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Abstract

Plant roots represent a complex organ consisting of different cell types with

highly varied functions. Thus, the response of plant roots to environmental stresses,

such as pathogen infection, requires the concerted action of many cell-types. Cell

type-specific transcriptomic studies are essential to understand stress resistance sig-

nalling in such a complex organ.

In this thesis, the transcriptomic response to immunity elicitation is examined

at the resolution of tissues and individual cell types in two large scale RNA-seq

experiments. Firstly, Fluorescence-Activated Cell Sorting combined with RNA-seq

was used to produce the first high-resolution gene expression atlas of plant root

immunity. The resulting data set encompassed the transcriptomes of three root cell

types which had been treated by two immunity elicitors. Differential gene expression

analysis revealed that both immunity elicitors induced a largely cell-type specific

response with a comparatively small set of genes differentially expressed in all three

cell types. This strong specificity indicates that cell identity is a strong driver of the

transcriptomic immune response.

Secondly, gene expression in root tips was analysed using the single cell tech-

nique Drop-seq. Clustering methods were used to identify cells from three develop-

mental stages and multiple cell types, and the immune responses were characterised

in these tissues.

In an effort to interpret and predict immunity network regulation in dif-

ferent cell types, a novel tool entitled the Paired Motif Enrichment Tool (PMET)

was developed to investigate gene regulation by combinatorial transcription factor

groups. The tool identifies enriched pairs of known regulatory motifs within immune-

responsive gene sets and revealed that each cell type/immune response combination

has a largely unique regulatory landscape. Furthermore, PMET has predicted new

roles of transcription factors within immunity networks.
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Chapter 1

Introduction

1.1 Plant stress and food security

Each year crop losses due to pathogen attack are devastating worldwide. To mitigate

this, one of the most important aims of crop science is to enhance plant immunity

to reduce crop losses. Global agricultural losses range between 20-40% as a result

of pathogens, animals, and weeds (Savary et al., 2012). This alarming statistic

highlights the importance of improving plant protection from diseases in order to

meet growing demand for food of good quality as well as of sufficient quantity

(Strange and Scott, 2005). However, improving plant disease management becomes

more complex in light of environmental, economic and social concerns, as well as the

ongoing reduction of natural resources due to industry and climate change (Strange

and Scott, 2005; Smil, 2001; Brown, 2012).

One of the major sources of yield loss in crops is the phenomenon of immunity-

induced root growth inhibition. This reduced root growth occurs when the plant

immune system is triggered and growth is inhibited independent of any direct affect

that a pathogen may have on the plant. When challenged with an avirulent form of

powdery mildew, field grown barley suffered a 7% reduction in grain yield because

immunity was induced despite the pathogen having no adverse affect on the crop

(Smedegaard-Petersen and Tolstrup, 1985).

1.2 Primary root structure and development

Roots have evolved complex tissues comprising a diversity of cell types with different

functions that govern overall root functionality and provide the necessary plasticity

to cope with environmental stress. On a longitudinal axis, the primary root can

1



Figure 1.1: Longitudinal and transverse cross section of Arabidopsis root (Figure
by Bouchè (2017))

be divided into three broad developmental zones: the meristematic zone at the

tip of the root, the elongation zone above the meristem, and the differentiated

zone which makes up the majority of the root (Figure 1.1, left). Across these

zones, different cell types are organised in concentric layers of which epidermis cells

form the outermost cell type (Figure 1.1, right). Epidermal cells can be further

subdivided into trichoblast (root hair cells) and epidermal (non-root hair) cells.

Root hairs are essential to increase water and nutrient (such as phosphorus and

nitrogen compounds) uptake from the surrounding soil. The organisation of root

hair and non-root hair cells is tightly controlled through patterning relative to the

cortex cells beneath; if an epidermis cell is in contact with two cortex cells it will

develop into a root hair otherwise it will remain a non-root hair cell. Continuing

towards the centre of the root, beneath the cortex, there are endodermal cells which

surround the pericycle and vascular tissues. The endodermis also forms a barrier

called the Casparian strip to prevent unwanted solutes reaching the vascular tissue.

Finally, the vascular tissue is composed of xylem and phloem cells which transport

nutrients and water to and from the rest of the plant (Dolan et al., 1993).

Organisation of cell types is implemented by the stem cell niche in the root tip

where cell fate is determined and cell types maintain their given identity throughout
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Figure 1.2: Root tip schematic reveals the organisation of 14 different cell types in
the root tip (Figure from Duan et al. (2015))

their lifetime (Van den Berg et al., 1995; Sabatini et al., 2003; Wendrich et al., 2017).

Under normal growth conditions cell fate is set after the first division from an initial

cell based on cell position. Cells are produced from three sets of initial cells (Figure

1.2). The lateral root cap and columella are produced from the root cap initials,

the cortex and endodermis (collectively known as ground tissue) originate from

cortex/endodermis initials and the vasculature is produced from stele initial cells.

These initial cells surround a group of two or three cells that form the quiescent

centre (QC). The QC contains slowly dividing cells that replenish and maintain the

initials (Dolan et al., 1993; Nawy et al., 2005).

Root growth is achieved by the combination of cell proliferation in the meris-

tem and stem cell niche and through cell expansion in the elongation and differen-

tiation zone. Within the meristem, growth is mediated through asymmetric cell

division of stem cell initials to produce new meristematic cells whilst maintaining

the stem cell niche. These new meristematic cells then divide symmetrically lead-

ing to cell proliferation between the stem cell niche and transition zone.. During

the progression through the transition zone, the mitotic cell cycle is halted, halting

cell division, and the cells begin to differentiate (Dolan et al., 1993; Nawy et al.,

2005). The root meristem size is maintained by the antagonism of cytokinin and

auxin at the boundary of the transition zone (Dello Ioio et al., 2008). The coordi-

nated activity of cell division and expansion across developmental zones allows the

establishment of a dynamic equilibrium between the dividing cells and those which

differentiate, maintaining the size of the root meristem Dello Ioio et al. (2008).

Further up the root in the elongation zone, growth is generated through cell

expansion. This switch from proliferation to expansion is accompanied in some
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plants, including Arabidopsis, with a switch from the mitotic cell cycle to the en-

docycle. The endocycle is a short-circuited version of the mitotic cell cycle, which

stops short of cell division. It is the mechanism by which the genome is doubled

within a cell, referred to as endoploidy (De Veylder et al., 2011; Breuer et al., 2014).

Increased endoreduplication is correlated with increased cell size and is observed to

occur up to three times in root cells (Sablowski and Carnier Dornelas, 2013; Bhosale

et al., 2018). Unusually, compared to other organisms, endoreduplication in plants

does not occur in all cells equally resulting in different sub-populations of cells with

varied DNA content. This is particularly marked between different root cell files,

which enter the endocycle at different points in development, and undergo endocy-

cles at different rates (Bhosale et al., 2018). Based on the observation that cell files

typically enter the endocycle prior to cell expansion, Bhosale et al. proposed that

endoreduplication might prepare cells to cope with cell expansion by inducing cell

wall modifications. They suggested that increasing the copy number of genes could

help cells cope with the sudden increased demand for cell wall components.

1.3 Root growth inhibition

Root growth inhibition induced by activation of defence responses has been tradi-

tionally attributed to a plant simply reallocating resources away from development

and growth into immunity. However recent research suggests that resource reallo-

cation does not entirely explain growth inhibition. Firstly, a large study of many

Arabidopsis accessions revealed than there was little correlation between nitrogen

or carbon limitation and defence capability (Kleessen et al., 2014). Secondly, it was

shown that immune elicitation in response to chitin (a fungal immune elicitor) does

not affect growth, unlike treatment with bacterial elicitors flg22 and Ef-tu (Wan

et al., 2008; Petutschnig et al., 2010). This suggests that root growth inhibition is

instead the result of complex interactions between immunity and development.

Eichmann and Schäfer (2015) proposed an alternative model whereby inter-

actions between immunity hormone networks and the cell cycle/endocycle mediate

root growth inhibition. Specifically, they propose that the repression of gibberellic

acid (GA) and increase of jasmonic acid (JA) signalling relieves the repression of

DELLA proteins, which through a sequence of activation and repression of key cell

cycle genes ultimately halts the cycle, inhibiting growth. Consistent with a strong

link between stress and development, Bhosale et al. (2018) demonstrated that tran-

scripts of genes that correlated strongly with endoploidy were good markers to

predict the impact of stress on endocycling. Studying these molecular mechanisms
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within the complex structure of the root is essential to understand how the activation

of immunity affects cell identity, and therefore growth and development.

1.4 Root cell type-specific transcriptomics

Within the complex structure of the root, each cell type is specialised making the

root a perfect system to study cell type-specific responses (Benfey and Scheres

(2000)). The study of gene expression has accelerated within the last few decades

with the advent of microarrays and particularly RNA sequencing (RNA-seq). The

RNA-seq protocol (utilised in Chapters 4 and 5 of this thesis) sequences all of the

mRNA (and other populations of RNA if desired) in a sample, enabling the scien-

tist to monitor changes in gene expression (amount of mRNA that is transcribed for

a particular gene) over time, or determine differences between different groups or

treatments. Recent advances have improved the resolution gene expression studies

enabling the capture of the transcriptomes of a single tissue or cell.

The most widely applied method to study gene expression in individual tis-

sues is to perform transcriptomic studies (either microarray or RNA-seq) on cells

sorted using fluorescence-activated cell sorting (FACS) as developed by Birnbaum

et al. (2003). This method uses fluorescent root cell type marker lines to isolate indi-

vidual tissues prior to either microarray or RNA-seq. These transcriptomic studies

are used to relate gene activity to cell fate and tissue specialisation. Birnbaum et al.

(2003) produced the first gene expression map of the Arabidopsis root encompass-

ing five cell types, and three developmental zones. This first study revealed that

each cell type is characterised by a specific transcriptional identity. Furthermore,

it revealed that regulation of hormones can be mapped to different cell types and

developmental zones. This data set was later expanded to much higher resolution

(Brady et al., 2007). Brady’s extremely high resolution study aimed to understand

the spatial and temporal control of transcriptional complexity in the root. They

examined expression patterns in 14 non-overlapping cell types, across 15 develop-

mental zones (cut along the longitudinal axis to contain approximately three cell

layers per zone). GO term analyses were used to assign putative functions each

cell type and highlighted the extent of cell specialisation. Testing for enrichment

of cis-regulatory regions (CREs) also revealed the cell type-specificity of regulatory

mechanisms. Identifying putative CREs is essential to understand cell type-specific

regulation, as 5’ upstream non-coding sequences control the major patterns of gene

expression in the root (Lee et al., 2006).

The studies by Birnbaum et al. (2003) and Brady et al. (2007) revealed that
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regulation of cell identity in roots is complex under non-stressed conditions. How-

ever, roots in natural environments undergo constantly changing conditions. There-

fore, stress responses must also be integrated into this complex system. Comparing

the cell type-specific gene expression profiles generated by Birnbaum et al. (2003)

to known stress responsive genes revealed that cell type-specific regulation of stress

responses was highly likely (Ma and Bohnert, 2007). In order to realise the extent of

specificity of stress responses, an array of FACS-based transcriptomics studies were

performed in order to examine salt stress (Dinneny et al., 2008; Geng et al., 2013),

iron deprivation (Dinneny et al., 2008) nitrogen depletion (Gifford et al., 2008) and

varied pH levels (Iyer-Pascuzzi et al., 2011). Dinneny et al. (2008), Gifford et al.

(2008) and Geng et al. (2013) showed that cell identity influences stress responses

to iron deprivation, low nitrogen and high salinity, in a cell type- and developmental

zone-specific manner. A meta-analysis of these studies by Iyer-Pascuzzi et al. (2011),

revealed that in addition to these responses being cell type-specific, they were also

treatment-specific as there was no universal stress response at cell type resolution.

However, the study did show that some biological responses were consistent across

multiple treatments. Iyer-Pascuzzi et al. (2011) also showed that cell identity mark-

ers remained highly expressed in all stress conditions, indicating that maintaining

identity is a priority. Studies of cell type-specific transcriptomics based on FACS

have also significantly advanced the knowledge of processes regulating root devel-

opment (Birnbaum et al., 2003, 2005; Bargmann et al., 2013; Walker et al., 2017).

Evidence provided in these studies have highlighted the functional individuality of

cell types and the significance of a coordinated regulation of cell type-specific gene

networks to master root development and secure overall root functionality (e.g.

growth) under stress.

These previous studies all focussed on abiotic stresses, and to our knowledge,

there has been no cell type resolution study of biotic stress responses in Arabidopsis

roots. Based on these previous studies, it is expected that gene expression under

immunity will also be regulated on a cell type-specific level. Indeed, initial evidence

by Beck et al. (2014); Wyrsch et al. (2015) and Poncini et al. (2017) reveals that

this is the case (see section 1.5.1). However, the gene networks underlying this cell

type-specificity have yet to be elucidated. Studying both abiotic and biotic stress

on a cell type-specific level is the key to understanding how roots control the stress

response and balance the needs to protect and maintain normal cell function and

identity.
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1.5 Plant innate immunity

Unlike animals, the plant immune system is not composed of specialised immune

cells. Instead, plant cells must be able to mount an immune response in addition

to that cell’s normal function. In order to recognise immune threats, plant cells

possess a huge range of receptor kinases and receptor-like proteins (RLPs) at the

plasma membrane to recognise pathogen-associated molecular patterns (PAMPs)

from pathogens (or host-derived danger-associated molecular patterns (DAMPs))

which then activate an immune response (Figure 1.3). These receptors are referred

to as pattern recognition receptors (PRRs). Receptor kinases typically possess an

ectodomain potentially involved in ligand binding, a single transmembrane domain

and an intracellular kinase domain. RLPs are similarly composed, except they

lack a kinase domain. As such RLPs rely on the recruitment of co-factors to initiate

downstream signalling (Zipfel et al., 2004; Fritz-Laylin et al., 2005; Couto and Zipfel,

2016).

Leucine-rich repeat (LRR)-containing PRRs such as FLAGELLIN SENSING

2 (FLS2), EF-TU RECEPTOR (EFR) and Pep receptors (PEPRs) preferentially

bind proteins or peptides, such as bacterial flagellin or elongation factor Tu (EF-

Tu), or endogenous AtPep peptides, respectively (Figure 1.3, Gómez-Gómez and

Boller (2000); Zipfel et al. (2004, 2006); Yamaguchi et al. (2006)). These PRRs

form heteromeric complexes with cofactors such as BRI1-ASSOCIATED RECEP-

TOR KINASE (BAK1) or SOMATIC EMBRYOGENESIS RECEPTOR KINASES

(SERKs) to trigger downstream signalling (Chinchilla et al., 2007; Heese et al.,

2007). By contrast, PRRs containing lysine motifs such as CHITIN ELICITOR

RECEPTOR KINASE 1 (CERK1) and LysM-CONTAINING RECEPTOR-LIKE

KINASE 5 (LYK5) form heteromeric complexes and bind carbohydrate-based lig-

ands, such as fungal chitin or bacterial peptidoglycan. Finally, lectin-type PRRs

bind extracellular ATP or bacterial lipopolysaccharides (LPS) (Ranf et al., 2015;

Couto and Zipfel, 2016). These diverse receptors form the first layer of the plant

immune system, referred to as pattern triggered immunity (PTI). PTI effectively

repels most-non adapted pathogens due to the conserved nature and variety of the

PAMPs recognised by PRRs. Perception of PAMPs by PTI receptors triggers sig-

nalling cascades that result in antimicrobial responses that limit pathogen infection,

often at the expense of plant growth (Zipfel et al., 2004; Boller and Felix, 2009).

The next level of pathogen detection occurs within the cell. In order to get

around plant PTI, many pathogens have evolved small ‘effector’ proteins that are

secreted into cells and interact with cellular components in a multitude of ways
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Figure 1.3: Diverse pattern recognition receptors respond to a variety of PAMPs
from bacteria (flg22, Ef-Tu, LPS, and peptidoglycan) and fungi (chitin, sclerotinia
culture filtrate elicitor1 (SCFE1) and Nin-like proteins (NLPs). Additional PRRs
recognise endogenous DAMPs released in response to damage (AtPep1). Figure
from Couto and Zipfel (2016).

to circumvent the immune response. In turn, plants evolved effector-triggered im-

munity (ETI), whereby these effectors are recognised by Nod-like receptor (NLR)

proteins, and trigger the immune response. This co-evolutionary dynamic between

pathogens and plants can be described using the zig-zag model of immune activation

(Jones and Dangl (2006), Figure 1.4).

1.5.1 Flagellin perception in Arabidopsis

In the model organism Arabidopsis thaliana, defence against bacteria depends on

perception of bacterial flagellin by the receptor FLS2 of which the active epitope is

a 22-amino acid peptide called flg22 (Felix et al., 1999).

Studies on Arabidopsis leaves revealed that upon detection, FLS2 binds to

the co-receptor BAK1 (Chinchilla et al., 2007) leading to an array of PTI responses

including the rapid production of reactive oxygen species (ROS burst), Ca2+ sig-

nalling, MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) phosphorylation

and induction of immunity genes to stop pathogen infection (Felix et al., 1999;

Gómez-Gómez et al., 1999; Asai et al., 2002; Zipfel et al., 2004; Chinchilla et al.,

2007; Jeworutzki et al., 2010). MAPK signalling cascades activate a range of tran-

scription factors including WRKY transcription factors (TFs) (Asai et al., 2002). In

turn WRKYs act as both positive and negative regulators of the defence response

network Pandey and Somssich (2009). PAMP recognition in leaves also triggers
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Figure 1.4: Zig-zag model of immune activation demonstrates the layers of immunity
in plants, from Jones and Dangl (2006)

callose deposition which accumulates at the site of pathogen penetration and is be-

lieved to provide a physical barrier to pathogen attack (Aist and Bushnell, 1991).

Overall, rapid recognition of flg22 by plants enhances the plant’s ability to resist

bacterial invasion (Zipfel et al., 2004). However, this enhanced resistance comes at

a cost, as flg22 perception also leads to root growth inhibition (Gómez-Gómez et al.,

1999; Jacobs et al., 2011).

The plant root constantly interacts with microbes in the rhizosphere. This

constant interaction initially led to the belief that roots would not respond to flag-

ellin. However, various studies have demonstrated that roots as a whole organ

respond strongly to flg22, activating flg22-dependent downstream MAPK phospho-

rylation, the production of reactive oxygen species (ROS), the induction of defence

marker genes, the production of anti-microbial compound camalexin, and callose

deposition (Millet et al., 2010; Jacobs et al., 2011; Beck et al., 2014; Wyrsch et al.,

2015). Millet et al. (2010) observed that the flg22 responsive genes were particularly

active in the elongation zone, but PAMP-triggered callose deposition was observed

along the whole root length. The complexity of flg22 responses in the root was

further elucidated by studies of the expression patterns of FLS2, and signalling in

different cell types.

Beck et al. (2014) showed the FLS2 was expressed in a dynamic stress-

responsive manner. In particular, under non-stressful conditions, FLS2 expression

is largely restricted to the stele and root cap, whereas this expression pattern is
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expanded outwards to encompass the entire root under different stress conditions

including the perception of flg22. This dynamic response could be mediated by an

internalisation mechanism (Robatzek et al., 2006). Furthermore, FLS2 was shown to

be expressed across all developmental zones, in a cell type-specific manner (Poncini

et al., 2017).

In contrast to Beck et al. (2014) which examined the expression of FLS2 un-

der it’s native promoter, Wyrsch et al. (2015) demonstrated the ability of individual

root cell types to respond to flg22 using FLS2 promoter fusions to cell type-specific

promoters. Wyrsch et al. (2015) showed that when FLS2 is expressed in a cell type-

specific manner, each cell type can mount a response to flagellin (demonstrated by

a ROS burst and MAPK phosphorylation in the stele, pericycle, endodermis, and

epidermis). These combined results demonstrate that FLS2 is both expressed (af-

ter induction by a stress) and can trigger both oxidative bursts and induce defence

genes in all root cell types..

Wyrsch et al. (2015) also showed that the intensity of these responses varied

between cell types in terms of the strength of ROS production, MAPK phosphory-

lation and defence gene activation implying that individual root cell types all have

their own PAMP perception sensitivity and immune signalling competence. They

suggested that these differences in PAMP perception contributed to “proper balance

of defence responses according to the expected exposure to elicitors”.

1.5.2 Danger-associated molecular patterns

In addition to PTI, plants can also activate immune responses using endogenous

elicitors. These DAMPs such as Pep1 and it’s homologs Pep2-7 (Bartels et al.,

2013) are produced endogenously in response to damage or danger signals, including

the perception of PAMPs. Pep1, a 23-amino acid peptide encoded by PROPEP1,

signals through the plasma membrane receptors PEPR1 and PEPR2 (Yamaguchi

et al., 2006; Krol et al., 2010), initiating MAPK and Ca2+ signalling, leading to the

further induction of immunity genes, amplifying the plant’s response to pathogens

and other stresses (Qi et al., 2010; Bartels et al., 2013).

Pep1 has been suggested to act as an amplifier of defence responses as Pep-

dependent signalling increases host resistance to bacterial and fungal pathogens,

and also protect against herbivory (Huffaker et al., 2011, 2013; Tintor et al., 2013;

Klauser et al., 2015). Pep1 is interpreted as a much stronger alarm signal than flg22,

consistent with an amplification role (Poncini et al., 2017).

Pep1 signalling mechanisms overlap strongly with flg22 signalling. Like

FLS2, the PEPRs interact with BAK1, and are likely stabilised by BOTRYTIS-
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INDUCED KINASE 1 (BIK1) (Liu et al., 2013). Both flg22 and Pep1 initiate rapid

increase of cytosolic Ca2+, induce production of NO and ROS and signal through

MAPK phosphorylation (Flury et al., 2013; Tintor et al., 2013). Above the cellular

level, both treatments trigger callose deposition and inhibit growth. However, there

are key differences in the ways by which flg22 and Pep1 activate these responses.

For example, Pep1 has been shown to promote the influx of extracellular calcium,

whereas flg22 triggers the release of Ca2+ from intracellular stores. Pep1 and flg22

also interact with different hormone pathways. Both peptides trigger the synthesis

of ethylene (ET) in Arabidopsis, the two peptides increase the levels of antagonistic

hormones SA and JA; flg22 perception elevates SA levels, whereas Pep1 slightly

increases JA (Mishina and Zeier, 2007; Flury et al., 2013). Finally, Pep1 induces

a much stronger root growth inhibition phenotype than PAMPs such as flg22 (Ma

et al., 2014; Krol et al., 2010; Poncini et al., 2017). This could be consistent with

the Peps’ roles as amplifiers but also could implicate Peps in development.

Further evidence that Peps are involved in immunity include the fact that

atpepr1 and atpepr2 knock-outs show a shorter root phenotype than the wild-type

(Ma et al., 2014). Ma et al. states that this evidence suggests that these receptors

could play positive roles in root growth, implying that biologically derived Pep1

should positively regulate root growth. However, root growth inhibition is observed

at all concentrations of Pep1 treatment. They suggest it is possible that any root

growth promotion by biologically derived Pep1 would occur at a cell type-specific

level, based on the cell type-specific expression of different PROPEPs (Birnbaum

et al., 2003; Brady et al., 2007). There have also been links made between PROPEPs

and other developmental processes (reproduction and senescence, Yamaguchi et al.

(2010); Gully et al. (2015)).

Poncini et al. (2017) demonstrated that, as with flg22, the whole root raises

an immune response to Pep1. They used a luminol-based assay to measure the

oxidative burst in response to flg22, chi7 (a synthetic peptide from chitin) and

Pep1. The burst was stronger in response to flg22 and Pep1 than chi7. They

also showed that PTI-associated MAPKs were phosphorylated (a marker of PTI

signalling) in response to all three elicitors. Furthermore, analysis of knock-out

mutants proved that these elicitors were signalling through the same receptors in

roots as in leaves. Poncini et al. (2017) used fluorescent immunity-trigger marker

genes to investigate the tissue specificity of elicitor reponses in the roots. In terms

of Pep1, this revealed that an immune response is triggered across all developmental

zones, however this response was not uniform. The Pep1 response was particularly

strong in the transition zone and differentiated zone, and weaker in the meristem.
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The root cap displayed the weakest response to Pep1. The marker gene expression

also varied at the cell type level. For example the MYB51 and ZAT12 reporters

were expressed more strongly in the stele compared to endodermis and cortex. The

increased response in the stele could indicate that Pep1 effects transport of sugars,

perhaps in order to redirect resources towards defence responses in the root. These

differences indicate that Pep1 networks are likely to be regulated at the tissue and

cell type levels.

1.6 Transcriptional regulation of gene expression

Transcription is the process by which mRNA is transcribed from DNA, prior to

protein synthesis. The amount of mRNA that is transcribed, otherwise referred to

as expression level, is largely controlled through regulation of transcription initia-

tion, where RNA polymerases are recruited to transcribe mRNA. RNA polymerases

are recruited to the region of DNA slightly upstream of the transcription start site

(TSS). Upon recruitment, RNA polymerases move downstream and start to tran-

scribe DNA into mRNA at the TSS. The activation of transcription relies on the

recruitment of TFs which bind to the region upstream of the TSS called the pro-

moter. Promoters can be several hundred kilobases long and contain a large number

of TF binding sites.

TFs activate transcription via a range of processes including recruiting poly-

merases and other transcriptional activators to the promoter, or by altering chro-

matin structure to a more open state, making it amenable for transcription. Other

TFs act as repressors of transcription. These repressors often bind elsewhere in

the promoter and affect binding of activators indirectly, through mechanisms such

as making activator binding less thermodynamically favourable through structural

changes to the promoter (Ezer et al., 2014).

Many factors contribute to TF-DNA binding including nucleotide structure,

the 3 dimensional structure of the DNA, the presence of cofactors, chromatin ac-

cessibility and other epigenetic markers (reviewed in Slattery et al. (2014)). These

binding sites, otherwise known as motifs, can be represented in a variety of ways,

one of the most common is the position specific motif matrix (PSSM) (Stormo,

2000). PSSMs encapsulate the nucleotide sequences of consensus binding sites and

the relative conservation of individual bases. PSSMs are created by collating all the

potential binding sequences for a single TF and expressing the conservation of each

base in terms of the likelihood of observing that base at each position. The conser-

vation of individual bases is quantified in terms of information content which can
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Figure 1.5: Example of a sequence logo visualisation of a motif

be visualised as sequence logos (Figure 1.5). The height of each base represents the

conservation at that position. Whilst other models can include more information

such as 3 dimensional structure, the PSSM is a simple and accurate representation

of TF binding motif.

TF binding motifs in Arabidopsis have been identified using techniques such

as DNA affinity purification sequencing (DAP-seq) and protein binding microarrays

(PBMs) (Franco-Zorrilla et al., 2014; O’Malley et al., 2016). These studies revealed

that binding sites for an individual TF can occur hundreds of times across a genome

and that some TFs can recognise multiple motifs (Badis et al., 2009; Franco-Zorrilla

et al., 2014). Furthermore, different TFs have varied intrinsic binding affinities for

their cognate motifs.

Regulatory networks can take advantage of this variability in order to better

control transcription. For example, high affinity binding sites can be utilised to

maintain high concentrations of protein in one cell type, whereas low affinity binding

sites in another cell type would results in low protein levels.

In addition to variability within motifs, regulatory networks can achieve

highly specific regulation through the presence of multiple motifs. These can be

homotypic (group of adjacent binding sites for the same TF) or heterotypic (multi-

ple different TF binding sites). Homotypic clusters of motifs are found in bacterial

and eukaryotic promoters, as well as in eukaryotic CREs. Ezer et al. reviewed three

mechanisms by which homotypic clusters can affect gene expression, through direct

or indirect cooperation, or through non-cooperative binding. Direct cooperation in-

dicates that TFs bind as homodimers to closely spaced or even overlapping binding

sites. Indirect cooperation suggests a model where two proteins do not interact but

do influence each other’s binding by, for example, stabilising each other’s binding
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(Wasson and Hartemink, 2009). Finally the non-cooperative model of homotypic

clusters suggests that by simply having more binding sites, the chance of a single

TF binding is increased and in fact multiple bindings could occur.

In addition to homotypic clusters, combinations of TFs (or heterotypic clus-

ters) have been shown to represent a key principle in regulating gene networks in

both animals and plants. Specific combinations of TFs can act through the same

mechanisms as homotypic clusters, through direct contact and by indirectly enabling

binding of the other TF. This represents another mechanism by which gene networks

can achieve a high degree of specificity in signalling. In particular, combinatorial

TFs can be used to fine-tune tissue- and cell-specific signalling (Halfon et al., 2000;

Junion et al., 2012).

A genome-wide study of Arabidopsis thaliana revealed combinatorial TF mo-

tifs in a wide variety of biological processes including the cell cycle, light response

and protein biosynthetic pathways (Vandepoele et al., 2006). Furthermore, TF com-

binatorics have been shown to perform an essential role in regulating gene networks

in Arabidopsis including immunity and hormones (Michael et al., 2008; Achard et al.,

2009; Van de Velde et al., 2014; Lewis et al., 2015). In a subsequent piece of work,

Vandepoele highlighted the importance of integrating co-expression, gene ontology

and motif data to enable understanding of gene networks, particularly referencing

the identification cooperative elements within promoters (Vandepoele et al., 2009).

1.7 Organisation of this thesis

As demonstrated in this introduction, the regulation of immunity in Arabidopsis

thaliana is incredibly complex, encompassing many levels of complexity. This thesis

contains a chapter detailing on the development of a tool to analyse combinatorial

TF binding sites and two chapters containing the results of two large experiments

that examined the impact of immune elicitation on plant roots at the cell type and

tissue level.

Following this introduction, Chapter 2 contains the materials and methods

used to produce the work detailed in this thesis. The chapter contains summaries

of the experimental methods and comprehensive descriptions of the data analysis

methods used to analyse the experiments described in subsequent chapters. Chapter

3 details the development and implementation of a novel computational method

designed to identify enriched pairs of motifs with sets of co-expressed promoters.

This software, entitled the Paired Motif Enrichment Tool (PMET), uses a similar

statistical approach to gene ontology (GO) enrichment analyses to predict potential
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regulators of co-expressed gene sets. Chapter 3 also contains a parameter sensitivity

analysis, which examines the relative influence that various PMET parameters have

on the statistical tests performed by the tool. This sensitivity analysis utilised gene

sets that were identified later in Chapter 4.

Chapters 4 and 5 contain the results of two experiments that investigated the

impact of immune elicitation on Arabidopsis roots at a cell type-specific resolution.

In Chapter 4, RNA-seq analysis was used to discover cell type-specific immune

responsive gene networks in three root cell types. Epidermis, cortex and pericycle

cells that were treated with flg22, Pep1 or a mock treatment were isolated using

FACS. Differential gene expression analysis was used to identify flg22 and Pep1

responsive genes in the epidermis, cortex and pericycle. Then potential cell type-

specific regulatory networks were identified using PMET.

In Chapter 5, the new single cell RNA sequencing (scRNA-seq) method Drop-

seq was to analyse the transcriptomes of mock- and flg22 treated root tips. Cell

populations clustered using unsupervised methods were matched to specific cell

types and developmental stages using a combination of known and novel marker

genes. Finally, the flg22 response in the identified populations was analysed using

differential gene expression analysis.
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Chapter 2

Materials and Methods

2.1 Materials and methods for root cell type-specific

RNA-seq

2.1.1 Plant growth and treatment

The following plant lines were utilised in this experiment:

• Col-0 Wild-type Arabidopsis thaliana accession Columbia, I.D. N60000 ob-

tained from the Nottingham A. thaliana Stock Centre (NASC, UK)

• pCORTEX:GFP Arabidopsis thaliana marker line expressing GREEN FLU-

ORESCENT PROTEIN (GFP) fused to the promoter of CORTEX, a cortex

specific marker gene.

• E3754 Arabidopsis thaliana marker line that expresses GFP in pericycle cells

adjacent to the xylem-pole.

• pGL2:GFP Arabidopsis thaliana marker line expressing GFP fused to the

promoter of GLABRA2 (GL2), an epidermis (non-root hair) specific marker

gene.

Seeds of pGL2:GFP, pCORTEX:GFP, and E3754 lines were obtained from Miriam

Gifford, University of Warwick, UK.

pGL2:GFP, pCORTEX:GFP and E3754 plants were sewn on vertical square Petri

dishes containing Arabidopsis thaliana salt (ATS) medium (Lincoln et al., 1990)

without sucrose and supplemented with 4.5 g L−1 Gelrite (Duchefa Biochemie),

stratified for 1 day and then grown in a 22◦C day/18◦C night cycle (8 hour light) at
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120 µmol m−2s−1. After 10 days, plants were treated on plates with 1 mL per plate

of 1 µM solutions of flg22, Pep1 or H2O as control for 1 hour prior to harvesting.

Pep1 and flg22 peptides were used as described in Gómez-Gómez et al. (1999) and

Krol et al. (2010). Three independent biological experiments were carried out for

each marker line.

2.1.2 Separation of root cell types by FACS

Whole roots were cut into pieces and then incubated in protoplast solution for 1 hour.

Protoplasts were filtered through 70 and then 40 µm cell strainers, centrifuged at 300

g for 3 minutes, resuspended in protoplast solution lacking cell wall-degrading en-

zymes and subjected to fluorescence-activated cell sorting (FACS). GFP-expressing

protoplasts were collected by using BD Influx cell sorter (BD Biosciences), following

previously published protocols (Birnbaum et al., 2003; Gifford et al., 2008; Grønlund

et al., 2012). The cell sorter was equipped with a 100 µm nozzle and BD FACS-

FlowTM (BD Biosciences) was used as sheath fluid. BDTM Accudrop Fluorescent

Beads (BD Biosciences) were used prior to each experiment to optimize sorting set-

tings. A pressure of 20 psi (sheath) and 21 – 21.5 psi (sample) was applied during

experiments. Drop frequency was set to 39.2 kHz, and event rate was generally kept

less than 4000 events per second. GFP-expressing protoplasts were identified using

a 488 nm argon laser, plotting the outcome of a 580/30 bandpass filter versus a

530/40 bandpass filter to differentiate between green fluorescence and autofluores-

cence. Different cell populations were collected for microscopy in pre-experiments

to determine the presence of GFP-expressing protoplasts. As previously published

by Grønlund et al. (2012), these protoplasts were present in the high 530 nm / low

580 nm population. Sorting gates were set conservatively in following experiments

based on these observations. For RNA-extraction, GFP-expressing protoplasts were

sorted into Qiagen RLT lysis buffer containing 1% (v:v) β-mercaptoethanol, mixed,

and immediately frozen at -80°◦C. At least 10000 GFP-expressing protoplasts were

sorted per experiment and treatment condition. Sorting times were kept below 25

minutes.

2.1.3 RNA isolation, RNA-seq library construction and RNA se-

quencing

Total RNA was extracted using the Qiagen RNeasy Plant Mini Kit including on-

column DNase treatment with the Qiagen DNase kit. The 6000 Pico Kit (Agilent

Technologies) was used to check quantity and quality of the RNA on a Bioanalyzer
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2100 (Agilent Technologies). Preparation of amplified complementary DNA (cDNA)

from total RNA and library construction were done with the Ovation® RNA-seq

System V2 and Ovation® Ultralow Library Systems Kit (NuGEN Technologies),

respectively, following standard protocols. 100 bp Paired end sequencing was carried

out by the High-Throughput Genomics Group at the Wellcome Trust Centre for

Human Genetics on an Illumina HiSeq2500 System.

2.1.4 Experimental replicate pooling

Cell-type specific protoplasts were processed in six FACS experiments, and se-

quenced in pools by replicate within cell types as can be seen in Table 2.1.

Table 2.1: RNA-seq sample names and processing pools.

Sample Cell Treatment FACS Pool Replicate

WTCHG 129187 01 cortex mock 1 1 1
WTCHG 129187 03 cortex flg22 1 1 1
WTCHG 129187 05 cortex Pep1 1 1 1
WTCHG 131167 01 pericycle mock 1 2 1
WTCHG 131167 03 pericycle flg22 1 2 1
WTCHG 131167 05 pericycle Pep1 1 2 1
WTCHG 129189 01 cortex mock 2 3 2
WTCHG 129189 03 cortex flg22 2 3 2
WTCHG 129189 05 cortex Pep1 2 3 2
WTCHG 125416 01 pericycle mock 2 4 2
WTCHG 125416 03 pericycle flg22 2 4 2
WTCHG 125416 05 pericycle Pep1 2 4 2
WTCHG 129190 01 cortex mock 3 5 3
WTCHG 129190 03 cortex flg22 3 5 3
WTCHG 129187 07 cortex Pep1 3 1 3
WTCHG 129190 05 pericycle mock 3 5 3
WTCHG 129190 07 pericycle flg22 3 5 3
WTCHG 129189 07 pericycle Pep1 3 3 3
WTCHG 203594 01 epidermis mock 7 6 1
WTCHG 203594 03 epidermis flg22 7 6 1
WTCHG 203839 01 epidermis Pep1 7 7 1
WTCHG 203594 05 epidermis mock 8 6 2
WTCHG 203594 07 epidermis flg22 8 6 2
WTCHG 203594 10 epidermis Pep1 8 6 2
WTCHG 203839 04 epidermis mock 9 7 3
WTCHG 203839 06 epidermis flg22 9 7 3
WTCHG 203839 08 epidermis Pep1 9 7 3
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2.2 RNA-seq analysis methods

2.2.1 Databases

RNA-seq data was aligned to the Arabidopsis thaliana genome from Ensembl Release

39 containing the Araport11 genome annotation (FASTA and gene transfer format

(GTF) files were downloaded from https://plants.ensembl.org/info/website/

ftp/index.html, 2018-05-15). Illumina adaptor sequences were downloaded with

the Trimmomatic tool v0.36, downloaded 2018-05-16).

The gene ontology (GO) database was downloaded using the R package

org.At.tairGO. The motif database created by Franco-Zorrilla et al. (2014) was

used for paired motif enrichment analysis (downloaded from http://meme-suite.

org/doc/download.html, 2017-05-15). The database contains 113 motifs (in the

form of letter-probability matrices) that characterize the target sequence specificity

of 63 plant TFs from 25 families.

2.2.2 Trimming and alignment of raw sequences

Raw FASTQ files were assessed using FastQC (Andrews, 2010) version 0.11.7. FastQC

returns sequence quality scores, quantifies adaptor content and identifies overrepre-

sented sequences, indicating the quality of sequencing overall.

Sequences in FASTQ files were trimmed of adaptor sequences and low quality

reads using Trimmomatic version 0.36 (Bolger et al., 2014). The default settings

recommended for paired end data were used to remove Illumina TruSeq adaptors,

low quality reads and reads without pairs.

The paired-end libraries (2 × 100 bp reads) were mapped to the Arabidopsis

genome using the Spliced Transcripts Alignment to a Reference (STAR) Alignment

Tool (Dobin et al., 2013). First, a genome dictionary was generated using the

genomeGenerate function, using the genome FASTA and GTF files detailed above

with the default settings except for --sjdbOverhang 69.

The alignment was then run with the following settings changed from the

default: --runThreadN 8, --outSAMtype BAM Unsorted, --limitOutSJcollapsed

2000000, --readFilesCommand zcat. The quality of the alignment was assessed

visually using the Integrative Genomics Viewer (IGV) (Robinson et al., 2011).

2.2.3 Read counting using HT-seq count

The reads mapping to exons were counted using LiBiNorm (an application analogous

to HTSeq, Dyer et al. (2018)) using the LiBiNorm count command to produce read
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counts for each gene using the following parameters: -r pos -i gene id -s no -t

exon -z -c

2.2.4 Filtering artefacts

Read counts for each sample were normalised by size factor and log2-normalised

counts plotted in pairs to identify batch effects (Figure 2.1). These artefacts could

include extremely high read counts for non-protein coding genes such as ribosomal

RNA (rRNA) in some samples, or ‘side diagonals’ caused by a large batch of genes

being enriched in only one replicate, which can be seen to the right of the main

grouping in Figure 2.1a. The side diagonal is isolated by plotting lines to capture

these genes and using the equation for a line, genes forming the batch effect can

be identified. In the example of Figure 2.1b, artefact genes are indicated in green,

bounded by the blue line x = 8 and the red line y = 1.2x − 4. The artefact genes

correspond to those that satisfy (log2(countsrep1) > 8) and (log2(countsrep1)× 1.2−
log2(countsrep3) > −4). This is repeated for each sample where there are obvious

side diagonals. If the artefacts are the results of an obvious consistent source then

they are filtered from all samples. The replicates are replotted to confirm artefact

removal (Figure 2.1c). Organellar chromosomes, non-protein coding genes, and

ribosomal proteins (listed in Appendix A) were filtered from all samples.
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(a)

(b)

(c)

Figure 2.1: Identifying and filtering artefacts. Normalised log2 read counts for two
replicates are plotted against one another. (a) shows a replicate pair with a ‘side
diagonal’ batch effect which is highlighted in green (b). If a consistent source of
batch effects can be identified, then these genes can be filtered from the analysis as
in (c).
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2.2.5 Calculating fragments per kilobase of exon per million reads

(FPKMs)

For individual gene plots, read counts were converted to fragments per kilobase of

exon per million reads (FPKMs). FPKMs were calculated by diving the read count

using the following equation:

FPKMi =
Xi

liN
× 109

where Xi is the read count for a particular gene i, li is the respective gene length

and N is the total number of reads in that sample.

2.2.6 Principal component analysis for RNA-seq

The principal component analysis (PCA) was performed on size factor-normalised

and regularised-log (rlog) transformed count data using PlotPCA from the DEseq2

package (Love et al., 2014). Size factor normalisation is calculated by division of

all values by a normalisation factor to equalise library sizes across all samples. The

counts are transformed onto a log2 scale whilst minimising the differences between

rows with low counts, thus minimising the impact of noise on the PCA.

2.2.7 Differential gene expression analysis

Deseq2 and EdgeR were used to calculate differentially expressed genes (DEGs)

(Robinson et al., 2009; Love et al., 2014). The methods were compared by overlaying

the expression of DEGs over the expression of non-DEGs, as in Figure 2.3. The

best model fit was shown to be DESeq2, particularly for the pericycle data (Figure

2.2). EdgeR fitted the pericycle poorly characterising an excessive number of DEGs

particularly at low read counts, whereas DESeq2 returned more reasonable results.

As such DESeq2 was used to calculate DEGs throught this thesis.

Specifically, the DEGs were calculated using the DESeq function from the R

package DESeq2 (Love et al., 2014) using a paired replicate approach to account for

batch effects. DESeq is a function which fits a generalised linear model (GLM) based

on a negative binomial distribution. This model is used this to calculate differential

gene expression between two conditions. The model was fitted using pairwise repli-

cates. Differentially expressed genes were considered significant if the false discovery

rate (FDR) was less than 0.05. To maximise the number of DEGs identified, DESeq

as default applies independent filtering which excludes lowly expressed genes when

calculating adjusted p-values.
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Figure 2.2: Comparison of methods to calculate differential gene expression. The
expression of DEGs (red) overlaying non-DEGs (black) reveals the quality of differ-
ntial expression model fit for two tools; (a) DESeq2 and (b) edgeR.

Independent filtering maximises the number of FDR adjusted p-values re-

turned by DESeq2 below a user-defined threshold (in this case p < 0.05). This is

achieved by filtering out genes with little or no chance of being significant, filtering

(based on average expression strength across all samples). Opting to remove count

outliers means that genes with very wide variances, for example, a gene with very

low read counts in all but one sample which expresses thousands of reads would

be flagged for removal. Figure 2.3 shows that for the comparison cortex-mock vs.

cortex-flg22, applying independent filtering increases the number of DEGs from 421

to 476, but removal of count outliers has no effect on differential gene expression,

a pattern that is consistent across all comparisons. Based on these results, DEGs

calculated using independent filtering were used in the subsequent analysis.

Immune responsive genes were defined as those responding in at least one

cell type in response to flg22 and/or Pep1. They were calculated using pairwise

comparisons between mock and treated samples in each cell type separately. Cell

type-specific immune responsive genes were identified using Venn diagrams plotted

using R packages gplots and VennDiagram (Chen and Boutros, 2011) and Java

program EulerAPE for 3-set proportional Venn diagrams (Micallef and Rodgers,

2014) and gene subsets were extracted. Cell type- and treatment-specific genes were

identified by pooling flg22 and Pep1 responsive genes and extracting the genes that

responded to only one of the treatments. These genes were then split by cell-type

expression using Venn diagrams.
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Figure 2.3: DEG replicate plots comparing the effect of applying independent fil-
tering and/or count outlier removal by Cook’s Distance for one representative com-
parison. Replicate plots show DEGs in red, non-DEGs in black and genes that have
been filtered out in grey. Text beneath each plot indicates the parameters for the
test and the number of DEGs calculated for that comparison.
(a) shows the effect of applying no independent filtering or count outlier removal.
(b) shows the effect of applying count outliers removal but no independent filtering.
(c) shows the effect of applying independent filtering but not count outliers removal.
(d) shows the effect of applying both independent filtering and removal of count out-
liers.
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In order to characterise cell identity genes, all nuclear genes were categorised

by the cell type they were most highly expressed in based on log-fold changes be-

tween cell types. Then using pairwise differential gene expression calculated for each

possible pair of mock replicates, genes that were significantly higher (p < 0.05) in

one cell relative to both other cell types were defined as cell identity genes for that

cell type.

2.2.8 Gene ontology enrichment analysis

GO enrichment analysis was performed using the R package GOStats (Falcon and

Gentleman, 2007). The hyperGtest function is used to test for over-representation

of GO terms using a classical hypergeometric test. The resulting p-values are ad-

justed by FDR using the function p.adjust. GO term enrichment was visualised

using bar plots and heat maps produced using the R package ggplot (Wickham,

2016).

2.2.9 Combinatorial motif analysis using the Paired Motif Enrich-

ment Tool (PMET)

Promoter regions corresponding to 1,000 bp upstream from the transcription start

site were extracted for all protein coding nuclear genes in the Arabidopsis genome.

Mitochondrial or plastid chromosomes were excluded. For each motif and each

promoter, the sequence was scanned for occurrences of the motif using FIMO (Grant

et al., 2011) which assigns a probability score to each potential hit. In order to

determine the number of hits to consider and to compute an overall score for motif

presence in a promoter, we computed the geometric mean p of the top K FIMO

probability scores for non-overlapping hits and computed the binomial probability

of observing at least k hits of probability p in a 1 kb promoter. The value of k

minimising the binomial probability was taken to indicate the most likely number

of binding sites and as such k binding sites were used for subsequent analysis; k

was restricted to values 1 ≤ k ≤ 5. For each motif, the promoters were ordered by

increasing binomial probability and the top N = 5,000 promoters were considered as

containing the motif. The parameter N was chosen for high sensitivity (rather than

specificity) as stringency is introduced when the pairing of motifs is considered. The

binomial probability of the N th promoter was recorded for each motif as a threshold.

For each pair of motifs and for each promoter containing both motifs, overlaps of

recorded motif hits were identified and the information content (IC) of the overlap

(based on motifs) was calculated. If the IC of the overlap for either motif exceeded
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4 (indicating highly conserved bases are part of the overlap), then these hits were

removed and the binomial probability re-calculated for the remaining hits. If the

re-calculated scores were still below the recorded motif-specific threshold, then the

two motifs were considered as co-localised in the promoter. Finally, gene sets of

interest were tested for enrichment of paired motifs using a pairwise hypergeometric

test. Hypergeometric p-values were corrected for the number of motif pairs using

local Bonferroni (calculating the correction for each gene set separately). Corrected

p-values less than 0.05 were considered significant. For each comparison of results

made between conditions, the gene sets tested were of equal size to make p-values

comparable. To this end, gene set sizes were equalised by taking the top G genes

from the larger gene set, where G is the size of the smaller gene set. For full details

of PMET, see Chapter 3.

2.3 Materials and methods for Drop-seq

2.3.1 Plant growth and treatment

WOX5::GFP expressing plants were grown for nine days and treated with flg22 or

with H2O as a control (as in Section 2.1.1) at least three hours after the start of the

daily light period. The WOX5::GFP marker line expresses GFP which has been

fused to the promoter of WUSCHEL-RELATED HOMEOBOX 5 (WOX5), a gene

specifically expressed in the quiescent centre (QC).

2.3.2 Protoplasting root tips for Drop-seq

Two hours after treatment, 100-200 root meristems per treatment were harvested

in protoplast solution on a microscope slide using a small hypodermic needle under

a stereomicroscope. Two hours was chosen as a suitable time point that would cap-

ture the initial flg22 response, whilst being manageable within the constraints of the

Drop-seq protocol. Roots were incubated in ∼500 µL enzyme solution for 2.5 hours

with shaking at 110 rpm, and pipetting with a 100 µL pipette every 20 minutes.

The protoplast suspension was passed through a 40 µm cell strainer to remove undi-

gested clumps and other debris, followed through by another equal volume of enzyme

solution, and the protoplasts in the resulting strained suspension counted using a

Fuchs-Rosenthal Haemocytometer. The strained protoplast suspension was spun

down at 300 rcf for 5 minutes to pellet the protoplasts, supernatant was removed

and cells resuspended to a concentration of 300 cells µL−1 in cell buffer.
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Table 2.2: Sequencing specifications for NextSeq

Read Length (bp) Description

Read 1 20 cell barcodes and UMIs
Read 2 50 cDNA
Read 1 Index 8 Barcodes to identify multiplexed samples

2.3.3 Drop-seq protocol summary

The protocol used to perform Drop-seq was the ‘Online Drop-seq Protocol v3.1’ from

the McCaroll lab, (downloaded from http://mccarrolllab.com/download/905/,

2017-11). The machine used for droplet formation was the single-cell sequencing

platform from Dolomite Bio.

In summary, cells from the protoplast suspension were encapsulated in droplets

containing barcoded beads, tagging each mRNA molecule with unique molecular

identifiers (UMI) and cell of origin barcodes. In general, each droplet contain-

ing both a bead and a cell captures ∼11% of the mRNA from each cell, equiva-

lent to ∼20,000 transcripts. Following the machine run, droplets were broken and

mRNA-bound microparticles were reverse transcribed into cDNAs to form a stable

set of beads called single-cell transcriptomes attached to microparticles (STAMPs).

STAMPs were treated with Exonuclease I to degrade excess bead primers that were

not bound to RNA molecules. In order to prepare beads for sequencing, STAMPs

were amplified using the polymerase chain reaction (PCR), the cDNA library was

purified and the concentration was tested using a BioAnalyzer. Next, cDNA was

tagmented using Nextera XT, purified and concentration was quantified again using

a BioAnalyzer.

The samples were prepared for sequencing using the NextSeq 75 High Output

kit and it’s associated protocol. The sequencing specifications for NextSeq are shown

in Table 2.2 The method is summarised in Figure 2.4, see Section 5.1 for a more

comprehensive description of the Drop-seq protocol, and a larger figures.
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Figure 2.4: Flow diagram demonstrating the application of the Drop-seq protocol to
Arabidopsis root meristems. Seedling image from Sparks (2017), Drop-seq diagrams
from Macosko et al. (2015).

2.4 Drop-seq analysis methods

The Drop-seq alignment protocol was performed following the ‘Drop-seq alignment

cookbook’ v1.2 (Nemesh and McCarroll, 2016). This pipeline covers the steps align-

ment of FASTQ files to the genome and creating a differential gene expression (DGE)

matrix containing read counts for each gene and cell as performed in Macosko et al.

(2015).

2.4.1 Processing binary base call to compressed BAM files

Sequences were downloaded in pooled binary base call (BCL) format files. The files

were demultiplexed into FASTQ files containing raw sequences from each sample us-

ing bcl2fastq using indexes detail in Table 2.3. FASTQ files contain uncompressed

sequences and associated sequencing quality scores. bcl2fastq returns two FASTQ

files each containing one of each paired read, per lane per samples. FASTQ files

were merged into two paired files per sample using the unix cat command. These

paired FASTQ files were merged into one binary alignment format (BAM) file using

the FastqToSam program from Picard tools (Broad Institute, 2018). The BAM file

is a compressed Sequence Alignment Format (SAM) file which contains sequence

information, quality scores and have the capacity to store alignment positions and

scores. However at this point our data is unmapped.
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2.4.2 Databases

Drop-seq data was was aligned to the Arabidopsis thaliana genome from Ensembl

Release 36 containing the Araport11 genome annotation (FASTA and GTF files were

downloaded from https://plants.ensembl.org/info/website/ftp/index.html,

2017-08-17)

2.4.3 Creation of meta data for Drop-seq alignment

The Drop-seq alignment protocol was performed following the ‘Drop-seq alignment

cookbook’ v1.2 (Nemesh and McCarroll, 2016). This pipeline covers the steps align-

ment of FASTQ files to the genome and creating a DGE matrix containing read

counts for each gene and cell as performed in Macosko et al. (2015).

The Drop-seq alignment pipeline requires meta data in the form of the fol-

lowing input files:

• FASTA file: The reference genome sequences required by the aligner (down-

loaded from ensembl detailed in section 2.2.1).

• GTF file : Genomic features annotation file containing locations of genes,

transcripts and exons (downloaded from ensembl, detailed in Section 2.2.1).

Many other meta data files are derived from this file. The GTF file had to be

edited in order to be compatible with the pipelines scripts that create meta

data files. In particular, ‘transcript name’ fields were filled by duplicating the

‘transcript id’ field and any genes with missing empty ‘gene name’ fields were

filled by duplicating the ‘gene id’ field. The Arabidopsis genome also con-

tains genes with semi-colons and spaces in their genenames, which are used

as column delimiters by the pipeline, as such these were replaced with hy-

phens. Care was taken in downstream analysis to check any genes containing

punctuation were recorded in reports with the correct punctuation. An addi-

tional chromosome was added containing the gene sequence for GFP in order

to detect reads from the WOX5::GFP fusion.

• Genome dictionary file: A file generated by Picard Tools Create Sequence

Dictionary command.

• refFlat file: A file containing genomic locations of exons for each gene subsetted

from the GTF file.

• Gene intervals file: Genes from the GTF file in interval list format.
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• Exon intervals file: Interval list format file containing locations of exons from

the GTF file.

• rRNA intervals file: Interval list format file containing locations of rRNA from

the GTF file.

• Reduced GTF file: Human-readable GTF file.

2.4.4 Converting unmapped BAM to aligned and tagged BAM

The following steps of the Drop-seq alignment protocol were performed using tools

were developed by the McCarroll lab as part of their ‘Drop-seq tools’ suite, unless

otherwise specified:

1. Tag cell barcodes. TagBamWithReadSequenceExtended extracts bases en-

coding cell barcodes and creates BAM tags for those barcodes.

2. Tag molecular barcodes. TagBamWithReadSequenceExtended extracts bas-

es encoding molecular barcodes and creates BAM tags. These tagging steps

also tag low quality reads that contain at least 1 bp below a quality threshold

(Phred score) of 10.

3. Filtering reads which have been tagged as low quality using FilterBAM.

4. Trim 5’ primer sequence. TrimStartingSequence trims SMART Adapters

that can occur at the 5’ end of a read.

5. Trim 3’ polyA sequence. PolyATrimmer searches for 6 contiguous A at the

3’ end and removes these sequences.

6. Convert SAM to FASTQ. SamToFastq from Picard tools converts trimmed

SAM files to FASTQ files, the required input by STAR.

7. Alignment to genome. STAR (Dobin et al., 2013) aligns the trimmed reads

to the specified genome with settings as per defined in the Drop-seq alignment

script with the addition of --limitOutSJcollapsed 2000000 to ensure there

is sufficient memory.

8. Sort STAR alignment. SortSam from Picard tools sort mapped BAM files

in queryname order.

9. Recover cell/molecular barcodes. MergeBamAlignment from Picard Tools

merges the STAR alignment-tagged BAM with the unmapped BAM that was
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previously tagged with molecular/cell barcodes. This results in a mapped

BAM file containing cell and molecular tagged reads.

10. Add gene/exon and other annotation tags. TagReadWithGeneExon adds

a ‘G’ BAM tag onto reads that overlap with an exon of a gene. This tag later

is used to produce the DGE matrix.

11. Detecting bead synthesis errors. Some batches of barcodes have been

identified as containing high proportions of shared sequences, as they had not

been synthesised correctly. DetectBeadSynthesisErrors identifies barcodes

containing fixed bases (positions containing a high proportion of just one base).

If this fixed base is at the end of the read, it is trimmed and if any of the

trimmed sequences match they are merged. If a fixed base occurs in any other

position reads with that barcodes are removed.

2.4.5 Generating the digital gene expression matrix

To count gene transcripts, the total number of UMI in each gene and within each

cell are counted using DigitalExpression tool from the Drop-seq pipeline. If a

pair of UMIs contain one matching base at the same position (Hamming distance

= 1) these UMIs are merged. Then, the total number of unique UMI sequences

are reported as the number of transcripts per gene, per cell. DigitalExpression

also returns a summary of the digital gene expression matrix, containing the total

number of genes and transcripts observed in each cell.

2.4.6 Cell selection

The efficiency of Drop-seq using the Dolomite Bio system is 20% as only a small

proportion of droplets contain one bead and one cell. Most droplets contain no cells,

or no beads, and some contain multiple cells (referred to as doublets). Droplets con-

taining beads can also collect ambient RNA, which results in droplets that appear as

cells with low read counts. Including doublets and ambient reads in the subsequent

analysis can add noise which reduces the resolution and accuracy of the results.

There are two suggested methods for determining the correct number of cells: BAM

tag histograms and log nUMI-log barcode plots. BAMTagHistogram from the Drop-

seq tools calculates the number of reads for all BAM tags in a BAM file associated

with a tag such as the XC tag which indicates individual cells. These are then

plotted as a cumulative distribution plot. The ideal plot will have a distinctive knee

as shown in Figure 2.5 to indicate the ideal number of cells to select, however the

plots from experimental data are rarely this well defined.
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Figure 2.5: Ideal cumulative distribution plot of fraction of reads associated to
BAM tags as calculated using BAMTagHistogram. The distinctive knee can be used
to select the ideal number of cells to analyse further. Figure taken from the Drop-seq
Alignment Cookbook v1.2

The alternative plot that can be used to determine the number of cells to

select is the log transcripts-log barcodes plot. The number of transcripts (nUMI) is

plotted on the y-axis and the barcodes ordered by decreasing UMI content on the

x-axis, both log scaled, which should return a plot with two shoulders (Figure 2.6).

The point at which the first shoulder starts to drop defines the point at which we

are gaining no more information by adding new cells, and therefore defines our cell

selection cut-off. The second shoulder indicates the drop off in information from

barcodes associated with ambient RNA. In order to see all dips in the data you need

to include data for all barcodes, which is obtained by running DigitalExpression

for more cells than the dataset could contain (i.e. 1,000,000 cells).

If neither method produces a clear cut -off point, then an alternative approach

would be to take only include the cells with a reasonable number of transcripts, e.g.

select all cells with a minimum off 4000 transcripts, although this non data-driven

method is more likely to result in loss of data.
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Figure 2.6: Log transcripts-log barcodes plot (blue line). The red
line indicates the threshold for cell selection. Figure 4 from https:

//www.illumina.com/content/dam/illumina-marketing/documents/products/

technotes/single-cell-rna-data-analysis-tech-note-1070-2017-001.pdf

2.4.7 Filtering and quality control

Seurat is an R package (Butler et al., 2018) designed for QC, analysis, and explo-

ration of single cell RNA sequencing (scRNA-seq) data. Seurat was used to filter

the dataset, visualise clusters and assign identity to cell clusters. At this point, all

samples were merged in order to maximise the resolution of the dataset.

Seurat was used to identify, interpret and, where appropriate, filter sources

of heterogeneity from single cell transcriptomic measurements. Some sources of

heterogeneity such as high concentration of mitochondrial RNA can result from the

experimental procedure, so must be filtered out so as to not distort the subsequent

results. Additionally, filtering cells with low information increases the performance

of the downstream dimension reduction and clustering. For the same reason, genes

that were only expressed in fewer than 3 cells were filtered out of the analysis.

Retaining these lowly expressed genes would just contribute noise to the analysis.

Violin plots of nUMI, nGene, plastid and mitochondrial content were used

to assess for potential contaminants. Based on these plots, cells containing >5%

mitochondrial, >5% plastid reads, >50000 nUMI (indicating a potential doublet)

or <200 unique genes were filtered out. Single cell datasets usually contain unin-

teresting sources of variation, such as technical noise, batch effects and biological

sources of variation that are irrelevant to the experimental question. These can be
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regressed out to improve downstream analysis, using Seurat’s ScaleData function.

This function was used to constructs a linear model to predict gene expression, and

used z-scores to scale the effects differences in gene expression driven by the num-

ber of detected molecules (nUMI), mitochondrial and plastid gene expression and

sample identity (to minimise sample batch effects).

2.4.8 Principal component analysis

PCA was performed on the merged and filtered samples. Using the Seurat function

FindVariableGenes, the most variable genes in the dataset were identified to focus

on in the dimension reduction analysis. By focussing on the most variable genes,

the computational complexity is reduced and the level of noise in the analysis is

considerably reduced. The first two principal components (PCs) were visualised

to confirm that batch effects between the samples were not the primary sources

of variation in the dataset, and that no small cell populations were distant from

others (indicating contamination) giving confidence to proceed with the t-Stochastic

Neighbour Embedding (t-SNE) analysis. PCA is also a prerequisite to t-SNE.

t-SNE has a number of user-defined parameters which can affect the output.

One of these parameters is the number of PCs to incorporate into the t-SNE, which

in turn is affected by the number of variable genes used to perform the PCA. The

Seurat package provides two methods to determine the best number of PCss; the

elbow plot and visual inspection of gene expression in heat maps.

The elbow plot shows the standard deviation of each PC against that PC

(Figure 5.12). The cut-off point for the number of significant PCs is the point

at the ‘elbow’ where the standard deviation is no longer decreasing significantly.

The second method investigates the expression of the top 20 most variable genes

in the top 100 cells that represent each principal component. By examining these

expression patterns for a range of PCs (plotted as heat maps), the point at which

adding more PCs no longer adds significantly more information to the data set can

be determined. The results of these methods are discussed in Chapter 5.

2.4.9 Visualisation using t-Stochastic Neighbourhood Embedding

The visualisation method t-SNE is used to reduce high-dimensional data to two

dimensions with the aim of achieving an informative visualisation (Maaten and

Hinton (2008), implemented in the R package Seurat by Butler et al. (2018)). The

clustering of cells in the t-SNE plot can be used to determine meaningful groups of

cells.
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Read count data contains n×m dimensions where n is equal to the number

of genes (∼ 1.5× 104) and m is equal to the number of cells (∼ 2× 103). Typically,

a reduction from ∼ 1.5 × 104 to between 20 and 30 dimensions is calculated using

PCA first. The resulting data is then utilised by t-SNE to further reduce the data

to two dimensions.

One key difference between t-SNE and PCA is that PCA simultaneously

maps the entire high-dimensional space to the low-dimensional space using linear

algebra. In contrast, t-SNE finds low-dimensional coordinates that explain local

structures rather than global structure. This means that similar data points cluster

closely together, but the distances between different local structures or clusters are

not necessarily informative. The t-SNE plot can be refined by altering a perplexity

parameter which describes the average size of local clusters.

In order, to refine the analyses, t-SNE plots were produced using inputs from

a range of included PCs and perplexity values, until a stable set of parameters were

determined, where clustering was similar for multiple runs of t-SNE.

Cells were clustered based on the t-SNE coordinates using a shared nearest

neighbour (SNN) modularity optimization based clustering algorithm, (implemented

as the FindClusters function in the R package Seurat package). First k nearest

neighbours were calculated from the SNN graph. A modularity function was then

optimised to determine clusters (Waltman and Van Eck, 2013).

Identity was assigned to the clusters using two approaches. First, a super-

vised approach was used, whereby the expression of known cell type marker genes

(detailed in Table 5.7) was compared between each cluster using violin plots and

by overlaying the expression data on the t-SNE plot. In cases, where the marker

genes were highly expressed in a small number of clusters, those genes were used

to assign identity. Secondly, an unsupervised approach was used to identify novel

marker genes for each cluster (as in Section 2.4.11).

2.4.10 Assigning cell cycle scores

Each cell was assigned to one of three cell cycle phases: G1, S or G2/M. For each cell,

a score to define whether a cell was likely to be in a particular phase, was calculated

based on the expression levels of S or G2/M phase associated genes. Cells that

scored highly for the S or G2/M phase were assigned to that respective phase. The

remaining low or ambiguous scoring cells were assigned to the G1 phase.
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2.4.11 Identifying markers to identify cell subsets

Positive and negative markers of subsets of cells, relative to all other cells, were iden-

tified using differential gene expression (DGE) analysis based on the non-parametric

Wilcoxon rank sum test (Wilcoxon, 1945). This DGE analysis was first used to de-

termine whether clusters of potentially broken cells had a distinctive expression pat-

tern (see Section 5.2.3). Identified marker genes were used to distinguish broken and

whole cells. Secondly, novel marker genes that characterised the cell clusters identi-

fied using t-SNE. The known expression (based on data from Brady et al. (2007)),

and biological function of these novel markers were analysed to assign identity to

clusters where possible. Finally, flg22-responsive genes within different developmen-

tal zones were identified using DGE analysis
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Chapter 3

Paired Motif Enrichment Tool

Software Development

3.1 Introduction

The Paired Motif Enrichment Tool (PMET) was developed to identify pairs of tran-

scription factors that are co-localised within the promoters of a given gene set and

therefore could be acting together to regulate that gene set. The motivation for

developing this tool was to identify different sets of TFs that could explain differing

gene expression patterns that we observed in different cell-types in response to an

immunity treatment (fully discussed in Chapter 4). Within this chapter is presented;

the functionality of PMET, a brief summary of other available tools and a study to

determine the optimum default parameters for the tool. PMET was developed from

a framework for single motif analysis called HMT (Breeze et al., 2011).

3.2 Functionality and implementation of PMET

PMET is split into two algorithms; the first indexes motifs and promoters, and

the second performs co-localisation enrichment tests. The first algorithm referred

to as ‘PMET index’ scans all the promoter sequences in a given genome (or other

provided sequences) for each motif individually. For each promoter-motif pair, the

top K matches are extracted and a binomial score is used to calculate the number

of ‘true’ motif matches, and the overall significance of that motif’s presence in the

promoter. This score is stored, and once all of the promoters have been scanned

for a given motif, the top N promoters are retained, based on the best (lowest)

binomial scores. The binomial score of the N th promoter is retained as a binomial
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score threshold.

When all of the motifs from the provided database have been indexed, the

paired enrichment testing can take place. For every possible pair of motifs, the top

N sequences for each motif are assessed for overlaps and overlaps that exceed the

information content (IC) threshold are removed from the analysis. The binomial

score for that promoter is recalculated and if the new score exceeds the binomial

score threshold for either motif, the promoter is filtered out of the analysis. Finally

a hypergeometric test is performed to assess the enrichment of the motif pairs in

target promoter set relative to the surviving promoters from the previous step.

PMET can be used to analyse paired enrichment in any genome with tran-

scription start site (TSS) annotated to genes. The tool performs best when used to

match motifs from organism specific databases to promoters in that organism but

it can also be used to search for motifs from closely related organisms (e.g testing a

generic plant motif database against a less studied plant species).

For each parameter, a default value is shown. These default values were

chosen as biologically ‘sensible’ parameters which could be computed in reasonable

time.

3.2.1 Current methods to investigate combinatorial motifs

The motivation for developing PMET was that none of the existing tools fitted our

requirements. These requirements were: to account for multiple binding sites for

individual motifs, to not constrain motif pairs based on the distance between motifs,

to allow overlaps between motif pairs, and to not require chromatin accessibility or

TF binding data.

In the early 2000s, an array of tools that identified motif pairs or composite

motif modules within co-exprssed genes were developed. These tools built statistical

models based on the input sequences of co-expressed genes and returned predicted

motif modules. However, many of these modules such as ‘Cister’ (Frith et al.,

2001), ‘ModuleSearcher’ (Aerts et al., 2003), ‘ClusterBuster’ (Frith et al., 2003),

‘CisModule’ (Zhou and Wong, 2004) and ‘CMA’ (Kel et al., 2006) required additional

inputs such as expected number of modules, expected distance between motifs and

expected distances between modules . These models all assume that cooperative

TF binding sites are close together and therefore constrain their predictions based

on distance. This assumption no longer fits with current models of TF cooperation.

Whilst some cooperative TFs do bind to proximal sites, other cooperative TFs take

advantage of DNA looping, which enables distal binding sites interact directly. TFs

can also cooperate indirectly in cases where the first TF binding to the promoter
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makes the second TF binding site more thermodynamically favourable. The access

to existing tools is also hindered by the lack of maintenance of older tools. In many

cases, the tools published are no longer accessible or utilise databases that are out

of date. Other tools that fit many, but not all, of the requirements of this analysis

exist but have only been designed with mouse or human genomes in mind and are

therefore not suitable, or able, to study Arabidopsis (Sharan et al., 2003; Meckbach

et al., 2015).

Many recently developed tools have focussed on the integration multiple

datasets, such as ‘Chromia’ (Won et al., 2010), ‘CCAT’ (Jiang and Singh, 2013)

and ‘TFcoop’ (Vandel et al., 2017) which require combinations of ChIP-seq and or

RNAi data or expression data. Similarly, ‘Centipede’ (Pique-Regi et al., 2011) and

‘TFProb’ (Lähdesmäki et al., 2008) rely on the integration of chromatin accessibility

data and nucleosome positioning.

PMET combines some of the best features of existing tools; CMA uses a sim-

ilar enrichment test to identify motif combinations that are specific to a co-regulated

gene set. ModuleSearcher allows the motifs being tested to overlap. MSCAN com-

bines p-values of multiple motif hits for a single motif to account for homotypic

clusters, although utilises a different scoring method to PMET (Johansson et al.,

2003).

Overall, most of the tools in the literature either rely on the user defining

parameters that cannot easily discovered or utilise multiple data types which are

not easily available to every experimentalist. The advantage of PMET is that the

inputs are relatively simple and the parameters are designed to account more mul-

tiple mechanisms of TF cooperation, whilst making as few assumptions about the

underlying structure of the data as possible.

3.3 PMET Part 1: Indexing

In the first stage of the PMET algorithm, individual motif instances are indexed

within all promoters of the genome and the top promoters associated with each

individual motif are stored for use in the enrichment test (Figure 3.1).

3.3.1 Genome sequence and motif database retrieval

PMET requires the following input files:

• genome sequences and index files in the form of .fasta and .gff3 files
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Figure 3.1: Work flow of Paired Motif Enrichment Tool Indexing. Hexagonal shapes
with solid lines indicate data to be input by the user, hexagonal shapes with dashed
outlines indicate data produced by the tool to be utilised later. Sharp-cornered
rectangles indicate computational steps and grey rounded rectangles refer to user-
defined parameters.
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• a motif database in .meme format (described at http://meme-suite.org/

doc/meme-format.html?man_type=web)

• a list of gene IDs to be tested for motif co-localisation

Alternatively, the user can provide custom FASTA sequences as described in

Section 3.5.

3.3.2 Promoter extraction

PMET extracts n-bp promoters for all genes in the provided genome upstream of

the TSS (where n is a user-defined parameter with a default of 1000 bp). If the

user decides to include the 5’ untranslated region (UTR), the promoter frame is

shifted to start at the coding start site (CDS). These parameters were chosen based

on a recent study of all Arabidopsis promoters revealed that motifs are distributed

between -2000bp and +200bp from the TSS (Yu et al., 2016), with the majority of

motifs in the first 1000bp.

3.3.3 Motif scanning

PMET uses the motif scanning tool FIMO (Find Individual Motif Occurences) from

the MEME suite Grant et al. (2011). FIMO converts sequences provided in .meme

format into log-odds position specific motif matrix (PSSM), independently scans

each sequence for motifs, and reports a log-odds score and p-value to quantify the

quality of all potential matches.

3.3.4 Binomial test for multiple motif instances occurring in the

promoter

The tool allows for multiple matches for each individual motif in order to account

for the prevalence of ‘homotypic’ clusters of motifs in eukaryotic genomes. FIMO

returns all potential matches, and the top K most significant matches based on

p-values are extracted for each promoter-motif pair. K, the maximum number of

such matches is a user-defined parameter, with a current default value of K = 5.

A binomial score, initially used in HMT and adapted for PMET, predicts the most

likely number of ‘true’ TF binding sites up to a maximum of K in each promoter.

The binomial score P (k) calculates the probability of at most k matches

occurring in a promoter of length n for k between 1 and K: P (k) is defined by

P (k) =

k∑

l=0

(
n

l

)
pl(1 − p)n−l
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If k = 1, then the probability of that match occurring is the p-value calculated by

FIMO (p). If k > 1, then the probability of k matches occurring is calculated as

the geometric mean of the p-values associated with those k matches. The value of

k that returns the minimal binomial score is then taken as the ‘true’ number of

motif matches. The original implementation of the binomial score used the Hommel

method (Vovk, 2012) to combine p-values but Hommel was weighted too weakly

towards single matches such that the addition of any weak matches always resulted

in a stronger score. The binomial score combined with the geometric mean more

accurately models homotypic clusters.

Figure 3.2 describes three promoters where the binomial score returns dif-

ferent numbers of most likely k in a promoter of length n (in this case 1000bp) up

to a maximum, K, of 4. In each case the binomial score is calculated K times, and

the lowest scoring of these tests indicates the number of motifs least likely to occur

randomly, and therefore most likely number of ‘true’ motif matches.

In the first promoter (Figure 3.2a), FIMO has returned four potential motif

matches with p-values; 1 × 10−6, 0.01, 0.01, and 0.01. The binomial score will be

calculated four times.

1. The first binomial test calculated that the likelihood of the single lowest scoring

(most significant) motif match occurring in a promoter of 1000bp is 0.002.

2. The second test determined that the likelihood of the combination of the two

most significant motif matches, (defined as the geometric mean of the two

lowest p-values) occurring in the promoter is 0.02.

3. The likelihood of the three most significant motif matches occurring was 0.07

4. The likelihood of all four occurring was 0.14.

In this example, the lowest scoring binomial test was the first one; accordingly the

most likely number of ‘true’ motif matches is one. This single match was retained

for the subsequent analysis, and the rest were discarded. The FIMO p-values in

Figure 3.2a agree with this conclusion as the first motif match has a much lower

P-value than the other three potential motif matches (highlighted in the figure).

The lowest binomial score from these tests (corresponding to one motif match) was

also stored by PMET and used to rank all the promoters tested based on how strong

their respective motif matches are, and then extract the top N .

In the second promoter (Figure 3.2b), FIMO returned four potential motif

matches with p-values; 1 × 10−6, 1 × 10−4, 0.01, and 0.01. In this case the four

binomial tests calculated scores of 0.002, 0.0002, 0.06 and 0.14 for 1 to 4 hits,
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Figure 3.2: Binomial scoring of promoters. Each figure contains a representation of
motifs in a promoter as boxes on a line. The FIMO p-values are ordered by signif-
icance (shown inside boxes ordered from left to right), and the binomial scores are
calculated for 1, 2, 3 or 4 matches, shown below the promoter. (a-c) demonstrate
three potential scenarios where the binomial score returns different numbers of most
likely k in promoters up to a maximum, K, of 4.
(a) An example with one highly significant match, and three higher scoring matches.
The binomial score returns the smallest value for one motif match (shown in bold).
(b) An example where the combination of two matches returns in the smallest bi-
nomial score.
(c) An example where the combination of three weaker matches returns the smallest
binomial score.
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respectively. The lowest scoring test was the second, indicating that the number of

matches most likely to occur in this promoter is two. These two motifs would be

retained by PMET and the score of 0.0002 used in promoter rankings.

In the third promoter (Figure 3.2c), FIMO returned four potential motif

matches with p-values; 1× 10−4, 1× 10−4, 1× 10−4, and 0.01. The lowest binomial

score corresponds to the third iteration, and therefore the most likely number of

motif matches in this promoter is three. The final rankings of these three examples,

based on lowest binomial score would be: promoter 2, promoter 3, promoter 1.

Whilst optimising PMET to work effectively for larger genomes, the following

rearranged version of the binomial score was implemented to decrease computation

time.

P (k) =
k∑

l=0

(
n

l

)
pl(1 − p)n−l

=
l∏

i=1

(n+ 1 − i

n

)
pl(1 − p)n−l

=
k∑

l=0

exp

(( l∑

i=1

log(n− i+ 1) − log(l))
)
×
(
l · log(p)

)
+
(

(n− l) · log(1 − p)
))

3.3.5 Extracting top N promoters

For each motif, the top N promoters with the lowest binomial scores are retained

to be tested for paired motif enrichment. N is a user-defined parameter with a

default value of 5000. This value returns significant hits for all co-regulated gene

sets tested so far, whilst limiting computation time to a few hours. The binomial

scores of the N th promoters for each motif are also retained to be used as a threshold

following overlap removal. The novel approach of utilising the top N promoters

rather than applying a threshold has the benefit that each motif is treated in an

unbiased manner.

3.3.6 Calculating information content of motifs

Finally, the level of conservation for each base position in a motif logo is quantified

using the IC:

ICi = 2 +
∑

b

fb,i log2 fb,i

Information content is calculated from the relative probabilities of observing each

base at a single position. If all bases have an equal probability of being observed at a
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Figure 3.3: Information content in ANAC55 2 motif from (Franco-Zorrilla et al.,
2014). The conservation of each base at each position is quantified in terms of IC
where a fully conserved base will have an IC of 2.

single position, then the information content is very low, whereas if the chance of one

particular base is high relative to all the other bases (a highly conserved base) then

the information content is high. This can visualised as a sequence logo (Figure 3.3).

The information content per position for each motif is stored by PMET in order to

quantify overlaps between potential co-localised motifs during the enrichment test

(Section 3.4.1).

3.4 PMET Part 2: Enrichment testing

The purpose of the PMET enrichment test is to quantify how likely a co-localisation

between two motifs is to occur in a test promoter set relative to co-localisation across

the genome. For every possible pair of motifs, promoters that contain both are

identified. Within each such promoter, instances of motifs are checked for overlaps.

Any promoters containing overlaps that exceed a threshold are removed. Next,

an enrichment test quantifies the significance of the size of the overlap between

the target promoter set and the set of promoters containing both motifs. This

comparison ensures that the paired motifs identified by the tool are specific to the

promoter set that the user wants to test. Finally, a multiple testing correction is

applied to all the tests, and the results are returned (Figure 3.4).

The computation time of the co-localisation tests is directly proportional

to N2/2 − N where N is the number of motifs. This means that the size of mo-

tif database has a considerable impact on computation time, and is an important

consideration before running PMET.
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Figure 3.4: Workflow of PMET Enrichment Testing. Hexagonal shapes with solid
lines indicate data to be input by the user, hexagonal shapes with dashed outlines
indicate data produced by the tool to be utilised later. Sharp-cornered rectangles
indicate computational steps and grey rounded rectangles refer to user-defined pa-
rameters or steps that require input from the indexing algorithm.
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Figure 3.5: Removal of overlapping motifs from PMET analysis. (a) shows two
co-localised motifs that do not overlap, (b) shows two motifs that overlap slightly
across 2 less-conserved bases. The sum of IC for those two bases is less than 4
for both motifs, so this paired is retained. (c) shows two highly overlapping motifs
where the sum of IC for the overlapping bases exceeds 4 for at least one of the motifs
and therefore this matching pair would be rejected and removed from the PMET
index.

3.4.1 Overlap checking

Unlike single motif enrichment tests which only assess whether or not a motif is

present, multiple-motif enrichment tests must consider the amount of overlap motifs

must be considered. If the motif positions were not considered (and therefore any

overlaps were allowed), any two identical or highly similar motifs would be errantly

determined by PMET to be highly co-localised. This would, in turn, make any

co-localisations between distinct motifs appear insignificant by comparison. The

obvious alternative is to remove any motif instances which overlap. However, recent

work on combinatorial TF binding sites (Rodŕıguez-Mart́ınez et al., 2017) indicates

that two binding sites can overlap and bind TF pairs. The solution implemented in

PMET is to assess the matches for each motif pair within a promoter individually,

and apply a threshold whereby a small amount of overlap is permitted (Figure 3.5b),

whereas a large overlap is rejected (Figure 3.5c).

For every pair of motifs, the promoters that contain both motifs are identified.

Within each promoter, any overlaps between motif matches are identified based on

motif positions. When an overlap is identified, PMET calculates the sum of the IC

for the overlapping positions (which had been stored during the indexing, Section

3.3.6). If the total IC of the overlap exceeds the specified threshold in either motif,

then that motif-pair is removed (Figure 3.5). The default IC threshold for PMET
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is 4, corresponding to two fully-conserved base pairs. In practice, an overlap of

4 corresponds to two motifs overlapping by more than two base pairs, as motif

positions are rarely fully conserved in flanking bases. Observing an overlap of IC 4

or larger implies that either highly similar motifs have been matched to the same

positions, or that these binding sites could no longer function, as steric hindrance

would prevent two TFs binding cooperatively.

After the motif matches that exceed the IC threshold have been removed,

the binomial test for motif occupancy is recalculated. If the new binomial score

exceeds the previously calculated binomial score threshold for either motif, then

that promoter is excluded from the analysis. The surviving promoters are used to

calculate the hypergeometric p-value for paired motif enrichment.

3.4.2 Hypergeometric test

The pairwise hypergeometric test calculates statistical significance of the overlap

between the set of promoters which contain both motifs and target promoter set

(significance of the size of the orange set compared to red and yellow sets, respec-

tively (Figure 3.6), relative to number of promoters in the genome. Computation of

the log-scale p-value for the pairwise hypergeometric (Fisher’s exact) test is based

on the efficient function proposed by Meng et al. (2009).

3.4.3 Multiple testing correction (MTC)

PMET provides three multiple testing corrections (MTCs) to correct the hypergeo-

metric p-values; Benjamini-Hochberg, Bonferroni and global Bonferroni (Bonferroni,

1936; Hochberg, 1988; Benjamini and Hochberg, 1995).

• The Benjamini-Hochberg correction ranks the p-values in order of significance

and multiplies each p-value by rank number.

• The Bonferroni correction is applied by multiplying all hypergeometric p-

values by the number tests performed within each gene cluster.

• The global Bonferroni multiplies hypergeometric p-values by the number of

tests performed across all gene clusters.

3.4.4 Results and visualisation of enriched motif pairs

The data that PMET returns to the user includes corrected and uncorrected p-

values for each cluster and motif pair combination, the associated set sizes, and the
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Figure 3.6: Hypergeometric testing diagram. PMET tests whether the size of the
overlap (orange set) between the set of promoters containing both motifs (red set)
and the target promoters (yellow set) is significant.

list of genes that overlaps between the target promoters and the set of promoters

that contain both motifs. PMET’s standard output also includes a set of heat maps

for each promoter test set that contains a positive hit. Significant pairs of motifs

are coloured according to the p-value (insignificant p-values are shown as white) as

shown in Figure 3.7.

3.4.5 Parallel computations

The tool was initially designed for Arabidopsis thaliana data sets but was subse-

quently developed to work for any genome. In order to process the larger genomes,

the code was extensively profiled and optimised to increase calculation speeds. As

genome size increases, the number of promoters to test increases. As detailed in

Section 3.3.4, the binomial score in particular was optimised to calculate more ef-

ficiently since this is calculated K times for each motif-promoter pair. To further

increase computation speeds, parallel programming was utilised to index motifs in

promoters in the PMET index algorithm (utilising the unix package parallel).
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Figure 3.7: Example PMET visualisation. A matrix of all motifs is plotted as a
heatmap and significant pairs are coloured on a log-scale according to p-value (more
significant p-values indicated by darker colours, insignificant p-values false coloured
in white).
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3.5 Application of PMET to ATAC-seq datasets

PMET can also be used to investigate motif co-localisation within co-regulated pro-

moters identified in ATAC-seq or similar studies of chromatin accessibility. In this

case, the user identifies regions of chromatin that have opened or closed in response

to a treatment and compares them to all the open chromatin regions identified in

the genome (referred to as the universe). To utilise PMET, the user must provide

sequences of all the open chromatin regions in the universe (instead of the genome

FASTA and .gff3 file). These sequences are used instead of promoters so the PMET

index algorithm starts from the motif scanning stage. The tool utilises the FASTA

sequence headers as ‘promoter names’ so the user must provide a text file containing

FASTA headers of the co-regulated sequences as the target set.

3.6 Parameter sensitivity analysis of PMET

A parameter sensitivity analysis was used to explore the optimal values for each

parameter. Investigating the variation in the number of significant hits returned by

PMET across a range of values for each parameter revealed the relative importance

and the range of optimal values to be recommended to the user. Performing a

sensitivity analysis also revealed any parameter sets under which the validity of the

statistical test, or the biological results would not hold.

The following parameters were tested in the sensitivity analysis:

• maximum motif matches permitted per promoter (K)

• promoter length

• number of promoters tested per motif (N)

• maximum allowed overlap between motif pairs (measured in IC content)

This was performed by testing a range of values for one or two parameters

at a time whilst fixing the remaining parameters at their default value (shown in

Table 3.1). All analyses were performed on the Arabidopsis thaliana genome and

the motif database created by Franco-Zorrilla et al. (2014). Within each analysis,

six sets of immune-responsive genes (containing between 128 and 365 genes) and

15 random gene sets (containing between 250 and 750 genes) were analysed for the

enrichment of paired motifs. The immunity genes are composed of two sets of flg22

up-regulated gene sets specifically expressed in either epidermis or cortex root cells

and four sets of Pep1 responsive genes, split into up- and down-regulated genes that
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Table 3.1: Default parameters for PMET and ranges of values tested in the pa-
rameter sensitivity analysis. The multiple testing correction (MTC) and p-value
threshold (padj) were consistent across all tests.

Parameter Default value Range of values tested

K 5 1-9
Promoter length 1000 100-5000

N 5000 100-27000
IC 4 0-14

MTC Bonferroni not tested
padj 0.05 not tested

are specifically expressed in either epidermis or cortex root cells. These genes were

identified and described in Chapter 4, Section 4.2.6.

3.6.1 The effect of varying K

Firstly, the number of significantly enriched motifs pairs (referred to as ‘hits’) was

compared for different values of K between 1 and 12.

In general, there was a dramatic increase in the number of significant hits

for K = 2 (accepting 1 or 2 motif matches per promoter, based on the binomial

score) compared to K = 1 (extracting a single motif hit per promoter). Further

gains were made by increasing K up to values of 7 (Figure 3.8). The dramatic

increase between K = 1 and K = 2 was particularly evident in epidermis Pep1

up-regulated gene sets, (Figures 3.8e-f). For epidermis Pep1 up-regulated genes

the number of significant hits that were identified increased from 3 to 14 as the K

increased from 1 to 2. Similarly, over the same K change, the number of significant

hits in epidermis Pep1 down-regulated genes increased from 1 to 14. Cortex Pep1

up-regulated genes were the exception to this pattern as the number of significant

motif pairs decreased from 5 to 3 over the same K change. However, the number of

significant hits peaked strongly at K = 5 and the overall pattern is consistent with

the other tests. Against random genes, there was at most one significant hit returned

from each test, suggesting that increasing K does not increase the number of false

positives. The value of K that corresponded to the highest number of significant

hits varied by gene set, suggesting that the optimal parameter is dependent on the

gene set being tested. However, values of K between 3 and 7 typically returned the

most significant results, and therefore this is the range that this study recommends

one chooses K from.
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Figure 3.8: Effects in number of significantly increased enriched motif pairs as K
changes for six lists of DEGs: (a-b) flg22 up- and (c-d) Pep1 up- and (e-f) down-
regulated genes in the epidermis and cortex, respectively. Additional PMET pa-
rameters listed in Table 3.1.
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3.6.2 The optimum promoter length is different for up- and down-

regulated genes

Promoter length is one of the most important parameters in the study of gene

promoters. In general, promoters are ill-defined as there is no known promoter start

signal (Korkuć et al., 2013). Generally in promoter studies, an arbitrary length

between 200 and 2000 bp upstream of the TSS is selected to represent the promoter.

Varying the promoter length parameter used by PMET between 200 and 5000 bp

revealed that there was no optimal promoter length to capture the most significant

hits across all gene sets. Instead, the analysis revealed a distinct difference between

up- and down-regulated genes. For up-regulated genes (Figure 3.9a, b, c and e),

the number of significant hits identified by PMET peaked between 500 and 1500 bp

and returned few or no significant hits at the shortest and longest promoter lengths

tested. For the down-regulated genes (Figure 3.9c and f) the number of significant

hits was very low in short promoters and increased as promoter length increased from

1000 to 3000 bp, peaking at 3000 bp and 2500 bp for cortex and epidermis Pep1

down-regulated genes respectively. Testing random gene sets returned a maximum

of one weakly significant hit with no correlation to promoter length. This indicates

that the tool does not return many false positives at any promoter length. Overall,

for these gene sets the recommended default value of 1000 bp would be appropriate to

capture a reasonable picture of immunity gene regulation, although some resolution

may be lost when testing down-regulated genes.
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Figure 3.9: Effect on significant hit count under changing promoter length for six
lists of DEGs: (a-b) flg22 up- and (c-d) Pep1 up- and (e-f) down-regulated genes
in the epidermis and cortex, respectively. Additional PMET parameters listed in
Table 3.1.
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3.6.3 The relationship between K and promoter length

When considering the parameters for a given run of PMET, the choice of promoter

length is intrinsically linked to the choice of K, as in longer promoters there is

more space for homotypic motif clusters than in shorter promoters. In order to

investigate how this relationship is reflected in the PMET results, the number of

significant hits was assessed over varied values of both parameters. Promoter length

was varied between 200 and 5000 bp, and K took values between 1 and 9. The

highest numbers of significant hits in up-regulated genes were observed for short

promoters and low K, whereas the opposite was observed in down-regulated genes

(Figure 3.10). The highest number of significant hits in up-regulated gene sets

occurred when promoter length was shorter than 2000 bp and K was less than 7.

However, in down-regulated genes, the highest number of significant hits occurred

when promoter length was more than 2000 bp and K was more than 7.
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Figure 3.10: Combined effect of varying K and promoter length for six lists of DEGs:
(a-b) flg22 up- and (c-d) Pep1 up- and (e-f) down-regulated genes in the epidermis
and cortex, respectively. Additional PMET parameters listed in Table 3.1.
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3.6.4 Varying N

One of the key features of PMET is that it casts a very wide net to capture a large

number of potential motif-containing promoters. The algorithm achieves this by

first accepting the N most significant promoters that contain each individual motif

(lowest scoring promoters according to binomial score), referred to as the top N

promoters. The default value for N is 5000. However, Figure 3.11 reveals that the

value of N that returns the most significant hits (p < 0.05), is higher than 5000 in

all six sets of immunity genes. In fact, for the tested genes sets the N that returns

the most significant hits is between 15000 and 20000. Furthermore, testing random

gene sets returned between 0 and 1 significant hits, uncorrelated with N , indicating

that the significant hits observed at high values of N are not false positives.

Changing the value of N will usually change the size of the overlap between

the test set and the top N promoters (the observed overlap) and therefore change the

p-value corresponding to that overlap. Therefore, for each value of N the minimum

number of genes required to obtain a p-value of 0.05 will be different. This number

of genes is referred to as the critical value. The following example consider the

enrichment of a motif pair in a hypothetical gene set of 100 genes, against a genome

of 10000 genes.

• If N = 1000, then in order to reach a significance level of p < 0.05, a minimum

of 5 genes need to overlap between the test set and the top N . Therefore the

critical value is 5.

• If N = 5000, to reach a significance level of p < 0.05, a minimum of 42 genes

need to overlap between the test set and the top N . Therefore the critical

value is 42.

Over a range of N , the value of N that returns the most significant p-value

corresponds to the N with the largest difference between the observed overlap and

the critical value, referred to as the optimal N . The optimal N is different for each

test set and motif-pair combination. Figure 3.12 shows that for the majority of

motifs, the optimal N is between 15000 and 20000, however some motif pairs have

a much lower optimal N .

It is important to note that by taking larger values of N , more motif-pairs

become enriched because the standard for significant enrichment is lower. Figure

3.13 shows that as N increases the binomial score threshold increases. Allowing

higher binomial scores means that promoters containing weaker motif hits will pass

the threshold. However, the method of ranking motifs required for the binomial
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Figure 3.11: Effect on significant hit count under changing N for six lists of DEGs:
This is shown for (a-b) flg22 up- and (c-d) Pep1 up- and (e-f) down-regulated genes
in the epidermis and cortex, respectively. Additional PMET parameters listed in
Table 3.1.
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Figure 3.12: Optimal N values for different motif pairs. For each motif-pair, the
value of N that returns the most significant p-value is referred to as the optimal N .
The optimal N is different for each test set and motif-pair combination and varies
between 100 and 20000, peaking at 19000.

scoring continues to be effective as the binomial scores do not reach 1 even for large

values of N .

Overall, this analysis reveals that the best N to return the highest number

of significant hits is between 15000 and 20000. However, using higher values of N

includes weaker scoring promoters and therefore may not represent the true biology.

Furthermore, increasing N requires considerably more computation time. The user

must strike an appropriate balance between these considerations. This computation

time restriction led to a choice of N = 5000 for all analyses shown in Chapter 4.

3.6.5 Impact of changing IC

One of the key differences between PMET and other published motif tools is the way

that PMET manages overlaps between motif pairs. The user defines a maximum

overlap allowed between a pair of motifs in terms of IC.

For up-regulated genes, the general trend is that as the maximum allowed

overlap is increased, the number of significant hits is also increased (Figure 3.14a,

b, d and f). This is particularly evident in the epidermis flg22 up-regulated genes,

as the number of significant hits increases from 20 to 47 as the allowed overlap

is increased from 0 to 14 IC. This trend is not observed in down-regulated genes
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Figure 3.13: The binomial score thresholds increase as N increases. As part of the
PMET index algorithm, each motif is assigned a binomial threshold defined as the
binomial score for the N th lowest-scoring promoter (according to binomial score).
Plotting the distribution of binomial thresholds for all motifs over different values of
N reveals that the median of these scores increases as N increases, and the variance
widens.

(Figure 3.14c and f). In the epidermis, the number of significant hits varies between

17 and 19 across all overlap options, so the difference in signal is negligible and

likely just noise. However, in the cortex, the difference between the minimum and

maximum number of significant hits is more substantial, so cannot be explained

as noise. For cortex Pep1 down-regulated genes, the number of significant hits is

equally high at low and high IC, and drops for middle values of IC.

In all tests, the maximum number of significant hits plateaus as maximal

overlap is increased. This plateau could equate to highly similar motifs entirely

overlapping one another, as the mean of total IC content across all motifs in the

database is 10.2, which is where the start of the plateau is seen in most of the gene

sets. This is confirmed by the data in Figure 3.15, which shows that at high maximal

overlap (high IC) the new hits being identified are highly similar motifs. Therefore,

the IC threshold should be chosen to be between two and six. This is because such

a choice returns the most significant hits that are not highly similar.
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Figure 3.14: Increasing the maximum overlap threshold between motifs increases
the total number of significantly enriched paired motifs in (a-b) flg22 up- and (c-d)
Pep1 up- and (e-f) down-regulated genes in the epidermis and cortex, respectively.
All other PMET parameters are left as default, listed in Table 3.1
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Figure 3.15: Comparison of the similarity between motif pairs relative to the number
of promoters they jointly occur in, subject to a varying maximum overlap threshold
(IC, indicated in grey title boxes). Each point represents a motif pair. Similarity
scores (E-values, defined between 0 and 100) were calculated such that a low score
(near 0) indicates high similarity, and high score (near 100) indicates low similarity.
Increasing the maximum overlap threshold (in terms of IC) results in more highly
similar motifs being detected in promoters. (Data used: epidermis flg22 up-regulated
genes). All other PMET parameters set to default values as in Table 3.1.
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3.7 Discussion

PMET was developed as a tool that can identify potential regulators of co-expressed

genes in any eukaryotic genome. The development of such tools is essential for re-

searchers to start to unpick the complexity of gene regulation in eukaryotes. Eu-

karyotic gene regulation by TFs is complex on multiple levels. Firstly, within each

potential binding site, different bases are conserved to different extents, and therefore

TFs can bind to multiple slightly different sequences, likely with differing efficiency.

The variability within these sites enable regulatory systems to better control tran-

scription. For example, differences in binding efficiencies could enable one TF to

control the expression of several genes at different expression levels (Stormo, 2000).

Secondly, and possibly as a result of these less conserved binding sites, some TFs

rely on multiple potential binding motifs within a promoter in order to work effec-

tively (Ezer et al., 2014). Thirdly, often multiple TFs must act on a gene promoter

in order to activate or repress an individual gene (Pilpel et al., 2001; Wasson and

Hartemink, 2009). These features combined with spatial and temporal expression

of TFs, enable gene networks to be finely controlled as well as robust. However,

the overall complexity makes researching how gene networks are regulated a huge

undertaking.

The multiple levels of complexity involved in this regulation means that no

developed method is able to capture the complete picture. However, the combina-

tion of a variety of methods within PMET allows it to account for a higher level of

complexity than many other motif tools. PMET is able to consider multiple bind-

ing sites for each TFs, and scores promoters based on the quality of motif multiple

matches to each hit, before considering combinatorial regulation by motif pairs. The

parameter sensitivity analysis revealed that using a value of K (the number of indi-

vidual motif matches per promoter) that is more than 1 makes a large difference to

the number of significant hits. This insight highlights the importance of considering

multiple homotypic motifs as well as pairs of heterotypic motifs when analysing com-

binatorial control of gene regulation by TFs. There are many mechanisms whereby

individual transcription factors utilise multiple binding sites within one promoter

(Ezer et al., 2014) and extensive evidence that combinatorial regulation can enhance

the specificity of signalling (Zhang et al., 2012; Suryamohan and Halfon, 2015), but

little cohesion between the two ideas. As far as we are aware, PMET is unique in

its ability to combine information from homotypic and heterotypic clusters, and as

such can return high resolution results, based on a variety of gene regulation models.

The fact that there there are no easy to define optimal parameters for PMET,
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and instead they are different for each tested gene set reflects the complexity of gene

regulation. PMET could be indirectly reflecting the variety of mechanisms by which

gene networks are regulated on a treatment and cell type-specific level.

3.7.1 PMET sensitivity analyses reveal biological insights.

An unexpected result of the PMET sensitivity analysis was the observation that

up- and down- regulated immunity genes respond differently as parameters were

changed. In particular, the differences between the optimal values of promoter length

and K between up- and down-regulated genes were striking. These patterns suggest

that these gene sets might favour different mechanisms of signalling. However, it

is important to note that these differences cannot be generalised as specifically

distinguishing between up- and down-regulation mechanisms. PMET data does not

explicitly reveal whether any of the identified TFs are actively regulating a particular

gene set, it merely shows that these TFs are likely to regulate that gene set in some

way. The following four simplified scenarios demonstrate why these results must be

interpreted carefully.

• Scenario 1: A gene set that is induced or repressed based on the presence or

absence of a single TF or TF-pair. In this case, PMET would return the same

motifs whether this gene set were being tested as an up- or down-regulated

gene set.

• Scenario 2: A gene set that is induced by one TF and repressed by another,

possibly through a mechanism of direct competition. In this case, PMET

would identify that the motifs for both of these transcription factors are ‘co-

localised’ despite the fact they act in opposition to one another.

• Scenario 3: A set of genes is regulated by TFs that toggle between activator

and repressor functions based on environmental signals. In this case, PMET

would identify the motifs associated to those TFs, and the mechanism of action

could be implied by the direction of differential expression, i.e. if a motif was

found enriched in a set of up-regulated genes, the mechanism of the TF is likely

to be activation or de-repression. However, it would be hard to identify these

TFs as able to toggle between activation and repression using PMET unless

two experiments returned the same sets of genes under different experimental

conditions.

• Scenario 4: A set of genes is up-regulated by one consistent set of TFs, but a

variety of TFs and TF-pairs repress different subsets of these genes. In this
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case, PMET would identify the motifs corresponding to the TFs that are up-

regulating the genes as significantly co-localised but not identify the motifs

associated with down-regulation, as the enrichment signal would be too weak.

Only in scenario 4 would PMET correctly identify a specific difference be-

tween the mechanisms of induction and repression. That being said, genes regulated

by mechanisms akin to scenario 4are not unlikely and could potentially be inferred

by examining the motif pairs identified by PMET. If the associated TFs to these

motif-pairs have been previously shown to act specifically as either repressors or

activators, then the PMET results could be shown to be consistent with the ex-

periment that identified the co-regulated gene set. If scenario 4 holds in this case,

the pattern of down-regulated genes preferring longer promoters could be an indi-

cation of long-range indirect transcriptional repression through mechanisms such as

chromatin remodelling (Payankaulam et al., 2010). The extent to which PMET is

able to capture differences in signalling mechanisms could only be determined by

performing a much larger study of genes known to be co-regulated, preferably in a

variety of biological systems.

The most difficult parameter for a PMET user to optimise would be the

value of N (the number of promoters which have been indexed for individual motif

occupancy in which to test for motif pairs). In this case, the optimal N is defined

as the value that returns the most significant hits, which may not be the best N to

choose. It might not be the best choice because as N is increased weaker promoters

are included in the analysis. However, as shown in Figure 3.9, there is a peak N after

which the number of significant hits decreases again, indicating that the binomial

score is sufficiently rigorous to rank promoters correctly even at high values of N .

The fact that individual motifs have different optimal values of N must also

be considered. In fact, for other motif databases the distribution of optimal Ns may

be different. In practice, it would be advisable to perform a preliminary analysis on

a small subset of motifs in order to determine the optimal N for that database. The

user could either use a random subset of motifs, or choose specific motifs that are

particularly relevant to their experiment. Having tested a subset of motifs, the user

can then make an informed decision to pick a value of N that is returning significant

hits, whilst maintaining a reasonable computation time.

The sensitivity analysis also revealed that increasing the maximum overlap

permitted between heterotypic binding sites does not have a large impact on the

analysis. One would assume that when the equivalent of a whole motif is allowed

to overlap (IC > 10), the number of significant hits would increase dramatically

as highly similar motifs assigned to the same positions would be identified as co-
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localised. Figures 3.14 and 3.15 revealed that in fact, increasing IC to the equivalent

of a whole motif only introduces a few extra significant hits. This minimal effect

can be explained by the nature of the hypergeometric test: if 2000 promoters were

identified as containing both motifs (in a total universe of 20000 promoters), then

to obtain a p-value of 0.05 (before MTC), the target set would have to overlap by

at least 29 promoters, whereas if 400 promoters were identified as containing both

motifs, then to obtain a p-value of 0.05, the target set would have to overlap only

16 promoters. Therefore, is it more likely that one would observe significant hits

against smaller ‘both-motif’ promoter sets. This means that if a very high number

of promoters are identified as containing both motifs either because they are highly

similar or they are frequently co-localised across the whole genome, then observing

a significant hit is much less likely. Conversely, if a pair of motifs co-localises less

frequently, a smaller overlap with the target set is required to return a significant

hit, but that positive hit would be more specific to the target gene set. The fact

that we do not observe a large spike at high IC confirms that the hypergeometric

test only identifies motif-pairs that are specific to the gene set being tested, and

thus is returning only biologically relevant results.

3.7.2 Validation of PMET results

The top priority following the development of a tool such as PMET is experimental

validation of the results. This is essential to test whether predictions of enriched

motif-pairs are biologically relevant to the regulation of the target genes. PMET in-

fers transcription factor interaction and activity purely through presence or absence

of motif binding sites, but cannot predict whether these sites are actually bound

in the context of a particular cell type and/or environmental signal. There are a

variety of experimental techniques that could be utilised to validate these results.

Firstly, the ability of predicted binding sites to bind the transcription factor in

question could be tested in vitro using yeast 1-hybrid (Y1H) (Bass et al., 2016), or

in vivo within particular promoters using chromatin-immunoprecipitation (ChIP)-

polymerase chain reaction (PCR) (Mukhopadhyay et al., 2008). The binding of a

TF can also be assessed across the whole genome using ChIP-seq (Mundade et al.,

2014). In particular, ChIP-seq results could be used to test whether the enrichment

of a particular TFs are specific to the gene sets predicted by PMET. The action of

a TF on a particular pathway could also be examined using knock-out lines.

PMET does not explicitly predict the interaction of TF pairs, however in

many cases pairs of TFs may interact directly in order to co-regulate gene expres-

sion. Potential interactions between pairs of TFs can be checked against existing
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databases such as String (Szklarczyk et al., 2014) or BioGRID (Stark et al., 2006).

Alternatively, one could use yeast 2-hybrid (Y2H) to experimentally screen TF in-

teractions in vitro and confirm the interactions in vivo using techniques such as co-

immunoprecipitation (CoIP) or bimolecular fluorescence complementation (BiFC),

(reviewed in Xing et al. (2016)).

Additionally, RNA-seq data can be used to test whether the expression of

genes coding for TFs is consistent with the observed gene set. However, this can be

of limited value, as firstly, transcription factor genes can be expressed at very low

levels making them hard to detect and gene expression data does no account for any

protein trafficking between cells. This was shown to be the case in Arabidopsis roots

by Brady et al. (2011) in their study of gene regulatory networks (GRN) in root stele

tissue. This study used microarray data to map TF expression and the expression

of their targets. They showed that TFs and their targets often showed ‘expression

domain overlap’ (more than zero expression in the same cell type). However, there

was limited co-expression with respect to expression levels, i.e. high levels of TF

expression did not correlate with high level expression of their targets and vice versa.

Finally, the role of the identified motifs as binding sites in specific promoters

could be investigated using quantitative PCR, or reporter constructs. More specifi-

cally, the binding sites for one or both of the TFs could be mutated to make the sites

non-functional. If the TFs are both required for strong expression of targets, then

the expression read out in the mutant promoters would be reduced, or absent. This

approach could also be used to assess whether these motifs are required to maintain

spatial, temporal or signal-response specificity. For example, promoter constructs

fused to fluorescent tags could be used to identify changes in cell type specific gene

expression. If a particular motif is required to maintain cell-type specificity then

mutation in that site would result in the fluorescent reporter being expressed non-

specifically, or in a different domain. Synthetic promoters containing just paired

motifs linked by random sequences could also be used to determine whether these

motifs are sufficient to induce or repress gene expression.

In addition to the interpreting the biological results, the binomial score for

motif occupancy would benefit from validation in order to further improve the math-

ematical model PMET is based on. The binomial score uses the geometric mean to

combine the p-values associated with multiple binding sites into one combination

score and the likelihood of these combined p-values appearing by chance in a pro-

moter of that length is calculated. This score is based on the assumption that strong

multiple binding sites can result in greater increases of gene expression (Ezer et al.,

2014). However, this is based on sequence prediction alone, and doesn’t account for
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whether a TF actually binds to those sites or how specific the binding is. ChIP-seq

studies of a few TFs from a variety of TF families would be the ideal method to

assess the reality of the binding landscape in order to confirm and further develop

this model of motif occupancy.

3.7.3 Opportunities for future development.

One of the shortcomings of PMET is that it does not return motif locations or the

number of binding sites that are identified within each promoter. This means that

one cannot identify how many motif-pairs physically overlap in a given analysis,

and therefore the relative importance of allowing these small overlaps cannot be

determined. PMET could be further developed to return structural information

about the promoters such as motif positions, scores, and visualisations of overlaps

between motifs. This would enable the user to better interpret the datasets beyond

the enrichment tests. The user would be able to determine if one or both motifs

exist as homotypic clusters, and whether the TFs that bind these motifs are likely to

interact with one another directly. In addition to revealing the relationships between

motif pairs, location information could also reveal structural information about the

promoters, for example whether the target promoters contain A/T or G/C enriched

regions.

In addition to developing the output of PMET to be user friendly, compara-

tive genomics could be used to enhance the specificity of PMET’s predictions. For

example, conservation of non-coding regions between multiple species or cultivars.

Conservation is considered to be a ‘reliable pointer to essential regulatory elements’

and is used as an alternative approach to identify motifs in tools such as APPLES

(Baxter et al., 2012). If in addition to being enriched in the dataset, the motifs

identified by PMET are also found to be conserved in promoters of other plant

genomes, they are especially important and worth further study. A PMET study of

Arabidopsis promoters could test for conservation between different cultivars using

data from the 1001 genomes project (Cao et al., 2011), or between different plant

genomes.

In the current implementation of PMET, the computational time restricts

which parameter sets can be used. For example, a PMET run with N of 20000 takes

multiple days to compute, whereas N of 5000 only takes hours. Increases in motif

database size and genome size also increase the computation time. In order to make

the tool more attractive to potential users, the computation time must be reduced,

perhaps by implementation of further parallelisation or more efficient management

of data storage.
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Currently the top N is a binary test, either a promoter is in the top N or

it isn’t. However, each promoter has a quality score associated to it. Future devel-

opment of PMET’s mathematical models could potentially incorporate weighting

of promoters based on binomial scores. This could potentially improve the speci-

ficity of PMET’s biological predictions. In it’s current form, the binomial scoring

can be used to highlight the most significant promoters as ones that merit further

investigation.

Overall, PMET represents a solid framework that can be used to identify

highly specific regulatory mechanisms, in order to predict how complex gene net-

works are maintained. In the sensitivity analyses in this Chapter and in the results

of Chapter 4, it has been shown that highly specific biological insights can be made

using PMET to examine the differences between between cell type- and treatment

specific gene networks.
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Chapter 4

Cell type-specific transcriptomic

studies of immunity in

Arabidopsis thaliana roots

4.1 Introduction

Motivated by recent findings suggesting distinct competences of different root cell

types in launching PTI (Wyrsch et al., 2015), this chapter analyses the contribu-

tion of different root cell types to PTI activation by examining cell type-specific

transcriptomic responses. Here I describe the transcriptional networks of three Ara-

bidopsis root cell types; epidermis, cortex and pericycle, following treatment by flg22

and Pep1. Arabidopsis. The subsequent analysis shows that different immunity gene

networks are activated in the three cell types and, hence, these cell types contribute

differently to overall root pattern triggered immunity (PTI). The data was further

used to examine the interplay between cell identity and cell type-specific immunity

networks, and discuss how plant roots are able to use cell type-specificity to secure

root integrity under conditions of environmental stress. Combinatorial TF motif

analyses using PMET were used to predict potential regulators of cell type-specific

immunity networks, and explain how cell type-specificity is maintained.

Findings presented in this chapter have been submitted to Plant Cell as a

manuscript entitled, ‘Cell type identity determines transcriptomic immune responses

in Arabidopsis thaliana roots’. The treatment, FACS and RNA-seq of the main

experiment was performed by Ruth Eichmann and Marco Reitz. Sequencing was

performed at the Welcome Trust Centre for Human Genetics. All bioinformatic

analysis was performed as part of my PhD studies.
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flg22

Pep1

RNA-seq
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Figure 4.1: Experimental design applied to 10 day old Arabidopsis roots. Whole
roots were treated with immunity elicitors flg22 or Pep1 (or water as a mock). Epi-
dermis, cortex and pericycle cells were then extracted using fluorescence-activated
cell sorting (FACS) and these cell populations were processed by RNA-seq in order
to perform cell type-specific gene expression analysis.
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4.2 Results

Plants expressing fluorescent cell type markers for epidermis, cortex or pericycle cells

were treated with either flg22 or Pep1. Then fluorescent cells were isolated using

FACS, and the transcriptome for each cell type was sequenced by RNA-seq (Figure

4.1). The sequenced reads were aligned to the Arabidopsis thaliana genome, and

differential gene expression analysis was performed to identify genes that respond

to immunity activation on a cell type-specific level. Finally, potential regulatory

factors were identified using combinatorial motif analysis tool PMET.

4.2.1 Quality control and alignment of RNA-seq data

A total of 716.5 million 100bp paired reads were generated by RNA-seq, with an

average of 26.5 million reads per sample. Poor quality reads were trimmed from the

dataset, and the quality of the remaining reads was investigated (per sample) using

FastQC (Andrews, 2010). FastQC assess the sample quality using a range of criteria

including quality of sequencing, adapter content and sequence duplication levels. For

each criteria FastQC returns a pass, fail or warning result, and a visualisation of

that result to enable the user to understand the source of any warning or fail results.

FastQC analysis revealed that all samples in this dataset passed the crite-

ria for ‘adapter content’, ‘per base nitrogen content’, ‘per base sequence quality’

indicating that in general the sequences are of good quality. The only ‘failures’

Per base sequence quality

Per tile sequence quality

Per sequence quality scores

Per base sequence content

Per base N content

Sequence Duplication Levels

Overrepresented sequences

Adapter Content

0 10 20 30 40 50
No. of samples

PASS WARN FAIL

Figure 4.2: Summary of FastQC results for trimmed RNA-seq samples. The number
of samples that pass, fail or get labelled as warning are shown for 8 FastQC metrics.

identified by FastQC were for ‘sequence duplication levels’ in 18 epidermis samples.
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This result indicates that within these samples there is likely to be some kind of

enrichment bias, such as PCR over-amplification of reads (Figure 4.2). Further in-

vestigation revealed that, on average only 41% of the sequences in these samples are

unique, compared to an average of 88% sequences from the cortex and pericycle.

The epidermis samples were processed separately to the cortex and pericycle sam-

ples, which suggests this is a batch effect from the experimental protocol for those

samples caused over amplification of some reads. Parekh et al. (2016) states that

duplicated sequences can result from sampling and fragmentation bias as well as

PCR preferential amplification of individual reads, however “removal of duplicated

sequences improve neither the accuracy nor precision and can actually worsen the

power and the False Discovery Rate (FDR) for differential gene expression”. As a

result, duplicated sequences are retained in subsequent analysis, but further tests

for preferential amplification were performed.

33 samples (including the 18 epidermis samples detailed above) were also

flagged with a warning for overrepresented sequences. This module issues a warning

if any individual sequences represent more than 0.1% of the total library. Inspection

of these samples reveals that those flagged with warnings included samples from all

three cell types and from various sequencing pools and replicates, indicating that this

was not a batch effect but a consistent pattern. One of the overrepresented sequences

that occurred in these samples was ‘TGTTTGATTTTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTT’ indicating these duplicated reads correspond to

polyA tails attached to an adaptor which would be unlikely to align to the genome,

and therefore will be filtered out of the analysis during alignment.

Eleven samples were flagged with a warning for ‘per tile sequence quality’

indicating that within the indicating that some of the flow cells tiles were of low

quality at some read positions. Visual inspection of the ‘per tile sequence quality’ for

representative sample WTCHG 129180 01 reveals 3 distinct tiles with low quality

bases (Figure 4.3) but overall the quality of sequencing per tile is high and that

these lower scoring tiles will not affect the subsequent analysis..

Ten samples all sourced from the pericycle material failed the ‘Per base se-

quence content’ criterion. In a random library, the proportions of the four bases are

expected to approximately equal, however if the libraries contain overrepresented or

Kmer sequences at the end of reads then there is more likely to be a bias towards

specific bases. In our dataset there is a consistent pattern of biases towards certain

bases in the first 8-9 bases of the sequences, (Figure 4.4, although this is observed in

most samples, not just those marked with a warning. This feature occurs when some

of the hexamers used for random priming of the library production are favoured over
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others rather than priming with equal efficiency. These consistent biases are very

similar across all libraries and did not effect the subsequent alignment.

Overall, performing quality control of the RNA-seq samples using FastQC

revealed that the data was of sufficiently high quality to enable us to be confident

in the subsequent analysis.

Figure 4.3: Quality per tile of sequencing flow cells for sample
WTCHG 129189 01 R2. The plot shows the deviation from the average quality
for each tile, per bp of sequence (plot produced using FastQC). The heat map is
plotted on a cold to hot scale, with cold colours being positions where the quality
was equal to or above average for that base in the run. Hotter colours indicate that
a tile had on average worse quality than other tiles for that base.

76



Figure 4.4: FastQC per base sequence content plot shows the proportion of each base
position in a sample. The plot shows that there is bias towards specific bases occurs
in the first 8-9 bases of sequences in representatives sample WTCHG 125416 03 R2
(plot produced using FastQC).

4.2.2 Inspecting alignment quality

After the initial quality control checks, approximately 373 million reads (an average

of 13.8 million read pairs per sample) were uniquely mapped to the Arabidopsis

genome. On average across all samples, 57.9% of all reads mapped to unique posi-

tions in the genome, whereas 34.1% of reads mapped to multiple positions and only

7.9% reads did not map to the genome (Tables 4.1 and 4.2).

Since some potential batch effects had been identified by cell type, the align-

ment statistics were grouped and a statistical summary of each metric was plotted

as a box plot (Figure 4.5). This plot revealed that the pericycle had the widest

variance in total read counts, whereas the epidermis samples were much more con-

sistent in size. The epidermis samples contained on average fewer reads than the

other two cell types, but the proportion of those reads that were multi-mapped was

much smaller. In contrast, the mean read number of uniquely mapped and multi-

mapped reads were very similar in the pericycle sample indicating a high proportion

of these reads did not map to unique positions. By proportion, 70.9% of epidermis

reads uniquely mapped to the genome, whereas only 52.8% of cortex and 50.0%
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Figure 4.5: Alignment statistics summarised by cell type. Box plots show the sum-
mary statistics of read numbers from Table 4.1 grouped by cell type.

of pericycle reads mapped uniquely. Of these aligned reads, 271 million aligned to

exons in the Arabidopsis genome (an average of 10 million per sample, Table 4.3).

The majority of reads that did not align to exons are likely to result of contaminant

DNA in the RNA sample or unspliced RNA. Some reads could also be the result of

unnanotated exons, or splicing events.

Replicate quality across samples was assessed by plotting the read counts of

replicates against each other. Ideally two replicates from the same condition should

correlate closely together such as between the epidermis flg22 replicates shown in

Figure 4.6a. Inspecting the correlations between replicates revealed potential data

artefacts in some replicates. For example in the cortex there were ‘side peaks’ be-

low the main distribution (Figure 4.6b), and in some epidermis samples there were

‘side peaks’ above the main distribution and the distribution did not collapse into

a tight peak at high read counts. The genes contributing to these side peaks were

assessed using the method described in Materials and Methods and revealed to be

highly enriched in genes coding for ribosomal proteins indicating preferential cDNA

synthesis of ribosomal protein mRNAs and rRNAs prior to RNA-seq. These arte-

facts increase noise within the dataset in turn reducing the accuracy of differential

gene expression analysis. As a result, we restricted the analysis to nuclear-encoded

protein coding genes and filtered reads that corresponded to ribosomal protein mR-

NAs (listed in Appendix A) from all samples. The reduction of side peaks following

filtering is clear in the replicate plots in both the cortex (Figure 4.7a) and epidermis

(Figure 4.7b). The pericycle replicates were consistently noisier than the other two
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Table 4.1: Alignment statistics for mapped reads. Table shows the total number of
reads per sample and the number of reads that mapped uniquely to the Arabidopsis
thaliana genome and the proportion relative to total number of sequenced reads for
each sample.

Sample Total
Reads

Uniquely
Mapped
Reads

%
Uniquely
Mapped
Reads

WTCHG 125416 01 3.49×107 1.68×107 48.2
WTCHG 125416 03 3.21×107 1.54×107 48.1
WTCHG 125416 05 2.88×107 1.46×107 50.6
WTCHG 129187 01 3.10×107 1.54×107 49.8
WTCHG 129187 03 2.86×107 1.55×107 54.0
WTCHG 129187 05 3.27×107 1.88×107 57.3
WTCHG 129187 07 1.77×107 9.82×106 55.5
WTCHG 129189 01 1.79×107 8.53×106 47.5
WTCHG 129189 03 2.67×107 1.32×107 49.4
WTCHG 129189 05 3.61×107 2.03×107 56.2
WTCHG 129189 07 1.73×107 8.62×106 49.8
WTCHG 129190 01 1.62×107 8.51×106 52.5
WTCHG 129190 03 2.77×107 1.47×107 53.0
WTCHG 129190 05 1.40×107 6.72×106 48.0
WTCHG 129190 07 4.62×107 2.23×107 48.3
WTCHG 131167 01 3.62×107 1.82×107 50.1
WTCHG 131167 03 3.57×107 1.87×107 52.4
WTCHG 131167 05 2.06×107 1.12×107 54.5
WTCHG 203594 01 2.02×107 1.47×107 72.9
WTCHG 203594 03 1.53×107 1.11×107 73.0
WTCHG 203594 05 1.40×107 9.77×106 69.8
WTCHG 203594 07 1.44×107 9.75×106 67.7
WTCHG 203594 10 2.25×107 1.70×107 75.3
WTCHG 203839 01 1.53×107 1.14×107 74.1
WTCHG 203839 04 2.55×107 1.95×107 76.5
WTCHG 203839 06 1.64×107 9.16×106 55.7
WTCHG 203839 08 1.85×107 1.35×107 73.1
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Table 4.2: Alignment statistics for unmapped or multi-mapped reads. Table shows
the total number of reads that either multi-mapped and or were unmapped to the
Arabidopsis thaliana genome and proportions relative to total number of sequenced
reads are shown for each sample.

Sample Total
Reads

Multi-
mapping
reads

%
Multi-
mapping
reads

Unmapped
reads

% Un-
mapped
reads

WTCHG 125416 01 3.49×107 1.55×107 44.3 25861 7.42
WTCHG 125416 03 3.21×107 1.42×107 44.2 24561 7.66
WTCHG 125416 05 2.88×107 1.18×107 41.0 24177 8.40
WTCHG 129187 01 3.10×107 1.27×107 41.1 28106 9.07
WTCHG 129187 03 2.86×107 1.05×107 36.5 27190 9.50
WTCHG 129187 05 3.27×107 1.04×107 31.7 35944 11.00
WTCHG 129187 07 1.77×107 6.48×106 36.6 1.4×104 7.89
WTCHG 129189 01 1.79×107 7.71×106 43.0 17067 9.51
WTCHG 129189 03 2.67×107 1.12×107 42.1 22916 8.59
WTCHG 129189 05 3.61×107 1.28×107 35.5 29939 8.30
WTCHG 129189 07 1.73×107 7.34×106 42.4 13554 7.83
WTCHG 129190 01 1.62×107 6.35×106 39.2 13399 8.27
WTCHG 129190 03 2.77×107 1.04×107 37.5 26387 9.51
WTCHG 129190 05 1.40×107 6.16×106 44.0 11232 8.02
WTCHG 129190 07 4.62×107 2.05×107 44.3 3.4×104 7.37
WTCHG 131167 01 3.62×107 1.51×107 41.8 29275 8.08
WTCHG 131167 03 3.57×107 1.43×107 40.0 27169 7.61
WTCHG 131167 05 2.06×107 7.65×106 37.1 17303 8.40
WTCHG 203594 01 2.02×107 4.04×106 20 14220 7.05
WTCHG 203594 03 1.53×107 3.00×106 19.7 11223 7.35
WTCHG 203594 05 1.40×107 3.18×106 22.7 10487 7.49
WTCHG 203594 07 1.44×107 3.6×106 25.0 10515 7.30
WTCHG 203594 10 2.25×107 3.93×106 17.5 16205 7.20
WTCHG 203839 01 1.53×107 2.92×106 19.0 10463 6.82
WTCHG 203839 04 2.55×107 4.19×106 16.4 18087 7.09
WTCHG 203839 06 1.64×107 6.32×106 38.4 9669 5.88
WTCHG 203839 08 1.85×107 3.85×106 20.8 11114 6.02
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Table 4.3: Alignment to exons as calculated by LiBiNorm. Table shows the number
of aligned reads that uniquely mapped to exons and the relative proportion to
total aligned reads, The remaining reads are split into three categories: ‘no feature’
(did not map to an exon), ‘ambiguous’ (ambiguously mapped, e.g. did not map
completely to an exon) or ‘alignment not unique’ (mapped to multiple exons).

Sample Unique
mapped
to exon

Unique
mapped
to exon
(%)

No
feature

Ambiguous Alignment
not
unique

WTCHG 125416 01 1.06×107 28.0 4.07×106 2.14×106 3.24×107

WTCHG 125416 03 9.68×106 27.6 3.74×106 2.00×106 2.97×107

WTCHG 125416 05 9.87×106 31.5 3.12×106 1.56×106 2.53×107

WTCHG 129187 01 1.00×107 30.3 3.09×106 2.33×106 2.65×107

WTCHG 129187 03 1.11×107 36.1 2.48×106 1.90×106 2.16×107

WTCHG 129187 05 1.41×107 40.3 2.61×106 2.01×106 2.17×107

WTCHG 129187 07 6.85×106 36.5 1.78×106 1.19×106 1.36×107

WTCHG 129189 01 5.38×106 27.1 1.92×106 1.24×106 1.61×107

WTCHG 129189 03 8.78×106 29.7 2.70×106 1.69×106 2.33×107

WTCHG 129189 05 1.50×107 37.4 3.22×106 2.08×106 2.68×107

WTCHG 129189 07 5.45×106 29.0 2.13×106 1.04×106 1.55×107

WTCHG 129190 01 5.74×106 33.6 1.72×106 1.05×106 1.33×107

WTCHG 129190 03 9.97×106 34.1 2.90×106 1.84×106 2.18×107

WTCHG 129190 05 4.17×106 27.9 1.76×106 7.94×105 1.30×107

WTCHG 129190 07 1.33×107 27.1 6.15×106 2.82×106 4.37×107

WTCHG 131167 01 1.18×107 30.2 3.58×106 2.77×106 3.21×107

WTCHG 131167 03 1.32×107 34.1 3.23×106 2.29×106 2.98×107

WTCHG 131167 05 8.02×106 35.9 1.86×106 1.35×106 1.60×107

WTCHG 203594 01 1.27×107 58.1 1.30×106 7.27×105 8.42×106

WTCHG 203594 03 9.53×106 57.4 1.06×106 5.46×105 6.28×106

WTCHG 203594 05 8.13×106 53.7 1.09×106 5.58×105 6.76×106

WTCHG 203594 07 7.97×106 50.8 1.18×106 6.07×105 7.63×106

WTCHG 203594 10 1.47×107 60.8 1.34×106 8.85×105 8.56×106

WTCHG 203839 01 9.87×106 59.1 1.01×106 4.93×105 6.09×106

WTCHG 203839 04 1.72×107 62.3 1.51×106 8.09×105 8.81×106

WTCHG 203839 06 6.45×106 35.6 1.77×106 9.33×105 1.30×107

WTCHG 203839 08 1.15×107 57.9 1.28×106 7.04×105 8.17×106
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cell types, with a much wider variance of read counts between replicates (Figure

4.6d), however there are no obvious artefacts between replicates in the dataset.
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(a) (b)

(c) (d)

Figure 4.6: Unfiltered replicate plots. The normalised log2 read counts for aligned
reads to each exon from two replicates were compared to examine the correlation
between replicates. The comparisons reveal (a) the ideal distribution between epi-
dermis flg22 replicates 2 and 3, (b) ‘side diagonals’ below the main distribution
between cortex flg22 replicates 1 and 3, and (c) above for epidermis mock repli-
cates 2 and 3 and (d) a less strongly correlated pair of replicates for pericycle mock
replicates 1 and 2.
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(a) (b)

Figure 4.7: Filtered replicate plots. The normalised log2 read counts for aligned
reads to each exon from two replicates were compared to examine the correlation
between replicates. Filtering of data artefacts results in a reduction of ‘side diago-
nals’ between (a) cortex flg22 replicate 1 and 3 and (b) epidermis mock replicates 2
and 3.
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4.2.3 Principal component analysis

The principal component analysis (PCA) of the RNA-seq samples revealed the ma-

jority (approx. 83%) of the variation within the dataset was contained within the

first three principal components (Figure 4.8). Plotting PC1 and PC2 against one

another revealed close clustering of samples by cell type indicating that cell iden-

tity was the principal source of variation, (Figure 4.9, left) accounting for 78% of

the variation (62% and 16% from PCs 1 and 2 respectively). Consistent with this,

cell type marker genes were highly expressed in the respective cell type populations

(Figure 4.10). The samples are distinctly separated by immune response in PC3

(5% variation, Figure 4.9b) indicating that flg22 and Pep1 must induce different

transcriptional responses compared to each other and the mock treatment.

4.2.4 Differential gene expression analysis of cell type-specific im-

mune responsive genes.

Based on the separation of flg22 and Pep1 in the PCA (Figure 4.9), differential gene

expression analysis was performed to identify the genes contributing to the differing

immune responses. Replicate plots which overlaid the differentially expressed genes

were plotted to check the quality of the DESeq2 differential gene expression (DGE)

results (Figure 4.11). In each of the plots the red dots indicating differentially

expressed genes (DEGs) are clustered at the edge of the read count distribution,

indicating a good model fit.

A total of 3276 unique genes were differentially expressed in response to one

or both elicitors in at least one cell type. Consistent with a recent study (Poncini

et al., 2017), Pep1 treatment elicited the most DEGs (3082), whereas many fewer

DEGs (884) were elicited by flg22 treatment. Poncini et al. used a variety of PTI

assays, including ROS burst, MAPK phosphorylation, and qPCR analysis of defence

genes, to demonstrated that Pep1 elicits a stronger immune response than flg22 or

fungal chitin in whole Arabidopsis roots.

A stronger Pep1 response than flg22 was observed in the DGE results in

all three cell types. In the epidermis 601 genes were DE (569 up- and 32 down-

regulated) in response to flg22, in the cortex 476 genes were DE (344 up and 132

down) and in the pericycle 98 genes were DE (74 up and 24 down). By contrast

Pep1 elicited 1700 DEGs in the epidermis (964 up and 736 down), 2,187 in the cortex

(1148 up and 1039 down) and 528 in the pericycle (335 up and 193 down, Figure

4.12). Across all three cell types, flg22 induced vastly more genes than it represses

whereas Pep1 induces and represses genes in equal measure, and Pep1 consistently
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Figure 4.8: Scree plot showing the percentage of variance explained by the top ten
principal components.
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Figure 4.9: PCA of RNA-seq samples.
(a) Plotting PC1 vs. PC2 reveals that samples cluster strongly according to cell
type; epidermis (blue), cortex (red) and pericycle (green).
(b) Plotting PC1 vs. PC3 reveals separation between treatments; Pep1 (square
points), flg22 (triangular points) and mock (circles). The % variance that each PC
represents is indicated on the plot axes.
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up-regulated more genes than flg22. The differences in number of DEGs and the

difference in expression pattern support the hypothesis that Pep1 activates different

transcriptional networks to flg22, despite evidence that they act through overlapping

pathways.

There are substantially fewer DEGs between treatments in the pericycle com-

pared to the other two cell types. The pericycle samples have much higher variance

between replicates, which in turn reduces the clarity of differences between genes,

reducing the number of significant DEGs. This high variance could be the result of

technical variability, due to the challenges of sorting smaller cells, or a lower RNA

content in smaller cells (Pouĺıèková et al., 2014). Alternatively the larger variation

between replicates may be a reflection of greater heterogeneity within pericycle cell

populations compared to cortex and epidermis. This heterogeneity is implied in

Brady et al. (2007) which separated the pericycle into three distinct populations.
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Figure 4.10: Log2 FPKM expression of cell type markers.
(a) Log2 FPKM expression of (a) epidermis marker GLABRA2 (GL2), (b) a
cortex marker CORTEX (COR), and (c) a pericycle marker LOB DOMAIN-
CONTAINING PROTEIN 16 (LBD16) in all three cell types after mock, flg22
or Pep1 treatment.
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Figure 4.11: DEG replicate plots to assess the model fit of DGE analysis. The mean
read counts for mock replicates against flg22 (a, c, e) or Pep1 (b, d, f) replicates are
plotted in black for each cell type. The read counts for DEGs are overlaid in red
and read that have been filtered out are shown in grey.
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Figure 4.12: Numbers of differentially expressed genes in response to flg22 and Pep1
in different cell types.
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4.2.5 Effect of protoplasting on differential gene expression

Birnbaum et al. (2003) used microarrays to quantify the extent that rapid protoplas-

ting treatment followed by cell sorting using FACS affects global gene expression.

They tested this by comparing the expression profiles of roots that had been treated

with untreated roots and concluded that the technique did not induce major changes

in global gene expression, as the treated samples correlated strongly with the un-

treated samples. However, protoplasting was shown to activate transcription of a few

hundred transcripts including some stress response genes. It is possible that some

protoplasting-induced genes were not identified by Birnbaum et al. as microarray

studies are limited to the gene features on the microarray chip, a limitation that

does not apply to RNA-seq. In this experiment, mock and immune-elicitor treated

samples were processed identically to negate any effect that protoplasting might

have on the comparative analyses. To confirm this, the effect of protoplasting was

quantified by comparing compiled lists of all DEGs across the three cell types to a

published list of protoplasting-induced genes (Birnbaum et al., 2003). For example,

following flg22 treatment, 884 genes were differentially expressed across the three

cell types, 43 (or 4.9%) of these genes have previously been shown to be induced

by protoplasting. After Pep1 treatment, 3.6% (110/3082) DEGs were in both lists.

The very small overlap between lists of genes induced by protoplasting and DEGs in

response to immunity treatments confirmed that sample processing has not affected

differential gene expression analysis.

There is the potential for studies that use protoplasts to be biased by de-

velopmental zone, as younger cells are more readily protoplasted as during early

development the cell wall are not lignified or suberised. This bias is hard to quantify

within the context of bulk RNA-seq, as the expression of developmental associated

genes is averaged out across all cells. However, testing for the presence genes asso-

ciated to specific developmental stages, e.g. Casparian strip development, could be

used to confirm the presence of some cells at each developmental stage. Theoreti-

cally, the simplest way to avoid this bias is to harvest cells by developmental zone

in addition to cell type, however this would result in a more complex, expensive and

time intensive experimental design.

4.2.6 Immune responses in Arabidopsis thaliana roots show clear

cell type differences

Considering the two treatments separately, 74% (644 genes) of all flg22-responsive

were expressed in a single cell type and 25% were expressed in more than one cell
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type (Figure 4.13a). In terms of Pep1-responsive genes, 66% (2018 genes) were

expressed in a single cell type (Figure 4.13a) and 35% in more than one cell type.

For this test, any overlaps between flg22 and Pep1 were not considered, and as

such some genes appear in both flg22 and Pep1-responsive gene lists. It is striking

that in both the epidermis and cortex, more than half of the genes responding to

a treatment were expressed in cell type-specific manner indicating that flg22 and

Pep1 are activating different gene networks in each of the three cell types. These

cell type-specific networks are more prominent in the cortex and epidermis than in

the pericycle.

A gene ontology (GO) term enrichment analysis was used to explore whether

the observed cell type-specificity in the epidermis and the cortex of flg22 and Pep1-

responsive gene networks reflects specific functions. In order to make enrichment

p-values directly comparable between analyses, gene set sizes were equalised by the

top most significant (false discovery rate (FDR) adjusted p-value) 128, 365 and

337 for flg22 up-, Pep1 up- and Pep1 down-regulated DEGs, respectively, based on

Figure 4.13. Equalising the gene sets is beneficial to the analysis as the only changed

parameter between statistical significance test is the change in overlap size between

the test set and the GO term gene set. This means that the p-values can be used

to quantify differences between tests. If different size gene sets are used then two

parameters in the significance test change (overlap and gene set size) and therefore

the enrichment values should not be used to quantify the differences in enrichment.

In this case p-values should be used as a binary metric, i.e. is it significant or not.

Since fewer DEGs were identified to be down-regulated by flg22 and overall in the

pericycle, individual GO term analyses were performed for sets between 50 and 100

genes and gene function was investigated directly for sets smaller than 50 genes .

Firstly, the up-regulated genes following both flg22 and Pep1 treatments in

both the epidermis and cortex were strongly enriched in many immunity-associated

terms such as “immune system process” and “regulation of defence response” (Figure

4.14a-d). These terms are enriched in both the epidermis and cortex despite the lack

of overlap in the genes tested indicating that both cell types are immune-responsive

via either temporally separated induction or represent immunity sub-networks.

In total, 24% (31/128) of epidermis-specific flg22-responsive genes were asso-

ciated with immunity and defence terms annotated to genes such as NDR1/HIN1-

LIKE PROTEIN 10 (NHL10), MITOGEN-ACTIVATED PROTEIN KINASE 5

(MPK5) and CHITINASE IV (AtCHITIV), and in the cortex, this proportion was

22% (28/128) of the cortex-specific DEGs including CHITIN ELICITOR RECEP-

TOR KINASE 1 (CERK1), WALL ASSOCIATED KINASE-LIKE 2 (WALK2),
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WRKY17, WRKY27 and WRKY51. Pep1 induced similar proportions of cell type-

specific genes associated with immunity and defence; 18% of DEGs in the epidermis

(65/365) including WRKY72 and PROPEP3, and 19% in the cortex (71/365) in-

cluding BAK1-INTERACTING RECEPTOR-LIKE KINASE 1 (BIR1), WRKY22

and ARABIDOPSIS NAC DOMAIN-CONTAINING PROTEIN 019 (ANAC019).

In addition to the strong cell type-specific immune responses observed, GO

enrichment analysis revealed functional specificity in both the epidermis and the

cortex. “Oligopeptide transport” and “organic acid transport” were specifically

enriched in the cortex flg22- and Pep1-specific DEGs (p < 10−5 and p < 10−9),

associated to genes such as the sugar transporter PROBABLE POLYOL TRANS-

PORTER 6 (PLT6), NITRATE TRANSPORTER 1.8 (NRT1.8) (flg22 response,

Figure 4.14a-b) and the sulphate transporter SEEDLING LETHAL 1 (SEL1) (Pep1

response, Figure 4.14c-d). The role of peptide synthesis and transport has been high-

lighted in leaf studies that demonstrated that antimicrobial synthesis and delivery

was highly important to ensure effective PTI (Kwon et al., 2008; Bednarek et al.,

2009; Li et al., 2009; Nekrasov et al., 2009; Saijo et al., 2009).

In the epidermis, up-regulated genes did not reveal a unique function as these

genes were dominated by immunity-associated genes. However, the Pep1-repressed

genes in the epidermis were more strongly enriched in development-associated GO

terms such as “root morphogenesis”,“root system development” and “post-embryonic

root development” (Figure 4.14e-f) than in other tested gene sets (p < 10−5 in the

epidermis Pep1 down-regulated versus p < 10−2 in the cortex,“root morphogen-

esis” term). This enrichment was associated with expansins such as EXPANSIN

14 (EXP14), auxin-associated gene AUXIN-INDUCED IN ROOT CULTURES 1

(AIR1) and development-associated transcription factor KANADI 4 (KAN4). The

enrichment of growth associated terms in epidermis down-regulated DEGs, suggests

that this cell type is either the main driver of root growth inhibition, or perhaps

more likely the first cell type to slow growth. As the outermost cell type, a reduc-

tion in growth is likely to then constrain growth of the inner cell types. In contrast,

the cortex down-regulated genes are uniquely enriched in terms associated with the

repression of secondary metabolism and brassinosteroid biosynthesis.

The DEG response to flg22 in the pericycle was limited to 32 (10 up- and

22 down-regulated) largely uncharacterised genes with putative functions in protein

modification and ion exchange. The Pep1 response in the pericycle was stronger,

inducing 79 genes and repressing 78. The top most significant GO terms associated

with the up-regulated response were RNA methylation, macromolecule modification

and protein targeting (Figure 4.15a). “Anion transport” and “nitrate transport”
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were weakly enriched in the Pep1-repressed genes (Figure 4.15b). Whilst these

terms represent small groups of genes, they indicate that the pericycle might be

playing a supportive role in PTI, similar to the cortex. Two expansins were also

identified in the pericycle Pep1 down-regulated DEGs: EXPANSIN 15 (EXP15)

and EXPANSIN B3 (EXPB3), indicating that the pericycle perhaps also undergoing

structural modifications. These combined results show that both flg22 and Pep1 are

activating gene networks with distinct functions in all three cell types.

In addition to cell type-specific patterns of GO terms, we also identified

treatment-specific differences, particularly in the Pep1 response in both the epider-

mis and the cortex. For example, Pep1 additionally appears to impact brassinos-

teroid signalling with “brassinosteroid biosynthetic process” enriched in both cortex

and epidermis Pep1-repressed gene sets.
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Figure 4.13: Cell type-specific gene expression. (a) Venn diagram showing cell type-
specific networks responding to flg22, (b) Venn diagram showing cell type-specific
networks responding to Pep1. Numbers in brackets indicate up- and down-regulated
genes.
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Figure 4.14: Significantly enriched GO terms in the epidermis and cortex.
(a) Top five most significantly enriched GO terms in genes up-regulated after flg22
treatment in the epidermis but not DE after flg22 treatment in the cortex or peri-
cycle,
(b) Top five most significantly enriched GO terms in genes up-regulated after flg22
treatment in the cortex but not DE after flg22 treatment in the epidermis or peri-
cycle,
(c,d,e,f) Top five most significantly enriched GO terms in exclusively up- or down-
regulated genes after Pep1 treatment in the epidermis and cortex.
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Figure 4.15: Significantly enriched GO terms in the pericycle. Top five GO terms
based on all (a) up- and (b) down-regulated by Pep1 in the pericycle but not the
epidermis or cortex.
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4.2.7 Cell- and treatment-specific genes

Prior studies have shown flg22 and Pep1 to signal through overlapping pathways,

activating the same MAPK pathways. Furthermore, there are strong overlaps in

the observed phenotypic responses to flg22 and Pep1 including ROS bursts and root

growth inhibition. The GO term enrichment analysis showed that the flg22 and

Pep1 responses were both strongly enriched in immunity and defence terms. Next,

the immune responsive genes were split into sets based on the cell and treatment

responsive expression in order to determine the extent of gene network overlap, and

whether the cell type-specific gene sets observed above were also treatment specific

(Figure 4.16).
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Figure 4.16: Intersections between sets of immune-responsive DEGs in the three cell
types, visualised using the ‘UpSet’ technique from the UpSetR package (Conway
et al., 2017). Overlaps between samples (indicated as cm-cf equals cortex mock-
flg22, em-ep equals epidermis mock-Pep1 etc.) are shown as a matrix of dots below
a vertical bar chart. Vertical bars indicate the size of the gene set specific to the
overlaps indicated below. The horizontal bar chart shows the relative sizes of the in-
put samples, with pm-pf (pericycle mock-flg22 responsive) containing only 98 genes
vs. cm-cp (cortex mock-Pep1) containing 2187 genes. The intersection between all
6 gene sets is indicated in orange.
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35 genes formed the “core” PTI response; expressed across all cell types in

response to both immune elicitors (highlighted in orange, Figure 4.16). Within this

core set we identified genes encoding three GLUTATHIONE S-TRANSFERASEs

(GSTF) 6,7 and 12, three O-methyltransferase family proteins; INDOLE GLU-

COSINOLATE METHYLTRANSFERASEs (IGMT) 2, 3 and 4, three peroxidases

including PEROXIDASE (PER) 4 and 5 and PRX71 and various chitinases. These

gene families are particularly associated with oxidative stress in plants, having been

shown to respond to both biotic and abiotic stress (Kawano, 2003).

4.2.8 The flg22 response is largely encompassed by the Pep1 re-

sponse

Figure 4.16 shows that many of the flg22 responsive genes also respond to Pep1,

whereas the Pep1 response is more treatment-specific. The extent of this overlap

is revealed in Figure 4.17 which shows that after aggregating cell type responses

for each treatment approximately 78% (690 of 884 DEGs) of flg22-responsive genes

were also regulated by Pep1 and only 194 genes were specifically responsive to flg22.

Figure 4.17 also shows that the majority of genes that respond to one treatment,

are also cell type-specifically expressed. 92% (174 DEGs) of the flg22-specific DEGs

are only expressed in one cell type with 98, 49 and 27 DEGs showing epidermis,

cortex and pericycle-specific expression, respectively. For Pep1, 78% (2392 of 3082

DEGs) of the DEGs showed Pep1-specific expression out of which 73% (1751 DEGs)

were expressed in only one root cell type with 583, 1016 and 152 DEGs displaying

epidermis, cortex and pericycle-specific expression, respectively.

The majority of DEGs that responded to flg22 in the epidermis and cortex

were induced whereas in the pericycle they were largely suppressed (Table 4.4). GO

term analysis was performed for each cell type and flg22-specific gene sets and re-

vealed that the flg22-specific epidermis expressed genes was enriched in GO terms

such as “regulation of proton transport” and “response to nitrate” and much less

strongly enriched in immunity and defence associated terms compared to the en-

richment for all flg22 responsive genes specific to the epidermis. In the cortex the

flg22-specific genes are enriched in the GO term “oligopeptide transport” and “amide

transport”, which matches the most strongly enriched GO terms from all the flg22-

responsive genes specific to the cortex. This indicates that the enrichment of these

peptide transport terms is a flg22-specific response in the cortex.

In response to Pep1, the cell type-specific DEGs showed similar levels of

up- and down-regulation across all three cell types (Table 4.4). Consistent with

the GO term enrichment of all Pep1-responsive genes, the Pep1-specific epidermis
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expressed genes were enriched in growth and hormone terms, particularly “ethylene

biosynthetic process” and “hormone metabolic process”. In turn, the Pep1-specific

cortex expressed genes were more strongly enriched in broad defence terms such

as “response to biotic stimulus” encompassing genes such as WRKY18, BIR1, and

MYELOBLASTOSIS 122 (MYB122). These data suggest firstly that the Pep1

response shows strong cell type-specificity and that epidermis and cortex DEGs are

indicative of contributing different functions to the Pep1 induced PTI. Moreover,

these data indicate that, compared to Pep1, flg22 elicits a weaker response in root

cells and appears to be largely encompassed by the Pep1 response.
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Figure 4.17: Differences between responses to flg22 and Pep1 in each cell type.
Upper Venn diagram shows the overlap of flg22- and Pep1-responsive gene sets,
aggregated across cell types.
Lower Venn diagrams show the split by cell types for genes responding to flg22 in at
least one cell type and not responding to Pep1 in any cell type (left) and vice versa
(right).

Table 4.4: Numbers of DEG in cell type and treatment specific gene sets. Total,
up- and down-regulated gene numbers are shown for flg22 and Pep1 treatments in
epidermis, cortex and pericycle cells.

Treatment Cell type No. of DEG Up Down

flg22 epidermis 98 98 0
flg22 cortex 49 40 9
flg22 pericycle 27 10 17
Pep1 epidermis 583 259 324
Pep1 cortex 1016 445 571
Pep1 pericycle 152 77 75
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4.2.9 Cell identity is unchanged by immune stress

Considering the substantial transcriptional changes in individual cell types upon

immune elicitor treatments, we asked if immunity would affect the cell type iden-

tity. For each root cell type, identity is determined at the stem cell niche (Naka-

jima et al., 2001; Sabatini et al., 2003; Aida et al., 2004; Sarkar et al., 2007; Stahl

et al., 2009). The maintenance of cell type identity, as defined by cell type-specific

housekeeping functions, is of outstanding importance for overall root integrity and

functionality (e.g. root growth), especially under stress (Iyer-Pascuzzi et al., 2011;

Geng et al., 2013). Interestingly, immunity is known to halt root growth suggesting

that housekeeping functions are over-ridden during root PTI (Gómez-Gómez et al.,

1999; Jacobs et al., 2011). We therefore wanted to know if immunity affects cell

type identity and with it the core of root tissue integrity and functionality. Cell

type identity transcriptomes of unchallenged epidermis, cortex and pericycle cells

were defined as described in Section 2.2.7. 950 genes were identified as specifically

enriched in the epidermis, 512 in the cortex and 1055 in pericycle. These enriched

datasets were confirmed to highly overlap (p < 10−6, hypergeometric test) with

published cell identity gene sets (Bargmann et al., 2013). Distinct GO terms were

associated with each set of identity genes denoting the different functions of the

three cell types. The epidermis is enriched in cell division-associated GO terms

(e.g. “mitotic cytokinesis”) (Figure 4.18a), the cortex governs processes related to

protein metabolism such as “Golgi organisation” and “calcium transport” (Figure

4.18b) and the pericycle is enriched in terms such as “S-glycoside biosynthetic pro-

cess” and “glucosinolate biosynthetic process” indicative of secondary metabolism

in addition to being strongly enriched in “response to stimulus” (Figure 4.18c).
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Figure 4.18: Significantly enriched GO terms in cell identity gene sets Top five GO
terms enriched in the top 1699 identity genes in the (a) epidermis, (b) cortex and
(c) pericycle.

In order to answer the question of whether immunity affects cell type iden-

tity, we quantified the overlap between immunity genes and cell identity genes.

We found that the regulation of only 18% of epidermis, 28% of cortex and 5% of
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pericycle-associated identity genes, respectively, was affected by either or both im-

mune elicitor(s) (Figure 4.19a). On the other hand, the identity genes make up a

larger proportion of the cell type-specific PTI response (to flg22 or Pep1) in each cell

type. 28%, 21% and 32% of epidermis, cortex and pericycle PTI DEGs, respectively,

are represented in the cell type identity gene sets (Figure 4.19b-d). These findings

are consistent with earlier studies, where cell identity was found to be unaffected by

abiotic stress (Dinneny et al., 2008; Iyer-Pascuzzi et al., 2011; Geng et al., 2013).

102



0

250

500

750

1000

Epi
de

rm
is

C
or

te
x

Per
ic
yc

le

N
u

m
b

e
r 

o
f 
id

e
n

tit
y
 g

e
n

e
s

Immune
elicitor

unaffected
flg22
Pep1
both

(a)

805777 173

Epidermis

immunity

Epidermis

identity

(b)

1166368 144

Cortex

immunity

Cortex

identity

(c)

1004136

51 Pericycle

identity

Pericycle

immunity

(d)

Figure 4.19: Number of identity genes affected by either flg22 and/or Pep1. (a)
Stacked bar plot indicating identity DEGs responsive to flg22, Pep1, bot or neither
treatment. (b-d) Venn diagrams showing the overlap between identity genes and
genes DE in response to flg22 or Pep1 in only one cell type (termed immunity
genes) in the (b) epidermis, (c) cortex and (d) pericycle

103



4.2.10 PMET reveals developmental motifs are enriched in cell

identity genes

In order to generate comparable p-values, the identity gene sets were equalised by

taking all 512 cortex-enriched genes and the top 512 cell type enriched genes from

the epidermis and the pericycle. There were a large number of highly significant

enrichment of a number of motif pairs in epidermis- and cortex-specific genes, but

fewer and weaker signals for pericycle-specific genes (highlighted motifs in Figures

4.20,4.21 and 4.22 and full results shown in Appendix B.1-B.3). Enriched motifs

were identified in the promoters of 472 epidermis (92%), 442 cortex (86%) and 461

pericycle (90%) cell identity genes. The pattern of enriched motif combinations was

highly distinctive in all three cell types with a large number of motif pairs highly

significant in one cell type and not statistically significant in the others.

Within the promoters of epidermis identity gene motifs three different WRKY

TFs (WRKY12/38/45) were found to pair with a wide range of motifs (Figure 4.20).

In particular, WRKYs were enriched with motifs for AT-HOOK MOTIF CONTAIN-

ING NUCLEAR LOCALIZEDs (AHL) TFs (AHL12/20/25, p < 10−7, Bonferroni-

corrected p-value corresponding to enrichment score of AHL12 2 and WRKY45 mo-

tif pairs) ARABIDOPSIS NAC DOMAIN-CONTAINING PROTEINs (ANACs)

(p < 10−6 or ANAC 55/WRKY45)and ARABIDOPSIS THALIANA HOMEOBOX

(ATHB) TFs (p < 10−10, Bonferroni-corrected p-value corresponding to enrichment

score of ATHB51 and WRKY45 motif pairs). ATHB and/or AHL co-localised with

WRKY in 185 of 512 epidermis identity genes (36%). WRKYs represent a large fam-

ily of Arabidopsis TFs (> 70 members) with known regulatory functions in plant

innate immunity, abiotic stress and developmental processes (Pandey and Somssich,

2009; Rushton et al., 2010). In turn, AHL TFs have distinct roles in growth and

development (Matsushita et al., 2007; Hur et al., 2015) and ATHBs take key roles

in adapting growth according to environmental conditions such as shade avoidance

or photocontrol (Prigge et al., 2005). ANAC motifs co-localised strongly with AHL

in particular ANAC55 2 with AHL 2 and AHL 3ARY (both p < 10−8). This is

another example of development and stress TF motifs interacting as ANACs, and

particularly ANAC55 have been shown to be involved in stress responses (Hickman

et al., 2013).

In both the epidermis and cortex, gene promoters showed enriched pair-

ing of MYC and PHYTOCHROME-INTERACTING FACTOR (PIF) TF bind-

ing motifs with nine AHL and two ATHB TF binding motifs (Figure 4.20 and

4.21). MYCs were also paired with ATHB12 in the cortex identity genes, although

more weakly than the pairs of ATHB15 and ATHB51 with MYCs (p < 10−2 for
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ATHB12/MYC2 vs. p < 10−7 for ATHB51/MYC2). In total, 80 and 95 genes

were associated with ATHB/MYC pairs in the epidermis and cortex, respectively.

These are further examples of the pairing of stress and development-related TFs as

MYC2-4 are well known integrators of plant immune signalling (Fernández-Calvo

et al., 2011; Schweizer et al., 2013), whereas PIFs and ATHBs take key roles in

adapting growth according to environmental conditions such as shade avoidance or

photocontrol (Prigge et al., 2005; Leivar and Quail, 2011).

In addition, gene promoters in the cortex were specifically enriched in pairs of

MYB and ATHB motifs (Figure 4.21), accounting for 176 out of 512 genes. MYB46

and MYB111 have been reported to be involved in flavonol glycoside metabolism

(Stracke et al., 2010) and secondary cell wall synthesis, respectively (Zhong et al.,

2007; Ko et al., 2009).

Fewer strong paired motifs were enriched in the pericycle identity genes,

although paired motifs were identified in the same proportion of pericycle identity

as epidermis or cortex. The two most prominent pairs were between AHL and

DAG2 motifs, and between AHL and the ZAT6 motif (Figure 4.22), observed in

21% (108/512) promoters . Neither TF family is well-studied, but DAG2 has been

shown to act during seed germination (Santopolo et al., 2015) and ZATs appear to

have a general role in mediating abiotic stress tolerance (e.g. cold, drought) (Yin

et al., 2017). Both are expressed in the pericycle and vasculature and not in the

outer root tissues (Brady et al., 2007), suggesting they may have additional roles in

the root.

Overall, the paired motif analyses detected AHL motifs co-localising with

a variety of motifs from different TF families. PMET detected co-occurring motif

pairs with a predominant gene network regulatory role of WRKY, MYC and AHL

combinations in the epidermis, AHL and ATHB, MYB and MYC combinations in

the cortex and AHL with DAG2 and ZAT6 in the pericycle.
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Figure 4.20: Paired motifs in epidermis identity genes. Heat map highlights the top
paired motifs enriched in the 1000bp promoter upstream of the transcription start
site (TSS) plus the 5’ untranslated region (UTR) region in the top 512 epidermis
identity genes in the epidermis alongside sequence logo representations of selected
motifs. Colour indicates significance of association for values of p ≤ 0.05 on a log10
scale (log10(0.05) = −1.3), p > 0.05 are coloured as white.

106



Figure 4.21: Paired motifs in cortex identity genes. Heat map highlights the top
paired motifs enriched in the 1000bp promoter upstream of the TSS plus the 5’ UTR
region in the top 512 cortex identity genes in the epidermis alongside sequence logo
representations of selected motifs. Colour indicates significance of association for
values of p ≤ 0.05 on a log10 scale (log10(0.05) = −1.3), p > 0.05 are coloured as
white.
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Figure 4.22: Paired motifs in pericycle identity genes. Heat map highlights the top
paired motifs enriched in the 1000bp promoter upstream of the TSS plus the 5’ UTR
region in the top 512 pericycle identity genes in the epidermis alongside sequence
logo representations of selected motifs. Colour indicates significance of association
for values of p ≤ 0.05 on a log10 scale (log10(0.05) = −1.3), p > 0.05 are coloured
as white.
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4.2.11 WRKYs cooperate with developmental TFs to regulate cell

type-specificity of flg22 immunity

PMET analyses were conducted in order to understand if the cell type-specific

rewiring of gene networks upon flg22 is reflected by a distinct enrichment in promoter

motif pairs in the epidermis and cortex. In order to make the enrichment scores

across flg22-treated cell types directly comparable, gene set sizes were equalised

by taking all of the cortex-specifically up-regulated genes (128 genes, from Figure

4.13a) and the top 128 most significantly up-regulated, epidermis-specific genes. The

analysis revealed enrichments of highly specific motif pairs in the promoters of 116

(out of 128) epidermis and 110 (out of 128) cortex genes up-regulated by flg22 (Ap-

pendix B.4-B.5). Overall, the promoters of flg22-responsive DEGs were particularly

enriched in WRKY motifs. In both the epidermis and the cortex AHL motifs are

co-localised with WRKYs, however the co-localisations are more strongly enriched

in the epidermis (p < 10−6 vs. p < 0.01, for AHL25 2/WRKY38 in the epidermis

and cortex, respectively). This striking feature is also observed in epidermis identity

genes, suggesting that AHL/WRKY interactions may explain overlaps between cell

type-specific immunity and identity networks in the epidermis. In addition, to these

overlapping pairs, there were also unique pairings with WRKY in both the epidermis

and the cortex. In the epidermis WRKYs specifically paired with ANACs (ANAC55,

ANAC55 2, ANAC58), DOF5.7, REM1/REM1 2 and ZAT6 (Appendix Figure B.4),

whereas in the cortex WRKYs specifically paired with ETT 2, HSFB2A, HSFB2A 2,

HSFC1, MYB111 2, MYB46 and MYB46 2 (Appendix Figure B.5). In the epider-

mis, WRKY motifs also showed particularly enriched pairing with KAN1, KAN4

and KAN4 2 motifs (p < 10−5; Bonferroni-corrected p-value corresponding to en-

richment score of KAN4 and WRKY38 motif pairs), which bind the KANADI family

of TFs (Figure 4.23a). KANADIs have been shown to act as a negative regulator

in embryo development (McAbee et al., 2006), root development (Hawker and Bow-

man, 2004) and vascular tissue formation (Ilegems et al., 2010).

Next, the expression of these TFs was tested to see if it matched the paired

motif enrichment patterns. Consistent with the stronger enrichment of paired mo-

tifs, KAN2 and KAN4 were significantly DE in the epidermis and not in either of

cortex and pericycle, consistent with the gene expression database ePlant (Waese

et al., 2017). KAN/WRKY motif pairs were predominant and present in the pro-

moters of 35 of the 128 flg22-induced epidermis genes and this gene set included core

immune signalling receptor-like kinases from the CYSTEINE-RICH RECEPTOR-

LIKE KINASE (CRK) and WALL ASSOCIATED KINASE-LIKE (WAKL) fami-

lies. The combination of motif enrichment and expression patterns suggests that the
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KAN/WRKY paired motifs are an epidermis-specific flg22 signalling mechanism. In

the cortex, this enrichment of WRKY/KAN motif pairs was weaker and only par-

tially seen (p < 0.005, Bonferroni-corrected p-value corresponding to enrichment

score of KAN4 and WRKY38 motif pairs). In the epidermis flg22-up regulated

genes, WRKYs also uniquely paired with YAB1 motif, an AT-rich motif similar to

AHL. The YAB TF has been linked to development in the shoot apical meristem,

but has no defined function in the root (Bowman, 2000). The cortex flg22-induced

enriched paired motifs largely overlapped with the epidermis, however the cortex

was uniquely enriched in ATHB15/51 pairs with WRKY12/18/38.

Comparing the results for the flg22 and cell identity gene sets revealed strong

overlaps in motif pair enrichment, including AHL/WRKY pairs in the epidermis

identity and both epidermis and cortex flg22-induced gene sets.
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Figure 4.23: Paired motifs in flg22-induced genes in the epidermis and cortex. Heat
map highlights the top paired motifs enriched in the 1000bp promoter upstream of
the TSS plus the 5’ UTR region n the top 128 flg22 responsive genes specifically ex-
pressed in (a) epidermis and (b) cortex cells alongside sequence logo representations
of selected motifs. Colour indicates significance of association for values of p ≤ 0.05
on a log10 scale (log10(0.05) = −1.3), p > 0.05 are coloured as white.
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4.2.12 Context dependent linkage of immunity and cell identity

networks

Having observed clear overlaps between the identity genes and the flg22 response,

paired motifs in Pep1 up- and down-regulated genes were investigated to see was

consistent across multiple immune response pathways. Furthermore, identification

of paired motifs that are unique to the Pep1 response may begin to explain how the

non-overlapping flg22 and Pep1 networks are regulated.

The up-regulated and down-regulated Pep1 response were investigated sepa-

rately, and again the gene set sizes were equalised. All epidermis-specifically Pep1-

induced and Pep1-suppressed genes were tested (365 and 337 genes, respectively;

Figure 4.13b) as well as the 365 and 337 most significantly Pep1-induced and -

suppressed, cortex-specific genes, respectively. The analyses identified paired motif

enrichment in the promoters of 212 and 219 out of 365 epidermis- or cortex-induced

genes, respectively, and 191 and 168 out of 337 epidermis- or cortex-suppressed

genes, respectively (Figures 4.24). Consistent with the flg22 response, Pep1 induced

genes are enriched in WRKY TF motifs paired with a wide variety of motifs includ-

ing AHLs, ANACs, ATHBs, KANs, MYBs, WOX13 and YABs (Appendix Figure

B.6). In particular, Pep1-induced genes in the epidermis KAN4 and YAB1 showed

enriched pairing with WRKY12 and 18 and 45. KAN/WRKY pairs were found in

62 out of 365 tested promoters (p < 10−8 for KAN4/WRKY45 pair; Figure 4.24a)

and 44 genes were associated to YAB1/WRKY enrichment. In the cortex, pairs

associated with Pep1 up-regulated genes deviated more strongly from the flg22 re-

sponse. The most dominant observed pairs of MYC (MYCs 2 and 3) with WRKY

TFs (WRKY38 and 45), a pairing that was found in 47 out of 365 promoters of

cortex-specifically Pep1-induced genes (Figure 4.24b).

Pep1-suppressed genes were not enriched in WRKYs. Instead, AHLs (AHL20-

2/ AHL25/ AHL25 3ARY) to pair with MYC2/3/4 in Pep1-suppressed genes in the

epidermis (found in 70 out of 337 promoters; Figure 4.24c). This suggests that MYCs

act as repressor or activators dependent on context. In the cortex, enriched pairing

of MYB TF motifs (MYB111/MYB111 2/MYB46) was detected particularly with

ATHBs (ATHB12/15/51), found in 47 promoters of 337 cortex-specifically Pep1-

suppressed DEGs (Figure 4.24d). Interestingly, MYC TF motifs were enriched in

promoters of Pep1-induced genes in the cortex (paired with WRKYs) and Pep1-

suppressed genes in the epidermis (paired with AHLs). These findings indicate

the efficiency of paired motif enrichment analysis and its potential in reinterpret-

ing or confirming previous gene expression studies in roots. MYC TFs have been

implicated in Pep1-mediated signalling in particular as Peps specifically induce the
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MYC2-dependent branch of jasmonic acid (JA)-responsive signalling (Bartels and

Boller, 2015). Additionally, MYC2 has been shown to act as both an activator and

a repressor in JA-mediated gene expression (Dombrecht et al., 2007).

Comparing cell type-specific identity and immunity networks (using flg22

or Pep1-induced genes) based on our paired motif enrichment analyses, we ob-

served significant patterns (Figure 4.25). In the epidermis, WRKY12/18/38/45

and AHL12/20/25 connect identity with immunity networks by pairing with KAN4

and ANAC46/55/58 (dominating epidermis immunity networks) and with ATHB51

(dominating epidermis identity networks), respectively. In turn, in the cortex,

MYC2/3/4, PIF3/4/5, AHL12/20/25 and ATHB12/15/51 tie both networks by

pairing with WRKY12/38/45 and ZAT6/14 (dominating cortex immunity networks)

and with MYB46/52/55/111 and YAB5 (dominating cortex identity networks).

Our paired motif enrichment analyses suggest that cell identity integrates

with and determines root immunity by specific TF pairs in individual cell types. In

summary, the patterns of motif pairing that are statistically linked with our cell type-

resolved expression data provide distinctiveness across cell types, across treatments,

and in comparisons of gene induction vs. gene suppression. Moreover, it allows

the identification of potential regulatory mechanisms to connect cell identity with

immunity networks.
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Figure 4.24: Paired motifs in Pep1 up- and down-regulated genes in the epidermis
and cortex. Heat map highlights the top paired motifs enriched in the 1000bp
promoter upstream of the TSS plus the 5’ UTR region in (a,b) the top 365 Pep1-
induced genes specifically expressed in (a) epidermis and (b) cortex cells alongside
sequence logo representations of selected motifs. Heats maps (c) and (d) shows the
enriched paired motifs in the top 337 Pep1 down-regulated genes in the (c) epidermis
and (d) cortex. Colour indicates significance of association for values of p ≤ 0.05 on
a log10 scale (log10(0.05) = −1.3), p > 0.05 are coloured as white.
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Figure 4.25: Model for the connection between cell type-specific identity and im-
munity networks. Connection of epidermis and cortex-specific cell identity networks
with immunity networks via transcriptions factors (bracketed) that are part of re-
spective immunity and identity networks.

4.3 Discussion

4.3.1 Pep1 and flg22 signalling networks are highly cell-type spe-

cific

Many studies have shown that different root cell types respond differently to abiotic

stress (Dinneny et al., 2008; Iyer-Pascuzzi et al., 2011; Geng et al., 2013; Gifford

et al., 2013). In this chapter, the immune response was shown to be similarly cell

type-specific. RNA-seq analysis was used to examine the immune responsiveness

of three root cell types as a first step to decipher the coordination of immunity

in a complex tissue. In particular, the immune response in epidermis and cortex

cells, which build the outer frontier to the rhizosphere, and pericycle cells, as outer

frontier of the inner root vasculature, were analysed.

The analyses reveal that epidermis and cortex are highly immune respon-

sive and all three cell types respond very differently to the immune elicitors flg22

and Pep1. By comparing the responses to flg22 and Pep1, specific gene networks

were determined for each of the three root cell types. Both elicitors activated dif-

ferent gene sets in each cell type which demonstrates the remarkable complexity of

immunity in roots.

Although these networks may require a higher degree of coordination (e.g.

numerous regulatory and signalling proteins), maintaining cell type-specific net-
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works may add the robustness and flexibility needed for a root system to adapt

to constantly changing environmental stimuli. Consistent with this, recent studies

suggested qualitative differences in the immune competences of different root cell

types in response to different immune elicitors (Beck et al., 2014; Wyrsch et al.,

2015; Poncini et al., 2017). Wyrsch et al. (2015) reported the perception of flg22 in

isolated root systems and subsequent activation of PTI markers such as ROS produc-

tion and MAP kinase activation. Furthermore, they observed flg22 responsiveness in

individual cell types across different root development zones by expressing the flg22

receptor FLS2 in a cell type- and root development-specific manner. By analysing

defined PTI responses (e.g. MAPK phosphorylation and immunity marker gene

expression) their study suggested different contributions of root cell types to PTI.

Consistent with Poncini et al. (2017), our study showed that Pep1 is a

stronger elicitor of immune signalling than flg22. Poncini et al. (2017) hypothe-

sised that this difference occurs as Pep1 is ‘interpreted as a stronger alarm signal

by the root when compared to flagellin (flg22) or chitin because these pathogen-

associated molecular pattern (PAMP)s are an abundant component of the rhizo-

sphere’. Our results additionally showed that the flg22 immune response is largely

encompassed by the Pep1 responsive network. If Pep1 represents a ‘stronger alarm

signal’, the Pep1-signalling network may encompass responses to multiple attacks in-

cluding from bacteria, explaining the large overlap between Pep1 and flg22-immune

responsive genes. This is further supported by other Pep1 studies that have shown

Pep1 signalling helps protect the root from multiple threats including increasing

host resistance to bacterial or fungal pathogens (necrotrophic and biotrophic) and

offering some protection against herbivores (Huffaker et al., 2011, 2013; Tintor et al.,

2013).

4.3.2 Integration of stress and cell type identity in roots

Studies with Arabidopsis roots exposed to abiotic stress implicated cell type speci-

ficity in stress integration. Irrespective of the nature of abiotic stress (e.g. salt

stress, iron starvation, nitrogen depletion) each cell type responded differently and

in a highly coordinated manner to maintain root functionality under stress (Iyer-

Pascuzzi et al., 2011). Furthermore, Geng et al. (2013) observed a transient root

growth inhibition phenotype under salt stress that coincided with the cell type-

specific rewiring of hormone signalling to reconfigure root growth-regulating net-

works. Such plasticity in root growth and development appears to be fundamental

as it has also been observed under nitrogen depletion and was shown to drive lateral

root development (Gifford et al., 2008; Walker et al., 2017). The integration of stress
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and growth signalling further underlines the hierarchy of root (cell) function with

the maintenance of growth and development kept as top priorities under fluctuating

environments. This ‘re-wiring’ could be mediated by post-translational modification

of transcription factors or epigenetic changes such as histone modification. Com-

promising cell identity would jeopardise root tissue function and hence, plant fitness

and survival. Accordingly, the data in this chapter demonstrates that root cell types

keep their identity under biotic stress and that housekeeping and stress-responsive

gene networks co-exist in each root cell type. This observed overlap could be of

importance to overall root plasticity (Figure 4.25). In line with previous studies

on abiotic stress integration (Dinneny et al., 2008; Geng et al., 2013), the data in

this chapter suggests that cell identity networks underpin cell type-specific immune

responses. Linking immunity to cell identity networks could guarantee cell type-

specific regulation of immune responses according to the functional competence of

each cell type, leading to exquisite cell specificity in response to signal perception.

Such a co-regulatory model would likely be applicable to all environmental stresses.

4.3.3 Differential immune responses across developmental zones

The work in this chapter does not address whether the immune response is variable

across different developmental zones. As discussed in Section 4.2.5, there was likely

bias of protoplasting towards younger tissue, as the cell walls are less tough. Equally,

as large sections of roots were harvested, a large number of mature cells would have

been harvested. The landscape of the mature root is complex. Across the elongation

and differentiation zones cells undergo endoreplication, with the result that different

cells have varied DNA content (Bhosale et al., 2018). This is associated with an

increase in metabolic activity and a global increase in transcription (Bourdon et al.,

2012; Pirrello et al., 2018). Since the stage of entry(in development) and total

number of endocycles varies between cell types (Bhosale et al., 2018), this would

likely have an impact on gene expression of an cell-type specific level. Within this

dataset, the extent of endocycling at low resolution could be investigated in terms of

the differential expression of endocycling-associated genes. However, in the absence

of developmental stage data, it would be of limited added value to the dataset. This

lack of resolution is unfortunate since the extent and rate of endocycling is likely

to play a role in plant immunity. Bhosale et al. (2018) showed that they could

predict the Arabidopsis root endoreplication response to various abiotic stresses

demonstrating that endoploidy and stress adaptation are inherently linked. The

application of single-cell RNA-seq (as described in Chapter 5) to Arabidopsis roots

could be used to address these problems.
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4.3.4 Combinatorial motifs integrate stress and identity networks

High resolution combinatorial promoter analyses can provide new and important

insights into how immunity and cell identity networks are coordinated. PMET

identified enriched paired motifs associated to the majority of genes (up to 90%)

in each network, thus providing strong evidence to explain the differences in gene

regulation between cell types and treatments. Importantly, such a combinatorial

analysis allowed us to consider cooperative binding of different TFs, which can en-

hance the flexibility of gene regulation under changing environments (Van de Velde

et al., 2014). Pairing of TF motifs differed strongly between cell types suggest-

ing that different TF families act together to create the highly cell type-specific

networks. The observation of differential enrichment for specific family members

suggests that these networks can be further tuned by using specific combinations of

TF family members.

Throughout the PMET analyses, a striking pattern occurred in the pair-

ing of promoter motifs for known stress-regulatory TF families with motifs for de-

velopmental TFs in each cell type-specific gene network. Moreover, certain TF

combinations prevailed in specific cell types in a treatment-specific manner. For in-

stance, WRKY TFs might have a more prominent function in regulating epidermis-

specific networks together with specific developmental TFs, with WRKY/MYC and

WRKY/ATHB paired motifs regulating cell identity networks and KAN/WRKY

and ANAC/WRKY paired motifs regulating cell immunity networks.

In turn, cortex function relies on MYC, ATHB, and PIF TFs as central

regulators that combine with WRKY TFs to regulate cortex-specific immunity and

with AHLs to regulate cortex identity-specific gene networks. It will be interesting to

explore in future studies to what extent this combination of stress and developmental

TFs contribute to stress integration and how this relates to growth regulation under

immunity. Furthermore, PMET analysis identified motif co-localisations patterns

that distinguished elicitor-specific networks in each cell type. These differences

between PTI elicitors might reflect the life strategies of pathogens. In plants, flg22-

induced PTI evolved to defend specifically against bacteria whereas Pep1 is an

endogenous PTI elicitor that is activated by different hormones and, hence, might

trigger the full array of all immune responses against a larger variety of pathogens.

The limited difference between flg22 and Pep1 DEGs was also reflected in

the motif enrichment. In the epidermis, both flg22 and Pep1 responsive DEGs were

enriched in KAN/WRKY and YAB/WRKY paired motifs. In the cortex WRKY

and ATHB motifs were paired in both responses. This further emphasises the idea

that Pep1 induces signalling through the same pathways as flg22, and therefore
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induces the same genes.The additional enrichment of ANAC, MYC and PIF motifs

in Pep1-responsive gene sets reveals the potential mechanism by which the additional

observed DEGs are regulated.

Tight coordination is required to maintain the complexity of cell type-specific

immunity networks. The PMET results strongly suggest that TF combinations me-

diate this complexity through cell type-specific gene regulation. This study provides

the first insight into cell type-specific immunity networks, and combinatorial TF mo-

tifs associated with specific responses and cell types. In some cases PMET reveals

that different combinations of motif pairs implicates individual TFs in strikingly

different networks. For example, MYC motifs in Pep1 responses appear to have

context-dependent associations. For promoters of genes specifically up-regulated in

cortex cells MYC motifs, and in particular the MYC4 motif, were found to pair

with WRKYs. In contrast MYCs were found to be paired with AHL20/25 in pro-

moters of down-regulated genes in the epidermis and MYC2 and AHLs were the

most strongly enriched. Neither up-regulation in epidermis nor down-regulation in

cortex were found to be linked to either of these motif combinations. Therefore

PMET analyses have the potential to detect the regulation of disparate networks by

different TF family members acting with a variety of partners in different cell types

to effect contrasting transcriptional outputs. These findings highlight how context

dependency of regulatory function may reduce perceived redundancy among regu-

latory factors that recognise highly similar sites if investigated in isolation.
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Chapter 5

Dropseq analysis of Arabidopsis

thaliana root tips

5.1 Introduction

The observation, in Chapter 4, that cell identity is prioritised over a cell’s response

to immunity leads to the following questions: how is cell identity established in the

root tip, and does immune activation affect the ability to establish cell identity.

Fluorescent cell type marker genes have been shown to be expressed in cells

very early in development, and the same set of transcription factors governs identity

and proliferation of the stem cells as well as the fates of daughter cells (Moreno-

Risueno et al., 2015) implying that identity is established early in development.

However, the meristem has also been shown to have the capacity to regenerate a

functional root tip after the QC and initial cells have been excised (Efroni et al.,

2016). This regenerative ability only occurs within the meristem as these cells can

revert to a pluripotent state, suggesting that despite cell fate being defined after

the first division, cell identity is not as strongly established in the meristem. The

second major interest of studying root tip transcriptomics is to further understand

the mechanism of root growth inhibition in response to immune activation. Root

growth is enacted via two processes, cell division in the meristem and cell elongation

in the elongation zone. Preliminary data produced from our lab implicates the

meristem in root growth inhibition, as meristem length is reduced after immune

activation by flg22.

High throughput single cell RNA sequencing (scRNA-seq) is highly suited

for the examination of root tips. Unlike in mature roots, fluorescence-activated cell

sorting (FACS) approaches are less suited to root tip studies firstly due to the limited
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Figure 5.1: Drop-seq microfluidics schematic. Drop-seq uses a microfluidics system
to combine cells and beads inside droplets. Droplets contain lysis buffer so that
upon capture cells are lysed to release mRNA which binds to poly(T) tails on the
primer beads. (Figure shows graphical abstract from Macosko et al. (2015))

availability of appropriate fluorescent markers and the difficulties in processing cell

types that only form a very small proportion of the root tip such as the QC. Using

scRNA-seq circumvents these challenges by capturing a snapshot of all cell types in

a tissue without the need for any cell type markers. Examining the effect of flg22

on different cell types in the root could reveal if flg22 is differentially activating

different cells based on identity or developmental stage, and identify pathways that

are targeted by flg22 in the root tip.

Drop-seq is a single cell sequencing method that encapsulates individual cells

in droplets and utilises a unique barcode system attached to microparticle beads in

order to identify both the cell of origin and a unique molecular identifiers (UMI) for

each transcript. The machine uses microfluidics to combine one microparticle bead

and one cell into one droplet made up of water based lysis buffer kept separate from

other droplets using oil. Once encapsulated in a droplet, cells are immediately lysed

releasing RNA that binds to primers on the bead surface (Figure 5.1). Each bead

contains a polymerase chain reaction (PCR) handle directly bound to the bead, and

then attached to each PCR handle is a 12 bp cell barcode unique to that bead, 48

different 8 bp UMIs and finally an oligo-dT sequence is synthesised to the 3’ end of

all the oligos (Figure 5.2). Bead-primer-RNA complexes are referred to as single-cell

transcriptomes attached to microparticles (STAMPs). Finally the droplets are lysed

and the RNA is reverse transcribed into cDNA, then sequenced.

Once the transcriptomes have been sequenced, dimension reduction and clus-

tering methods are used to group cells by transcriptome similarity. Cell identity is
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Figure 5.2: Drop-seq beads schematic. The surface of each bead is coated with
oligonucleotide sequences containing a PCR handle, a cell barcode which is unique
to that bead, a UMI to identify individual mRNAs, and a poly(T) tail that will bind
the poly(A) tail of mRNAs in the droplet. Figure is taken Macosko et al. (2015)

assigned to clusters based on the expression of known markers and gene expression

profiles. Prior studies utilising Drop-seq in mammalian tissues have been used to

identify novel cell types and novel markers of known cell types but there are no

published Drop-seq experiments on plant tissue.

In this chapter, I present a novel Drop-seq experiment that produced single

cell transcriptomic data for root meristems untreated and treated by flg22. Root

meristems (cut at the base of the first elongating cells) were harvested and pro-

toplasted and single cells were processed through Drop-seq and sequenced (three

replicates per condition). I optimised the analysis pipeline for Arabidopsis thaliana

and discuss the challenges of assigning cell identity to developing tissue. At the

end of the chapter I show the preliminary results of the differential gene expression

(DGE) analysis between flg22 and mock treated root meristems, and suggest further

analyses and experiments to explore the topics introduced above.

Experimental design was performed by Jessica Finch and myself with useful

input from Ruth Eichmann. The plant growth, treatment, harvesting and protoplas-

ting was performed by Jessica Finch. Processing the cells by Drop-seq and prepa-

ration for sequencing was performed by Emma Lucas. Sequencing was performed

by the Genomics Facility, School of Life Sciences at the University of Warwick. All

bioinformatic analysis was performed as part of my PhD studies.

5.2 Results

Following sequencing and alignment of reads, the Drop-seq analytical pipeline con-

siders any bead that has captured any RNA to be a cell. Unfortunately, the micro-
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fluidics process can produce beads that contain incomplete transcriptomes, referred

to as ‘low quality barcodes’. Low quality barcodes can occur through a range of

processes including contamination by non-endogenous mRNAs from cell free RNA

admixed with cells in the input solution. If an empty droplet picks up some of this

cell free mRNA, then the resulting sequences reveal an almost empty cell, referred

to as ambient barcodes. This contamination source has been shown to be present

in even the most ideal data sets (Zheng et al., 2017).

Additionally low quality barcodes can occur when a barcode binds to tran-

scripts from multiple cells (referred to as doublets) or when captured cells are broken

or killed resulting in partial transcriptomes binding to beads. In this experiment,

damaged protoplasts and cells damaged during harvesting can release RNA from

organelles and the cytosol which are then captured and sequenced. The first step

of the analytical pipeline is to filter out all low quality barcodes from the dataset.

There is no definitive method to identify low quality barcodes, so quality filtering is

based on a range of criteria, including UMI content, mitochondrial RNA (mtRNA)

content, and the relationship between the number of genes and the number of UMIs

(equivalent to reads in bulk RNAseq) detected in the cell (Macosko et al., 2015;

Ilicic et al., 2016; Butler et al., 2018). Additionally, in this plant-based experiment,

we must also consider plastid RNA (ptRNA) content.

5.2.1 Determining the number of cells captured by Drop-seq pro-

tocol

Two approaches are recommended for the determining the threshold between real

cells and ambient barcodes in a dataset, the binary alignment format (BAM) tag

histogram and the log-log plot, described in Section 2.4.6. Unlike the ideal BAM

tag histogram plots (see Materials and Methods, Figure 2.5), none of the samples

processed had a clear elbow in the histograms in Figure 5.3. The clearest elbow

was observed in flg22 replicate 1 around 500 cells. In all the samples the amount of

information starts to level out past 1500 cell barcodes, indicating that adding more

cells to the analysis is not adding new information, and would likely just add noise

to the dataset.

The ideal log-log plot shows two distinctive shoulders, the first of which

delimits the break between ‘real’ cells and damaged, broken or ambient cells. In

our samples, the log-log plot for flg22 replicate one displays the clearest pattern

of two shoulders (Figure 5.4), from which we can infer the most likely number of

real cells is approximately 400 cells indicated by the vertical dashed line in Figure

5.5b), corresponding to cells containing at least 2000 UMIs. Shoulders can also be
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Figure 5.3: Cumulative fraction of reads per cell barcode. Histograms show the
cumulative fraction of reads (UMIs) per cell barcode sorted by decreasing number
of reads for six Drop-seq samples, (a,c,e) mock replicates 1-3, (b,d,f) flg22 replicates
1-3.
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discerned in Figures 5.5c) and e for mock replicates two and three.

However as this break is unclear for the other samples, 2000 nUMIs was

used as the minimum threshold to dictate which cells were taken forward through

the analysis corresponding to 3022 cells (between 375 and 658 cells per sample (see

Table 5.1)). The samples were later merged to ensure that sufficient cells were used

in clustering analyses.

The process of removing the low UMI cells removes a large proportion of am-

bient barcodes, however this step should not be seen as removing all of the ambient

barcodes as it is possible than ambient barcodes could have a higher UMI count.

Since the signature of an ambient barcode is unknown, applying this threshold and

exploring the remaining cells for potential contaminants is the best current solution

to ensure that only the best quality cells are retained. These methods are based

on fairly arbitrary cut-offs that are unclear in many datasets. The development of

mathematical or machine learning models to more accurately define which barcodes

correspond to real cells will improved the precision and sensitivity of these decisions.

Table 5.1: Number of single cells per sample containing more than 2000 UMIs, prior
to quality control and filtering potential contaminants.

Sample Cells containing >2000 UMIs

mock rep 1 494
mock rep 2 537
mock rep 3 658
flg22 rep 1 375
flg22 rep 2 553
flg22 rep 3 405
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Figure 5.4: Log10 number of Unique Molecular Identifiers (nUMI) vs log10 barcode
plots. The number of UMIs per barcode (in order of decreasing UMI content) is
plotted on a log-log scale to determine the most likely number of real cells in each
sample, (a,c,e) mock replicates 1-3, (b,d,f) flg22 replicates 1-3.

126



Figure 5.5: Log-log plots of nUMI vs barcode for flg22 replicate 1.The number of
UMIs per barcode (in order of decreasing UMI content) is plotted on a log-log scale
to determine the most likely number of real cells in each sample. The shoulder at
approximately 400 cells, indicated by the vertical dashed line, indicates the likely
number of ‘real’ cells in this sample. This corresponds to cells containing at least
2000 UMIs, indicated by the horizontal dotted line.

5.2.2 Doublet detection

The distribution of the UMIs in each sample can reveal the presence of doublets

(barcode binds to transcripts from multiple cells, Figure 5.6 and Table 5.2). 75% of

cells in the data set contain fewer than 7500 UMIs with the median varying across

the samples between 2918 and 3810. Consistent with the best log-log plots, flg22

replicate 1 and mock replicates 2 and 3 have higher nUMI, indicating that these

samples contain higher quality cells. There is a small proportion of cells that con-

tain more than 50000 reads in mock replicates 2 and 3, and flg22 replicate 2. It is

plausible that these cells are in fact doublets, and the high transcript level is the re-

sult of capturing mRNA from multiple cells. Macosko et al. (2015) observed between

0 and ∼10 % doublet concentration dependent on the concentration of cells, deter-

mined using microscopy and multi-species experiments. Within the context of this

single-species experiment, there is no experimental protocol available to quantify

doublets so a conservative threshold of 100000 reads was used to remove potential

doublets on the basis that individual cells are unlikely to contain this many unique

reads compared to the average distribution. Whether or not these cells are in fact

doublets, these cells will contain radically different expression profiles from the rest

of the dataset, which would make the cells difficult for algorithms to cluster with

other cells in the downstream analysis. The assumption that doublets will inevitably
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Figure 5.6: Distribution of nUMI per cell in 6 Drop-seq samples for all cells that con-
tain more than 2000 UMIs. Dots indicate individual cells, and violin plots visualise
distribution of the read numbers.

have higher UMI content than singlets is weak, because the expression profiles are

different in different cells. It remains possible that these cells with very high expres-

sion levels are indeed single cells with transcript profiles that are outliers compared

to regular cells. Additionally, the dataset is likely to contain more doublets that are

composed of multiple cells that both have low expression levels. However these are

challenging to detect within the current pipeline.

Table 5.2: Statistical summary per sample of nUMI distribution for all cells con-
taining more than 2000 UMIs.

Sample Min. 1st Qu. Median Mean 3rd Qu. Max.

mock rep 1 2008 2384 2918 4373 3916 48583
mock rep 2 2007 2702 3810 6495 5980 127744
mock rep 3 2007 2559 3759 6530 7414 82401
flg22 rep 1 2010 2690 3685 5416 5868 49502
flg22 rep 2 2011 2488 3417 5659 5342 73208
flg22 rep 3 2005 2434 3069 5640 5517 50481

5.2.3 Detecting broken cells and contaminants

The harvesting, protoplasting and the Drop-seq protocol could create broken or dead

cells in each sample. These broken cells which are passed through the machine will

be low quality noisier cells that can be detrimental to downstream analysis. Broken

cells in the scRNA-seq datasets have been associated with lower read counts overall

and higher proportions of reads associated with the mitochondria (Ilicic et al., 2016).
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Figure 5.7: Expression of mitochondrial and plastid RNA. Scatter plots show the
relationship between nUMI and percentage (a) mitochondrial RNA or (b) plastid
RNA across 6 samples.

It is likely that broken cells in single cell datasets generated from plants would also

be enriched in plastid reads, although this has not been currently published.

Figure 5.7a shows that very few cells contain high percentages of mitochon-

drial RNA and that the cells containing high proportions of mitochondrial reads

also have very low expression levels. There are more cells in the data set with

high plastid content (Figure 5.7b) but these are also observed in cells with very low

expression levels. This pattern is consistent with Ilicic et al.’s (2016) description

of broken cells, and as such these cells are to be removed from the analysis. The

recommended threshold for removing cells with high proportions of mitochondrial

reads is 5% (Butler et al., 2018), so cells containing more than 5% mitochondrial or

plastid reads were removed from the dataset. This correponded to the removal of

between 4 and 123 cells from each sample, with between 264 and 635 cells remaining

in each sample (Table 5.3).

The final stage in the data quality processing pipeline is to inspect the rela-

tionship between the number of genes detected per cell (nGene) and nUMI. Figure

5.8 shows that all 6 samples show a positive correlation between number of genes

expressed in each cell relative to UMIs, indicating that, as expected, cells contain-

ing high UMIs are also expressing high numbers of detected genes. However, in

flg22 replicates 2 and 3, and mock replicates 1 and 2 (Figure 5.8b-e), a subset of

cells with low nGene and higher than expected UMI is observed offset from the

distribution. The black line on these plots indicates the separation between ‘off-

set’ cells and cells following the expected distribution. The offset cells explain the

lower median nUMI values observed in these samples, and potentially why these

samples performed poorly in the log-log plots. In order to investigate the origin of
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these offset cells, first we looked at the experimental design to establish whether

an experimental detail such as time between protoplasting and being processed by

the machine could explain the unusual expression profile of these cells. However

there was no pattern between variation within the experimental procedure with the

samples containing more offset cells.

In Chapter 4, some bulk RNA-seq replicates contained high ribosomal RNA

(rRNA) content (despite the use of poly-T tails to isolate mRNA). Based on this,

the non protein coding RNA content was assessed to see if the offset cells resulted

from the capture of non-protein coding RNAs. However, the expression of potential

contaminants such as non-coding RNAs including transfer RNA (tRNA), microRNA

(miRNA) and rRNA, was extremely low (< 0.08%) indicating that the poly-T tail

have successfully prevented the capture of non polyadenylated RNAs. A small

number of cells contained high proportions of long non-coding RNA (lncRNA),

which can be polyadenylated (Kashi et al., 2016). Six cells contained > 10% lncRNA

content, including one that contained 73% lncRNA) and were contained within the

subset of offset cells. However this was insufficient to be considered causative. There

was also no correlation between mitochondrial or plastid RNA content in these offset

cells. The lack of organellar RNA in these offset cells casts some doubt on them being

broken cells captured by the Drop-seq machine, as it is expected that organelles are

more likely to be captured as cells.

In order to characterise the offset cells further, DGE analysis was performed

comparing the offset cells in each sample relative to the main distribution of cells

(described in Materials and Methods Section 2.4.11) which revealed that three genes

- tRNA (ADENINE(34)) DEAMINASE (TADA), CHAPERONIN CONTAINING

TCP1 8 (CCT8) and lncRNA AT3G09745 - are definitive markers for the offset

cells across all samples. Figure 5.9 shows the expression of these three markers in

flg22 replicate 3 which is representative of all the data. TADA encodes a nuclear

encoded-deaminase, which localisaes to the chloroplast, that deaminates adenosines

to inosines in tRNA-Arg(ACG) (Delannoy et al., 2009). CCT8 encodes a T-complex

protein 1 subunit theta (TCP1θ), a molecular chaperone involved in ATP hydrolysis

(Fichtenbauer et al., 2012). AT3G09745 is a lncRNA of no defined function. TADA

and CCT8 are both expressed in the meristem broadly across multiple cell types,

(Brady et al. (2007), expression visualised on ePlant Waese et al. (2017)). Based

on this information, it is hard to state definitively whether these cells are intact

or broken cells: the low expression and the fact these cells are only observed in

some replicates indicates that these are likely broken cells, but the consistent high

expression of marker genes is unlikely to be observed in true broken cells that are
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Figure 5.8: nGene vs nUMI scatter plots. The relationship between number of genes
detected (nGene) and number of UMIs (nUMI) is shown as a scatter plot for each
sample in a-f.
(b-e) In flg22 replicates 2 and 3 and in mock replicates 1 and 2, a black line indicates
the separation between cells that followed the expected distribution above the line
and ‘offset’ cells that expressed a higher number of genes relative to nUMI than
expected.
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produced from a variety of cell features. It seems unusual that these two unrelated

genes which are expressed in different cellular compartments can distinguish these

potential artefact cells. However, given ambiguity of the cell’s provenance and in

order to focus the analysis on the most clear data, these cells were filtered out from

the dataset based on TADA expression. The overall cell numbers numbers before

filtering were comparable and after removing offset cells the number of cells in mock

replicate 1 and flg22 replicates 2 and 3 was reduced by > 50% (Table 5.3). The

median expression in all of the samples is increased by filtering (Table 5.4).

Table 5.3: Number of cells remaining per sample after filtering out cells containing
fewer than 2000 nUMIs, more than 5% mitochondrial, plastid or lncRNA reads, and
‘offset’ cells.

Sample Minimum 2000
nUMI threshold

Mitochondrial,
plastid and

lncRNA filter

Offset cells
filter

mock rep1 494 490 203
flg22 rep1 375 364 363
mock rep2 537 522 441
flg22 rep2 553 537 259
mock rep3 658 635 629
flg22 rep3 405 392 145

Table 5.4: Median nUMI per sample before and after filtering out low quality cells.
The median nUMI in every sample increases after filtering out cells containing more
than 5% mitochondrial, plastid or lncRNA reads, and ‘offset’ cells

Sample Median nUMI before offset filter Median nUMI after offset filter

mock rep 1 2918 3540
mock rep 2 3810 4118
mock rep 3 3759 3833
flg22 rep 1 3685 3733
flg22 rep 2 3417 4737
flg22 rep 3 3069 6682
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Figure 5.9: Genes enriched in cells deviating from the expected distribution.
The expression of three genes: (a) TADA, (b) CCT8 and (c) AT3G09745 is enriched
in ‘offset’ cells visualised by colour on the distribution of nGene vs nUMI content
per cell for flg22 replicate 3.
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Figure 5.10: nUMI vs nGene distribution for all samples after filtering out cells
containing fewer than 2000 nUMI, more than 5% mitochondrial, plastid or lncRNA
reads, and ‘offset’ cells.

5.2.4 Dimension reduction

The median nUMI of the highest quality cells reveals how sparse Drop-seq data is.

The Arabdopsis thaliana genome has ∼ 27000 annotated genes, so if all genes were

expressed uniformly only 15% of the genes would be covered by 1 nUMI. Drop-seq

provides a surface snapshot of the single cell transcriptomes, rather than a high

resolution analysis. This snapshot was investigated using the dimension reduction

techniques principal component analysis (PCA) and t-Stochastic Neighbour Embed-

ding (t-SNE) which were used to group the cells and assign identity and function.

scRNAseq data is very high dimensional, so in order to extract biological informa-

tion from this level of complexity, dimension reduction tools can be used to reduce

the complexity of the dataset in order to visualise the underlying structure of the

data.

PCA projects data into a reduced number of independent dimensions. These

dimensions capture the highest variance possible, preserving short- and long-range

distances between data points. However unlike a bulk RNAseq analysis, PCA is

not the ideal tool to distinguish differences between cells types and treatments, as

PCA is restricted to linear dimensions and assumes that the dataset is normally

distributed (often not the case for scRNAseq data). In a scRNAseq analysis, PCA

is ideally suited to identify batch effects and outliers, and order the dimensions by

variance (Andrews and Hemberg, 2017). PCA is an essential precursor to t-SNE, as

t-SNE is performed using only 10-30 dimensional data.
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5.2.5 Assessing batch effects using PCA

PCA reveals that in the first two dimensions there is no obvious pattern to the

greatest sources of variance in the dataset (Figure 5.11a). Between replicates there

is a shift observed between replicates 2 and 3 (Figure 5.11b). This batch effect

is likely caused by variation in number of cells between replicates. In a perfect

experiment we would expect no batch effects as plant root structure is consistent

across all roots, so the proportions of cells are fixed, and since large numbers of

root tips were harvested for each replicate, we would expect the cell proportions to

average out. However when considering the number of cells in each sample (between

145 and 600) vs the number of cells harvested (at least an order of magnitude more),

it seems likely that the cells processed would not necessarily represent a full sample

of all sources of variation. Furthermore the disparity between the large number of

cell in mock replicate 3 (629 cells) vs the small number of cells (145) in mock replicate

1, further increases the likelihood that mock replicate 3 has captured a wider variety

of cells. Overall the differences between the replicates are mild, and some cells from

all three replicates are spread across the plot, so no further corrections need to be

made.

There are also no apparent differences between mock and flg22 treated cells

on the PCA plot (Figure 5.11c) which is expected, given that in most scRNAseq

data sets cell type differences are the greatest source of variance and the immune

response has already been shown to be a weaker source of variance than cell type

differences in cell type-specific RNAseq (Chapter 4).

5.2.6 Parameter optimisation of t-SNE dimension reduction and

clustering

Single cell RNA-seq datasets contain far more complex data structures, compared

to bulk RNAseq data, usually consisting of many globular clusters of different sizes

and variance arranged in complex patterns in sample space, which cannot be vi-

sualised using PCA. t-SNE is a stochastic algorithm designed to visualise large

high-dimensional datasets into 2 or 3 dimensions developed by Maaten and Hinton

(2008). Unlike PCA, t-SNE does not preserve the structure of the entire dataset,

instead t-SNE only preserves local structure ignoring long range distances between

data points, specifically projecting data into isolated areas. These groups can then

be defined as clusters calculated based on the t-SNE structure. In other words,

t-SNE can be used to assign cells to clusters which often correspond to cell types. It

is important to remember when interpreting t-SNE plots that the whole structure
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Figure 5.11: PCA plot of all merged samples comparing PC dimensions 1 and 2. In
(a) cells are coloured by sample origin and in (b) cells are coloured by replicate, and
in (c) cells are coloured by treatment.
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of the dataset is not represented, and long distances between clusters may be mean-

ingless. The major drawback of t-SNE is its sensitivity to various parameters such

as the perplexity, defined as the number of ‘close’ neighbours each cell has. Setting

the perplexity too high or too low will result in poor clustering of cells.

In scRNAseq, PCA can be used in conjunction with t-SNE. First, the top

PCs are calculated to capture the majority of the variance in the dataset and this

data is fed into t-SNE for projection into 2 dimensions. The number of PCs used is

another parameter that requires optimising for the t-SNE plot. A third parameter

that affects t-SNE is the number of variable genes used to calculate the principal

component analysis. Using only the most variable genes can improve the PCA and

thus improve the clustering on the t-SNE plot, while too few genes results in a loss

of important information.

The problem with t-SNE’s sensitivity to these parameters is that there are

currently no automated optimisation techniques that can predict the best param-

eter sets. There are some metrics to determine the number of principal compo-

nents (PCs) that encompasses the majority of the variation of the data, but no

well-developed methods for automatically optimising the combined parameter sets.

Figure 5.12 shows that the standard deviation contained in PCs decreases slowly

after 20 PCs indicating that the majority of the variance in the dataset is contained

within the first 21 PCs. Investigating the expression in most variable genes and cells

suggested that the first 30 PCs could contain meaningful variance.

In order to ascertain the optimum set of parameters to represent the data,

a wide of range of parameter sets (shown in Table 5.5) were used to calculate a

multitude of t-SNE plots. These plots were inspected to determine the parameter

ranges where the apparent number of clusters, and overall shape had stabilised.

The plot was deemed to be stabilised when the resulting t-SNE plot structure was

similar after calculating t-SNE using the same parameters multiple times using

different random ‘seeds’ or start points. The final optimised parameters for the

t-SNE plots for the data set are shown in Table 5.6, for the plot shown in Figure

5.14. Interestingly, having inspected t-SNEs produced from a wide range of PCs

(4-20), the clearest clustering was obtained from 8-10 PCs, indicating that cluster

differences are defined by many fewer dimensions than predicted by the elbow plot

and apparent variance in gene expression across PCs.
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Figure 5.12: Principal component elbow plot. The standard deviation per PC reveals
that as the dimensions of PCA get higher the standard deviation and therefore the
information contained within the PC decreases. The ‘elbow’ where the plot gradient
flattens, at approximately 20 PCs, indicates the number of PCs that contain the
majority of the variance in the dataset.

138



Table 5.5: Range of t-SNE parameters tested in order to identify the optimal settings
to display the variation in the dataset into clear clusters. All possible combinations
of parameters were tested.

Parameter Minimum value Maximum value

Number of variable genes 500 3000
PCs included 4 30
Perplexity 20 40

Table 5.6: Optimal parameters for t-SNE identified using parameter testing.

Parameter Optimum parameter value

Number of variable genes 2308
PCs included 9
Perplexity 35

Using the optimised parameters, a t-SNE plot that split up the cells into 11

distinct clusters was produced (Figure 5.14). The data was sorted into 11 clusters

based on the shape of the t-SNE plot. Clusters 0-2 contain large numbers of cells

which are loosely packed. Cluster 3-10 was comprised of smaller populations of cells

around the edge of the plot. These clusters are more tightly packed and distinct

than clusters 0-2, indicating they consist of cells with highly similar transcriptional

profiles.

As with the PCA, potential batch effects were assessed by plotting the t-

SNE coloured by replicate, treatment and sample (Figure 5.13a-c). Figure 5.13a

reveals that replicates 2 and 3 contribute unequally to clusters on the t-SNE plot,

as replicate 3 is overrepresented in the top right and replicate 2 is overrepresented

in the bottom left of the plot. In all clusters, there are at least a few cells from

more than one replicate, indicating that there are no entirely unique sources of

variation originating from one replicate. Consistent with the PCA, there is no

strong distinction between mock and flg22 treatment on cells apparent from the

t-SNE plot. This further indicates that treatment differences are not driving the

primary variation in the dataset, instead clusters are based on the fundamental

differences between cell transcriptomes.

5.2.7 Supervised approach to identifying cell type identity in t-SNE

clusters.

In Chapter 4 and in various published scRNA-seq datasets, the greatest driver of

variation between clusters is cell type identity. Based on these findings, the expres-

sion of known cell type marker genes was examined in relation to the clusters (Table
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Figure 5.13: Two dimensional t-SNE plot of all merged samples. In (a) cells are
coloured by sample origin and in (b) cells are coloured by replicate, and in (c) cells
are coloured by treatment.
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Figure 5.14: Eleven clusters were calculated using two dimensional t-SNE plot of
all merged samples.
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5.7, Figure 5.15). The expression of all the markers listed in Table 5.7 were checked

against Brady et al. (2007)’s developmental root microarray datasets to confirm

expression in the meristem.

The most strongly expressed marker was ROOT CAP PROTEIN-2LIKE

PROTEIN MDK4.20, AT5G52370 (MDK4.20), a root cap (encompassing columella

and lateral root cap (LRC) cells) expressed marker (Lilley et al., 2011). The violin

plot in Figure 5.16a shows that MDK4.20 is highly expressed in cluster 3, but is

also expressed in adjacent clusters 1 and 4. The feature plot in Figure 5.16b which

shows the expression of MDK4.20 overlaid on the optimised t-SNE plot shows that

cells expressing high levels of MDK4.20 cluster closely at the bottom of the plot,

indicating these cells are likely to be root cap cells. The rest of the cell type-specific

markers are less defined by borders between clusters. AUXIN TRANSPORTER

PROTEIN 1 (AUX1), a more specific marker to the LRC only (Marchant et al.,

2002; Brady et al., 2007) is also expressed in cluster 3 although it is more strongly

expressed in clusters 1 and 9. This could indicate that cluster 1 contains lateral root

cells, whereas cluster 3 contains both LRC and columella cells.

Consistent with AUX1 expression, PIN-FORMED 2 (PIN2) and WERE-

WOLF (WER) (Lee and Schiefelbein, 1999) markers that are expressed both in lat-

eral root cap and epidermis cells are most strongly associated to cluster 1. WER is

also expressed broadly across clusters 0, 1 and 3 (Figure 5.17a-b), with the strongest

expression in the cluster 1 (LRC).

Epidermis specific markers GLABRA2 (GL2) and CAPRICE (CPC) (which

are not expressed in the lateral root cap) are enriched most strongly in cluster 9.

Looking at the feature plots in Figure 5.17c and e shows that although GL2 and

CPC are most strongly expressed in that cluster, it is not a definitive marker for the

cluster, like MDK4.20. The cells not expressing the epidermis markers are either

cells from a different lineage or epidermis cells, with lower expression of the GL2

or CPC such that it was not captured by the Drop-seq beads. The structure of

the cluster is less tightly packed than cluster 3 suggesting that these cells are less

strongly defined as one identity. Additionally, cells expressing GL2 and CPC and a

fourth epidermis marker P-GLYCOPROTEIN 4 (PGP4) appear widely across the

clusters, indicating that potential epidermis cells are not restricted to clusters 1 and

9.

A large proportion of cell type markers expressed in cortex, endodermis and

stele tissues are expressed most highly in cluster 5. For example, SCARECROW

(SCR), SHORTROOT (SHR) and PIN-FORMED 3 (PIN3) are all most strongly

expressed in cluster 5, but similarly to the epidermis markers, the expression of
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these markers is not restricted to one cluster. Given the number of cells in cluster 5

it would be very surprising if it contained all the cortex, endodermis and stele cells.

These unclear expression patterns indicate that an alternative source of variation

between the cells is superseding cell type identity and making it impossible to assign

definitive identity to the majority of cells.

Finally, the expression specific quiescent centre (QC) markers WUSCHEL-

RELATED HOMEOBOX 5 (WOX5), AGAMOUS-LIKE 42 (AGL42) (Nawy et al.,

2005) and QC expressed markers PISTILLATA (PI) (which is also expressed in

young cortex and endodermis cells) and PERIANTHIA (PAN) (which is also ex-

pressed in columella cells) were examined to try to identify potential QC cells. Given

the number of QC cells relative to the total number of cells in the meristem, it would

be expected that these cells would make up a very small proportion of the captured

cells, but we would expect them to have a distinct transcriptional identity, as QC

cells are slowly dividing relative to the surrounding cells and undertake a different

function to the initial cells surrounding them. The canonical QC marker WOX5

was only detected in 2 cells across the dataset. However the QC marker AGL42,

and QC/columella marker PAN were detected in cells in clusters 2 and 5. Figure

5.18 shows that AGL42 is weakly expressed and the cells expressing it do not cluster

closely into a defined cluster. The expression pattern of PI more closely matches

the other endodermis markers and does not distinguish the QC. As such we cannot

identify definitive QC cells within the dataset.

5.2.8 Unsupervised identification of cluster marker genes

Due to the limited success of assigning cluster identity using known marker genes,

an unsupervised approach was used to identify the top markers for each of the

clusters. This alternative approach enabled us to further understand the variation

underlying the clustering. Markers were identified based on positive differential gene

expression between one cluster and all other clusters. In total, between 11 and 1000

potential markers were identified (p < 0.05) per cluster, and the top ten for each

cluster are visualised in Figure 5.19. All of the clusters have distinctive expression

patterns, although the expression of some markers are overlapping in multiple clus-

ters; for example TUBULIN BETA-5 CHAIN (TUBB5), which codes for a tubulin

component, is expressed strongly in both clusters 6 and 9 and GLUTATHIONE S-

TRANSFERASE U5 (GSTU5), a gene associated with redox) is expressed in both

clusters 4 and 8. The analysis identified between 1 and 500 unique (differentially ex-

pressed in only one cluster) positive markers per cluster. Clusters 3-9, corresponding

to the clusters on the edges of the t-SNE plot, are represented by strongly expressed
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Figure 5.15: Root cell type marker gene expression in cell clusters. The expression
in every cell (one vertical line represents one cell) of known cell type marker genes
(rows, genes detailed in Table 5.7) grouped by clusters from Figure 5.14.

144



T
ab

le
5
.7

:
R

o
ot

ce
ll

ty
p

e
m

ar
k
er

s.
T

ab
le

d
et

ai
ls

th
e

ob
se

rv
ed

ex
p
re

ss
io

n
p
at

te
rn

of
ce

ll
ty

p
e-

sp
ec

ifi
c

m
ar

k
er

s,
an

d
a

re
le

va
n
t

ci
ta

ti
on

. G
en

e
A

T
G

co
d
e

G
en

e
n
am

e
C

el
l

ty
p

e
ex

p
re

ss
ed

P
u
b
li
sh

ed

A
T

5G
54

37
0

M
D

K
4-

2
0

ro
ot

ca
p

L
il
le

y
et

al
.

(2
01

1
)

A
T

2G
38

12
0

A
U

X
1

la
te

ra
l

ro
ot

ca
p

M
a
rc

h
an

t
et

a
l.

(1
9
99

)
A

T
5G

57
09

0
P

IN
2

la
te

ra
l

ro
ot

ca
p
,

ep
id

er
m

is
M

ü
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Figure 5.16: Expression of root cap markers.
(a-b) Root cap marker MDK4.20 is very strongly expressed in cluster 3 and also
expressed in clusters 1, 4 and 9 (a), corresponding to the bottom of the t-SNE plot
(b).
(c-d) Lateral root cap-specific marker AUX1 is strongly expressed in cluster 1 and
further expressed in clusters 3, 6 and 9 (c), visualised on the t-SNE plot in (d).
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Figure 5.17: Expression of epidermis-specific markers.
(a-b) Epidermis marker WER is expressed in clusters 0, 1, 2, 7 and 9 (a), corre-
sponding to a wide band of expression across the center of the t-SNE plot (b).
(c-d) Epidermis marker GL2 is expressed most strongly in cluster 9 (c), a distinct
cluster on the edge of the t-SNE plot in (d).
(e-f) Epidermis marker CPC is expressed most strongly in cluster 9 (e), matching
the expression of GL2 on the t-SNE plot in (f).
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Figure 5.18: Expression of epidermis-specific markers.
(a-b) QC marker AGL42 is most strongly expressed in cluster 5 and more weakly
expressed in clusters 2 and 7 (a), visualised on the t-SNE plot (b).

markers. In contrast, clusters 0, 1, 10 and particularly 2 are characterised by much

more lowly expressed markers.

Clusters 1 and 3 have been assigned potential identity based on Figure 5.15;

MDK4.20 was identified independently as a top marker for cluster 3. The top novel

marker genes included AT3G19430 and AT4G27400 whose corresponding proteins

contain a root cap specific domain (Hundertmark and Hincha, 2008). The gene

expression was also confirmed to be root cap specific in Brady et al. (2007). In total

148 potential root cap specific markers genes were identified (cluster 3). AT5G60520,

a marker gene for cluster 1, also contains a root cap-specific domain and is expressed

in the lateral root cap (Brady et al., 2007).

In Figure 5.15, cluster 5 is most strongly enriched in genes that are known

to be expressed in vasculature and in the cortex and endodermis cells layers. How-

ever the expression pattern is much more uneven than the markers for clusters

3 and 9. The top novel markers identified for cluster 5 include a polar auxin

transporter LIKE AUXIN RESISTANT 2 (LAX2), a transcription factor BASIC

HELIX-LOOP-HELIX 144 (bHLH144) and a co-activator GRF1-INTERACTING

FACTOR 1 (GIF1). LAX2 expression has been detected in young vascular tissue,

the QC and in columella cells (Péret et al., 2012). bHLH144 has been shown to be a

potential interactor with LONESOME HIGHWAY (LHW) in the regulation of root

vascular initial populations (Ohashi-Ito and Bergmann, 2007). GIF1 is expressed

in both cortex and phloem companion cells in the meristem (Brady et al., 2007). It

is involved in cell proliferation in leaves (Kim and Kende, 2004), but has no defined

role in roots. The combined evidence of the known marker genes and novel markers

suggests that this cluster contains cells from the young vasculature, but that the
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Figure 5.19: Expression of top cluster marker genes. Heatmap shows the normalised
expression of the top markers (rows) for each cluster in each cell (one cell per vertical
line) separated by cluster (split by grid).
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Figure 5.20: Two dimensional t-SNE plot of all merged samples coloured by cell
cycle phase.

gene expression patterns are insufficient evidence to define the clusters as specifically

vasculature.

Clusters 6 and 7 are clearly distinct in Figure 5.14 suggesting that these cells

have gene expression patterns that strongly differ from the other cells in the data set.

However the investigation of known cell type markers (Figure 5.15) does not suggest

that these cells belong to a specific known cell type. The unsupervised identification

of novel marker genes revealed that cluster 7 is dominated by cell cycle associated

genes including KINESIN-LIKE PROTEIN 10A (KIN10A) and KIN14D in the top

10 markers. In total 253 potential markers were identified for this cluster (p < 0.05)

including 9 Cyclins, 2 cyclin dependent kinases (CDKs), 2 CDK regulatory sub-

units and 20 kinesin-like proteins. Assigning cell cycle phase to each cell reveals

that cluster 7 includes genes that are actively dividing cells in G2/M phase (Figure

5.20.

The top 3 markers defining cluster 6 are peroxidases: PER16, PER27 and

PER45 which have a role in cell wall loosening (Francoz et al., 2015; Dunand

et al., 2007) during elongation in roots. Investigating the known expression pat-

terns (Brady et al., 2007) revealed that peroxidases are expressed in cells on the

border between the meristem and the elongation zone (data for PER16, shown in

Figure 5.22e and f). This suggests that cluster 6 represents a population of cells

that have begun elongating.

Finally, looking at clusters characterised by weakly expressed markers: clus-

ter 0 is strongly enriched in heat shock proteins (HSPs), which although charac-

terised as being highly responsive to a variety of stresses, in tissues from both above
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and below ground in plants (Swindell et al., 2007), have also been linked to regula-

tion of steroid hormone receptors (Kregel, 2002) and involved in root development

(Petti et al., 2014).

The list of markers for clusters 1 & 2 are enriched in genes coding for ribo-

somal proteins. Ribosomal proteins were observed to be an artefact in Chapter 4,

so the potential for this observed enrichment to have resulted as an artefact from

individual samples was investigated. Figure 5.21 reveals that percentage content of

ribosomal protein genes in individual cells varied from 0% to 25-30% across all sam-

ples. The distribution of these ribosomal protein percentages within each sample

were bimodal, where some cells have a high proportion of genes coding for riboso-

mal proteins (and therefore a high number of ribosomes) and others have a very low

proportion. This is particularly pronounced in flg22 replicate 1 and mock replicates

2 and 3. Based on the consistency of variation across all the samples, ribosomal pro-

tein content is unlikely to be an artefact in this dataset. One possible explanation

for this bimodal expression is that some cells in the meristem might require more

ribosomes in order to facilitate cell division, through increased protein production.

Alternatively, ribosomal proteins could play a regulatory role in root development.

In Arabidopsis leaves, ribosomal proteins have been shown to mediate cell prolifer-

ation and cell expansion (Fujikura et al., 2009), in some cases undertaking different

functions based on stress status (Ferreyra et al., 2010). Examining the known ex-

pression of ribosome markers identified in Figure 5.19 revealed that the bulk of the

meristem above the QC is enriched in ribosome protein genes relative to the root

cap and elongation zones Brady et al. (2007), shown for 60S ACIDIC RIBOSOMAL

PROTEIN P0-2 (RPP0B) in Figures 5.22b and d .
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Figure 5.21: Percentage content of genes coding for ribosomal proteins (RP content)
per cell.
(a) The distribution of RP content in cells is distinctly bimodal within each sample.
(b) The cells with high RP content are clustered together in the t-SNE plot.
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Combining the observations of root cap markers, ribosomal protein genes and

peroxidases, reveals that the development of the root can be mapped strongly to the

t-SNE plot (Figure 5.22). Clusters 1 and 3 correspond to the root cap, clusters 0, 2,

4, 5, 7, 8, 9, 10 correspond to the cells in the meristem and cluster 6 corresponding

to cells that are beginning to elongate. The relative proportions of cells within

these clusters make sense within the context of the experiment, as root meristems

were harvested with the cuts made at the border between the meristem and the

elongation zone.

Cell cycle phase data supports this developmental axis across the t-SNE plot

(Figure 5.20). Cells were scored based on their likelihood to be in S or G2M phase,

and the remaining cells were assigned as G1 cells. This is a limitation of the cell cycle

assignment method. Cells assigned as G1 in fact incorporates cells in gap phase, as

well as non-cycling and endocycling cells. The cells identified as elongating are all

assigned to G1 phase. The up-regulation of SIAMESE in cluster 6 suggests that

these cells are in fact endocycling. This adds to the evidence that cluster 6 contains

cells that are starting (or about to start) to elongate. By contrast, the cells within

the meristem represent a variety of cell cycle stages, consistent with the cycling

expression associated with cell division.
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Figure 5.22: T-SNE clusters can be mapped to developmental stage.
(a-b) Root cap marker MDK4.20 expression on the t-SNE plot (a) and visualised
on a root tip using expression data from Brady et al. (2007).
(c-d) Ribosomal protein RPP0B expression on the t-SNE plot (c) and visualised on
a root tip (d)
(e-f) PEROXIDASE 16 (PER16) expression on the t-SNE plot (e) and on a root
tip (f)
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5.2.9 Differential expression between flg22 and mock treated roots

DGE analysis compared flg22 and mock treated cells for each of the three develop-

mental stages. Cells were compared within the meristem (defined as clusters 0, 2,

4, 5, 7, 8, 9, and 10), root cap (clusters 1 and 3) and early elongation zone (cluster

6). Ten differentially expressed genes (DEGs) were found in the meristem (Table

5.8), eight in the root cap and five in the elongating cells. Consistent with the flg22

response observed in cell type-specific RNAseq of mature root cell types, flg22 has

only induced genes in the root tip, and did not significantly repress any genes.

HSPs were differentially expressed in both the meristem and the root cap.

Specifically HEAT SHOCK FACTOR 7A (HSFA7A) was differentially expressed

(DE) in both the root cap and the meristem, HEAT SHOCK PROTEIN 17.6A

(HSP17.6A) was DE in the meristem only, and HEAT SHOCK PROTEIN 17.6C

(HSP17.6C), HEAT SHOCK PROTEIN 70-5 (HSP70-5), and HSP associated gene

HSP ORGANIZING PROTEIN 3 (HOP3) were DE in the root cap. HSPs are

known to be involved in the cellular response to various forms of stress besides heat

and transcriptional profiling of HSPs revealed that they represent an interaction

point between multiple stress response pathways including the immune response.

Furthermore profiling revealed that when responding to stressed other than heat or

osmotic stress, HSPs exhibited family or tissue specific expression (Swindell et al.,

2007). HOP3 has been shown to play an essential role during endoplasmic reticu-

lum (ER) stress in plants particularly during immune response (Fernández-Bautista

et al., 2017). AT3G09070, a wound responsive protein (Cheng et al., 2017) was also

DE in both the meristem and root cap. The DEGs induced in the elongating cells

did not overlap with the meristem or root cap DEGs and included probable WRKY

transcription factor WRKY47.
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Table 5.8: flg22 induced genes in the meristem

Gene symbol Description Avg.
logFC

P value
(adj)

AT2G35382 snoRNA 0.774 2.73×10−12

AT2G43140 Transcription factor bHLH129 0.31 9.86×10−7

AT3G15450 AT3g15450/MJK13 11 0.322 2.75×10−5

ATCTH Zinc finger CCCH domain-containing pro-
tein 23

0.251 6.59×10−4

AT1G25275 AT1G25275 protein 0.46 5.97×10−3

AT1G08643 0.326 7.37×10−3

AT3G07090 PPPDE putative thiol peptidase family
protein

0.308 1.69×10−2

STY46 Serine/threonine-protein kinase STY46 0.275 2.81×10−2

HSFA7A Heat stress transcription factor A-7a 0.322 4.53×10−2

HSP17.6A 17.6 kDa class I heat shock protein 1 0.325 4.87×10−2

Table 5.9: flg22 induced genes in the root cap

Gene symbol Description Avg.
logFC

P value
(adj)

HSFA7A Heat stress transcription factor A-7a 0.559 2.62×10−4

HOP3 Hsp70-Hsp90 organizing protein 3 0.751 4.39×10−4

HSP70-5 Hsp70b 0.926 3.46×10−3

AT3G07090 PPPDE putative thiol peptidase family
protein

0.499 6.11×10−3

BAG6 BAG family molecular chaperone regula-
tor 6

1.09 7.58×10−3

CLPB1 Chaperone protein ClpB1 0.589 1.66×10−2

HSP17.6C 17.6 kDa class I heat shock protein 3 1.17 2.2×10−2

UGT85A1 UDP-glycosyltransferase 85A1 0.578 3.12×10−2
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Table 5.10: flg22 induced genes in the early elongation zone

Gene symbol Description Avg.
logFC

P value
(adj)

AT5G66050 Putative uncharacterized protein
At5g66050

0.816 3.62×10−3

WRKY47 Probable WRKY transcription factor 47 0.271 4.49×10−3

AT5G01760 ENTH/VHS/GAT family protein 0.527 6.38×10−3

PSBP1 Oxygen-evolving enhancer protein 2-1,
chloroplastic

0.296 8.73×10−3

SNOR105 SNOR105 (SMALL NUCLEOLAR RNA
105); snoRNA

0.341 2.61×10−2

5.3 Discussion

The Arabidopsis thaliana root tip is a complex structure composed of many different

cell types. Studying these cell types on a cell type-specific level has been limited by

the availability of fluorescent marker genes and the difficulties in obtaining sufficient

tissue to perform FACS-based transcriptomics (Efroni and Birnbaum, 2016). Drop-

seq represents a great opportunity to understand the plant root at the level of single

cells, in order to tackle complex questions relating to development, cell cycle and

immunity triggered root growth inhibition. In this chapter, a large scale Drop-seq

dataset for mock- or flg22- treated root meristems were analysed. This is the first

Drop-seq dataset obtained for root tips, and is among the first Drop-seq experiments

to be performed on plants (Shulse et al., 2018). In order to analyse this novel dataset,

the existing pipelines were adapted to the Arabidopsis genome and as the analysis

progressed, challenges unique to performing Drop-seq in plants were identified, in

addition to the general challenges of scRNAseq. Cell populations corresponding to

three developmental zones and two specific cell types were identified. Finally, DEG

analysis identified flg22-induced genes responding across the three developmental

zones.

5.3.1 The challenges of utilising Drop-seq in plants

The primary challenge in Drop-seq is establishing the number of captured cells. In

particular, this involves counting the number of doublets, and identifying broken

cells. The offset cells in Figures 5.8 and 5.9 are particularly representative of this

problem. As described in Section 5.2.3, the low expression levels could indicate that

these are broken cells, but the identification of highly consistent marker genes sug-

gests that they could be real cells. If this is the case then a great deal of information
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is likely to have been filtered out of the dataset (e.g. > 50% of cells in flg22 replicate

3).

As Drop-seq becomes a more popular method to perform scRNAseq, new

techniques are being developed to identify these artefacts. Ilicic et al. (2016) utilised

microscopy of the microfludics device in the Drop-seq machine to determine which

cells were broken, empty, or were doublets from a mammalian tissue dataset, and

performed gene expression analysis to determine the footprint of low quality cells.

They discovered that mtRNA and genes associated with the GO term ‘membrane’

were up-regulated in broken cells. A similar experiment needs to be performed

in plant tissue as the transcriptional footprint of broken cells from plants will be

different from animal cells due to fundamental differences such as the presence of the

ptRNA (from plastids in roots or chloroplasts in aerial plant tissues). If we assume

that these offset cells are broken, the expression pattern of broken cells might even

be tissue specific as the marker genes TADA and CCT8 are expressed strongly

in the root meristem (Brady et al., 2007). A secondary advantage to performing

microscopy alongside Drop-seq is that the number of expected cells would become

known, and the pipeline wouldn’t rely on predictive methods to discover the most

likely number of cells in the dataset. However such an experiment would be very

time consuming and difficult to automate.

In addition to studying broken cells, Ilicic et al. (2016) also examined the

footprint of empty cells, but again a plant specific experiment needs to be per-

formed. It could be argued that low expression is not sufficiently discriminative to

distinguish broken cells. In flg22 replicate 3 more than 50% of the cells were filtered

as broken cells whereas very few broken cells were detected mock replicate 3. Given

that there was no discernible difference between the experimental procedure in the

replicates which contained offset cells and those that did not, it seems unlikely that

the proportion of broken cells should vary that much. Cells with high mtRNA or

ptRNA are filtered from the dataset based on a standard threshold of 5% (Figure

5.7). They are filtered out on the basis that they may be broken cells, and even

if they are not the high organellar RNA content is likely to increase noise in the

dataset and reduce quality of clustering. Very few cells in the dataset contain more

than 5% mtDNA content whereas many more cells contain more than 5% ptRNA.

If the plastid concentration naturally varies more than mitochondrial content then

the 5% threshold may not be optimal for plant datasets. This threshold should be

tested to ensure that valuable information is not lost in the analyses.

The biases associated with Drop-seq data collection are not fully known. In

theory, Drop-seq is unbiased in cell type collection and sequencing as all cells are
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treated equally. However, Drop-seq data only reveals the strongest transcriptional

signals and so cells with higher RNA content are much more likely to be captured

and retained through filtering, than those with low RNA content. This is partic-

ularly relevant to our study of root tips as the RNA content in epidermis cells is

known to be higher than QC cells. Brennecke et al. (2013) compared the RNA con-

tent of WOX5 -expressing QC cells and GL2 -expressing epidermis cells (extracted

using laser microdissection) and showed that on average GL2 expressing cells con-

tained 60pg of RNA whereas QC cells only contained 10pg RNA. In discussing the

difficulties in general scRNAseq methods, they stated that the amount of biological

RNA captured can differ widely due to technical differences in the efficiency of cell

lysis and biological differences in cell size and total RNA content of each cell. The

Dolomite Bio Drop-seq machine utilised in this experiment operates at a 5% cell

capture efficiency. As the efficiency of this technology improves a greater propor-

tion of cells will be retained and the effect of these potential biases in cell capture

will be reduced.

5.3.2 Assigning cell identity

The aim of this analysis was to perform cell type-specific transcriptomics but as-

signing cell-type identity (or cell fate) has proven tricky. With the exception of root

cap marker MDK4.20, cell type markers are lowly expressed widely across clusters.

In general, the low resolution of Drop-seq data makes it highly likely that the ex-

pression of any given cell type-specific marker will be absent or low. Additionally,

Efroni et al. (2015) observed low-level sporadic expression of known marker genes for

cells of a different identity to the cell being tested, which could not be attributed to

technical artefacts. These challenges mean that the expression of multiple cell type-

specific transcripts must correlate strongly in order to be confident of cell identity.

In contrast to Efroni et al.’s 2015 approach, this analysis has used an unsupervised

approach to cluster cells and then assign identity to clusters, rather than using a su-

pervised assignment of cell identity. This unsupervised approach has revealed that

developmental gradients more strongly define cells’ relationships with each other,

and that despite cell fate being fixed after the first division from a stem cell, cell

lineages are not distinct from each other. Instead other sources of variation such as

cell cycle stage, ribosomal protein content and developmental gradients define cell

differences.

Cell cycle phase is a strong source of variation within meristem cells (clusters

0, 2, 4, 5, 7, 8, 9, and 10 in Figure 5.14, coloured by cell cycle phase in Figure 5.20).

In particular, cluster 7 which is distinctly separated from the other meristem cells
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is dominated by cells in G2M phases indicating that they are actively dividing. The

documentation for the Seurat package (Butler et al., 2018) suggests that in some

cases cell identity that has been masked by the effects of cell cycle heterogeneity

can be recovered if the effects of cell cycle genes are regressed out of the dataset.

However, in other cases and particularly in datasets containing a mix of stem and

differentiated cells, regressing out the cell cycle can be detrimental to assigning cell

identity (Butler et al., 2018). In this case Butler et al. suggest regressing out the

difference between the G2M and S phase scores. In this analysis, cells have been

assigned to a three cell cycle phases based on the expression of periodic genes (see

Methods 2.4.10) but the effect of these genes has not been regressed out. One of

the next steps in the analysis is to attempt to regress out cell cycle effects and in

doing so perhaps reveal a different data structure to the meristem cells, hopefully

defining more distinct clusters.

Cell identity could also be examined in the context of development by clus-

tering subsets of cells from the same developmental stage. By removing or reducing

that source of variance, cell identity may become clearer. If this is true, then the

establishment of developmental gradients could also be related to cell type and the

question of how different cell types contribute to developmental gradients could be

tackled.

5.3.3 Developmental gradients in the root meristem

Rather than relying on cell clustering, a diffusion mapping approach could also be

used to answer questions about how cell identity is established. By ordering cells

into developmental ‘pseudotime’, the expression of genes can be modelled as identity

is established. Wendrich et al. (2017) proposed that cells in the Arabidopsis root

meristem gradually transition from stem cell to differentiated cells. Their study

utilised three fluorescent marker genes which were expressed in different develop-

mental gradients to perform expression studies of root meristems (but did not have

single cell resolution). They observed that often genes were expressed in two op-

posing gradients, characterised as development and differentiation, and they related

these gradual changes in expression to changes in protein accumulation and cellu-

lar properties. The presence of strong transcriptional gradients across development

in our dataset is consistent with their observations. Wendrich et al.’s study relied

on fluorescent markers to extract tissue according to gradient. This prevents the

collection of cell type-specific information, and biases the experiment towards those

cells expressing the markers (which was not consistent across the root cell lineages).

Defining the root development based on gradients of marker expression is also sen-
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sitive to fluctuations in fluorescence. Drop-seq avoids these shortcomings as all root

meristem cells are collected and the developmental gradients are established based

on the whole transcriptome rather than a few markers.

Efroni et al. (2016)’s studies on root regeneration following QC excision sug-

gests that young cells can change their identity if the root is damaged and reform a

new meristem from partially differentiated cells. This ability is restricted to young

meristem cells, suggesting as cells develop and begin elongating cell identity becomes

permanently fixed. Since each initial cell type produces more than one differenti-

ated cell type, identity cannot be established immediately, as the gene and protein

networks that define identity are unlikely to be created instantaneously. However,

whilst cell identity is not fixed at this point, Efroni et al. does observe a reduction

of cell identity in stele cells (based on marker gene expression) in response to root

tip removal, implying that final cell fate remains flexible even after cell identity has

begun to be established.

5.3.4 Immunity in root meristems

Differential expression analysis in response to flg22 revealed DEGs in the meristem,

root cap and early elongating cells. However, the small number of cells in the dataset

limits the usefulness of DEG analysis.

Clusters containing small numbers of cells are likely to be more heterogenous

than large clusters, as across a large number of cells the gene expression profile

will be smoother. This higher degree of heterogeneity in small datasets decreases

the resolution of DGE analysis. However, even in a larger dataset, the complete

response would be impossible to detect using Drop-seq. Despite this limitation, the

response of key genes can be investigated using this dataset. As the clustering of

cells is developed, the resolution of flg22 DGE analysis is likely to improve. If this

is the case, then the dataset could be used to investigate how flg22 responsive genes

responds in different cell types. Rather than inspecting differentially expressed

genes within clusters, differential expression could be examined in the context of

development. For example, a pseudotime series analysis could be applied to cells

which compares the expression profiles of flg22 treated cells across the diffusion

map, against untreated cells. This could detect genes with divergent gene expression

patterns in flg22 responsive cells, which may relate to development. This could either

be performed by comparing cells within one diffusion map containing all data, or by

comparing diffusion maps created separately for treated and untreated cells using

newly published tools like ‘cellAlign’ which can compare expression dynamics within

and between single-cell trajectories (Alpert et al., 2018).
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This experiment could be expanded to incorporate different time points after

flg22 treatment, in order to model the responses in the context of both time and

developmental stage, revealing the key changes that induce the immune response and

root growth inhibition. Furthermore increasing the range of developmental tissue

tested could reveal which tissues have the strongest response to flg22. Similarly,

stronger treatments such as Pep1, that have a more dramatic effect on root growth

could be investigating using Drop-seq.
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Chapter 6

Discussion and Future Work

6.1 Conclusions

Plant roots are comprised of numerous cell types, which work in a concerted manner

to maintain homeostasis, growth and respond to the environment. Various studies

of abiotic stress in Arabidopsis roots revealed that different cell types are charac-

terised by cell type-specific gene networks. These networks are managed at the

transcriptional level by combinations of transcription factors working together to

achieve a high degree of specificity. The work in this thesis reveals that immune

signalling is also characterised by cell type-specificity. As was observed in multi-

ple abiotic stress studies (Iyer-Pascuzzi et al., 2011), these specific transcriptomic

responses are strongly aligned to cell identity. This is revealed by the significant

overlap between immune-responsive and identity genes, and the enrichment of pro-

moter elements between these gene sets. The development of PMET as a method

to investigate enriched promoter elements in cell type-specific gene networks proved

to be very effective. The tool identified cell type-specific motif-pairs in each gene

set tested, revealing that immunity networks often rely on the pairing of a known

developmental transcription factor and a transcription factor associated with stress

response in order to elicit a cell type-specific response. Overall these experiments

revealed a highly complex immune landscape promoted by multiple cell types within

the mature root.

By contrast, single cell RNA-seq analysis of the Arabidopsis root meristem

revealed that cell types were less strongly defined at the transcriptional level during

early development, despite cell identity (based on cell files) being set after the first

division (Dolan et al., 1993). The lack of clustering by cell type in the Drop-

seq dataset suggests that meristem cell identity remains flexible, consistent with
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root regeneration studies (Efroni et al., 2016). DEG analysis of flg22 treatment

at different developmental zones in the root tip was revealed a limited immune

response, indicating that the meristem could be less responsive to flg22 compared

to mature cells. However, given that many effects of flg22 treatment have been

observed experimentally in the root meristem (Schäfer lab, unpublished), it is more

likely that this limited response is due to the inherent low resolution of Drop-seq,

and low capture rate of unbroken cells in this experiment.

This application of new single cell technology to the root meristem revealed

the potential of single cell transcriptomics to examine root gene expression patterns

across development. With further study, changes in gene expression gradients in

response to a variety of treatments could be examined within the context of this

developmental axis. Furthermore, these data could be expanded to incorporate

additional developmental zones. In particular, by harvesting the elongation zone

and mature zones specifically, the data could be aligned to the root meristem data

enabling the examination of gene expression gradients across multiple developmental

stages.

6.2 Root immunity signalling within wider plant phys-

iology

The use of root cell type-specific transcriptomics to investigate the immune response

to two elicitors, bacteria-derived flg22 and endogenous Pep1 revealed differential

responses between cells and between treatments. This highlights a complex im-

mune landscape within the root where each cell contributes differently to elicitor

treatment. Pep1 induced a very strong DEG response, encompassing the broad up-

regulation of immunity genes, and the down-regulation of growth associated genes.

In contrast, flg22 induced fewer genes than Pep1, and suppressed very few genes.

The almost complete overlap of the flg22 response with the Pep1 response implies

that the flg22 responsive gene networks are a subset of the Pep1 networks.

As an endogenous signal, Pep1 signalling via PEPR is activated in response

to damage. This could be the result of a number of different pathogen attacks, such

as bacterial or fungal infiltration or herbivory by root resident organisms. In or-

der to successfully mount a defence against such a wide variety of attacks, logically

Pep1 signalling must encompass some aspects of other elicitor response networks.

Furthermore, as an endogenous signal, Pep1 could represent a strong “alarm signal”

(Poncini et al., 2017) that the root has undergone damage, whereas flg22 percep-

tion is the earliest response to bacterial attack. This is consistent with Yamaguchi
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and Huffaker (2011)’s hypothesis that “Pep peptides are secreted to amplify defence

responses initiated by pathogen-associated molecular patterns (PAMPs)”. The am-

plification of PAMP-triggered defence responses by Pep1 signalling would require

strong overlap of signalling, and therefore DEGs. Pep1 has been shown to help

protect the root from multiple threats including increasing host resistance to bacte-

rial or fungal pathogens (necrotrophic and biotrophic) and offering some protection

against herbivores (Huffaker et al., 2011, 2013; Tintor et al., 2013). The extent to

which this is organised by overlapping gene networks (as was observed for flg22)

needs to be investigated through similar gene expression experiments examining

the reponse to a wider variety of PAMPs such as chitin, lipopolysaccharides and

elongation factor Tu (EF-Tu).

GO term analyses also revealed disparate functions in cell type-specifically

expressed genes. Analysis of DEGs uniquely expressed in each cell type following

elicitor treatment revealed that each cell type might be specialising in a different

function, in addition to a large shared gene response with other cells. The epidermis-

specifically enriched genes were characterised by up-regulated canonical immune

responses, and down-regulated growth terms. The specifically expressed genes in the

cortex and pericycle were more associated with metabolism and peptide transport.

The use of GO terms to assign function to gene sets is inherently limited by

previous experiments (Lewis, 2017). Genes are assign to GO terms based on the

observed expression in previous gene expression studies. In plant science, there is a

considerable bias towards leaf studies over root studies, and therefore key compo-

nents of the root immune machinery may not be annotated in GO terms. Further-

more, much of the root literature is based on whole root studies. If a key immunity

gene is cell type-specifically expressed, then the signal of that gene may not be de-

tected in whole root studies, and therefore would not have been assigned to a GO

term. This would be particularly likely for TFs, as these are typically expressed at

low levels. One of the main contributions of this study will be to enhance the annota-

tion of root-specifically expressed genes to immune associated GO terms. However,

the continual expansion of GO terms creates additional problems. As more genes

are associated to the wider array of GO terms, the number of terms enriched in

each gene set increases such that it is harder to decipher which terms are relevant,

and which ones are likely false-positives (Lewis, 2017). These difficulties highlight

the importance of utilising multiple analysis methods to aid the interpretation of

GO terms, including the specific analysis of potential regulatory mechanisms, using

tools such as PMET, or additional experiments such as ATAC-seq or ChIP-seq to

identify open chromatin and potential TF binding (Gligorijević and Pržulj, 2015).
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Furthermore, the context of the differential gene expression must be considered, in

terms of whether the enriched GO terms make sense spatially and developmentally.

As more single cell studies are performed, the Gene Ontology could be enriched

or combined with spatial and developmental information in order to increase the

specificity in GO enrichment analyses.

The strong and specific up-regulation of immunity terms in epidermis specif-

ically expressed genes implies that the epidermis responded more strongly to the

immune trigger than the cortex and pericycle. There are several potential expla-

nations for this observation. Firstly, it could simply be a dose effect, in that the

epidermis will have had slightly longer or more substantial exposure to the elicitors.

Under this hypothesis, the inner cells would only contact elicitor peptides that had

diffused through the outer layer, or had penetrated via natural “wounds” such as

epidermal cracks at the site of emerging lateral roots or at the elongation zone. Sec-

ondly, the stronger immune response in the epidermis could be due to bias in GO

terms (as described above), or thirdly it could be a reflection of innate differences

in sensitivity to PAMPs between cell types. Wyrsch et al. (2015) observed that all

root cell types were able to respond swiftly (within 10 minutes) in isolation to flg22

elicitation. Furthermore, Wyrsch et al. (2015) observed that “the intensity of the

immune responses did not always correlate with the expression level of the FLS2

receptor, but depended on the expressing tissue”. This observation supports the

idea that PAMP perception and sensitivity varies between different cell types, and

that our observed differences are less likely to be the result of a dose response.

Prior to Wyrsch et al.’s paper, it was speculated that the epidermis would be

less responsive than inner tissues. Intuitively, a highly active immune response in the

epidermis would lead to constant activation of PTI following exposure to microbes

in the soil, leading to negative effects such as growth inhibition (Heil, 2002; Heil and

Baldwin, 2002). It would also inhibit potential beneficial interactions with mutu-

alists (Faulkner and Robatzek, 2012). However this hypothesis is inconsistent with

the highly active epidermis immune response reported in this thesis and observed by

Wyrsch et al. One potential explanation for this discrepancy could be the sterility

of the experimental growth system. In all the experiments in this thesis, and within

the cited literature, plants were grown in a sterile environment. The first exposure

in the lab-grown plants life cycle to a biotic stimulus is upon the treatment with an

elicitor. By contrast, under normal growth conditions roots are constantly exposed

to low, non-threatening levels of microbes throughout development, which could re-

sult in the attenuation of epidermis immune responses. A compelling hypothesis is

that under normal growth conditions, the epidermis only reacts to a certain thresh-
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old of elicitation, or is activated primarily through cell-cell communication, rather

than receptor activation.

This study showed significant cell type-specificity in three root cell types.

Production of a comprehensive assessment of cell type-specificity in root immune

responses requires further study. It would be particularly interesting to repeat

the experiment with additional cell types, such as the endodermis, which repre-

sents the barrier between the outer tissues and the vasculature, as FLS2 is most

strongly expressed in stele tissue under mock conditions (Beck et al., 2014; Poncini

et al., 2017). It would also be ideal to repeat the pericycle experiment, in order

to determine whether the limited response that was observed is a biological feature

(contradicting Wyrsch et al.’s findings), or an artefact of the experiment resulting

from high levels of noise between replicates.

Throughout the PMET analyses, a striking pattern occurred in the pair-

ing of promoter motifs for known stress-regulatory TF families with motifs for de-

velopmental TFs in each cell type-specific gene network. Moreover, certain TF

combinations prevailed in specific cell types in a treatment-specific manner. For in-

stance, WRKY TFs might have a more prominent function in regulating epidermis-

specific networks together with specific developmental TFs, with WRKY/MYC and

WRKY/ATHB paired motifs regulating cell identity networks and KAN/WRKY

and ANAC/WRKY paired motifs regulating cell immunity networks. In turn, cortex

function relies on MYC, ATHB, and PIF TFs as central regulators that combine with

WRKY TFs to regulate cortex-specific immunity and with AHLs to regulate cortex

identity-specific gene networks. The observation of development TFs involvement

in cell type-specific immune networks is consistent with similar cell type-specific re-

sponses to abiotic stresses. In a meta-analysis of four abiotic stresses, Iyer-Pascuzzi

et al. (2011) observed that whilst there was no universal abiotic stress response,

there were core stress response (CSR) genes within each cell type. These CSRs

included known developmental TFs such as LONESOME HIGHWAY, SCHIZORIA

and interactors with developmental TFs such as SCR. This suggests that all plant

root defence responses are strongly linked to identity and development, and that

the interlinking of stress and identity or development transcription factors is the

mechanism by which robust cell type-specific networks are managed.

The PMET sensitivity study in Chapter 3 revealed unexpected differences

between up- and down-regulated immune genes which prompted the thought that

the PMET results might be revealing an underlying structure that defines the differ-

ence between up- and down-regulation in these gene sets. It is known that different

plant TFs, (and likely in other systems too) have positional preferences relative to
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the TSS (Yu et al., 2016), and the pattern observed in our dataset is consistent with

their observed results. The up-regulated TFs dominated by WRKYs and AT-hook

containing TFs such as AHLs bound motifs preferentially positioned closer to the

TSS, whereas the down-regulated motifs, dominated by MYB and ATHB TFs were

shown to be preferentially expressed further away (Yu et al., 2016). Positional pref-

erence TF binding positions suggests that the switch between up and down could

be regulated by structural changes in the chromatin rather than a model of direct

competition between TFs.

6.3 Relevance of root immune signalling in the context

of the plant

Three of the characteristic responses to immunity are MITOGEN-ACTIVATED

PROTEIN KINASE (MAPK) phosphorylation, a ROS burst and the induction of

defence genes such as PLANT DEFENSIN 1.2 (PDF1.2). These responses are

observed both above ground and below ground. Both the roots and leaves have

been shown to respond to bacterial flg22, fungal chitin and endogenous Pep1, but

the roots are insensitive to bacterial elf18 (Ranf et al., 2011). This suggests that

PRRs are organised on an organ specific spatio-temporal basis, likely to reflect the

likelihood of encountering said PAMP in each organ. Furthermore both leaves and

roots display organ-specific immune responses. Roots increase camalexin production

and exudation (Millet et al., 2010), and leaves activate Ca2+ and ROS signalling

through chloroplasts. Finally, the distinct natures of leaves and root immunity is

highlighted by the fact that roots can activate an immune response in isolation

(Wyrsch et al., 2015). These observations show that the roots immune response is

at least partially distinct from that of the leaves.

Within leaves, an emerging pattern is the global, massive over-representation

of nuclear encoded chloroplast genes (Nomura et al., 2012; de Torres Zabala et al.,

2015). The chloroplast is a primary site for the production of immune signals such as

ROS and calcium, and innate immune signalling pathways branch via chloroplasts.

They also play a vital role in providing photosynthesis-derived carbon sources and

energy needed for defence including the biosynthesis of several defence hormone pre-

cursors (reviewed in Stael et al. (2015)). Approximately 50% of ROS are produced in

chloroplasts, the other half are produced by apoplastic peroxidases (O’Brien et al.,

2012). Given that the chloroplast is a key part of the immune response in leaves,

it is particularly interesting to investigate root immune signalling to discover how

the defence response is enacted in the absence of chloroplast-mediated signalling.
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Whilst a large portion of immune signalling occurs via the chloroplasts, there are im-

mune signalling pathways in the leaves that bypass the chloroplast including MAPK

signalling cascades, and CDPK signalling (regulated by apoplastic Ca2+).

The Ca2+ burst following PAMP perception in the root has been described

as resembling a low concentration flg22 response in the leaves (Ranf et al., 2011).

This was suggested to be a reflection of lower expression of FLAGELLIN SENSING

2 (FLS2), but could also be explained by the lack of chloroplasts, and therefore a

smaller source of Ca2+ in the roots. The up-regulation of multiple MAPKs, MAP

kinase kinase kinases and leucine-rich repeat receptor kinases (LRR-RKs) in roots

(Chapter 3) implies that immune signalling utilises these non-chloroplastic signalling

mechanisms (rather than having an analogous signalling method via a different

organelle).

Whilst the root can elicit an immune response in isolation, it does not gen-

erally act in isolation and the long range transport of key defence hormones has

been shown between leaves and roots (reviewed in Park et al. (2017)), and calcium

has been shown to signal from root to shoot (Choi et al., 2014). As such the most

complete model of immune signalling considers that both leaves and roots are sup-

ported by the other, through the transport and storage of energy and metabolites.

Multi-level regulation from system to cell type-specific or even single cell level is

advantageous as it results in resilient networks. Whilst these networks may require

a higher degree of coordination through numerous regulatory and signalling pro-

teins), maintaining these networks adds to the robustness and flexibility required

for a plant to adapt to constantly changing environmental stimuli and conditions.

6.4 The application of single cell technologies to plant

studies

The experiment in Chapter 5 demonstrates the feasibility of using Drop-seq to per-

form high-throughput single cell sequencing on plant roots. The experiment showed

that some cells types and developmental stages can be identified even from small

relatively small numbers of captured cells. However, this chapter also shows that

there are significant challenges, some of which are plant-specific, that have to be

overcome in order to achieve sufficiently high resolution to tackle clear biological

questions. In addition to general improvements to single cell studies, the specific

expertise of single cell studies in plants requires further refinement. In particular,

improved methods to process plant cells without damage and thus reducing the

number of broken cells will render vast improvements in the cell capture rate in
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Drop-seq.

With further enhancement of single-cell technologies, and more expertise in

processing plant tissue, more studies will be able to compare gene expression between

cell types without relying on fluorescent markers (as were used in Chapter 4). Unlike

in FACS-based studies, in a single cell approach all cells come from the same batch

of plants. One of the shortcomings of FACS-based studies is that each cell type is

produced by a different marker line, therefore the cells are captured from different

sets of plants. In this situation, it is easy to introduce batch effects between cell types

that may not be apparent from the analysis. By extracting all cells from the same

batch of plants, the chance of batch effects is reduced, which increases the cohesion

and integrity of the cell type gene expression patterns. However, these studies

are reliant on harvesting sufficient tissue such that all cell types are sufficiently

represented in the final dataset (accounting for low cell capture, and broken cells).

In particular, performing differential gene expression on single cells require a vast

number of cells in order for the significance testing to be sufficiently robust.

Drop-seq was the first single cell technology to use microfluidics combined

with a barcoding system to enable parallel, high-throughput sequencing of single

cell transcriptomes (Macosko et al., 2015). This ground-breaking new approach

transformed single cell analysis. However, as the first iteration of a new technology,

Drop-seq has a large number of drawbacks, primarily the low capture rate. This is a

particular problem when it comes to processing small organs such as root meristems,

as it is labour intensive to harvest enough tissue even to capture a small number of

viable cells. The other major limitation of Drop-seq (and single cell transcriptomic

technologies in general) is the low resolution of transcriptomes that are produced.

For Drop-seq, the current detection level is limited to, on average, 10,000 reads per

cell (Zhang et al., 2018). This means that only the most highly expressed genes

are detected, which particularly limits the resolution of differential gene expression

analysis.

There are two, recently developed, alternative systems for single-cell tran-

scriptomes using microfluidics; inDrop (Klein et al., 2015; Zilionis et al., 2017) and

10X Chromium (Zheng et al., 2017). These recently developed alternatives have

yielded significant improvements in cell capture, inDrop which captures 80% of cells

(at a significant cost to mRNA capture) and the commercial 10X Chromium plat-

form yields up to 65% capture efficiency (Zheng et al., 2017), with an improved

sensitivity to gene detection (20000 reads from 4,000 genes on average per cell,

Zhang et al. (2018)). This higher resolution is achieved at significantly higher cost

compared to both Drop-seq and inDrop. However, the increased capture efficiency
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and gene detection sensitivity makes 10X the ideal platform for future studies where

tissue is limited such as plant roots.

6.5 Outlook for cell type-specific transcriptomics in plants

The advent of next generation sequencing technology revolutionised cell and molecu-

lar biology. In a similar manner single cell technologies are in the process of changing

the way that scientists investigate biological systems. In human biology, single cell

approaches are being used to develop a human cell atlas (Regev et al., 2017) which

aims to create an “ID card for each cell type” and a “3D map of how cell types

form tissues”. This vast dataset will be used to find out how changes in this map

underlie health and disease. By demonstrating that single cell RNA-seq can be

applied to the plant system, this thesis paves the way for a similar scale project

in plants. In addition to the study of meristematic tissue in this thesis, Drop-seq

has also been used to identify distinct populations of mature root cell types (Shulse

et al., 2018). The development of a plant cell atlas could be applied to understand

how the interactions between cells influence function, how cells act within a complex

system to create an organ and how cells react as a network to disease or changes in

environmental conditions. A plant single cell atlas would supplement the existing

plant atlases that integrate microarray data of whole plant (and some cell type-

specific) studies (Petryszak et al., 2015; Waese et al., 2017). These methods enable

the discovery of novel markers that can define smaller and smaller subgroups of cells.

These novels markers can then be used in the molecular biology lab to isolate cell

groups in a highly specific manner. Having identified specific markers, FACS and

single cell could even be combined to investigate heterogeneity within cell types.

In addition to investigating gene expression at a single cell level, the future of

molecular research and in particular the prediction and validation of high-resolution

gene regulatory networks will be through the integration of multi-omics datasets.

Brady et al. (2011) developed a stele-enriched gene regulatory network on a tissue

level based on the integration of miRNA, protein-protein interactions and protein-

DNA interactions with gene expression data. The continued development of single

cell ATAC-seq (Buenrostro et al., 2015) and ChIP-seq (Rotem et al., 2015) will en-

able the prediction of single cell gene regulatory networks. However, the current

high expense of these high-throughput methods maintains the need for in silico

predictions and modelling using methods such as PMET, in order to direct experi-

mentation more efficiently.

Along with other motif studies, PMET could be used to build a cell type-

171



specific ontology of transcription factor combinatorics, which could be used to de-

cipher gene regulation in a similar manner to how gene ontology studies are used

to determine function. By recursively combining regulatory information with func-

tional data about individual transcription factors and spatio-temporal gene expres-

sion patterns, the fundamental principles defining plant stress responses can be

defined. Increased understanding of immunity and other stresses in model organ-

isms such as Arabidopsis informs crop research and ultimately genome engineering

to develop crops that are resistant to pathogens, or other environmental stresses.
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Appendix A

List of ribosomal proteins

Table A.1: Table of ribosomal proteins removed from cell type-specific RNA-seq
analysis

Gene ID Gene Acronym Description

AT1G01100 RPP1A 60S acidic ribosomal protein P1-1

AT1G01860 PFC1 rRNA adenine N(6)-methyltransferase

AT1G02780 RPL19A 60S ribosomal protein L19-1

AT1G02830 RPL22A Putative 60S ribosomal protein L22-1

AT1G04270 RPS15A 40S ribosomal protein S15-1

AT1G04480 RPL23A At2g33370

AT1G05190 RPL6 50S ribosomal protein L6, chloroplastic

AT1G06380 Ribosomal protein L1p/L10e family

AT1G07070 RPL35AA 60S ribosomal protein L35a-1

AT1G07320 RPL4 RPL4

AT1G07770 RPS15AA AT1G07770 protein

AT1G08360 RPL10AA 60S ribosomal protein L10a-1

AT1G08845 Ribosomal L18p/L5e family protein

AT1G09590 RPL21A 60S ribosomal protein L21-1

AT1G09690 RPL21A 60S ribosomal protein L21-1

AT1G12220 RPS5 Disease resistance protein

AT1G12960 RPL27AA Putative 60S ribosomal protein L27a-1

AT1G14205 Ribosomal L18p/L5e family protein

AT1G14320 RPL10A 60S ribosomal protein L10-1

AT1G15250 RPL37A 60S ribosomal protein L37-1

AT1G15930 RPS12A 40S ribosomal protein S12-1

AT1G16740 50S ribosomal protein L20

AT1G16870 Mitochondrial 28S ribosomal protein S29-like protein

AT1G17560 HLL 50S ribosomal protein HLL, mitochondrial

AT1G18540 RPL6A 60S ribosomal protein L6-1

AT1G22780 RPS18C 40S ribosomal protein S18

AT1G23290 RPL27AB 60S ribosomal protein L27a-2

AT1G23410 RPS27AA Ubiquitin-40S ribosomal protein S27a-1

AT1G25260 Ribosome assembly factor mrt4

AT1G26880 RPL34A 60S ribosomal protein L34-1

AT1G26910 RPL10B 60S ribosomal protein L10-2

Continued on next page
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Table A.1 – Continued from previous page

Gene ID Gene Acronym Description

AT1G27400 RPL17A 60S ribosomal protein L17-1

AT1G29040 50S ribosomal protein L34

AT1G29070 RPL34 50S ribosomal protein L34, chloroplastic

AT1G29965 RPL18AA 60S ribosomal protein L18a-1

AT1G29970 RPL18AA 60S ribosomal protein L18A-1

AT1G30230 Translation elongation factor EF1B/ribosomal protein S6 fam-

ily protein

AT1G31817 NFD3 Probable ribosomal protein S11, mitochondrial

AT1G32990 RPL11 50S ribosomal protein L11, chloroplastic

AT1G33120 RPL9B 60S ribosomal protein L9-1

AT1G33140 RPL9B 60S ribosomal protein L9-1

AT1G33850 40S ribosomal protein S15

AT1G34030 RPS18C 40S ribosomal protein S18

AT1G35680 RPL21 50S ribosomal protein L21, chloroplastic

AT1G36240 RPL30A Putative 60S ribosomal protein L30-1

AT1G41880 RPL35AB 60S ribosomal protein L35a-2

AT1G43170 ARP1 60S ribosomal protein L3-1

AT1G48350 RPL18 EMB3105

AT1G48830 RPS7A 40S ribosomal protein S7-1

AT1G52300 RPL37B 60S ribosomal protein L37-2

AT1G52930 BRIX1-2 Ribosome biogenesis protein BRX1 homolog 2

AT1G54217 Ribosomal protein L18ae family

AT1G54770 Fcf2 pre-rRNA processing protein

AT1G56045 RPL41C 60S ribosomal protein L41

AT1G57540 40S ribosomal protein

AT1G57660 RPL21E 60S ribosomal protein L21-2

AT1G57670 Disease resistance protein RPS4, putative

AT1G57860 RPL21E 60S ribosomal protein L21-2

AT1G58380 RPS2A At1g59359

AT1G58684 RPS2B 40S ribosomal protein S2-2

AT1G58983 RPS2B 40S ribosomal protein S2-2

AT1G59359 RPS2B 40S ribosomal protein S2-2

AT1G61580 ARP2 60S ribosomal protein L3-2

AT1G64510 Translation elongation factor EF1B/ribosomal protein S6 fam-

ily protein

AT1G66580 RPL10C 60S ribosomal protein L10-3

AT1G66890 50S ribosomal-like protein

AT1G67430 RPL17B 60S ribosomal protein L17-2

AT1G68590 30S ribosomal protein 3-1, chloroplastic

AT1G69620 RPL34B 60S ribosomal protein L34-2

AT1G70600 RPL27AC 60S ribosomal protein L27a-3

AT1G72270 CONTAINS InterPro DOMAIN/s: Ribosome 60S biogenesis

N-terminal (InterPro:IPR021714);

AT1G72370 RPSAA 40S ribosomal protein SA

AT1G74050 RPL6C 60S ribosomal protein L6-3

AT1G74060 RPL6B 60S ribosomal protein L6-2

AT1G74270 RPL35AC 60S ribosomal protein L35a-3

AT1G74970 RPS9 30S ribosomal protein S9, chloroplastic

AT1G75350 RPL31 50S ribosomal protein L31, chloroplastic

AT1G77750 RPS13 Small ribosomal subunit protein S13, mitochondrial

Continued on next page
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Gene ID Gene Acronym Description

AT1G77940 RPL30B 60S ribosomal protein L30-2

AT1G78630 RPL13 50S ribosomal protein L13, chloroplastic

AT1G79850 RPS17 30S ribosomal protein S17, chloroplastic

AT1G80750 RPL7A 60S ribosomal protein L7-1

AT2G01250 RPL7B 60S ribosomal protein L7-2

AT2G03130 50S ribosomal protein L7/L12

AT2G03810 18S pre-ribosomal assembly protein gar2-like protein

AT2G04390 RPS17A 40S ribosomal protein S17-1

AT2G05220 RPS17B 40S ribosomal protein S17-2

AT2G07675 Ribosomal protein S12/S23 family protein

AT2G07696 RPS7 At2g07696

AT2G07734 Alpha-L RNA-binding motif/Ribosomal protein S4 family

protein

AT2G09990 RPS16A 40S ribosomal protein S16-1

AT2G16360 Ribosomal protein S25 family protein

AT2G16930 50S ribosomal protein L27

AT2G17360 RPS4A 40S ribosomal protein S4-1

AT2G18020 RPL8A EMB2296

AT2G18400 Putative ribosomal protein L6

AT2G19720 RPS15AB 40S ribosomal protein S15a-2

AT2G19730 RPL28A 60S ribosomal protein L28-1

AT2G19740 RPL31A 60S ribosomal protein L31-1

AT2G19750 RPS30A 40S ribosomal protein S30

AT2G20060 50S ribosomal protein L4

AT2G20450 RPL14A 60S ribosomal protein L14-1

AT2G21290 30S ribosomal protein S31, mitochondrial

AT2G21580 RPS25B 40S ribosomal protein S25-2

AT2G24090 RPL35 50S ribosomal protein L35, chloroplastic

AT2G25210 Ribosomal protein L39 family protein

AT2G27530 RPL10AB 60S ribosomal protein L10a-2

AT2G27720 60S acidic ribosomal protein family

AT2G28815 60S ribosomal protein L16-like, mitochondrial

AT2G31610 RPS3A 40S ribosomal protein S3-1

AT2G32060 RPS12C 40S ribosomal protein S12

AT2G32220 RPL27A 60S ribosomal protein L27-1

AT2G33370 RPL23A At2g33370

AT2G33450 RPL28 PRPL28

AT2G33800 RPS5 30S ribosomal protein S5, chloroplastic

AT2G34480 Ribosomal protein L18ae/LX family protein

AT2G34520 RPS14 At2g34520

AT2G36160 RPS14A 40S ribosomal protein S14-1

AT2G36170 RPL40B Ubiquitin-60S ribosomal protein L40-1

AT2G36620 RPL24A 60S ribosomal protein L24-1

AT2G37190 RPL12A 60S ribosomal protein L12-1

AT2G37270 RPS5A 40S ribosomal protein S5-1

AT2G37600 RPL36A 60S ribosomal protein L36-1

AT2G37990 Ribosome biogenesis regulatory protein homolog

AT2G38140 RPS31 30S ribosomal protein S31, chloroplastic

AT2G39140 SVR1 Putative ribosomal large subunit pseudouridine synthase

SVR1, chloroplastic

Continued on next page
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Gene ID Gene Acronym Description

AT2G39390 RPL35B 60S ribosomal protein L35-2

AT2G39460 RPL23AA 60S ribosomal protein L23a-1

AT2G39590 RPS15AC 40S ribosomal protein S15a-3

AT2G40010 RPP0A 60S acidic ribosomal protein P0-1

AT2G40205 RPL41C 60S ribosomal protein L41

AT2G40360 BOP1 Ribosome biogenesis protein BOP1 homolog

AT2G40510 RPS26B 40S ribosomal protein S26

AT2G40590 RPS26A 40S ribosomal protein S26

AT2G41840 RPS2C 40S ribosomal protein S2-3

AT2G42740 RPL11A 60S ribosomal protein L11-1

AT2G43030 RPL3A 50S ribosomal protein L3-1, chloroplastic

AT2G43460 RPL38B 60S ribosomal protein L38

AT2G44120 Ribosomal protein L30/L7 family protein

AT2G44860 Probable ribosome biogenesis protein RLP24

AT2G45710 RPS27A 40S ribosomal protein S27-1

AT2G47110 RPS27AB UBQ6

AT2G47420 DIM1A rRNA adenine N(6)-methyltransferase

AT2G47570 Ribosomal protein L18e/L15 superfamily protein

AT2G47610 RPL7AA 60S ribosomal protein L7a-1

AT3G01160 Pre-rRNA-processing ESF1-like protein

AT3G02080 RPS19A 40S ribosomal protein S19-1

AT3G02190 RPL39B 60S ribosomal protein L39-2

AT3G02560 RPS7B 40S ribosomal protein S7-2

AT3G03600 RPS2 RPS2

AT3G04230 RPS16B 40S ribosomal protein S16-2

AT3G04400 RPL23A At2g33370

AT3G04770 RPSAb 40S ribosomal protein SA

AT3G04840 RPS3AA 40S ribosomal protein S3a-1

AT3G04920 RPS24A 40S ribosomal protein S24-1

AT3G05560 RPL22B 60S ribosomal protein L22-2

AT3G05590 RPL18B RPL18

AT3G06680 60S ribosomal protein L29

AT3G06700 RPL29A 60S ribosomal protein L29-1

AT3G07110 Ribosomal protein L13 family protein

AT3G08520 RPL41C 60S ribosomal protein L41

AT3G09200 RPP0B 60S acidic ribosomal protein P0-2

AT3G09500 RPL35A 60S ribosomal protein L35-1

AT3G09630 RPL4A 60S ribosomal protein L4-1

AT3G09680 RPS23A 40S ribosomal protein S23-1

AT3G10090 RPS28A 40S ribosomal protein S28-1

AT3G10610 RPS17C 40S ribosomal protein S17-3

AT3G10950 RPL37AB Putative 60S ribosomal protein L37a-1

AT3G11120 RPL41C 60S ribosomal protein L41

AT3G11250 RPP0C 60S acidic ribosomal protein P0-3

AT3G11510 RPS14B At3g11510

AT3G11940 RPS5B 40S ribosomal protein S5-2

AT3G11964 RRP5 rRNA biogenesis protein RRP5

AT3G12370 50S ribosomal protein L10

AT3G12915 Ribosomal protein S5/Elongation factor G/III/V family pro-

tein

Continued on next page
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Gene ID Gene Acronym Description

AT3G13120 RPS10 30S ribosomal protein S10, chloroplastic

AT3G13580 RPL7D Ribosomal protein L30/L7 family protein

AT3G13882 Ribosomal protein L34

AT3G14600 RPL18AC 60S ribosomal protein L18a-3

AT3G15190 RPS20 PRPS20

AT3G15460 BRIX1-1 Ribosome biogenesis protein BRX1 homolog 1

AT3G16080 RPL37C 60S ribosomal protein L37-3

AT3G16780 RPL19B 60S ribosomal protein L19-2

AT3G17465 RPL3B 50S ribosomal protein L3-2, chloroplastic

AT3G17626 Structural constituent of ribosome

AT3G18740 RPL30C 60S ribosomal protein L30-3

AT3G18880 40S ribosomal protein S17-like

AT3G19800 Large ribosomal RNA subunit accumulation protein YCED

homolog 2, chloroplastic

AT3G19810 Large ribosomal RNA subunit accumulation protein YCED

homolog 1, chloroplastic

AT3G22230 RPL27B 60S ribosomal protein L27-2

AT3G22300 RPS10 40S ribosomal protein S10, mitochondrial

AT3G22660 EBP2 Probable rRNA-processing protein EBP2 homolog

AT3G22980 Ribosomal protein S5/Elongation factor G/III/V family pro-

tein

AT3G23390 RPL36AB 60S ribosomal protein L36a

AT3G23620 Ribosome production factor 2 homolog

AT3G24830 RPL13AB 60S ribosomal protein L13a-2

AT3G25520 ATL5 RPL5A

AT3G25920 RPL15 50S ribosomal protein L15, chloroplastic

AT3G26360 Ribosomal protein S21 family protein

AT3G27160 GHS1 Ribosomal protein S21 family protein

AT3G27830 RPL12A RPL12-A

AT3G27840 RPL12B 50S ribosomal protein L12-2, chloroplastic

AT3G27850 RPL12C 50S ribosomal protein L12-3, chloroplastic

AT3G28500 RPP2C 60S acidic ribosomal protein P2-3

AT3G28900 RPL34C 60S ribosomal protein L34-3

AT3G43980 RPS29C 40S ribosomal protein S29

AT3G44010 RPS29C Ribosomal protein S14p/S29e family protein

AT3G44590 RPP2D Acidic ribosomal protein P2-like

AT3G44890 RPL9 RPL9

AT3G45030 RPS20A 40S ribosomal protein S20-1

AT3G46040 RPS15AD RPS15AD

AT3G47370 RPS20B 40S ribosomal protein S20-2

AT3G48930 RPS11A 40S ribosomal protein S11-1

AT3G48960 RPL13C 60S ribosomal protein L13

AT3G49010 RPL13B 60S ribosomal protein L13

AT3G49460 60S acidic ribosomal protein-like protein

AT3G49910 RPL26A 60S ribosomal protein L26-1

AT3G51190 RPL8B 60S ribosomal protein L8-2

AT3G52580 RPS14C 40S ribosomal protein S14-3

AT3G52590 RPL40B Ubiquitin-60S ribosomal protein L40-1

AT3G53020 RPL24B 60S ribosomal protein L24-2

AT3G53430 RPL12B 60S ribosomal Protein L12-like

Continued on next page
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AT3G53740 RPL36B 60S ribosomal protein L36

AT3G53870 RPS3B 40S ribosomal protein S3-2

AT3G53890 RPS21B 40S ribosomal protein S21-1

AT3G54210 RPL17 50S ribosomal protein L17, chloroplastic

AT3G55170 RPL35C 60S ribosomal protein L35-3

AT3G55280 RPL23AB 60S ribosomal protein L23a-2

AT3G55750 RPL35AD 60S ribosomal protein L35a-4

AT3G56020 RPL41C 60S ribosomal protein L41

AT3G56340 RPS26C 40S ribosomal protein S26

AT3G56910 PSRP5 50S ribosomal protein 5, chloroplastic

AT3G57490 RPS2D 40S ribosomal protein S2-4

AT3G58700 RPL11C 60S ribosomal protein L11-2

AT3G59540 RPL38B 60S ribosomal protein L38

AT3G59650 Mitochondrial ribosomal protein L51/S25/CI-B8 family pro-

tein

AT3G60245 RPL37AC 60S ribosomal protein L37a-2

AT3G60770 RPS13A 40S ribosomal protein S13-1

AT3G61110 RPS27B 40S ribosomal protein S27

AT3G61111 40S ribosomal protein S27

AT3G62250 RPS27AC Ubiquitin-40S ribosomal protein S27a-3

AT3G62870 RPL7AB 60S ribosomal protein L7a-2

AT3G63190 RRF Ribosome-recycling factor, chloroplastic

AT3G63490 RPL1 50S ribosomal protein L1, chloroplastic

AT4G00100 RPS13B 40S ribosomal protein S13-2

AT4G01310 RPL5 50S ribosomal protein L5, chloroplastic

AT4G02230 RPL19C 60S ribosomal protein L19-3

AT4G09012 Mitochondrial ribosomal protein L27

AT4G09800 RPS18C 40S ribosomal protein S18

AT4G10450 RPL9D 60S ribosomal protein L9-2

AT4G12600 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein

AT4G13170 RPL13AC 60S ribosomal protein L13a-3

AT4G14245 Structural constituent of ribosome protein

AT4G14250 structural constituent of ribosome

AT4G14320 Zinc-binding ribosomal protein family protein

AT4G15000 RPL27C 60S ribosomal protein L27

AT4G15770 60S ribosome subunit biogenesis protein NIP7 homolog

AT4G16030 Probable ribosomal protein

AT4G16720 RPL15A Ribosomal protein L15

AT4G17390 RPL15B 60S ribosomal protein L15-2

AT4G17560 50S ribosomal protein L19-1, chloroplastic

AT4G17610 tRNA/rRNA methyltransferase (SpoU) family protein

AT4G18100 RPL32A 60S ribosomal protein L32-1

AT4G18730 RPL11C 60S ribosomal protein L11-2

AT4G21460 Ribosomal protein S24/S35, mitochondrial

AT4G23620 Ribosomal protein L25/Gln-tRNA synthetase, anti-codon-

binding domain-containing protein

AT4G25730 Putative rRNA methyltransferase

AT4G25740 RPS10A 40S ribosomal protein S10-1

AT4G25890 RPP3A 60S acidic ribosomal protein P3-1

AT4G26090 RPS2 Disease resistance protein RPS2
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AT4G26230 RPL31B Putative ribosomal protein

AT4G27010 CONTAINS InterPro DOMAIN/s: Ribosome 60S biogenesis

N-terminal (InterPro:IPR021714);

AT4G27090 RPL14B AT4G27090 protein

AT4G29390 RPS30A 40S ribosomal protein S30

AT4G29410 RPL28C 60S ribosomal protein L28-2

AT4G29430 RPS15AE 40S ribosomal protein S15a-5

AT4G30150 CONTAINS InterPro DOMAIN/s: Nucleolar 27S pre-rRNA

processing, Urb2/Npa2

AT4G30800 RPS11B 40S ribosomal protein S11-2

AT4G30930 RPL21M NFD1

AT4G31700 RPS6A 40S ribosomal protein S6-1

AT4G31985 RPL39C 60S ribosomal protein L39-1

AT4G33865 RPS29C 40S ribosomal protein S29

AT4G34555 RPS25D 40S ribosomal protein S25-3

AT4G34620 RPS16-1 SSR16

AT4G34670 RPS3AB 40S ribosomal protein S3a

AT4G34730 Probable ribosome-binding factor A, chloroplastic

AT4G35490 MRPL11 At4g35490

AT4G36130 RPL8C 60S ribosomal protein L8-3

AT4G39200 RPS25E 40S ribosomal protein S25-4

AT5G02440 60S ribosomal protein L36

AT5G02450 RPL36C 60S ribosomal protein L36-3

AT5G02610 Ribosomal L29 family protein

AT5G02870 RPL4D 60S ribosomal protein L4-2

AT5G02960 RPS23B 40S ribosomal protein S23-2

AT5G03850 RPS28A 40S ribosomal protein S28-1

AT5G04800 RPS17D 40S ribosomal protein S17-4

AT5G07090 RPS4B 40S ribosomal protein S4-2

AT5G09490 RPS15B 40S ribosomal protein S15-2

AT5G09500 RPS15C 40S ribosomal protein S15-3

AT5G09510 RPS15D 40S ribosomal protein S15-4

AT5G10070 Probable ribosome biogenesis protein At5g10070

AT5G10360 RPS6B 40S ribosomal protein S6

AT5G11750 Ribosomal protein L19 family protein

AT5G13510 RPL10 50S ribosomal protein L10, chloroplastic

AT5G14290 Mitochondrial ribosomal protein L37

AT5G14320 RPS13 30S ribosomal protein S13, chloroplastic

AT5G15200 RPS9B 40S ribosomal protein S9-1

AT5G15390 rRNA methylase-like protein

AT5G15520 RPS19B 40S ribosomal protein S19-2

AT5G15550 WDR12 Ribosome biogenesis protein WDR12 homolog

AT5G15750 Alpha-L RNA-binding motif/Ribosomal protein S4 family

protein

AT5G16130 RPS7C 40S ribosomal protein S7-3

AT5G16200 50S ribosomal protein-like protein

AT5G17870 PSRP6 plastid-specific 50S ribosomal protein 6

AT5G18380 RPS16C 40S ribosomal protein S16-3

AT5G19025 Ribosomal protein L34e superfamily protein

Continued on next page
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Table A.1 – Continued from previous page

Gene ID Gene Acronym Description

AT5G19720 Ribosomal protein L25/Gln-tRNA synthetase, anti-codon-

binding domain-containing protein

AT5G20160 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein

AT5G20180 Ribosomal protein

AT5G20290 RPS8A 40S ribosomal protein S8

AT5G22440 RPL10AC 60S ribosomal protein L10a-3

AT5G23535 50S ribosomal protein L24

AT5G23740 RPS11C RPS11-BETA

AT5G23900 RPL13D 60S ribosomal protein L13

AT5G24490 30S ribosomal protein

AT5G24510 60S acidic ribosomal protein family

AT5G27700 RPS21C 40S ribosomal protein S21

AT5G27770 RPL22C 60S ribosomal protein L22-3

AT5G27850 RPL18C 60S ribosomal protein L18-3

AT5G28060 RPS24B 40S ribosomal protein S24-2

AT5G30495 Fcf2 pre-rRNA processing protein

AT5G30510 RPS1 30S ribosomal protein S1, chloroplastic

AT5G35530 RPS3C 40S ribosomal protein S3-3

AT5G39600 39S ribosomal protein

AT5G39740 RPL5B RPL5B

AT5G39800 Mitochondrial ribosomal protein L27

AT5G39850 RPS9C 40S ribosomal protein S9-2

AT5G40040 RPP2E 60S acidic ribosomal protein P2-5

AT5G40950 RPL27 50S ribosomal protein L27, chloroplastic

AT5G41520 RPS10B 40S ribosomal protein S10-2

AT5G43640 RPS15E 40S ribosomal protein S15-5

AT5G44710 37S ribosomal protein S27

AT5G45250 RPS4 Disease resistance protein RPS4

AT5G45775 RPL11C 60S ribosomal protein L11-2

AT5G46160 HLP 50S ribosomal protein HLP, mitochondrial

AT5G46420 16S rRNA processing protein RimM family

AT5G46430 RPL32B 60S ribosomal protein L32-2

AT5G46470 RPS6 Disease resistance protein RPS6

AT5G47190 50S ribosomal protein L19-2, chloroplastic

AT5G47320 RPS19 40S ribosomal protein S19, mitochondrial

AT5G47700 RPP1C 60S acidic ribosomal protein P1-3

AT5G47930 RPS27D 40S ribosomal protein S27-3

AT5G47940 40S ribosomal protein S27

AT5G48760 RPL13AD 60S ribosomal protein L13a-4

AT5G51610 50S ribosomal protein L11-like

AT5G52370 28S ribosomal S34 protein

AT5G52490 FIB3 Putative rRNA 2’-O-methyltransferase fibrillarin 3

AT5G52650 RPS10C 40S ribosomal protein S10-3

AT5G53920 Ribosomal protein L11 methyltransferase-like protein

AT5G54600 RPL24 SVR8

AT5G56670 RPS30A 40S ribosomal protein S30

AT5G56710 RPL31C 60S ribosomal protein L31-3

AT5G56940 RPS16-2 30S ribosomal protein S16-2, chloroplastic/mitochondrial

AT5G57060 60S ribosomal L18a-like protein

AT5G57290 RPP3B 60S acidic ribosomal protein P3-2

Continued on next page
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Table A.1 – Continued from previous page

Gene ID Gene Acronym Description

AT5G58420 RPS4D 40S ribosomal protein S4-3

AT5G58990 28S ribosomal S34 protein

AT5G59240 RPS8B 40S ribosomal protein S8

AT5G59850 RPS15AA AT1G07770 protein

AT5G60670 RPL12C 60S ribosomal protein L12-3

AT5G61170 RPS19C 40S ribosomal protein S19-3

AT5G61330 rRNA processing protein-related

AT5G62300 RPS20A 40S ribosomal protein S20-1

AT5G63070 RPS15F 40S ribosomal protein S15-6

AT5G64140 RPS28C RPS28

AT5G65220 RPL29 AT5G65220 protein

AT5G66360 DIM1B Ribosomal RNA small subunit methyltransferase, mitochon-

drial

AT5G67510 RPL26B 60S ribosomal protein L26-2

ATMG00080 RPL16 Rpl16

ATMG00210 RPL5 At2g07725

ATMG00290 RPS4 mitochondrial ribosomal protein S4

ATMG00560 RPL2 Rpl2

ATMG00980 RPSL2 Ribosomal protein S12/S23 family protein

ATMG01270 RPS7 At2g07696

ATCG00050 RPS16 30S ribosomal protein S16, chloroplastic

ATCG00160 RPS2 30S ribosomal protein S2, chloroplastic

ATCG00330 RPS14 30S ribosomal protein S14, chloroplastic

ATCG00380 RPS4 30S ribosomal protein S4, chloroplastic

ATCG00640 RPL33 50S ribosomal protein L33, chloroplastic

ATCG00650 RPS18 30S ribosomal protein S18, chloroplastic

ATCG00660 RPL20 50S ribosomal protein L20, chloroplastic

ATCG00065 RPS12A ribosomal protein S12A

ATCG00750 RPS11 30S ribosomal protein S11, chloroplastic

ATCG00760 RPL36 50S ribosomal protein L36, chloroplastic

ATCG00770 RPS8 30S ribosomal protein S8, chloroplastic

ATCG00780 RPL14 50S ribosomal protein L14, chloroplastic

ATCG00790 RPL16 50S ribosomal protein L16, chloroplastic

ATCG00800 RPS3 30S ribosomal protein S3, chloroplastic

ATCG00810 RPL22 50S ribosomal protein L22, chloroplastic

ATCG00820 RPS19 ribosomal protein S19

ATCG00830 rpl2-A 50S ribosomal protein L2, chloroplastic

ATCG00840 RPL23-A 50S ribosomal protein L23, chloroplastic

ATCG00900 RPS7-A 30S ribosomal protein S7, chloroplastic

ATCG00905 RPS12C ribosomal protein S12C

ATCG01020 RPL32 50S ribosomal protein L32, chloroplastic

ATCG01120 RPS15 30S ribosomal protein S15, chloroplastic

ATCG01230 RPS12B ribosomal protein S12B

ATCG01240 RPS7-A 30S ribosomal protein S7, chloroplastic

ATCG01300 RPL23-A 50S ribosomal protein L23, chloroplastic

ATCG01310 rpl2-A 50S ribosomal protein L2, chloroplastic
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Figure B.1: Heat map to show the paired motif enriched in the 1000bp promoter
upstream of the transcription start site (TSS) plus the 5’ untranslated region (UTR)
region in the top 521 epidermis identity genes in the epidermis. Colour indicates
significance of association for values of p ≤ 0.05, p > 0.05 are coloured as white.
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Figure B.2: Heat map to show the paired motif enriched in the 1000bp promoter
upstream of the TSS plus the 5’ UTR region in the top 521 cortex identity genes
in the cortex. Colour indicates significance of association for values of p ≤ 0.05,
p > 0.05 are coloured as white.
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Figure B.3: Heat map to show the paired motif enriched in the 1000bp promoter
upstream of the TSS plus the 5’ UTR region in the top 521 pericycle identity genes
in the pericycle. Colour indicates significance of association for values of p ≤ 0.05,
p > 0.05 are coloured as white.
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Figure B.4: Heat map to show the paired motif enriched in the 1000bp promoter
upstream of the TSS plus the 5’ UTR region in the top 128 flg22 responsive genes
in the epidermis . Colour indicates significance of association for values of p ≤ 0.01,
p > 0.01 are coloured as white.
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Figure B.5: Heat map to show the paired motif enriched in the 1000bp promoter
upstream of the TSS plus the 5’ UTR region in the top 128 flg22 responsive genes
in the epidermis . Colour indicates significance of association for values of p ≤ 0.01,
p > 0.01 are coloured as white.
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Figure B.6: Heat map to show the paired motif enriched in the 1000bp promoter
upstream of the TSS plus the 5’ UTR region in the top 365 Pep1 induced genes in
the epidermis . Colour indicates significance of association for values of p ≤ 0.01,
p > 0.01 are coloured as white.
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Figure B.7: Heat map to show the paired motif enriched in the 1000bp promoter
upstream of the TSS plus the 5’ UTR region in the top 365 Pep1 induced genes in
the epidermis . Colour indicates significance of association for values of p ≤ 0.01,
p > 0.01 are coloured as white.
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Figure B.8: Heat map to show the paired motif enriched in the 1000bp promoter
upstream of the TSS plus the 5’ UTR region in the top 365 Pep1 induced genes in
the epidermis . Colour indicates significance of association for values of p ≤ 0.01,
p > 0.01 are coloured as white.
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Vladimir Gligorijević and Nataša Pržulj. Methods for biological data integration: perspectives and chal-

lenges. Journal of the Royal Society Interface, 12(112):20150571, 2015.
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Jos Wendrich, Barbara Möller, Song Li, Shunsuke Saiga, Rosangela Sozzani, Philip Benfey, Bert De Rybel,

and Dolf Weijers. Framework for gradual progression of cell ontogeny in the Arabidopsis root meristem.

Proceedings of the National Academy of Sciences, 114(42):E8922–E8929, 2017.

Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. ISBN

978-3-319-24277-4. URL http://ggplot2.org.

Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80–83, 1945.

Kyoung-Jae Won, Bing Ren, and Wei Wang. Genome-wide prediction of transcription factor binding sites

using an integrated model. Genome Biology, 11(1):R7, 2010.

Ines Wyrsch, Ana Domı́nguez-Ferreras, Niko Geldner, and Thomas Boller. Tissue-specific FLAGELLIN-

SENSING 2 (FLS2 ) expression in roots restores immune responses in Arabidopsis fls2 mutants. New

Phytologist, 206(2):774–784, 2015.

206



Shuping Xing, Niklas Wallmeroth, Kenneth W Berendzen, and Christopher Grefen. Techniques for the

analysis of protein-protein interactions in vivo. Plant Physiology, 171(2):727–758, 2016.

Yube Yamaguchi and Alisa Huffaker. Endogenous peptide elicitors in higher plants. Current Opinion in

Plant Biology, 14(4):351–357, 2011.

Yube Yamaguchi, Gregory Pearce, and Clarence Ryan. The cell surface leucine-rich repeat receptor for At-

Pep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proceedings

of the National Academy of Sciences, 103(26):10104–10109, 2006.

Yube Yamaguchi, Alisa Huffaker, Anthony Bryan, Frans Tax, and Clarence Ryan. PEPR2 is a second

receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. The Plant

Cell, 22(2):508–522, 2010.

Mingzhu Yin, Yanping Wang, Lihua Zhang, Jinzhu Li, Wenli Quan, Li Yang, Qingfeng Wang, and Zhulong

Chan. The Arabidopsis Cys2/His2 zinc finger transcription factor ZAT18 is a positive regulator of plant

tolerance to drought stress. Journal Of Experimental Botany, 68(11):2991–3005, 2017.

Chun-Ping Yu, Jinn-Jy Lin, and Wen-Hsiung Li. Positional distribution of transcription factor binding sites

in arabidopsis thaliana. Scientific Reports, 6:25164, 2016.

Wenli Zhang, Tao Zhang, Yufeng Wu, and Jiming Jiang. Genome-wide identification of regulatory DNA

elements and protein-binding footprints using signatures of open chromatin in Arabidopsis. The Plant

Cell, pages tpc–112, 2012.

Xiannian Zhang, Tianqi Li, Feng Liu, Yaqi Chen, Jiacheng Yao, Zeyao Li, Yanyi Huang, and Jianbin Wang.

Comparative analysis of droplet-based ultra-high-throughput single-cell rna-seq systems. Molecular Cell,

2018.

Grace XY Zheng, Jessica M Terry, Phillip Belgrader, Paul Ryvkin, Zachary W Bent, Ryan Wilson, So-

longo B Ziraldo, Tobias D Wheeler, Geoff P McDermott, Junjie Zhu, et al. Massively parallel digital

transcriptional profiling of single cells. Nature Communications, 8:14049, 2017.

Ruiqin Zhong, Elizabeth Richardson, and Zheng-Hua Ye. The MYB46 transcription factor is a direct target

of SND1 and regulates secondary wall biosynthesis in Arabidopsis. The Plant Cell, 19(9):2776–2792,

2007.

Qing Zhou and Wing H Wong. CisModule: de novo discovery of cis-regulatory modules by hierarchical

mixture modeling. Proceedings of the National Academy of Sciences, 101(33):12114–12119, 2004.

Rapolas Zilionis, Juozas Nainys, Adrian Veres, Virginia Savova, David Zemmour, Allon M Klein, and Linas

Mazutis. Single-cell barcoding and sequencing using droplet microfluidics. Nature Protocols, 12(1):44,

2017.

Cyril Zipfel, Silke Robatzek, Lionel Navarro, Edward Oakeley, Jonathan Jones, Georg Felix, and Thomas

Boller. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 428(6984):764–

767, 2004.

Cyril Zipfel, Gernot Kunze, Delphine Chinchilla, Anne Caniard, Jonathan DG Jones, Thomas Boller, and

Georg Felix. Perception of the bacterial pamp ef-tu by the receptor efr restricts agrobacterium-mediated

transformation. Cell, 125(4):749–760, 2006.

207


