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Background. Gambiense human African trypanosomiasis ([gHAT] sleeping sickness) is a vector-borne disease that is typically 
fatal without treatment. Intensified, mainly medical-based, interventions in endemic areas have reduced the occurrence of gHAT to 
historically low levels. However, persistent regions, primarily in the Democratic Republic of Congo (DRC), remain a challenge to 
achieving the World Health Organization’s goal of global elimination of transmission (EOT).

Methods. We used stochastic models of gHAT transmission fitted to DRC case data and explored patterns of regional reporting 
and extinction. The time to EOT at a health zone scale (~100 000 people) and how an absence of reported cases informs about EOT 
was quantified.

Results. Regional epidemiology and level of active screening (AS) both influenced the predicted time to EOT. Different AS ces-
sation criteria had similar expected infection dynamics, and recrudescence of infection was unlikely. However, whether EOT has 
been achieved when AS ends is critically dependent on the stopping criteria. Two or three consecutive years of no detected cases 
provided greater confidence of EOT compared with a single year (~66%–75% and ~82%–84% probability of EOT, respectively, com-
pared with 31%–51%).

Conclusions. Multiple years of AS without case detections is a valuable measure to assess the likelihood that the EOT target has 
been met locally.

Keywords.  Democratic Republic of the Congo; elimination of transmission; gambiense human African trypanosomiasis; math-
ematical modeling; sleeping sickness.

Human African trypanosomiasis (HAT) is a neglected trop-
ical disease affecting people in sub-Saharan Africa. Almost all 
human infections belong to the gambiense form, caused by the 
parasite Trypanosoma brucei gambiense, which is transmitted 
by tsetse vectors. Regular control activities in most endemic re-
gions and reinforced surveillance have resulted in a dramatic 
and sustained decrease of new cases of gambiense HAT (gHAT), 
with global values falling from over 25 000 in 2000 to less than 
1000 reported cases in 2018 [1].

Regular monitoring in recent years suggested that the goals 
set by the World Health Organization (WHO) of eliminating 
gHAT as a public health problem (Evidence into Public Health 
Policy  [EPHP]) by 2020 could be achieved. The primary 

indicators for this target are (1) less than 2000 annual reported 
cases by 2020 and (2) a 90% reduction in the area reporting 
more than 1 case/10 000 people/year (calculated over a 5-year 
period), compared with the 2000–2004 baseline [2, 3]. An even 
more ambitious target to achieve elimination of transmission 
(EOT) across the continent is set for 2030 [3].

In the present study, we focus on the Democratic Republic 
of Congo (DRC) as the key country on which elimination of 
gHAT rests. The DRC has consistently contributed to the ma-
jority of the global reported case burden—in 2018, 660 of 953 
total gHAT cases (69%) came from DRC [1]. Understanding 
when and how EOT might be achieved in DRC, and the link 
between underlying transmission and reported cases in the 
peri-elimination era, will be important for the planning and 
cessation of future control activities.

Across endemic gHAT regions, the mainstay of intervention 
strategies has been combined diagnosis and treatment of infec-
tion. Diagnosis occurs through a mix of passive surveillance (PS), 
with individuals self-presenting to fixed health facilities with HAT 
diagnostics, and active screening (AS), with mobile screening 
teams traveling to at-risk villages to test any person willing to par-
ticipate. The intensity of AS has fluctuated over time; however, 
in 2016, 2.36 million people were tested serologically for gHAT 
during AS campaigns across Africa, and 56% of the reported cases 
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came from AS [3]. The WHO’s recommendation is that endemic 
villages (with cases reported in the last 3 years) should be included 
for AS the following year. Those villages that stop AS should re-
start AS after case detections from the passive system or village 
members being identified as cases in AS that occurred elsewhere 
[4]; we refer to such screening as reactive screening (RS).

Cessation of routine AS is a challenging issue: although 
guidance exists at the village level [4], it is not easy to extrap-
olate this onto larger geographical units, particularly to the 
scale on which interventions are often planned. Furthermore, 
given the relatively high operational costs of AS, as preva-
lence declines, it will be appropriate at some point to stop AS 
to rely on PS and RS as control key strategies to detect the last 
remaining cases.

In this context, it is not only essential to know whether elim-
ination targets can be reached in different settings using current 
or expanded strategies, but it is also important to consider the 
impact of cessation of large-scale activities after reaching the 
chosen stopping criteria. In this study, we focus on the indicator 
of zero reported cases, as a proxy for the achievement of EOT. 
For this approach, gHAT modeling can provide useful predic-
tions of both reported cases and whether true EOT has been 
achieved, allowing an assessment of different control strategies.

Mathematical modeling of gHAT has been used to explore the 
impact of a variety of strategies on the timeline to achieve EPHP 
and EOT [5–10]. Strategies considered have included the following: 
different levels of AS, improving coverage of high-risk people in 
AS, reducing time to detection through improving PS, and vector 
control. The aforementioned models all suffer from being deter-
ministic formulations—capturing “average” dynamics—and are 
therefore unable to reproduce the transition between low and zero 
transmission. Instead, deterministic models have used a proxy for 
EOT, such as <1 new infection per 100 000 or per 1 000 000 [7, 
9, 10]. At extremely low prevalences, a stochastic model formu-
lation is far more suitable because it captures the chance events 
governing transmission dynamics; it also produces integer-valued 
outputs for the number of cases and new infections and therefore 
provides better forecasting for EOT timelines.

In a previous study, a stochastic model of HAT was used 
to explore village-level persistence of infection in a high-
endemicity region of former Bandundu province, DRC [11], 
providing an analysis of the probability that EOT had been 
achieved locally given there were no cases reported in the vil-
lage. However, it is not trivial to extrapolate these village-level 
results onto larger administrative units, such as the health area 
(~10 000 people) and health zone (~100 000), to determine the 
probability of EOT if the region reports no cases for 1 or more 
years. In addition, we are interested in how such probabilities 
change over time. In the present study, we extend 2, previously 
deterministic, models to a stochastic framework to explore (1) 
when we expect to achieve EOT in at a health zone level in the 
high-endemicity former Bandundu province, DRC and (2) how 

the future intervention strategy could impact attainment and 
measurement of EOT.

METHODS

The 2 models (Model S and Model W) used here were previously 
developed, independently, in a deterministic framework [5, 10, 12]. 
Both models share some structural similarities, eg, both are mech-
anistic models—explicitly modeling different stages of human in-
fection and transmission occurring between humans and tsetse. 
Likewise, transmission dynamics within the models are influenced 
by individuals at high- and low-risk of exposure to tsetse bites, with 
high-risk people less likely to participate in AS activities.

Each of these deterministic models was first fitted to data from 
Bandundu. Model S was fitted to former Bandundu province-level 
screening patterns and case reporting from both AS and PS for 
the years 2000–2012; Model W was fitted to similar data from the 
Mosango health zone (within Bandundu province) for the period 
2000–2016. Next, a stochastic implementation of these models 
(where each rate in the deterministic equations is translated into 
a stochastic process) was used to explore different scenarios at the 
health zone level: a “generic” health zone of former Bandundu 
province of population size 100 000 (Model S); and the specific 
health zone of Mosango (in former Bandundu province) with a 
population size of ~126 000 (in 2015) (Model W). 

Further information of both models is provided in the 
Supplementary Information. In each scenario, the calibrated 
model is simulated forward to beyond 2040 to make projections 
of EOT under 7 medical-only strategies comprising PS, AS, and 
RS, with levels as indicated in Table 1. A  further 7 strategies 
with higher coverage of AS are presented in the Supplementary 
Information. In all cases, a 3% annual growth rate was used for 
projections of human population. Although Model W made 
stochastic simulations throughout, Model S generated deter-
ministic outputs for 2000–2012 and stochastic simulations 
afterwards. Models S and W used 1000 and 200 posterior pa-
rameter sets, respectively, with 100 and 1000 stochastic real-
izations performed for each. Calculations for the Model S were 
performed at the sciCORE (http://scicore.unibas.ch/) scientific 
computing core facility at the University of Basel.

Due to the timescale of gHAT infection, it is possible that 
some individuals could remain infectious without creating 
secondary cases for several years; to account for this, the year 
achieving EOT was defined as the first of 5 consecutive years of 
no new transmissions.

Models’ output consisted of the number of annual reported 
cases distinguished by detection strategy (ie, AS and PS) and new 
infections for 2020–2054, from which the probability of EOT was 
calculated. The positive predictive value (PPV) of EOT given that 
zero cases were reported in the year is also computed, providing a 
link between observable reporting and underlying transmission. 
To ensure a good estimation of the PPV, we excluded any years in 
which insufficient simulations have zero reported cases.
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RESULTS

Higher variation is observed in AS data in the Mosango health 
zone than in the averaged generic health zone (GHZ) from 
Bandundu province (Figure 1, top panel), presumably repre-
senting the larger scale of Bandundu compared with Mosango. 

Screening levels used for Mosango forward projections, based 
in the last 5  years of data, are approximately 15.5% per year. 
Data at the province level used for the GHZ covers fewer years 
and is less variable, with an overall lower screening coverage and 
screening levels used for forward projections of 9.8% per year.

Table 1. Overview of Future Medical-Only Strategies Considered

Strategy Name AS Coveragea Cessation of AS (2020 Onwards) Restarting AS (ie, RS) PS Coverageb Cessation of PS

Nonstop Mean Never N/A Constant Never

Stop 1 Mean Stop after 1 year of zero reported cases Never Constant Never

Stop 1_RS Mean Stop after 1 year of zero reported cases After any passive detection Constant Never

Stop 2 Mean Stop after 2 consecutive years of zero reported cases Never Constant Never

Stop 2_RS Mean Stop after 2 consecutive years of zero reported cases After any passive detection Constant Never

Stop 3 Mean Stop after 3 consecutive years of zero reported cases Never Constant Never

Stop 3_RS Mean Stop after 3 consecutive years of zero reported cases After any passive detection Constant Never

Abbreviations: AS, active screening; NA, not applicable; PD, passive detection; PS, passive surveillance, RS, reactive screening.
aMean of last 5 years of data.
bSame as last year of data.
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Figure 1. Time series dynamics in 2 health zones. Screening levels used by each model, including both data (continuous line) and projections (dashed line), are shown in 
the top row. Model outputs for up until 2040 are shown in the middle and bottom row only for strategy Stop 1 and include the following: estimations of the annual number of 
reported cases (middle) and underlying annual incidence (bottom). Each of these outputs are presented for a “generic” health zone of Bandundu province of 100 000 people 
(Model S, left side) and for Mosango health zone (~126 000 people, Model W, right side). Continuous black and dashed lines denote the model median fit and denote 95% 
credible intervals (CIs), respectively, whereas gray shading indicates 50% CIs. Vertical line indicates switch to projections. Same results for all the 7 strategies are shown in 
Supplementary Figure SI-1.
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Figure 2 (middle and bottom panels) shows predictions of 
reported cases and transmission for Stop3_RS. Mosango started 
with more than two times the number of reported cases per 
10 000 people in 2000 compared with the GHZ, with the un-
derlying new infections estimated for this location doubling 
those estimated for the GHZ in that same year. There is a less 
steep decline in reported cases in the GHZ than in Mosango 
over the data period informing models, which is attributable to 
the lower level of AS. As a result, the transmission (new infec-
tions) falls to zero faster for the Mosango health zone. Predicted 
annual reported cases and new infections across all tested strat-
egies are extremely similar to each other and are shown in 
Supplementary Figure S1.

For the GHZ, results suggest the that probability of achieving 
EOT by 2030 is approximately 10% (Figure 2, top panel). In 
contrast, for Mosango, EOT is likely to be achieved earlier, with 
the EOT probability of approximately 20% by 2030. This pre-
dicted difference between the 2 health zones is a result of higher 
assumed coverage of AS in projections for Mosango than for 
the GHZ, leading to a steeper decline in estimated transmission 

and therefore a greater chance of breaking transmission chains 
for Mosango. Results across all tested strategies are also similar 
to each other for Mosango; however, as expected, the no stop-
ping strategy is marginally more likely to result in EOT than 
other strategies. Further simulations show that if the maximum 
percentage coverage (informed by the data) was used, the prob-
ability of EOT by 2030 for Mosango has a much more optimistic 
29.9%–34.2% (Supplementary Figure SI-2), whereas for the 
GHZ of Bandundu province these values range 12.9%–13.3% 
(Supplementary Figure SI-3).

In Mosango, if zero cases are detected in 2020, then there is 
~13% probability that EOT has been achieved; however, if zero 
detections occur later, there is a higher probability of approx-
imately 55% (49.5%–58.6%) in 2030 and approximately 84% 
(79.8%–87.7%) in 2040 (Figure 2, middle panel). For the GHZ, 
a higher underlying transmission projected for the future leads 
to few simulations (less than 300 of 100 000 runs) with zero re-
ported cases for 2020–2024, thus these years were not included 
in the analysis. The probability of EOT given zero cases for the 
GHZ is similar between strategies all along years and ranges 
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Figure 2. Probability of elimination of transmission (EOT) and positive predictive value (PPV) of zero case reporting. This figure shows the probability of EOT under each 
strategy for the period 2020–2040 (top panel), the PPV of zero reported cases to inform EOT (middle panel), and the PPV of years after the first stop in the 3 strategies that 
include this possibility (bottom panel). The left plots are for the generic health zone (GHZ), and the right plots are for Mosango health zone. For the GHZ, insufficient simula-
tions (less than 300 of 100 000 runs) reached the condition of zero reported cases before 2025 and were excluded from the PPV analysis.
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54.4%–57.9% by 2030, reaching values of approximately 90% 
(90.2%–91.8%) only by 2040.

Stopping AS after 3 consecutive years of zero reported cases 
produced a consistent higher probability of EOT for any number 
of years after AS cessation compared with the other strategies 
in both health zones. These probabilities increase very slowly 
with increasing time, starting at 86.1% for the GHZ and 83.7% 
for Mosango (Figure 2, bottom panel). Because more years with 
zero reported cases were required to stop AS, the improvement 
in the probability of EOT associated to adding RS for each of 
these was weaker, with Stop3 and Stop3_RS producing similar 
values.

Probabilities of EOT for either Stop2 or Stop2_RS strategies 
reached 80% after 2 and 4 years of stopping AS in the GHZ and 
Mosango health zone, respectively. Although for the GHZ fur-
ther increase with time was slow (~75.5% for 10 years after AS 
cessation), for Mosango this increase was faster and attained 
values >90% between 9 (Stop2_RS) and 10 (Stop 2) years after 
AS cessation. As expected, probabilities of EOT for Stop 1 
strategy were the lowest, and these reached values below 80% 
even 10 years after stopping AS in both health zones.

DISCUSSION

Projections from both models suggest that, surprisingly, the 
health zone level cessation of AS activities had little impact on 
the overall transmission dynamics. This can be explained by the 
lag in infection in reporting, with the number of reported cases 
typically reaching zero several years after the last transmission 
event. By the time zero cases are reported in the health zone, 
so few infections remain that eventual stochastic extinction is 
likely without further AS.

Despite the expected decreasing trend in the number of re-
ported cases and underlying incidence under current levels of 
medical-based strategies, for all criteria for cessation of AS in 
both the generic and Mosango health zone, there is not high 
confidence that this trend would be enough to achieve the 2030 
target of interrupting transmission. Because the GHZ results 
from aggregated data at a province level, we could expect even 
more pessimistic scenarios for some health zones in Bandundu. 
Mosango seems able to reach EOT by 2040 with >70% prob-
ability if maximum AS is continued alongside PS for most 
stopping strategies, but, although this level of screening has a 
moderate probability (~35%) of meeting EOT in the desired 
timeframe (by 2030), alternative strategies may be preferred to 
improve the chance of meeting the goal.

Because gHAT is known to be a remarkably persistent dis-
ease, even at extremely low prevalence, it was not previously 
clear whether zero case detection would be sufficient to lead to 
disease fade out if AS stopped. Despite the limited difference in 
outcomes between strategies, the strategy requiring 3 years of 
zero case reporting does provide much more valuable informa-
tion to assess whether EOT has been met. This is the strategy 

for AS cessation recommended by the WHO at the village 
level [4], and methods here provide a quantitative scheme to 
compare this recommendation against less restrictive AS stop-
ping criteria. We highlight that key to these predictions is the 
assumption of a continued and sustained PS system, and that 
a more complete analysis of EOT probabilities using zero re-
ported cases should include the effects of different PS levels. 
Several unknown variables challenge this approach including 
underreporting levels and the likely reduction in the number 
of health facilities able to perform gHAT diagnosis as the cases 
reporting approaches zero.

The Bandundu province data used for the GHZ averages out 
variation in endemicity and activities across health zones, with 
subsequent effects on estimates that would not correspond with 
specific health zones, as in the Mosango example. Furthermore, 
there is not only a potential need to adapt proxies for EOT to 
different endemicity regions, but also to the appropriate spatial 
scale. For instance, when considering dynamics at the village 
scale (in the same region of DRC—Yasa-Bonga and Mosango 
health zones, Bandundu province), typically 3 or more years 
of zero case detection are required to have >90% confidence of 
EOT for typical AS coverage in settlements of approximately 
2000 people [11]. The coverage of AS appears to not only speed 
up the time to EOT, but also to slightly improve the PPV of 
using zero case detection to measure EOT at the health zone 
level (see Supplementary Figures S2 and S3) as well as at the 
village scale [11].

Estimates from both health zone settings suggest that 
achieving the WHO goal of eliminating gHAT transmission by 
2030 would require a step change in the level of surveillance and 
the use of additional interventions in persistent regions of DRC. 
Currently available interventions that could help accelerate 
progress towards EOT include the following: better targeting 
of high-risk populations by door-to-door AS (used in Côte 
d’Ivoire [13] and some regions of DRC); minimobile teams 
reaching areas otherwise not accessible; greater accessibility to 
health facilities and gHAT-testing; and suppression of the local 
tsetse population (with the “tiny target” method yielding >80% 
reduction in vector density in some foci in Guinea [14], Chad 
[8], and Uganda [15]). Simulation modeling work suggests that 
targeted AS and/or vector control could dramatically accelerate 
reduction in transmission, particularly in persistent hotspots [6, 
7, 9]. Fexinidazole, an all-oral 10-day treatment for both stages 
of HAT (excluding severe cases), has recently been approved 
[16] and could improve the ease of access to treatment, thus 
contributing to reaching EOT deadlines.

The model variants used in this study do not account for (1) 
possible animal reservoirs or (2) “latent” infections in humans 
that do not lead to disease. Although it remains unclear whether 
either of these types of infection routinely contribute to trans-
mission, it is a concern that their presence could hinder efforts 
to achieve EOT [17], in the same manner that dog reservoirs 
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may threaten Guinea worm eradication [18]. Modeling of an-
imal reservoirs to date indicates that rather than preventing 
EOT, it could impact the timescale in which it can be achieved 
[5, 12], and there might be a higher chance of recrudescence 
of disease if screening is stopped early [19]. Future stochastic 
models of “cryptic” HAT reservoirs would be best able to assess 
their impact on time to EOT and using zero case reporting as 
a proxy.

CONCLUSIONS

We have generated stochastic projections of gHAT dynamics 
in DRC at the health zone level using 2 different models and 
data sets to explore the link between different AS cessa-
tion criteria based on zero reported cases and the proba-
bility of reaching EOT. We found that AS cessation based on 
different zero case reporting related criteria had a limited 
impact on the time evolution of underlying transmission, 
and that 3  years of zero cases provides valuable informa-
tion to assess the probability that transmission has been 
interrupted.

Supplementary Data

Supplementary materials are available at The Journal of 
Infectious Diseases online. Consisting of data provided by 
the authors to benefit the reader, the posted materials are not 
copyedited and are the sole responsibility of the authors, so 
questions or comments should be addressed to the corre-
sponding author.
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