a coupling of two copies of (2.22), we can apply
the reasoning from Theorem 6.1 by replacing the expectation there with the conditional expec-
tation with respect to U . For the coupling (X̄ ′, Ȳ ′) obtained this way, we have the following
result.

Theorem 2.8. Suppose Assumptions 1.6 are satisfied with constants K̄ = K, R̄ = R and L̄ =
L > 0. Then for the coupling (X̄ ′, Ȳ ′) of two copies of (2.22) defined via (2.23) we have

E
[
f(|X̄ ′ − Ȳ ′|) |U

]
≤ (1− ch)f(|x− y|) a.s.

for all h ∈ (0, h0), with the same constants h0, c, m, H and the same function f as in Theorem 2.1.
We also have the perturbation inequality (2.17) in the unchanged form, with (X ′, Y ′) replaced by
(X̄ ′, Ȳ ′).

The proof of Theorem 2.8 will be presented in Section 3. Note that Theorem 2.8 actually
implies Theorems 2.1 and 2.5, since the Euler scheme (2.5) can be easily interpreted as a special
case of the scheme (2.22) with inaccurate drift. Hence we need to prove only Theorem 2.8.

2.3 Unadjusted Langevin algorithm

In this section we will explain how to apply Theorem 2.5 in order to obtain bounds on the
distance between the invariant measure of the solution (Yt)t≥0 of the SDE

dYt = b(Yt)dt+ dWt , (2.24)

where (Wt)t≥0 is a d-dimensional Brownian motion, and the laws of the Markov chain (Xk)
∞
k=0

given by
Xk+1 = Xk + hb(Xk) +

√
hξk+1 , (2.25)

for all k ≥ 0, where h > 0 is fixed and (ξ)∞k=1 are i.i.d. random variables with the standard
normal distribution.

If b(x) = −1
2∇U(x) for a function U ∈ C2(Rd), then the equation (2.24) is called the

(overdamped) Langevin SDE. Its invariant measure is given by

π(dz) :=
exp(−U(z))dz∫

Rd exp(−U(x))dx
,
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see e.g. [DM17] or Example 1 in [Ebe16]. The method of asymptotic sampling from π by using
the Markov chain defined by (2.25) is called the Unadjusted Langevin Algorithm.

In order to proceed, let us first observe that

Y(k+1)h = Ykh +

∫ (k+1)h

kh
b(Ys)ds+ (W(k+1)h −Wkh) (2.26)

for all k ≥ 0. We have the following result.

Theorem 2.9. Under the assumptions of Theorem 2.1, for any random variables X0, Y0, any k ≥ 1
and for any h ∈ (0, h0 ∧ K

4L2 ) we have

W2(L(Xk),L(Ykh)) ≤
(
A(1− ch)kEf(|X0 − Y0|)

)1/2
+

(
ACult
c

)1/2

h1/4 ,

whereas for any h ∈ (0, h1
0) we have

W1(L(Xk),L(Ykh)) ≤ eqr11(1− c1h)kEf1(|X0 − Y0|) + eqr
1
1

√
Cdif

c1
h1/2 , (2.27)

where c is given by (2.13), c1 and h1
0 are given by (2.21), A is given by (2.15), Cdif is given

by (2.35) and Cult is defined in (2.36). In particular, if Y0 ∼ π, then for any k ≥ 1 and any
h ∈ (0, h0 ∧ K

4L2 ) we have

W2(L(Xk), π) ≤
(
A(1− ch)kEf(|X0 − Y0|)

)1/2
+

(
ACult
c

)1/2

h1/4 , (2.28)

whereas for any h ∈ (0, h1
0) we have

W1(L(Xk), π) ≤ eqr11(1− c1h)kEf1(|X0 − Y0|) + eqr
1
1

√
Cdif

c1
h1/2 . (2.29)

Remark 2.10. Note that in Theorem 2.9 we apply our Theorem 2.1 only to obtain L2 bounds,
while L1 bounds are obtained using Theorem 2.6 taken from [EM19]. We could still apply
Theorem 2.1 in the L1 case and obtain

W1(L(Xk),L(Ykh)) ≤ ear2(1− ch)kEf(|X0 − Y0|) + ear2
Cult
c
h1/2

instead of (2.27). However, (2.27) gives us better dependence of the constants on the dimension
d, since Cult is of order O(d), whereas

√
Cdif is of order O(

√
d).

Proof of Theorem 2.9. We define
√
hZk+1 := W(k+1)h −Wkh

and consider an auxiliary process (Sk)
∞
k=1 given by

Sk+1 := Ykh + hb(Ykh) +
√
hZk+1 . (2.30)

We can think of (Sk)
∞
k=1 as a process which at each step k is moved to the position of (Ykh)∞k=1

and then evolves in the same way as (2.25), with the random noise given by an increment of the
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Brownian motion (Wt)t≥0. Now consider a new process (Gk)
∞
k=0 coupled to (Sk)

∞
k=1 according

to the prescription (2.7). Using the notation introduced in (2.8), we set

Gk+1 := ψm,H(Ykh, Gk, Zk+1) . (2.31)

We can alternatively describe (Gk)
∞
k=0 as

Gk+1 = Gk + hb(Gk) +
√
hZ̃k+1

where (Z̃k+1)∞k=0 are i.i.d. normally distributed random variables obtained through application
of the transformation ψ. Note that if G0 ∼ X0, then for all k ≥ 1 we have L(Gk) = L(Xk).

We now want to apply Theorem 2.5 with Y ′ = Gk+1, y = Gk, X ′ = Sk+1, x = Ykh and
X̃ = Y(k+1)h. Hence for all k ≥ 0 we obtain

Ef(|Gk+1 − Y(k+1)h|) ≤ (1− ch)Ef(|Gk − Ykh|) + E
[

1

r2
e−ar2 |Sk+1 − Y(k+1)h|2

]
+ E

[(
1 +

1

r2
e−ar2

(
|Gk − Ykh|(1 + h0L) +

√
h0

))
|Sk+1 − Y(k+1)h|

]
.

(2.32)

We need a few technical lemmas to bound the quantities appearing on the right hand side.
All these lemmas work under Assumptions 1.1, with the exception of Lemma 2.13, where an
additional upper bound on h is needed.

Lemma 2.11. Assumptions 1.1 imply that for all x ∈ Rd we have

〈b(x), x〉 ≤M2 −M1|x|2 , (2.33)

where

M2 := L

(
max

(
R, 2|b(0)|

K

))2

+ |b(0)|max

(
R, 2|b(0)|

K

)
and M1 :=

K

2
.

Lemma 2.12. Let (Yt)t≥0 be defined by (2.24) and let b satisfy Assumptions 1.1. Then for any
t > 0 we have

E|Yt|2 ≤ CSDE ,

where
CSDE := E|Y0|2 +

2M2 + d

2M1
.

Lemma 2.13. Let (Xk)
∞
k=0 be given by (2.25). Let h < h0 ∧ K

4L2 . Then for all k ≥ 1 we have

E|Xk|2 ≤ CEul ,

where

CEul := E|X0|2 +
2h0|b(0)|2 + d+M2

M1 − 2h0L2
. (2.34)

Note that the bound obtained above applies also to the process (Gk)
∞
k=0 defined by (2.31),

since L(Gk) = L(Xk) for all k ≥ 0.

Lemma 2.14. Let (Ykh)∞k=0 and (Sk)
∞
k=0 be defined by (2.26) and (2.30), respectively. Then for

any k ≥ 0 we have
E|Sk+1 − Y(k+1)h|2 ≤ Cdifh3 ,

where

Cdif := L2

(
4h0

3

((
E|Y0|2 +

2M2 + 1

M1

)
L2 + |b(0)|2

)
+ d

)
. (2.35)
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Proofs of all the lemmas can be found in the Appendix.
Combining all the estimates from the lemmas, we can come back to (2.32) and we see that

Ef(|Gk+1 − Y(k+1)h|) ≤ (1− ch)Ef(|Gk − Ykh|) +
1

r2
e−ar2Cdifh

3 +
√
Cdifh

3/2

+
1

r2
e−ar2(

√
CEul +

√
CSDE)(1 + h0L)

√
Cdifh

3/2 +
1

r2
e−ar2

√
h0

√
Cdifh

3/2 .

Let us define

Cult :=
1

r2
e−ar2Cdifh

3/2
0 +

√
Cdif+

1

r2
e−ar2(

√
CEul+

√
CSDE)(1+h0L)

√
Cdif+

1

r2
e−ar2

√
h0

√
Cdif .

(2.36)
Then we have

Ef(|Gk+1 − Y(k+1)h|) ≤ (1− ch)Ef(|Gk − Ykh|) + Culth
3/2

and hence

Ef(|Gk+1 − Y(k+1)h|) ≤ (1− ch)k+1Ef(|G0 − Y0|) +

k∑
j=0

(1− ch)jCulth
3/2

≤ (1− ch)k+1Ef(|G0 − Y0|) +
Cult
c
h1/2 .

(2.37)

Using Lemma 2.3 we get(
E
∣∣Gk+1 − Y(k+1)h

∣∣2)1/2
≤
(
A(1− ch)k+1Ef(|G0 − Y0|)

)1/2
+

(
ACult
c

)1/2

h1/4 .

Note that we could also use it to obtain L1 bounds (cf. Remark 2.10)

E
∣∣Gk+1 − Y(k+1)h

∣∣ ≤ ear2(1− ch)k+1Ef(|G0 − Y0|) + ear2
Cult
c
h1/2 .

However, instead we will apply Theorems 2.6 and 2.7. Note that we have

Ef1(|Gk+1 − Y(k+1)h|) ≤ (1− c1h)Ef1(|Gk − Ykh|) + E|Sk+1 − Y(k+1)h|

and E|Sk+1 − Y(k+1)h| ≤
√
Cdifh

3/2 and hence

Ef1(|Gk+1 − Y(k+1)h|) ≤ (1− c1h)k+1Ef1(|G0 − Y0|) +

k∑
j=0

(1− c1h)j
√
Cdifh

3/2 .

Using f1(x) ≥ e−qr11x for x ∈ R+ we get

E|Gk+1 − Y(k+1)h| ≤ eqr
1
1(1− c1h)k+1Ef1(|G0 − Y0|) + eqr

1
1

√
Cdif

c1
h1/2 ,

which finishes the proof.

Proof of Theorem 1.2. Since our reasoning in the proof of Theorem 2.9 applies for any coupling
of the initial conditions X0 and Y0, we can take the infimum on the right hand sides of (2.28)
and (2.29) and thus we obtain upper bounds with Ef(|X0−Y0|) replaced by Wf (L(X0),L(Y0)).
Hence both (1.8) and (1.9) follow immediately from Theorem 2.9 with C2 =

√
A, ĉ2 = c,

c̃2 =
(
ACult
c

)1/2
, C1 = eqr

1
1 , ĉ1 = c1 and C1 = eqr

1
1

√
Cdif

c1
.
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2.4 Euler scheme with randomised (inaccurate) drift

Here we consider
X̄k+1 = X̄k + hb̄(X̄k, Uk) +

√
hZk+1

for k ≥ 0 and compare it with the standard Euler scheme

Xk+1 = Xk + hb(Xk) +
√
hZk+1 . (2.38)

We also note that since Uk and X̄k are independent, (1.11) implies

V[b̄(X̄k, Uk)|X̄k] ≤ σ2(1 + |X̄k|2)hα (2.39)

for any k ≥ 0. Moreover, note that E
[
|b̄(X̄k, Uk)|2|X̄k

]
= V[b̄(X̄k, Uk)|X̄k] + |b(X̄k)|2 and hence

(1.4) and (2.39) imply

E
[
|b̄(X̄k, Uk)|2|X̄k

]
≤ σ2(|X̄k|2 + 1)hα + 2L2|X̄k|2 + 2|b(0)|2 (2.40)

for any k ≥ 0. These estimates will be used frequently in the sequel.
Now let us analyse an example that appears often in the statistics literature, see e.g. [WT11,

Sha16] and the references therein, and explain how Assumption 1.3 can be verified.

Example 2.15. Let (θi)i=1,...,m and θi ∈ Rd, for all i. Moreover, let U = (Ui)i=1...,s be a collection
of s independent random variables, uniformly distributed over the set {1, . . . ,m}. We define

b(x) =
m∑
i=1

b̂(x, θi) and b̄(x, Uk) =
m

s

s∑
i=1

b̂(x, θUi) . (2.41)

In applications of Bayesian inference m corresponds to the size of the data set and may be large.
Consequently, the generation of (X̄k)

∞
k=0 is costly. One then hopes that a randomisation strategy

will reduce the computational cost without introducing significant variance. Notice that

E[b̄(x, U)] =
m

s

s∑
i=1

E[b̂(x, θUi)] =
m

s

s∑
i=1

m∑
j=1

b̂(x, θj)P(Ui = j)

=
1

s

s∑
i=1

m∑
j=1

b̂(x, θj) =
m∑
i=1

b̂(x, θi) = b(x) .

On the other hand, we have

E|b̄(x, U)− b(x)|2 = E

∣∣∣∣∣ms
s∑
i=1

b̂(x, θUi)−
m∑
i=1

b̂(x, θi)

∣∣∣∣∣
2

= E

∣∣∣∣∣1s
s∑
i=1

(
mb̂(x, θUi)−

m∑
i=1

b̂(x, θi)

)∣∣∣∣∣
2

=
1

s2

s∑
i=1

E

∣∣∣∣∣mb̂(x, θUi)−
m∑
i=1

b̂(x, θi)

∣∣∣∣∣
2

=
1

s2

s∑
i=1

m∑
j=1

(
mb̂(x, θj)− b(x)

)2 1

m

=
1

s2

sm m∑
j=1

b̂(x, θj)
2 − sb(x)2

 ,

where we used the fact that mb̂(x, θUi)−
∑m

i=1 b̂(x, θi) are centered, independent random vari-
ables. This implies that if for all θ and x we have |b̂(x, θ)|2 ≤ C(1 + |x|2) with some constant
C > 0, then condition (1.11) can indeed be satisfied. Then we have

E|b̄(x, U)− b(x)|2 ≤ m2

s
C(1 + |x|2)
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and hence in order for (1.11) to be satisfied, we need to have m2C/s ≤ σ2hα for some constants
σ, α > 0, which means that we need to choose s and h so that s−1 . hα. However, this can give
us a constant σ2 of order m2, which can be very large in applications. In order to reduce the
variance, a sensible choice seems to be to consider subsampling without replacement, see e.g.
[Sha16]. More precisely, we define an estimator

b̄wor(x, U) :=
m

s

m∑
i=j

b̂(x, θj)Zj ,

where (Zj)
m
j=1 are correlated random variables such that P(Zj = 1) = s

m , P(Zj = 0) = 1 − s
m

and P(Zi = 1, Zj = 1) =
(
m−2
s−2

)
/
(
m
s

)
for any i, j ∈ {1, . . . ,m} such that i 6= j. Note that this

definition of b̄wor corresponds to sampling s terms from the sum defining bwithout replacement,
see e.g. Lemma B in Section 7.3.1 and Problem 7.26 in [Ric88]. It is immediate to check that
this estimator of b is indeed unbiased. As for the variance, we have

V

m
s

m∑
i=j

b̂(x, θj)Zj

 =
m2

s2

 m∑
j=1

b̂(x, θj)
2V(Zj) +

m∑
j=1

∑
i 6=j

b̂(x, θj)b̂(x, θi) Cov(Zi, Zj)

 .

Moreover, it is easy to check that Cov(Zi, Zj) = s(s−1)
m(m−1) −

s2

m2 = − s(1− s
m

)

m(m−1) and hence

V(b̄wor(x, U)) =
m2

s2

 m∑
j=1

b̂(x, θj)
2 s

m
(1− s

m
)−

m∑
j=1

∑
i 6=j

b̂(x, θj)b̂(x, θi)
s(1− s

m)

m(m− 1)


=
m

s
(1− s

m
)

m

m− 1

m∑
j=1

(
b̂(x, θj)−

b(x)

m

)2

,

where the last equality comes from the easily verifiable identity

m∑
j=1

(
b̂(x, θj)−

b(x)

m

)2

=
m− 1

m

 m∑
j=1

b̂(x, θj)
2 − 1

m− 1

m∑
j=1

∑
i 6=j

b̂(x, θj)b̂(x, θi)

 .

Hence we see that the variance of the estimator b̄wor is equal to the variance of b̄ multiplied by
(1− s

m). Thus, assuming again that for all θ and x we have |b̂(x, θ)|2 ≤ C(1 + |x|2), we see that
we now need to have

m2

s
(1− s

m
)C ≤ σ2hα

in order for (1.11) to hold. Since the left hand side goes to zero when s approaches m, this
method allows us to choose a much smaller σ than in the subsampling with replacement case,
if we choose s large enough.

Another possible way of reducing the variance σ is via an appropriate rescaling (time-
change) of the SDE (1.7). Namely, it is well-known that for any positive definite symmetric
matrix Σ, the SDE dYt = Σb(Yt)dt + Σ1/2dWt has the same invariant measure as (1.7). See
e.g. [DRVZ17, XSL+14] and the references therein for discussions on different choices of Σ in
Monte Carlo algorithms. Hence, instead of considering the drift b and its estimator b̄ given by
(2.41), we can take b(x) = 1

m

∑m
i=1 b̂(x, θi) and b̄(x, Uk) = 1

s

∑s
i=1 b̂(x, θUi) and we can consider

a Markov chain

X̄k+1 = X̄k + h
1

s

s∑
i=1

b̂(X̄k, θUi) +
√
h/mZk+1 .
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This corresponds to choosing Σ = (1/m)I in the SDE. Intuitively, for m > 1 this choice re-
duces the variance of the algorithm at the cost of slowing down convergence of the Markov
chain. In other words, in our bounds in Theorem 1.4 the term C̄2h

α/4 becomes smaller, whereas
W2(L(Xk), π) becomes larger (since the contractivity constant ĉ2 in Theorem 1.2 becomes
smaller). A precise analysis of this trade-off falls beyond the scope of the present paper and
is left for future work.

By applying Theorem 2.5, we can prove the following result.

Theorem 2.16. Let the assumptions of Theorem 2.1 and Assumption 1.3 hold. Let h ∈ (0, h0 ∧
K

4L2+2σ2 ∧ 1). Then for any random variables X0, X̄0 and any k ≥ 1 we have

W2(L(Xk),L(X̄k)) ≤
(
A(1− ch)kEf(|X0 − X̄0|)

)1/2
+

(
ACIult
c

)1/2

hα/4 (2.42)

and

W1(L(Xk),L(X̄k)) ≤ ear2(1− ch)kEf(|X0 − X̄0|) + ear2
CIult
c

hα/2 , (2.43)

where c is given by (2.13), A is given by (2.15), CIult is defined in (2.47) and α is specified in
condition (1.11).

Proof. We will need to use an auxiliary chain (Sk)
∞
k=0 that at each step k is moved to the position

of X̄k and then evolves as (2.38), i.e.,

Sk+1 := X̄k + hb(X̄k) +
√
hZk+1 .

We define a new process (Gk)
∞
k=0 coupled to (Sk)

∞
k=0 according to the prescription (2.7). Using

the notation introduced in (2.8), we set

Gk+1 := ψm,H(X̄k, Gk, Zk+1) . (2.44)

In other words, we have Gk+1 = Gk+hb(Gk)+
√
hZ̃k+1 for some i.i.d. normal random variables

(Z̃k)
∞
k=1 that are determined via the coupling. Note that we have L(Gk) = L(Xk) for all k ≥ 1

if G0 = X0.
We apply now Theorem 2.5 and we have

Ef(|Gk+1 − X̄k+1|) ≤ (1− ch)Ef(|Gk − X̄k|) + E
[

1

r2
e−ar2 |Sk+1 − X̄k+1|2

]
+ E

[(
1 +

1

r2
e−ar2

(
|Gk − X̄k|(1 + h0L) +

√
h0

))
|Sk+1 − X̄k+1|

]
.

(2.45)

Note that by (1.11) we have E|b̄(X̄k, Uk)−b(X̄k)|2 ≤ σ2(1+E|X̄k|2)hα and hence, using Jensen’s
inequality,

E|Sk+1 − X̄k+1| = hE|b(X̄k)− b(X̄k, Uk)| ≤ σh1+α/2(1 + E|X̄k|2)1/2 .

Moreover, we have uniform bounds on the moments of (Gk)
∞
k=0 due to Lemma 2.13. Hence we

only need to control the moments of (X̄k)
∞
k=0. To this end, we can repeat the reasoning from

the proof of Lemma 2.13 to obtain the following result.
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Lemma 2.17. Let (X̄k)
∞
k=0 be given by (1.10). Let h < h0 ∧ K

4L2+2σ2 ∧ 1. Then for all k ≥ 1, under
Assumptions 1.1 and 1.3, we have

E|X̄k|2 ≤ CIEul ,
where

CIEul := E|X0|2 +
2h0|b(0)|2 + d+M2 + h0σ

2

M1 − 2h0L2 − h0σ2
. (2.46)

The proof can be found in the Appendix. Now we come back to (2.45) and we have

Ef(|Gk+1 − X̄k+1|) ≤ (1− ch)Ef(|Gk − X̄k|) +
1

r2
e−ar2σ2h1+α(1 + CIEul)

+ E
(

1 +
1

r2
e−ar2

(
(
√
CEul +

√
CIEul)(1 + h0L) +

√
h0

))
σh1+α/2(1 + CIEul)

1/2 .

Hence if we define

CIult :=
1

r2
e−ar2σ2h

α/2
0 (1 + CIEul)

+

(
σ + σ

1

r2
e−ar2(

√
CEul +

√
CIEul)(1 + h0L) + σ

1

r2
e−ar2

√
h0

)
(1 + CIEul)

1/2 ,

(2.47)

we get
Ef(|Gk+1 − X̄k+1|) ≤ (1− ch)Ef(|Gk − X̄k|) + CIulth

1+α/2

and we can finish the proof as in the previous section, obtaining

Ef(|Gk+1 − X̄k+1|) ≤ (1− ch)k+1Ef(|G0 − X̄0|) +
CIult
c

hα/2 . (2.48)

From this (2.42) and (2.43) follow easily due to Lemma 2.3.

Proof of Theorem 1.4. Since W2(L(X̄k), π) ≤ W2(L(X̄k),L(Xk)) +W2(L(Xk), π) and an analo-
gous inequality holds for the W1 distance, it is easy to see that Theorem 2.16 with X̄0 = X0

implies (1.12) and (1.13) with

C̄2 =

(
ACIult
c

)1/2

and C̄1 = ear2
CIult
c

,

respectively.

Remark 2.18. Note that the bound from Lemma 2.17 can be generalised to hold for all p-th
moments of X̄k for p ≥ 1. More precisely, for any p ≥ 1 we can prove that under conditions
(1.14) and (1.15) , there exists a constant C(p)

IEul > 0 such that for sufficiently small h and for
all k ≥ 1 we have

E|X̄k|p ≤ C
(p)
IEul . (2.49)

In order to see this, we first need to show an analogous bound for the Euler scheme (2.25) with
accurate drift as in Lemma 2.13, under (1.14). This follows e.g. from Theorem 2.1 and Remark
2.4 in [SZ18]. Indeed, note that (1.14) implies that for any p ≥ 2 we have 〈x, b(x)〉|x|p−2 ≤
M2|x|p−2 − M1|x|p and hence for the generator L of the solution to the SDE (1.7) for the
function V (x) = |x|p we can show

LV (x) = 〈∇V (x), b(x)〉+
1

2
∆V (x) = p|x|p−2〈x, b(x)〉+

1

2
p(p− 1)|x|p−2

≤ pM2|x|p−2 − pM1|x|p +
1

2
p(p− 1)|x|p−2

≤ −
(
pM1 − εpM2 −

1

2
εp(p− 1)

)
|x|p +

(
pM2 +

1

2
p(p− 1)

)
C(ε, p) ,
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where ε > 0 can be arbitrary and C(ε, p) > 0 is such that |x|p−2 ≤ ε|x|p + C(ε, p) for all

x ∈ Rd (i.e., we can choose C(ε, p) >
(
p−2
εp

) p−2
2 − ε

(
p−2
εp

) p
2 ). Hence, if we choose ε such that

ε < M1/(M2 + 1
2(p − 1)), we obtain a Lyapunov condition LV (x) ≤ −ρV (x) + C with some

positive constants ρ, C > 0. Observe that Theorem 2.1 and Remark 2.4 in [SZ18] imply that
under a stronger condition, namely, LV (x) ≤ −ρ(1 +V (x)) for all x ∈ Rd, (cf. (2.8) in [SZ18]),
we get (2.49) for Euler schemes with accurate drifts. However, by analysing the proof in [SZ18]
it is easy to see that their condition (2.8) can be replaced by the weaker condition LV (x) ≤
−ρV (x)+C. Namely, in the last calculation in the proof of Theorem 2.1 in [SZ18], the inequality
E(1 + V (X̄k+1)) ≤ (1 + (−ρ + ρ̃)h)E(1 + V (X̄k)) will be then replaced by E(1 + V (X̄k+1)) ≤
(1 + (−ρ + ρ̃)h)E(1 + V (X̄k)) + (C + ρ)h. Then by iterating we obtain E(1 + V (X̄k+1)) ≤
e(−ρ+ρ̃)(k+1)hE(1 + V (X0)) + C + ρ and the desired bound for the accurate drift case follows.
Now, using (1.15) and following the argument from the proof of Lemma 2.17, it is possible to
extend this result to Euler schemes with inaccurate drifts. We leave the details to the reader.

2.5 Multi-level Monte Carlo

In this section we focus on Euler schemes with inaccurate drifts. However, the reader who
is interested only in MLMC in the accurate drift case, can easily recover relevant results by
replacing (X̄k)

∞
k=0 defined in (1.10) with (Xk)

∞
k=0 defined in (1.1) and Assumptions 1.6 with

Assumptions 1.1. Note that in such a case certain quantities featured below simply vanish, which
only makes our calculations easier.

Let us start by briefly explaining the motivation behind considering Monte Carlo estimators
of the multi-level type. A typical strategy for approximating

∫
Rd g(x)π(dx), is to resort to the

standard Monte Carlo estimator where the average is taken "over the space". More precisely,
we fix the time T = kh for some k ≥ 1, we generate N i.i.d. samples (X̄i

k)
N
i=1 of X̄k defined in

(1.10) and compute the Monte Carlo average

AMCA(T, h,N)(g) :=
1

N

N∑
i=1

g(X̄i
k) . (MCA)

The aim is to find the optimal allocation of the parameters (terminal time T , number of MC
samples N and the size of the time-step h) to achieve required mean-square-error. We can
compute

mse(AMCA(T, h,N)(g)) :=

E(∫
Rd

g(x)π(dx)− 1

N

N∑
i=1

g(X̄i
k)

)2
1/2

≤

[(∫
Rd

g(x)(π(dx)− µkh(dx))

)2
]1/2

+
[(
E[g(Ykh)]− E[g(X̄k)]

)2]1/2

+

E(E[g(X̄k)]−
1

N

N∑
i=1

g(X̄i
k)

)2
1/2

,

where µkh := L(Ykh). The three error terms are: bias (due to finite time simulation) that we
can estimate due to [Ebe16] with explicit constants if g is Lipschitz, i.e., W1(L(Ykh), π) ≤
e−λkhW1(L(Y0), π) or due to [LW16] if g has polynomial growth; weak time discretisation error
studied in Theorem 1.5 from which we know that |E[g(Ykh)]− E[g(X̄k)]| . h, and the variance
of the Monte Carlo estimator that we also control uniformly in time due to Lemma 2.17. Hence
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we have AMCA(T, h,N) . e−λT + h + 1/
√
N. We fix ε > 0 and set AMCA(T, h,N) . ε. This

leads to the following choice of the parameters T ≈ λ−1 log ε, h ≈ ε, N ≈ ε−2. The com-
putational cost is then given by cost(AMCA(t, h,N)) = Th−1N ≈ (log ε)ε−3. The above cost
should be compared with ε−2 that holds for the MC estimator in the case when we have access
to unbiased samples.

The recently developed MLMC approach, [Gil08, Keb05, Hei01], allows us to reduce the
computational cost of (MCA). The idea is to introduce a family of Euler discretisations with
varying time-steps. Fix L > 0. For ` ∈ {1, . . . , L} let us define h` := 1

M` . In our analysis we
consider M = 2, for simplicity. We define

X̄`
(k+1)h` = X̄`

kh` + b̄(X̄`
kh` , U

`
kh`)h

` + Z`k+1 , (2.50)

where Z`k+1 := W(k+1)h` −Wkh` and (U `
kh`

)∞k=0 are mutually independent and such that for any
x ∈ Rd we have Eb̄(x, U `

kh`
) = b(x). For all l ∈ {1, . . . , L} and all T such that T = kh` for

some k ≥ 1, we introduce appropriate modifications of (2.50) denoted by (X̄f,`
T , X̄c,`

T ) such that
L(X̄f,`

T ) = L(X̄c,`
T ) = L(X̄`

T ) for ` ∈ {1, . . . L}. Hence we have

E[g(X̄L
T )] = E[g(X̄0

T )] +
L∑
`=1

E[g(X̄f,`
T )− g(X̄c,`−1

T )] . (2.51)

This identity leads to the following unbiased estimator of E[g(X̄L
T )], for T = khL with some

k ≥ 1,

AMLMC(T, L, (N`)`)(g) :=
1

N0

N0∑
i=1

g(X̄i,0
T ) +

L∑
`=1

{
1

N`

N∑̀
i=1

(g(X̄i,f,`
T )− g(X̄i,c,`−1

T ))

}
,

where X̄i,f,`
T and X̄i,c,`

T for i ∈ {1, . . . N`} are i.i.d. samples of X̄f,`
T and X̄c,`

T , respectively. We
assume that the samples across the levels (each summand in `) are independent, hence

Var(AMLMC(T, L, (N`)`)(g)) =
1

N0
Var(g(X̄1,0

T )) +
L∑
`=1

1

N`
Var((g(X̄i,f,`

T )− g(X̄i,c,`−1
T )) . (2.52)

If the samples at each summand in `, i.e., (X̄i,f,`
T , X̄i,c,`−1

T ) are appropriately coupled for each
`, then Var(f(Xi,f,`

T ) − f(Xi,c,`−1
T ) decays when ` increases. As a result MLMC, with optimally

selected parameters, combines many simulations on low accuracy grids (at a corresponding low
cost), with relatively few simulations computed with high accuracy and high cost on very fine
grids. One has the following error decomposition

mse(AMLMC(T, L,(N`)`)(g)) =

[
E
(∫

Rd

g(x)π(dx)−AMLMC(T, L, (N`)`)(g)

)2
]1/2

≤

[(∫
Rd

g(x)(π(dx)− µT (dx))

)2
]1/2

+

[(
E[g(YT )]− E[g(X̄1,L

T )]
)2
]1/2

+

[
E
(
E[g(X̄1,L

t )]−AMLMC(T, L, (N`)`)(g)
)2
]1/2

.

Note that the first two errors are the same as for the standard MC and the only difference will
come from the variance of the MLCM estimator. In order to evoke to the classical Multilevel
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Monte Carlo complexity analysis, note that we applied telescopic sum estimator to E[g(YT )]
rather than directly to

∫
Rd g(x)π(dx). In view of the analysis for the standard Monte Carlo we

choose T ≈ λ−1 log ε and hence we need to multiply the final cost of MLMC by the factor log ε.
Observe that in analysis of an MLMC estimator the crucial part is to investigate the behaviour

of the pair of processes (X̄f,`
kh`
, X̄c,`−1

kh`
)∞k=0 for any fixed ` ∈ {1, . . . , L}. Hence, to streamline the

notation, from now on we drop the superscript ` and we will work with

X̄f
(k+1)h = X̄f

kh+ b̄(X̄f
kh, U

f
kh)h+

√
hZk+1 , X̄f

(k+2)h = X̄f
(k+1)h+ b̄(X̄f

(k+1)h, U
f
(k+1)h)h+

√
hZk+2

(2.53)
and

X̄c
(k+2)h = X̄c

kh + b̄(X̄c
kh, U

c
kh)2h+

√
2hẐk+2 , (2.54)

where Ẑk+2 := (Zk+1 + Zk+2)/
√

2. Thus (X̄f
kh)∞k=0 is a process on a fine grid and (X̄c

kh)∞k=0 is a
process on a coarse grid that moves twice less frequently than (X̄f

kh)∞k=0.
For the condition with the telescopic sum (2.51) to hold, it is required that for all k ∈ N,

L(Ufkh) = L(U ckh). Taking as an example subsampling considered in Example 2.15, we see that
this condition forces us to take the same number of samples at each step of the algorithm. We
also assume that (Ufkh)∞k=0 are mutually independent so that (2.52) holds. The random variables
(U ckh)∞k=0 can be chosen as indepedent of (Ufkh)∞k=0, although coupling them in an appropriate
way can help to further reduce the variance (see Remark 2.21).

We impose the following assumptions.

Assumptions 2.19. We assume that

• Random variables (Ufkh)k∈N and (U ckh)k∈N are such that for all k ∈ N, L(Ufkh) = L(U ckh).

• There are constants Lu > 0 and αc > 0 such that for all x ∈ Rd we have

E|b̄(x, Ufkh) + b̄(x, Uf(k+1)h)− 2b̄(x, U ckh)|2 ≤ Lu(1 + |x|2)hαc , ∀k ≥ 0 . (2.55)

We have the following result.

Theorem 2.20. Suppose Assumptions 1.3, 1.6 with L̄ = L, K̄ = K, R̄ = R, and 2.19 are satisfied.
Then there exists a process (Ḡk)

∞
k=0 such that L(Ḡk) = L(X̄f

kh) for all k ≥ 1 if Ḡ0 = X̄f
0 and we

have
E|Ḡk − X̄c

kh|2 ≤ A(1− ch)kEf(|Ḡ0 − X̄c
0|) +

A · CIMLult

c
hmin(αc,1)/2

for all h ∈ (0, h0 ∧ K
4L2+2σ2 ∧ 1), where the constant CIMLult is defined in (2.58), c is given by

(2.13) and A is given by (2.15).

This result allows us to construct an MLMC estimator with L levels and good variance
bounds by using couplings (Ḡk, X̄

c
kh)∞k=0. Namely, we start by considering the coarsest level

` = 0, we take X̄c
kh = X̄0

k and define the process (Ḡk)
∞
k=0 as explained in the proof of Theorem

2.20, which corresponds to the finer level ` = 1. Then we treat thus obtained (Ḡk)
∞
k=0 as a new

coarse process and we repeat our procedure L− 1 times.

Remark 2.21. Assumptions 2.19 can be easily satisfied by choosing the random variables Ufkh,
Uf(k+1)h and U ckh independently and then using condition (1.11) to verify (2.55). Then we obtain
αc = α. However, we would like to point out that such an approach to getting a bound on the
variance of our MLMC estimator is not necessarily optimal. We believe that using more involved
couplings of Uf(k+1)h, Ufkh and U ckh could lead to αc > α and hence to an improvement of the
rate that we obtain above. We will consider this problem in our future research.
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Proof of Theorem 1.7. It is shown in Giles [Gil15] that under the assumptions∣∣E[g(YT )− g(X̄1,`
T )]| . (h`)α̃, Var[g(X̄1,`

T )− g(X̄1,`−1
T )] . (h`)β, (2.56)

for some α̃ ≥ 1/2, β > 0, the computational complexity of the resulting multi-level estimator
with accuracy ε is proportional to

C =


ε−2, β > γ,

ε−2 log2(ε), β = γ,

ε−2−(1−β)/α̃, 0 < β < γ

where the cost of sampling at level ` is of order h−`γ . Theorem 1.5 tells us that in our case α̃ = 1
while Theorem 2.20 with Ḡ0 = X̄c

0 gives β = min(αc, 1)/2 since g is Lipschitz. The cost of sam-
pling at level ` is proportional to (h`)−1, hence γ = 1. Hence an overall cost of approximating
E[g(YT )] is of order ε−2−(1−min(αc,1)/2). Consequently, the cost of approximating

∫
Rd g(x)π(dx) is

ε−2−(1−min(αc,1)/2)logε. In particular, if we verify condition (2.55) by using (1.11) as explained
in Remark 2.21, we have αc = α and the cost is ε−2−(1−min(α,1)/2)logε. Hence the best gain that
we can get is when we manage to choose αc = 1 (or α = 1), which gives us β = 1/2 and
the cost ε−5/2logε, which is a half order of magnitude better than the standard Monte Carlo
approach.

Remark 2.22. In [GMS+19], authors considered a telescopic sum in two parameters, time-
discretisation and time t (length of the chain). We could also apply this idea in the current
setting, which would lead to the reduction of overall cost by log ε.

Remark 2.23. As our primary interest in the present paper was to study the general randomised
(inaccurate) Euler scheme, we refrain from comparing the complexity of the subsampling al-
gorithms described in Example 2.15 with their multi-level counterparts. In that example one
would need to take into consideration additional cost of simulating a step of Euler scheme
(m for accurate gradient and s for inaccurate gradient). We leave the details to the interested
reader.

2.5.1 Variance bound for the inaccurate drift case

Proof of Theorem 2.20. We consider the processes (X̄f
kh)∞k=0 and (X̄c

2kh)∞k=0 defined via (2.53)
and (2.54), respectively. We will obtain a bound on the variance by applying Theorem 2.8 to
X̄f

(k+2)h and X̄c
(k+2)h. We consider the process (S̄kh)∞k=0 defined for k ∈ 2N by

S̄(k+1)h = X̄c
kh + hb̄(X̄c

kh, U
f
kh) +

√
hZk+1

S̄(k+2)h = S̄(k+1)h + hb̄(S̄(k+1)h, U
f
(k+1)h) +

√
hZk+2 .

We also need the process (Ḡk)
∞
k=0 coupled to (S̄kh)∞k=0 via

Ḡk+1 := ψ̄m,H(Ḡk, S̄kh, U
f
kh, Zk+1) . (2.57)

for all k ∈ N, where we use the notation from (2.23). Then we have L(Ḡk) = L(X̄f
kh) for all

k ≥ 1 if Ḡ0 = X̄f
0 . Applying Theorem 2.8, we obtain

Ef(|Ḡk+2 − X̄c
(k+2)h|) ≤ (1− ch)Ef(|Ḡk+1 − S̄(k+1)h|) + E

[
1

r2
e−ar2 |S̄(k+2)h − X̄c

(k+2)h|
2

]
+ E

[(
1 +

1

r2
e−ar2

(
|Ḡk+1 − S̄(k+1)h|(1 + h0L) +

√
h0

))
|S̄(k+2)h − X̄c

(k+2)h|
]
.
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Note now that

E
[(

1 +
1

r2
e−ar2

(
|Ḡk+1 − S̄(k+1)h|(1 + h0L) +

√
h0

))
|S̄(k+2)h − X̄c

(k+2)h|
]

=

(
1 +

1

r2
e−ar2

√
h0

)
E|S̄(k+2)h − X̄c

(k+2)h|

+
1

r2
e−ar2(1 + h0L)E

[
|Ḡk+1 − S̄(k+1)h| · |S̄(k+2)h − X̄c

(k+2)h|
]

=: I1 + I2

and we have

I2 ≤
1

r2
e−ar2(1 + h0L)

(
E|Ḡk+1 − S̄(k+1)h|2

)1/2 · (E|S̄(k+2)h − X̄c
(k+2)h|

2
)1/2

.

Now we use Minkowski’s inequality and Lemma 2.17 to estimate(
E|Ḡk+1 − S̄(k+1)h|2

)1/2 ≤ (E|Ḡk+1|2
)1/2

+
(
E|S̄(k+1)h|2

)1/2 ≤√CIEul +
(
E|S̄(k+1)h|2

)1/2
.

Moreover, due to (1.11) we have

E|b̄(X̄c
kh, U

f
kh)|2 ≤ σ2(E|X̄c

kh|2 + 1)hα + 2L2E|X̄c
kh|2 + 2|b(0)|2 ≤ C(2h)

IEul(σ
2 + 2L2) + σ2 + 2|b(0)|2

where we used hα ≤ 1 and we have the constant

C
(2h)
IEul := E|X̄c

0|2 +
4h0|b(0)|2 + d+M2 + 2h0σ

2

M1 − 4h0L2 − 2h0σ2

which is specified as in (2.46) but with h replaced by 2h. If we denote

CISM := C
(2h)
IEul(σ

2 + 2L2) + σ2 + 2|b(0)|2

then we get

(
E|S̄(k+1)h|2

)1/2
=
(
E|X̄c

kh + hb̄(X̄c
kh, U

f
kh) +

√
hZk+1|2

)1/2

≤
(
E|X̄c

kh|2
)1/2

+
(
h2E|b̄(X̄c

kh, U
f
kh)|2

)1/2
+
(
hE|Zk+1|2

)1/2
≤
√
C

(2h)
IEul + h0

√
CISM +

√
h0d .

Hence, denoting CIASP :=

(√
C

(2h)
IEul + h0

√
CISM +

√
h0d

)2

we obtain

I2 ≤
1

r2
e−ar2(1 + h0L)(

√
CIEul +

√
CIASP )

(
E|S̄(k+2)h − X̄c

(k+2)h|
2
)1/2

.

Now we estimate

E|S̄(k+2)h − X̄c
(k+2)h|

2 = E|X̄c
kh + hb̄(X̄c

kh, U
f
kh) +

√
hZk+1

+ hb̄(X̄c
kh + hb̄(X̄c

kh, U
f
kh) +

√
hZk+1, U

f
(k+1)h) +

√
hZk+2 − X̄c

kh − 2hb̄(X̄c
kh, U

c
kh)−

√
2hẐk+2|2

≤ 2E|hb̄(X̄c
kh, U

f
kh) + hb̄(X̄c

kh, U
f
(k+1)h)− 2hb̄(X̄c

kh, U
c
kh)|2

+ 2E|hb̄(X̄c
kh + hb̄(X̄c

kh, U
f
kh) +

√
hZk+1, U

f
(k+1)h)− hb̄(X̄c

kh, U
f
(k+1)h)|2 =: Ĩ1 + Ĩ2 .
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Note that due to (1.16) we have

Ĩ2 ≤ 2h2L̄2E|hb̄(X̄c
kh, U

f
kh) +

√
hZk+1|2 ≤ 4h4L̄2CISM + 4h3L̄2d .

and due to (2.55) we have

Ĩ1 ≤ 2h2Lu(1 + E|X̄c
kh|2)hαc ≤ 2Lu(1 + C

(2h)
IEul)h

2+αc .

If we denote

CIMLdif := (4h0L̄
2CISM + 4L̄d)h

(1−αc)+

0 + 2Lu(1 + C
(2h)
IEul) ,

then we see that E|S̄(k+2)h − X̄c
(k+2)h|

2 ≤ CIMLdifh
2+min(αc,1) and we have

I2 ≤
1

r2
e−ar2(1 + h0L)(

√
CIEul +

√
CIASP )

√
CIMLdifh

1+min(αc,1)/2

and

I1 ≤
(

1 +
1

r2
e−ar2

√
h0

)√
CIMLdifh

1+min(αc,1)/2 ,

This gives us

Ef(|Ḡk+2 − X̄c
(k+2)h|) ≤ (1− ch)Ef(|Ḡk+1 − S̄(k+1)h|) + CIMLulth

1+min(αc,1)/2 ,

where

CIMLult :=
1

r2
e−ar2CIMLdifh

1+min(αc,1)/2
0 +

(
1 +

1

r2
e−ar2

√
h0

)√
CIMLdif

+
1

r2
e−ar2(1 + h0L)(

√
CIEul +

√
CIASP )

√
CIMLdif .

(2.58)

Now we just apply the contractivity result for processes with inaccurate drifts (Theorem 2.8) to
Ḡk+1 and S̄(k+1)h (note that they are appropriately coupled due to (2.57)) and we obtain

Ef(|Ḡk+2 − X̄c
(k+2)h|) ≤ (1− ch)2Ef(|Ḡk − S̄(k)h|) + CIMLulth

1+min(αc,1)/2 .

Hence for all k ∈ 2N we obtain

Ef(|Ḡk − X̄c
kh|) ≤ (1− ch)kEf(|Ḡ0 − X̄c

0|) +

k−1∑
j=0

(1− ch)jCIMLulth
1+min(αc,1)/2

≤ (1− ch)kEf(|Ḡ0 − X̄c
0|) +

CIMLult

c
hmin(αc,1)/2 .

Using Lemma 2.3 we obtain

E|Ḡk − X̄c
kh|2 ≤ A(1− ch)kEf(|Ḡ0 − X̄c

0|) +
ACIMLult

c
hmin(αc,1)/2

with the constant A given by (2.15), which finishes the proof.
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3 Proof of the contractivity result

As we have already remarked in Section 2.2, we only need to prove Theorem 2.8 and hence
we will be working here with inaccurate drifts with randomness induced by a random variable
U independent of Z. Recall that we have x̂ = x+ hb̄(x, U) and ŷ = y + hb̄(y, U).

Note that some parts of this proof (Lemmas 3.1, 3.2 and Subsection 3.3) are based on
Section 6 in [EM19]. We include all the details here for the reader’s convenience and in order
to highlight the modifications that need to be introduced in the proofs from [EM19] in order to
obtain L2 bounds. The reader who is only interested in Euler schemes with non-random drifts
can obtain a direct proof of Theorem 2.1 from the reasoning below by setting x̂ = x + hb(x)
and replacing E[ · |U ] with E[ · ] and the assumptions (1.16) and (1.17) with (1.4) and (1.5),
respectively.

We denote R′ := |X ′ − Y ′|, r̂ := |x̂ − ŷ| and r := |x − y|. We want to show that for any
r ∈ [0,∞) we have

E
[
f(R′) |U

]
− f(r) ≤ −chf(r) a.s. (3.1)

Before we proceed with the detailed proof, let us sketch some main ideas and formulate two
crucial lemmas.

We proceed by decomposing the Euler scheme step r 7→ R′ into the drift step r 7→ r̂ and the
Gaussian step r̂ 7→ R′. We have E [f(R′) |U ]− f(r) = E [f(R′) |U ]− f(r̂) + f(r̂)− f(r) and we
will want to use either E [f(R′) |U ]− f(r̂) or f(r̂)− f(r) (depending on the values of r and r̂)
to get an upper bound of the form −chf(r).

The main idea is that whenever we are in the region of space where the contractivity con-
dition (1.17) holds, we should use the drift step and switch off the Gaussian movement by
applying the synchronous coupling. On the other hand, when the contractivity condition does
not work, we have to use an appropriate coupling to get the desired upper bounds from the
Gaussian step, while controlling the drift step via the Lipschitz condition (1.16).

One of the most important parts of the proof is an application of the Taylor formula to obtain

f(R′)− f(r̂) = f ′(r̂)(R′ − r̂) + f ′′(θ)(R′ − r̂)2

for some θ between r̂ and R′. Hence we see that our crucial task is to control the first and the
second moment of R′ − r̂. Actually, we will be able to consider the second moment only when
R′ is restricted to a specific interval. In fact we will choose random (only through dependence
on U) intervals

Ir̂ =

{
(0, r̂ +

√
h) if r̂ ≤

√
h

(r̂ −
√
h, r̂) if r̂ >

√
h .

(3.2)

For such intervals, we will obtain the random variable α(r̂), for which we have

α(r̂) ≤ E
[
(R′ − r̂)21{R′∈Ir̂} |U

]
a.s.

The reason for this choice of intervals Ir̂ will become apparent from the proof of Lemma 3.2.
Generally speaking, we want to choose a small interval around r̂ and it is convenient to take
(r̂−
√
h, r̂) for getting bounds on sup f ′′ on [0, r1]. However, we cannot take just (0, r̂) if r̂ ≤

√
h

as the length of such an interval would not have a uniform lower bound and it would be
impossible to get the lower bound in Lemma 3.2, hence we need to take (0, r̂ +

√
h) when

r̂ is small.
From now on, all the relations between random variables in the proof are supposed to be

understood as holding almost surely. Let us first formulate two auxiliary results on our coupling,
which allow us to control the conditional moments of R′ − r̂.
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Lemma 3.1. For the coupling (X ′, Y ′) defined by (2.23), we have E [R′ |U ] = r̂.

Lemma 3.2. For the coupling (X ′, Y ′) defined by (2.23), if h ≤ 4m2, then we have

α(r̂)1{|r̂|≤H} ≤ E
[
(R′ − r̂)21{R′∈Ir̂} |U

]
,

where α(r̂) = 1
2c0 min(

√
h, r̂)
√
h and

c0 := 4 min

(∫ 1/2

0
u2(1− eu−1/2)ϕ0,1(u)du, (1− e−1)

∫ 1/2

0
u3ϕ0,1(u)du

)
.

The proofs are based on the calculations from Section 6 in [EM19] and can be found in
Appendix 8.

Before we proceed, let us make a remark about the choice of parameters in our coupling
(2.7).

Remark 3.3. The choice ofm =
√
h0/2 in (2.7) means that we rarely make the non-synchronous

step. In principle, we could choose m arbitrarily large, but then from the proof we see that we
would also need to redefine r2 := r1 + 2m, and as r2 increases, the constant c decreases to
zero. Moreover, we see that A → ∞ as r2 → ∞. This shows that increasing m actually gives
us worse constants and hence m should be kept as small as possible. This is related to the fact
that the only place in the calculations where we gain something from the non-synchronous be-
haviour of our coupling is in the lower bound for α, which is the coefficient near f ′′. But this
supremum is taken over a small interval and actually when we compute the lower bound for α
we only integrate a Gaussian density over an interval of length [0,

√
h/2]. Everywhere else the

non-synchronous behaviour is actually harmful to our estimates (due to the convex cost), so it
makes sense to take m very small, i.e., m =

√
h0
2 and r2 = r1 + 2m = r1 +

√
h0.

We are now ready to proceed with the proof of Theorem 2.8, which we will split into a few
steps, depending on the size of the argument r. First note that if r = |x − y| > R, then due to
(1.16) and (1.17) we have

r̂ =
√
r2 + 2h〈x− y, b̄(x, U)− b̄(y, U)〉+ h2|b̄(x, U)− b̄(y, U)|2

≤
√

1− 2hK + h2L2

≤ r
(

1− hK +
h2L2

2

)
,

where we used the fact that
√

1 + x ≤ 1 + x
2 for all x ≥ −1. Note that due to Assumptions

1.1 we have K ≤ L and hence the expression under the square root is indeed non-negative.
Therefore if we choose h small enough, we have r̂ ≤ r for r > R. More precisely, we will assume
h ≤ K/L2, which implies

h2L2

2
=
hL2

2
h ≤ hL2

2

K

L2
=
hK

2
,

hence in fact we have −hK + h2L2

2 ≤ −hK
2 and we will later use the fact that for all r > R we

have

r̂ ≤ r
(

1− hK

2

)
. (3.3)

However, even if r ≤ R, we can still control the size of r̂ due to (1.16). Namely, we have

r̂ =
√
|x− y + h(b̄(x, U)− b̄(y, U))|2 ≤ (1 + hL)R ≤ (1 + h0L)R = r1
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for r ≤ R. This is the condition motivating the choice of r1, i.e., if r is in [0,R], then the
application of the drift can increase the distance r̂ maximally up to r1.

Having the above basic estimates, we can begin the proof of the easiest case, when r ∈
[r1, r2].

3.1 Estimates for r ∈ [r1, r2].

Since r ≥ r1 > R, we have r̂ ≤ r ≤ r2. This means that the interval (r̂, r) is contained in
[0, r2], where the function f is concave. Hence for the drift step we have

f(r̂)− f(r) ≤ f ′(r)(r̂ − r) . (3.4)

Furthermore, the derivative of f is bounded from below on the interval [0, r2] by f ′(r2) = e−ar2 ,
which implies

−Khr
2

f ′(r) ≤ −Khr
2

e−ar2 ≤ −Kh
2
e−ar2f(r) , (3.5)

where in the last step we additionally use the fact that f(r) ≤ r for r ∈ [0, r2]. Combining (3.3),
(3.4) and (3.5) gives f(r̂) − f(r) ≤ −Kh

2 e−ar2f(r) for all r ∈ [r1, r2], which is exactly what we
want. Now we have to show that the Gaussian step does not spoil these estimates. We need to
consider two cases.

The case of r̂ ≤ r1. Observe that due to our coupling construction, the value of R′ is always
within the interval [0, r̂ + 2m] (it can become zero when we jump to the same point, and if we
reflect the jumps then R′ can increase maximally up to r̂ + 2m due to the truncation of jumps
by m). Hence the interval with endpoints r̂ and R′ is always contained in [0, r̂ + 2m]. Hence,
if r̂ ≤ r1, then (r̂, R′) ⊂ [0, r1 + 2m] = [0, r2], where (r̂, R′) should be interpreted as (R′, r̂) if
R′ < r̂. Recalling that the function f is concave on [0, r2], by the Taylor formula we get

E
[
f(R′) |U

]
− f(r̂) = f ′(r̂)E

[
(R′ − r̂) |U

]
+ E

[
f ′′(θ)(R′ − r̂)2 |U

]
≤ f ′(r̂)E

[
(R′ − r̂) |U

]
for some θ ∈ (r̂, R′) ⊂ [0, r2]. However, due to Lemma 3.1 we have E [(R′ − r̂) |U ] = 0 and
hence E [f(R′) |U ]− f(r̂) ≤ 0.

The case of r̂ > r1. Here the interval [0, r̂ + 2m] is no longer contained in [0, r2] and the
function f is convex for arguments larger than r2, so we cannot bound f ′′ by zero as above.
This is why for r̂ > r1 we use the synchronous coupling and we have E [f(R′) |U ]− f(r̂) = 0.

Hence, combining all the estimates from this subsection together, we see that we have
E [f(R′) |U ]− f(r) ≤ −Kh

2 e−ar2f(r) for all r ∈ [r1, r2].

3.2 Estimates for r ∈ [r2,∞).

Here we deal with the Gaussian step exactly as in the previous subsection. If r̂ ≤ r1, then we
can use concavity of f on [0, r2]. Otherwise, for r̂ > r1, we use the synchronous coupling. Hence
E [f(R′) |U ] − f(r̂) ≤ 0 and we only need to deal with the drift step. Since r ≥ r2 > R, we
can bound r̂ by using (3.3). However, we do not know whether r

(
1− Kh

2

)
is smaller or greater

than r2, and since the function f is given via two different formulas for arguments below and
above r2, we need to consider two different cases.
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The case of r
(
1− Kh

2

)
≥ r2. Since f is increasing, using (3.3) we have

f(r̂) ≤ f
(
r

(
1− Kh

2

))
=

1

a

(
1− e−ar2

)
+

1

2r2
e−ar2

(
r2

(
1− Kh

2

)2

− r2
2

)
. (3.6)

We want to bound this expression from above by f(r) − c′hf(r) for some constant c′ > 0 and
we know that, since r ≥ r2, we have

f(r) =
1

a

(
1− e−ar2

)
+

1

2r2
e−ar2

(
r2 − r2

2

)
. (3.7)

A simple calculation shows that we need to find c′ > 0 such that

1

2r2
e−ar2

(
−Kh+

K2h2

4

)
r2 ≤ −c′hf(r) (3.8)

holds for all r ≥ r2. In order for this to be possible, the left hand side needs to be negative. Note
that −Kh+ K2h2

4 < 0 when h < 4
K , which holds due to our choice of h0, cf. (2.9). We have(

Kh− K2h2

4

)
f(r) =

(
Kh− K2h2

4

)
1

2r2
e−ar2r2

+

(
Kh− K2h2

4

)(
1

a

(
1− e−ar2

)
− 1

2r2
e−ar2r2

2

)
.

(3.9)

Now observe that we can find a constant c2 > 0 such that

1

a

(
1− e−ar2

)
− 1

2r2
e−ar2r2

2 ≤ c2
1

2r2
e−ar2r2 (3.10)

for all r ≥ r2. Namely, we set

c2 :=
1
a (1− e−ar2)− 1

2r2
e−ar2r2

2

1
2r2
e−ar2r2

2

.

We know that c2 > 0 since the function g(r) := 1
a (1− e−ar)− 1

2e
−arr is increasing for all r > 0

and g(0) = 0. From (3.9) and (3.10) we get(
Kh− K2h2

4

)
1 + c2

f(r) ≤
(
Kh− K2h2

4

)
1

2r2
e−ar2r2

for all r ≥ r2. Combining this with (3.8), we obtain

f(r̂) ≤ f(r)−

(
Kh− K2h2

4

)
1 + c2

f(r) = f(r)−
1
2e
−ar2r2

1
a (1− e−ar2)

(
Kh− K2h2

4

)
f(r) .

The case of r
(
1− Kh

2

)
≤ r2. We again use the fact that r̂ ≤ r

(
1− Kh

2

)
and f(r̂) ≤ f

(
r
(
1− Kh

2

))
.

The difficulty in this case comes from the fact that we need to compare the values of f given by
two different formulas, i.e., f(r) given by (3.7) and f

(
r
(
1− Kh

2

))
= 1

a

(
1− e−a(r(1−Kh

2 ))
)

. We

can circumvent this problem by considering the midpoint between r
(
1− Kh

2

)
and r, namely,

the point r
(
1− Kh

4

)
. We have

f(r̂) ≤ f
(
r

(
1− Kh

2

))
= f

(
r

(
1− Kh

2

))
− f

(
r

(
1− Kh

4

))
+ f

(
r

(
1− Kh

4

))
.

(3.11)
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We have either r
(
1− Kh

4

)
≤ r2 or r

(
1− Kh

4

)
> r2. In the former case, we use the fact that

f is increasing to get f
(
r
(
1− Kh

4

))
≤ f(r) and for the remaining term in (3.11) we proceed

similarly to Subsection 3.1. Namely, we have

f

(
r

(
1− Kh

2

))
− f

(
r

(
1− Kh

4

))
≤ f ′

(
r

(
1− Kh

4

))(
r

(
1− Kh

2

)
− r

(
1− Kh

4

))
= −Kh

4
f ′
(
r

(
1− Kh

4

))
r

due to concavity of f on [0, r2] and the fact that [r
(
1− Kh

2

)
, r
(
1− Kh

4

)
] ⊂ [0, r2]. Now we use

the fact that f ′(r) ≥ e−ar2 and f(r) ≤ r for r ∈ [0, r2], which gives us

−Kh
4
f ′
(
r

(
1− Kh

4

))
r ≤ −e−ar2rKh

4
≤ −e−ar2Kh

4
f(r) .

On the other hand, if r
(
1− Kh

4

)
> r2, then we use the fact that f is increasing to get f

(
r
(
1− Kh

2

))
−

f
(
r
(
1− Kh

4

))
≤ 0 and we have f(r̂) − f(r) ≤ f

(
r
(
1− Kh

4

))
− f(r). Since r

(
1− Kh

4

)
> r2,

we can use our calculations from Subsection 3.2. We just need to replace
(
1− Kh

2

)
therein with(

1− Kh
4

)
, and, in consequence, we obtain

f

(
r

(
1− Kh

4

))
− f(r) ≤ −

1
2e
−ar2r2

1
a (1− e−ar2)

(
Kh

2
− K2h2

16

)
f(r) .

Note that we have K
2 −

K2h
16 > K

4 since h < 4
K by (2.9). Hence, combining all the estimates from

this subsection together, we see that for all r ∈ [r2,∞) we have

E
[
f(R′) |U

]
− f(r) ≤ f(r̂)− f(r) ≤ −min

(
e−ar2

Kh

4
,

1
2e
−ar2r2

1
a (1− e−ar2)

Kh

4

)
f(r) .

This is also valid for r ∈ [r1, r2], cf. the constant obtained in Subsection 3.1.

3.3 Estimates for r ∈ [0, r1].

For the drift step we have two cases. If r̂ ≤ r, then we just use the fact that f is increasing
and we get f(r̂)− f(r) ≤ 0. If r̂ > r, we will need to use f(r̂)− f(r) ≤ f ′(r)(r̂− r), which holds
due to the fact that r ≤ r1 implies r̂ ≤ r1 and f is concave on [0, r1]. We will show later in this
section how to bound this term in order to be able to use it in connection with the Gaussian
step contribution to obtain the desired bounds.

For the Gaussian step, we again use that r ∈ [0, r1] implies r̂ ∈ [0, r1]. Therefore, by our
coupling construction, R′ ∈ [0, r1 + 2m] = [0, r2] and we can use the fact that f ′′ is concave on
[0, r2]. We apply the Taylor formula (note that the function f is twice differentiable), i.e., we
have

E
[
f(R′) |U

]
− f(r̂) = f ′(r̂)E

[
(R′ − r̂) |U

]
+ E

[
f ′′(θ)(R′ − r̂)2 |U

]
,
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where θ is a point between r̂ and R′. We bound

E
[
f ′′(θ)(R′ − r̂)2 |U

]
≤ E

[
sup

θ∈(r̂,R′)
f ′′(θ)(R′ − r̂)2

∣∣∣U]

= E

[
sup

θ∈(r̂,R′)
f ′′(θ)(R′ − r̂)21{R′∈Ir̂} + sup

θ∈(r̂,R′)
f ′′(θ)(R′ − r̂)21{R′ /∈Ir̂}

∣∣∣U]

≤ E

[
sup
θ∈Ir̂

f ′′(θ)(R′ − r̂)21{R′∈Ir̂} + sup
θ∈(r̂,R′)

f ′′(θ)(R′ − r̂)21{R′ /∈Ir̂}

∣∣∣U]
≤ sup

θ∈Ir̂
f ′′(θ)E

[
(R′ − r̂)21{R′∈Ir̂} |U

]
,

where (r̂, R′) denotes either (r̂, R′) or (R′, r̂), depending on the relation between r̂ and R′, Ir̂
can be any (random) open interval such that r̂ belongs to the closure of Ir̂, in the third line we
use the fact that R′ ∈ Ir̂ implies that (r̂, R′) ⊂ Ir̂ and in the last step we use the fact that f ′′ ≤ 0
on [0, r2] so we can bound the second term by zero, whereas in the first expression supθ∈Ir̂ f

′′(θ)
is pulled out in front of the conditional expectation as it is a measurable function of U .

We also use Lemma 3.1 to get E [(R′ − r̂) |U ] = 0. Hence we have

E
[
f(R′) |U

]
− f(r̂) ≤ 1

2
α(r̂) sup

Ir̂

f ′′ , (3.12)

where α(r̂) ≤ E
[
(R′ − r̂)21{R′∈Ir̂} |U

]
and the exact value of α(r̂) is specified in Lemma 3.2

(note that here r̂ ≤ r1 = H) for our particular choice of intervals Ir̂ given by (3.2). Recall that
for the drift step we get

f(r̂)− f(r) ≤ f ′(r)(r̂ − r) (3.13)

and that due to (1.16) we have r̂ = |x − y + h(b̄(x, U) − b̄(y, U))| ≤ |x − y| + h|b̄(x, U) −
b̄(y, U)| ≤ r + hLr. We would like to replace f ′(r) in (3.13) with f ′(r̂), since in (3.12) we
consider supremum of f ′′ on a small neighbourhood of r̂ rather than r. Recall now that f ′(r) =
e−ar for r ≤ r2 (here we consider r ≤ r1 ≤ r2) and hence f ′(r) = e−a(r−r̂+r̂) = e−ar̂e−a(r−r̂) =
f ′(r̂)e−a(r−r̂). We also have r̂ − r ≤ hLr and hence we can bound

f(r̂)− f(r) ≤ f ′(r)(r̂ − r) ≤ f ′(r̂)eahLr1(r̂ − r) ≤ f ′(r̂)eahLr1hLr̂ ,

where the last step holds for r ≤ r̂. Note, however, that for r > r̂ we have f(r̂)− f(r) ≤ 0 and
hence the bound

f(r̂)− f(r) ≤ f ′(r̂)eahLr1hLr̂ (3.14)

holds for all r ∈ [0, r1]. Thus, combining (3.12) and (3.14), we see that we need to show that

f ′(r̂)eahLr1hLr̂ +
1

2
α(r̂) sup

Ir̂

f ′′ ≤ −c′hf(r)

for some c′ > 0 and for all r ∈ [0, r1]. We will in fact show

f ′(r̂)eahLr1hLr̂ +
1

2
α(r̂) sup

Ir̂

f ′′ ≤ −chf(r̂) . (3.15)

Note that this implies an upper bound by −chf(r)/2 as long as hL ∈ (0, 1/2). Indeed, we have
r = |x − y| ≤ r̂ + hLr and thus f(r̂) ≥ f((1 − hL)r) ≥ (1 − hL)f(r) ≥ f(r)/2, since f is
increasing and concave on [0, r1] and hL ∈ (0, 1/2) by assumption (2.9).
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Recall now that

Ir̂ =

{
(0, r̂ +

√
h) if r̂ ≤

√
h

(r̂ −
√
h, r̂) if r̂ >

√
h

and f ′′ is increasing on [0, r2], since f ′′′(r) = a2e−ar for r ∈ [0, r2]. Therefore

sup
Ir̂

f ′′ =

{
−ae−a(r̂+

√
h) if r̂ ≤

√
h

−ae−ar̂ if r̂ >
√
h
.

We proceed by considering two separate cases, related to the form of the interval Ir̂ and, con-
sequently, the form of the bound α(r̂) from Lemma 3.2.

The case of r̂ >
√
h. Looking at (3.15), we see that we need to show that

e−ar̂eahLr1hLr̂ − 1

2
α(r̂)ae−ar̂ ≤ −ch1

a
(1− e−ar̂) (3.16)

for all r̂ ≤ r1. Recall that α(r̂) = c0 min(r̂,
√
h)
√
h. We will show that

e−ar̂eahLr1Lr̂ − 1

2
c0ae

−ar̂ ≤ −c1

a
(1− e−ar̂) . (3.17)

To this end it is sufficient to show that the left hand side of (3.17) is bounded by −c/a for all
r̂ ∈ [0, r1]. Hence we need

eahLr1Lr̂ − 1

2
c0a ≤ −

c

a
ear̂ .

Recall that r1 = (1 + h0L)R ≤ 3R/2, since h0L < 1/2 by assumption (2.9). Since h < h0 and
we have

h0 ≤
2c0 ln 3

2

27L2R2
≤

c0 ln 3
2

9L2r1R
≤

ln 3
2

aLr1
,

we see that eahLr1 ≤ 3/2. We would like to stress the fact that this bound (and hence the
assumption on h0) is to some extent arbitrary and we can modify it in order to have in the last
estimate any number strictly greater than 1 instead of 3/2. We need to have

3

2
Lr̂ − 1

2
c0a ≤ −

c

a
ear̂ . (3.18)

First we need to make sure that 3Lr̂ − c0a < 0 holds for all r̂ ≤ r1, by choosing a in an
appropriate way. This is guaranteed by our choice of a = 6Lr1/c0 made in (2.10), i.e., it is
chosen (again to some extent arbitrarily, up to a constant) so that 3

2Lr1 = 1
4c0a. With this choice

of a we have 3
2Lr̂ −

1
2c0a ≤ −1

4c0a for all r̂ ≤ r1 and hence in order to get (3.18) we need to
have −1

4c0a ≤ − c
ae
ar̂ for all r̂ ≤ r1, which implies that we should choose

c ≤ 9L2r2
1

c0
e
− 6Lr21

c0 .

The case of r̂ ≤
√
h. We use the fact that f(r̂) ≤ r̂ and in fact for small r̂ these quantities are

close to each other. Coming back to (3.16), we see that we need to show

eahLr1hL− 1

2
c0

√
hae−a

√
h ≤ −chear̂ . (3.19)
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Since h < h0 and by assumption

h0 ≤
c2

0(ln 2)2

144L2R2
,

using once again the bound r1 ≤ 3R/2, we see that

√
h ≤ c0 ln 2

12LR
≤ 3c0 ln 2

24Lr1
=

3

4a
ln 2 ≤ 1

a
ln 2

and we have ea
√
h ≤ 2. Hence the left hand side of (3.19) is bounded (recall that we also have

eahLr1 ≤ 3
2) by 3

2hL −
1
4c0

√
ha, which we now need to make sure is negative. We can do this

e.g. by making sure that 3
2hL ≤

1
8c0

√
ha, which is equivalent to

√
h ≤ r1

2 , but this is ensured
by our assumption h0 ≤ R2/4, since R ≤ r1. Hence we see that the left hand side of (3.19)
is bounded from above by −c0a

√
h/8. Observe that we have ear̂ ≤ ea

√
h ≤ 2, which implies

−1
8c0a
√
h ≤ − 1

16c0a
√
hear̂. Hence we need to have

− 1

16
c0a
√
hear̂ ≤ −chear̂ ,

which implies that we should choose

c ≤ 3Lr1

8
√
h0

=
c0a

16
√
h0
.

Then (3.19) is satisfied and the proof is finished.

4 Weak error analysis

Proof of Theorem 1.5. The novelty of this proof is in the fact that we are working with an inac-
curate drift. This is what we focus on, while keeping some standard estimates left to the reader.
We refer to [Tal90] and [MT04] for details of proofs of weak convergence rates. Moreover, in
order to clearly showcase the main ideas, we present the proof only in the one-dimensional
setting. An extension to the multidimensional case follows in the same way, although with more
cumbersome notation. Let u(t, x) := E[g(Y 0,x

t )], where Y 0,x
t is a solution to the SDE (1.7) at

time t, started from the initial condition x ∈ R at time 0. Since b ∈ C3
b and g ∈ C∞ with

polynomial growth, we can deduce from [Kry99] that u ∈ C1,3([0, T ],R) and that it satisfies the
Kolmogorov equation{

(Lu)(t, x) := ∂tu(t, x)− ∂xu(t, x)b(x)− 1
2∂

2
xu(t, x) = 0 , (t, x) ∈ [0,∞)× R,

u(0, x) = g(x) .
(4.1)

Furthermore, due to our assumption (1.14), Theorem 3.4 in [Tal90] tells us that for any multi-
index I with |I| ≤ 2 there exist an integer p|I| and positive constants γ|I| and Γ|I| such that

|∂Iu(t, x)| ≤ Γ|I|(1 + |x|p|I|)e−γ|I|t . (4.2)

Let T = Mh for some M ≥ 1. We define the continuous extension of (1.10), given by

X̄t = X0 +

∫ t

0
b̄(X̄η(s), Uη(s))ds+Wt ,

where η(s) = kh for s ∈ (kh, (k+1)h] and (Ukh)∞k=0 are defined in an analogous way as (Uk)
∞
k=0

in (1.10). It is important to note that X̄kh is independent of Ukh. From the definition of u we
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have u(0, X̄T ) = g(X̄T ). Consequently E[g(X̄T )]−E[g(YT )] = E[u(0, X̄T )−u(T,X0)] due to the
Feynman-Kac formula. Then the Itô formula gives

E[g(X̄T )]− E[g(YT )] =
M∑
k=1

E[u(T − kh, X̄kh)− u(T − (k − 1)h, X̄(k−1)h)]

=

M∑
k=1

E
∫ T−kh

T−(k−1)h

(
−∂tu(T − t, X̄t) + ∂xu(T − t, X̄t)b̄(X̄η(t), Uη(t)) +

1

2
∂2
xxu(T − t, X̄t)

)
dt .

From now on, let us denote tk := kh. Since u satisfies the PDE (4.1), we see that for all x ∈ Rd
we have −∂tu(T − t, x) + 1

2∂
2
xxu(T − t, x) = −∂xu(T − t, x)b(x). Hence

E[g(X̄T )]− E[g(YT )] =
M∑
k=1

E
∫ T−tk

T−tk−1

∂xu(T − t, X̄t)
(
b̄(X̄η(t), Uη(t))− b(X̄t)

)
dt

=

M∑
k=1

E
∫ T−tk

T−tk−1

[(
∂xu(T − t, X̄t)− ∂xu(T − t, X̄η(t))

) (
b̄(X̄η(t), Uη(t))− b(X̄t)

)]
dt

+
M∑
k=1

E
∫ T−tk

T−tk−1

[
∂xu(T − t, X̄η(t))

(
b̄(X̄η(t), Uη(t))− b(X̄t)

)]
dt

=
M∑
k=1

E
∫ T−tk

T−tk−1

[(
∂xu(T − t, X̄t)− ∂xu(T − t, X̄η(t))

) (
b̄(X̄η(t), Uη(t))− b(X̄η(t))

)]
dt (:= E1)

+

M∑
k=1

E
∫ T−tk

T−tk−1

[(
∂xu(T − t, X̄t)− ∂xu(T − t, X̄η(t))

) (
b(X̄η(t))− b(X̄t)

)]
dt (:= E2)

+
M∑
k=1

E
∫ T−tk

T−tk−1

[
∂xu(T − t, X̄η(t))

(
b̄(X̄η(t), Uη(t))− b(X̄t)

)]
dt (:= E3) .

We begin by considering the last term, denoted by E3. Observe that

E
[
∂xu(T − t, X̄η(t))

(
b̄(X̄η(t), Uη(t))− b(X̄t)

)
|X̄η(t)

]
= E

[
∂xu(T − t, X̄η(t))E

[(
b(X̄η(t))− b(X̄t)

)
|X̄η(t)

]]
≤ Γ1e

−γ1(T−t)E
[
(1 + |X̄η(t)|p1) · |E

[(
b(X̄η(t))− b(X̄t)

)
|X̄η(t)

]
|
]

≤ Γ1e
−γ1(T−t)(2 + 2C

(2p1)
IEul )

1/2
(
E|E

[(
b(X̄η(t))− b(X̄t)

)
|X̄η(t)

]
|2
)1/2

,

where we used E|X̄η(t)|2p1 ≤ C
(2p1)
IEul due to Remark 2.18. Application of the Itô formula and the

fact that b ∈ C3
b leads to

E
[(
b(X̄t)− b(X̄η(t))

)
|X̄η(t)

]
= E[

∫ t

η(t)
b′(X̄s)b̄(X̄η(s), Uη(s)) +

1

2
b′′(X̄s)ds | X̄η(t)]

≤ 1

2
Cb′′(t− η(t)) + Cb′

∫ t

η(t)
E
[
|b̄(X̄η(s), Uη(s))| |X̄η(t)

]
ds ,

where Cb′ and Cb′′ are bounds on the derivatives of b. By Minkowski’s inequality and (2.40)(
E
[
|b̄(X̄η(s), Uη(s))| |X̄η(t)

])2 ≤ σ2(|X̄η(s)|2 + 1)hα + 2L2|X̄η(s)|2 + 2|b(0)|2 ≤ C(|X̄η(s)|2 + 1) ,
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where C := max
(
σ2 + 2L2, σ2 + 2|b(0)|2

)
, since h ≤ 1. Consequently

E3 ≤ C̄
M∑
k=1

∫ T−tk

T−tk−1

e−γ1(T−t)(t− η(t))dt ,

with C̄ := Γ1(2 + 2C
(2p1)
IEul )

1/2
(

1
2C

2
b′′ + 2C2

b′(CIEul + 1) max(σ2 + 2L2, σ2 + 2|b(0)|2)
)1/2. We con-

clude our estimation of E3 by observing that, since |t− η(t)| ≤ h, we have

C̄

M∑
k=1

∫ T−tk

T−tk−1

e−γ1(T−t)(t− η(t))dt ≤ C̄h
M∑
k=1

∫ T−tk

T−tk−1

e−γ1(T−t)dt = C̄h

∫ T

0
e−γ1(T−t)dt ≤ C̄ h

γ1
.

That completes the estimates of the third term E3. To estimate the second term E2 we calculate

M∑
k=1

E
∫ T−tk

T−tk−1

[(
∂xu(T − t, X̄t)− ∂xu(T − t, X̄η(t))

) (
b(X̄η(t))− b(X̄t)

)]
dt

≤L
M∑
k=1

E
∫ T−tk

T−tk−1

[∫ 1

0
|∂xxu(T − t, αX̄t + (1− α)X̄η(t))|dα |X̄η(t) − X̄t|2

]
dt

≤
M∑
k=1

∫ T−tk

T−tk−1

Γ2e
−γ2(T−t)2p2−1E

[
(1 + |X̄t|p2 + |X̄η(t)|p2)|X̄η(t) − X̄t|2

]
dt

≤
√

32p2−1
M∑
k=1

∫ T−tk

T−tk−1

Γ2e
−γ2(T−t) (E[(1 + |X̄t|2p2 + |X̄η(t)|2p2)]

)1/2 (E[|X̄η(t) − X̄t|4]
)1/2

dt .

The first expectation in the integrand can be bounded using Remark 2.18, while for the second
we write

E|X̄t − X̄η(t)|4 =E

∣∣∣∣∣
∫ t

η(t)
b̄(X̄η(s), Uη(s))ds+W (t)−W (η(t))

∣∣∣∣∣
4

≤8

(
(t− η(t))3

∫ t

η(t)
E|b̄(X̄η(s), Uη(s))|4ds+ 3(t− η(t))2

)
,

where we use (a + b)4 ≤ 8a4 + 8b4, E|W (t) −W (η(t))|4 = 3|t − η(t)|2 and
(∫ b

a |g|
)p
≤ (b −

a)p−1
∫ b
a |g|

p due to the Hölder inequality.
Since we assume that for all x ∈ R we have E|b̄(x, U)|4 ≤ C4

b̄
(1 + |x|4), we can now bound

|t− η(t)| ≤ h and complete the estimate for E2 in a similar way as for E3.
It now remains to deal with E1. We have

M∑
k=1

E
∫ T−tk

T−tk−1

[(
∂xu(T − t, X̄t)− ∂xu(T − t, X̄η(t))

) (
b̄(X̄η(t), Uη(t))− b(X̄η(t))

)]
dt

≤
M∑
k=1

∫ T−tk

T−tk−1

(
E|∂xu(T − t, X̄t)− ∂xu(T − t, X̄η(t))|2

)1/2 (E|b̄(X̄η(t), Uη(t))− b(X̄η(t))|2
)1/2

dt

≤σ(1 + CIEul)
1/2

M∑
k=1

∫ T−tk

T−tk−1

(
E|∂xu(T − t, X̄t)− ∂xu(T − t, X̄η(t))|2

)1/2
dt ,
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where we used (2.39) and h ≤ 1. For the remaining expectation, since u ∈ C1,3, we have

∂xu(T − t, X̄t)− ∂xu(T − t, X̄η(t))

=

∫ t

η(t)

(
−∂2

txu(T − s, X̄s) + ∂2
xxu(T − s, X̄s)b̄(X̄η(s), Uη(s)) +

1

2
∂3
xxxu(T − s, X̄s)

)
ds .

Since u ∈ C1,3([0, T ],R), we can infer from (4.1) that it satisfies{
∂txu(t, x)− ∂2

xxu(t, x)b(x)− 1
2∂

3
xxxu(t, x) = ∂xu(t, x)b′(x) , (t, x) ∈ [0,∞)× R,

∂xu(0, x) = g′(x) .
(4.3)

Hence we have

∂xu(T − t, X̄t)− ∂xu(T − t, X̄η(t))

=

∫ t

η(t)

(
∂2
xxu(T − s, X̄s)

(
b̄(X̄η(s), Uη(s))− b(X̄s)

)
− ∂xu(T − s, X̄s)b

′(X̄s)
)
ds

≤
∫ t

η(t)

(
Γ2e
−γ2(T−s)(1 + |X̄s|p2)|b̄(X̄η(s), Uη(s))− b(X̄s)|+ Cb′Γ1e

−γ1(T−s)(1 + |X̄s|p1)
)
ds .

Now we can use the Hölder inequality as above with p = 2, take the expectation, use the Cauchy-
Schwarz inequality for E to separate the terms involving |X̄s|, |b̄(X̄η(s), Uη(s))| and |b(X̄s)|, use
the linear growth conditions (7.1) and (2.40) for b and b̄, respectively, and then use the uniform
bounds for E|X̄s|p for all p ≥ 1 as in the previous step. All these efforts combined give us a
constant Ĉ > 0 such that

∂xu(T − t, X̄t)− ∂xu(T − t, X̄η(t)) ≤ Ĉ(t− η(t))e−(γ1∧γ2)(T−t) .

Proceeding as before, we finish the estimate of E1 and hence the entire proof.

5 Further possible extensions

We would like to highlight the robustness of the general approach presented in this paper by
briefly discussing several possible extensions of our results to more general settings. For the lack
of space, we do not cover these additional cases in detail. However, they are all based on the idea
that whenever for a Markov chain (Xk)

∞
k=0 we have a one-step contraction of the form (2.12)

in some (pseudo-)distance function f (see [EM19, QH19] and the references therein for further
examples of such contractions), we can then use the properties of f to obtain a perturbation
inequality such as (2.17) and employ it to study error bounds for sampling algorithms based on
(Xk)

∞
k=0.

5.1 Non-constant discretisation parameter

Our analysis of ULA in Section 2.3 is based on the one-step analysis of Euler schemes in
Section 2.2. However, we do not need to use the same discretisation parameter in each step and
the proofs of Theorems 2.9 and 1.2 still work in the same way if the discretisation parameters
vary between steps. More precisely, let us consider a decreasing sequence (hk)

∞
k=0 such that h0 ≤

min
(
K

4L2 ,
4
K ,

1
2L ,

2c0 ln 3
2

27L2R2 ,
R2

4 ,
c20(ln 2)2

144L2R2

)
, so that all hk for k ≥ 0 are within the range required in

Theorem 2.9. We consider a Markov chain given by

Xk+1 = Xk + hkb(Xk) +
√
hkZk+1 .
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Then in the proof of Theorem 2.9 for each k ≥ 0 we have

Ef(|Gk+1 − Y(k+1)hk |) ≤ (1− chk)Ef(|Gk − Ykhk−1
|) + Culth

3/2
k

and hence, instead of (2.37), we obtain

Ef(|Gk+1 − Y(k+1)hk |) ≤

(
k∏
l=0

(1− chl)

)
Ef(|G0 − Y0|) + Cult

k∑
j=0

(
j∏
l=1

(1− chk−(l−1))h
3/2
k−j

)
,

with the convention
∏0
l=1(. . .) = 1. This leads to

W2(L(Xk), π) ≤

(
A

(
k−1∏
l=0

(1− chl)

)
Ef(|X0 − V0|)

)1/2

+

ACult k−1∑
j=0

(
j∏
l=1

(1− chk−(l−1))h
3/2
k−j

)1/2

,

where V0 ∼ π, and bounds for W1 can be obtained in a similar way.

5.2 Bounds in the total variation distance

In order to obtain error bounds for ULA in the total variation distance, we can consider a
(pseudo-)distance function with a discontinuity at zero. Namely, if f : [0,∞)→ [0,∞) is of the
form

f(r) := a1(0,∞)(r) + f1(r) , (5.1)

where a > 0 and f1 : [0,∞) → [0,∞) is a continuous, non-decreasing function, then for all
probability measures µ and ν on Rd we have ‖µ−ν‖TV ≤ 2a−1Wf (µ, ν) (recall that ‖µ−ν‖TV =
2 infπ∈Π(µ,ν)

∫
1(0,∞)(|x − y|)π(dx dy) and note that W1(0,∞)

(µ, ν) = 1
2‖µ − ν‖TV ). Hence, if for

a Markov chain (Xk)
∞
k=0 we obtain a one-step contraction such as (2.12) in a (pseudo-)distance

based on the function f given by (5.1), then we can use the same reasoning as in Section 2.3 to
control ‖L(Xk)− π‖TV . Obtaining such contractions is indeed possible under our Assumptions
1.1, see e.g. Theorem 2.10 in [EM19]. Note that the distance function and all the constants
there are explicit (although rather complicated). We leave the details to the interested reader.

5.3 Bounds without requiring contractivity of the drift even at infinity

Another possible extension of our results would be to remove the assumption (1.5) of con-
tractivity at infinity of the drift and replace it with the weaker condition (2.33), i.e., to assume
that there exist constants M1, M2 > 0 such that for all x ∈ Rd we have

〈b(x), x〉 ≤M2 −M1|x|2 . (5.2)

Note that in Lemma 2.11 we showed that (1.5) implies (5.2) so the latter condition is indeed
more general. Note that an extension in this direction in the context of Wasserstein contractions
for diffusion processes has been recently obtained in [EGZ19], which generalized the results
from [Ebe16]. An analogous result directly at the level of Euler schemes has been obtained in
[EM19], see Theorem 6.1 and Example 6.2 therein. Namely, the authors of [EM19] showed that
under Assumptions 1.1 with (1.5) replaced by (5.2), one can construct a pseudo-distance ρa of
the form

ρa(x, y) := (a+ C(V (x) + V (y)))1(0,∞)(|x− y|) + f1(|x− y|) (5.3)
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and a coupling (X ′, Y ′) of the Euler scheme (2.1) with a transition kernel p, such that (X ′, Y ′)
is contractive in Wρa , i.e., using the notation from Corollary 2.2,

Wρa(µp, νp) ≤ (1− ch)Wρa(µ, ν) (5.4)

with some constant c > 0, for sufficiently small h > 0 and for all probability measures µ and ν
on Rd. In (5.3), a and C are positive constants, V is a Lyapunov function and f1 is a continuous
non-decreasing function. Since ρa, similarly as f in Subsection 5.2, dominates 1(0,∞) (up to a
multiplicative constant) the contraction in (5.4) allows us to control ‖L(Xk) − π‖TV , where
(Xk)

∞
k=0 is a scheme with the transition kernel p. Moreover, ρa also dominates the truncated

Wasserstein distance W ∗1 given by

W ∗1 (µ, ν) := inf
π∈Π(µ,ν)

∫
Rd×Rd

(|x− y| ∧ 1) π(dx dy) .

Hence (5.4) allows us to control also W ∗1 (L(Xk), π). By tracing the proof of our Theorem 2.16,
we can then easily extend all these results to chains with inaccurate drifts. Again, for the lack
of space, we leave the details to the reader.

6 Appendix: Coupling for Euler schemes

In this section we provide a proof that the random vector (X ′, Y ′) presented in (2.7) is
indeed a coupling of two copies of X ′. Let us start with the case of H = ∞, i.e., without the
truncation based on the distance of the processes before the jump.

Theorem 6.1. The joint distribution of the 2d-dimensional random vector (X ′, Y ′) defined by
(2.7) is a coupling of N(x̂, hI) and N(ŷ, hI).

Proof. We need to show that Y ′ ∼ N(ŷ, hI). To this end, we will show that for any continuous
bounded function g we have

Eg(Y ′) = Eg(ŷ +
√
hZ) ,

where Z ∼ N(0, I). Straight from the definition of Y ′ we get

Eg(Y ′) = I1 + I2 + I3 , (6.1)

where

I1 =

∫
Rd

g(x̂+
√
hz)

ϕmŷ,hI(x̂+
√
hz) ∧ ϕmx̂,hI(x̂+

√
hz)

ϕmx̂,hI(x̂+
√
hz)

1{|
√
hz|<m}ϕ0,I(z)dz ,

I2 =

∫
Rd

g(ŷ +Rx̂,ŷ
√
hz)

(
1−

ϕmŷ,hI(x̂+
√
hz) ∧ ϕmx̂,hI(x̂+

√
hz)

ϕmx̂,hI(x̂+
√
hz)

)
1{|
√
hz|<m}ϕ0,I(z)dz

and I3 =

∫
Rd

g(ŷ +
√
hz)1{|

√
hz|≥m}ϕ0,I(z)dz .

By substituting u = x̂+
√
hz and using the fact that 1√

h
ϕ0,I(

u−x̂√
h

) = ϕx̂,hI(u), we see that

I1 =

∫
Rd

g(u)
(
ϕmŷ,hI(u) ∧ ϕmx̂,hI(u)

)
du .
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In a similar way, we can substitute u = ŷ +
√
hz to see that

I3 =

∫
Rd

g(u)1{|u−ŷ|≥m}ϕŷ,hI(u)du .

In order to deal with I2, we substitute u = ŷ+Rx̂,ŷ
√
hz and notice that then

√
hz = Rx̂,ŷ(u− ŷ)

since Rx̂,ŷ is an involution. Moreover, since Rx̂,ŷ is an isometry and | detRx̂,ŷ| = 1, we obtain

I2 =

∫
Rd

g(u)

(
1−

ϕmŷ,hI(x̂+Rx̂,ŷ(u− ŷ)) ∧ ϕmx̂,hI(x̂+Rx̂,ŷ(u− ŷ))

ϕmx̂,hI(x̂+Rx̂,ŷ(u− ŷ))

)
1{|u−ŷ|<m}ϕŷ,hI(u)du .

Here we also used 1√
h
ϕ0,I

(
Rx̂,ŷ(u−ŷ)√

h

)
= ϕŷ,hI(u), which again follows from Rx̂,ŷ being an

isometry. If we now note that Rx̂,ŷ(ŷ − x̂) = x̂− ŷ and hence

ϕmŷ,hI(x̂+Rx̂,ŷ(u− ŷ)) = ϕmŷ−x̂,hI(Rx̂,ŷ(u− ŷ)) = ϕmx̂,hI(u) ,

we see that

I2 =

∫
Rd

g(u)ϕmŷ,hI(u)du−
∫
Rd

g(u)
(
ϕmx̂,hI(u) ∧ ϕmŷ,hI(u)

)
du ,

which implies that I1 + I2 + I3 =
∫
Rd g(u)ϕŷ,hI(u)du.

Now we can consider the general case of (X ′, Y ′) given by (2.7) with H ∈ (0,∞). We can
easily check that this is indeed a coupling of N(x̂, hI) and N(ŷ, hI) by applying Theorem 6.1
and observing that for any continuous bounded function g we have

Eg(Y ′) = 1{r̂>H}Eg(ŷ +
√
hZ) + 1{r̂≤H}(I1 + I2 + I3) ,

where I1, I2 and I3 denote the expressions that appear on the right hand side of (6.1). Since
we know from the proof of Theorem 6.1 that I1 + I2 + I3 =

∫
Rd g(u)ϕŷ,hI(u)du, we get our

assertion.

7 Appendix: Proofs of lemmas from Section 2

7.1 Proof of Lemma 2.11

Proof. If |x| > max
(
R, 2|b(0)|

K

)
then

〈b(x), x〉 = 〈b(x)−b(0), x〉+〈b(0), x〉 ≤ −K|x|2+|b(0)||x| ≤ −K|x|2+
K

2|b(0)|
|b(0)||x|2 = −K

2
|x|2 .

On the other hand, if |x| ≤ max
(
R, 2|b(0)|

K

)
, then

〈b(x), x〉 ≤ |b(x)− b(0)||x|+ |b(0)||x| ≤ L
(

max

(
R, 2|b(0)|

K

))2

+ |b(0)|max

(
R, 2|b(0)|

K

)
.
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7.2 Proof of Lemma 2.12

Proof. By the Itô formula combined with (2.33), for τn := inf{t > 0 : |Yt| > n} we have

E|Yt∧τn |2 = E|Y0|2 + 2E
∫ t∧τn

0
〈b(Ys), Ys〉ds+ E(t ∧ τn)d

≤ E|Y0|2 + t(2M2 + d)− 2M1

∫ t

0
E|Ys∧τn |2ds .

By the Gronwall inequality and the Fatou lemma, we get E|Yt|2 ≤
(
E|Y0|2 + t(2M2 + d)

)
e−2M1t.

Note that the function t 7→ te−2M1t is bounded by 1
2M1

for all t ≥ 0, which implies the desired
bound.

7.3 Proof of Lemma 2.13

Proof. Straight from the definition (2.25) of (Xk)
∞
k=0 we have

E|Xk+1|2 = E|Xk|2 + E|hb(Xk) +
√
hZk+1|2 + 2E〈Xk, hb(Xk) +

√
hZk+1〉 .

Now note that (1.4) implies that for all x ∈ Rd we have

|b(x)|2 ≤ 2L2|x|2 + 2|b(0)|2 . (7.1)

This, together with the fact that E|Zk+1|2 = d and (2.33), implies

E|Xk+1|2 ≤ E|Xk|2
(
1 + 4h2L2 − 2M1h

)
+
(
4h2|b(0)|2 + 2hd+ 2hM2

)
.

Hence we have

E|Xk+1|2 ≤ E|X0|2
(
1 + 4h2L2 − 2M1h

)k+1
+2h

(
2h|b(0)|2 + d+M2

) k∑
j=0

(
1 + 4h2L2 − 2M1h

)j
.

Note that if |1 + 4h2L2 − 2M1h| < 1, which is equivalent to h < M1
2L2 = K

4L2 , then we can bound
the finite sum on the right hand side by the infinite sum, and the expression next to E|X0|2 by
1, for any k ≥ 0. This completes the proof.

7.4 Proof of Lemma 2.14

Proof. We have

E

∣∣∣∣∣
∫ (k+1)h

kh
b(Ys)ds− hb(Ykh)

∣∣∣∣∣
2

= E

∣∣∣∣∣
∫ (k+1)h

kh
(b(Ys)− b(Ykh)) ds

∣∣∣∣∣
2

≤ hE
∫ (k+1)h

kh
|b(Ys)− b(Ykh)|2 ds

≤ L2hE
∫ (k+1)h

kh
|Ys − Ykh|2 ds ≤ 2L2hE

∫ (k+1)h

kh

(∣∣∣∣∫ s

kh
b(Yr)dr

∣∣∣∣2 + |Ws −Wkh|2
)
ds

≤ 2L2hE
∫ (k+1)h

kh

(
(s− kh)

∫ s

kh
|b(Yr)|2dr + |Ws −Wkh|2

)
ds

≤ 2L2h

((
sup

r≤(k+1)h
E|b(Yr)|2

)∫ (k+1)h

kh
(s− kh)2ds+ d

∫ (k+1)h

kh
(s− kh)ds

)

= 2L2h

((
sup

r≤(k+1)h
E|b(Yr)|2

)
h3

3
+ d

h2

2

)
= L2h3

((
sup

r≤(k+1)h
E|b(Yr)|2

)
2h

3
+ d

)
.

Now we combine (7.1) with Lemma 2.12 and we obtain the desired bound.
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7.5 Proof of Lemma 2.17

Proof. We argue similarly as in the proof of Lemma 2.13. From the definition (1.10) of (X̄k)
∞
k=0

we have

E|X̄k+1|2 = E|X̄k|2 + E|hb̄(X̄k, Uk) +
√
hZk+1|2 + 2E〈X̄k, hb̄(X̄k, Uk) +

√
hZk+1〉 .

Note that EE[〈X̄k, hb̄(X̄k, Uk)+
√
hZk+1〉|X̄k] = E〈X̄k, hb(X̄k)〉. Furthermore, by (2.40) we have

E
[
|b̄(X̄k, Uk)|2|X̄k

]
≤ σ2(|X̄k|2 + 1)hα + 2L2|X̄k|2 + 2|b(0)|2 .

Hence, using E|Zk+1|2 = d and (2.33), we get

E|X̄k+1|2 ≤ E|X̄k|2
(
1 + 2σ2h2+α + 4h2L2 − 2M1h

)
+
(
2σ2h2+α + 4h2|b(0)|2 + 2hd+ 2hM2

)
.

Thus we have

E|X̄k+1|2 ≤E|X̄0|2
(
1 + 2σ2h2 + 4h2L2 − 2M1h

)k+1

+
(
2σ2h2 + 4h2|b(0)|2 + 2hd+ 2hM2

) k∑
j=0

(
1 + 2σ2h2 + 4h2L2 − 2M1h

)j
,

where we used h2+α ≤ h2 for h ≤ 1. Note that our upper bound on h guarantees that |1 +
2σ2h2 + 4h2L2 − 2M1h| < 1 and hence we can bound the finite sum on the right hand side
by the infinite sum. Moreover, we bound the expression next to E|X0|2 by 1, which finishes the
proof.

8 Appendix: Proofs of lemmas from Section 3

The proofs in this section are based on calculations from Section 6 in [EM19].

8.1 Proof of Lemma 3.1

Proof. It is sufficient to consider the case of r̂ ≤ H since for r̂ > H we apply the synchronous
coupling. Observe that R′ = |X ′ − Y ′| can take values 0 (when the coupled processes jump to
the same point), r̂ (when they move synchronously) or∣∣∣∣x̂− ŷ + 2

x̂− ŷ(x̂− ŷ)T

|x̂− ŷ|2
√
hZ

∣∣∣∣ ,
where Z ∼ N(0, I), when they are reflected. Hence we see that in the reflection case X ′ − Y ′
is a sum of two parallel vectors and we have R′ = r̂ + 2

√
h〈 x̂−ŷ|x̂−ŷ| , Z〉. However, 〈 x̂−ŷ|x̂−ŷ| , Z〉 can

be interpreted as a one-dimensional projection of a Gaussian random vector and hence without
loss of generality we can assume that R′− r̂ = 2

√
hW , where W ∼ N(0, 1) is a one-dimensional

Gaussian random variable.
From the definition of our coupling, we see that if r̂ ≤ H, then we have

E
[
R′ |U

]
− r̂ = 2

∫ 0

−∞
|t|

(
1−

ϕmr̂,h(t)

ϕm0,h(t)

)
1{|t|≤m}ϕ0,h(t)dt− 2

∫ r̂/2

0
|t|

(
1−

ϕmr̂,h(t)

ϕm0,h(t)

)
1{|t|≤m}ϕ0,h(t)dt

+

∫ r̂/2

−∞
(−r̂)

ϕmr̂,h(t)

ϕm0,h(t)
1{|t|≤m}ϕ0,h(t)dt+

∫ ∞
r̂/2

(−r̂)1{|t|≤m}ϕ0,h(t)dt ,
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where the first two terms correspond to the reflection and the next two terms correspond to the
situation in which the coupled processes jump to the same point. By making the substitution
u = t− r̂ in the second and the fourth integrals we get

E
[
R′ |U

]
− r̂ =

∫ 0

−∞
(−2t)ϕm0,h(t)dt+

∫ −r̂
−∞

(2u+ 2r̂)ϕm0,h(u)du+

∫ r̂/2

0
(−2t)ϕmr̂,h(t)dt

+

∫ −r̂/2
−r̂

(2u+ 2r̂)ϕmr̂,h(u)du+ 2

∫ ∞
r̂/2

(−r̂)ϕm0,h(t)dt

=

∫ r̂/2

−∞
(−2t)ϕmr̂,h(t)dt+

∫ −r̂/2
−∞

2r̂ϕmr̂,h(u)du+

∫ ∞
r̂/2

(−2r̂)ϕm0,h(t)dt

+

∫ −r̂/2
−∞

2uϕm0,h(u)du =

∫ r̂/2

−r̂/2
(−2t)ϕm0,h(t)dt = 0 ,

which finishes the proof.

Remark 8.1. Note that if instead of the coupling specified in (2.23), we would just use the
coupling in which the processes are always reflected, we would get

E
[
R′ |U

]
− r̂ = 2

∫ 0

−∞
|t|ϕ0,h(t)dt− 2

∫ r̂/2

0
|t|ϕ0,h(t)dt+ 2

∫ ∞
r̂
|t|ϕ0,h(t)dt ,

which clearly is positive for all r̂, and hence the assertion of Lemma 3.1 fails.

8.2 Proof of Lemma 3.2

Proof. First observe that just like in Lemma 3.1, without loss of generality we can assume that
R′ − r̂ = 2

√
hW , where W ∼ N(0, 1). We have

E
[
(R′ − r̂)21{R′∈Ir̂} |U

]
≥
∫ r̂/2

−∞
(−2t)2

(
1−

ϕmr̂,h(t)

ϕm0,h(t)

)
ϕ0,h(t)1{|t|≤m}1{r̂−2t∈Ir̂}1{|r̂|≤H}dt .

We can therefore skip the condition |r̂| ≤ H from now on in our calculations and just add it
again at the very end. Let us deal first with the case of r̂ ≥

√
h. Then Ir̂ = (r̂ −

√
h, r̂) and we

see that r̂ − 2t ∈ (r̂ −
√
h, r̂) if and only if t ∈ (0,

√
h/2). Hence the integral above is equal to

4

∫ √h/2∧m
0

t2

(
1−

ϕmr̂,h(t)

ϕm0,h(t)

)
ϕ0,h(t)dt . (8.1)

Now observe that

ϕmr̂,h(t)

ϕm0,h(t)
= e−

|t−r̂|2
2h 1{|t−r̂|≤m}e

|t|2
2h ≤ e−

|t−r̂|2
2h e

|t|2
2h = e−

1
2h

(t2−2tr̂+r̂2−t2) = e−
1
h

( r̂2

2
−tr̂) .

Combining this with h ≤ 4m2, we see that the integral in (8.1) is bounded from below by

4

∫ √h/2
0

t2
(

1− e−
1
h

( r̂2

2
−tr̂)

)
ϕ0,h(t)dt .

Now we make the substitution u = 1√
h
t which gives

4

∫ 1/2

0

√
hhu2

(
1− e−

1
h

( r̂2

2
−
√
hur̂)

)
1√
2πh

e−
hu2

2h du = 4h

∫ 1/2

0
u2
(

1− e
r̂√
h

(u− r̂

2
√
h

)
)
ϕ0,1(u)du .

(8.2)
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Now observe that the function s 7→ s(u − s/2) is decreasing for s ≥ u. Moreover, we have
r̂/
√
h ≥ 1 ≥ u and thus we can bound the integral in (8.2) from below by

4h

∫ 1/2

0
u2
(

1− eu−
1
2

)
ϕ0,1(u)du ,

which finishes the proof for the case of r̂ ≥
√
h.

Assume now that r̂ ≤
√
h. Then Ir̂ = (0, r̂ +

√
h) and r̂ − 2t ∈ Ir̂ if and only if t ∈ (−

√
h

2 ,
r̂
2).

Hence we have

E
[
(R′ − r̂)21{R′∈Ir̂} |U

]
≥
∫ 0

−
√
h/2

(−2t)2

(
1−

ϕmr̂,h(t)

ϕm0,h(t)

)
ϕ0,h(t)1{|r̂|≤H}dt .

Again for convenience we now skip the condition r̂ ≤ H. After making the substitution u = 1√
h
t

and using the lower bound from the calculations from the previous case, we see that the integral
above is bounded from below by

4h

∫ 0

−1/2
u2
(

1− e
r̂√
h

(u− r̂

2
√
h

)
) 1√

2π
e−

u2

2 du .

Since u ∈ (−1/2, 0), we easily see that r̂√
h

(u − r̂
2
√
h

) ≤ − r̂2

2h ≤ 0 and since r̂ ≤
√
h, we also

have u − r̂/(2
√
h) ≥ −1, which implies r̂√

h
(u − r̂

2
√
h

) ≥ − r̂√
h
≥ −1. We consider the function

g(s) := es− 1− (1− e−1)s. We see that g(−1) = g(0) = 0 and there exists s0 ∈ (−1, 0) such that
g′(s) < 0 for s ∈ (−1, s0) and g′(s) > 0 for s ∈ (s0, 0). This implies that es − 1 ≤ (1− e−1)s for
all s ∈ [−1, 0] hence our integral is bounded from below by

4h

∫ 0

−1/2
u2

(
− r̂√

h
(u− r̂

2
√
h

)

)
(1− e−1)ϕ0,1(u)du

=
4hr̂√
h

(1− e−1)

∫ 0

−1/2

(
−u3 +

r̂

2
√
h
u2

)
ϕ0,1(u)du ≥ 4

√
hr̂(1− e−1)

∫ 1/2

0
u3ϕ0,1(u)du .

Remark 8.2. Note that in the proof we only use the reflection behaviour and we disregard the
possibility of jumping to the same point. This is due to the fact that the probability of jumping to
the same point decays exponentially fast with h going to zero and hence it would not contribute
to our estimates in a significant way. Hence, for Lemma 3.2 to work, it would be sufficient to
take the reflection coupling. However, then our calculations for the first moment in Lemma 3.1
would fail (cf. Remark 8.1). On the other hand, for the synchronous coupling Lemma 3.1 holds
while Lemma 3.2 clearly fails. Hence the (truncated) mirror coupling given by (2.7) is the only
one for which both these Lemmas work.
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