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Abstract

In this thesis we study ergodicity and metastability of solutions to the stochastic
quantisation equation of the P(ϕ)2-Euclidean Quantum Field theory. The main
difficulty arises from the fact that solutions of this equation can be interpreted
only in a renormalised sense and classical methods from SPDE Theory do not
apply in this case.

I. Ergodicity:

In this part we study the long time behaviour of the law of the solutions.
We first prove three main results: A strong dissipative bound for the solu-
tions uniformly in the initial condition, the strong Feller property (and in
particular local Hölder continuity of the associated Markov semigroup) and
a support theorem. As a corollary, we prove exponential mixing of the law
of the solutions with respect to the total variation distance.

II. Metastability:

In this part we restrict ourselves to the special case of the 2-dimensional
Allen–Cahn equation perturbed by small noise and study the long time be-
haviour of solutions path-wisely. We prove that solutions that start close
to the minimisers of the potential of the deterministic system contract ex-
ponentially fast with overwhelming probability. The exponential rate is
explicit in the parameters of the equation. As an application, we prove an
Eyring–Kramers law for the transition times of the solutions between the
minimisers of the potential of the deterministic system.
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Chapter 1

Introduction

Stochastic partial differential equations (SPDEs) describe the time evolution of
quantities that are influenced by a stochastic forcing. A typical example of such
a forcing is space-time white noise, a Gaussian random (Schwartz) distribution
which is irregular both in time and space. It is a generalisation of the deriva-
tive of the Brownian motion to higher dimensions. When the stochastic forcing
is irregular, as in the case of space-time white noise, the solutions of these
equations are expected to have low regularity. In many interesting cases, for
example when the equation involves non-linear terms, the expected low regu-
larity of solutions makes the system singular, that is, many terms appearing in
the equation are ill-defined and classical definitions fail to provide a meaningful
solution; we refer to these cases as singular SPDEs.

One important reason to study singular SPDEs is that they appear naturally
in various fields. For example, they describe the natural reversible dynamics
of ‘‘non-trivial’’ infinite dimensional measures in the context of constructive
Quantum Field Theory (see for example [PW81]). They also arise as scaling
limits of discrete models in Statistical Mechanics (see for example [GLP99]).
However, the fact that singular SPDEs involve terms that are ill-defined is a
major obstacle in their study and without a meaningful solution it is impossible
to investigate properties of the underlying models.

Recently, Hairer’s pioneering work on Regularity Structures [Hai14] gave a
rigorous construction of solutions for a wide variety of singular SPDEs locally
in time. Around the same time, the theory of Paracontrolled Calculus [GIP15],
developed by Gubinnelli, Imkeller and Perkowski, suggested an alternative ap-
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CHAPTER 1. INTRODUCTION 2

proach for local well-posedness which, although less general, allowed the treat-
ment of many interesting examples of singular SPDEs. These developments
triggered a lot of research activity and in the last few years there has been a
rapid progress in the field.

1.1 The Dynamic Φ4
d

There are many interesting examples of singular SPDEs but describing each one
of them is beyond our reach. As our main example in this introduction, let us
consider the dynamic Φ4

d which is one of the core models of our work.
The dynamic Φ4

d is formally given by the equation

(∂t −∆)X = −X3 + mX +
√

2ξ, (1.1)

where ξ is a space-time white noise, the space variable is d-dimensional and
m is a real parameter denoting the mass of the system. When d = 1 (1.1) is
well-posed. It can be treated as a classical PDE problem and has been studied
extensively by many authors (see for example [Iwa87a, Iwa87b, Zab89] and the
references therein). However, when d ≥ 2 the equation is singular and classical
solution theory for (S)PDEs fails to provide any meaningful solution.

Equation (1.1) was first proposed by Parisi and Wu [PW81] as the natural re-
versible dynamics of the Φ4

d-Euclidean Quantum Field theory, which is formally
described by the infinite dimensional measure

ν( dX) ∝ exp

{
−
∫ (

1

2
|∇X(z)|2 +

1

4
X(z)4 − m

2
X(z)2

)
dz

}∏

z

dX(z). (1.2)

The construction of (a renormalised version of) (1.2) in d = 2 and 3 was a major
result in the programme of constructive Quantum Field Theory in the late 60s
and 70s (see for example [Gli68, GJ73, Nel73, Fel74, GRS75, BFS83]; we also
refer the reader to [GJ87] and the references therein). Parisi and Wu’s original
proposal, also known as stochastic quantisation, was to construct and study the
measure (1.2) as the equilibrium limit of the solutions to (1.1) as t → ∞ or, in
other words, study ergodicity of solutions.

Parisi and Wu’s proposal to construct the dynamics of (1.2) appealed many
researchers, with several important contributions over the years. Early attempts
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concerned the construction in dimension d = 2. In [JLM85], Jona–Lasinio and
Mitter used Girsanov’s transformation to solve a modified equation given by

(
∂t − (−∆ + 1)−ε∆

)
X = (−∆ + 1)−ε

(
−X3 + mX

)
+
√

2(−∆ + 1)−
ε
2 ξ (1.3)

for a class of strictly positive values of ε. Notice that formally the measure
(1.2) is also reversible with respect to (1.3). Then, in [AR91], Albeverio and
Röckner constructed weak solutions to (1.1) using the theory of Dirichlet forms.
A stronger result was obtained in the celebrated work [DPD03] by Da Prato and
Debussche. They proposed a simple transformation of (1.1) which allowed them
to prove existence of strong solutions locally in time for any initial condition of
suitable regularity and non-explosion for initial conditions in a set of measure
one with respect to the formal equilibrium (1.2).

Although the dynamic Φ4
d received a lot of attention as a ‘‘toy model’’ in

constructive Quantum Field Theory, this equation (or rather a variant of it) also
appears in metastability theory. For example, let us consider (1.1) for m = 1 and
ξ replaced by

√
εξ, for ε ∈ (0, 1). Then one retrieves the stochastic Allen-Cahn

equation given by

(∂t −∆)X = −X3 +X +
√

2εξ. (1.4)

For small values of ε the solution is expected to spend long time stretches
close to the minimisers of the potential (metastable states) of the deterministic
system (i.e. ε = 0), with occasional noise-induced transitions between them.
This phenomenon is known as metastability and it describes the behaviour of a
system that spends long time in metastable states until it reaches equilibrium.

Early contributions in this framework were made in the 1-dimensional case.
For example in [FJL82], Faris and Jona–Lasinio studied (1.4) on the level of
large deviations. In [MS88, MOS89], Martinelli, Olivieri and Scoppola proved
an asymptotic coupling for solutions that start close to the same minimiser of
the potential of the deterministic system. A higher dimensional result appeared
in [JLM90]. In this work, Jona–Lasinio and Mitter studied large deviations in
d = 2 for the solution to (1.3), constructed in their previous work [JLM85] via
Girsanov’s transformation.

The main difficulty in (1.1) arises from the irregularity of space-time white
noise ξ. In particular, the solution X is expected to be a Schwartz distribution
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when d ≥ 2. Despite that we are allowed to multiply a distribution with a func-
tion under mild regularity assumptions, in general we cannot define products
of arbitrary distributions; therefore it is unclear what the non-linear term X3

represents.
A first, rather naive, attempt that might allow us to neglect the fact that the

non-linear term X3 is ill-defined, is to replace ξ by some smooth approximation
ξN , N ≥ 1, and study the limit as N → ∞. In particular we can consider the
system

(∂t −∆)XN = −
(
XN
)3

+ mXN +
√

2ξN . (1.5)

Notice that for fixed N the non-linear term in the above equation is well-defined
since the solution is actually a smooth function. We can then ask ourselves
whether the approximation XN converges to a non-trivial limit in the space of
Schwartz distributions. However, it has already been established in [HRW12]
that the set of limiting points of (1.5) in d = 2 is the singleton {X = 0}. Such
a result indicates that approximations of this form fail to provide a meaningful
solution. This is not unreasonable. After all, it turns out that the non-linear
term

(
XN
)3 diverges in the limit and it is exactly because of this divergence that

we cannot solve (1.1) as it stands.

1.1.1 The Case d = 2

In dimension d = 2 (namely, in the case of the dynamic Φ4
2) it is possible to cancel

the divergence of the non-linear term
(
XN
)3 in (1.5) if we instead consider the

approximation

(∂t −∆)XN = −
((
XN
)3 − 3<NXN

)
+ mXN +

√
2ξN . (1.6)

Here <N is a divergent constant of the form C2 logN + C1. The constant C2

is explicit and depends on how we approximate ξ, while C1 can be any real
number, or even a sequence depending on N which converges in the limit.

The interpretation of solutions to (1.1) as limits of solutions to (1.6) in d = 2

was already apparent in [DPD03]. The extra term −3<NXN in (1.6) can be in-
terpreted as Wick renormalisation. Prior to the construction of the dynamics,
Wick renormalisation had been used to rigorously construct the formal equilib-
rium (1.2). In this case a similar problem appears; the terms X4 and X2 are
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ill-defined. However, it had already been established by Nelson in [Nel73] that it
can be circumvented using Wick renormalisation. The physical relevance of the
approximation (1.6) was recently established in [MW17a] (see also [Ibe17] for a
more general result), where it was proven that the limiting points of (1.5) arise
naturally as suitably rescaled limits of the average magnetisation of an Ising–
Kac model with Glauber dynamics close to critical temperature. The effect of the
renormalisation constant <N corresponds to a shift of the critical temperature
away from its mean field value. The 1-dimensional analogue of this result was
shown in [BPRS93], while it was conjectured in [GLP99] for higher dimensions.

The first complete result on global existence and uniqueness appeared in
[MW17c] by Mourrat and Weber, more than a decade after Da Prato and De-
bussche’s breakthrough. In this work the authors went beyond initial conditions
that are sampled by the invariant measure (which were previously considered
in [DPD03]) and obtained global existence and uniqueness for arbitrary initial
conditions of suitable regularity, first on arbitrary large tori and then on the
whole plane via a periodisation technique. Their method was based on classical
energy estimates which use the ‘‘good sign’’ of the cubic non-linearity.

Since the work of Mourrat and Weber [MW17c] appeared, equation (1.1) has
been studied extensively in dimension d = 2 and in the last few years there
is a tremendous amount of new results. For example, in the series of papers
[RZZ17b, RZZ17a] the solutions from [MW17c] were identified with the solutions
obtained by Dirichlet forms in [AR91]. The same work [RZZ17b, RZZ17a] also
established ergodicity of solutions, that is, weak convergence of their law to a
unique invariant measure. In [TW18b], a stronger result implied exponential
mixing of the dynamics uniformly in the initial condition. Large deviations were
studied in [HW15, CD17] and an Eyring–Kramers law for the transition times of
Galerkin approximations to the solutions was established in [BDGW17]. Also,
in [TW18a], the authors studied the long time behaviour of solutions for suitable
initial conditions, path-wisely in the small noise regime.

1.1.2 Higher Dimensions

If we try to go just a step further and consider (1.1) in d = 3 the complexity of
the problem increases significantly; to obtain a solution one needs to apply a
more advanced renormalisation technique which cannot be interpreted as Wick
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renormalisation only. In particular, one needs to consider an approximation as
in (1.6) where the constant <N is given by C3N + C2 logN + C1. Here the part
C3N corresponds to Wick renormalisation in d = 3. However, the part C2 logN

cancels other divergences which appear because the space-time white noise ξ
is more irregular in d = 3.

The first result about local existence and uniqueness in d = 3 appeared
in the celebrated work by Hairer [Hai14] as an application of the theory of
Regularity Structures. In [CC13] Catellier and Chouk retrieved the same result
based on Paracontrolled Calculus developed in [GIP15]. Another approach was
presented by Kupianen in [Kup16], who used the Wilsonian renormalisation
group to obtain local existence and uniqueness. Later in [MW17b], Mourrat and
Weber established global well-posedness based on the paracontrolled approach
of [CC13, GIP15].

Since solution theories for (1.1) became available in d = 3, many other results
have appeared. For example, discrete approximations were studied in [HM18a],
large deviations in [HW15, CD17] (together with the case d = 2), continuity of
the associated Markov semigroup in [HM18b] and universality in [FG17, SX18].

The important observation in d = 3 that allows us to prove well-posedness is
the subcriticality of the equation. Roughly speaking, one expects that in small
scales the solution to (1.1) behaves like the solution to the linear system, the
additive stochastic heat equation. To understand this, let us formally apply the
following rescaling,

(t̄, z̄) = (λ2t, λz), ξ̄ = λ
d+2

2 ξ, X̄ = λ
d−2

2 X, m̄ = λ2m.

Then (1.1) becomes

(∂t −∆)X̄ = −λd−4X̄3 + m̄X̄ +
√

2ξ̄

where ξ̄ equals ξ in law. When d < 4 the non-linearity vanishes in the limit
λ → 0. When d = 4, (1.1) becomes critical and one does not expect to obtain
any solution for d ≥ 4. The theory of Regularity Structures as developed in the
series of works [Hai14, BHZ16, CH16, BCCH17], provides local existence and
uniqueness for a wide class of subcritical singular SPDEs. We refer the reader
to [Hai14] for details about the importance of the subcriticality assumption in
the solution theory for singular SPDEs.
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1.2 The Stochastic Quantisation Equation

In the case d = 2 we can actually consider higher polynomial non-linearities.
For example we can consider the equation

(
∂t − (∆− 1)

)
X = −

∑

k≤n
anX

k +
√

2ξ (1.7)

where n ≥ 2 is any odd number and an > 0. The restriction on the parameters
n and an is only technical and allows to obtain global solutions in time. The
dynamic Φ4

2 is a special case of this equation for n = 3, a3 = 1, a2, a0 = 0 and
a1 = −(m + 1).

Equation (1.7) was introduced as the stochastic quantisation of the P(ϕ)2-
Euclidean Quantum Field theory, which is described by the infinite dimensional
measure

ν( dX) ∝ exp

{
−
∫ (

1

2
|∇X(z)|2 +

∑

k≤n

āk
k + 1

X(z)k+1

)
dz

}∏

z

dX(z). (1.8)

Here āk = ak, for every k 6= 1, and ā1 = a1 + 1 (the +1 comes from the term X

on the left hand side of (1.7)). This measure is formally invariant for (1.7) and
it was constructed by Nelson in [Nel73] using Wick renormalisation (see also
[GRS75] and the references therein).

The right approximation to (1.7) (namely, the analogue of (1.6) in this case)
is given by

(
∂t − (∆− 1)

)
XN = −

∑

k≤n
akHk

(
XN ,<N

)
+
√

2ξN . (1.9)

Here <N is a suitable renormalisation constant which diverges logarithmically
in N (same as in the case of the dynamic Φ4

2 in Section 1.1.1) and Hn stands for
the n-th Hermite polynomial given by the recursive formula

{
H−1(X,C) = 0, H0(X,C) = 1

Hn(X,C) = XHn−1(X,C)− (n− 1)CHn−2(X,C)
.

Let us mention that the extra terms appearing in (1.9) (but not in (1.7))
also correspond to Wick renormalisation, which in the case d = 2 works for
arbitrary powers. However, in d = 3 one can only construct Wick powers up to
order n = 4; we refer the reader to [CW17, Section 2.3.1] for a mathematical
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explanation on the failure of this construction in the case of powers of order
n ≥ 5. This is one of the reasons that (1.7) cannot be solved in d = 3 for n > 3

odd with any of the techniques developed in the last few years (for example
[Hai14, GIP15]). Another reason is that the subcriticality assumption mentioned
in Section 1.1.2 fails in this regime.

1.3 Main Results

The main focus of this thesis is to study properties of solutions to singular
SPDEs. The model we consider here is the 2-dimensional stochastic quantisa-
tion equation (1.7) with periodic boundary conditions, since it is the simplest
example of a family of singular SPDEs which can be solved using only Wick
renormalisation techniques, that is, without any reference to more advanced
solution theories. Another important feature of (1.7) is that solutions obtained
via Wick renormalisation exist globally in time, and this allows to study their
behaviour as t→∞.

The solutions of the equation are interpreted in a renormalised sense fol-
lowing the analysis in [DPD03] and [MW17c], which implies the following global
well-posedness result for (1.7).

Theorem 1.1. There exist a probability space (Ω,F ,P) and Banach (Besov)

spaces (Cβ, ‖ · ‖Cβ) ⊂ (C−α, ‖ · ‖C−α) ⊂ (C−α0 , ‖ · ‖C−α0 ) such that the following

conclusions hold.

i. For every x ∈ C−α0 and suitable choice of renormalisation constant <N , there

exists a unique global-in-time limit X(·;x) of the solution XN(·;x) to (1.9)
with periodic boundary conditions and initial condition x. In particular, for

every T > 0 the mapping C−α0 3 x 7→ X(·;x) takes values in C((0, T ]; C−α),

P-almost surely.

ii. If we let v(·;x) = X(·;x)− , where solves the linear equation

(
∂t − (∆− 1)

)
=
√

2ξ,

for every T > 0 we have that ∈ C([0, T ]; C−α) and the mapping C−α0 3 x 7→
v(·;x) takes values in C((0, T ]; Cβ), P-almost surely. Furthermore, v solves
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the remainder equation

(
∂t − (∆− 1)

)
v = −

∑

k≤n
ak
∑

j≤k

(
k

j

)
vj k − j , (1.10)

where
k − j

denotes the (k − j)-th Wick power of and for every T > 0 we

have that
k − j ∈ C([0, T ]; C−α).

iii. The process X(·;x) is Markov and the associated semigroup is Feller.

This theorem is essentially proved in Chapter 3.

Remark 1.2. To keep this introduction self-consistent we do not make the topolo-
gies (C−α0 , ‖ · ‖C−α0 ), (C−α, ‖ · ‖C−α) and (Cβ, ‖ · ‖Cβ) in Theorem 1.1 explicit. Let
us only mention that (C−α0 , ‖ · ‖C−α0 ) and (C−α, ‖ · ‖C−α) are Besov spaces of
Schwartz distributions of negative regularity and (Cβ, ‖ · ‖Cβ) is a Besov space of
functions of positive regularity. We refer the reader to Theorems 2.1 and 3.12
for more details.

Remark 1.3. The Wick powers k − j appearing in (1.10) are constructed in Sec-
tion 2.1 using iterated stochastic integrals. In Section 2.2 we prove that they
can be obtained as limits of suitably renormalised approximations.

In this thesis we study ergodicity and metastability of solutions to (1.7) as
interpreted in Theorem 1.1. In the first case we study the long time behaviour
of the law of the solutions. In the second, we study the long time behaviour of
solutions for suitable initial conditions, path-wisely. The results to be presented
here, have already appeared in the two original works [TW18b] and [TW18a] of
the author.

1.3.1 Ergodicity

Following Parisi and Wu’s original proposal [PW81], we prove that in the case of
periodic boundary conditions the law of the solutions converges exponentially
fast to a unique equilibrium uniformly in the initial condition. Our method
consists of three different steps which are of independent interest.

The first step consists of proving a strong dissipative bound that holds uni-
formly in the initial condition. This bound reads as follows.
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Theorem 1.4 (Theorem 4.1). Let (C−α, ‖ · ‖C−α) ⊂ (C−α0 , ‖ · ‖C−α0 ) and X(·;x) be

as in Theorem 1.1. For every p ≥ 2

sup
x∈C−α0

sup
t≥0

(t ∧ 1)
p

n−1E‖X(t;x)‖pC−α <∞,

where the parameter n is the degree of the polynomial non-linearity in (1.7).

The second step is the strong Feller property for the associated Markov semi-
group. More precisely, we obtain the following theorem.

Theorem 1.5 (Theorem 4.13). Let (C−α0 , ‖ · ‖C−α0 ) and X(·;x) be as in Theo-

rem 1.1 and let P ∗t δx denote the law of X(t;x). There exist θ ∈ (0, 1), σ > 0 and

C > 0 such that for every x ∈ C−α0 and y ∈ {ȳ : ‖ȳ − x‖C−α0 ≤ 1}

‖P ∗t δx − P ∗t δy‖TV ≤ C(1 + ‖x‖)σ‖x− y‖θC−α0 ,

where ‖ · − · ‖TV denotes the total variation distance of probability measures on

C−α0.

The third step is the proof of a support theorem for the law of the solutions.
This step is only implemented for n = 3 in (1.7) (see Remark 4.15) and reads as
follows.

Theorem 1.6 (Corollary 4.18). Let (C−α0 , ‖ · ‖C−α0 ) and X(·;x) be as in Theo-

rem 1.1 for n = 3 in (1.7). For every x, y ∈ C−α0 and t, ε > 0

P(‖X(t;x)− y‖C−α0 < ε) > 0.

As a corollary of these results we obtain the following theorem which implies
exponential mixing of the law of the solutions.

Theorem 1.7 (Corollary 4.20). Let (C−α0 , ‖ · ‖C−α0 ) and X(·;x) be as in Theo-

rem 1.1 for n = 3 in (1.7) and let P ∗t δx denote the law of X(t;x). There exist

t0, λ0 > 0 and a probability measure µ∗ supported on C−α0 such that

sup
x∈C−α0

‖P ∗t δx − µ∗‖TV ≤ e−λ0t.

Here ‖ · − · ‖TV denotes the total variation distance of probability measures on

C−α0.
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1.3.2 Metastability

Motivated by [MS88, MOS89] we prove an asymptotic coupling in the small
noise regime for initial conditions close to the minimisers of the deterministic
potential. In this part we restrict ourselves to the stochastic Allen-Cahn equa-
tion (1.4) which is a special case of (1.7) if we let n = 3, a3 = 1, a2, a0 = 0, and
a1 = −2 and replace ξ by

√
εξ for ε ∈ (0, 1).

Remark 1.8. By choosing all the parameters in such a way that (1.7) coincides
with (1.4), Theorem 1.1 still holds, but the stochastic objects k − j in (1.10)
should be multiplied by ε k−j2 .

The main result can be expressed as follows.

Theorem 1.9 (Theorem 5.3). Let (Cβ, ‖ · ‖Cβ) ⊂ (C−α0 , ‖ · ‖C−α0 ) and X(·;x) be

as in Theorem 1.1, where all the parameters are chosen such that (1.7) coincides

with (1.4) and the size of the torus is sufficiently small. For every κ > 0 there

exists a0, δ0, C > 0 and ε0 ∈ (0, 1) such that for every ε ≤ ε0

inf
‖x−(±1)‖C−α0≤δ0

P

(
sup

‖y−x‖C−α0≤δ0

‖X(t; y)−X(t;x)‖Cβ
‖y − x‖C−α0

≤ Ce−(2−κ)t, ∀t ≥ 1

)

≥ (1− e−a0/ε).

Remark 1.10. The interesting fact about this result is that although the solu-
tions of the equation are distribution-valued, the difference X(t; y) −X(t;x) is
measured in (Cβ, ‖ · ‖Cβ) which is a Besov space of functions of strictly positive
regularity. At first glance this seems suspicious, but rewriting the difference as(
X(t; y)− ε 1

2 (t)
)
−
(
X(t;x)− ε 1

2 (t)
)

we immediately see that this is indeed
the case since, by Theorem 1.1 (see also Remark 1.8), X(t;x) − ε 1

2 (t) ∈ Cβ for
every t > 0 and x ∈ C−α0.

Building on the analysis of [BDGW17], as a corollary of this theorem we
prove an Eyring-Kramers law for the transition times of the solutions between
the minimisers of the potential of the deterministic system. This result reads as
follows.

Theorem 1.11 (Theorem 5.31). Let (C−α, ‖·‖C−α) ⊂ (C−α0 , ‖·‖C−α0 ) andX(·;x) be

as in Theorem 1.1, where all the parameters are chosen such that (1.7) coincides

with (1.4) and the size of the torus is sufficiently small. For a closed set B ⊂
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C−α let τB(X(·;x)) denote its first hitting time by X(·;x). For every suitable

neighbourhoods A of −1 in C−α0 and B of 1 in C−α there exist c+, c− > 0 and

ε0 > 0 such that for every ε ≤ ε0

sup
x∈A

EτB(X(·;x))

≤ 2π

|λ0|

√√√√
∏

k∈Z2

|λk|
νk

exp

{
νk − λk
λk + 2

}
e(V (0)−V (−1))/ε

(
1 + c+

√
ε
)
,

inf
x∈A

EτB(X(·;x))

≥ 2π

|λ0|

√√√√
∏

k∈Z2

|λk|
νk

exp

{
νk − λk
λk + 2

}
e(V (0)−V (−1))/ε (1− c−ε) .

Here λk ≡ λk(L) and νk ≡ νk(L) are the eigenvalues of −∆ − 1 and −∆ + 2

endowed with periodic boundary conditions and V denotes the potential of the

deterministic system (obtained by letting ε = 0 in (1.4)).

1.4 Outline

In Chapter 2 we rigorously construct the solution of the stochastic heat equation
and its Wick powers and study their finite dimensional approximations. In
Chapter 3 we prove global existence and uniqueness of solutions to (1.7) using
Wick renormalisation and establish the Markov property. In Chapters 4 and 5
we prove our main results on ergodicity and metastability, respectively. Finally,
some useful results that we repeatedly use in this thesis and some technical
proofs can be found in the Appendix.

1.5 Notation

We let T2 = R2/LZ2 be the 2-dimensional torus of size L2 for some L > 0. We
denote by C∞ the space of real-valued smooth functions over T2 and by C∞(R2)

the space of real-valued smooth functions over R2. We denote by S ′ the dual
space of Schwartz distributions acting on C∞. For p ∈ [1,∞] we furthermore
denote by Lp the space of p-integrable functions on T2, with the usual norm

‖f‖Lp :=

(∫

T2

|f(z)|p dz

) 1
p
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and the usual interpretation for p =∞.
Although we only deal with spaces of real-valued functions, we prefer to work

with the orthonormal basis {em}m∈Z2 of trigonometric functions

em(z) := L−2e2πim·z/L,

for z ∈ T2. Thus some complex-valued functions appear and we write

〈f, g〉 =

∫

T2

f(z)g(z) dz

for their inner product. With this notation, for f ∈ L2, the m-th Fourier coeffi-
cient is given by

f̂(m) := 〈f, em〉

and since f is real-valued we have the symmetry condition

f̂(−m) = f̂(m), (1.11)

for any m ∈ Z2. For f ∈ S ′ we define the m-th Fourier coefficient as

f̂(m) := 〈f, L−2 cos(2πim · /L)〉+ i〈f, L−2 sin(2πim · /L)〉,

with the convention that 〈f, ·〉 stands for the action of f on C∞.
For ζ ∈ R2 and r > 0 we denote by B(ζ; r) the ball of radius r centred at ζ.

We consider the annulus A = B
(
0; 8

3

)
\B

(
0; 3

4

)
and a dyadic partition of unity

(χκ)κ≥−1 such that

i. χ−1 = χ̃ and χκ = χ(·/2κ), κ ≥ 0, for two radial functions χ̃, χ ∈ C∞(R2).

ii. supp χ̃ ⊂ B
(
0; 4

3

)
and suppχ ⊂ A.

iii. χ̃(ζ) +
∑∞

κ=0 χ(ζ/2κ) = 1, for every ζ ∈ R2 \ {0}.

We furthermore let

A2κ := 2κA, κ ≥ 0.

Notice that suppχκ ⊂ A2κ, for every κ ≥ 0. We also keep the convention that
A2−1 = B

(
0; 4

3

)
. The existence of such a dyadic partition of unity is given by

[BCD11, Proposition 2.10].
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For a function f ∈ C∞ we define the κ-th Littlewood-Paley block as

δκf(z) :=
∑

m∈Z2

χκ(m)f̂(m)L−2e2πim·z/L, κ ≥ −1. (1.12)

Sometimes it is convenient to write (1.12) as δκf = ηκ ∗ f , κ ≥ −1, where

ηκ ∗ f(·) =

∫

T2

ηκ(· − z)f(z) dz,

and

ηκ(z) :=
∑

m∈Z2

χκ(m)L−2e2πim·z/L.

We are now ready to define the Besov space Bαp,q which we use to measure
the regularity of Schwartz distributions.

Definition 1.12. For α ∈ R and p, q ∈ [1,∞] we define the inhomogeneous
periodic Besov norm as

‖f‖Bαp,q :=
∥∥(2ακ‖δκf‖Lp)κ≥−1

∥∥
`q
. (1.13)

The Besov space Bαp,q is defined as the completion of C∞ with respect to the norm
(1.13). For simplicity we write Cα to denote the Besov space Bα∞,∞.

We would like to point out that for p = q =∞ our definition of Besov spaces
differs from the standard definition as the set of those distributions for which
(1.13) is finite. Our convention has the advantage that all Besov spaces are
separable. Many useful results about Besov spaces that we repeatedly use in
this thesis can be found in Appendix A.

Throughout this thesis, C denotes a positive constant which changes from
line to line but we make the dependence on different parameters explicit where
necessary. Furthermore, through the proofs of our statements, in cases where
we do not want to keep track of the various constants in the inequalities we use
. instead of ≤ C. Finally, we use a ∨ b and a ∧ b to denote the maximum and
the minimum of a and b.



Chapter 2

The Stochastic Heat Equation and

its Wick Powers

This is a preliminary chapter where we present the necessary stochastic tools
to handle (1.7). In Section 2.1 we construct the solution of the stochastic heat
equation and its Wick powers in terms of abstract iterated stochastic integrals
in the spirit of [Nua06, Chapter 1]. In Section 2.2 we describe how these iterated
stochastic integrals arise as limits of powers of solutions to finite dimensional
approximations after renormalisation.

2.1 Construction of Wick Powers

Let ξ be a space-time white noise on R× T2 (see Appendix B for definitions) on
some probability space (Ω,F ,P), which is fixed from now on. We set

F̃t = σ
({
ξ(φ) : φ|(t,+∞)×T2 ≡ 0, φ ∈ L2(R× T2)

})
, (2.1)

for t > −∞ and denote by (Ft)t>−∞ the usual augmentation (as in [RY99,
Chapter 1.4]) of the filtration (F̃t)t>−∞.

For s ∈ (−∞,∞) we consider the stochastic heat equation on [s,∞) × T2

with zero initial condition at time s given by
(
∂t − (∆− 1)

)
s =
√

2ξ

s|t=s = 0
. (2.2)

There are several ways to give a meaning to this equation. We simply use
Duhamel’s principle (see [Eva10, Section 2.3]) as a definition and for every

15
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φ ∈ C∞ and s < t we define

〈 s(t), φ〉 :=
√

2

∫ t

s

∫

T2

〈φ,H(t− r, z − ·)〉 ξ( dr, dz), (2.3)

where H(r, ·), r ∈ R \ {0}, stands for the periodic heat kernel on L2 given by

H(r, z) :=
∑

m∈Z2

e−(1+4π2|m|2)rem(z), (2.4)

for all z ∈ T2. We furthermore let

S1(t) := e−tet∆

be the semigroup associated to the generator ∆ − 1 in L2, i.e. the convolution
operator with respect to the space variable z ∈ T2 with the kernel H(t, ·).

The integral in (2.3) is a stochastic integral (see Appendix B for definitions)
and for fixed s < t, s(t) is a family of Gaussian random variables indexed by
C∞.

It is more convenient to work with stationary processes, hence we extend
definition (2.3) for s = −∞. For φ ∈ C∞, n ≥ 2 and t > −∞ we also consider
the iterated stochastic integral (see Appendix B for definitions) given by

〈 n

−∞(t), φ〉

:= 2
n
2

∫

{(−∞,t]×T2}n

〈
φ,

n∏

k=1

H(t− sk, zk − ·)
〉
ξ (⊗nk=1 dsk,⊗nk=1 dzk) .

(2.5)

We call n

−∞ the n-th Wick power of −∞ and recall that for every n ≥ 1 and
φ ∈ C∞, 〈 n

−∞(·), φ〉 is an element in the n-th homogeneous Wiener chaos
(see Appendix B for definitions). We furthermore point out that 〈 n

−∞(·), φ〉 is
stationary, for every φ ∈ C∞.

The next theorem collects the optimal regularity properties of the processes
{ n

−∞(·)}, n ≥ 1 and is very similar to the bounds originally derived in [DPD03,
Lemma 3.2]. The precise statement is a consequence of the Kolmogorov-type
criterion [MW17c, Lemma 9, Lemma 10] and the proof follows similar lines to
the one of [MW17c, Theorem 5.1].

Theorem 2.1. Let p ≥ 2. For every n ≥ 1 and t0 > −∞, the process
n

−∞(t0 + ·)
admits a modification

ñ

−∞(t0 + ·) such that
ñ

−∞(t0 + ·) ∈ C ([0, T ]; C−α), for
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every T > 0 and α > 0. Furthermore, there exists θ ≡ θ(α) ∈ (0, 1) > 0 and

C ≡ C(T, α, p) such that

E sup
s,t∈[0,T ]

‖ ñ

−∞(t0 + t)− ñ

−∞(t0 + s)‖pC−α
|t− s|pθ ≤ C. (2.6)

For notational convenience we always refer to
ñ

−∞ as
n

−∞.

Proof. See Appendix D.

Notice that for every t ≥ s we have that

s(t) = −∞(t)− S1(t− s) −∞(s).

It is then reasonable to define (see also [MW17c, pp. 2442] for equivalent defi-
nitions) the n-th shifted Wick power of s(t), t > s > −∞, as

n

s(t) :=
n∑

k=0

(
n

k

)
(−1)k

(
S1(t− s) −∞(s)

)k
n− k

−∞(t). (2.7)

Here and below we use the convention k
s(t) ≡ 1 for k = 0 and for every

−∞ ≤ s < t. For simplicity, for every n ≥ 1 and t > 0 we also write n (t) instead
of n

0(t). We furthermore point out that the n-th shifted Wick power is not an
element of the n-th homogeneous Wiener chaos (see Appendix B for definitions).
We refer the reader to Proposition 2.3 below for a natural approximation of the
objects defined in (2.7).

At this point we would like to mention that one might work directly with
n

−∞ instead of introducing (2.7) (see for example [DPD03] and [Hai14]). This
alternative approach has the advantage that the diagrams are stationary in time.
However, we prefer to work with (2.7) (as in [MW17c]) because when proving the
Markov property (see Section 3.5) we use heavily that n

s(t) is independent of
Fs for any s < t (see Proposition 2.3). A slight disadvantage of our convention
is the logarithmic divergence of n

s(t) as t ↓ s (see (2.8)).
The next proposition uses the regularisation property of the heat semigroup

(see Proposition A.5) to show that for every t > s and n ≥ 2, n

s(t) is a well-
defined element in a Besov space of negative regularity close to 0.
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Proposition 2.2. Let p ≥ 2 and T > 0. For every s0 > −∞, α ∈ (0, 1) and α′ > 0

there exist θ ≡ θ(α, α′) > 0 and C ≡ C(T, α, α′, p, n) such that

E sup
0≤s≤t

(
s(n−1)α′p‖ n

s0(s0 + s)‖pC−α
)
≤ Ctpθ, (2.8)

for every t ≤ T .

Proof. We only show (2.8) for s0 = 0. The proof of general s0 > −∞ follows
similarly.

Let ᾱ < α ∧ 2
3
α′ and V (s) = S1(s) (− −∞(0)). Using (A.1) and Propositions

A.8 and A.5 we have that

‖V (s)n‖C−α . ‖V (s)‖n−1
C2ᾱ ‖V (s)‖C−ᾱ . s−(n−1) 3

2
ᾱ‖ −∞(0)‖nC−ᾱ .

In a similar way, for k /∈ {0, n}, we have that

‖V (s)k n− k

−∞(s)‖C−α . s−k
3
2
ᾱ‖ −∞(0)‖kC−ᾱ‖ n− k

−∞(s)‖C−ᾱ .

Thus

‖ n (s)‖C−α

. s−(n−1) 3
2
ᾱ‖ −∞(0)‖nC−ᾱ +

n−1∑

k=0

(
n

k

)
s−k

3
2
ᾱ‖ −∞(0)‖kC−ᾱ‖ n− k

−∞(s)‖C−ᾱ .

Hence

E sup
0≤s≤t

s(n−1)α′p‖ n (s)‖pC−α

.
n−1∑

k=0

(
n

k

)
t((n−1)α′−k 3

2
ᾱ)p
(
E‖ −∞(0)‖2kp

C−ᾱ
) 1

2

(
E sup

0≤s≤t
‖ n− k

−∞(s)‖2p
C−ᾱ

) 1
2

+ t(n−1)(α′− 3
2
ᾱ)pE‖ −∞(0)‖npC−ᾱ ,

where we also use a Cauchy–Schwarz inequality to split the expectations in the
sum. Combining with (2.6) we finally obtain (2.8).

2.2 Finite Dimensional Approximations

Let ρN(z) =
∑
|m|<N em(z), z ∈ T2. For t > s we define a finite dimensional

approximation of s(t) by

N
s (t, z) := 〈 s(t), ρN(z − ·)〉.



CHAPTER 2. THE STOCHASTIC HEAT EQUATION AND ITS WICK POWERS19

We introduce the renormalisation constant

<N := E N
−∞(t, z)2 = ‖1[0,∞)HN‖2

L2(R×T2), (2.9)

where HN(r, z) = (H(r, ·) ∗ ρN)(z), noting that <N ≈ logN as N → ∞. The
expectation above is independent of t and z since N

−∞(t, z) is stationary in t and
z. For any integer n ≥ 1, s ≥ −∞ and z ∈ T2 we also define

n N
s (t, z) := Hn

(
N
s (t, z),<N

)
,

where Hn(X,C), X,C ∈ R, stands for the n-th Hermite polynomial given by the
recursive formula

{
H−1(X,C) = 0, H0(X,C) = 1

Hn(X,C) = XHn−1(X,C)− (n− 1)CHn−2(X,C)
. (2.10)

The first three Hermite polynomials are given by H1(X,C) = X, H2(X,C) =

X2 − C, H3(X,C) = X3 − 3CX.
We have the following approximation result.

Proposition 2.3. Let α, α′ > 0. Then for every n ≥ 1 and p ≥ 2 we have that

lim
N→∞

E sup
0≤t≤T

‖ n

−∞(s+ t)− n N
−∞(s+ t)‖pC−α = 0,

lim
N→∞

E sup
0≤t≤T

t(n−1)α′p‖ n

s(s+ t)− n N
s (s+ t)‖pC−α = 0,

for every s > −∞. In particular,
n

s(s + ·) is independent of Fs and for s1, s2 6=
−∞,

n

s1(s1 + ·) law

= n

s2(s2 + ·).

Proof. See Appendix E.

The following corollary is a consequence of the last proposition.

Corollary 2.4. For every n ≥ 1 and t, h > 0 the following identity holds P-almost

surely,

n (t+ h) =
n∑

k=0

(
n

k

)(
S1(h) (t)

)k
n− k

t(t+ h). (2.11)

Proof. It suffices to check (2.11) for n N(t + h). The result then follows from
Proposition 2.3.



Chapter 3

Existence of Solutions

3.1 Introduction

In this chapter we consider the following renormalised SPDE on [0,∞)× T2,

(
∂t − (∆− 1)

)
X = −

n∑

k=0

ak : Xk : +
√

2ξ

X|t=0 = x

. (3.1)

Here : Xk : stands for the k-th Wick power of X, x ∈ C−α0, n ≥ 3 is an odd
integer and the ak ’s are real numbers with an > 0.

Remark 3.1. As in [DPD03] and [MW17c] we work directly with (3.1), which
is the formal limit of the approximations (1.9). In later chapters (see Sections
4.3 and 5.3) we discuss finite dimensional approximations of the type (1.9),
however for technical reasons the non-linearity is projected onto a suitable finite
dimensional subspace.

Remark 3.2. Although we prefer to work with the massive Laplacian ∆ − 1 in
(3.1) one can consider any other mass by changing the value of the constant a1

on the right hand side of (3.1).

Motivated by the Da Prato–Debussche method [DPD03] we give the following
definition for solutions to (3.1).

Definition 3.3. We say that X solves (3.1) if X = + v, where is the solution
to (2.2) defined in (2.3) for s = 0 and the remainder v is a mild solution of the

20
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following random PDE,

(
∂t − (∆− 1)

)
v = −

n∑

k=0

ak

k∑

j=0

(
k

j

)
vj k − j

v|t=0 = x

. (3.2)

Here k − j stands for the (k − j)-th Wick power of defined in (2.7) for s = 0.

Remark 3.4. In [MW17c] is started from x and consequently there (3.2) is
solved with zero initial condition. Our approach of starting from 0 and the
remainder v from x has the advantage that the strong non-linear damping in
(3.2) acts directly on the initial condition, yielding a strong a priori estimate for
v that is independent of x (see Proposition 3.10).

Our aim is to prove global existence and uniqueness for the remainder equa-
tion (3.2) which is achieved by classical arguments from PDE theory. In the first
step we prove local existence of solutions to (3.2) on suitable Besov spaces (see
Theorem 3.6). Then, building on the analysis in [MW17c] and using a simple
comparison test for non-linear ordinary differential equations we obtain an a
priori estimate for v independent of the initial condition (see Proposition 3.10).
This estimate is finally used to prove global existence (see Theorem 3.12). In
these steps our analysis is deterministic and uses only the analytical properties
of the Wick powers implied by Proposition 2.2. Finally, combining the results
of Section 2.2 with a simple factorisation method we prove the Markov property
for the process X = + v (see Proposition 3.14).

Let us mention that the Markov property for X was previously established
in [RZZ17b] based on the identification of the dynamics with the solutions con-
structed via Dirichlet forms in [AR91]. However, our proof is based on standard
arguments from SPDE Theory only, appearing in the classical book [DPZ92].

3.1.1 Outline

In Section 3.2 we prove local existence of solutions to (3.2). In Section 3.3 we
prove an a priori estimate for solutions to (3.2). In Section 3.4 we prove global
existence of solutions. Finally, in Section 3.5 we prove the Markov property for
the solution of (3.1) as defined in Definition 3.3.
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3.1.2 Notation

For convenience we rewrite (3.2) as

(
∂t − (∆− 1)

)
v = −

n∑

j=0

vjZ(n−j)

v|t=0 = x

, (3.3)

where

Z(n−j) =
n∑

k=j

ak

(
k

j

)
k − j , (3.4)

for all 0 ≤ j ≤ n− 1 and Z(0) = an. In this chapter Z always denotes a vector of
the form

(
Z(j)

)n
j=0

.
We fix α0 ∈ (0, 1

n
) (to measure the regularity of the initial condition x in C−α0 ),

β > 0 (to measure the regularity of the remainder v in Cβ) and γ > 0 (to measure
the rate of blow-up of the ‖v(t)‖Cβ for t close to 0, see e.g. Theorem 3.6) such
that

γ <
1

n
,

β + α0

2
< γ. (3.5)

For an arbitrary α ∈ (0, 1) we let

Cn,−α(0;T ) := C
(
[0, T ]; C−α

)
× C

(
(0, T ]; C−α

)n−1
. (3.6)

For α, α′ > 0 we also define a norm on Cn,−α(0;T ) given by

|||Z|||α;α′;T := max
k=1,2,...,n

{
sup

0≤t≤T
t(k−1)α′‖Z(k)(t)‖C−α

}
. (3.7)

Notice that for every α ∈ (0, 1), Z ∈ Cn,−α(0;T ), for every T > 0, and by (2.8)
for every α′ > 0 there exists θ > 0 such that

E|||Z|||pα;α′;t ≤ Ctpθ (3.8)

for every t ≤ T , p ≥ 2.
We also fix α < α0 small enough (the precise value is fixed below in the proof

of Theorem 3.6) and a norm |||·|||α;α′;T on Cn,−α(0;T ), for some α′ > 0 but still
sufficiently small. We furthermore let

F (v, Z) :=
n∑

j=0

vjZ(n−j). (3.9)
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3.2 Local Existence

In this section we prove local in time existence of solutions to (3.3) and stability
with respect to its various parameters.

Definition 3.5. Let T > 0 and x ∈ C−α0. We say that a function v is a mild
solution to (3.3) up to time T if v ∈ C

(
(0, T ]; Cβ

)
and

v(t) = S1(t)x−
∫ t

0

S1(t− s)F (v(s), Z(s)) ds,

for every t ≤ T .

We have the following local in time existence theorem.

Theorem 3.6 ([DPD03, Proposition 4.4], [MW17c, Theorem 6.2]). Let x ∈ C−α0

and R > 0 such that ‖x‖C−α0 ≤ R. Then for every β, γ > 0 satisfying (3.5) and

T > 0 there exists T∗ ≡ T∗(R, |||Z|||α;α′;T ) ≤ T such that (3.3) has a unique mild

solution on [0, T∗] and

sup
0≤s≤T∗

sγ‖v(s)‖Cβ ≤ 1.

If we furthermore assume that |||Z|||α;α′;T ≤ 1, then there exists θ > 0 and a

constant C > 0 independent of R such that

T∗ =

(
1

C(R + 1)

) 1
θ

. (3.10)

Proof. This theorem is (essentially) proved in [MW17c, Theorem 6.2], but the
expression (3.10) is not made explicit there; we give a sketch. It is sufficient to
prove that for T∗ as in (3.10) the operator

MT∗v(t) = S1(t)x+

∫ t

0

S1(t− s)F (v(s), Z(s)) ds

is a contraction on the set BT∗ := {sup0≤s≤T∗ s
γ‖v(s)‖Cβ ≤ 1}, that is, we need

to show that MT∗ maps BT∗ into itself and that for v, ṽ ∈ BT∗ we have

sup
0≤s≤T∗

sγ‖MT∗v(s)−MT∗ ṽ(s)‖Cβ ≤ (1− λ) sup
0≤s≤T∗

sγ‖v(s)− ṽ(s)‖Cβ
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for some λ > 0. We only show the first property. We first notice that using the
explicit form of F (see (3.9))

‖MT∗v(s)‖Cβ . ‖S1(t)x‖Cβ +

∫ t

0

‖S1(t− s)v(s)n‖Cβ ds

+
n−1∑

j=0

∫ t

0

‖S1(t− s)v(s)jZ(n−j)(s)‖Cβ ds

. t−
β+α0

2 ‖x‖C−α0 +

∫ t

0

s−nγ ds+

∫ t

0

(t− s)−α+β
2 s−(n−1)γ ds,

where we use Proposition A.5 and we furthermore assumed that α′ < γ. By
(3.5) if we choose α > 0 sufficiently small so that α+β

2
+ (n− 1)γ < 1 we get

‖MT∗v(t)‖Cβ . t−
β+α0

2 ‖x‖C−α0 + t1−nγ + t1−
α+β

2
−(n−1)γ

and multiplying both sides by tγ we obtain that

tγ‖MT∗v(t)‖Cβ . tγ−
β+α0

2 R + t1−(n−1)γ + t1−
α+β

2
−(n−2)γ . tθ(R + 1).

Then, for T∗ ≡ T∗(R) as in (3.10) and every t ≤ T∗ we get that

sup
0≤s≤t

sγ‖MT∗v(s)‖Cβ ≤ 1,

which implies that MT∗ maps BT∗ into itself.

The next proposition is a stability result which we use later on in Section 4.3.
We first introduce some extra notation. Let {ZN}N≥1 take values in Cn,−α(0;T )

such that

lim
N→∞

∣∣∣∣∣∣ZN − Z
∣∣∣∣∣∣
α;α′;T = 0.

Furthermore, let FN = Π̂NF , where Π̂N is a linear smooth approximation such
that the following properties hold for every λ ∈ R,

i. ‖Π̂N‖Cλ→Cλ ≤ C, for every N ≥ 1.

ii. For every δ > 0 there exists θ ≡ θ(λ, δ) such that

‖Π̂Nx− x‖Cλ−δ ≤ C
1

N θ
‖x‖Cλ .
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One can check that Π̂N =
∑
−1≤κ<log2 N

δκ is such a linear smooth approxima-
tion.

Denote by vN the corresponding mild solution of (3.3) with F replaced by FN ,
Z by ZN and initial condition xN = Π̂Nx (short time existence of vN is ensured
by the same arguments as in the proof of [MW17c, Theorem 6.2]). We then have
the following proposition.

Proposition 3.7. Let v be the unique solution of (3.3) on a closed interval [0, T∗]

(i.e. the solution does not explode at T∗). Then for every N ≥ 1 there exists

a unique solution vN to the approximate equation up to some (possibly infinite)

explosion time TN∗ . Furthermore, there exists N0 ≥ 1 such that for every N ≥ N0,

TN∗ ≥ T∗, and we have that

lim
N→∞

sup
0≤t≤TN∗ ∧T∗

tγ‖v(t)− vN(t)‖Cβ = 0.

Proof. By (3.5) it is possible to find δ > 0 such that

δ

2
+ nγ < 1,

α0 + δ + β

2
+ (n− 1)γ < 1.

For N ≥ 1 we notice that

v(t)− vN(t)

= S1(t) (x− xN)−
∫ t

0

S1(t− s)
(
F (v(s), Z(s))− FN(vN(s), ZN(s))

)
ds

and using (A.7) and property ii of Π̂N we get

‖v(t)− vN(t)‖Cβ

. t−
α0+δ+β

2
1

N θ
‖x‖C−α0 +

∫ t

0

(t− s) δ2‖v(s)n − Π̂Nv
N(s)n‖Cβ−δ ds

+

∫ t

0

(t− s)−α+δ+β
2 ‖R(v(s), Z(s))−RN(vN(s), ZN(s))‖C−α−δ ds,

where R(v, Z) =
∑n−1

j=0 v
jZ(n−j) and RN = Π̂NR. Using the triangle inequality

as well as the properties i and ii of Π̂N we have that

‖v(s)n − Π̂Nv
N(s)n‖Cβ−δ .

1

N θ
‖vN(s)n‖Cβ + ‖v(s)n − vN(s)n‖Cβ
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and

‖R(v(s), Z(s))−RN(vN(s), ZN(s))‖C−α−δ

.
1

N θ
‖R(v(s), Z(s))‖C−α + ‖R(v(s), Z(s))−R(vN(s), Z(s))‖C−α

+ ‖R(vN(s), Z(s))−R(vN(s), ZN(s))‖C−α .

Let M = supt≤T∗ t
γ‖v(s)‖Cβ , L = |||Z|||α;α′;T and ιN = inf{t > 0, t ≤ TN∗ :

tγ‖v(t)− vN(t)‖Cβ > 1}. Then, for every s ≤ ιN ∧ T∗, we have the bounds

‖vN(s)n‖Cβ ≤ Cs−nγ,

‖v(s)n − vN(s)n‖Cβ ≤ Cs−nγ sup
t≤ιN∧T∗

tγ‖v(t)− vN(t)‖Cβ ,

as well as

‖R(v(s), Z(s))‖C−α ≤ Cs−(n−1)γ

‖R(v(s), Z(s))−R(vN(s), Z(s))‖C−α ≤ Cs−(n−1)γ sup
t≤ιN∧T∗

tγ‖v(t)− vN(t)‖Cβ

‖R(vN(s), Z(s))−R(vN(s), ZN(s))‖C−α ≤ Cs−(n−1)γ
∣∣∣∣∣∣Z − ZN

∣∣∣∣∣∣
α;α′;T ,

where the constant C depends on M and L. Thus

‖v(t)− vN(t)‖Cβ ≤ C

(
1

N θ

(
t−

α0+δ+β
2 ‖x‖C−α0 + t1−

δ
2
−nγ + t1−

α+δ+β
2
−(n−1)γ

)

+ sup
s≤ιN∧T∗

sγ‖v(s)− vN(s)‖Cβ
(
t1−

δ
2
−nγt1−

α+δ+β
2
−(n−1)γ

)

+
∣∣∣∣∣∣Z − ZN

∣∣∣∣∣∣
α;α′;T t

1−α+δ+β
2
−(n−1)γ

)
.

Multiplying by tγ and choosing T̃∗ ≡ T̃∗(M,L) > 0 sufficiently small we can
assure that

sup
t≤T̃∗

tγ‖v(t)− vN(t)‖Cβ ≤
1

N θ
‖x‖C−α0 +

∣∣∣∣∣∣Z − ZN
∣∣∣∣∣∣
α;α′;T +

1

N θ
.

Iterating the procedure if necessary we find M∗ > 0, independent of N since
ιN ∧ T∗ ≤ T∗, and C > 0 such that

sup
t≤ιN∧T∗

tγ‖v(t)− vN(t)‖Cβ

≤ (M∗C + 1)

(
1

N θ
‖x‖C−α0 +

∣∣∣∣∣∣Z − ZN
∣∣∣∣∣∣
α;α′;T +

1

N θ

)
. (3.11)
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Let N0 ≥ 1 such that for every N ≥ N0

1

N θ
‖x‖C−α0 +

∣∣∣∣∣∣Z − ZN
∣∣∣∣∣∣
α;α′;T +

1

N θ
<

1

(M∗C + 1)
.

Then for every N ≥ N0

sup
t≤ιN∧T∗

tγ‖v(t)− vN(t)‖Cβ < 1

and the definition of ιN implies that ιN ∧ T∗ = T∗, which proves the first claim.
For the second claim we just let N →∞ in (3.11).

3.3 A Priori Estimates

We first need the following proposition from [MW17c] which is obtained by test-
ing (3.3) with arbitrary odd powers of v.

Proposition 3.8 ([MW17c, Proposition 14]). Let v ∈ C
(
(0, T ]; Cβ

)
be a mild

solution to (3.3). For every s0 > 0 and every even integer p ≥ 2

1

p
(‖v(t)‖pLp − ‖v(s0)‖pLp)

=

∫ t

s0

(
− (p− 1)〈∇v(s), v(s)p−2∇v(s)〉 − 〈v(s), v(s)p−1〉

− 〈F (v(s), Z(s)), v(s)p−1〉
)

ds, (3.12)

for every t ∈ [s0, T ]. In particular, if we differentiate with respect to t,

1

p
∂t‖v(t)‖pLp = −(p− 1)〈∇v(t), v(t)p−2∇v(t)〉 − 〈v(t), v(t)p−1〉

− 〈F (v(t), Z(t)), v(t)p−1〉, (3.13)

for every t ∈ (0, T ).

Remark 3.9. This proposition involves spatial derivatives of v up to first order
and the proof of (3.12) requires some time regularity on v. Our local existence
theory implies that v ∈ C((0, T ]; Cβ) for some β < 1 (see (3.5)) due to the fact that
we start (3.3) with initial condition in C−α0. This is the reason we state (3.12)
for s0 > 0. However one can prove that for fixed t > 0 v is almost a C2 function
(see [MW17c, Theorem 6.2]), as well as a Hölder continuous function from (0, T ]

to L∞ (see [MW17c, Proposition 12]) for some exponent strictly greater that 1
2
.
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Global existence of (3.3) for x ∈ Cβ was already established in [MW17c] based
on a priori estimates of the Lp norm of v. Here we derive a stronger bound which
does not depend on the initial condition x.

Proposition 3.10. Let v ∈ C((0, T ]; Cβ) be a solution of (3.3) with initial condition

x ∈ C−α0 and p ≥ 2 be an even integer. Then for every 0 < t ≤ T and λ = p+n−1
p

‖v(t)‖pLp ≤ C


t− 1

λ−1 ∨
(∑

j,i

t−α
′pji sup

0≤r≤t

(
rα
′pji‖Z(n−j)(r)‖p

j
i

C−α
)) 1

λ


 , (3.14)

for some pji > 0. In particular, the bound is independent from ‖x‖C−α0 and the

randomness outside of the interval [0, t].

Proof. Let

α <
1

(p+ n− 1)(n− 1)
(3.15)

and recall that F (v(s), Z(s) =
∑n

j=0 v
j
sZ

(n−j)(s). Thus

〈F (v(s), Z(s)), vp−1
s 〉 =

n∑

j=0

〈v(s)p+j−1, Z(n−j)(s)〉

= an‖v(s)p+n−1‖L1 + 〈g(s), v(s)p−1〉,

where g(s) =
∑n−1

j=0 v(s)jZ(n−j)(s), and we rewrite (3.13) as

1

p
∂s‖v(s)‖pLp

= −
(
(p− 1)‖v(s)p−2|∇v(s)|2‖L1 + an‖v(s)p+n−1‖L1 + ‖v(s)p‖L1

)

− 〈g(s), v(s)p−1〉, (3.16)

for all 0 < s ≤ t, where we use that p is an even integer. Let

K(s) := ‖v(s)p−2|∇v(s)|2‖L1 , L(s) := an‖v(s)p+n−1‖L1 . (3.17)

The idea is to control the terms of 〈g(s), v(s)p−1〉 by K(s) and L(s).
We start with the leading term of 〈g(s), v(s)p−1〉, 〈v(s)p+n−2, Z(1)(s)〉. By

Proposition A.9

|〈v(s)p+n−2, Z(1)(s)〉| . ‖v(s)p+n−2‖Bα1,1‖Z
(1)(s)‖C−α . (3.18)
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Using (A.13)

‖v(s)p+n−2‖Bα1,1 . ‖v(s)p+n−2‖1−α
L1 ‖v(s)p+n−3|∇v(s)|‖αL1 +‖v(s)p+n−2‖L1 . (3.19)

We treat each term in (3.19) separately. We first notice that by Jensen’s inequal-
ity ‖v(s)p+n−2‖L1 . L(s)

p+n−2
p+n−1 . For the gradient term, using the Cauchy-Schwarz

inequality we obtain

‖v(s)p+n−3|∇v(s)|‖L1 . ‖v(s)p+2(n−2)‖
1
2

L1K(s)
1
2 . (3.20)

Recall the Sobolev inequality

‖f‖Lq .
(
‖f‖2

L2 + ‖∇f‖2
L2

) 1
2 ,

for every q < ∞ (see [DNPV12, Section 6], [Eva10, Section 5.6] for Sobolev
inequalities in the same spirit). In particular, for q = 2(p+2(n−2))

p
, we have that

‖v(s)
p
2‖

q
2
Lq . ‖v(s)

p
2‖

q
2

L2 + ‖∇v(s)
p
2‖

q
2

L2 ,

which implies

‖v(s)p+2(n−2)‖
1
2

L1 . ‖v(s)p‖
1
2

+n−2
p

L1 +K(s)
1
2

+n−2
p , (3.21)

where ‖v(s)p‖
1
2

+n−2
p

L1 . L(s)
p
2 +n−2

p+n−1 by Jensen’s inequality. Combining (3.19),
(3.20) and (3.21)

‖v(s)p+n−2‖Bα1,1 . K(s)
α
2L(s)

(p+n−2)− p2α
p+n−1 +K(s)(1+n−2

p )αL(s)
(p+n−2)(1−α)

p+n−1

+ L(s)
p+n−2
p+n−1 . (3.22)

By (3.15) we notice that

α

2
+

(p+ n− 2)− p
2
α

p+ n− 1
< 1

and
(

1 +
n− 2

p

)
α +

(p+ n− 2)(1− α)

p+ n− 1
< 1,

thus we can find γ1, γ2, γ3, γ4 < 1 such that

α

2γ1

+
(p+ n− 2)− p

2
α

(p+ n− 1)γ2

= 1
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and
(

1 +
n− 2

p

)
α

γ3

+
(p+ n− 2)(1− α)

(p+ n− 1)γ4

= 1.

In particular, we choose γ1 = (p+n−1)α
2

, γ2 =
(p+n−2)− p

2
α

p+n−2
, γ3 = (p+n−2)(p+n−1)α

p
and

γ4 = (1 − α), apply the classical Young inequality to (3.22) and combine with
(3.18) to obtain

|〈v(s)p+n−2, Z(1)(s)〉|
.
(
K(s)γ1 + L(s)γ2 +K(s)γ3 + L(s)γ4 + L(s)

p+n−2
p+n−1

)
‖Z(1)(s)‖C−α .

Using Young’s inequality once more, now in the form

aζγ ≤ γ
ζ

N
1
γ

+ (1− γ)(Na)
1

1−γ ,

for a = ‖Z(1)(s)‖C−α, ζ ∈ {K(s), L(s)}, N = (Cn)γ and γ ∈ {γ1, . . . , γ5}, where
γ5 = p+n−2

p+n−1
, we obtain the final bound

|〈v(s)p+n−2, Z(1)(s)〉| ≤ 1

n

(
K(s) +

1

2
L(s)

)
+C

5∑

i=1

(
‖Z(1)(s)‖

1
1−γi
C−α

)
, (3.23)

for some C > 0 which depends only on γi, i ∈ {1, 2, . . . , 5}, and n.
For the remaining terms in 〈g(s), v(s)p−1〉 we need to estimate

〈v(s)p+j−1, Z(n−j)(s)〉,

for all 0 ≤ j ≤ n− 2. Proceeding in the same spirit of calculations as above we
first obtain that

‖v(s)p+j−1‖Bα1,1 . K(s)
α
2L(s)

(p+j−1)− p2α
p+n−1 +K(s)(1+ j−1

p )αL(s)
(p+j−1)(1−α)

p+n−1 +L(s)
p+j−1
p+n−1 .

We define the exponents γj1 = (p+n−1)α
2

, γj2 =
(p+j−1)− p

2
α

p+n−2
, γj3 = (p+j−1)(p+j)α

p
and

γj4 = (p+j)(1−α)
p+n−1

. Note that (3.15) implies that γj1, γ
j
2, γ

j
3, γ

j
4 < 1 and we also have

that
α

2γj1
+

(p+ j − 1)− p
2
α

(p+ n− 1)γj2
= 1

and
(

1 +
j − 1

p

)
α

γj3
+

(p+ j − 1)(1− α)

(p+ n− 1)γj4
= 1.
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Applying Young’s inequality once more

|〈v(s)p+j−1, Z(n−j)(s)〉|
.
(
K(s)γ

j
1 + L(s)γ

j
2 +K(s)γ

j
3 + L(s)γ

j
4 + L(s)

p+j−1
p+n−1

)
‖Z(s)(n−j)‖C−α .

As before (see (3.23)), we obtain the bound

|〈v(s)p+j−1, Z(n−j)(s)〉| ≤ 1

n

(
K(s) +

1

2
L(s)

)
+C

5∑

i=1

(
‖Z(n−j)(s)‖

1

1−γj
i

C−α

)
, (3.24)

for all 0 ≤ j ≤ n− 2, where γj5 = p+j−1
p+n−1

. Thus, by (3.23) and (3.24),

|〈g(s), v(s)p−1〉| ≤
(
K(s) +

1

2
L(s)

)
+ C

n−1∑

j=0

5∑

i=1

(
‖Z(n−j)(s)‖

1

1−γj
i

C−α

)
, (3.25)

where γn−1
i = γi, for all i ∈ {1, . . . , 5}.

Finally, for pji = 1

1−γji
, combining (3.16) and (3.25) we obtain

1

p
∂s‖v(s)‖pLp + ‖v(s)‖pLp + (p− 2)K(s) +

1

2
L(s) ≤ C

∑

j,i

‖Z(n−j)(s)‖p
j
i

C−α .

Let t > s and notice that by (3.8), for r ∈ (s, t),
∑

j,i

‖Z(n−j)(r)‖p
j
i

C−α ≤
∑

j,i

r−α
′pji sup

s≤r≤t

(
rα
′pji‖Z(n−j)(r)‖p

j
i

C−α
)

for every α′ > 0. Thus for r ∈ [s, t]

1

p
∂r‖v(r)‖pLp +

1

2
L(r) ≤ C

∑

j,i

s−α
′pji sup

s≤r≤t

(
rα
′pji‖Z(n−j)(r)‖p

j
i

C−α
)
.

By Jensen’s inequality, for λ = p+n−1
p

, we get that

∂r‖v(r)‖pLp + C1 (‖v(r)‖pLp)λ ≤ C2

∑

j,i

s−α
′pji sup

s≤r≤t

(
rα
′pji‖Z(n−j)(r)‖p

j
i

C−α
)
,

and if we let f(r) = ‖v(r)‖pLp, r ≥ s, by Lemma 3.11

f(r) ≤ f(s)
(

1 + (r − s)f(s)λ−1(λ− 1)C̃1

) 1
λ−1

∨
(

2C2

C1

∑

j,i

s−α
′pji sup

s≤r≤t

(
rα
′pji‖Z(n−j)(r)‖p

j
i

C−α
)) 1

λ

, (3.26)
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where C̃1 = C1/2. In particular for r = t and s = t/2 we have the bound

‖v(t)‖pLp ≤ C


t− 1

λ−1 ∨
(∑

j,i

t−α
′pji sup

0≤r≤t

(
rα
′pji‖Z(n−j)(r)‖p

j
i

C−α
)) 1

λ


 ,

which completes the proof.

Lemma 3.11 (Comparison Test). Let λ > 1 and f : [0, T ]→ [0,∞) differentiable

such that

f ′(t) + c1f(t)λ ≤ c2,

for every t ∈ [0, T ]. Then for t > 0

f(t) ≤ f(0)
(
1 + tf(0)λ−1(λ− 1) c1

2

) 1
λ−1

∨
(

2c2

c1

) 1
λ

≤ t−
1

λ−1

(
(λ− 1)

c1

2

)− 1
λ−1 ∨

(
2c2

c1

) 1
λ

.

Proof. Let t > 0. Then one of the following holds:

I. There exists s0 ≤ t such that f(s0) ≤
(

2c2
c1

) 1
λ .

II. For every s ≤ t, f(s) >
(

2c2
c1

) 1
λ .

In the second case, using the assumption, we have that for every s ≤ t

f ′(s) +
c1

2
f(s)λ ≤ 0

and solving the above differential inequality on [0, t] implies that

f(t) ≤ f(0)
(
1 + tf(0)λ−1(λ− 1) c1

2

) 1
λ−1

.

In the first case, assume for contradiction that f(t) >
(

2c2
c1

) 1
λ and let

s∗ = sup

{
s < t : f(s) ≤

(
2c2

c1

) 1
λ

}
.

Then f(s) >
(

2c2
c1

) 1
λ , for every s ∈ (s∗, t], while f(s∗) =

(
2c2
c1

) 1
λ by continuity.

However, the assumption implies

f ′(s) +
c1

2
f(s)λ ≤ 0
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and in particular f ′(s) ≤ 0. But then

f(t) = f(s∗) +

∫ t

s∗
f ′(s)ds ≤

(
2c2

c1

) 1
λ

,

which is a contradiction.

3.4 Global Existence

The next theorem implies global existence of solutions to (3.3). Though it was
already established in [MW17c], we present it here for completeness.

Theorem 3.12 ([MW17c, Theorem 6.1]). For every initial condition x ∈ C−α0 and

β > 0 as in (3.5) there exists a unique solution v ∈ C
(
(0,∞); Cβ

)
of (3.3).

Proof. Let T > 0. First fix any even integer p ≥ 2 such that Lp ↪→ C−α0 (for
example p ≥ 2

α0
is enough; see also Proposition A.3 and (A.5)). Then the a priori

estimate (3.14) (which depends only on |||Z|||α;α′;T ) provides an a priori estimate
on ‖v(t)‖C−α0 . Thus by Theorem 3.6 there exists T∗ ≤ T bounded form below
(by a constant depending only on the a priori estimate on ‖v(t)‖C−α0 ) and a
unique solution up to time T∗ of (3.3). Using again Theorem 3.6 we construct a
solution of (3.3) on [T∗, 2T∗ ∧ T ] with initial condition v(T∗) which satisfies the
same a priori bounds depending on |||Z|||α;α′;T . We then proceed similarly until
the whole interval [0, T ] is covered. To prove uniqueness we proceed as in the
proof of Theorem [MW17c, Theorem 6.2].

3.5 Markov Property

For x ∈ C−α0 we write X(·;x) = + v where v is the solution to (3.2) with initial
condition x. We introduce a variant of the notation (3.9) and set

F̃
(
v,
(

k
)n
k=1

)
=

n∑

k=0

ak

k∑

j=0

(
k

j

)
vj k − j . (3.27)

We denote by Bb(C−α0) the space of bounded functions and by Cb(C−α0) the
space of bounded continuous functions from C−α0 to R, both endowed with the
norm

‖Φ‖∞ := sup
x∈C−α0

|Φ(x)|.
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For every Φ ∈ Bb(C−α0) and t ∈ [0,∞) we define the map Pt : Φ 7→ PtΦ by

PtΦ(x) := EΦ(X(t;x)), (3.28)

for every x ∈ C−α0.
In this section we prove that {X(t; ·) : t ≥ 0} is a Markov process with

transition semigroup {Pt : t ≥ 0} with respect to the filtration {Ft : t ≥ 0}
defined in (2.1).

We first prove the following lemma.

Lemma 3.13. Let X(·;x) = + v. Then, for every h > 0,

X(t+ h;x) = t(t+ h) + vt(t+ h),

where the remainder vt(t+ ·) solves (3.2) driven by the vector

(
k
t(t+ ·)

)n
k=1

and

initial condition X(t;x), that is,

vt(t+ h) = S1(h)X(t;x)−
∫ h

0

S1(h− r)F̃
(
vt(t+ r),

(
k
t(t+ r)

)n
k=1

)
dr.

Proof. Notice that for h > 0

X(t+ h;x) = (t+ h) + v(t+ h) = t(t+ h) + vt(t+ h),

where

vt(t+ h) = S1(h)X(t;x)−
∫ h

0

S1(h− r)F̃
(
v(t+ r),

(
k (t+ r)

)n
k=1

)
dr.

By (2.11) we have that

F̃
(
v(t+ r),

(
k (t+ r)

)n
k=1

)
=

n∑

k=0

ak

k∑

j=0

(
k

j

)
v(t+ r)j k − j (t+ r)

=
n∑

k=0

ak

k∑

i=0

(
k

i

)
vt(t+ r)i k − i

t(t+ r),

where we use a binomial expansion of v(t + r)j and a change of summation.
Hence

F̃
(
v(t+ r),

(
k (t+ r)

)n
k=1

)
= F̃

(
vt(t+ r),

(
k
t(t+ r)

)n
k=1

)
,

which completes the proof.
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The fact that {X(t; ·) : t ≥ 0} is a Markov process is immediate from the
following theorem.

Theorem 3.14. Let X(·;x) be as in the Lemma 3.13 with x ∈ C−α0. Then for

every Φ ∈ Bb(C−α0) and t ≥ 0

E(Φ(X(t+ h;x))|Ft) = PhΦ(X(t;x)),

for all h ≥ 0.

Proof. Let h ≥ 0 and Φ ∈ Bb(C−α0) and write

T
(
X(t;x);h;

(
k
t(t+ ·)

)n
k=1

)

to denote the solution of (3.2) at time h, with
(

k
)n
k=1

replaced by the vec-
tor

(
k
t(t+ ·)

)n
k=1

and initial condition X(t;x). By Corollary 2.4 and [DPZ92,
Proposition 1.12]

E(Φ(X(t+ h;x))|Ft) = Φ̄(X(t;x)),

where for w ∈ C−α0

Φ̄(w) = EΦ
(

t(t+ h) + T
(
w;h;

(
k
t(t+ ·)

)n
k=1

))
.

Here we use that X(t;x) is Ft-measurable and the vector
(

k
t(t+ ·)

)n
k=1

is
independent of Ft (see Proposition 2.3). Given that

(
k
t(t+ ·)

)n
k=1

law
=
(

k
)n
k=1

(see again Proposition 2.3) and the fact that (3.2) has a unique solution driven
by any vector Y ∈ Cn,−α(0;T ), for T > 0, and any initial condition w ∈ C−α0, we
have that

Φ̄(w) = PhΦ(w),

which completes the proof if we set w = X(t;x).

Theorem 3.14 implies that {Pt : t ≥ 0} is a semigroup. In the nect proposi-
tion we prove that it is Feller.

Proposition 3.15. Let Φ ∈ Cb(C−α0). Then, for every t ≥ 0, PtΦ ∈ Cb(C−α0).
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Proof. It suffices to prove that the solution to (3.2) is continuous with respect
to its initial condition. Fix T > 0 and x ∈ C−α0. Let y ∈ C−α0 such that
‖x− y‖C−α0 ≤ 1 and

v(t) = S1(t)x−
∫ t

0

S1(t− r)F̃
(
v(r),

(
k (r)

)n
k=1

)
dr,

u(t) = S1(t)y −
∫ t

0

S1(t− r)F̃
(
u(r),

(
k (r)

)n
k=1

)
dr,

as well as ι = inf{t > 0 : tγ‖v(t)− u(t)‖Cβ > 1} and

M = sup
t≤T

tγ‖vt‖Cβ , L =
∣∣∣
∣∣∣
∣∣∣
(

k
0,·
)n
k=1

∣∣∣
∣∣∣
∣∣∣
α;α′;T

.

Notice that

F̃
(
v(r),

(
k (r)

)n
k=1

)
− F̃

(
u(r),

(
k (r)

)n
k=1

)

=
n∑

k=0

ak

k∑

j=0

(
k

j

)(
u(r)k − v(r)k

)
k − j (r)

and by Propositions A.5, A.7 and A.8 we obtain that for all T∗ ≤ T ∧ ι

sup
t≤T∗

tγ‖v(t)− u(t)‖Cβ ≤ sup
t≤T∗

tγ‖v(t)− u(t)‖Cβ
n∑

m=1

λmT
αm
∗

+ ‖x− y‖C−α0

2n∑

m=n+1

λmT
αm
∗ ,

where λm ≡ λm(M,L, ‖x‖C−α0 ) and αm ∈ (0, 1]. Choosing T∗ ≡ T∗(M,L, ‖x‖C−α0 )

such that T∗ ≤ 1/2 we obtain

sup
t≤T∗

tγ‖v(t)− u(t)‖Cβ ≤ ‖x− y‖C−α0 .

Iterating the procedure we find M∗ ≥ 1 and C > 0 such that

sup
t≤T∧ι

tγ‖v(t)− u(t)‖Cβ ≤ (M∗C + 1)‖x− y‖C−α0 ,

for every y ∈ C−α0 such that ‖x−y‖C−α0 ≤ 1. At this point we should notice that
for every y ∈ C−α0 such that ‖x − y‖C−α0 ≤ 1/2(M∗C + 1) the above estimate
implies that

sup
t≤T∧ι

tγ‖v(t)− u(t)‖Cβ ≤
1

2
,
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thus T ∧ ι = T because of the definition of ι. Hence, for all such y ∈ C−α0,

sup
t≤T

tγ‖v(t)− u(t)‖Cβ ≤ (M∗C + 1)‖x− y‖C−α0 ,

which implies convergence of u(t) to v(t) in Cβ for every 0 < t ≤ T . Since T was
arbitrary, the last implies continuity of the solution map of (3.2) with respect
to its initial condition. The Feller property is then immediate if we combine the
continuity of the solution map and the dominated convergence theorem.



Chapter 4

Ergodicity

4.1 Introduction

In this chapter we consider the stochastic quantisation equation (3.1). This
equation was first proposed by Parisi and Wu in [PW81] as the natural reversible
dynamics for the P(ϕ)2-Euclidean measure given by

ν( dX) ∝ exp

{
−
∫

T2

n∑

k=0

ak
k + 1

: Xk+1 : (z) dz

}
µ( dX), (4.1)

where µ is the law of a massive Gaussian free field and : Xk+1 : stands for the
(k + 1)-th Wick power of X.

Motivated by Parisi and Wu’s original proposal to construct and study the
measure (4.1) as the equilibrium limit of the solutions to (3.1), our aim is to
establish exponential convergence to a unique equilibrium.

Using the a priori estimates in Proposition 3.10 we first establish a strong
dissipative bound for the solutions (see Theorem 4.1). We then prove the strong
Feller property for the Markov semigroup generated by the solution generalising
the method in [HSV07, Section 4.2] (see Theorem 4.13). Although for conve-
nience we make (moderate) use of global in time existence which follows from
Proposition 3.10, this part of the analysis could also be implemented using
only local existence (see Remark 4.12); the linearised dynamics of Galerkin ap-
proximations are controlled by combining a localisation via stopping times and
the small-time bounds obtained from the local existence theory. We further-
more establish a support theorem in the spirit of [CF16] (see Proposition 4.17

38
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and Corollary 4.18). Finally, we combine all of these ingredients to show that
the associated Markov semigroup satisfies the Doeblin criterion (see Theorem
4.19) which implies exponential convergence to the unique invariant measure
uniformly over the state space (see Corollary 4.20).

All steps are implemented for general odd n except for the support theorem
which we only show in the case n = 3. The reason for this restriction is explained
in Remark 4.15. We expect however that a support theorem for (2.9) holds true
for all odd n and that such a result could be combined with the results of this
chapter to generalise Theorem 4.19 to the case of arbitrary odd n.

Along the way, as a corollary of the strong dissipative bound Theorem 4.1,
we prove existence of invariant measures. A similar result was previously es-
tablished in [RZZ17b] where the authors proved that (4.1) is a reversible (and
in particular invariant) for (3.1), based on the identification of the dynamics
with the solutions constructed via Dirichlet forms in [AR91]. We would like to
point out that the approach presented here completely circumvents the theory
of Dirichlet forms and uses neither the symmetry of the process nor the explicit
form of the invariant measure. We therefore expect that our methods could be
applied in situations where the reversibility is absent and where there is no ex-
plicit representation of the invariant measure, for example in situations where
X is vector rather than scalar valued.

We would also like to mention two independent works on a similar subject
that appeared around the same time with the results discussed here: [RZZ17a]
and [HM18b]. In [RZZ17a] the authors established that (4.1) is the unique in-
variant measure for the dynamics and that the transition probabilities converge
to this invariant measure. Their method was based on the asymptotic coupling
technique from [HMS11] and relies on the bounds from [MW17c]. This analysis
does however not include the strong Feller property or the support theorem and
does not imply exponential convergence to equilibrium. In [HM18b] the authors
presented a general method to establish the strong Feller property, for solutions
to singular SPDEs solved in the framework of the theory of Regularity Struc-
tures [Hai14]. As an example, this method is implemented for the dynamic Φ4

3.
We expect that their method can also treat the case of (3.1) but at first glance it
only implies continuity of the associated Markov semigroup with respect to the
total variation distance, whereas Theorem 4.13 implies Hölder continuity.
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4.1.1 Outline

In Section 4.2 we prove a strong dissipative bound for the solution to (3.1) as
defined in Definition 3.3 and as a corollary we obtain existence of invariant
measures. In Section 4.3 we prove the strong Feller property for the associated
Markov semigroup. In Section 4.4 we prove a support theorem for the law of the
solutions. Finally, in Section 4.5 we combine these results to prove exponential
mixing of the law of the solutions.

4.1.2 Notation

Following Definition 3.3, we write X(·;x) = + v for the solution to (3.1) with
initial condition x, where is as in (2.3) for s = 0 and the remainder term v

solves (3.2) starting at x.
We fix α0, β and γ as in (3.5) to measure the regularity of the initial condition

x in C−α0, the regularity of v in Cβ and the rate of blow-up of ‖v(t)‖Cβ for t close
to 0 (see Theorem 3.6).

We denote by Z the vector
(
Z(j)

)n
j=0

for Z(j) as in (3.4) unless otherwise
stated. We also denote by Cn,−α(0;T ) the space defined in (3.6) on which we fix
the norm |||·|||α;α′;T as in (3.7) for α, α′ > 0 sufficiently small as in Chapter 3.

4.2 A Strong Dissipative Bound

We first prove the following corollary of Proposition 3.10 which implies a strong
dissipative bound on the moments of X uniformly in time and the initial condi-
tion.

Theorem 4.1. For x ∈ C−α0 letX(·;x) be the solution to (3.1) with initial condition

x. Then for every α > 0 and p ≥ 2

sup
x∈C−α0

sup
t≥0

(
t

p
n−1 ∧ 1

)
E‖X(t;x)‖pC−α <∞. (4.2)

Remark 4.2. Notice that the bound (4.2) does not follow immediately by taking
expectations in (3.14). In fact the expectation of the supremum

sup
0≤r≤t

(
rα
′pji‖Z(n−j)(s)‖p

j
i

C−α
)
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on the right hand side of this estimate is finite for every t < ∞ but it is not
uniformly bounded in t. However, as (3.14) does not depend on the initial
condition we can just restart (3.1) at time t − 1 for t > 1 and apply Proposition
3.10 for the restarted solution to obtain a bound which depends only on the
randomness inside the interval [t− 1, t]. Given that for every j ≥ 1 the restarted
stochastic objects j

· have the same law on intervals of the same size (see
Proposition 2.3) we then obtain a bound which is independent of t.

Proof. Let t > 1 and notice that by Lemma 3.13 X(t;x) = t−1(t) + vt−1(t) where
vt−1(r), r ≥ t− 1, solves (3.2) with initial condition X(t− 1;x) and

Z(n−j) =
n∑

k=j

ak

(
k

j

)
k
t−1(t− 1 + ·),

for every 0 ≤ j ≤ n− 1. Applying Proposition 3.10 on vt−1 we then have

‖vt−1(t)‖pLp . 1 ∨
(∑

j,i

sup
t−1≤r≤t

((
r − (t− 1)

)α′pji‖Z(n−j)(r)‖p
j
i

C−α
)) 1

λ

, (4.3)

for every p ≥ 2. To prove (4.2) we fix α > 0 and, using the embedding Lp ↪→ C−α
for p ≥ 2

α
(see (A.5) and Proposition A.3), we first notice that for t > 1

E‖X(t;x)‖pC−α
. E‖ t−1(t)‖pC−α + E‖vt−1(t)‖pC−α . E‖ t−1(t)‖pC−α + E‖vt−1(t)‖pLp .

Combining with (4.3) and given that for every k ≥ 1 the law of k
t−1(t+ ·) does

not depend on t we obtain that

sup
t≥1

E‖X(t;x)‖pC−α <∞.

Finally, using (3.14) (and by possibly tuning down α′ in the same equation) for
t ≤ 1 we get

E‖X(t;x)‖pC−α . E‖ (t)‖pC−α + E‖v(t)‖pLp . 1 + t−
p

n−1 ,

which completes the proof.

We denote by {P ∗t : t ≥ 0} the dual semigroup of {Pt : t ≥ 0} acting on
the set of all probability Borel measures on C−α0 denoted by M1(C−α0). In the
next corollary we prove existence of invariant measures of {Pt : t ≥ 0} as a
semigroup acting on the set Cb(C−α0) of bounded continuous functions from
C−α0 to R using Theorem 4.1.
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Corollary 4.3. For every x ∈ C−α0 there exists a measure µx ∈ M1(C−α0) and a

sequence tk ↗∞ such that

1

tk

∫ tk

0

P ∗s δx ds
weakly−→ µx.

In particular the measure µx is invariant for the Markov semigroup {Pt : t ≥ 0}
on C−α0.

Proof. For t > 0 and α > 0 using Markov’s and Jensen’s inequality there exists
a constant C > 0 such that

P(‖X(t;x)‖C−α > K) ≤ C

K

(
E‖X(t;x)‖pC−α

) 1
p ,

for every K > 0 and p ≥ 2. Thus
∫ t

0

P(‖X(s;x)‖C−α > K) ds ≤ C

K

∫ t

0

(
E‖X(s;x)‖pC−α

) 1
p ds

≤ C

K

[∫ 1

0

s−
1

n−1 ds+

∫ t

1

ds

]

≤ C

K
t

where in the second inequality we use (4.2). If we let Rt = 1
t

∫ t
0
P ∗s δx ds, for

Kε = C
ε

we get

Rt({f ∈ C−α : ‖f‖C−α > Kε}) ≤ ε.

Choosing α < α0 we can ensure that {f ∈ C−α : ‖f‖C−α ≤ Kε} is a compact
subset of C−α0 since the embedding C−α ↪→ C−α0 is compact for every α < α0

(see Proposition A.4 and (A.2)). This implies tightness of {Rt}t≥0 in C−α0 and by
the Krylov–Bogoliubov existence Theorem (see [DPZ96, Corollary 3.1.2]) there
exist a sequence tk ↗ ∞ and a measure µx ∈ M1(C−α0) such that Rtk → µx

weakly in C−α0 and µx is invariant for the semigroup {Pt : t ≥ 0} in C−α0.

4.3 The Strong Feller Property

In this section we show that the Markov semigroup {Pt : t ≥ 0} satisfies the
strong Feller property. The strong Feller property is to be expected when we deal
with SPDEs where the noise forces every direction in Fourier space. However,
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the fact that the process X does not solve a self-contained equation forces us
to translate everything onto the level of the remainder v. The most important
step is to obtain a Bismut–Elworthy–Li formula (see Theorem 4.8) which cap-
tures enough information to provide a good control of the linearisation of the
remainder equation.

On the technical level, we work with a finite dimensional approximation XN

of X. This choice and the fact that the equation is driven by white noise imply
that the solution is Fréchet differentiable with respect to the (finite dimensional
approximation of the) noise, so we can avoid working with Malliavin derivatives.
This is expressed in Proposition 4.4 below, and in fact this proposition could
even be established without splitting XN into vN and N . We make strong use of
the splitting in Proposition 4.7 where the local solution theory is used to obtain
deterministic bounds on vN and its linearisation for small t provided that we
control the diagrams n N . This control is uniform in N and enters crucially the
proof of Proposition 4.11.

From now on we fix α ∈ (0, α0) sufficiently small. For N ≥ 1 let ΠNL
2 be

the finite dimensional subspace of L2 spanned by {em}|m|<N (recall that we deal
with real-valued functions and the symmetry condition (1.11) is always valid)
and denote by ΠN the corresponding orthogonal projection. We also let Π̂N be a
linear smooth approximation taking values in ΠNL

2 and having the properties i
and ii introduced in the discussion before Proposition 3.7.

Let <N be the renormalisation constant defined in (2.9) and consider a finite
dimensional approximation of (3.1) given by

dXN(t) =

(
(∆− 1)XN(t)−

n∑

k=0

akΠ̂NHk

(
XN(t),<N

)
)

dt+ dWN(t, ·)

XN |t=0 = Π̂Nx

(4.4)

for some initial condition x ∈ C−α0. Here WN(t, z) =
∑
|m|<N Ŵm(t)em(z), where

(Ŵm)m∈Z2 is a family of complex Brownian motions such that Ŵ−m = Ŵm and
independent otherwise. We furthermore assume thatWN is defined on the same
probability space Ω as ξ via the identity

Ŵm(t) :=
√

2ξ
(
1[0,t] × em

)
, m ∈ Z2,

which also makes it adapted with respect to the filtration (Ft)t≥0. It is con-
venient to write WN = GN(Ŵm)m∈Z2∩(−N,N)2 for GN : C

(
[0,∞);R(2N−1)2

)
→
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C ([0,∞); ΠNL
2) such that

GN(Ŵm)m∈Z2∩(−N,N)2 =
∑

|m|<N
Ŵmem.

The Cameron–Martin space of WN is given by

CM := W 1,2
0 ([0,∞)) =

{
w : ∂tw ∈ L2

(
[0,∞);R(2N−1)2

)
, w(0) = 0

}
.

Last, we have the identity

N(t) =
∑

|m|<N

∫ t

0

e−(1+4π2|m|2)(t−s) dŴm(s) em, (4.5)

where N is the finite dimensional approximation defined in Section 2.2.
For v ∈ Cβ and Z ∈ (C−α)

n, α < β, we use the notation

F̃ (v, Z) =
n∑

k=0

ak

k∑

j=0

(
k

j

)
vjZ(k−j)

with the convention that Z(0) ≡ 1. Recall that F̃ (see (3.27)) is a variant of F
in (3.9). Here and for the rest of this section Z is a shortcut for

(
k
)n
k=1

(notice
that this differs from the convention used in Chapter 3). We also let

F̃ ′(v, Z) =
n∑

k=1

kak

k−1∑

j=0

(
k − 1

j

)
vjZ(k−1−j).

Formally, F̃ ′ stands for the derivative of
∑n

k=0 ak : Xk : with respect to X, with
: Xk : replaced by

∑k
j=0

(
k
j

)
vjZ(k−j).

From now on we furthermore denote byD the Fréchet derivative with respect
to elements in C

(
[0, t];R(2N−1)2

)
(i.e. with respect to the noise), for t > 0, and

by D the Fréchet derivative with respect to elements in C−α0 (i.e. with respect
to the initial condition).

Existence and uniqueness of local in time solutions to (4.4) up to some
random explosion time TN∗ > 0 can be proven following the same method as in
Section 3, i.e. using the ansatz XN = N + vN and solving the PDE problem

(
∂t − (∆− 1)

)
vN = −Π̂N F̃ (vN , ZN)

vN |t=0 = Π̂Nx
, (4.6)
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where ZN =
(

k N
)n
k=1

(see Section 2.2 for definitions).
Notice that for fixed v, F̃ is Fréchet differentiable with respect to any Z ∈

(C−α)
n as a function taking values in C−α. Recall that k N = Hk(

N ,<N), for
every 1 ≤ k ≤ n, so that the map

(
v, Z(1)

)
7→ S1(t)Π̂Nx−

∫ t

0

S1(t−s)Π̂N F̃
(
v(s),

(
Hk

(
Z(1)(s),<N

))n
k=1

)
ds, (4.7)

for
(
v, Z(1)

)
∈ C

(
[0, t]; Cβ

)
× C ([0, t]; ΠNL

2) and t > 0, is Fréchet differentiable
as a composition of F̃ with a linear operator shifted by a constant, since the
mapping

C
(
[0, t]; ΠNL

2
)
3 Z(1) 7→

(
Hk

(
Z(1),<N

))n
k=1
∈ Cn,−α(0; t)

is Fréchet differentiable for any α > 0, with respect to any |||·|||α;α′;t, for α′ > 0

fixed. Thus, for fixed x ∈ C−α0 and N ∈ C ([0, t]; ΠNL
2) the implicit function

theorem for Banach spaces (see [Zei95, Theorem 4E]) can be applied up to time
TN∗ ≡ TN∗ (x, N) where existence of vN is ensured. Hence, for t ∈ (0, TN∗ ) there
exists an open neighbourhood U N ⊂ C ([0, t]; ΠNL

2) of N such that the solution
map T N,x

t : U N → Cβ of (4.6) is Fréchet differentiable at N .
Using Itô’s formula the stochastic integrals in (4.5) can be written as
∫ ·

0

e−(1+4π2|m|2)(·−s) dŴm(s)

= Ŵm(·)− (1 + 4π2|m|2)

∫ ·

0

e−(1+4π2|m|2)(·−s)Ŵm(s) ds. (4.8)

Notice that the right hand side in the above equation is well-defined if we
replace (Ŵm)m∈Z2∩(−N,N)2 by any w ∈ C

(
[0, t];R(2N−1)2

)
, therefore (4.8) is a

continuous linear function on C([0, t];R(2N−1)2
). Thus N as a function from

C
(

[0, t];R(2N−1)2
)

to C ([0, t]; ΠNL
2) is Fréchet differentiable. Combining all the

above we finally obtain Fréchet differentiability of v(t)N from C
(

[0, t];R(2N−1)2
)

to Cβ.
We let ŴN = (Ŵm)|m|<N and for w ∈ C

(
[0, t];R(2N−1)2

)
we write

∫ t

0

S1(t− s)GN dw(s) :=
∑

|m|<N

∫ t

0

e−(1+4π2|m|2)(t−s) dwm(s),

where the right hand side is defined as in (4.8) with Ŵm replaced by wm.
In the next proposition we summarise the results of the previous discussion.
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Proposition 4.4. For x ∈ C−α0 , ŴN ∈ C([0,∞);R(2N−1)2
) and

N ≡ N(ŴN) ∈
C([0,∞); ΠNL

2), let TN∗ ≡ TN∗ (x, N) > 0 be the explosion time of vN . Then for

all t < TN∗ there exists an open neighbourhood OŴN
⊂ C

(
[0, t];R(2N−1)2

)
of

ŴN such that XN(t;x)(= N(t) + vN(t)) is Fréchet differentiable as a function

from OŴN
to C−α0 and for any w ∈ C

(
[0, t];R(2N−1)2

)
its directional derivative

DXN(t;x)(w) is given in mild form as

DXN(t;x)(w) = −
∫ t

0

S1(t− s)Π̂N

[
F̃ ′(vN(s), ZN(s))DXN(s;x)(w)

]
ds

+

∫ t

0

S1(t− s)GN dw(s). (4.9)

Remark 4.5. We expect that TN∗ = ∞, which we already established in the
limiting case N →∞ in Section 3. However, here we only use the local solution
theory to control the semigroup associated to XN(t;x) (see Proposition 4.11),
thus we do not insist on proving a global existence theorem. We then pass to
the limit using the fact that TN∗ →∞ (see the discussion above Remark 4.12).

Proof. The Fréchet differentiability ofXN(t;x) follows by the previous discussion
and (4.9) by differentiating (4.7).

For h ∈ C−α0, we let hN = Π̂Nh and for t ≥ s we also consider the following
linear equation,

(
∂t − (∆− 1)

)
JNs,thN = −Π̂N

[
F̃ ′(vN(t), ZN(t))JNs,thN

]

JNs,thN |t=s = hN

. (4.10)

Then JN0,thN = DXN(t;x)(h), i.e. it is the derivative of XN(t; ·) in the direction
h, and its existence for every t ≤ TN∗ is ensured by a similar argument as the
one discussed before Proposition 4.4.

At this point we should comment on the relation between (4.9) and (4.10).
Given that (4.10) has a unique solution for every hN ∈ ΠNL

2 up to time t > 0,
then for w ∈ CM, i.e. w(0) = 0 and ∂tw ∈ L2

(
[0,∞);R(2N−1)2

)
, by Duhamel’s

principle

DXN(t;x)(w) =

∫ t

0

JNs,tGN∂sw(s) ds, (4.11)

where JNs,t : C−α0 → Cβ is the solution map of (4.10).
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Remark 4.6. In the framework of Malliavin calculus DsXN(t;x) = JNs,tGN as
an element of the dual of L2

(
[0,∞);R(2N−1)2

)
is the Malliavin derivative (see

[Nua06, Section 1.2]) in the sense that the latter coincides with the former when
it acts on XN(t;x). In our case, the presence of additive noise implies Fréchet
differentiability with respect to the noise as an element in C

(
[0, t];R(2N−1)2

)
(see

Proposition 4.4), which is stronger than Malliavin differentiability with respect
to the noise.

For r ∈
[

1
4
, 1
]

which we fix below and 0 < α′ < α we consider the stopping
times

τNr := inf
{
t > 0 : ‖ N(t)‖C−α ∨ . . . ∨ tα

′(n−1)‖ n N(t)‖C−α > r
}
.

τr := inf
{
t > 0 : ‖ (t)‖C−α ∨ . . . ∨ t(n−1)α′‖ n (t)‖C−α > r

}
.

(4.12)

Let B̄(x; 1) be the closed unit ball centred at x in C−α0. The next proposition
provides local bounds on vN and JN0,· given deterministic control on ZN (see also
Theorem 3.6).

Proposition 4.7. Let x ∈ C−α0 and R = 2‖x‖C−α0 + 1. Then there exists a

deterministic time T∗ ≡ T∗(R) > 0, independent of N , such that for every t ≤
T∗ ∧ τNr and initial conditions y ∈ B̄(x; 1),

sup
s≤t

sγ‖vN(s)‖Cβ ≤ 1 and sup
s≤t

sγ‖JN0,shN‖Cβ ≤ 2‖hN‖C−α0 ,

for β, γ as in (3.5), uniformly in N , for every hN ∈ Π̂NL
2
.

Proof. Let t ≤ τNr ∧T∗ where T∗ is defined as in (3.10). We can also assume that
t ≤ 1. Then, from Theorem 3.6, we have that

sup
s≤t

sγ‖vN(s)‖Cβ ≤ 1,

for every y ∈ B̄(x; 1). Using Proposition A.5, (A.3) and (A.4) we get that

‖S1(t− s)Π̂N [F̃ ′(vN(s), ZN(s))JN0,shN ]‖Cβ
.
(
s−(n−1)γ + (t− s)−β+α

2 s−(n−2)γ
)
‖JN0,shN‖Cβ , (4.13)

where we also use the fact that ‖Π̂Nf‖C−α . ‖f‖C−α, for every f ∈ C−α. We are
now ready to retrieve the appropriate bounds on the operator norm of JN0,·. For
hN ∈ ΠNL

2 we have in mild form,

JN0,thN = S1(t)hN −
∫ t

0

S1(t− s)Π̂N

[
F̃ ′(vN(s), ZN(s))JN0,shN

]
ds.
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Thus for s ≤ t ≤ τNr ∧ T∗ and α > 0 sufficiently small (to ensure integrability of
powers of s and t− s; see also (3.5)) by (4.13)

‖JN0,shN‖Cβ ≤ Cs−
β+α0

2 ‖hN‖C−α0 +C
(
s1−nγ + s1−β+α

2
−(n−1)γ

)
sup
s≤t

sγ‖JN0,shN‖Cβ .

Multiplying the above inequality by sγ we get

sup
s≤t

sγ‖JN0,shN‖Cβ ≤ Ctγ−
β+α0

2 ‖hN‖C−α0 + Ctθ sup
s≤t

sγ‖JN0,shN‖Cβ ,

for some θ ≡ θ(α, β, γ, n) > 0. Using that γ− β+α0

2
> 0 (see (3.5)) and by possibly

changing the value of the constant C in (3.10) we finally obtain the bound

sup
s≤t

sγ‖JN0,shN‖Cβ ≤ 2‖hN‖C−α0 , (4.14)

which completes the proof.

We denote by C1
b (C−α0) the set of continuously differentiable functions on

C−α0. We furthermore let χ ∈ C∞(R) such that χ(ζ) ∈ [0, 1], for every ζ ∈ R, and

χ(ζ) =





1, if |ζ| ≤ r
2

0, if |ζ| ≥ r
,

for r as in (4.12). For simplicity we also write |||·|||t instead of |||·|||α;α′;t. Inspired
by [Nor86], we prove the following version of the Bismut–Elworthy–Li formula.

Theorem 4.8 (Bismut–Elworthy–Li formula). Let x ∈ C−α0 , Φ ∈ C1
b (C−α0) and let

t > 0. Let w be a process taking values in the Cameron-Martin space CM with

∂sw adapted. Furthermore, assume that there exists a deterministic constant

C ≡ C(t) > 0 such that ‖∂sw‖2
L2([0,t];R(2N−1)2)

≤ C P-almost surely. Then we have

the identity

E
(
DΦ(XN(t;x))

(
DXN(t;x)(w)

)
χ
(∣∣∣∣∣∣ZN

∣∣∣∣∣∣
t

))

= E
(

Φ(XN(t;x))

∫ t

0

∂sw(s) · dŴN(s)χ
(∣∣∣∣∣∣ZN

∣∣∣∣∣∣
t

))

− E
(
Φ(XN(t;x)) ∂+χ

(∣∣∣∣∣∣ZN
∣∣∣∣∣∣
t

)
(w)
)
. (4.15)

Here

∂+χ
(∣∣∣∣∣∣ZN

∣∣∣∣∣∣
t

)
(w)

= ∂ζχ
(∣∣∣∣∣∣ZN

∣∣∣∣∣∣
t

)
∂+

∣∣∣∣∣∣ZN
∣∣∣∣∣∣
t

(
Qw(·), 2 NQw(·), . . . , n n− 1 NQw(·)

)
, (4.16)
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where ∂+|||·|||t : Cn,−α(0; t)→ Cn,−α(0; t)∗ is the one-sided derivative of |||·|||t given

by

∂+

∣∣∣∣∣∣ZN
∣∣∣∣∣∣
t
(Y ) = lim

δ→0+

∣∣∣∣∣∣ZN + δY
∣∣∣∣∣∣
t
−
∣∣∣∣∣∣ZN

∣∣∣∣∣∣
t

δ
,

for every direction Y ∈ Cn,−α(0; t), and

Qw(·) :=

∫ ·

0

S1(· − s)GN∂sw(s) ds.

Remark 4.9. It is worth mentioning that the usual Bismut–Elworthy–Li formula
(see [Nor86]) gives an explicit representation of derivatives with respect to the
initial condition rather than the noise. In (4.22) we also prove such a repre-
sentation. However the core of our argument is (4.15) which is slightly more
general than (4.22).

Remark 4.10. The presence of ∂+|||·|||t in the theorem above is based on the fact
that norms are not in general Fréchet differentiable functions. However, their
one-sided derivatives always exist (see [DPZ92, Appendix D]) and they behave
nicely in terms of the usual rules of differentiation.

Proof. Let δ > 0 and u = ∂tw, which is an L2
(

[0,∞);R(2N−1)2
)

function. For
every n ≥ 1, we define the shift Tδu by

Tδu
n N(t) =

n∑

k=0

(
n

k

)(
δQw(t)

)k
n− k N(t)

and we let TδuZN =
(
Tδu k N

)n
k=1

.
Let XN,δ(·;x) = Tδu

N
0,· + vN,δ, where the remainder vN,δ solves the equation

(
∂t − (∆− 1)

)
vN,δ = −Π̂N F̃ (vN,δ, TδuZ

N)

vN,δ|t=0 = Π̂Nx
.

As in [Nor86], our aim is to construct a probability measure Pδ such that the
law of Tδu N under Pδ is the same as the law of N under P. That way we obtain
the identity

∂δ+EPδ
(
Φ
(
XN,δ(t;x)

)
χ
(∣∣∣∣∣∣TδuZN

∣∣∣∣∣∣
t

)) ∣∣∣
δ=0

= 0, (4.17)

since k N is a continuous function of N for every k ≥ 2, the solution map to
(4.6) is a continuous function of the k N , and χ is a continuous function of
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N . Above ∂δ+ stands as a shortcut of the directional derivative of a function as
δ → 0+. We will then show below that the result follows by an expansion of the
derivative in the above expression.

We start with the construction of Pδ. Let Bδ(r) := −
∫ r

0
δu(s) · dŴN(s) where

· is the scalar product on R(2N−1)2, and define the exponential process

Aδ(r) := exp

{
Bδ(r)− 1

2

∫ r

0

|δu(s)|2 ds

}
.

Notice that by the assumptions on w Novikov’s condition is satisfied, i.e.

E exp

{
1

2

∫ t

0

|δu(s)|2 ds

}
<∞,

thus by [RY99, Chapter 8, Proposition 1.15] Aδ is a strictly positive martingale
and we have that EAδ(t) = 1. We define Pδ by its Radon–Nikodym derivative
with respect to P

dPδ

dP
= Aδ(t).

By Girsanov’s Theorem (see [RY99, Chapter 4, Theorem 1.4]) we have that
Ŵ δ
N(r) := ŴN(r) −

[
ŴN(·),Bδ(·)

]
r
, r ≤ t, under Pδ has the same law as ŴN

under P, where [ · , · ]r stands for the quadratic variation at time r. We fur-
thermore have that

[
ŴN(·),Bδ(·)

]
r

= −
∫ r

0
δu(s) ds as well as N(t) =

∫ t
0
S1(t −

s)GN dŴN(s) and Tδu N(t) =
∫ t

0
S1(t−s)GN dŴ δ

N(s). Since the law of Ŵ δ
N under

Pδ is the same as the law of ŴN under P, this is also the case for Tδu N and
N (recall that N is a continuous function of ŴN , when the latter is seen as

an element in C
(

[0, t];R(2N−1)2
)

endowed with the supremum norm because of
(4.8)). Thus Pδ is the required measure and (4.17) in the form

∂δ+E
(
Φ
(
XN,δ(t;x)

)
χ
(∣∣∣∣∣∣TδuZN

∣∣∣∣∣∣
t

)
Aδ(t)

) ∣∣∣
δ=0

= 0 (4.18)

follows. Using the chain rule, ∂δΦ
(
XN,δ(x; t)

)
= DΦ

(
XN,δ(x; t)

) (
∂δX

N,δ(x; t)
)

and ∂δA
δ(t) = −Aδ(t)

(∫ t
0
u(s) · dŴN(s) + δ

∫ t
0
|u(s)|2 ds

)
. For the directional

derivative of χ
(∣∣∣∣∣∣TδuZN

∣∣∣∣∣∣
t

)
at δ+ = 0 it suffices to check the existence of the

limit

lim
δ→0+

∣∣∣∣∣∣TδuZN
∣∣∣∣∣∣
t
−
∣∣∣∣∣∣ZN

∣∣∣∣∣∣
t

δ
.
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We claim that the above limit is the same as

∂+

∣∣∣∣∣∣ZN
∣∣∣∣∣∣
t

(
Y N
)

:= lim
δ→0+

∣∣∣∣∣∣ZN + δY N
∣∣∣∣∣∣
t
−
∣∣∣∣∣∣ZN

∣∣∣∣∣∣
t

δ

where Y N =
(
Qw(·), 2 N

0,·Qw(·), . . . , n n− 1 N
0,·Qw(·)

)
. Using the fact that |||·|||t is a

norm, we have that
∣∣∣∣∣∣TδuZN

∣∣∣∣∣∣
t
−
∣∣∣∣∣∣ZN

∣∣∣∣∣∣
t

δ
=

∣∣∣∣∣∣ZN + δY N
∣∣∣∣∣∣−

∣∣∣∣∣∣ZN
∣∣∣∣∣∣
t

δ
+ Errorδ,

where Errorδ → 0 as δ → 0+. Subtracting ∂+

∣∣∣∣∣∣ZN
∣∣∣∣∣∣
t

(
Y N
)

from both sides of the
last equation and letting δ → 0+ we get

lim sup
δ→0+

(∣∣∣∣∣∣TδuZN
∣∣∣∣∣∣
t
−
∣∣∣∣∣∣ZN

∣∣∣∣∣∣
t

δ
− ∂+

∣∣∣∣∣∣ZN
∣∣∣∣∣∣
t

(
Y N
)
)
≤ 0. (4.19)

In a similar way we can prove that the reverse inequality of (4.19) is valid with
the lim sup replaced by a lim inf, which makes ∂+

∣∣∣∣∣∣ZN
∣∣∣∣∣∣
t

(
Y N
)

the appropriate
limit.

We now argue on how to pass the derivative inside the expectation in (4.18).
The argument is similar to [Nor86]. For any function f we introduce the differ-
ence operator 4δf(·) = f(δ)− f(0).

We first show that the family of random variables

4δ

(
Φ
(
XN,·(t;x)

)
χ
(∣∣∣∣∣∣T·uZN

∣∣∣∣∣∣
t

)
A·(t)

)

δ
δ ∈ (0, 1] (4.20)

are uniformly integrable. We first write

4δ

(
Φ
(
XN,·(t;x)

)
χ
(∣∣∣∣∣∣T·uZN

∣∣∣∣∣∣
t

)
A·(t)

)

= 4δΦ
(
XN,·(t;x)

)
χ(
∣∣∣∣∣∣TδuZN

∣∣∣∣∣∣
t
)Aδ(t)

+ Φ
(
XN,δ(t;x)

)
4δ χ

(∣∣∣∣∣∣T·uZN
∣∣∣∣∣∣
t

)
Aδ(t)

+ Φ
(
XN,δ(t;x)

)
χ
(∣∣∣∣∣∣TδuZN

∣∣∣∣∣∣
t

)
4δ A

·(t).

We treat each term on the right hand side separately. For the first term, we first
use that Φ ∈ C1

b (C−α0) which prompts us to bound ‖XN,δ(t;x)−XN(t;x)‖C−α0 .
By the mean value theorem we get

‖XN,δ(t;x)−XN(t;x)‖C−α0 ≤
∫ δ

0

‖DXN,λ(t;x)(w)‖C−α0 dλ
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where DXN,λ(t;x)(w) solves (4.9) with ZN replaced by TλuZN . By (4.9) we get
a bound on the quantity ‖DXN,λ(t;x)(w)‖C−α0 as soon as we have a bound on∣∣∣∣∣∣TλuZN

∣∣∣∣∣∣. The presence of the smooth indicator function yields a bound on∣∣∣∣∣∣TδuZN
∣∣∣∣∣∣ which then by definition of the shift as well as the assumed bound-

edness of w yields a uniform bound on
∣∣∣∣∣∣TλuZN

∣∣∣∣∣∣ for all 0 ≤ λ ≤ 1. Hence we
obtain a bound of the form

| 4δ Φ
(
XN,·(t;x)

)
χ
(∣∣∣∣∣∣TδuZN

∣∣∣∣∣∣
t

)
Aδ(t)| ≤ Cδ‖DΦ‖∞Aδ(t),

where the constant C depends on w, χ and t. Arguing in the same way we get
for the second term

|Φ
(
XN,δ(t;x)

)
4δ χ

(∣∣∣∣∣∣T·uZN
∣∣∣∣∣∣
t

)
Aδ(t)| ≤ Cδ‖Φ‖∞Aδ(t).

Finally, for the third term we get using the mean value theorem for4δA
·(t) that

|Φ
(
XN,δ(t;x)

)
χ
(∣∣∣∣∣∣TδuZN

∣∣∣∣∣∣
t

)
4δ A

·(t)| ≤ C‖Φ‖∞
∫ δ

0

|∂λAλ(t)| dλ.

All the above imply that for every p ≥ 1

E

∣∣∣∣∣
4δ

(
Φ
(
XN,·(t;x)

)
χ
(∣∣∣∣∣∣T·uZN

∣∣∣∣∣∣
t

)
A·(t)

)

δ

∣∣∣∣∣

p

. sup
δ∈(0,1]

EAδ(t)p+ sup
δ∈(0,1]

E|∂δAδ(t)|p.

The key observation now is that Aδ(t)p = Aδp(t) exp
{
p2−p

2

∫ t
0
|δu(s)|2 ds

}
, where

Aδp(t) is also an exponential martingale of expectation 1, while

exp

{
p2 − p

2

∫ t

0

|δu(s)|2 ds

}

is uniformly bounded in δ because of the almost sure bound on w. This implies
that supδ∈(0,1] EAδ(t)p is bounded for any p ≥ 1. Recalling the identity

∂δA
δ(t) = −Aδ(t)

(∫ t

0

u(s) · dŴN(s) + δ

∫ t

0

|u(s)|2 ds

)

and using again the almost sure bound on w and the Cauchy–Schwarz inequal-
ity we have that

E|∂δAδ(t)|p .
(
EAδ(t)2p

) 1
2p



(
E
∣∣∣∣
∫ t

0

u(s) · dŴN(s)

∣∣∣∣
2p
) 1

2p

+ 1


 .
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The first term on the right hand side of the above inequality is uniformly
bounded in δ as we discussed earlier while the second term can be bounded
uniformly in δ using the Burkholder–Davis–Gundy inequality (see [RY99, Chap-
ter 4, Theorem 4.1]) and the almost sure bound on w. Hence

E

∣∣∣∣∣
4δ

(
Φ
(
XN,·(t;x)

)
χ
(∣∣∣∣∣∣T·uZN

∣∣∣∣∣∣
t

)
A·(t)

)

δ

∣∣∣∣∣

p

<∞,

uniformly in δ ∈ (0, 1], for every p ≥ 1, which implies uniform integrability of
(4.20).

Using Vitali’s convergence theorem (see [Bog07, Theorem 4.5.4]), we can now
pass the derivative inside the expectation and differentiate by parts to obtain
the identity

E
(
DΦ

(
XN,δ(t;x)

) (
∂δX

N,δ(t;x)
)
χ
(∣∣∣∣∣∣TδuZN

∣∣∣∣∣∣
t

)
Aδ(t)

)∣∣∣
δ=0

= −E
(

Φ
(
XN,δ(t;x)

)
χ
(∣∣∣∣∣∣TδuZN

∣∣∣∣∣∣
t

)
∂δA

δ(t)
)∣∣∣

δ=0

− E
(

Φ
(
XN,δ(t;x)

)
∂δ+χ

(∣∣∣∣∣∣TδuZN
∣∣∣∣∣∣
t

)
(w)Aδ(t)

)∣∣∣
δ=0

.

The result follows since ∂δX
N,δ(x; t)

∣∣∣
δ=0

= DXN(t;x)(w) and ∂δA
δ(t)
∣∣∣
δ=0

=

−
∫ t

0
u(s) · dŴN(s).

Let {PN
t : t ≥ 0} defined via the identity

PN
t Φ(x) := EΦ(XN(t;x))1{t<TN∗ (x)}

for every Φ ∈ Cb(C−α0), where we write TN∗ (x) for the explosion time of vN (see
Proposition 4.4) dropping the dependence on N . We use (4.15) to prove the
following proposition.

Proposition 4.11. There exist C > 0 and θ1 > 0 such that

|PN
t Φ(x)− PN

t Φ(y)| ≤ C
1

tθ1
‖Φ‖∞‖x− y‖C−α + 2‖Φ‖∞P

(
t ≥ τNr

2

)
(4.21)

for every x ∈ C−α0 , y ∈ B̄(x; 1), Φ ∈ C1
b (C−α0) and t ≤ T∗ ≡ T∗(R), where T∗(R)

is defined in Proposition 4.7 and R = 2‖x‖C−α0 + 1.

Proof. Let Φ ∈ C1
b (C−α) and t ≤ T∗. Then

|PN
t Φ(x)− PN

t Φ(y)|
=
∣∣E
[
Φ
(
XN(t;x)

)
1{t<TN∗ (x)} − Φ

(
XN(t; y)

)
1{t<TN∗ (y)}

]∣∣



CHAPTER 4. ERGODICITY 54

and the latter term is bounded by I1 + I2, where

I1 :=
∣∣∣E
[(

Φ
(
XN(t;x)

)
− Φ

(
XN(t; y)

) )
χ
(∣∣∣∣∣∣ZN

∣∣∣∣∣∣
t

)]∣∣∣

I2 :=
∣∣∣E
[(

Φ
(
XN(t;x)

)
1{t<TN∗ (x)} − Φ

(
XN(t; y)

)
1{t<TN∗ (y)}

)
χc
(∣∣∣∣∣∣ZN

∣∣∣∣∣∣
t

)]∣∣∣

for χc
(∣∣∣∣∣∣ZN

∣∣∣∣∣∣
t

)
= 1 − χ

(∣∣∣∣∣∣ZN
∣∣∣∣∣∣
t

)
. For the second term we have the bound

I2 ≤ 2‖Φ‖∞P
(
t ≥ τNr

2

)
while by the mean value theorem we get that

I1 =

∣∣∣∣E
(∫ 1

0

DΦ
(
XN(t;x+ λ(y − x))

)
(y − x) dλχ

(∣∣∣∣∣∣ZN
∣∣∣∣∣∣
t

))∣∣∣∣

=

∣∣∣∣
∫ 1

0

E
(
DΦ

(
XN(t;x+ λ(y − x))

)
(y − x)χ

(∣∣∣∣∣∣ZN
∣∣∣∣∣∣
t

) )
dλ

∣∣∣∣ .

For any hN ∈ ΠNL
2 let w be such that ∂sw(s) =

(
〈JN0,shN , em〉

)
|m|<N for s ≤ τNr

and 0 otherwise. Then ∂sw is an adapted process and by Proposition 4.7 there
exists C ≡ C(t) > 0 such that ‖∂sw‖2

L2([0,t];R(2N−1)2)
≤ C, P-almost surely, for

every initial condition zλ = x + λ(y − x) (recall that JN0,· depends on the initial
condition and that zλ ∈ B̄(x; 1), for every λ ∈ [0, 1], thus the estimates in Propo-
sition 4.7 hold uniformly in λ). Furthermore,DXN(t; zλ)(w) = tDXN(t; zλ)(hN),
for every t ≤ τNr , and as in [Nor86] we can use (4.15) for this particular choice
of w to obtain the following identity,

E
(
D
[
Φ(XN(t; zλ))

]
(hN)χ

(∣∣∣∣∣∣ZN
∣∣∣∣∣∣
t

))

=
1

t
E
(

Φ(XN(t; zλ))

∫ t

0

〈JN0,shN , dWN(s)〉χ
(∣∣∣∣∣∣ZN

∣∣∣∣∣∣
t

))

− 1

t
E
(
Φ(XN(t; zλ))∂+χ

(∣∣∣∣∣∣ZN
∣∣∣∣∣∣
t

)
(w)
)
, (4.22)

where we slightly abuse the notation since, as we already mentioned, the op-
erator JN0,· depends on the initial condition zλ. In particular this is true for
hN = Π̂N(y − x), hence

I1 ≤
1

t
‖Φ‖∞

∫ 1

0

E
∣∣∣∣
∫ t

0

〈
JN0,sΠ̂N(y − x), dWN(s)

〉
χ
(∣∣∣∣∣∣ZN

∣∣∣∣∣∣
t

)∣∣∣∣ dλ

+
1

t
‖Φ‖∞

∫ 1

0

E
∣∣∂+χ

(∣∣∣∣∣∣ZN
∣∣∣∣∣∣
t

)
(w)
∣∣ dλ.
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Estimating the first term above we get

E
∣∣∣∣
∫ t

0

〈
JN0,sΠ̂N(y − x), dWN(s)

〉
χ
(∣∣∣∣∣∣ZN

∣∣∣∣∣∣
t

)∣∣∣∣

≤ E

∣∣∣∣∣

∫ t∧τNr

0

〈
JN0,sΠ̂N(y − x), dWN(s)

〉∣∣∣∣∣

≤
(
E
∫ t∧τNr

0

‖JN0,sΠ̂N(y − x)‖2
L2 ds

) 1
2

≤ Ct
1
2
−γ‖x− y‖C−α0 ,

where we use a Cauchy–Schwarz inequality and Itô’s isometry in the second
step and Proposition 4.7 in the third step. Here we use crucially, that the
deterministic bound on JN0,s provided in Proposition 4.7 holds uniformly inN > 0

(and in λ). Using the explicit form (4.16) of ∂+χ
(∣∣∣∣∣∣ZN

∣∣∣∣∣∣
t

)
we also have the

uniform in λ bound

E
∣∣∂+χ

(∣∣∣∣∣∣ZN
∣∣∣∣∣∣
t

)
(w)
∣∣ ≤ Ct1−γ‖x− y‖C−α0 ,

since

∂+

∣∣∣∣∣∣ZN
∣∣∣∣∣∣
t

(
Qw(·), 2 NQw(·), . . . , n n− 1 NQw(·)

)

≤ C
∣∣∣∣∣∣ZN

∣∣∣∣∣∣
t
t1−γ‖x− y‖C−α0

and the fact that
∣∣∣∣∣∣ZN

∣∣∣∣∣∣
t

multiplied by ∂+χ
(∣∣∣∣∣∣ZN

∣∣∣∣∣∣
t

)
is bounded by 1. Thus

I1 ≤ C
1

tγ
‖Φ‖∞‖x− y‖C−α0

and using both the bounds on I1 and I2 we get that for every t ≤ T∗

|PN
t Φ(x)− PN

t Φ(y)| ≤ C
1

tγ
‖Φ‖∞‖x− y‖C−α0 + 2‖Φ‖∞P

(
t ≥ τNr

2

)
,

which completes the proof.

Given that the vector
(

k N
)n
k=1

converges in law to
(

k
)n
k=1

on Cn,−α(0;T ),
for every α > 0 and with respect to every norm |||·|||α;α′;T , for every T > 0, we
have that τNr

2
converges in law to τ r

2
when the mapping

Z 7→ inf
{
t > 0 : ‖Z(1)(t)‖C−α ∨ . . . ∨ t(n−1)α′‖Z(n)(t)‖C−α >

r

2

}
(4.23)
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is P-almost surely continuous on the path
(

k
)n
k=1

. But if

L :=
{
r ∈ (0, 1] : P

(
(4.23) is discontinuous on

(
k
)n
k=1

)
> 0
}

and M : [0,∞)→ [0,∞) is the mapping

t 7→ ‖ (t)‖C−α ∨ . . . ∨ t(n−1)α′‖ n (t)‖C−α ,

then

L ⊂ {r ∈ (0, 1] : P (M has a local maximum at height r) > 0}

and the last set is at most countable (see [MW17a, proof of Theorem 6.1]). Thus
we can choose r ∈ [1

4
, 1] in (4.12) such that (4.23) is P-almost surely continuous

on
(

k
)n
k=1

. This implies convergence in law of τNr
2

to τ r
2
, thus

lim sup
N→∞

P
(
t ≥ τNr

2

)
≤ P

(
t ≥ τ r

2

)
.

Notice that global existence of v(t) (see Theorem 3.12) implies global existence
of X(t;x) and in particular existence for every t ≤ T∗(R). Using Propositions 2.3
and 3.7, lim infN→∞ TN∗ ≥ T∗(R) and supt≤TN∗ ∧T∗(R) ‖XN(t;xN)−X(t;x)‖C−α0 →
0 P-almost surely, for every x ∈ C−α. By the dominated convergence theorem
PN
t Φ(x) converges to PtΦ(x), for every Φ ∈ C1

b (C−α0), and we retrieve (4.21) for
the limiting semigroup Pt, for every t ≤ T∗(R), in the form

|PtΦ(x)− PtΦ(y)| ≤ C
1

tθ1
‖Φ‖∞‖x− y‖C−α0 + 2‖Φ‖∞P

(
t ≥ τ r

2

)
. (4.24)

Remark 4.12. The above argument can be modified to retrieve (4.24) without
using global existence for the limiting process. In this case, one can define the
semigroup Pt by introducing a cemetery state for the process X(t;x).

We finally prove the following theorem. Below we denote by ‖µ1 − µ2‖TV the
total variation distance of two probability measures µ1, µ2 ∈M1(C−α0) given by

‖µ1 − µ2‖TV :=
1

2
sup
‖Φ‖∞≤1

|Eµ1Φ− Eµ2Φ|.

Theorem 4.13. There exists θ ∈ (0, 1) and σ > 0 such that for every x ∈ C−α0

and y ∈ B̄(x; 1)

‖P ∗t δx − P ∗t δy‖TV ≤ C(1 + ‖x‖C−α0 )σ‖x− y‖θC−α0 ,

for every t ≥ 1. In particular, for every t ≥ 1, Pt is locally uniformly θ-Hölder

continuous with respect to the total variation distance in C−α0.
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Proof. Let R = 2‖x‖C−α0 + 1. By an approximation argument (see [DPZ96,
Lemma 7.1.5]) (4.24) is equivalent to

‖P ∗t δx − P ∗t δy‖TV ≤
C

2

1

tθ1
‖x− y‖C−α0 + P

(
t ≥ τ r

2

)
,

for every t ≤ T∗ and y ∈ B̄(x; 1). Notice that

P
(
t ≥ τ r

2

)
≤ P

(
|||Z|||α;α′;t >

r

2

)

and by Theorem 2.1

P
(
|||Z|||α;α′;t > r

)
≤ C

1

r
tθ2 ,

for some θ2 ∈ (0, 1). Since we can assume that T∗ ≤ 1, we have that

‖P ∗1 δx − P ∗1 δy‖TV ≤ ‖P ∗T∗δx − P ∗T∗δy‖TV

where

‖P ∗T∗δx − P ∗T∗δy‖TV ≤ inf
t≤T∗

{
C1

1

tθ1
‖x− y‖C−α0 + C2

1

r
tθ2
}
.

Let f(t) := C1
1
tθ1
‖x− y‖C−α0 + C2

1
r
tθ2, t > 0, and notice that for

t0 =

(
θ1C1r‖x− y‖C−α0

θ2C2

) 1
θ1+θ2

,

f(t0) = inft>0 f(t). If t0 ≤ T∗, then there exists C ≡ C(θ1, θ2, r) such that

‖P ∗T∗δx − P ∗T∗δy‖TV ≤ f(t0) = C‖x− y‖
θ2

θ1+θ2

C−α0
.

Otherwise t0 ≥ T∗ and using

‖P ∗T∗δx − P ∗T∗δy‖TV ≤ C1
1

(T∗)θ1
‖x− y‖C−α0 + C2

1

r
(T∗)

θ2

≤ C1
1

(T∗)θ1
‖x− y‖C−α0 + C2

1

r
tθ20

= C1
1

(T∗)θ1
‖x− y‖C−α0 + C̃2

1

r
‖x− y‖

θ2
θ1+θ2

C−α0

and the explicit estimate of T∗ (see (3.10)) we get

‖P ∗T∗δx − P ∗T∗δy‖TV ≤ C̃1(1 +R)3
θ1
θ ‖x− y‖C−α0 + C̃2

1

r
‖x− y‖

θ2
θ1+θ2

C−α0

≤ C(1 +R)
3
θ1
θ

+
θ1

θ1+θ2 ‖x− y‖
θ2

θ1+θ2

C−α0
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for a constant C ≡ C(θ1, θ2, r) and some θ > 0 as in (3.10). Combining all the
above we finally get

‖P ∗1 δx − P ∗1 δy‖TV ≤ C(1 +R)
3
θ1
θ

+
θ1

θ1+θ2 ‖x− y‖
θ2

θ1+θ2

C−α0
,

which completes the proof.

4.4 A Support Theorem

From now on we restrict ourselves in the case n = 3 (see Remark 4.15). In this
section following [CF16] we prove a support theorem for the solutions to (3.1)
for n = 3. For simplicity, we also assume that the torus T2 has size 1, that is,
T2 = R2/LZ2 for L = 1. However, all the proofs in this section can be carried
out for general L, by possibly making the explicit constants to depend on L.

We consider Y =
(

k −∞
)3

k=1
(see (2.5) for the definition of k −∞) as an

element of C([0, T ]; C−α)3 endowed with the norm |||·|||α;0;T , for some α ∈ (0, 1),
given by

|||Y |||α;0;T := max
k=1,2,3

{
sup
t≤T
‖ k −∞(t)‖C−α

}
.

Here we are allowed to use a non-weighted norm since there is no blow-up of
k −∞ at zero (see Theorem 2.1). We furthermore let

H (T ) :=

{
h
∣∣
[0,T ]

: h(t) =

∫ t

−∞
S1(t− r)f(r) dr, t ≥ 0 and f ∈ L2(R× T2)

}
.

It is worth mentioning that H (T ) consists of those L2-integrable space-time
functions with zero initial datum and with one derivative in time and two deriva-
tives in space in L2.

Lemma 4.14. Let {Cm}m≥1 be a sequence of positive numbers such that Cm ≤
C(m+ 1). Then there exists a sequence of smooth functions {fm}m≥1 such that

i. fm ∈ C−α, for every α ∈ (0, 1).

ii. |〈fm, el〉|2 = Cm if l = 2m(1, 1) or l = −2m(1, 1) and 0 otherwise.

iii. For every n = 1, 2, 3, Hn(fm, Cm)→ 0 in C−α, for every α ∈ (0, 1).
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Proof. Let

fm(z) :=
e2πi2mz0·z + e−2πi2mz0·z

21/2
C1/2
m ,

where z0 = (1, 1) ∈ Z2, z ∈ T2. Then for κ ≥ −1

δκfm(z) =
C

1/2
m

21/2
1{m=κ}

(
e2πi2mz0·z + e−2πi2mz0·z)

δκfm(z)2 − Cm =
Cm
2

1{m+1=κ}
(

e2πi2m+1z0·z + e−2πi2m+1z0·z
)

δκfm(z)3 =
C

3/2
m

23/2

[
χκ(2

m3z0)
(
e2πi2m3z0·z + e−2πi2m3z0·z)

+ 1{m=κ}3
(
e2πi2mz0·z + e−2πi2mz0·z)

]
.

Notice here we have used the convenient fact that the particular choice of z0 has
the property that χκ(2mz0) = 1{m=κ}. Thus we have

‖fm‖C−α . C1/2
m 2−αm

‖f 2
m − Cm‖C−α . Cm2−αm

‖f 3
m − 3Cmfm‖C−α . C3/2

m 2−αm.

Given that Cm . m + 1 all the above quantities tend to 0 as m → ∞, which
completes the proof.

Remark 4.15. The sequence {fm}m≥1 introduced in the lemma above satisfies
property iii for every odd n. For such n every term appearing in Hn(fm, Cm) is a
multiple of Ck1

m e2mk2z0 for a k2 6= 0 and the fast (exponential) decay of ‖e2mk2z0‖C−α
compensates the slow (polynomial) growth of Ck1

m . However, for even n this
property fails, because for such n the quantity Hn(fm, Cm) contains a multiple
of Cn

m which does not need to vanish. We suspect, that a first step in order to
generalise Theorem 4.16 to the case of general n would be the construction of a
sequence {fm}m≥1 with Fourier support on an annulus and such that

∫

T2

fm(z)k dz = Hk(0, Cm),

for every k ≥ 1.

We now prove the following support theorem.
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Theorem 4.16. Let PY be the law of Y in C([0, T ]; C−α)3
endowed with the norm

|||·|||α;0;T . Then

suppPY =

{(
Hk(h,<)

)3

k=1
: h ∈H (T ), < ≥ 0

}|||·|||α;0;T

.

Proof. For h ∈H (T ) and Y ∈ C3,−α(0;T ) let Th be the shift

ThY
(k) =

k∑

j=0

(
k

j

)
hj Y (k−j), k = 1, 2, 3,

where we use again the convention that Y (0) ≡ 1, and write ThY =
(
ThY

(k)
)3

k=1
.

Here we slightly abuse the notation since the action of Th on Y (k) needs infor-
mation on the lower order terms.

As in [CF16], it suffices to prove that (0,−<, 0) ∈ suppPY , for every < ≥ 0.
Then, given that shifts of the initial probability measure in the direction of
the Cameron–Martin space generate equivalent probability measures, for every
h ∈ H (T ), Th(0,−<, 0) ∈ suppPY , which completes the proof since by the
definition of Th the latter is equal to (Hk(h,<))3

k=1 (see also [CF16, Corollary
3.10]).

For λ > 0 and ρλ2m(z) =
∑
|m̄|<λ2m em̄(z) we let

m
−∞(t, z) := 〈 −∞(t), ρλ2m(z − ·)〉, <m := E m

−∞(t, 0)2,

where m
−∞(t) coincides with N

−∞(t) in Section 2.2 for N = λ2m. Notice that for
< ≥ 0 there exists m0 ≡ m0(<) > 1 such that <m − < > 0, for every m ≥ m0

(recall that <m ∼ logm). Thus if we set Cm = 0 for m ≤ m0 and Cm = <m − <
otherwise, then Cm ≥ 0 and Cm . m+ 1. We consider fm as in Lemma 4.14 for
this particular choice of Cm and for λm = 1 + 4π222m|z0|2 we let

hm(t) :=
(
1− e−λm(t+1)

)
fm,

for t ∈ [0, T ]. Then hm ∈ H (T ) since hm(t) = 1
λm

∫ t
−1
S1(t − r)fm dr and we

furthermore have the uniform in t estimates

‖hm(t)‖C−α ≤ ‖fm‖C−α
‖hm(t)2 − Cm‖C−α ≤ ‖f 2

m − Cm‖2
C−α + 2e−λmCm

‖hm(t)3‖C−α ≤ ‖f 3
m‖C−α .
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Finally, we define

wm := − m
−∞ − hm.

We prove that the following convergences hold in every stochastic Lp space of
random variables taking values in C([0, T ]; C−α),

Twm −∞ → 0, Twm −∞ → −<, Twm −∞ → 0.

By the same argument as in [CF16, Lemma 3.13] this implies the result. For
the reader’s convenience, we sketch the argument here. Since wm ∈ H (T ), by
Lemma [CF16, Corollary 3.10] there exists a subset Ω′ of Ω of probability one
such that for every ω ∈ Ω′

(Twm(ω) −∞(ω), Twm(ω) −∞(ω), Twm(ω) −∞(ω)) ∈ suppPY

for every m ≥ 1. Given that suppPY is closed under the norm |||·|||α;0;T , we can
conclude that (0,−<, 0) ∈ suppPY as soon as the above convergence holds for
a single element ω ∈ Ω′. The stochastic Lp convergence implies almost sure
convergence along a subsequence which is sufficient.

The convergence of Twm −∞ to 0 is an immediate from Proposition 2.3 and
Lemma 4.14.

If we compute the corresponding shift for −∞ we get

Twm −∞(t) = −∞(t) +
(
( m
−∞(t))2 −<m

)
− 2

(
−∞(t) m

−∞(t)−<m
)

+ 2 m
−∞(t)hm(t) +H2(hm(t),<m),

where we also add and subtract 2<m where necessary. If we choose λ sufficiently
small we can ensure that

m
−∞(t) ◦ hm(t) ≡ 0,

where m
−∞,t◦hm(t) is the resonant term define in (A.9). Using the Bony estimates

(see Proposition A.6), Lemma 4.14 and the fact that m
−∞ is bounded in every

stochastic Lp space taking values in C([0, T ]; C−α) we get that m
−∞(t)hm(t)→ 0.

For the term

−∞(t) +
(
m
−∞(t)2 −<m

)
− 2

(
−∞(t) m

−∞(t)−<m
)
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by Proposition 2.3 it suffices to compute the limit of −∞(t) m
−∞(t) − <m. We

only give a sketch of the proof since the idea is similar to the one in the proof of
Proposition 2.3 (see Appendix E). Notice that for m′ > m, E m′

−∞(t) m
−∞(t) = <m,

thus using [Nua06, Proposition 1.1.2] we have that

m′
−∞(t) m

−∞(t)−<m = m′
−∞(t)⊗ m

−∞(t),

where ⊗ denotes the renormalised product given by

j m′
−∞ ⊗ i m

−∞(t, z)

:= 2
i+j
2

∫

{(−∞,t]×T2}j+i

∏

1≤j′≤j
1≤i′≤i

Hm′(t− ri′ , z − zi′)Hm(t− rj′ , z − zj′)

× ξ(⊗i+jk=1 dzk,⊗i+jk=1 drk),

for every z ∈ T2 and i, j ≥ 1. In the same spirit as in the proof of Proposition 2.3
(see Appendix E) we can prove that

lim
m→∞

lim
m′→∞

E sup
t≤T
‖ m′
−∞(t)⊗ m

−∞(t)− −∞(t)‖pC−α = 0,

for every p ≥ 2. Combining the above with the fact that supt≤T ‖hm(t)2 − (<m −
<)‖C−α converges to 0, we obtain that Twm −∞ → −<.

For the term Twm −∞(t), by adding and subtracting multiples of <m m
−∞,t

and <m where necessary we have that

Twm −∞(t) = −∞(t)−
(
m
−∞(t)3 − 3<m m

−∞(t)
)

− 3
(
m
−∞(t) −∞(t)− 2<m m

−∞(t)
)

+ 3
(
−∞(t) m

−∞(t)2 − 3<m m
−∞(t)

)

+ 3hm(t)
(
−∞(t) + ( m

−∞(t)2 −<m)− 2( −∞(t) m
−∞(t)−<m)

)

+ 3hm(t)2
(
−∞(t)− m

−∞(t)
)

+H3(hm(t),<m).

For the terms m
−∞(t) −∞(t)−2<m m

−∞(t), −∞(t) m
−∞(t)2−3<m m

−∞(t) using again
[Nua06, Proposition 1.1.2] for m′ > m we have that

m
−∞(t) m′

−∞(t)− 2<m m
−∞(t) = m

−∞(t)⊗ m′
−∞(t) + 2<m( m′

−∞(t)− m
−∞(t))

m′
−∞(t) m

−∞(t)2 − 3<m m
−∞(t) = m′

−∞(t)⊗ m
−∞(t) + <m( m′

−∞(t)− m
−∞(t)).
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If we proceed again in the spirit of the proof of Proposition 2.3 (see Appendix E)
we obtain that

lim
m→∞

lim
m′→∞

E sup
t≤T
‖ m
−∞(t)⊗ m′

−∞(t)− −∞(t)‖pC−α = 0

lim
m→∞

lim
m′→∞

E sup
t≤T
‖ m′
−∞(t)⊗ m

−∞(t)− −∞(t)‖pC−α = 0

lim
m→∞

lim
m′→∞

(<m)p E sup
t≤T
‖ m′
−∞(t)− m

−∞(t)‖pC−α = 0,

for every p ≥ 2. It remains to handle the terms

hm(t)
(
−∞(t)− ( −∞(t) m

−∞(t)−<m)
)
, (4.25)

hm(t)
(

m
−∞(t)2 −<m − ( −∞(t) m

−∞(t)−<m)
)

(4.26)

and

hm(t)2( −∞(t)− m
−∞(t)). (4.27)

We only show that (4.25) converges to 0 since (4.26) and (4.27) can be handled
in a similar way. In particular due to Bony estimates (see Proposition A.6) it
suffices to prove that the resonant term

hm(t) ◦
(
−∞(t)− ( −∞(t) m

−∞(t)−<m)
)

=
∑

|κ1−κ2|≤1

δκ1hm(t)δκ2

[
−∞(t)− ( −∞(t) m

−∞(t)−<m)
]

converges to 0. Since the Fourier modes of hm are localised at the points 2mz0

and −2mz0 we have that

hm(t) ◦
(
−∞(t)− ( −∞(t) m

−∞(t)−<m)
)

= hm(t)
∑

i=−1,0,1

δm+i

[
−∞(t)− ( −∞(t) m

−∞(t)−<m)
]
.

Let κ ≥ −1 and Ym(t) = −∞(t)− ( −∞(t) m
−∞(t)−<m). Then, for i = −1, 0, 1,

Eδκ[hm(t1)δm+iYm(t1)](z1)δκ[hm(t2)δm+iYm(t2)](z2)

=

∫

T2×T2

Cm,i(t1 − t2, z̄1 − z̄2)ηκ(z1 − z̄1)ηκ(z2 − z̄2)hm(t1, z̄1)hm(t2, z̄2)

× dz̄1 dz̄2,
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where

Cm,i(t1 − t2, z̄1 − z̄2) = Eδm+i[Ym(t1)](z̄1)δm+i[Ym(t2)](z̄2).

For m′ > m using [Nua06, Proposition 1.1.2] we have that m′
−∞(t) m

−∞(t)−<m =
m′
−∞(t)⊗ m

−∞(t). Let Ym,m′(t) = −∞(t)− m′
−∞(t)⊗ m

−∞(t) and notice that

Eδm+i[Ym,m′(t1)](z̄1)δm+i[Ym,m′(t2)](z̄2)

= C
∑

|l1|>λ2m
′

|l2|>λ2m

∏

j=1,2

1− e−Ilj |t2−t1|

2Ilj
|χm+i(l1 + l2)|2el1+l2(z̄1 − z̄2),

for some constant C independent of m and m′ and Ilj = 1 + 4π2|lj|2. Then for
every γ ∈ (0, 1

2
) by a change of variables

∫

T2×T2

Cm,m′,i(t1 − t2, z̄1 − z̄2)ηκ(z1 − z̄1)ηκ(z2 − z̄2)hm(t1, z̄1)hm(t2, z̄2)

× dz̄1 dz̄2

.

( ∑

l∈A2m+i

l+2mz0∈A2κ

Kγ ?2
>λ2m K

γ(l) +
∑

l∈A2m+i

l−2mz0∈A2κ

Kγ ?2
>λ2m K

γ(l)

︸ ︷︷ ︸
I

)

× (m+ 1)|t1 − t2|2γ,

where Kγ(l) = 1
(1+|l|2)1−γ and Cm,m′,i is defined as Cm,i with Ym replaced by Ym,m′.

By Corollary C.3

I .
∑

l∈A2m+i

l+2mz0∈A2κ

1

(1 + |l|2)1−2γ
+

∑

l∈A2m+i

l−2mz0∈A2κ

1

(1 + |l|2)1−2γ
,

thus for every ε > 2γ

I . 22εk
∑

l∈Z2

1

(1 + |l|2)1−2γ

1

(1 + |l + 2mz0|2)ε
.

Using Corollary C.3 we obtain

Eδκ[hm(t1)δm+iYm,m′(t1)](z1)δκ[hm(t2)δm+iYm,m′(t2)](z2)

.
22εκ(m+ 1)

(1 + |2mz0|2)ε−2γ
|t1 − t2|2γ,
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for every γ ∈ (0, 1
2
) and ε > 2γ. Using Nelson’s estimate (B.3) for every p ≥ 2, the

usual Kolmogorov criterion and the embedding B−α+ 2
p

p,p ↪→ C−α we finally obtain
that

lim
m→∞

lim
m′→∞

E sup
t≤T
‖hm(t) ◦

(
−∞(t)− ( −∞(t) m

−∞(t)−<m)
)
‖pC−α = 0.

Convergence of hm
(
−∞ − ( −∞ m

−∞ −<m)
)

to 0 then follows by Bony estimates
(see Proposition A.6).

For x ∈ C−α0, f ∈ L2(R× T2) and < ≥ 0, let T (x; f ;<) be the solution map
of the equation

(
∂t − (∆− 1)

)
X = −

3∑

k=0

akHk(X,<) + f

X|t=0 = x

. (4.28)

The following proposition is a consequence of Theorem 4.16 and the fact that
the solution X to (3.1) is a continuous function of the stochastic objects k

(see Definition 3.3) which in turn are continuous functions of the stationary
stochastic objects k −∞ (see (2.7)).

Proposition 4.17. Let X(·;x) be the solution of (3.1) for n = 3 and x ∈ C−α0 and

denote by PX(·;x) its law in C([0, T ]; C−α0). Then

suppPX(·;x) = {T (x; f ;<) : f ∈ L2(R× T2), < ≥ 0}C([0,T ];C−α0 )
.

Proof. See the proof of [CF16, Theorem 1.1].

We then have the following corollary.

Corollary 4.18. Let X(·;x) be the solution of (3.1) for n = 3 and x ∈ C−α0. For

every T, ε > 0 and y ∈ C−α0

P(X(T ;x) ∈ B(y; ε)) > 0, (4.29)

where B(y; ε) denotes the open ball of radius ε centred at y in C−α0.

Proof. It suffices to prove that for every y ∈ C∞ there exist f ∈ L2(R × T2) and
< ≥ 0 such that T (x; f ;<)(T ) = y. But if we set

X(t) = S1(t)x+
t

T
(y − S1(T )x) ,
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for any choice of < ≥ 0 and

f(t) =
3∑

k=0

akHk(X(t),<) +
1

T
(y − S1(T )x)− t

T
(∆− 1)(y − S1(T )),

we have that X = T (x; f ;<). Then the result follows by Proposition 4.17 and
the fact that C∞ is dense in C−α0.

4.5 Exponential Mixing

In this section we combine Theorem 4.1, Theorem 4.13 and Corollary 4.18 to
prove exponential mixing of the law of the solutions to (3.1) for n = 3 with
respect to the total variation distance. The restriction n = 3 is due to the lack
of a general support theorem (see Section 4.4 for details). However, the results
of this section can be also used to prove exponential mixing in the case of (3.1)
for any n ≥ 3 odd, given that Corollary 4.18 holds for any n ≥ 3 odd.

We recall that for any coupling M of probability measures µ1, µ2 and F,G

measurable functions with respect to the corresponding σ-algebras we have the
identity

∫
(F (x)−G(y))M( dx, dy) =

∫ ∫
(F (x)−G(y))µ1( dx)µ2( dy). (4.30)

We finally combine the results of the previous sections to prove the following
theorem.

Theorem 4.19. Let {Pt : t ≥ 0} be the Markov semigroup (3.28) of the solution

to (3.1) for n = 3. Then there exists λ ∈ (0, 1) such that

‖P ∗t δx − P ∗t δy‖TV ≤ 1− λ, (4.31)

for every x, y ∈ C−α0 and t ≥ 3.

Proof. Let 0 < α < α0 and for R > 0 consider the subset of C−α0

AR := {x ∈ C−α0 : ‖x‖C−α ≤ R}

which is compact since the embedding C−α ↪→ C−α0 is compact (see Proposition
A.4). By Theorem 4.13 for every a ∈ (0, 1) there exists r ≡ r(a) > 0 such that
for every x, y ∈ B̄(0; r) and t ≥ 1

‖P ∗t δx − P ∗t δy‖TV ≤ 1− a.
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By (4.29) for every x ∈ AR

P1(x; B̄(0; r)) > 0,

which combined with the strong Feller property (which implies the continuity of
P1(x;A) as a function of x for fixed measurable set A) and the fact that AR is
compact implies that there exists b ≡ b(R) > 0 such that

inf
x∈AR

P1(x; B̄(0; r)) ≥ b.

For t ≥ 0 and x, y ∈ AR \ B̄(0; r), let Px,yt ∈ M1(C−α0 × C−α0) be the product
coupling of Pt(x) and Pt(y) given by

Px,yt (A×B) = Pt(x;A)Pt(y;B),

for every measurable sets A,B ⊂ C−α0. Then, for x, y ∈ AR, t ≥ 2 and Φ ∈
Cb(C−α0),

|PtΦ(x)− PtΦ(y)| = |E [Pt−1Φ(X(1;x))− Pt−1Φ(X(1; y))] |

=

∣∣∣∣
∫

[Pt−1Φ(x̃)− Pt−1Φ(ỹ)]Px,y1 ( dx̃, dỹ)

∣∣∣∣ ,

where in the first equality we use the Markov property and in the second (4.30).
This implies that

‖P ∗t δx − P ∗t δy‖TV ≤ Px,y1

((
B̄(0; r)× B̄(0; r)

)c)

+ (1− a)Px,y1

(
B̄(0; r)× B̄(0; r)

)

= 1− aPx,y1

(
B̄(0; r)× B̄(0; r)

)

≤ 1− ab2.

By (4.2) we can choose R > 0 sufficiently large such that

inf
x∈C−α0

inf
t≥1

P(‖X(t;x)‖C−α ≤ R) >
1

2
.

Then for any x, y ∈ C−α0 and t ≥ 3, using the same coupling argument as above
we get

‖P ∗t δx − P ∗t δy‖TV ≤ 1− ab2

4
,

which completes the proof if we set λ = ab2

4
.
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The following corollary is the main result of this section and implies expo-
nential mixing.

Corollary 4.20. There exists a unique invariant measure µ∗ ∈ M1(C−α0) for the

semigroup {Pt : t ≥ 0} of the solution to (3.1) for n = 3 such that

‖P ∗t δx − µ∗‖TV ≤ (1− λ)b t3c ‖δx − µ∗‖TV, (4.32)

for every x ∈ C−α0 and t ≥ 3.

Proof. We first notice that for µ1, µ2 ∈ M1(C−α0) and every t ≥ 0 by (4.30) we
have that

‖P ∗t µ1 − P ∗t µ2‖TV ≤
1

2
sup
‖Φ‖∞≤1

∫ ∫
|PtΦ(x)− PtΦ(y)|M( dx, dy),

for any coupling M ∈M1(C−α0 × C−α0) of µ1 and µ2. Thus by (4.31) for t ≥ 3

‖P ∗t µ1 − P ∗t µ2‖TV ≤ (1− λ)
(
1−M({(x, x) : x ∈ C−α0})

)

and using the characterisation of the total variation distance given by

‖µ1 − µ2‖TV = inf
{

1−M({(x, x) : x ∈ C−α0}) : M coupling of µ1 and µ2

}

we get that

‖P ∗t µ1 − P ∗t µ2‖TV ≤ (1− λ) ‖µ1 − µ2‖TV.

This implies that {Pt : t ≥ 0} has a unique invariant measure µ∗ ∈ M1(C−α0),
since by Proposition [DPZ96, Proposition 3.2.5] any two distinct invariant mea-
sures are singular. Finally, for x ∈ C−α0 and t ≥ 3

‖P ∗t δx − µ∗‖TV ≤ (1− λ)‖P ∗t−3δx − µ∗‖TV,

which implies (4.32).



Chapter 5

Metastability

5.1 Introduction

In this chapter we study the behaviour of solutions to the 2-dimensional Allen–
Cahn equation, perturbed by a small noise term, given by

(∂t −∆)X = −X3 +X +
√

2εξ, (5.1)

for a small parameter ε > 0. The deterministic equation is given by

(∂t −∆)X = −X3 +X, (5.2)

and it is well-known that (5.2) is a gradient flow with respect to the double-well
potential

V (X) :=

∫ (
1

2
|∇X(z)|2 − 1

2
|X(z)|2 +

1

4
|X(z)|4

)
dz. (5.3)

In the case d = 1, where the solutionX depends on time and a 1-dimensional
spatial argument, the behaviour of solutions to (5.1) is well-understood. They
exhibit the phenomenon of metastability, that is, they typically spend large
stretches of time close to the minimisers of the potential (5.3) with rare and
relatively quick noise-induced transitions between them. Early contributions
go back to the 80s where Faris and Jona–Lasinio [FJL82] studied the system on
the level of large deviations.

We are particularly interested in the ‘‘exponential loss of memory property’’
first observed by Martinelli, Olivieri and Scoppola in [MS88, MOS89]. They

69
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studied the flow map induced by (5.1), that is, the random map x 7→ X(t;x)

which associates to any initial condition the corresponding solution at time
t, and showed that for large values of t the map essentially becomes constant.
They also showed that with overwhelming probability, solutions that start within
the basin of attraction of the same minimiser of V contract exponentially fast,
with exponential rate given by the smallest eigenvalue of the linearisation of V
in this minimiser. This implies for example that the law of such solutions at
large times is essentially insensitive to the precise location at which they are
started.

It is very natural to study this behaviour in higher dimensions, but as we
already discussed in Section 1.1 when d ≥ 2, equation (5.1) is ill-posed. In par-
ticular, solutions have to be interpreted in the sense of Schwartz distributions
and one has to work with the renormalised equation formally given by

(∂t −∆)X = −X3 + (1 + 3ε∞)X +
√

2εξ. (5.4)

Note that formally, this renormalisation corresponds to moving the minima of
the double-well potential out to±∞ and making them infinitely deep at the same
time. So at first glance, it seems unclear why these renormalised distribution-
valued solutions should exhibit similar behaviour to the 1-dimensional function-
valued solutions of (5.1).

In [HW15] the authors studied the small ε asymptotics for (5.4) in d = 2 and
3 on the level of Freidlin-Wentzell type large deviations. They obtained a large
deviation principle with rate function I given by

I(X) :=
1

4

∫ T

0

∫ (
∂tX(t, z)−

(
∆X(t, z)−

(
X(t, z)3 −X(t, z)

)))2
dz dt. (5.5)

In fact, a result in a similar spirit had already appeared in the 90s [JLM90].
The striking fact is that this rate function is exactly the 2-dimensional version
of the rate function obtained in the 1-dimensional case [FJL82]; the infinite
renormalisation constant does not affect the rate functional. This result implies
that for small ε, solutions of the renormalised SPDE (5.4) stay close to solutions
of the deterministic PDE (5.2) suggesting that (5.4) may indeed be the natural
small noise perturbation of (5.2).

Here we consider (5.4) over a 2-dimensional torus T2 = R2/LZ2 for L < 2π.
It is known that under this assumption on the torus size L, the deterministic
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equation (5.2) has exactly 3 stationary solutions, namely the constant profiles
−1, 0, 1 (see [KORVE07, Appendix B.1]). The profiles ±1 are stable minimisers
of V and the profile 0 is unstable. We prove that in the small noise regime,
solutions that start close to the same stable minimiser ±1 contract exponen-
tially fast with overwhelming probability. The exponential contraction rate is
arbitrarily close to 2, the second derivative of the double-well x 7→ 1

4
x4 − 1

2
x2 in

±1. This is precisely the 2-dimensional version of [MOS89, Corollary 3.1].
On a technical level we work with the Da Prato–Debussche decomposition

discussed in Chapter 3. An immediate observation is that differences of any two
profiles have much better regularity than the solutions themselves. We split
the time axis into random ‘‘good’’ and ‘‘bad’’ intervals depending on whether a
reference profile is close to ±1 or not. The key idea is that on ‘‘good’’ intervals
solutions should contract exponentially, while they should not diverge too fast
on ‘‘bad’’ intervals. Furthermore, ‘‘good’’ intervals should be much longer than
‘‘bad’’ intervals.

The control on the ‘‘good’’ intervals is relatively straightforward: the expo-
nential contraction follows by linearising the equation and the fact that these
intervals are typically long follows from exponential moment bounds of the
stochastic objects appearing in the Da Prato–Debussche decomposition (see
Proposition 5.8). The control on the ‘‘bad’’ intervals is much more involved; in
the 1-dimensional case two profiles cannot diverge too fast, because the sec-
ond derivative of the double-well potential is bounded from below. But in the
2-dimensional case, where solutions are distribution-valued, there is no obvi-
ous counterpart of this property. Instead we use the strong a priori estimate
in Proposition 3.10 and the local Lipschitz continuity of the non-linearity. Ulti-
mately, this yields an exponential growth bound where the exponential rate is
given by a polynomial in the explicit stochastic objects. We use a large devia-
tion estimate to prove that these intervals cannot be too long (see Proposition
5.10). In the final step we show that the exponential contraction holds for
all t if a certain random walk with positive drift stays positive for all times.
This random walk is then analysed using techniques developed for the classical
Cramér–Lundberg model in risk theory (see Proposition 5.13).

As a corollary of this theorem we prove an Eyring–Kramers law for the transi-
tion times of X. In [BDGW17] the authors studied spectral Galerkin approxima-
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tions XN of (5.4) and obtained explicit estimates on the expected first transition
times from a neighbourhood of −1 to a neighbourhood of 1. These estimates
give the precise asymptotics as ε → 0 and hold uniformly in the discretisation
parameter N . Their method was based on the potential theoretic approach de-
veloped in the finite-dimensional context by Bovier et al. in [BEGK04]. This
approach relies heavily on the reversibility of the dynamics and provides ex-
plicit formulas for the expected transition times in terms of certain integrals
of the reversible measure. The key observation in [BDGW17] was that in the
context of (5.1) these integrals can be analysed uniformly in the parameter N
using the classical Nelson’s estimate [Nel73] from constructive Quantum Field
Theory. However, the result in [BDGW17] was not optimal for the following two
reasons: First, it does not allow to pass to the limit as N → ∞ to retrieve the
estimate for the transition times of X. Second, and more important, the bounds
could only be obtained for a certain N-dependent choice of initial distribution
on the neighbourhood of −1. This problem is inherent to the potential theoretic
approach, which only yields an exact formula for the diffusion started in this
so-called normalised equilibrium measure. In fact, a large part of the original
work [BEGK04] was dedicated to removing this problem using regularity theory
for the finite-dimensional transition probabilities.

Here, we overcome these two barriers. We first justify the passage to the limit
N →∞ based on results discussed in Section 1.3.1: we use the strong dissipa-
tive bound (Theorem 1.4) on the level of the approximation XN (see Proposition
5.33) and the support Theorem 1.6 to prove uniform integrability of the transi-
tion times of XN . The only difficulty here comes from the action of the Galerkin
projection on the non-linearity which does not allow to test the equation with
powers greater than 1. To remove the unnatural assumption on the initial dis-
tribution we make use of the exponential contraction estimate, Theorem 1.9.
This estimate allows us to couple the solution started with an arbitrary but
fixed initial condition with the solution started in the normalised equilibrium
measure.

5.1.1 Outline

In Section 5.2 we prove the ‘‘exponential loss of memory property’’ for the solu-
tion of (5.4) (as defined by the equivalent of Definition 3.3 when ξ is replaced by
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√
εξ). In Section 5.3 we prove an Eyring–Kramers law for the transition times

between the minimisers of the potential (5.3).

5.1.2 Notation

Following the equivalent of Definition 3.3 in the case of (5.4), we write X(·;x) =

v(·;x)+ε
1
2 (·), where is defined in (2.3) for s = 0 and the remainder term v(·;x)

solves

(∂t −∆) v = −v3 + v −
(

3v2ε
1
2 + 3vε + ε

3
2 − 2ε

1
2

)

v
∣∣
t=0

= x
, (5.6)

where , are the 2-nd and 3-rd Wick powers of defined in (2.7) for s = 0. We
furthermore impose that T2 = R2/LZ2, for L < 2π.

Remark 5.1. To ease the notation we hide the dependence of X and v on the
parameter ε. However in this chapter both objects should be thought of as being
indexed by ε.

By Theorem 2.1 and Proposition 2.2 the stochastic objects , and can
be realised as continuous processes taking values in C−α for α > 0, such that
P-almost surely for every T > 0, and α′ > 0

max

{
sup
t≤T
‖ (t)‖C−α , sup

t≤T
(t ∧ 1)α

′‖ (t)‖C−α , sup
t≤T

(t ∧ 1)2α′‖ (t)‖C−α
}
<∞. (5.7)

Throughout this section we use n to refer to all the stochastic objects , and
simultaneously. In this notation (5.7) turns into

sup
t≤T

(t ∧ 1)(n−1)α′‖ n (t)‖C−α <∞.

As in Chapter 3 (see (3.5)), we fix α0 ∈ (0, 1
3
) (to measure the regularity of

the initial condition x in C−α0 ), β > 0 (to measure the regularity of v in Cβ) and
γ > 0 (to measure the rate of blow-up of ‖v(t;x)‖Cβ for t close to 0) such that

γ <
1

3
,

α0 + β

2
< γ. (5.8)

We also assume that α′ > 0 and α > 0 in (5.7) satisfy

α′ < γ, α < α0,
α + β

2
+ 2γ < 1. (5.9)
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By Theorems 3.6 and 3.12 for every x ∈ C−α0 there exist a unique solution
v ∈ C

(
(0,∞); Cβ

)
of (5.6) such that for every T > 0

sup
t≤T

(t ∧ 1)γ‖v(t;x)‖Cβ <∞.

Remark 5.2. In Condition (5.8) β has to be strictly less than 2
3
. This is necessary

if one wants to treat all of the terms arising in a fixed point problem for (5.6)
with the same norm for v. A simple post-processing of Theorems 3.6 and 3.12
shows that in fact v is continuous in time taking values in C2−λ for any λ > α.

Equations (2.2), (5.6) suggest that indeed X can be seen as a perturbation of
the Allen-Cahn equation (5.2), because the terms , and in (5.6) all appear
with a positive power of ε. It is important to note that v is much more regular
than X. The irregular part of X(·;x) is ε 1

2 . Therefore differences of solutions
are much more regular than solutions themselves.

We repeatedly work with the restarted stochastic terms s, s and s define
in (2.7). By Proposition 2.3 for every s > 0, n

s(s + ·) is independent of Fs
and equal in law to n (·). For t ≥ s we can define a restarted remainder
vs(t;X(s;x)) through the identity X(t;x) = vs(t;X(s;x)) + ε

1
2 s(t). Rearranging

(5.6) and using the pathwise identities in Corollary 2.4 one can see that vs solves

(∂t −∆) vs = −v3
s + vs −

(
3v2

sε
1
2 s + 3vsε s + ε

3
2 s − 2ε

1
2 s

)

vs
∣∣
t=s

= X(s;x)
. (5.10)

Finally, for any Banach space (V, ‖ · ‖V ) we denote by BV (x0; δ) the open ball
{x ∈ V : ‖x− x0‖V < δ} and by B̄V (x0; δ) its closure.

5.2 Exponential Loss of Memory

In this section we prove the following theorem. From now on whenever we write
±1 we simply mean that the statement holds for −1 and 1 separately.

Theorem 5.3. For every κ > 0 there exist δ0, a0, C > 0 and ε0 ∈ (0, 1) such that

for every ε ≤ ε0

inf
‖x−(±1)‖C−α0≤δ0

P

(
sup

‖y−x‖C−α0≤δ0

‖X(t; y)−X(t;x)‖Cβ
‖y − x‖C−α0

≤ Ce−(2−κ)t, ∀t ≥ 1

)

≥ 1− e−a0/ε.
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Proof. See Section 5.2.1.

This theorem is a variant of [MOS89, Corollary 3.1] in space dimension d = 2.
There the supremum is taken over both x and y inside the probability measure.
We also obtain this version of the theorem as a corollary.

Corollary 5.4. For every κ > 0 there exist δ0, a0, C > 0 and ε0 ∈ (0, 1) such that

for every ε ≤ ε0

P

(
sup

x,y∈B̄C−α0 (±1;δ0)

‖X(t; y)−X(t;x)‖Cβ
‖y − x‖C−α0

≤ Ce−(2−κ)t, ∀t ≥ 1

)
≥ 1− e−a0/ε.

Proof. See Section 5.2.1.

Remark 5.5. The restriction t ≥ 1 in Theorem 5.3 appears only because we
measure y − x in a lower regularity norm than X(t; y) − X(t;x). To prove the
theorem we first prove Theorem 5.15 were we assume that y − x ∈ Cβ and in
this case we prove a bound which holds for every t > 0.

Remark 5.6. Theorem 5.3 is an asymptotic coupling of solutions that start close
to the same minimiser. In [MOS89, Proposition 3.4] it was shown that in the
1-dimensional case, solutions which start with initial conditions x and y close
to different minimisers also contract exponentially fast, but only after time Tε ∝
e[(V (0)−V (±1))+η]/ε for any η > 0. This is the ‘‘typical’’ time needed for one of the
two profiles to jump close to the other minimiser. We expect that Theorem 5.3
and the large deviation theory developed in [HW15] could be combined to prove
a similar result in the case d = 2.

We now define two sequences {νi(x)}i≥1 and {ρi(x)}i≥1 of stopping times
which partition our time axis and allow us to keep track of the time spent close
to and away from the minimisers ±1 (see Figure 5.1 for a sketch). On the
‘‘good’’ intervals [ρi−1(x), νi(x)] we require both the restarted diagrams n

ρi−1(x)

to be small and the restarted remainder vρi−1(x) to be close to ±1. The ‘‘bad’’
intervals [νi(x), ρi(x)] end when X(·;x) re-enters a small neighbourhood of the
minimisers. The stopping times ρi(x) are defined in terms of the C−α0 norm for
X(·;x), while we define good intervals in terms of the stronger Cβ topology for
vρi−1(x). To connect the two, we need to allow for a blow-up close to the starting
point of the ‘‘good’’ intervals.
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0
ρ0(x) ν1(x) ρ1(x) · · ·ρi−1(x) νi(x) ρi(x)

t

‘‘good’’ ‘‘bad’’ ‘‘good’’ ‘‘bad’’

Figure 5.1: A partition of the time axis with respect to the times νi(x) and ρi(x).
The ‘‘good’’ intervals are ‘‘typically’’ much larger than the ‘‘bad’’ intervals.

Definition 5.7. For x ∈ C−α0 we define the stopping times {ρi(x)}i≥0, {νi(x)}i≥1

recursively by ρ0(x) = 0 and

νi(x) := inf
{
t > ρi−1(x) : ((t− ρi−1(x)) ∧ 1)(n−1)α′‖εn2 n

ρi−1(x)(t)‖C−α ≥ δn2

or min
x∗∈{−1,1}

((t− ρi−1(x)) ∧ 1)γ‖vρi−1(x)(t;X(ρi(x);x))− x∗‖Cβ ≥ δ1

}

ρi(x) := inf{t > νi(x) : min
x∗∈{−1,1}

‖X(t;x)− x∗‖C−α0 ≤ δ0}.

We now define the time increments

τi(x) = νi(x)− ρi−1(x).

σi(x) = ρi(x)− νi(x).
(5.11)

The process X(·;x) is expected to spend long time intervals close to the min-
imisers ±1, which corresponds to large values of τi(x). Large values of σi(x) are
‘‘atypical’’. This behaviour is established Propositions 5.19 and 5.22.

The following proposition shows contraction on the ‘‘good’’ intervals. We
distinguish between the cases (5.12) and (5.13) for y − x that lie in Cβ and C−α0

respectively. The Da Prato–Debussche decomposition shows that differences of
any two profiles lie in Cβ for any t > 0 but at t = 0 they maintain the irregularity
of the initial conditions. Hence we only use (5.13) on the first ‘‘good’’ interval.

Proposition 5.8. For every κ > 0 there exist δ0, δ1, δ2 > 0 and C > 0 such that if

‖x− (±1)‖C−α0 ≤ δ0 and y − x ∈ Cβ, ‖y − x‖Cβ ≤ δ0 then

‖X(t; y)−X(t;x)‖Cβ ≤ C exp
{
−
(

2− κ

2

)
t
}
‖y − x‖Cβ (5.12)

for every t ≤ τ1(x) defined with respect to δ1 and δ2. If we only assume that

‖y − x‖C−α0 ≤ δ0 then

(t ∧ 1)γ‖X(t; y)−X(t;x)‖Cβ ≤ C exp
{
−
(

2− κ

2

)
t
}
‖y − x‖C−α0 (5.13)

for every t ≤ τ1(x).
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Proof. See Section 5.2.2.1.

Our next aim is to control the growth of the differences on the ‘‘bad’’ intervals
in terms of the stochastic objects n . This is done by partitioning the intervals
[νi(x), ρi(x)] into tiles of length one. To achieve independence we restart the
stochastic objects at the starting point of each tile.

Definition 5.9. For k ≥ 0 and ρ ≥ ν ≥ 0 let tk = ν + k. For k ≥ 1 we define a
random variable Lk(ν, ρ) by

Lk(ν, ρ) :=

(
sup

t∈[tk−1,tk∧ρ]

(t− tk−1)(n−1)α′‖εn2 n

tk−1
(t)‖C−α

) 2
n

. (5.14)

In our analysis we use a second tiling defined by setting sk = tk + 1
2
, i.e.

the tiles [tk, tk+1] and [sk, sk+1] overlap. In order to bound X(t; y) − X(t;x)

on a time interval [tk, sk] we restart the stochastic objects at sk−1 and write
X(t; y) −X(t;x) = vsk−1

(t;X(sk−1; y)) − vsk−1
(t;X(sk−1;x)). In Lemma 5.16 we

upgrade the a priori estimates obtained in Proposition 3.10 to get a control on
the Cβ norm of both remainders. This bound holds uniformly over all possible
values of X(sk−1; y) and X(sk−1;x) and while the bound allows for a blow-up
for times t close to sk−1 it holds uniformly over all times in [tk, sk]. Ultimately,
the bound only depends on Lk(ν + 1

2
, ρ) in a polynomial way as shown in Figure

5.2. Then we can use the local Lipschitz property of the non-linearity in (5.6)
to bound the exponential growth rate of X(t; y) −X(t;x). For the first interval
[t0, t1] we do not use this trick, because we want to avoid bounds that depend
on the realisation of the white noise outside of [ν, ρ]. On this interval, we make
use of an a priori assumption that we have some control on ‖X(ν; y)‖C−α0 and
‖X(ν;x)‖C−α0 .

Proposition 5.10. Let R > 0. Then there exists a constant C ≡ C(R) > 0 such

that for every ‖X(ν;x)‖C−α0 , ‖X(ν; y)‖C−α0 ≤ R, ρ > ν ≥ 0 and t ∈ [ν, ρ]

‖X(t; y)−X(t;x)‖Cβ ≤ C exp {L(ν, ρ; t− ν)} ‖X(ν; y)−X(ν;x)‖Cβ , (5.15)

where

L(ν, ρ; t− ν) =
c0

2

bt−νc∑

k=1

∑

l=0, 1
2

(1 ∨ Lk(ν + l, ρ))p0 + L0(t− ν) (5.16)

forLk as in (5.14), and for some constants p0 ≥ 1 and c0 ≡ c0(R), L0 ≡ L0(R) ≥ 0.
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ν · · · tk sk tk+1 · · · ρ

‖vsk−1
(·)‖Cβ ‖vsk(·)‖Cβ

‖vtk(·)‖Cβ

CLk

(
ν + 1

2
, ρ
)q0

CLk+1(ν, ρ)
q0

CLk+1

(
ν + 1

2
, ρ
)q0

Figure 5.2: Bounds on the Cβ norm of the restarted remainder v on the over-
lapping tiles of the partition of [ν, ρ]. On a time interval [tk, sk] we restart the
stochastic objects at time sk−1 and bound vsk−1

by a polynomial function of
Lk
(
ν + 1

2
, ρ
)
. On a time interval [sk, tk+1] we restart the stochastic objects at

time tk and bound vtk by a polynomial function of Lk (ν, ρ).

Proof. See Section 5.2.2.2.

If we assume that y − x ∈ Cβ, combining the estimates in Propositions 5.8
and 5.10 suggest the bound

‖X(ρN(x); y)−X(ρN(x);x)‖Cβ

≤ exp

{∑

i≤N

[
−
(

2− κ

2

)
τi(x) + L(νi(x), ρi(x);σi(x)) + 2 logC

]}

× ‖y − x‖Cβ , (5.17)

for any N ≥ 1. If we can show that the exponents satisfy
∑

i≤N

[
−
(

2− κ

2

)
τi(x) + L(νi(x), ρi(x);σi(x)) + 2 logC

]
≤ −(2− κ)ρN(x),

then (5.17) yields exponential contraction at time ρN(x) with rate 2 − κ. The
difference of the right hand side and the left hand side of the last inequality is
given by the random walk SN(x) in the next definition.
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Definition 5.11. For ‖x−(±1)‖C−α0 ≤ δ0 we define the random walk (SN(x))N≥1

by

SN(x) :=
∑

i≤N

[κ
2
τi(x)−

(
L(νi(x), ρi(x);σi(x)) + (2− κ)σi(x) +M0

)]

where M0 = 2 logC for C > 0 as in Propositions 5.8 and 5.10.

The next proposition shows that the random walk SN(x) stays positive for
every N ≥ 1 with overwhelming probability (see Figure 5.3 for an illustration).
The proof is based on a variant of the classical Cramér–Lundberg model in risk
theory (see [EKM97, Chapter 1.2]). In this classical model a random walk SN =∑

i≤N(fi−gi) with i.i.d. exponential random variables fi and i.i.d. non-negative
random variables gi is considered. The probability for SN to stay positive for
every N ≥ 1 can be calculated explicitly in terms of the expectations of fi and
gi using a renewal equation. In our case we use the Markov property and
Propositions 5.19 and Proposition 5.23 to compare the random walk SN(x) in
Definition 5.11 to this classical case.

Remark 5.12. If the family {L(νi(x), ρi(x);σi(x)) + (2 − κ)σi(x) + M0}i≥1 had
exponential moments, a simple exponential Chebyshev argument would imply
the following proposition without any reference to the Cramér–Lundberg model.
However, by (5.14) and (5.16) one sees that L(νi(x), ρi(x);σi(x)) is a polynomial
of potentially high degree in the explicit stochastic objects (which are themselves
polynomials of the Gaussian noise ξ). Hence, we cannot expect more than
stretched exponential moments, and indeed, such bounds are established in
Proposition 5.23. In the proof of the next proposition we also use an exponential
Chebyshev argument, but only to compare κ

2
τi(x) with a suitable exponential

random variable which does not depend on x.

Proposition 5.13. For every κ > 0 there exist a0 > 0 and ε0 ∈ (0, 1) such that

for every ε ≤ ε0

inf
‖x−(±1)‖C−α0≤δ0

P(SN(x) ≥ 0 for every N ≥ 1) ≥ 1− e−a0/ε. (5.18)

Proof. See Section 5.2.3.3.
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Figure 5.3: ‘‘Typical’’ realisations of a random walk SN =
∑

i≤N(fi − gi) for
fi ∼ e0.5/ε exp(1), gi ∼ e0.1/εWeibull(0.5, 1), N = 50 and ε = 0.01. The choice
of a Weibull distribution here captures the fact that the random variables
L(νi(x), ρi(x);σi(x)) + (2− κ)σi(x) +M0 in Definition 5.11 have stretched expo-
nential tails as shown in Proposition 5.23.

5.2.1 Proof of Theorem 5.3

We first treat the case where y−x ∈ Cβ. Let x ∈ C−α0 such that ‖x−(±1)‖C−α0 ≤
δ0 and let y be such that y − x ∈ Cβ and ‖y − x‖Cβ ≤ δ0. We also write
Y (t) = X(t; y)−X(t;x). We consider the event

S(x) = {SN(x) ≥ 0 for every N ≥ 1} (5.19)

for SN(x) as in Definition 5.11.
We first prove the following proposition which provides explicit estimates

on the differences at the stopping times νN(x) and ρN(x) for every N ≥ 1 and
ω ∈ S(x) by iterating Propositions 5.8 and 5.10. To shorten the notation we drop
the explicit dependence on the starting point x in the stopping times νN and ρN
and the random walk SN . We also drop the dependence on the realisation ω but
we assume throughout that ω ∈ S(x).

Proposition 5.14. For any κ > 0 let C > 0 be as in Proposition 5.8. Then for

every ω ∈ S(x) and N ≥ 1

‖Y (νN)‖Cβ ≤ C exp
{
−SN−1 −

κ

2
τN

}
exp {−(2− κ)νN} ‖Y (0)‖Cβ (5.20)

‖Y (ρN)‖Cβ ≤ exp {−SN} exp {−(2− κ)ρN} ‖Y (0)‖Cβ . (5.21)
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Proof. We prove our claim by induction on N ≥ 1, observing that it is obvious
for N = 0.

To prove (5.20) for N + 1 we first notice that by the definition of ρN we
have that ‖Xε(ρN ;x) − (±1)‖C−α0 ≤ δ0 and since ω ∈ S(x) (5.21) implies that
‖Y (ρN)‖Cβ ≤ δ0. Hence we can use (5.12) to get

‖Y (νN+1)‖Cβ . exp
{
−κ

2
τN+1

}
exp {−(2− κ)τN+1} ‖Y (ρN)‖Cβ .

Combining with the estimate on ‖Y (ρN)‖Cβ the above implies (5.20) for N + 1.
To prove (5.21) for N + 1 we first notice that by Proposition 5.18

‖X(νN+1;x)‖C−α0 ≤ 2δ1 + 1.

This bound, (5.20) for N + 1 and the triangle inequality imply that

‖X(νN+1; y)‖C−α0 ≤ δ0 + 2δ1 + 1.

Hence, we can use Proposition 5.10 for ν = νN+1, ρ = ρN+1 and R = δ0 + 2δ1 + 1

to obtain

‖Y (ρN+1)‖Cβ . exp {L(νN+1, ρN+1;σN+1)} ‖Y (νN+1)‖Cβ .

If we combine with (5.20) for N + 1 we have that

‖Y (ρN+1)‖Cβ ≤ exp {L(νN+1, ρN+1;σN+1) +M0} exp {−SN}
× exp

{
−κ

2
τN+1

}
exp {−(2− κ)νN+1} ‖Y (0)‖Cβ .

We then rearrange the terms to obtain (5.21), which completes the proof.

We are ready to prove the following version of Theorem 5.3 for sufficiently
smooth initial conditions.

Theorem 5.15. For every κ > 0 there exist δ0, a0, C > 0 and ε0 ∈ (0, 1) such that

for every ε ≤ ε0

inf
‖x−(±1)‖C−α0≤δ0

P


 sup

y−x∈Cβ
‖y−x‖Cβ≤δ0

‖X(t; y)−X(t;x)‖Cβ
‖y − x‖Cβ

≤ Ce−(2−κ)t, ∀t ≥ 0




≥ 1− e−a0/ε.
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Proof. Let ω ∈ S(x) as in (5.19). For any t > 0 there exists N ≡ N(ω) ≥ 0 such
that t ∈ [ρN , νN+1) or t ∈ [νN+1, ρN+1).

If t ∈ [ρN , νN+1) then

‖X(t; y)−X(t;x)‖Cβ
(5.12),(5.21)

. exp
{
−
(

2− κ

2

)
(t− ρN)

}
‖X(ρN ; y))−X(ρN ;x)‖Cβ

= exp
{
−κ

2
(t− ρN)

}
exp {−(2− κ)(t− ρN)} ‖X(ρN ; y))−X(ρN ; y)‖Cβ

(5.21)
. exp {−(2− κ)t} ‖y − x‖Cβ .

If t ∈ [νN+1, ρN+1) then

‖X(t; y)−X(t;x)‖Cβ
(5.15)
. exp{L(νN+1, ρN+1; t− νN+1)}
× ‖X(νN+1; y)−X(νN+1;x)‖Cβ

= exp{L(νN+1, ρN+1; t− νN+1) + (2− κ)(t− νN+1)}
× exp{−(2− κ)(t− νN+1)}
× ‖X(νN+1; y)−X(νN+1;x)‖Cβ

(5.20),ω∈S(x)

. exp{−(2− κ)t}‖y − x‖Cβ .

By Proposition 5.13 there exist a0 > 0 and ε0 ∈ (0, 1) such that for every ε ≤ ε0

inf
‖x−(±1)‖C−α0≤δ0

P(S(x)) ≥ 1− e−a0/ε

which completes the proof.

We are now ready to prove Theorem 5.3 and Corollary 5.4.

Proof of Theorem 5.3. This is a consequence of (5.13), Proposition 5.19 and The-
orem 5.15. Let δ1, δ2 > 0 sufficiently small such that δ1 + δ2 < δ0 and assume
that τ1(x) ≥ 1. By the definition of τ1(x)

‖X(1;x)− (±1)‖C−α0 ≤ ‖v(1;x)− (±1)‖Cβ + ‖ε 1
2 (1)‖C−α0 < δ1 + δ2 < δ0.

If we also choose δ′0 < δ0 by (5.13) we have that for every ‖y − x‖C−α0 ≤ δ′0

‖X(1; y)−X(1;x)‖Cβ . ‖y − x‖C−α0 .

The probability of the event {τ1(x) ≥ 1} can be estimated from below by Propo-
sition 5.19 uniformly in ‖x − (±1)‖C−α0 ≤ δ′0. Combining with Theorem 5.15
completes the proof.
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Proof of Corollary 5.4. We only prove the case where initial conditions are close
to the minimiser 1. We fix δ′0, δ′1 > 0 such that 2δ′0 < δ0 and δ′0 + δ′1 < δ1. By
Proposition 5.18 if we chose δ2 sufficiently small then

sup
t≤1

t(n−1)α′‖ n (t)‖C−α ≤ δ2 ⇒ sup
t≤1

tγ‖v(t; y)− 1‖Cβ ≤ δ1

uniformly for ‖y − 1‖C−α0 ≤ δ′0. This together with (5.13) implies that for every
x, y ∈ BC−α0 (1; δ′0)

‖X(1; y)−X(1;x)‖Cβ . ‖y − x‖C−α0 . δ′0.

Let

ω ∈ S :=

{
sup

‖y−1‖C−α0≤δ′0

‖X(t; y)−X(t; 1)‖Cβ
‖y − 1‖C−α0

≤ Ce−(2−κ)t, ∀t ≥ 1

}
,

t ≥ 1 and y ∈ BC−α0 (−1; δ′0). Then

sup
s≤t≤T

(t− s)γ‖vs(t;X(s; 1))− (±1)‖Cβ ≤ δ′1

⇒ sup
s≤t≤T

(t− s)γ‖vs(t;X(s; y))− (±1)‖Cβ ≤ δ1 for T, s ≥ 1.

‖X(t; 1)− (±1)‖C−α0 ≤ δ′0 ⇒ ‖X(t; y)− (±1)‖C−α0 ≤ δ0.

This implies that if we consider the processX(t; y) for t ≥ 1, the times νi(X(1; y))

and ρi(X(1; y)) of Definition 5.7 for δ0, δ1 and δ2 can be replaced by the times
νi(X(1; 1)) and ρi(X(1; 1)) for δ′0, δ′1 and the same δ2. Hence the corresponding
random walk SN(X(1; y)) in Definition 5.11 can be replaced by SN(X(1; 1)).

We can now repeat the proof of Theorem 5.15 for the difference X(t; y) −
X(t;x), t ≥ 1, step by step, replacing the event in (5.19) by

S ∩
{

sup
t≤1

t(n−1)α′‖ n (t)‖C−α ≤ δ2, SN(X(1; 1)) ≥ 0 for every N ≥ 1

}
. (5.22)

This allows us to prove that

‖X(t; y)−X(t;x)‖Cβ ≤ Ce−(2−κ)(t−1)‖X(1; y)−X(1;x)‖Cβ ≤ Ce−(2−κ)t‖y−x‖C−α0

uniformly in y, x ∈ BC−α0 (1; δ′0).
To estimate the event in (5.22) we use Theorem 5.3 and Propositions 5.17

and 5.13. This completes the proof.
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5.2.2 Pathwise Estimates on the Difference of Two Profiles

In this section we prove Propositions 5.8 and 5.10. Our analysis here is pathwise
and uses no probabilistic tools.

5.2.2.1 Proof of Proposition 5.8

Proof of Proposition 5.8. We only prove (5.13). To prove (5.12) we follow the same
strategy as below. However in this case we do not need to encounter the blow-
up of ‖Y (t)‖Cβ close to 0 and hence we omit the proof since it poses no extra
difficulties.

Let Y (t) = X(t; y)−X(t;x) and notice that from (5.6) we get

(∂t −∆)Y = −
(
v(·; y)3 − v(·;x)3

)
+ Y − 3(v(·; y) + v(·;x))ε

1
2 Y − 3ε Y.

We use the identity v(·; y) = v(·;x) + Y to rewrite this equation in the form

(∂t − (∆− 2))Y

= −3
(
v(·;x)2 − 1

)
Y + Error(v(·;x);Y )− 3(Y + 2v(·;x))ε

1
2 Y − 3ε Y

where Error(v(·;x);Y ) = −Y 3−3v(·;x)Y 2 collects all the terms which are higher
order in Y . Then

Y (t) = e−2te∆tY (0) +

∫ t

0

e−2(t−s)e∆(t−s)
[
− 3

(
v(s;x)2 − 1

)
Y (s)

+ Error(v(s;x);Y (s))− 3(Y (s) + 2v(s;x))ε
1
2 (s)Y (s)

− 3ε (s)Y (s)
]

ds. (5.23)

We set κ̃ = supt≤τ1(x)(t ∧ 1)2γ‖ − 3 (v(t;x)2 − 1) ‖Cβ . Let ι = inf{t > 0 :

(t∧ 1)γ‖Y (t)‖Cβ > ζ} for 1 ≥ ζ > δ0 and notice that for t ≤ τ1(x)∧ ι using (5.23)
we get

‖Y (t)‖Cβ
(A.7),(A.10),(A.11)

≤ e−2tC(t ∧ 1)−
α0+β

2 ‖Y (0)‖C−α0

+ κ̃

∫ t

0

e−2(t−s)(s ∧ 1)−2γ‖Y (s)‖Cβ ds

+ ζ C1

∫ t

0

e−2(t−s)(s ∧ 1)−2γ‖Y (s)‖Cβ ds

+ δ2C2

∫ t

0

e−2(t−s)(t− s)−α+β
2 (s ∧ 1)−γ‖Y (s)‖Cβ ds

+ δ2C3

∫ t

0

e−2(t−s)(t− s)−α+β
2 (s ∧ 1)−α

′‖Y (s)‖Cβ ds



CHAPTER 5. METASTABILITY 85

were we also use that for s ≤ t

‖Error(v(s;x);Y (s))‖Cβ . ζs−2γ‖Y (s)‖Cβ .

Choosing ζ ≤ κ̃/C1 and δ2 ≤ κ̃/C2 ∨ C3 we have

‖Y (t)‖Cβ ≤ e−2tC(t ∧ 1)−
α+β

2 ‖Y (0)‖C−α0

+ κ̃

∫ t

0

e−2(t−s)(t− s)−α+β
2 (s ∧ 1)−2γ‖Y (s)‖Cβ ds.

Then for t ≤ τ1(x) ∧ ι by Lemma F.1 on f(t) = (t ∧ 1)γ‖Y (t)‖Cβ there exist c > 0

such that

(t ∧ 1)γ‖Y (t)‖Cβ ≤ C exp

{
−2t+ cκ̃

1

1−α+β
2 −3γ t+M

}
‖Y (0)‖C−α0 .

We now fix δ1 > 0 such that cκ̃
1

1−α+β
2 −3γ ≤ κ

2
. This implies that for t ≤ τ1(x) ∧ ι

(t ∧ 1)γ‖Y (t)‖Cβ ≤ C exp
{
−
(

2− κ

2

)
t
}
‖Y (0)‖C−α0 .

Finally choosing δ0 sufficiently small we furthermore notice that τ1(x)∧ι = τ1(x)

which completes the proof of (5.13).

5.2.2.2 Proof of Proposition 5.10

To prove Proposition 5.10 we first need the following lemma which upgrades the
a priori estimates in Proposition 3.10. Here and below we let S(t) = e∆t.

Lemma 5.16. There exist α, γ′, C > 0 and p0 ≥ 1 such that if

sup
t≤1

t(n−1)α′‖εn2 n (t)‖C−α ≤ Ln

then

sup
x∈C−α0

sup
t≤1

tγ
′‖v(t;x)‖Cβ ≤ C(1 ∨ L)p0 .

Proof. Throughout this proof we simply write v(t) to denote v(t;x). By Proposi-
tion 3.10 we have that for every p ≥ 2 even

sup
x∈C−α0

sup
t≤1

t
1
2‖v(t)‖Lp ≤ C

(
1 ∨ sup

t≤1
t(n−1)α′pn‖εn2 n (t)‖pnC−α

)
(5.24)
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for some exponents pn ≥ 1. Combining (3.16) and (3.25) and integrating from s

to t we obtain

‖v(t)‖2
L2 − ‖v(s)‖2

L2 +

∫ t

s

‖∇v(r)‖2
L2 dr ≤ C

∫ t

s

(
1 +

∑

n≤3

‖εn2 n (r)‖pnC−α
)

dr

which implies that
∫ t

s

‖∇v(r)‖2
L2 dr ≤ C

∫ t

s

(
1 +

∑

n≤3

‖εn2 n (r)‖pnC−α
)

dr + ‖v(s)‖2
L2 . (5.25)

Using the mild form of (5.6) we have for 1 ≥ t > s > 0

‖v(t)‖Cβ .
7∑

i=1

Ii (5.26)

where

I1 := ‖S(t− s)v(s)‖Cβ , I2 :=

∫ t

s

‖S(t− r)v(r)3‖Cβ dr,

I3 :=

∫ t

s

‖S(t− r)
(
v(r)2ε

1
2 (r)

)
‖Cβ dr,

I4 :=

∫ t

s

‖S(t− r) (v(r)ε (r)) ‖Cβ dr, I5 =

∫ t

s

‖S(t− r)ε 3
2 (r)‖Cβ dr,

I6 :=

∫ t

s

‖S(t− r)ε 1
2 (r)‖Cβ dr, I7 :=

∫ t

s

‖S(t− r)v(r)‖Cβ dr.

To estimate ‖v(t)‖Cβ we use the Lp bound (5.24), the energy inequality (5.25)
and the embedding B1

2,∞ to bound the terms appearing on the right hand side
of the last inequality as shown below.

We treat each term in (5.26) separately. Below p may change from term to
term and α, λ can be taken arbitrarily small. We write p1 and p2 for conjugate
exponents of p, i.e. 1

p
= 1

p1
+ 1

p2
. We also denote by (1 ∨ L)p0 a polynomial of

degree p0 ≥ 1 in the variable 1 ∨ L where the value of p0 may change from line
to line.
Term I1:

I1

(A.6),(A.7)
. (t− s)−

β+ 2
p

2 ‖v(s)‖Lp
(5.24)
. (t− s)−

β+ 2
p

2 s−
1
2 (1 ∨ L)p0 .

Term I2:

I2

(A.6),(A.7)
.

∫ t

s

(t− r)−
β+ 2

p
2 ‖v(r)3‖Lp dr

(5.24)
. (1 ∨ L)p0

∫ t

s

(t− r)−
β+ 2

p
2 r−

3
2 dr

. (1 ∨ L)p0s−
3
2

∫ t

s

(t− r)−
β+ 2

p
2 dr.
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Term I3:

I3

(A.6),(A.7),(A.11),λ>0

.
∫ t

s

(t− r)−
2α+λ+ 2

p
2 ‖v(r)2‖Bα+λ

p,∞
‖ε 1

2 (r)‖C−α dr

(A.14)
.
∫ t

s

(t− r)−
2α+λ+ 2

p
2 ‖v(r)‖Lp1‖v(r)‖Bα+λ

p2,∞
‖ε 1

2 (r)‖C−α dr

(A.6),(5.24)
.

∫ t

s

(t− r)−
2α+λ+ 2

p
2 r−

1
2‖v(r)‖

B
α+λ+1− 2

p2
2,∞

‖ε 1
2 (r)‖C−α dr

(5.24), 2
p2

=α+λ

. (1 ∨ L)p0s−
1
2

∫ t

s

(t− r)−
2α+λ+ 2

p
2 ‖v(r)‖B1

2,∞
dr

Cauchy–Schwarz
. (1 ∨ L)p0s−

1
2

(∫ t

s

(t− r)−(2α+λ+ 2
p) dr

) 1
2

×
(∫ t

s

‖v(r)‖2
B1

2,∞
dr

) 1
2

.

Term I4:

I4

(A.6),(A.7),(A.11),λ>0

.
∫ t

s

(t− r)−
2α+λ+ 2

p
2 ‖v(r)‖Bα+λ

p,∞
‖ε (r)‖C−α dr

(A.6)
.
∫ t

s

(t− r)−
2α+λ+ 2

p
2 ‖v(r)‖

B
α+λ+1− 2

p
2,∞

‖ε (r)‖C−α dr

2
p

=α+λ

. (1 ∨ L)p0s−α
′
∫ t

s

(t− r)−
2α+λ+ 2

p
2 ‖v(r)‖B1

2,∞
dr

Cauchy–Schwarz
. (1 ∨ L)p0s−α

′
(∫ t

s

(t− r)−(2α+λ+ 2
p) dr

) 1
2

×
(∫ t

s

‖v(r)‖2
B1

2,∞
dr

) 1
2

.

Term I5:

I5

(A.7)
.
∫ t

s

(t− r)−α+β
2 ‖ε 3

2 (r)‖C−α dr . (1 ∨ L)p0

∫ t

s

(t− r)−α+β
2 r−2α′ dr

. (1 ∨ L)p0s−2α′
∫ t

s

(t− r)−α+β
2 dr.

Term I6:

I6

(A.7)
.
∫ t

s

(t− r)−α+β
2 ‖ε 1

2 (r)‖C−α dr . (1 ∨ L)p0

∫ t

s

(t− r)−α+β
2 dr.



CHAPTER 5. METASTABILITY 88

Term I7:

I7

(A.6),(A.7)
.

∫ t

s

(t− r)−
β+ 2

p
2 ‖v(r)‖Lp dr

(5.24)
. (1 ∨ L)p0

∫ t

s

(t− r)−
β+ 2

p
2 r−

1
2 dr

. (1 ∨ L)p0s−
1
2

∫ t

s

(t− r)−
β+ 2

p
2 dr.

Using Proposition A.11, (5.24) and (5.25) we notice that
(∫ t

s

‖v(r)‖2
B1

2,∞
dr

) 1
2

.

(∫ t

s

‖∇v(r)‖2
L2 dr

) 1
2

+

(∫ t

s

‖v(r)‖2
L2 dr

) 1
2

. (1 ∨ L)p0s−
1
2 .

Combining the above and choosing s = t/2 we find γ′ > 0 such that

tγ
′‖v(t)‖Cβ . (1 ∨ L)p0

which completes the proof.

Proof of Proposition 5.10. We denote by (1 ∨ L)p0 a polynomial of degree p0 ≥ 1

in the variable 1 ∨ L where the value of p0 may change from line to line.
For k ≥ 0 recall that tk = ν + k and sk = tk + 1

2
. As before, we write

Y (t) = X(t; y)−X(t;x).
Let t ∈ (tk, sk], k ≥ 1. We restart the stochastic terms at time sk−1 and

write Y (t) = vsk−1
(t; ỹ) − vsk−1

(t; x̃) where for simplicity ỹ = X(sk−1; y) and
x̃ = X(sk−1;x). Together with (5.10), this implies that

(∂t −∆)Y = −
(
vsk−1

(·; ỹ)3 − vsk−1
(·; x̃)3

)
+ Y

− 3(vsk−1
(·; ỹ) + vsk−1

(·; x̃))ε
1
2 sk−1

Y − 3ε sk−1
Y.

Using the mild form of the above equation, now starting at tk = sk−1 + 1
2
, we get

‖Y (t)‖Cβ
(A.7),(A.10),(A.11)

. ‖Y (tk)‖Cβ +

∫ t

tk

‖vsk−1
(r; ỹ)3 − vsk−1

(r; x̃)3‖Cβ dr

+

∫ t

tk

(t− r)−α+β
2 ‖vsk−1

(r; ỹ)2 − vsk−1
(r; x̃)2‖Cβ‖ε

1
2 sk−1

(r)‖C−α dr

+

∫ t

tk

(t− r)−α+β
2 ‖Y (r)‖Cβ‖ε sk−1

(r)‖C−α dr +

∫ t

tk

‖Y (r)‖Cβ dr.

By Lemma 5.16 there exist γ′ > 0 such that

sup
x∈C−α0

sup
t∈[sk−1,sk]

(t− sk−1)γ
′ ‖vsk−1

(t;x)‖Cβ .

(
1 ∨ Lk

(
ν +

1

2
, ρ

))p0

.
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Combining the above we get

‖Y (t)‖Cβ . ‖Y (tk)‖Cβ +

(
1 ∨ Lk

(
ν +

1

2
, ρ

))p0
∫ t

tk

(t− r)−α+β
2 ‖Y (r)‖Cβ dr.

By Lemma F.1 there exists c0 > 0 such that

‖Y (t)‖Cβ . exp

{
c0

(
1 ∨ Lk

(
ν +

1

2
, ρ

))p0

(t− s)
}
‖Y (tk)‖Cβ . (5.27)

Following the same strategy we prove that for t ∈ [sk, tk+1], k ≥ 1,

‖Y (t)‖Cβ . exp {c0 (1 ∨ Lk+1 (ν, ρ))p0 (t− s)} ‖Y (sk)‖Cβ . (5.28)

Finally, we also need a bound for t ∈ [t0, t1]. To obtain an estimate which does
not depend on any information before time t0 we use local solution theory. By
Theorem 3.6 there exists t∗ ∈ (t0, t1) such that

sup
‖x‖C−α0≤R

sup
r∈[t0,t∗]

(r − t0)γ‖vt0(r;x)‖Cβ ≤ 1

and furthermore we can take

t∗ =

(
1

C(R ∨ L1(ν, ρ))

)p0

.

By Lemma 5.16 we also have that

sup
x∈C−α0

sup
r∈(t0,t1]

(r − t0)γ
′‖vt0(r;x)‖Cβ . (1 ∨ L1(ν, ρ))p0 .

Combining these two bounds we get

sup
‖x‖C−α0≤R

sup
r∈[t0,t1]

(r − t0)γ‖vt0(r;x)‖Cβ . (1 ∨ L1(ν, ρ))p0 (5.29)

were the implicit constant depends on R. Note that γ < 1
3

whereas γ′ is much
larger. We write Y (t) = vt0(t; y) − vt0(t;x) and use the mild form starting at t0.
We then use (5.29) to bound ‖vt0(t; ·)‖Cβ on [t0, t1] which implies the estimate

‖Y (t)‖Cβ . ‖Y (t0)‖Cβ + (1 ∨ L1 (ν, ρ))p0

∫ t

t0

(t− r)−α+β
2 (r− t0)−2γ‖Y (r)‖Cβ dr.

The extra term (r− t0)−2γ in the last inequality appears because of the blow-up
of vt0(t; ·) and n

t0(t) for t close to t0. By Lemma F.1 we obtain that

‖Y (t)‖Cβ . exp {c0 (1 ∨ L1 (ν, ρ))p0 (t− s)} ‖Y (s)‖Cβ . (5.30)
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For arbitrary t ∈ [ν, ρ] we glue together (5.27), (5.28) and (5.30) to get

‖Y (t)‖Cβ . exp




c0

2

bt−νc∑

k=1

∑

l=0, 1
2

(1 ∨ Lk(ν + l, ρ))p0 + L0(t− ν)



 ‖Y (ν)‖Cβ

for some L0 > 0 which collects the implicit constants in the inequalities.

5.2.3 Random Walk Estimates

In this section we prove Proposition 5.13 based mainly on probabilistic argu-
ments. In Sections 5.2.3.1 and 5.2.3.2 we provide estimates on κ

2
τi(x) and

L(νi(x), ρi(x);σi(x)) + (2−κ)σi(x) +M0 from Definition 5.11. In Section 5.2.3.3
we use these estimates to prove Proposition 5.13.

5.2.3.1 Estimates on the Exit Times

Proposition 5.17. Let δ > 0 and τtree = inf{t > 0 : (t ∧ 1)(n−1)α′‖εn2 n (t)‖C−α ≥
δn}. Then there exist a0 > 0 and ε0 ∈ (0, 1) such that for every ε ≤ ε0

P
(
τtree ≤ e3a0/ε

)
≤ e−3a0/ε.

Proof. First notice that for N ≥ 1

P(τtree ≤ N) ≤
N−1∑

k=0

P(τtree ∈ (k, k + 1))

≤
N−1∑

k=0

P

(
sup

t∈(k,k+1]

(t ∧ 1)(n−1)α′‖εn2 n (t)‖C−α ≥ δn

)
.

By Proposition H.1 and the exponential Chebyshev inequality there exists a0 > 0

such that for every k ≥ 0

P

(
sup

t∈(k,k+1]

(t ∧ 1)(n−1)α′‖εn2 n (t)‖C−α ≥ δn

)
≤ e−6a0/ε.

Hence

P(τtree ≤ N) ≤ Ne−6a0/ε

and choosing N = e3a0/ε completes the proof.
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Proposition 5.18. For δ1 > 0 sufficiently small there exist δ0, δ2 > 0 such that if

sup
t≤T

(t ∧ 1)(n−1)α′‖εn2 n (t)‖C−α < δn2 (5.31)

then for every ‖x− (±1)‖C−α0 ≤ δ0

sup
t≤T

(t ∧ 1)γ‖v(t;x)− (±1)‖Cβ < δ1

and

sup
t≤T
‖X(t;x)− (±1)‖C−α0 ≤ 2δ1.

Proof. Let u(t) = v(t;x)−(±1). A Taylor expansion of−v3 +v around±1 implies
that

(∂t − (∆− 2))u = Error(u)−
(

3v2ε
1
2 + 3vε + ε

3
2

)
+ 2ε

1
2 (5.32)

where Error(u) = −u3 ± 3u2 and ‖Error(u)‖Cβ . ‖u‖3
Cβ + ‖u‖2

Cβ . Let T > 0 and
ι = inf{t > 0 : (t ∧ 1)γ‖u(t)‖Cβ ≥ δ1} for some δ1 > 0 which we fix below. Using
the mild form of (5.32) we get

(t ∧ 1)γ‖u(t)‖Cβ
(A.7),(A.10),(A.11)

. e−2t‖x− (±1)‖C−α0 +

∫ t

0

e−2(t−s) (‖u(s)‖3
Cβ + ‖u(s)‖2

Cβ
)

ds

+

∫ t

0

e−2(t−s)(t− s)−α+β
2

(
‖v(s)‖2

Cβ‖ε
1
2 (s)‖C−α + ‖v(s)‖Cβ‖ε (s)‖C−α

+ ‖ε 3
2 (s)‖C−α + ‖ε 1

2 (s)‖C−α
)

ds.

If we furthermore assume (5.31) for t ≤ T ∧ ι we obtain that

(t ∧ 1)γ‖u(t)‖Cβ

. δ0e−2t + δ3
1

∫ t

0

e−2(t−s)(s ∧ 1)−3γ ds+ δ2
1

∫ t

0

e−2(t−s)(s ∧ 1)−2γ ds

+ δ2

∫ t

0

e−2(t−s)(t− s)−α+β
2

(
(s ∧ 1)−2γ + (s ∧ 1)−γ(s ∧ 1)−α

′

+ (s ∧ 1)−2α′ + 1

)
ds.

Then Lemma F.2 implies the bound

sup
t≤T∧ι

(t ∧ 1)γ‖u(t)‖Cβ . δ0 + δ3
1 + δ2

1 + δ2.
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Choosing δ0 <
δ1
4C

, δ1 <
1

4C
and δ2 <

δ1
4C

this implies that

sup
t≤T∧ι

(t ∧ 1)γ‖u(t)‖Cβ < δ1

which in turn implies that ι ≤ T and proves the first bound.
To prove the second bound we notice that for every t ≤ T

‖X(t;x)− (±1)‖C−α0 ≤ ‖u(t)‖C−α0 + ‖ (t)‖C−α0 ≤ ‖u(t)‖C−α0 + δ2.

Hence it suffices to prove that supt≤T ‖u(t)‖C−α0 ≤ δ1. Using again the mild form
of (5.32) we get

‖u(t)‖C−α0

(A.7),(A.1),(A.10),(A.11)
. e−2t‖x− (±1)‖C−α0

+

∫ t

0

e−2(t−s) (‖u(s)‖3
Cβ + ‖u(s)‖2

Cβ
)

ds

+

∫ t

0

e−2(t−s)
(
‖v(s)‖2

Cβ‖ε
1
2 (s)‖C−α + ‖v(s)‖Cβ‖ε (s)‖C−α

+ ‖ε 3
2 (s)‖C−α + ‖ε 1

2 (s)‖C−α
)

ds

for every t ≤ T . Plugging in (5.31) and the bound supt≤T (t ∧ 1)γ‖u(t)‖Cβ ≤ δ1

the last inequality implies

‖u(t)‖C−α0

. δ0e−2t + δ3
1

∫ t

0

e−2(t−s)(s ∧ 1)−3γ ds+ δ2
1

∫ t

0

e−2(t−s)(s ∧ 1)−2γ ds

+ δ2

∫ t

0

e−2(t−s)
(

(s ∧ 1)−2γ + (s ∧ 1)−γ(s ∧ 1)−α
′
+ (s ∧ 1)−2α′ + 1

)
ds.

Using again Lemma F.2 we obtain that supt≤T ‖u(t)‖C−α0 < δ1, which completes
the proof.

Proposition 5.19. For every κ > 0 and δ1 > 0 sufficiently small there exist

a0, δ0, δ2 > 0 and ε0 ∈ (0, 1) such that for every ε ≤ ε0

sup
‖x−(±1)‖C−α0≤δ0

P
(κ

2
τ1(x) ≤ e2a0/ε

)
≤ e−3a0/ε,

where τ1(x) is given by (5.11).

Proof. We first notice that there exists ε0 > 0 such that for every ε ≤ ε0

P
(κ

2
τ1(x) ≤ e2a0/ε

)
≤ P

(
τ1(x) ≤ e3a0/ε

)
.

The last probability can be estimated by Propositions 5.18 and 5.17 for δ =

δ2.
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5.2.3.2 Estimates on the Entry Times

In this section we use large deviation theory and in particular a lower bound of
the form

lim inf
ε↘0

log ε inf
x∈ℵ

P(X(·;x) ∈ A(T ;x))

≥ − sup
x∈ℵ

inf
f∈A(T ;x)
f(0)=x





1

4

∫ T

0

‖(∂t −∆)f(t) + f(t)3 − f(t)‖2
L2 dt

︸ ︷︷ ︸
=:I(f)





(5.33)

where ℵ is a compact subset of C−α and A(T ;x) ⊂ {f : (0, T ) → C−α} is open.
This bound is an immediate consequence of [HW15] and the remark that the
solution map

C−α0 ×
(
C−α

)3 3
(
x,
{
ε
n
2 n

}
n≤3

)
7→ X(·;x) ∈ C−α

is jointly continuous on compact time intervals. This estimate implies a ‘‘nice’’
lower bound for the probabilities P(X(·;x) ∈ A(T ;x)) if a suitable path f ∈
A(T ;x) is chosen.

In the next proposition we use the lower bound (5.33) for suitable sets ℵ and
A(T ;x) to estimate probabilities of the entry time of X in a neighbourhood of
±1. We construct a path f(·;x) and obtain bounds on I(f(·;x)) uniformly in
x ∈ ℵ.

Proposition 5.20. Let δ0 > 0 and

σ(x) = inf

{
t > 0 : min

x∗∈{−1,1}
‖X(t;x)− x∗‖C−α0 ≤ δ0

}
.

For every R, b > 0 there exists T0 > 0 such that

sup
‖x‖C−α0≤R

P(σ(x) ≥ T0) ≤ 1− e−b/ε.

Proof. First notice that

P(σ(x) ≤ T0) = P(‖X(T∗;x)− (±1)‖C−α0 < δ0 for some T∗ ≤ T0︸ ︷︷ ︸
=:A(T0;x)

).

By the large deviation estimate (5.33) it suffices to bound

sup
‖x‖C−α0≤R

inf
f∈A(T0;x)
f(0)=x

I(f(·;x)).
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We construct a suitable path g ∈ A(T0;x) and we use the trivial inequality

sup
‖x‖C−α0≤R

inf
f∈A(T0;x)
f(0)=x

I(f(·;x)) ≤ sup
‖x‖C−α0≤R

I(g(·;x)).

We now give the construction of g which involves 5 different steps. In Steps
1, 3 and 5, g follows the deterministic flow. The contribution of these steps to
the energy functional I is zero. On Steps 2 and 3, g is constructed by linear
interpolation. The contribution of these steps is estimated by Lemma 5.21.
Below we write Xdet(·;x) to denote the solution of (5.2) with initial condition x.
We also pass through the space B1

2,2 to use convergence results for Xdet(·;x)

which hold in this topology (see Propositions G.1 and G.2).
Step 1 (Smoothness of initial condition via the deterministic flow):

Let τ1 = 1. For t ∈ [0, τ1] we set g(t;x) = Xdet(t;x). By Proposition G.3 there
exist C ≡ C(r) > 0 and λ > 0 such that

sup
‖x‖C−α0≤R

‖Xdet(1;x)‖C2+λ ≤ C.

Step 2 (Reach points that lead to a stationary solution):
By Step 1 g(τ1;x) ∈ BC2+λ(0;C) uniformly for ‖x‖C−α0 ≤ R. Let δ > 0 to

be fixed below. By compactness there exists {yi}1≤i≤N such that BC2+λ(0;C) is
covered by ∪1≤i≤NBB1

2,2
(yi; δ). Here we use that C2+λ is compactly embedded in

B1
2,2 (see Proposition A.4).

Without loss of generality we assume that {yi}1≤i≤N is such that yi ∈ C∞
and Xdet(t; yi) converges to a stationary solution −1, 0, 1 in B1

2,2. Otherwise we
choose {y∗i }1≤i≤N ∈ BB1

2,2
(yi; δ) such that y∗i ∈ C∞ and relabel them. This is

possible because of Proposition G.1.
Let τ2 = τ1 + τ , for τ > 0 which we fix below. For t ∈ [τ1, τ2] we set g(t;x) =

g(τ1;x) + t−τ1
τ2−τ1 (yi − g(τ1;x)), where yi is such that g(τ1;x) ∈ BB1

2,2
(yi; δ).

Step 3 (Follow the deterministic flow to reach a stationary solution):
Let T ∗i be such that Xdet(t; yi) ∈ BB1

2,2
(x∗; δ) for every t ≥ T ∗i , where x∗ ∈

{−1, 0, 1} is the limit of Xdet(t; yi) in B1
2,2, for {yi}1≤i≤N as in Step 2. Let τ3 = τ2 +

max1≤i≤N T ∗i ∨1. For t ∈ [τ2, τ3] we set g(t;x) = Xdet(t−τ2; yi). IfXdet(τ3−τ2; yi) ∈
BB1

2,2
(±1; δ) we stop here. Otherwise Xdet(τ3 − τ2; yi) ∈ BB1

2,2
(0; δ) ∩ BC2+λ(0;C)

(here we use again Proposition G.3 to ensure that Xdet(τ3− τ2; yi) ∈ BC2+λ(0;C))
and we proceed to Steps 4 and 5.
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Step 4 (Move to a point nearby which leads to a stable solution):
We choose y0 ∈ BB1

2,2
(0; δ) such that y0 ∈ C∞ and Xdet(t; y0) converges to

either 1 or −1 in B1
2,2. This is possible because of Proposition G.2.

Let τ4 = τ3 + τ for τ > 0 as in Step 2 which we fix below. For t ∈ [τ3, τ4] we
set g(t;x) = g(τ3;x) + t−τ3

τ4−τ3 (y0 − g(τ3;x)).

Step 5 (Follow the deterministic flow again to finally reach a stable solution):
Let T ∗0 be such that Xdet(t; y0) ∈ BB1

2,2
(±1; δ) for every t ≥ T ∗0 , where y0 is as

in Step 4. Let τ5 = τ4 + T ∗0 ∨ 1. For t ∈ [τ4, τ5] we set g(t;x) = Xdet(t− τ4; y0).

For the path g(·;x) constructed above we see that after time t ≥ τ5, g(t;x) ∈
BB1

2,2
(±1; δ) for every ‖x‖−C−α0 ≤ R. This implies that ‖g(t;x)−(±1)‖C−α0 < Cδ

since by (A.6), B1
2,2 ⊂ C−α0. We now choose δ > 0 such that Cδ < δ0 and let

T0 = τ5 + 1. Then g ∈ A(T0;x).
To bound I(g(·;x)) we split our time interval based on the construction of

g i.e. Ik = [τk−1, τk] for k = 1, . . . , 4 and I5 = [τ5, T0]. We first notice that for
k = 1, 3, 5

1

4

∫

Ik

‖(∂t −∆)g(t;x) + g(t;x)3 − g(t;x)‖2
L2 dt = 0

since on these intervals we follow the deterministic flow. For the remaining two
intervals, i.e. k = 2, 4, we first notice that by construction

‖g(τk−1;x)‖C2+λ , ‖g(τk;x)‖C2+λ ≤ C.

By (A.4), C2+λ ⊂ B2
∞,2 for every λ > 0, hence we also have that

‖g(τk−1;x)‖B2
∞,2
, ‖g(τk;x)‖B2

∞,2
≤ C.

We can now choose τ in Steps 2 and 4 according to Lemma 5.21, which implies
that

1

4

∫

Ik

‖(∂t −∆)g(t;x) + g(t;x)3 − g(t;x)‖2
L2 dt ≤ Cδ.

Hence

sup
‖x‖C−α0≤R

1

4

∫ T0

0

‖(∂t −∆)g(t;x) + g(t;x)3 − g(t;x))‖2
L2 dt ≤ Cδ.
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For b > 0 we choose δ even smaller to ensure that Cδ < b. Finally, by (5.33)
there exists ε0 ∈ (0, 1) such that for every ε ≤ ε0

inf
‖x‖C−α0≤R

P(σ(x) ≤ T0) ≥ e−b/ε

which completes the proof.

Lemma 5.21 ([FJL82, Lemma 9.2]). Let f(t) = x+ t
τ
(y − x) such that

‖x‖B2
2,2
, ‖y‖B2

2,2
≤ R and ‖x− y‖L2 ≤ δ.

There exist τ > 0 and C ≡ C(R) such that

1

4

∫ τ

0

‖(∂t −∆)f(t) + f(t)3 − f(t)‖2
L2 dt ≤ Cδ.

Proof. We first notice that ∂tf(t) = 1
τ
(y − x), hence ‖∂tf(t)‖L2 ≤ 1

τ
δ. For the

term ∆f(t) we have

‖∆f(t)‖L2 ≤ ‖∆x‖L2 + ‖∆y‖L2 . ‖x‖B2
2,2

+ ‖y‖B2
2,2

. R,

where we use that the Besov space B2
2,2 is equivalent with the Sobolev space H1.

This is immediate from Definition 1.12 for p = q = 2 if we write ‖f ∗ ηk‖L2 using
Plancherel’s identity. For the term f(t)3 − f(t) we have

‖f(t)3 − f(t)‖L2 . ‖f(t)‖3
L6 + ‖f(t)‖L2

(A.5)
. ‖f(t)‖3

B0
6,1

+ ‖f(t)‖B0
2,1

(A.6),λ>0

. ‖f(t)‖3

B
2
3 +λ

2,2

+ ‖f(t)‖Bλ2,2
(A.1),λ< 1

3

. ‖f(t)‖3
B2

2,2
+ ‖f(t)‖B2

2,2
.

Hence for C ≡ C(R)

1

2

∫ τ

0

‖(∂t −∆)f(t) + f(t)3 − f(t)‖2
L2 dt ≤ 1

τ
δ2 + Cτ.

Choosing τ = δ completes the proof.

In the next proposition we estimate the tails of the entry time of X in a
neighbourhood of ±1 uniformly in the initial condition x. This is achieved by
Proposition 5.20 and the Markov property combined with Theorem 4.1 which
implies that after time t = 1 the process X(·;x) enters a compact subset of the
state space with positive probability uniformly in x.
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Proposition 5.22. Let δ0 > 0 and

σ(x) = inf

{
t > 0 : min

x∗∈{−1,1}
‖X(t;x)− x∗‖C−α0 ≤ δ0

}
.

For every b > 0 there exist T0 > 0 and ε0 ∈ (0, 1) such that for every ε ≤ ε0

sup
x∈C−α0

P(σ(x) ≥ mT0) ≤
(
1− e−b/ε

)m

for every m ≥ 1.

Proof. By Theorem 4.1 and a simple application of Markov’s inequality there
exist R0 > 0 such that

sup
x∈C−α0

sup
ε∈(0,1]

P(‖X(1;x)‖C−α > R0) ≤ 1

2
. (5.34)

By Proposition 5.20 for every b > 0 there exists T0 > 0 and ε0 ∈ (0, 1) such that
for every ε ≤ ε0

sup
‖x‖C−α0≤R0

P(σ(x) ≥ T0) ≤ 1− e−b/ε. (5.35)

Then for every x ∈ C−α0 and ε ≤ ε0

P(σ(x) ≥ T0 + 1) ≤ E
(
1{‖X(1;x)‖C−α0≤R0}P(σ(X(1;x)) ≥ T0)

)

+ P(‖X(1;x)‖C−α0 > R0)

(5.34),(5.35)
≤ 1− 1

2
e−b/ε (5.36)

Using the Markov property successively implies for every m ≥ 1 and x ∈ C−α0

P(σ(x) ≥ m(T0+1)) ≤ sup
y∈C−α0

P(σ(y) ≥ (T0+1))P(σ(x) ≥ (m−1)(T0+1)). (5.37)

Combining (5.36) and (5.37) we obtain that

sup
x∈C−α0

P(σ(x) ≥ m(T0 + 1)) ≤
(

1− 1

2
e−b/ε

)m
.

The last inequality completes the proof if we relabel b and T0.

Proposition 5.23. Let δ0 > 0, ν1(x), ρ1(x) as in Definition 5.7, σ1(x) as in (5.11)
and L(ν1(x), ρ1(x);σ1(x)) as in (5.16). For every κ,M0, b > 0 there exist T0 > 0

and ε0 ∈ (0, 1) such that for every ε ≤ ε0

sup
‖x−(±1)‖C−α0≤δ0

P
(

[L(ν1(x), ρ1(x);σ1(x)) + (2− κ)σ1(x) +M0]
1
p0 ≥ mT0

)

≤
(
1− e−b/ε

)m

for every m ≥ 1 and p0 ≥ 1 as in (5.16).
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Proof. We first condition on ν1(x) to obtain the bound

sup
‖x−(±1)‖C−α0≤δ0

P
(

[L(ν1(x), ρ1(x);σ1(x)) + (2− κ)σ1(x) +M0]
1
p0 ≥ mT0

)

≤ sup
x∈C−α0

P
(

[L(0, σ(x);σ(x)) + (2− κ)σ(x) +M0]
1
p0 ≥ mT0

)

︸ ︷︷ ︸
=:P

(
g(σ(x))

1
p0 ≥mT0

)
,

where σ(x) = inf
{
t > 0 : minx∗∈{−1,1} ‖X(t;x)− x∗‖C−α0 ≤ δ0

}
. Let T0 ≥ 1 to be

fixed below and notice that for any T1 > 0

P
(
g(σ(x))

1
p0 ≥ mT0

)
≤ P

(
g(σ(x))

1
p0 ≥ mT0, σ(x) ≤ mT1

)

+ P(σ(x) ≥ mT1)

≤ P



bmT1c∑

k=1

∑

l=0, 1
2

Lk(l,mT1) ≥ m(T0 − C)




+ P(σ(x) ≥ mT1)

for some C > 0, where in the second inequality we use convexity of the mapping
g 7→ g

1
p0 and the fact that Lk(l, σ) is increasing in σ by Definition 5.9. By

Proposition 5.22 we can choose T1 > 0 and ε0 ∈ (0, 1) such that for every ε ≤ ε0

sup
x∈C−α0

P(σ(x) ≥ mT1) ≤
(
1− e−b/ε

)m
.

We also notice that

P



bmT1c∑

k=1

∑

l=0, 1
2

Lk(l,mT1) ≥ m(T0 − C)




≤
∑

l=0, 1
2

P



bmT1c∑

k=1

Lk(l, l + k) ≥ m

(
T0 − C

2

)


≤
∑

l=0, 1
2

exp

{
−cm

(
T0 − C

2ε

)}(
EecL1(l,1)/ε

)mT1
,

where in the first inequality we use that Lk(l,mT1) ≤ Lk(l, l + k), for every
1 ≤ k ≤ bmT1c, and in the second we use an exponential Chebyshev inequality,
independence and equality in law of the Lk(l, l + k)’s. For any T > 0 we choose
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c ≡ c(n) > 0 according to Proposition H.1, T0 sufficiently large and ε0 ∈ (0, 1)

sufficiently small such that for every ε ≤ ε0

∑

l=0, 1
2

exp

{
−cm

(
T0 − C

2ε

)}(
EecL1(l,1)/ε

)mT1 ≤ e−mT/ε.

Combining all the previous inequalities imply that

sup
‖x−(±1)‖C−α0≤δ0

P
(

[L(ν1(x), ρ1(x);σ1(x)) + (2− κ)σ1(x) +M0]
1
p0 ≥ mT0

)

≤ e−mT/ε +
(
1− e−b/ε

)m
.

This completes the proof if we relabel b since T is arbitrary.

5.2.3.3 Proof of Proposition 5.13

In this section we set

fi(x) :=
κ

2
τi(x).

gi(x) := L(νi(x), ρi(x);σi(x)) + (2− κ)σi(x) +M0.

In this notation the random walk SN(x) is given by
∑

i≤N(fi(x) − gi(x)) (see
Definition 5.11).

To prove Proposition 5.13 we first consider a sequence of i.i.d. random
variables {f̃i}i≥1 such that f̃1 ∼ exp(1). We furthermore assume that the family
{f̃i}i≥1 is independent from both {fi(x)}i≥1 and {gi(x)}i≥1. For λ > 0 which we
fix later on, we set

S̃N(x) := λ
∑

i≤N
f̃i −

∑

i≤N
gi(x).

In the proof of Proposition 5.13 below we compare the random walk SN(x) with
S̃N(x). The idea is that

∑
i≤N fi(x) behaves like λ

∑
i≤N f̃i for suitable λ > 0.

In the next proposition we estimate the new random walk S̃N(x) using
stochastic dominance. In particular we assume that the family of random
variables {gi(x)}i≥1 is stochastically dominated by a family of i.i.d. random
variables {g̃i}i≥1 which does not depend on x and obtain a lower bound on
P(−S̃N(x) ≤ u for every N ≥ 1).

From now on we denote by µZ the law of a random variable Z.
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Proposition 5.24. Assume that there exists a family of i.i.d. random variables

{g̃i}i≥1, independent from both {gi(x)}i≥1 and {f̃i}i≥1, such that

sup
‖x−(±1)‖C−α0≤δ0

P(gi(x) ≥ g) ≤ P(g̃i ≥ g)

for every g ≥ 0. Let S̃N = λ
∑

i≤N f̃i −
∑

i≤N g̃i. Then

inf
‖x−(±1)‖C−α0≤δ0

P(−S̃N(x) ≤ u for every N ≥ 1) ≥ P(−S̃N ≤ u for every N ≥ 1).

Proof. Let

GN(x, u) = P(−S̃M(x) ≤ u for every N ≥M ≥ 1).

GN(u) = P(−S̃M ≤ u for every N ≥M ≥ 1).

We first prove that for every N ≥ 1 and every x

GN(x, u) ≥ GN(u). (5.38)

For N = 1 we have that

G1(x, u) = P(−λf̃1 + g1(x) ≤ u) =

∫ ∞

0

P(g1(x) ≤ u+ λf)µf̃1
( df)

≥
∫ ∞

0

P(g̃1 ≤ u+ λf)µf̃1
( df) = P(−λf̃1 + g̃1 ≤ u) = G1(u).

Let us assume that (5.38) holds for N . Let ∂B0 = {y : ‖y − (±1)‖C−α0 = δ0}.
Conditioning on

(
f̃1, g1(x), X(ν2(x);x)

)
and using independence of f̃1 from the

joint law of (g1(x), X(ν2(x);x)) we notice that

GN+1(x, u)

=

∫ ∞

0

∫

[0,u+λf ]×∂B0

GN(y, u+ λf − g)µ(g1(x),X(ν2(x);x))( dg, dy)µf̃1
( df)

(5.38)
≥
∫ ∞

0

∫

[0,u+λf ]×∂B0

GN(u+ λf − g)µ(g1(x),X(ν2(x);x))( dg, dy)µf̃1
( df)

=

∫ ∞

0

∫

[0,u+λf ]

GN(u+ λf − g)µg1(x)( dg)µf̃1
( df). (5.39)

In the last equality above we use that GN(u + λf − g) does not depend on y,
hence we can drop the integral with respect to y. Let

H(g) = 1{g≤u+λf}GN(u+ λf − g).
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Then for fixed u, f ≥ 0, H is decreasing with respect to g. By Lemma I.1
∫

[0,u+λf ]

GN(u+ λf − g)µg1(x)( dg) =

∫
H(g)µg1(x)( dg) ≥

∫
H(g)µg̃1( dg)

=

∫

[0,u+λf ]

GN(u+ λf − g)µg̃1( dg).

Integrating the last inequality with respect to f with µf̃1
and combining with

(5.39) we obtain

GN+1(x, u) ≥
∫ ∞

0

∫

[0,u+λf ]

GN(u+ λf − g)µg̃1( dg)µf̃1
( df) = GN+1(u)

which proves (5.38). If we now take N →∞ in (5.38) we get for arbitrary x

G(x, u) ≥ G(u)

which completes the proof.

In the next proposition we prove existence of a family of random variables
{g̃i}i≥1 that satisfy the assumption of Proposition 5.24 and estimate their first
moment.

Proposition 5.25. There exists a family of i.i.d. random variables {g̃i}i≥1, inde-

pendent from both {gi(x)}i≥1 and {f̃i}i≥1, such that

sup
‖x−(±1)‖C−α0≤δ0

P(gi(x) ≥ g) ≤ P(g̃i ≥ g),

and furthermore for every b > 0 there exist ε0 ∈ (0, 1) and C > 0 such that for

every ε ≤ ε0

Eg̃1 ≤ Ceb/ε.

Proof. We first notice that by the Markov property

sup
‖x−(±1)‖C−α0≤δ0

P(gi(x) ≥ g) ≤ sup
‖x−(±1)‖C−α0≤δ0

P(g1(x) ≥ g).

Let F (g) be the right continuous version of the increasing function

1− sup
x∈C−α0

P(g1(x) ≥ g).
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We consider a family of i.i.d. random variables such {g̃i}i≥1 independent from
both {gi(x)}i≥1 and {f̃i}i≥1 such that P(g̃i ≤ g) = F (g). To estimate Eg̃1 let
cε > 0 to be fixed below. We notice that

Eg̃1 ≤ sup
g≥0

ge−cεg
1
p0 E exp

{
cεg̃

1
p0
1

}
≤
(
p0e−1

cε

)p0

E exp

{
cεg̃

1
p0
1

}
. (5.40)

For b > 0 we choose T0 > 0 and ε0 ∈ (0, 1) as in Proposition 5.23. Then for every
ε ≤ ε0

E exp

{
cεg̃

1
p0
1

}
= 1 +

∫ ∞

0

cεe
cεgP

(
g̃

1
p0
1 ≥ g

)
dg

≤ 1 +
∑

m≥0

P
(
g̃

1
p0
1 ≥ mT0

)∫ (m+1)T0

mT0

cεe
cεg dg

= 1 +
∑

m≥0

sup
‖x−(±1)‖C−α0≤δ0

P
(
g1(x)

1
p0 ≥ mT0

)

×
∫ (m+1)T0

mT0

cεe
cεg dg

≤ 1 + ecεT0

∑

m≥0

emcεT0
(
1− e−b/ε

)m
.

where in the last inequality we estimate P
(
g1(x)

1
p0 ≥ mT0

)
using Proposition

5.23. We now choose cε > 0 such that cεT0 = log
(
1 + e−b/ε

)
. Then

E exp

{
cεg̃

1
p0
1

}
≤ 1 +

(
1 + e−b/ε

)∑

m≥0

(
1 + e−b/ε

)m (
1− e−b/ε

)m

≤ 1 + 2
∑

m≥0

(
1− e−2b/ε

)m

= 1 + 2e2b/ε.

Finally, by (5.40) we obtain that

Eg̃1 ≤
(

p0e−1T0

log (1 + e−b/ε)

)p0 (
1 + 2e2b/ε

)

which completes the proof if we relabel b.

Remark 5.26. In the proof of Proposition 5.25 we use stretched exponential
moments of g̃1, although we only need 1st moments (see Lemma 5.28 below).
This simplifies our calculations.
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From now on we let S̃N = λ
∑

i≤N f̃i −
∑

i≤N g̃i for {g̃i}i≥1 as in Proposition
5.25. In the next proposition we explicitly compute the probability

P(−S̃N ≤ 0 for every N ≥ 1).

The proof is essentially the same as the classical Cramér–Lundberg estimate
(see [EKM97, Chapter 1.2]). We present it here for the reader’s convenience.

Proposition 5.27. For the random walk S̃N the following estimate holds,

P(−S̃N ≤ 0 for every N ≥ 1) = 1− 1

λ
Eg̃1.

Proof. Let G(u) = P(−S̃N ≤ u for every N ≥ 1). Conditioning on (f̃1, g̃1) and
using independence we notice that

G(u)

= P

(
−λ

N∑

i=2

f̃i +
N∑

i=2

g̃i ≤ u+ λf̃1 − g̃1 for every N ≥ 2, −λf̃1 + g̃1 ≤ u

)

=

∫ ∞

0

∫ u+λf

0

G(u+ λf − g)µg̃1( dg)µf̃1
( df)

=
1

λ
eu/λ

∫ ∞

u

e−f̄/λ
∫ f̄

0

G(f̄ − g)µg̃1( dg) df̄ (5.41)

where in the last equality we use that f̃1 ∼ exp(1) and we also make the change
of variables f̄ = u + λf . This implies that G(u) is differentiable with respect to
u and in particular

∂ūG(ū) =
1

λ
G(ū)− 1

λ

∫ ū

0

G(ū− g)µg̃1( dg).

Integrating the last equation form 0 to u we obtain that

G(u) = G(x, 0) +
1

λ

∫ u

0

G(u− ū) dū− 1

λ

∫ u

0

∫ ū

0

G(ū− g)µg̃1( dg) dū. (5.42)
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Let F (g) := µg̃1([0, g]). A simple integration by parts implies
∫ u

0

∫ ū

0

G(ū− g)µg̃1( dg) dū

=

∫ u

0

(
[G(ū− g)]ūg=0 +

∫ ū

0

∂gG(ū− g)F (g) dg

)
dū

=

∫ u

0

G(0)F (ū) dū+

∫ u

0

∫ u

g

∂gG(ū− g) dūF (g) dg

=

∫ u

0

G(0)F (ū) dū−
∫ u

0

[−G(ū− g)]ug F (g) dg

=

∫ u

0

G(u− g)F (g) dg. (5.43)

Combining (5.42) and (5.43) we get

G(u) = G(0) +
1

λ

∫ u

0

G(u− ū) dū− 1

λ

∫ u

0

G(u− ū)F (ū) dū.

By taking u → ∞ in the last equation and using the dominated convergence
theorem and the law of large numbers we finally obtain

1 = G(0) +
1

λ
Eg̃1

which completes the proof.

Combining Propositions 5.24, 5.25 and 5.27 we obtain the following lemma.

Lemma 5.28. For any b > 0 there exist ε0 ∈ (0, 1) and C > 0 such that for every

ε ≤ ε0

inf
‖x−(±1)‖C−α0≤δ0

P(−S̃N(x) ≤ 0 for every N ≥ 1) ≥ 1− C eb/ε

λ
.

Proof. By Propositions 5.24, 5.25 and 5.27 and

inf
‖x−(±1)‖C−α0≤δ0

P(−S̃N(x) ≤ 0 for every N ≥ 1)

≥ P(−S̃N ≤ 0 for every N ≥ 1)

= 1− 1

λ
Eg̃1.

Moreover, by Proposition 5.25 for every b > 0 there exist ε0 ∈ (0, 1) and C > 0

such that for every ε ≤ ε0, Eg̃1 ≤ Ceb/ε which completes the proof.
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We are now ready to prove Proposition 5.13 which is the main goal of this
section.

Proof of Proposition 5.13. We estimate P(SN(x) ≤ 0 for some N ≥ 1) in the fol-
lowing way,

P(−SN(x) ≥ 0 for some N ≥ 1)

≤ P

(
−
∑

i≤N
fi(x) + λ

∑

i≤N
f̃i ≥ 0 for some N ≥ 1

)

+ P(−S̃N(x) ≥ 0 for some N ≥ 1). (5.44)

The second term on the right hand side can be estimated by Lemma 5.28 which
provides a bound of the form

sup
‖x−(±1)‖C−α0≤δ0

P(−S̃N(x) ≥ 0 for some N ≥ 1) ≤ C
eb/ε

λ
. (5.45)

For the first term we notice that

P

(
−
∑

i≤N
fi(x) + λ

∑

i≤N
f̃i ≥ 0 for some N ≥ 1

)

≤
∑

N≥1

P

(
−
∑

i≤N
fi(x) + λ

∑

i≤N
f̃i ≥ 0

)

≤
∑

N≥1

P

(
exp

{
− 1

2λ

∑

i≤N
fi(x) +

1

2

∑

i≤N
f̃i

}
≥ 1

)
.

By Markov’s inequality, independence of {fi(x)}i≥1 and {f̃i}i≥1 and equality in
law of the f̃i’s the last inequality implies that

P

(
−
∑

i≤N
fi(x) + λ

∑

i≤N
f̃i ≥ 0 for some N ≥ 1

)

≤
∑

N≥1

E exp

{
− 1

2λ

∑

i≤N
fi(x)

}

︸ ︷︷ ︸
=:IN (x)

(
E exp

{
f̃1

2

})N

︸ ︷︷ ︸
≤2N since f̃1∼exp(1)

. (5.46)
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Let ε0 ∈ (0, 1) as in Proposition 5.19. Then for every ε ≤ ε0

IN(x) ≤
(

sup
‖x−(±1)‖C−α0≤δ0

E exp

{
− 1

2λ
f1(x)

})N

≤
(

sup
‖x−(±1)‖C−α0≤δ0

[
E exp

{
− 1

2λ
f1(x)

}
1{f1(x)≥e2a0/ε}

+ P
(
f1(x) ≤ e2a0/ε

) ])N

≤
(

e−e2a0/ε/2λ + e−3a0/ε
)N

,

where in the first inequality we use the Markov property and in the last we
use Proposition 5.19. If we choose 1

2λ
= e−(2a0−b)/ε and choose ε0 ∈ (0, 1) even

smaller the last inequality implies that for every ε ≤ ε0

sup
‖x−(±1)‖C−α0≤δ0

IN(x) ≤
(

e−eb/ε + e−3a0/ε
)N
≤ e−5a0N/2ε.

Combining with (5.46) we find ε0 ∈ (0, 1) such that for every ε ≤ ε0

sup
‖x−(±1)‖C−α0≤δ0

P

(
−
∑

i≤N
fi(x) + λ

∑

i≤N
f̃i ≥ 0 for some N ≥ 1

)

≤
∑

N≥1

e−5a0N/2ε2N ≤
∑

N≥1

e−2a0N/ε =
e−2a0/ε

1− e−2a0/ε
. (5.47)

Finally (5.44), (5.45) and (5.47) imply that

sup
‖x−(±1)‖C−α0≤δ0

P(−SN(x) ≥ 0 for some N ≥ 1) ≤ C
eb/ε

e(2a0−b)/ε +
e−2a0/ε

1− e−2a0/ε

which completes the proof since b is arbitrary.

5.3 Applications to Eyring–Kramers Law

In this section we consider the spatial Galerkin approximationXN(·;x) ofX(·;x)

given by

(∂t −∆)XN = −ΠN

((
XN
)3 −XN − 3ε<NXN

)
+
√

2εξN

XN
∣∣
t=0

= xN

(5.48)
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where ΠN is the projection on {f ∈ L2 : f(z) =
∑
|k|≤N f̂(k)L−2e2πik·z/L}, ξN =

ΠNξ, xN = ΠNx and <N is as in (2.9). Here for k ∈ Z2 we set |k| = |k1| ∨ |k2|.
In this notation we have that ΠNf = f ∗ DN , where DN is the 2-dimensional
square Dirichlet kernel given by DN(z) =

∑
|k|≤N L

−2e2πik·z/L.
To treat (5.48) we write XN(·;x) = vN(·;x) + ε

1
2
N(·;x) for

(
∂t − (∆− 1)

)
N =
√

2ξN
N(0) = 0.

Then vN(·;x) solves

(∂t −∆) vN = −ΠN(vN)3 + vN − ΠN

(
3(vN)2ε

1
2
N + 3vNε N + ε

3
2

N
)

+ 2ε
1
2
N

vN
∣∣
t=0

= xN

(5.49)

where N =
(
N
)2 −<N and N =

(
N
)3 − 3<N N .

For δ ∈ (0, 1/2) and α > 0 we define the symmetric subsets A and B of C−α
by

A :=
{
f ∈ C−α : f̄ ∈ [−1− δ,−1 + δ], f − f̄ ∈ D⊥

}
(5.50)

B :=
{
f ∈ C−α : f̄ ∈ [1− δ, 1 + δ], f − f̄ ∈ D⊥

}
(5.51)

where D⊥ is a closed ball of radius δ in C−α and f̄ = L−2〈f, 1〉. If necessary we
write A(α; δ) and B(α; δ) to denote the specific value of the parameters α and δ.
Last for x ∈ A we define

τB(XN(·;x)) := inf
{
t > 0 : XN(t;x) ∈ B

}

and

τB(X(·;x)) := inf {t > 0 : X(t;x) ∈ B} .

For k ∈ Z2 let

λk :=

(
2π|k|
L

)2

− 1 and νk :=

(
2π|k|
L

)2

+ 2 = λk + 3.

The sequences {λk}k∈Z2 and {νk}k∈Z2 are the eigenvalues of the operators−∆−1

and −∆ + 2 endowed with periodic boundary conditions.
The next theorem is essentially [BDGW17, Theorem 2.3].
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Theorem 5.29 ([BDGW17, Theorem 2.3]). Let 0 < L < 2π. For every α > 0, δ ∈
(0, 1/2) and ε ∈ (0, 1) there exists a sequence {µε,N}N≥1 of probability measures

concentrated on ∂A such that

lim sup
N→∞

∫
EτB(XN(·;x))µε,N( dx)

≤ 2π

|λ0|

√√√√
∏

k∈Z2

|λk|
νk

exp

{
νk − λk
λk + 2

}
e(V (0)−V (−1))/ε

(
1 + c+

√
ε
)

lim inf
N→∞

∫
EτB(XN(·;x))µε,N( dx)

≥ 2π

|λ0|

√√√√
∏

k∈Z2

|λk|
νk

exp

{
νk − λk
λk + 2

}
e(V (0)−V (−1))/ε (1− c−ε)

(5.52)

where the constants c+ and c− are uniform in ε.

Proof. The proof of (5.52) is given in [BDGW17, Sections 4 and 5], but the
following should be modified.

• In [BDGW17], the sets A and B are defined as in (5.50) and (5.51) with D⊥
replaced by a ball in Hs for s < 0. The explicit form of D⊥ is only used in
[BDGW17, Lemma 5.9]. There the authors consider the 0-mean Gaussian
measure γ⊥0 with quadratic form 1

2ε

(
‖∇f‖2

L2 − ‖f − f̄‖2
L2

)
, and prove that

D⊥ has probability bounded from below by 1− cε2. Here we assume that
D⊥ is a ball in C−α. To obtain the same estimate for this set, we first notice
that the random field f associated with the measure γ⊥0 satisfies

E〈f, L−2e2iπk·/L〉 . ε log ε−1 log λk
1 + λk

,

for every k ∈ Z2, where the explicit constant depends on L. This decay
of the Fourier modes of f and [MWX17, Proposition 3.6] imply that the
measure γ⊥0 is concentrated in C−α, for every α > 0, which in turn implies
[BDGW17, Lemma 5.9] for the set D⊥ considered here.

• In [BDGW17], the authors consider (5.48) with <N replaced by

CN =
1

L2

∑

|k|≤N

1

|λk|
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and obtain (5.52) with the pre-factor given by

2π

|λ0|

√√√√
∏

k∈Z2

|λk|
νk

exp

{
νk − λk
λk

}
= lim

N→∞

2π

|λ0|

√√√√
∏

|k|≤N

|λk|
νk

exp

{
3L2CN

2

}
.

In our case one can check by (2.9) that <N is given by

<N =
1

L2

∑

|k|≤N

1

|λk + 2| .

According to [BDGW17, Remark 2.5] this choice of renormalisation con-
stant modifies [BDGW17, Theorem 2.3] by multiplying the pre-factor there
with

exp
{
−3L2 lim

N→∞
(<N − CN)/2λ0

}
.

Remark 5.30. The finite dimensional measure µε,N in (5.52) is given by

µε,N( df) =
1

capA(B)
e−V (ΠNf)/ερA,B( df),

where ρA,B is a probability measure concentrated on ∂A, called the equilibrium
measure, and capA(B) is a normalisation constant. Under this measure and
the assumption that the sets A and B are symmetric, the integrals appearing
in (5.52) can be rewritten using potential theory as

∫
EτB(XN(·;x))µε,N( dx) =

1

2capA(B)

∫

R(2N+1)2
e−V (ΠNf)/ε df.

This formula is derived in [BDGW17, Section 3] and it is then analysed to obtain
(5.52).

In the next theorem, which is the main result of this section, we generalise
(5.52) for the limiting process X(·;x) for fixed initial condition x in a suitable
neighbourhood of −1. By symmetry the same results holds if we swap the
neighbourhoods of −1 and 1 below.

Theorem 5.31. There exist δ0 > 0 such that the following holds. For every

α ∈ (0, α0) and δ ∈ (0, δ0) there exist c+, c− > 0 and ε0 ∈ (0, 1) such that for every
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ε ≤ ε0

sup
x∈A(α0;δ)

EτB(α;δ)(X(·;x))

≤ 2π

|λ0|

√√√√
∏

k∈Z2

|λk|
νk

exp

{
νk − λk
λk + 2

}
e(V (0)−V (−1))/ε

(
1 + c+

√
ε
)
.

inf
x∈A(α0;δ)

EτB(α;δ)(X(·;x))

≥ 2π

|λ0|

√√√√
∏

k∈Z2

|λk|
νk

exp

{
νk − λk
λk + 2

}
e(V (0)−V (−1))/ε (1− c−ε) .

(5.53)

Proof. See Section 5.3.3.

To prove this theorem we first fix α ∈ (0, α0) and pass to the limit as N →∞
in (5.52) to prove a version of (5.53) where the initial condition x is averaged
with respect to a measure µε concentrated on a closed ball with respect to the
weaker topology C−α0 (see Proposition 5.36). This measure is the weak limit, up
to a subsequence, of the measures µε,N in Theorem 5.29. We then use our ‘‘ex-
ponential loss of memory’’ result, Theorem 5.3, to pass from averages of initial
conditions with respect to the limiting measure µε to fixed initial conditions.

The rest of this section is structured as follows. In Section 5.3.1 we prove
convergence of the Galerkin approximations XN(·;xN) and obtain estimates
uniform in the initial condition x and the regularisation parameterN . In Section
5.3.2 we prove uniform integrability of the stopping times τB(X(·;x)) and pass
to the limit as N → ∞ in (5.52). Finally in Section 5.3.3 we prove Theorem
5.31.

5.3.1 Convergence and A Priori Estimates of the Galerkin

Scheme

In the next proposition we use convergence of the stochastic objects n N (see
2.3) to prove convergence of XN(·;xN) to X(·;x) in C([0, T ]; C−α). This is a
technical result and the proof is given in the Appendix.

Proposition 5.32. Let ℵ ⊂ C−α0 be bounded and assume that for every x ∈ ℵ,

there exists a sequence {xN}N≥1 such that xN → x uniformly in x. Then for every
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α ∈ (0, α0) and 0 < s < T

lim
N→∞

sup
x∈ℵ

sup
t∈[s,T ]

‖XN(t;xN)−X(t;x)‖C−α = 0

in probability.

Proof. See Appendix J.

The next proposition provides a bound for XN(·;x) uniformly in the initial
condition x and the regularisation parameterN in the B−α2,2 norm, for 0 < α < α0.
This result has already been established in Theorem 4.1 for the limiting process
X(·;x) in the C−α norm. There (5.6) is tested with v(·;x)p−1, for p ≥ 2 even,
to bound ‖v(·;x)‖Lp by using the ‘‘good’’ sign of the non-linear term −v3. In
the case of (5.49) this argument allows us to bound ‖vN(·;x)‖Lp for p = 2 only,
because of the projection ΠN in front of the non-linearity.

Proposition 5.33. For every α ∈ (0, α0] and p ≥ 1 we have that

sup
N≥1

sup
x∈C−α0

sup
t≤1

t
p
2E‖XN(s;x)‖pB−α2,2

<∞. (5.54)

Proof. Proceeding exactly as in the proof of Proposition 3.10 we first show that
there exist α ∈ (0, 1) and pn ≥ 1 such that for every t ∈ (0, 1)

‖vN(t;x)‖2
L2 . t−1 ∨

(
3∑

n=1

t−α
′(n−1)pn sup

s≤t
sα
′(n−1)pn‖εn2 n N(s)‖pnC−α

) 1
2

(5.55)

for every α′ ∈ (0, 1), uniformly in x ∈ C−α0. We then proceed as in the proof
of Theorem 4.1 and use (5.55) to prove (5.54). The only difference is that here
we use the norm ‖ · ‖B−α2,2

and the embedding L2 ↪→ B−α2,2 on the level of vN(·;x)

together with the fact that

sup
N≥1

E
(

sup
t≤1

t(n−1)α′‖ n N(t)‖C−α
)p

<∞

for every α, α′ > 0 and p ≥ 1, which is immediate from Propositions 2.2 and
2.3.
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5.3.2 Passing to the Limit

In this section we pass to the limit as N → ∞ in (5.52) using uniform in-
tegrability of the stopping time τB(XN(·;x)). To obtain uniform integrability
we prove exponential moment bounds for τB(XN(·;x)) uniformly in the ini-
tial condition x ∈ C−α0 and the regularisation parameter N . We first bound
P
(
τB(XN(·;x)) ≥ 1

)
using a support theorem and a strong dissipative bound

for XN(·;x) in C−α. A support theorem for the limiting process X(·;x) has al-
ready been established in Corollary 4.18. To use it for XN(·;x), we combine it
with the convergence result in Proposition 5.32. To obtain a strong dissipative
bound for XN(·;x) in C−α we first use Proposition 5.33 which implies the bound
in B−α2,2 and then use Proposition K.2 to pass from the B−α2,2 norm to the C−α
norm.

Proposition 5.34. For every α ∈ (0, α0), δ ∈ (0, 1/2) and ε ∈ (0, 1) there exist

c0 ∈ (0, 1) and N0 ≥ 1 such that for every N ≥ N0

sup
x∈C−α0

P
(
τB(XN(·;x)) ≥ 1

)
≤ c0.

Proof. Let α ∈ (0, α0) and let ℵ be a compact subset of C−α0 which we fix below.
Using the Markov property

P(τB(XN(·;x)) ≥ 1) ≤ sup
y∈ℵ

P(τB(XN(·; y)) ≥ 1/2)P(XN(1/2;x) ∈ ℵ)

+ P(XN(1/2;x) /∈ ℵ).

The proof is complete if for every N ≥ N0

sup
y∈ℵ

P(τB(XN(·; y)) ≥ 1/2) < 1, sup
x∈C−α0

P(XN(1/2;x) /∈ ℵ) < 1. (5.56)

We notice that there exists δ′ > 0 such that for any y ∈ ℵ

P(τB(XN(·; y)) ≤ 1/2) ≥ P(XN(1/2; y) ∈ B) ≥ P (X(1/2; y) ∈ BC−α(1; δ′))

− P
(
‖XN(1/2; y)−X(1/2; y)‖C−α ≥ δ′

)
. (5.57)

Here we use that if ‖X(1/2; y) − 1‖C−α , ‖XN(1/2; y) − X(1/2; y)‖C−α ≤ δ′, then
XN(1/2; y) ∈ B for δ′ sufficiently small. By the support theorem Corollary 4.18
there exists c1 ≡ c1(δ, ε) > 0 such that

inf
y∈ℵ

P (X(1/2; y) ∈ BC−α(1; δ′)) ≥ c1. (5.58)
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On the other hand Proposition 5.32 implies that

XN(1/2; y)→ X(1/2; y)

in C−α in probability uniformly in y ∈ ℵ. Hence there exists N0 ≥ 1 such that
for every N ≥ N0

sup
y∈ℵ

P
(
‖XN(1/2; y)−X(1/2; y)‖C−α ≥ δ/2

)
≤ c1/2. (5.59)

Plugging (5.58) and (5.59) in (5.57) implies the first bound in (5.56).
We now prove the second bound in (5.56). By the Markov inequality for every

R > 0

P
(
‖XN(1/4;x)‖B−α2,2

≥ R
)
≤ 1

R
E‖XN(1/4;x)‖B−α2,2

.

By (5.54) the expectation on the right hand side of the last inequality is uniformly
bounded over x ∈ C−α0 and N ≥ 1. Thus choosing R > 0 large enough

sup
x∈C−α0

P
(
‖XN(1/4;x)‖B−α2,2

≥ R
)
≤ 1

2
. (5.60)

By Proposition K.2 for every K,R > 0 there exist C ≡ C(K,R) such that

sup
‖y‖B−α2,2

≤R
P
(
‖XN(1/4; y)‖C−α ≥ C

)
≤ P

(
sup
t≤1

t(n−1)α′‖εn2 n N(t)‖C−α ≥ K

)
.

Choosing K sufficiently large, combining the last inequality with Propositions
2.2 and 2.3 and using the Markov inequality imply that

sup
‖y‖B−α2,2

≤R
P
(
‖XN(1/4; y)‖C−α ≥ C

)
≤ 1

2
. (5.61)

Using the Markov property and (5.60) and (5.61) we get for arbitrary x ∈ C−α0

P
(
‖XN(1/2;x)‖C−α ≥ C

)

≤ P
(
‖XN(1/4;x)‖B−α2,2

≤ R
)

sup
y∈B−α2,2

P(‖XN(1/4; y)‖C−α ≥ C)

+ P
(
‖XN(1/4;x)‖B−α2,2

≥ R
)

≤ 3

4
.

We finally notice that for every α < α0 the set ℵ = {f ∈ C−α0 : ‖f‖C−α ≤ C} is
compact in C−α0 which implies the second bound in (5.56).
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In the next corollary we use Proposition 5.34 to prove exponential moments
for the stopping time τB(XN(·;x)).

Corollary 5.35. For every δ > 0 and ε ∈ (0, 1) there exist η0 > 0 and N0 ≥ 1

such that

sup
N≥N0

sup
x∈C−α0

E exp{η0τB(XN(·;x))} <∞.

Proof. By the Markov property we have that

P(τB(XN(·;x)) ≥ k + 1) ≤ sup
y∈C−α0

P(τB(XN(·; y)) ≥ 1)P(τB(XN(·;x)) ≥ k).

Iterating this inequality and using Proposition 5.34 we obtain that

sup
x∈C−α0

P(τB(XN(·;x)) ≥ k + 1) ≤ ck+1
0 .

Then

E exp{η0τB(XN(·;x))} = 1 +

∫ ∞

0

η0eη0tP(τB(XN(·;x)) ≥ t) dt

≤ 1 +
∞∑

k=0

P(τB(XN(·;x)) ≥ k)

∫ k+1

k

η0eη0t dt

≤ 1 + eη0

∞∑

k=0

eη0kck0

and the proof is complete if we choose η0 < log c−1
0 .

In the next proposition we pass to the limit as N → ∞ in (5.52). Here we
use Corollary 5.35, which implies uniform integrability of τB(XN(·;x)), and the
weak convergence of the measures µε,N .

Proposition 5.36. For every α ∈ (0, α0), δ ∈ (0, 1/2) except possibly a countable

subset, and ε ∈ (0, 1) there exists a probability measure µε ∈M1 (A(α0; δ)) such

that ∫
EτB(α;δ)(X(·;x))µε( dx)

≤ 2π

|λ0|

√√√√
∏

k∈Z2

|λk|
νk

exp

{
νk − λk
λk + 2

}
e(V (0)−V (−1))/ε

(
1 + c+

√
ε
)

∫
EτB(α;δ)(X(·;x))µε( dx)

≥ 2π

|λ0|

√√√√
∏

k∈Z2

|λk|
νk

exp

{
νk − λk
λk + 2

}
e(V (0)−V (−1))/ε (1− c−ε)

(5.62)
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where the constants c+ and c− are uniform in ε.

Proof. We only prove the upper bound in 5.62. The lower bound follows simi-
larly.

Let α ∈ (0, α0) and δ ∈ (0, 1/2). Using the compact embedding C−α ↪→ C−α0

(see Proposition A.4), for any α < α0, we have that A(α; δ) ⊂ A(α0; δ). Let
{µε,N}N≥1 be the family of probability measures in (5.52). Using again the
compact embedding C−α ↪→ C−α0, for any α < α0, this family is trivially tight
since it is concentrated on ∂A(α; δ). Hence there exists µε ∈M1 (A(α0; δ)) such
that µε,N

weak→ µε up to a subsequence.
By Skorokhod’s represantation theorem (see [DPZ92, Theorem 2.4]) there ex-

ist a probability space (Ωµ,Fµ,Pµ) and random variables {xN}N≥1 and x taking
values in A(α0; δ) such that xN

law
= µN , x law

= µε and xN → x Pµε-almost surely in
C−α0. If we denote by EP⊗Pµε the expectation of the probability measure P⊗Pµε,
we have that

EP⊗PµετB(α;δ)(X
N(·;xN)) =

∫
EτB(α;δ)(X

N(·;x))µN( dx)

EP⊗PµετB(α;δ)(X(·;x)) =

∫
EτB(α;δ)(X(·;x))µε( dx).

(5.63)

By Proposition 5.32 XN(·;xN) converges to X(·;x) P ⊗ Pµε-almost surely on
compact time intervals of (0,∞) up to a subsequence. Let

L =
{
δ ∈ (0, 1/2) : P

(
τB(α;δ)(·) is discontinuous on X(·;x)

)
> 0
}

and notice that if M denotes the mapping

t 7→ |L−2〈X(t;x), 1〉 − 1| ∨ ‖X(t;x)− L−2〈X(t;x), 1〉‖C−α

then

L ⊂ {δ ∈ (0, 1/2) : P (M has a local minimum at height δ) > 0} .
As in [MW17c, Proof of Theorem 6.1] the last set is at most countable, hence
τB(α;δ)(X

N(·;xN))→ τB(α;δ)(X(·;x)), P⊗Pµε-almost surely up to a subsequence,
except possibly a countable number of δ ∈ (0, 1/2).

By Corollary 5.35 the family {τB(α;δ)(X
N(·;x))}N≥N0 is uniformly integrable.

Hence by Vitali’s convergence theorem (see [Bog07, Theorem 4.5.4]) we obtain
that

EP⊗PµετB(α;δ)(X
N(·;xN))→ EP⊗PµετB(α;δ)(X(·;x)).

Combining with (5.52) and (5.63) the proof of the upper bound is complete.
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5.3.3 An Eyring-Kramers Law

In this section we combine Proposition 5.36 and Theorem 5.3 to prove Theorem
5.31. The idea we use here was first implemented in the 1-dimensional case
in [BG13]. Generally speaking, if we restrict ourselves on the event where the
first transition happens after the ‘‘exponential loss of memory’’, τB(α;δ)(X(·;x))

behaves like
∫
τB(α;δ)(X(·;x))µε( dx) for x ∈ A(α0; δ). The probability of this

event is quantified by Theorem 5.3 and Proposition 5.37. On the complement
of this event the transition time τB(α;δ)(X(·;x)) is estimated using Proposition
5.38.

In the next proposition we prove that the first transition from a neighbour-
hood of −1 to a neighbourhood of 1 happens only after some time T0 > 0 with
overwhelming probability. This is a large deviation event which can be estimated
using continuity of X with respect to the initial condition x and the stochastic
objects

{
ε
n
2

n
}
n≤3

. We sketch the proof for completeness.

Proposition 5.37. For every α ∈ (0, α0) and δ ∈ (0, 1/2) there exist a0, δ0, T0 > 0

and ε0 ∈ (0, 1) such that for every ε ≤ ε0

sup
‖x−(−1)‖C−α0≤δ0

P(τB(α;δ)(X(·;x)) ≤ T0) ≤ e−a0/ε.

Proof. We first notice that for ‖x− (−1)‖C−α0 ≤ δ0

P(τB(α;δ)(X(·;x)) ≥ T0) ≥ P
(

sup
t≤T0

‖X(t;x)− (−1)‖C−α0 ≤ δ1

)

for some δ1 > 0. Using continuity of X with respect to x and the stochastic
objects

{
ε
n
2

n
}
n≤3

, the last probability can be estimated from below uniformly
in ‖x− (−1)‖C−α0 ≤ δ0, for δ0 sufficiently small, by

P
(

sup
t≤T0

‖X(t;x)− (−1)‖C−α0 ≤ δ1

)
≥ P

(
sup
t≤T0

(t ∧ 1)−(n−1)α′‖εn2 n (t)‖C−α ≤ δ2

)

for some δ2 > 0. Last by Proposition H.1 we find a0 > 0 and ε0 ∈ (0, 1) such that
for ever ε ≤ ε0

P
(

sup
t≤T0

(t ∧ 1)−(n−1)α′‖εn2 n (t)‖C−α ≤ δ2

)
≥ 1− e−a0/ε

which completes the proof.
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In the next proposition we estimate the second moment of the transition time
τB(α;δ)(X(·;x)) using the large deviation estimate (5.33). The proof combines
the ideas in Propositions 5.20 and 5.22. However here we construct a path g

which is different from the one in the proof of Proposition 5.20 to ensure that
the process X(·;x) returns to a neighbourhood of −1. The same proof implies
exponential moments of the transition time τB(α;δ)(X(·;x)), but it is enough to
estimate the second moment for the proof of Theorem 5.31.

Proposition 5.38. Let α ∈ (0, α0) and δ ∈ (0, 1/2). For every η > 0 there exists

ε0 ∈ (0, 1) such that for every ε ≤ ε0

sup
x∈C−α0

EτB(α;δ)(X(·;x))2 ≤ Ce2[(V (0)−V (−1))+η]/ε

for some C > 0 independent of η and ε.

Proof. We first prove that for every R, η > 0 there exists T0 > 0 and ε0 ∈ (0, 1)

such that for every ε ≤ ε0

sup
‖x‖C−α0≤R

P(τB(α;δ)(X(·;x)) ≥ T0) ≤ 1− e−[(V (0)−V (−1))+η]/ε.

We notice that there exists δ′ > 0 such that

P(τB(α;δ)(X(·;x)) ≤ T0) ≥ P(‖X(T∗;x)− 1‖C−α ≤ δ′ for some T∗ ≤ T0︸ ︷︷ ︸
=:A(T0;x)

).

Here we use that if ‖X(T∗;x)−1‖C−α ≤ δ′, for δ′ sufficiently small thenX(T∗;x) ∈
B(α; δ). By the large deviation estimate (5.33) we need to bound

sup
‖x‖C−α0≤R

sup
f∈A(T0;x)
f(0)=x

I(f(·;x)).

To do so we proceed as in the proof of Proposition 5.20 by constructing a suitable
path g ∈ A(T0;x). The construction here is similar but some of the steps differ
since we need to ensure that g returns to a neighbourhood of 1. To avoid
repeating ourselves we give a sketch of the proof highlighting the different steps
of the construction.

Steps 1, 2 and 3 are exactly as in the proof of Proposition 5.20. However we
need to distinguish the value of δ there from the value of δ in the statement of
the proposition. If g(τ3;x) ∈ BB1

2,2
(1; δ) ∩ BC2+λ(0;C) we stop at Step 3. If not
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then g(τ3;x) ∈ BB1
2,2

(−1; δ) ∩ BC2+λ(0;C) or BB1
2,2

(0; δ) ∩ BC2+λ(0;C). We only
explain how to proceed in the first case since it also covers the other.

Before we describe the remaining steps we recall that by Proposition G.2
there exist y0,−, y0,+ ∈ BB1

2,2
(0; δ) such that y0,−, y0,+ ∈ C∞ andXdet(t; y0,±)→ ±1

in B1
2,2. In particular there exists T ∗0 > 0 such that Xdet(T

∗
0 ; y0,±) ∈ BB1

2,2
(±1; δ)∩

BC2+λ(0;C).
Step 4 (Jump to Xdet(T

∗
0 ; y0,−)):

Let τ4 = τ3 + τ , for τ > 0 as in Step 2 which we fix below according to Lemma
5.21. For t ∈ [τ3, τ4] we set g(t;x) = g(τ3;x) + t−τ3

τ4−τ3 (Xdet(T
∗
0 ; y0,−)− g(τ3;x)).

Step 5 (Follow the deterministic flow backward to reach 0):
Let τ5 = τ4 + T ∗0 . For t ∈ [τ4, τ5] we set g(t;x) = Xdet(τ5 − t; y0,−).

Step 6 (Jump to y0,+):
Let τ6 = τ5 + τ , for τ as in Step 4. For t ∈ [τ5, τ6] we set g(t;x) = g(τ5;x) +

t−τ5
τ6−τ5 (y0,+ − g(τ5;x)).
Step 7 (Follow the deterministic flow forward to reach 1):

Let τ7 = τ6 + T ∗0 . For t ∈ [τ6, τ7] we set g(t;x) = Xdet(t− τ6; y0,+).
For the path g constructed above we notice that for every ‖x‖C−α0 ≤ R, if

t ≥ τ7 then g(t;x) ∈ BB1
2,2

(1; δ). By (A.6), B1
2,2 ⊂ C−α, for every α > 0, hence if we

choose δ sufficiently small and set T0 = τ7 + 1 then g ∈ A(T0;x).
To bound I(g(·;x)) we proceed exactly as in the proof of Proposition 5.20

using Lemma 5.21. But when considering the contribution from Step 5 we get
1

4

∫ τ5

τ4

‖(∂t −∆)g(t;x) + g(t;x)3 − g(t;x)‖2
L2 dt

= 2

∫ T ∗0

0

〈
∂tXdet(t; y0,+),∆Xdet(t; y0,+)−Xdet(t; y0,+)3 +Xdet(t; y0,+)

〉
dt

= −2 (V (Xdet(T
∗
0 ; y0))− V (y0,+))

≤ 2 (V (0)− V (−1)) .

In total we obtain the bound

sup
‖x‖C−α0≤R

I(g(·;x)) ≤ 2 (V (0)− V (−1)) + Cδ.

For η > 0 we choose δ even smaller to ensure that Cδ < η. Then by (5.33) we
find ε0 ∈ (0, 1) such that for every ε ≤ ε0

inf
‖x‖C−α0≤R

P(τB(α;δ)(X(·;x)) ≤ T0) ≥ e−[(V (0)−V (−1))+η]/ε.
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The next step is to use the this estimate to show that for any η > 0 there exists
ε0 ∈ (0, 1) and possibly a different T0 > 0 such that for every ε ≤ ε0

sup
x∈C−α0

P(τB(α;δ)(X(·;x)) ≥ mT0) ≤
(
1− e−[(V (0)−V (−1))+η]/ε

)m
.

We omit the proof since it is the same as the one of Proposition 5.22.
Finally we notice that

EτB(α;δ)(X(·;x))2 =

∫ ∞

0

2tP(τB(α;δ)(X(·;x)) ≥ t) dt

≤
∞∑

m=0

P(τB(α;δ)(X(·;x)) ≥ mT0)

∫ (m+1)T0

mT0

2t dt

≤ 2T 2
0

∞∑

m=0

(m+ 1)
(
1− e−[(V (0)−V (−1))+η]/ε

)m

= 2T 2
0 e2[(V (0)−V (−1))+η]/ε

which completes the proof.

Proof of Theorem 5.31. Let

Pr(ε) =
2π

|λ0|

√√√√
∏

k∈Z2

|λk|
νk

exp

{
νk − λk
λk + 2

}
e(V (0)−V (−1))/ε

and δ ∈ (0, δ0), for δ0 ∈ (0, 1/2) which we fix below.
To prove the upper bound in (5.53) let δ− < δ and T > 0 which we also fix

below. For x ∈ A(α0; δ−) we define the set

AT (x)

=

{
τB(α;δ−)(X(·;x)) > T, sup

‖ȳ−x‖C−α0≤δ0

‖X(t; ȳ)−X(t;x)‖Cβ
‖ȳ − x‖C−α0

≤ Ce−(2−κ)t

for every t ≥ T

}

where δ0 and C are as in Theorem 5.3. For y ∈ A(α0; δ) and x ∈ A(α0; δ−) we
have that ‖y − x‖C−α0 , ‖x − (−1)‖C−α0 ≤ δ0, if we choose δ0 sufficiently small.
Furthermore for y ∈ A(α0; δ), x ∈ A(α0; δ−) and ω ∈ AT (x)

τB(α;δ)(X(·; y)) ≤ τB(α;δ−)(X(·;x)),
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if we choose T sufficiently large. By Proposition 5.37 and Theorem 5.3 there
exist a1 > 0 and ε0 ∈ (0, 1) such that for every ε ≤ ε0

sup
x∈A(α0;δ−)

P(AT (x)c) ≤ sup
‖x−(−1)‖C−α0≤δ0

P(AT (x)c) ≤ e−a1/ε.

Then for every y ∈ A(α0; δ), x ∈ A(α0; δ−) and η > 0, which we fix below, there
exists ε0 ∈ (0, 1) such that for every ε ≤ ε0

EτB(α;δ)(X(·; y))

≤ EτB(α;δ−)(X(·;x)) + EτB(α;δ)(X(·; y))1AT (x)c

Cauchy–Schwarz
≤ EτB(α;δ−)(X(·;x)) +

(
EτB(α;δ)(X(·; y))2

) 1
2 P(AT (x)c)

1
2

Prop. 5.38

≤ EτB(α;δ−)(X(·;x)) + Ce((V (0)−V (−1))+η−a1
2 )/ε (5.64)

for some C > 0 independent of ε. By Proposition 5.36 there exist δ− ∈ (0, δ),
c+ > 0 and µε ∈M1 (A(α0; δ−)) such that for every ε ∈ (0, 1)

∫
EτB(α;δ−)(X(·;x))µε( dx) ≤ Pr(ε)(1 + c+

√
ε).

Integrating (5.64) over x with respect to µε implies that

sup
y∈A(α0;δ)

EτB(α;δ)(X(·; y)) ≤ Pr(ε)

×


(1 + c+

√
ε) + e(η−a1

2 )/εC


 2π

|λ0|

√√√√
∏

k∈Z2

|λk|
νk

exp

{
νk − λk
λk + 2

}

−1
 .

Let ζ > 0. Choosing η < a1

2
we can find ε0 ∈ (0, 1) such that for every ε ≤ ε0

e(η−a1
2 )/εC


 2π

|λ0|

√√√√
∏

k∈Z2

|λk|
νk

exp

{
νk − λk
λk + 2

}

−1

≤ ζ
√
ε

which in turn implies that

sup
y∈A(α0;δ)

EτB(α;δ)(X(·; y)) ≤ Pr(ε)
(
1 + (c+ + ζ)

√
ε
)

and proves the upper bound in (5.53).



CHAPTER 5. METASTABILITY 121

To prove the lower bound, we let δ+ ∈ (δ, δ0) which we fix below and for
y ∈ A(α0; δ) and x ∈ A(α0; δ+) we define the set

BT (y, x)

=

{
τB(α;δ)(X(·; y)) ≥ T, sup

‖ȳ−x‖C−α0≤δ0

‖X(t; ȳ)−X(t;x)‖Cβ
‖ȳ − x‖C−α0

≤ Ce−(2−κ)t

for every t ≥ T

}
.

For y ∈ A(α0; δ) and x ∈ A(α0; δ+) we have that ‖y−x‖C−α0 , ‖y− (−1)‖C−α0 , ‖x−
(−1)‖C−α0 ≤ δ0, if we choose δ0 sufficiently small. We also notice that for y ∈
A(α0; δ), x ∈ A(α0; δ+) and ω ∈ BT (y, x)

τB(α;δ+)(X(·;x)) ≤ τB(α;δ)(X(·; y)),

if we choose T sufficiently large. By Proposition 5.37 and Theorem 5.3 there
exists a1 > 0 and ε0 ∈ (0, 1) such that for every ε ≤ ε0

sup
y∈A(α0;δ)
x∈A(α0;δ+)

P(BT (y, x)c) ≤ sup
‖y−(−1)‖C−α0≤δ0
‖x−(−1)‖C−α0≤δ0

P(BT (y, x)c) ≤ e−a1/ε.

Then for every y ∈ A(α0; δ), x ∈ A(α0; δ+) and ε ≤ ε0

EτB(α;δ)(X(·; y))

≥ EτB(α;δ+)(X(·;x))1BT (y,x)

= EτB(α;δ+)(X(·;x))− EτB(α;δ+)(X(·;x))1BT (y,x)c

Cauchy–Schwarz
≥ EτB(α;δ+)(X(·;x))−

(
EτB(α;δ+)(X(·;x))2

) 1
2 P (BT (y, x)c)

1
2

≥ EτB(α;δ+)(X(·;x))−
(
EτB(α;δ+)(X(·;x))2

) 1
2 e−a1/2ε

and we proceed as in the case of the upper bound, using Proposition 5.38
for EτB(α;δ+)(X(·;x))2 and Proposition 5.36 to find δ+ ∈ (δ, δ0), c− > 0 and
µε ∈M1 (A(α0; δ+)) such that for every ε ∈ (0, 1)

∫
EτB(α;δ+)(X(·;x))µε( dx) ≥ Pr(ε)(1− c−ε).
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Appendix A

In this appendix we present several useful results from [MW17c, MW17b] about
Besov spaces. For a complete survey of the full-space analogues of these results
we refer the reader to [BCD11]. A discussion on the validity of these results in
the periodic case can be found in [MW17c, Section 4.2].

The following estimates are immediate from the definition of the Besov norm
(1.13).

‖f‖Bα1
p1,q1
≤ C‖f‖Bα2

p1,q1
, whenever α1 < α2. (A.1)

‖f‖Bα1
p1,q1
≤ ‖f‖Bα1

p1,q2
, whenever q1 > q2. (A.2)

‖f‖Bα1
p1,q1
≤ C‖f‖Bα1

p2,q1
, whenever p1 < p2. (A.3)

Proposition A.1 ([MW17c, Remark 9]). Let p, q1, q2 ∈ [1,∞] such that q2 > q1.

For every α2 > α1

‖f‖Bα1
p1,q1
≤ C‖f‖Bα2

p1,q2
. (A.4)

Proposition A.2 ([MW17c, Remarks 10 and 11]). For every p ∈ [1,∞]

C−1‖f‖B0
p,∞ ≤ ‖f‖Lp ≤ C‖f‖B0

p,1
. (A.5)

Proposition A.3 ([MW17c, Proposition 2]). Let β ≥ α and p, q ≥ 1 such that

p ≥ q and β = α + d
(

1
q
− 1

p

)
. Then

‖f‖Bαp,∞ ≤ C‖f‖Bβq,∞ . (A.6)

Proposition A.4 ([MW17c, Proposition 10]). For every α < α′ the embedding

Cα′ ↪→ Bα∞,1 is compact.

122
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In the following proposition we describe the smoothing properties of the heat
semigroup

(
et∆
)
t≥0

with generator ∆ in space.

Proposition A.5 ([MW17c, Proposition 5]). For every β ≥ α

‖et∆f‖Bβp,q ≤ C(t ∧ 1)
α−β

2 ‖f‖Bαp,q . (A.7)

For f, g ∈ C∞ we define the paraproduct f ≺ g and the resonant term f ◦ g
by

f ≺ g :=
∑

ι<κ−1

διfδκg, (A.8)

f ◦ g :=
∑

|ι−κ|≤1

διfδκg. (A.9)

We also let f � g := g ≺ f . Notice that formally

fg = f ≺ g + f ◦ g + f � g.

We then have the following estimates due to Bony.

Proposition A.6 ([BCD11, Theorems 2.82 and 2.85]). Let α, β ∈ R and g ∈ Cβ.

i. If f ∈ L∞, ‖f ≺ g‖Cβ ≤ C‖f‖L∞‖g‖Cβ .

ii. If α < 0 and f ∈ Cα, ‖f ≺ g‖Cα+β ≤ C‖f‖Cα‖g‖Cβ .

iii. If α + β > 0 and f ∈ Cα, ‖f ◦ g‖Cα+β ≤ C‖f‖Cα‖g‖Cβ .

We have the following two propositions for products of distributions in Besov
spaces.

Proposition A.7 ([MW17c, Corollary 1]). Let α ≥ 0 and p, q ∈ [1,∞]. Then

‖fg‖Bαp,q ≤ C‖f‖Bαp1,q1‖g‖Bαp2,q2 , (A.10)

where p = 1
p1

+ 1
p2

and p = 1
q1

+ 1
q2

.

Proposition A.8 ([MW17c, Corollary 2]). Let α < 0, β > 0 such that α + β > 0

and p, q ∈ [1,∞]. Then

‖fg‖Bαp,q ≤ C‖f‖Bαp1,q1‖g‖Bβp2,q2 , (A.11)

where p = 1
p1

+ 1
p2

and p = 1
q1

+ 1
q2

.
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The following is an extension of the L2-inner product in Besov spaces.

Proposition A.9 ([MW17c, Proposition 7]). Let α ∈ [0, 1) and p, q, p′, q′ ∈ [1,∞]

such that
1
p

+ 1
p′ = 1 and

1
q

+ 1
q′ = 1. Then

|〈f, g〉| ≤ C‖f‖Bαp,q‖g‖B−α
p′,q′

. (A.12)

We have the following gradient estimates for functions of positive regularity.

Proposition A.10 ([MW17c, Proposition 8]). For every α ∈ (0, 1)

‖f‖Bα1,1 ≤ C
(
‖f‖1−α

L1 ‖∇f‖αL1 + ‖f‖L1

)
. (A.13)

Proposition A.11 ([MW17b, Proposition A.6]). For every p ∈ [1,∞)

‖f‖B1
p,∞ ≤ C(‖∇f‖Lp + ‖f‖Lp).

Proposition A.12 ([MW17b, Corollary A.8]). Let α > 0 and p, q ∈ [1,∞]. Then

‖f 2‖Bαp,q ≤ C‖f‖Lp1‖f‖Bαp2,q , (A.14)

where p = 1
p1

+ 1
p2

.

In the next proposition we prove convergence of the Galerkin approximations
ΠNf to f in Besov spaces. Here we use that the projection ΠNf is defined as the
convolution of f with the 2-dimensional square Dirichlet kernel, which satisfies
a logarithmic growth bound in the L1 norm.

Proposition A.13. Let ΠN : L2 → L2
be the projection on {f ∈ L2 : f(z) =∑

|k|≤N f̂(k)L−2e2iπk·z/L}. Then for every α ∈ R, p, q ∈ [1,∞] and λ > 0

‖ΠNf − f‖Bαp,q ≤
C(logN)2

Nλ
‖f‖Bα+λ

p,q
(A.15)

‖ΠNf‖Bαp,q ≤ C‖f‖Bα+λ
p,q

. (A.16)

If we furthermore assume that p = 2 then

‖ΠNf − f‖Bα2,q ≤
C

Nλ
‖f‖Bα+λ

2,q
(A.17)

‖ΠNf‖Bα2,q ≤ ‖f‖Bα2,q . (A.18)
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Proof. We first notice that for c2 > c1 > 0

δκ (ΠNf − f) =





0 , if 2κ ≤ c1N

δκf , if 2κ > c2N
.

Let DN(z) =
∑
|k|≤N L

−2e−2iπk·z/L be the square Dirichlet kernel. Then ΠNf =

f ∗DN . Using the triangle inequality and Young’s inequality for convolution we
have that

‖δκ (ΠNf − f) ‖Lp ≤ (‖DN‖L1 + 1)‖δκf‖Lp .

Thus

‖δκ(ΠNf − f)‖Lp ≤





0 , if 2κ ≤ c1N

C(logN)2‖δκf‖Lp , if c1N ≤ 2κ < c2N

‖δκf‖Lp , if 2κ > c2N

where in the second case we use that ‖DN‖L1 . (logN)2. This bound immediate
form the fact that the 2-dimensional square Dirichlet kernel is the product of
two 1-dimensional Dirichlet kernels (see [Gra14, Section 3.1.3]). The last implies
(A.15) and (A.16). For p = 2 we notice that

‖δκΠNf‖L2 ≤ ‖δκf‖L2

which implies (A.17) and (A.18).

Appendix B

Definition B.1. Let {ξ(φ)}φ∈L2(R×Td) be a family of centered Gaussian random
variables on a probability space (Ω,F ,P) such that

E(ξ(φ)ξ(ψ)) = 〈φ, ψ〉L2(R×Td),

for all φ, ψ ∈ L2(R× Td). Then ξ is called a space-time white noise on R× Td.

The existence of such a family of random variables on some probability space
(Ω,F ,P) is assured by Kolmogorov’s extension theorem and by definition we
can check that it is linear, i.e. for all λ, ν ∈ R, φ, ψ ∈ L2(R × Td) we have
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that ξ(λφ + νψ) = λξ(φ) + νξ(ψ) P-almost surely (see [Nua06, Chapter 1]). We
interpret ξ(φ) as a stochastic integral and write

∫

R×Td
φ(t, x)ξ( dt, dx) := ξ(φ),

for all φ ∈ L2(R×Td). We use this notation, but stress that ξ is almost surely not
a measure and that the stochastic integral is only defined on a set of measure
one which my depend on the specific choice of φ.

We also define multiple stochastic integrals (see [Nua06, Chapter 1]) on R×
Td for all symmetric functions f in L2

(
(R× Td)n

)
, for some n ∈ N, i.e. functions

such that f(z1, z2, . . . , zn) = f(zi1 , zi2 , . . . , zin) for any permutation (i1, i2, . . . , in)

of (1, 2, . . . , n). Here zj is an element of R×Td, for all j ∈ {1, 2, . . . , n}. For such
a symmetric function f we denote its n-th iterated stochastic integral by

In(f) :=

∫

(R×Td)n
f(z1, z2, . . . , zn) ξ( dz1 ⊗ dz2 ⊗ . . .⊗ dzn).

The following theorem can be found in [Nua06, Theorem 1.1.2].

Theorem B.2. Let Fξ be the σ-algebra generated by the family {ξ(φ)}φ∈L2(R×Td).

Then every element X ∈ L2(Ω,Fξ,P) can be written in the following form

X = E(X) +
∞∑

n=1

In(fn),

where fn ∈ L2
(
(R× Td)n

)
are symmetric functions, uniquely determined by X.

This theorem implies that L2(Ω,Fξ,P) can be decomposed into the direct
sum

⊕
n≥0 Sn, where S0 := R and

Sn := {In(f) : f ∈ L2
(
(R× Td)n

)
symmetric}, (B.1)

for all n ≥ 1. The space Sn is called the n-th homogeneous Wiener chaos and
the element In(fn) the projection of X onto Sn.

Given a symmetric function f ∈ L2
(
(R× Td)n

)
, we have the isometry

E(In(f))2 = n!‖f‖2
L2((R×Td)n). (B.2)

Furthermore, by Nelson’s estimate (see [Nua06, Section 1.4]) for every n ≥ 1

and Y ∈ Sn,

E|Y |p ≤ (p− 1)
n
2
p
(
E|Y |2

) p
2 , (B.3)

for every p ≥ 2.
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Appendix C

Definition C.1. For symmetric kernels K1, K2 : Z2 → (0,∞) we denote by
K1 ? K2 the convolution given by

K1 ? K2(m) :=
∑

l∈Z2

K1(m− l)K2(l)

and for N ∈ N we let

K1 ?≤N K2(m) :=
∑

|l|≤N
K1(m− l)K2(l).

as well as

K1 ?>N K2 := (K1 ? K2)− (K1 ?≤N K2) .

We are interested in symmetric kernels K for which there exists α ∈ (0, 1]

such that

K(m) ≤ C
1

(1 + |m|2)α
.

In the spirit of [Hai14, Lemma 10.14] we have the following lemma.

Lemma C.2. Let α, β ∈ (0, 1] such that α+β−1 > 0 and letK1, K2 : Z2 → (0,∞)

be symmetric kernels such that

K1(m) ≤ C
1

(1 + |m|2)α
, K2(m) ≤ C

1

(1 + |m|2)β
.

If α < 1 or β < 1 then

K1 ? K2(m) ≤ C
1

(1 + |m|2)α+β−1

K1 ?>N K2(m) ≤ C





1
(1+|m|2)α+β−1 , if |m| ≥ N

1
(1+|N |2)α+β−1 , if |m| < N

and if α = β = 1

K1 ? K2(m) ≤ C
log |m| ∨ 1

1 + |m|2

K1 ?>N K2(m) ≤ C





log |m|∨1
1+|m|2 , if |m| ≥ N

log |N |∨1
1+|N |2 , if |m| < N

.



APPENDIX 128

Proof. We only prove the estimates for K1 ?K2. The corresponding estimates for
K1 ?>N K2 can be proven in a similar way. We consider the following regions of
Z2,

A1 =

{
l : |l| ≤ |m|

2

}
,

A2 =

{
l : |l −m| ≤ |m|

2

}
,

A3 =

{
l :
|m|
2
≤ |l| ≤ 2|m|, |l −m| ≥ |m|

2

}
,

A4 = {l : |l| > 2|m|} .

For every l ∈ A1 we notice that |m− l| ≥ 3|m|
4

, which implies that
∑

l∈A1

K1(m− l)K2(l) .
1

(1 + |m|2)α

∑

l∈A1

K2(l)

.





(1+|m|2)β−1

(1+|m|2)α
, if β < 1

log |m|∨1
(1+|m|2)α

, if β = 1
.

By symmetry we get that

∑

l∈A2

K1(m− l)K2(l) .





(1+|m|2)α−1

(1+|m|2)β
, if α < 1

log |m|∨1
(1+|m|2)β

, if α = 1
.

For the summation over A3 we notice that
∑

l∈A3

K1(m− l)K2(l) .
1 + |m|2

(1 + |m|2)α+β
.

Finally, for l ∈ A4 we have that |m− l| ≥ |l|
2

, which implies that
∑

l∈A4

K1(m− l)K2(l) .
∑

|l|>2|m|

1

(1 + |l|2)α+β
.

1

(1 + |m|2)α+β
.

Combining all the above we thus obtain the appropriate estimate on K1?K2(m).

Because we are interested in nested convolutions of the same kernel we
introduce the following recursive notation

K ?1 K = K, K ?n K = K ?
(
K ?n−1 K

)
,
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for every n ≥ 2, with the obvious interpretation for K ?n≤N K and K ?n>N K. We
then have the following corollary, the proof of which is omitted since it is an
immediate consequence of Lemma C.2.

Corollary C.3. Let K be a symmetric kernel as above for some α ∈ (n−1
n
, 1]. If

α < 1 then

K ?n K(m) ≤ C
1

(1 + |m|2)nα−(n−1)

K ?n>N K(m) ≤ C





1
(1+|m|2)nα−(n−1) , if |m| ≥ N

1
(1+|N |2)nα−(n−1) , if |m| < N

and if α = 1

K ?n K(m) ≤ C
1

(1 + |m|2)1−ε

K ?>N K(m) ≤ C





1
(1+|m|2)1−ε , if |m| ≥ N

1
(1+|N |2)1−ε , if |m| < N

for every ε ∈ (0, 1).

Appendix D

Proof of Theorem 2.1. Let φ1, φ2 ∈ L2 and notice that for t1, t2 > −∞ by (B.2)

E〈 n

−∞(t1), φ1〉〈 n

−∞(t2), φ2〉

= n!

∫

T2

∫

T2

φ1(z1)φ2(z2)

(∫ t1∧t2

−∞
H(t1 + t2 − 2r, z1 − z2) dr

)n
dz1 dz2,

(D.1)

where we also use the semigroup property
∫

T2

H(t1 − r, z1 − z)H(t2 − r, z2 − z) dz = H(t1 + t2 − 2r, z1 − z2).

For Im = 1 + 4π2|m|2, m ∈ Z2, we rewrite (D.1) as

E〈 n

−∞(t1), φ1〉〈 n

−∞(t2), φ2〉

= n!
∑

mi∈Z2

i=1,2,...,n
m=m1+...+mn

n∏

i=1

e−Imi |t1−t2|

2Imi
φ̂1(m)φ̂2(m),
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and if we replace φ1, φ2 by ηκ(z1−·), ηκ(z2−·) respectively, for κ ≥ −1, z1, z2 ∈ T2,
we have that

E
(
δκ

n

−∞(t1)
)

(z1)
(
δκ

n

−∞(t2)
)

(z2)

= n!
∑

mi∈Z2

i=1,2,...,n
m=m1+...+mn

n∏

i=1

e−Imi |t1−t2|

2Imi
|χκ(m)|2em(z1 − z2).

By a change of variables we finally obtain

E
(
δκ

n

−∞(t1)
)

(z1)
(
δκ

n

−∞(t2)
)

(z2)

≈ n!
∑

m1∈A2κ

∑

mi∈Z2

i=2,...,n

n∏

i=1

e−Imi−mi−1 |t1−t2|

2Imi−mi−1

em1(z1 − z2),

with the convention that m0 = 0. Let Kγ(m) = 1
(1+|m|2)1−γ , for γ ∈ [0, 1), and

write Kγ ?n Kγ to denote the n-th iterated convolution of Kγ with itself (see
Definition C.1). If we let z1 = z2 = z, for t1 = t2 = t we get an estimate of the
form

E
(
δκ

n

−∞(t)
)

(z)2 .
∑

m∈A2κ

K0 ?n K0(m)

while for t1 6= t2 and every γ ∈ (0, 1)

E
[(
δκ

n

−∞(t1)
)

(z)−
(
δκ

n

−∞(t2)
)

(z)
]2

. |t1 − t2|nγ
∑

m∈A2κ

Kγ ?n Kγ(m).

By Corollary C.3

E
(
δκ

n

−∞(t)
)

(z)2 .
∑

m∈A2κ

1

(1 + |m|2)1−ε ,

for every ε ∈ (0, 1), and

E
[(
δκ

n

−∞(t1)
)

(z)−
(
δκ

n

−∞(t2)
)

(z)
]2

. |t1 − t2|nγ
∑

m∈A2κ

1

(1 + |m|2)1−nγ .

Using the fact that m ∈ A2κ we have that for every κ ≥ −1

E
(
δκ

n

−∞(t)
)

(z)2 . 22λ1κ

E
[(
δκ

n

−∞(t1)
)

(z)−
(
δκ

n

−∞(t2)
)

(z)
]2

. |t1 − t2|nγ22λ2κ
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for every λ1 > 0 and every γ ∈ (0, 1
n
), λ2 > nγ, while for every p ≥ 2 by Nelson’s

estimate (B.3) we finally get

E
(
δκ

n

−∞(t)
)

(z)p . 2pλ1κ

E
[(
δκ

n

−∞(t1)
)

(z)−
(
δκ

n

−∞(t2)
)

(z)
]p

. |t1 − t2|n
p
2
γ2pλ2κ.

The result then follows from [MW17c, Lemma 5.2, Lemma 5.3], the usual Kol-
mogorov criterion and the embedding B−α+ 2

p
p,p ↪→ C−α, for every α > 2

p
.

Appendix E

Proof of Proposition 2.3. For all n ≥ 1, using the formula

Hn(X + Y,C) =
n∑

k=0

(
n

k

)
XkHn−k(Y,C)

we have

n N
s (t) =

n∑

k=0

(
n

k

)
(−1)k

(
S1(t− s) N

−∞(s)
)kHn−k

(
N
−∞(t),<N

)
.

Thus it suffices to prove convergence only for n N
−∞(t), n ≥ 1. By [Nua06,

Proposition 1.1.4] for t1, t2 > −∞ and z1, z2 ∈ T2

E n N
−∞(t1, z1) n N

−∞(t2, z2) = n!
(
E N
−∞(t1, z1) N

−∞(t2, z2)
)n
.

For Im = 1 + 4π2|m|2, m ∈ Z2, using (D.1) we get

E n N
−∞(t1, z1) n N

−∞(t2, z2) = n!
∑

|mi|≤N
i=1,2,...,n

m=m1+...+mn

n∏

i=1

e−Imi |t1−t2|

2Imi
em(z1 − z2),

and by a change of variables this implies that for κ ≥ −1

E
(
δκ

n N
−∞(t1)

)
(z1)

(
δκ

n N
−∞(t2)

)
(z2)

≈ n!
∑

m1∈A2κ

∑

|mi|≤N
i=2,...,n

n∏

i=1

e−Imi−mi−1 |t1−t2|

2Imi−mi−1

em1(z1 − z2). (E.1)
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In a similar way

E
(
δκ

n

−∞(t1)
)

(z1)
(
δκ

n N
−∞(t2)

)
(z2)

≈ n!
∑

m1∈A2κ

∑

|mi|≤N
i=2,...,n

n∏

i=1

e−Imi−mi−1 |t1−t2|

2Imi−mi−1

em1(z1 − z2) (E.2)

and for Kγ(m) = 1
(1+|m|2)1−γ combining (E.1) and (E.2) for z1 = z2 = z and

t1 = t2 = t we have that

E
[(
δκ

n

−∞(t)
)

(z)−
(
δκ

n N
−∞(t)

)
(z)
]2

.
∑

m∈A2κ

K0 ?n>N K
0(m),

while for t1 6= t2 and every γ ∈ (0, 1)

E
([(

δκ
n

−∞(t1)
)

(z)−
(
δκ

n N
−∞(t1)

)
(z)
]

×
[(
δκ

n

−∞(t2)
)

(z)−
(
δκ

n N
−∞(t2)

)
(z)
])

. |t1 − t2|nγ
∑

m∈A2κ

Kγ ?n>N K
γ(m).

Proceeding as in the proof of Theorem 2.1 (see Appendix D) and using Corollary
C.3 we obtain that

E
[(
δκ

n

−∞(t)
)

(z)−
(
δκ

n N
−∞(t)

)
(z)
]2

. 22λ1κ
1

(1 +N2)λ1/2
,

for every λ1 ∈ (0, 1), and

E
([ (

δκ
n

−∞(t1)
)

(z)−
(
δκ

n N
−∞(t1)

)
(z)

]

×
[(
δκ

n

−∞(t2)
)

(z)−
(
δκ

n N
−∞(t2)

)
(z)
])

. |t1 − t2|nγ22λ2κ
1

(1 +N2)λ2−nγ ,

for every γ ∈ (0, 1
n
) and λ2 > nγ. The result then follows by Nelson’s esti-

mate (B.3) combined with the usual Kolmogorov criterion and the embedding
B−α+ 2

p
p,p ↪→ C−α, for every α > 2

p
.
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Appendix F

Lemma F.1 (Generalised Gronwall lemma). Let f : [0, T ] → R be a measurable

function and σ1 + σ2 < 1 such that

f(t) ≤ e−c0ta+ b

∫ t

0

e−c0(t−s)(t− s)−σ1s−σ2f(s) ds.

Then there exists c, C > 0 such that

f(t) ≤ C exp
{
−c0t+ cb

1
1−σ1−σ2 t

}
a.

Proof. The lemma is essentially [HW13, Lemma 5.7] if we set x(t) = ec0tf(t) with
their notation.

Lemma F.2. Let α + β < 1 and c > 0. Then

sup
t≥0

∫ t

0

(t− s)−α(s ∧ 1)−βe−c(t−s) ds <∞.

Proof. Assume t ≥ 1. Then
∫ 1

0

(t− s)−α(s ∧ 1)−βe−c(t−s) ds . e−ct
∫ t

0

(t− s)−α(s ∧ 1)−β ds . t1−α−βe−ct

and
∫ t

1

(t− s)−α(s ∧ 1)−βe−c(t−s) ds ≤
∫ t

0

s−αe−cs ds . 1 +

∫ t

1

s−αe−cs ds

. 1 +

∫ t

1

e−cs ds.

The above implies that

sup
t≥1

∫ t

0

(t− s)−α(s ∧ 1)−βe−c(t−s) ds <∞.

The bound for t ≤ 1 follows easily.

Appendix G

In this appendix we discuss some useful results about the deterministic system
(5.2). Propositions G.1 and G.2 are a consequence of [FJL82, Section 8] and
[KORVE07, Appendix B.1]. Although the results in [FJL82, Section 8] concern



APPENDIX 134

1 space-dimension they can be easily generalised in 2 space-dimensions. For
consistency we have also replaced the space H1 appearing in [FJL82, Section 8]
by B1

2,2. The fact that these spaces coincide is immediate from Definition 1.12
for p = q = 2 if we rewrite ‖f ∗ ηk‖L2 using Plancherel’s identity.

Proposition G.1. For every x ∈ B1
2,2 there exists x∗ ∈ {−1, 0, 1} such that

Xdet(t;x)
B1

2,2→ x∗.

Proposition G.2. For every δ > 0 there exists x± ∈ BB1
2,2

(0; δ) such that

Xdet(t;x±)
B1

2,2→ ±1.

Proposition G.3. Let R > 0. Then there exists C ≡ C(R) > 0 such that for every

λ > 0 sufficiently small

sup
‖x‖C−α0≤R

‖Xdet(1;x)‖C2+λ ≤ C.

Proof. By Theorems 3.6 and 3.12 there exists C ≡ C(R) > 0 such that

sup
‖x‖C−α0≤R

sup
t≤1

tγ‖Xdet(t;x)‖Cβ ≤ C.

Let S(t) = e∆t. Using the mild form we write

Xdet(1;x) = S(1/2)Xdet (1/2;x)−
∫ 1

1/2

S(1− s)
(
Xdet(s;x)3 +Xdet(s;x)

)
ds.

Then

‖Xdet(1;x)‖C2+λ

. ‖Xdet (1/2;x) ‖Cβ +

∫ 1

1/2

(1− s)− 2+λ−β
2

(
‖Xdet(s;x)‖3

Cβ + ‖Xdet(s;x)‖Cβ
)

and if we choose λ < β the above implies that

sup
‖x‖C−α0≤R

‖Xdet(1;x)‖C2+λ

. sup
‖x‖C−α0≤R

sup
t≤1

t3γ‖Xdet(t;x)‖3
Cβ + sup

‖x‖C−α0≤R
sup
t≤1

tγ‖Xdet(t;x)‖Cβ .
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Appendix H

Proposition H.1. For every n ≥ 1 there exists c ≡ c(n) > 0 such that

sup
k≥0

E exp



c
(

sup
t∈[k,k+1]

(t ∧ 1)(n−1)α′‖ n (t)‖C−α
) 2

n



 <∞.

Proof. Following step by step the proof of Theorem 2.1 but using the explicit
bound in Nelson’s estimate (B.3) (see also [Bog07, Section 1.6]), we have that
for every p ≥ 1

sup
k≥0

E

(
sup

t∈[k,k+1]

(t ∧ 1)(n−1)α′‖ n (t)‖C−α
)p

≤ (p− 1)
n
2
pC

p
2
n ,

for some Cn > 0. Then for any c > 0

E exp



c
(

sup
t∈[k,k+1]

(t ∧ 1)(n−1)α′‖ n (t)‖C−α
) 2

n





=
∑

k≥0

cpE
(
supt∈[k,k+1](t ∧ 1)(n−1)α′‖ n

−∞(t)‖C−α
) 2
n
p

p!

≤
∑

p≥0

cp(p− 1)p(Cn)
p
n

p!

and by choosing c ≡ c(n) > 0 sufficiently small the series converges.

Appendix I

Lemma I.1. Let g1, g̃1 be positive random variables such that

P(g1 ≥ g) ≤ P(g̃1 ≥ g)

for every g ≥ 0 and let F be a positive decreasing measurable function on [0,∞).

Then

∫ ∞

0

F (g)µg1( dg) ≥
∫ ∞

0

F (g)µg̃1( dg)

where µg1 and µg̃1 is the law of g1 and g̃1.
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Proof. We first assume that F is smooth. Then d
dg
F (g) ≤ 0 for every g ≥ 0.

Hence∫ ∞

0

F (g)µg1( dg) = F (0) +

∫ ∞

0

d

dg
F (g)P(g1 ≥ g) dg

≥ F (0) +

∫ ∞

0

d

dg
F (g)P(g̃1 ≥ g) dg

=

∫ ∞

0

F (g)µg̃1( dg)

which proves the estimate for F differentiable. To prove the estimate for a
general decreasing function F we define Fδ = F ∗ηδ for some positive mollifier ηδ
to preserve monotonicity and use the last estimate together with the dominated
convergence theorem.

Appendix J

Proof of Proposition 5.32. By Proposition 2.3 for every α > 0, p ≥ 1 and T > 0

lim
N→∞

E
(

sup
t≤T

(t ∧ 1)(n−1)α′‖ n N(t)− n (t)‖C−α
)p

= 0.

Hence supt≤T (t ∧ 1)(n−1)α′‖ n N(t)− n (t)‖C−α convergences to 0 in probability.
It is enough to prove that

lim
N→∞

sup
x∈ℵ

sup
t≤T

(t ∧ 1)γ‖vN(t;xN)− v(t;x)‖Cβ = 0.

This, convergence in probability of supt≤T ‖ N(t)− (t)‖C−α to 0 and the embed-
ding Cβ ⊂ C−α (see (A.1)) imply the result.

Let S(t) = e∆t. For simplicity we write vN(t) and v(t) to denote vN(t;xN) and
v(t;x). Using the mild forms of (5.49) and (5.6) we get

‖vN(t)− v(t)‖Cβ ≤
7∑

i=1

Ii (J.1)

where

I1 := ‖S(t)(xN − x)‖Cβ , I2 :=

∫ t

0

‖S(t− s)[ΠN(vN(s)3)− v(s)3]‖Cβ ds

I3 := 3

∫ t

0

‖S(t− s)
[
ΠN

(
vN(s)2ε

1
2
N(s)

)
− v(s)2ε

1
2 (s)

]
‖Cβ ds

I4 := 3

∫ t

0

‖S(t− s)[ΠN(vN(s)ε N(s))− v(s)ε (s)]‖Cβ ds
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I5 :=

∫ t

0

‖S(t− s)
(

ΠNε
3
2

N(s)− ε 3
2 (s)

)
‖Cβ ds

I6 := 2

∫ t

0

‖S(t− s)
(
ε

1
2
N(s)− ε 1

2 (s)
)
‖Cβ ds

I7 :=

∫ t

0

‖S(t− s)(vN(s)− v(s))‖Cβ ds.

Let ι = inf{t > 0 : (t∧1)γ‖vN(t)−v(t)‖Cβ ≥ 1} and t ≤ T ∧ι. We treat each of the
terms in (J.1) separately. Below the parameters α and λ can be taken arbitrarily
small and all the implicit constants depend on supt≤T (t∧1)(n−1)α′‖ n (t)‖C−α, and
supx∈ℵ supt≤T (t ∧ 1)γ‖v(t)‖Cβ .
Term I1:

I1

(A.7)
. (t ∧ 1)−

α0+β
2 sup

x∈ℵ
‖xN − x‖C−α0

Term I2:

I2

(A.7)
.
∫ t

0

(
(t− s)−λ2 ‖ΠN(vN(s)3)− vN(s)3‖Cβ−λ + ‖vN(s)3 − v(s)3‖Cβ

)
ds

(A.15)
.
∫ t

0

(t− s)−λ2
(

(logN)2

Nλ
‖vN(s)3‖Cβ + ‖vN(s)3 − v(s)3‖Cβ−λ

)
ds

(A.10)
.
∫ t

0

[
(t− s)−λ2 (logN)2

Nλ
‖vN(s)‖3

Cβ + ‖vN(s)− v(s)‖Cβ

×
(
‖vN(s)‖2

Cβ + ‖vN(s)‖Cβ‖v(s)‖Cβ + ‖v(s)‖2
Cβ
) ]

ds

.
∫ t

0

(
(t− s)−

β+ 2
p−1

2
(logN)2

Nλ
(s ∧ 1)−3γ + (s ∧ 1)−2γ

× ‖vN(s)− v(s)‖Cβ
)

ds.

Term I3:

I3

(A.7)
.
∫ t

0

(t− s)−α+β+λ
2 ‖ΠN(vN(s)2 N(s))− v(s)2 (s)‖C−α−λ ds

(A.15)
.
∫ t

0

(t− s)−α+β+λ
2

(
(logN)2

Nλ
‖vN(s)2 N(s)‖C−α

+ ‖vN(s)2( N(s)− (s))‖C−α + ‖ (s)(vN(s)2 − v(s)2)‖C−α
)

ds
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(A.11),(A.10)
.

∫ t

0

(t− s)−α+β+λ
2

(
(logN)2

Nλ
‖vN(s)‖2

Cβ‖ N(s)‖C−α + ‖vN(s)‖2
Cβ

× ‖ N(s)− (s)‖C−α +
(
‖vN(s)‖Cβ + ‖v(s)‖Cβ

)
‖vN(s)− v(s)‖Cβ

× ‖ (s)‖C−α
)

ds

.
∫ t

0

(t− s)−α+β+λ
2

(
(logN)2

Nλ
(s ∧ 1)−2γ + (s ∧ 1)−2γ‖ N(s)− (s)‖C−α

+ (s ∧ 1)−γ‖vN(s)− v(s)‖Cβ
)

ds.

Term I4: Similarly to I3,

I4 .
∫ t

0

(t− s)−α+β+λ
2

(
(logN)2

Nλ
(s ∧ 1)−γ−α

′
+ (s ∧ 1)−γ‖ N(s)− (s)‖C−α

+ (s ∧ 1)−α
′‖vN(s)− v(s)‖Cβ

)
ds.

Term I5:

I5

(A.7)
.
∫ t

0

(t− s)−α+β+λ
2 ‖ΠN

N(s)− (s)‖C−α−λ ds

(A.15)
.
∫ t

0

(t− s)−α+β+λ
2

(
(logN)2

Nλ
(s ∧ 1)−2α′ + ‖ N(s)− (s)‖C−α

)
ds.

Terms I6, I7:

I6

(A.7)
.
∫ t

0

(t− s)−α+β
2 ‖ N(s)− (s)‖C−α ds.

I7

(A.7)
.
∫ t

0

‖vN(s)− v(s)‖Cβ ds.

Combining the above estimates we obtain that for t ≤ T ∧ ι

‖vN(t)− v(t)‖Cβ
. (t ∧ 1)−

α0+β
2 sup

x∈ℵ
‖xN − x‖C−α0

+ T 1−α+β+λ
2
−3γ

(
(logN)2

N
+ sup

t≤T
(t ∧ 1)(n−1)α′‖ n N(t)− n (t)‖C−α

)

+

∫ t

0

(t− s)−α+β+λ
2 (s ∧ 1)−2γ‖vN(s)− v(s)‖Cβ ds.
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By Lemma F.1 on f(t) = (t ∧ 1)γ‖vN(t) − v(t)‖Cβ we find C ≡ C(T ) > 0 such
that

sup
t≤T∧ι

(t ∧ 1)γ‖vN(t)− v(t)‖Cβ ≤ C

(
sup
x∈ℵ
‖xN − x‖C−α0 +

(logN)2

N

+ sup
t≤T

(t ∧ 1)(n−1)α′‖ n N(t)− n (t)‖C−α
)
.

This and convergence of supt≤T ‖ n N(t)− n (t)‖C−α to 0 in probability imply the
result.

Appendix K

In this section we fix β ∈
(

1
3
, 2

3

)
, γ ∈

(
β
2
, 1

3

)
and p ∈ (1, 2) such that

1− 2

3p
< β and 1−

β + 2
p
− 1

2
− 2γ > 0.

The next proposition provides local existence of (5.49) in Bβ2,2 up to some
time T∗ > 0 which is uniform in the regularisation parameter N .

Proposition K.1. Let K,R, T > 0 such that ‖x‖B−α0
2,2
≤ R and

sup
t≤T

(t ∧ 1)(n−1)α′‖ n N(t)‖B−α∞,2 ≤ K.

Then there exist T∗ ≡ T∗(K,R) ≤ T and C ≡ C(K,R) > 0 such that (5.49) has a

unique solution v ∈ C((0, T∗];Bβ2,2) satisfying

sup
t≤T∗

(t ∧ 1)γ‖vN(t;x)‖Bβ2,2 ≤ C.

Proof. Let S(t) = e∆t. We define

T (v)(t) := S(t)x−
∫ t

0

S(t− s)ΠN

(
v(s)3 + 3v(s)2ε

1
2
N(s) + 3v(s)ε N(s)

+ ε
3
2

N(s)

)
ds+ 2

∫ t

0

S(t− s)
(
ε

1
2
N(s) + v(s)

)
ds.

It is enough to prove that there exists T∗ > 0 such that T is a contraction on

BT∗ :=

{
v : sup

t≤T∗
(t ∧ 1)γ‖v(t;x)‖Bβ2,2 ≤ 1

}
.
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We first prove that for T∗ > 0 sufficiently small T maps BT∗ to itself. To do so
we notice that

‖T (v)(t)‖Bβ2,2 .
7∑

i=1

Ii

where

I1 := ‖S(t)x‖Bβ2,2 , I2 :=

∫ t

0

‖S(t− s)v(s)3‖Bβ2,2 ds,

I3 :=

∫ t

0

‖S(t− s)(v(s)2 N(s))‖Bβ2,2 ds,

I4 :=

∫ t

0

‖S(t− s)(v(s) N(s))‖Bβ2,2 ds, I5 :=

∫ t

0

‖S(t− s) N(s)‖Bβ2,2 ds,

I6 :=

∫ t

0

‖S(t− s) N(s)‖Bβ2,2 ds, I7 :=

∫ t

0

‖S(t− s)v(s)‖Bβ2,2 ds.

Here we use (A.18) together with the relation S(·)ΠN = ΠNS(·) to drop ΠN . We
treat each term separately.
Term I1:

I1

(A.7)
. (t ∧ 1)−

α0+β
2 ‖x‖B−α0

2,2
. (t ∧ 1)−

α0+β
2 R.

Term I2:

I2

(A.6)
.
∫ t

0

‖S(t− s)v(s)3‖
B
β+ 2

p−1

p,2

ds
(A.7)
.
∫ t

0

(t− s)−
β+ 2

p−1

2 ‖v(s)3‖B0
p,2

ds

(A.10)
.
∫ t

0

(t− s)−
β+ 2

p−1

2 ‖v(s)‖3
B0

3p,2
ds

(A.6)
.
∫ t

0

(t− s)−
β+ 2

p−1

2 ‖v(s)‖3

B
1− 2

3p
2,2

ds

1− 2
3p
<β

.
∫ t

0

(t− s)−
β+ 2

p−1

2 ‖v(s)‖3

Bβ2,2
ds .

∫ t

0

(t− s)−
β+ 2

p−1

2 (s ∧ 1)−3γ ds.

Term I3:

I3

(A.6),(A.7)
.

∫ t

0

(t− s)−
β+ 2

p−1+α

2 ‖v(s)2 N(s)‖B−αp,2 ds

(A.11),(A.10)
. K

∫ t

0

(t− s)−
β+ 2

p−1+α

2 ‖v(s)‖2
Bα+λ

2p,2
ds

(A.6)
. K

∫ t

0

(t− s)−
β+ 2

p−1+α

2 ‖v(s)‖2

B
α+λ+1− 1

p
2,2

ds
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1− 2
3p
<β

. K

∫ t

0

(t− s)−
β+ 2

p−1+α

2 ‖v(s)‖2

Bβ2,2
ds

. K

∫ t

0

(t− s)−
β+ 2

p−1+α

2 (s ∧ 1)−2γ ds.

Term I4:

I4

(A.6),(A.7)
.

∫ t

0

(t− s)−
β+ 2

p−1+α

2 ‖v(s) N(s)‖B−αp,2 ds

(A.11),(A.6)
. K

∫ t

0

(t− s)−
β+ 2

p−1+α

2 (s ∧ 1)−α
′‖v(s)‖

B
α+λ+1− 2

p
2,2

ds

1− 2
3p
<β

. K

∫ t

0

(t− s)−
β+ 2

p−1+α

2 (s ∧ 1)−α
′‖v(s)‖Bβ2,2 ds

. K

∫ t

0

(t− s)−
β+ 2

p−1+α

2 (s ∧ 1)−γ−α
′
ds.

Terms I5, I6, I7:

I5

(A.7)
.
∫ t

0

(t− s)−β+α
2 ‖ N(s)‖B−α2,2

ds . K

∫ t

0

(t− s)−β+α
2 (s ∧ 1)−2α′ ds.

I6

(A.7)
.
∫ t

0

(t− s)−β+α
2 ‖ N(s)‖B−α2,2

ds . K

∫ t

0

(t− s)−β+α
2 ds.

I7

(A.7)
.
∫ t

0

‖v(s)‖Bβ2,2 ds .
∫ t

0

(s ∧ 1)−γ ds.

Combining all the above we find C ≡ C(K,R) > 0 such that

sup
t≤T∗

(t ∧ 1)γ‖T (v)(t)‖Bβ2,2 ≤ CT θ∗

for some θ ≡ θ(α, α′, α0, β, γ) ∈ (0, 1). Choosing T∗ > 0 sufficiently small the
above implies that

sup
t≤T∗

(t ∧ 1)γ‖T (v)(t)‖Bβ2,2 ≤ 1.

Hence for this choice of T∗, T maps BT∗ to itself. In a similar way, but by
possibly choosing a smaller value of T∗, we prove that T is a contraction on
BT∗. For simplicity we omit the proof. That way we obtain a unique solution
v ∈ C((0, T∗];Bβ2,2). We can furthermore assume that T∗ is maximal in the sense
that either T∗ = T or limt↗T∗ ‖v(t;x)‖Bβ2,2 =∞.
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Proposition K.2. For every t0 ∈ (0, 1) and K,R > 0 there exists C > 0 such that

if ‖x‖B−α2,2
≤ R and supt≤1 t

(n−1)α′‖εn2 n N(t)‖C−α ≤ K then

sup
‖x‖B−α2,2

≤R
‖XN(t0;x)‖C−α ≤ C.

Proof. Using the a priori estimate in Proposition 5.33 we can assume that T∗ = 1

in Proposition K.1. This implies that

sup
‖x‖B−α2,2

≤R
sup
t≤1

tγ‖vN(t;x)‖Bβ2,2 ≤ C. (K.1)

For simplicity we assume that t0 = 1. Let S(t) = e∆t. Using the mild form of
(5.49) we obtain that

‖vN(1)‖C−α .
7∑

i=1

Ii

where

I1 := ‖S(1/2)vN(1/2)‖C−α , I2 :=

∫ 1

1/2

‖S(1− s)ΠN(vN(s))3‖C−α ds,

I3 :=

∫ 1

1/2

‖S(1− s)ΠN

(
vN(s)2ε

1
2
N(s)

)
‖C−α ds,

I4 :=

∫ 1

1/2

‖S(1− s)ΠN

(
vN(s)ε N(s)

)
‖C−α ds,

I5 :=

∫ 1

1/2

‖S(1− s)ΠNε
3
2

N(s)‖C−α ds, I6 :=

∫ 1

1/2

‖S(1− s)ε 1
2
N(s)‖C−α ds,

I7 :=

∫ 1

1/2

‖S(1− s)vN(s)‖C−α ds.

We treat each term separately.
Term I1:

I1

(A.6)
. ‖S(1/2)vN(1/2)‖B−α+1

2,∞

(A.7)
. ‖vN(1/2)‖B−α2,∞

. ‖vN(1/2)‖B−α2,2

Term I2:

I2

(A.6)
.
∫ 1

1/2

‖S(1− s)ΠN(vN(s)3)‖
B
−α+ 2

p
p,∞

ds

(A.7)
.
∫ 1

1/2

(1− s)−
−α+ 2

p+λ

2 ‖ΠN(vN(s)3)‖B−λp,∞ ds

(A.16),(A.10)
.

∫ 1

1/2

(1− s)−
−α+ 2

p+λ

2 ‖vN(s)‖3
B0

3p,∞
ds
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(A.6)
.
∫ 1

1/2

(1− s)−
−α+ 2

p+λ

2 ‖vN(s)‖3

B
1− 2

3p
2,∞

ds

1− 2
3p
<β

.
∫ 1

1/2

(1− s)−
−α+ 2

p+λ

2 ‖vN(s)‖3

Bβ2,2
ds.

Term I3:

I3

(A.6)
.
∫ 1

1/2

‖S(1− s)ΠN

(
vN(s)2ε

1
2
N(s)

)
‖
B
−α+ 2

p
p,∞

ds

(A.7)
.
∫ 1

1/2

(1− s)−
2
p+λ

2 ‖ΠN

(
vN(s)2ε

1
2
N(s)

)
‖B−α−λp,∞

ds

(A.16),(A.11),(A.10)
.

∫ 1

1/2

(1− s)−
2
p+λ

2 ‖vN(s)‖2
Bα+λ

2p,∞
‖ε 1

2
N(s)‖C−α ds

(A.6)
.
∫ 1

1/2

(1− s)−
2
p+λ

2 ‖vN(s)‖2

B
α+λ+1− 1

p
2,∞

‖ε 1
2
N(s)‖C−α ds

1− 2
3p
<β

.
∫ 1

1/2

(1− s)−
2
p+λ

2 ‖vN(s)‖2

Bβ2,2
‖ε 1

2
N(s)‖C−α ds.

Term I4: Similarly to I3,

I4 .
∫ 1

1/2

(1− s)−
2
p+λ

2 ‖vN(s)‖Bβ2,2‖ε
N(s)‖C−α ds.

TermsI5:

I5

(A.7)
.
∫ 1

1/2

(1− s)−λ2 ‖ΠNε
3
2

N(s)‖C−α−λ ds

(A.16)
.
∫ 1

1/2

(1− s)−λ2 ‖ε 3
2

N(s)‖C−α−λ ds.

Terms I6, I7:

I6

(A.7)
.
∫ 1

1/2

(1− s)−λ2 ‖ε 1
2
N(s)‖C−α−λ ds.

I7

(A.6)
.
∫ 1

1/2

‖S(1− s)vN(s)‖B−α+1
2,2

ds
(A.7)
.
∫ 1

1/2

(1− s)−−α+1−β
2 ‖vN(s)‖Bβ2,2 ds.

The proof is complete if we combine these estimates with (K.1).
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Poincaré Probab. Stat., 54(3):1204–1249, 2018.



BIBLIOGRAPHY 150

[Zab89] J. Zabczyk. Symmetric solutions of semilinear stochastic equa-
tions. In Stochastic partial differential equations and applications, II

(Trento, 1988), volume 1390 of Lecture Notes in Math., pages 237–
256. Springer, Berlin, 1989.

[Zei95] E. Zeidler. Applied functional analysis, volume 109 of Applied Math-

ematical Sciences. Springer-Verlag, New York, 1995. Main princi-
ples and their applications.


