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Abstract

This thesis deals with reserving for risk in a dynamic multi-asset market.

Chapter 1 contains an exposition of the basic concepts of reserving for risks under

convex and coherent risk measures.

In Chapter 2, we provide a dual characterisation of the weak∗-closure of a

finite sum of cones in L∞ adapted to a discrete time filtration Ft: the tth cone in the

sum contains bounded random variables that are Ft-measurable. Hence we obtain

a generalisation of Delbaen’s m-stability condition [Delbaen, 2006a] for the problem

of reserving in a collection of numéraires V, called V-m-stability, provided these

cones arise from acceptance sets of a dynamic coherent measure of risk [Artzner

et al., 1997, Artzner et al., 1999]. We also prove that V-m-stability is equivalent to

time-consistency when reserving in portfolios of V, which is of particular interest to

insurers.

In Chapter 3, we examine the problem of dynamic reserving for risk in multi-

ple currencies under a general coherent risk measure. The reserver requires to hedge

risk in a time-consistent manner by trading in baskets of currencies. We show that

reserving portfolios in multiple currencies V are time-consistent when (and only

when) a generalisation of Delbaen’s m-stability condition [Delbaen, 2006a], termed

optional V-m-stability, holds. We prove a version of the Fundamental Theorem of

Asset Pricing in this context. We show that this problem is equivalent to dynamic

trading across baskets of currencies (rather than just pairwise trades) in a market

with proportional transaction costs and with a frictionless final period.

Chapter 4 deals with the related problem of trading to acceptability, where

v



a claim X is acceptable if and only if the expected gain under each measure in a

collection exceeds an associated floor.

vi



Chapter 1

Introduction

1.1 Risk

Risk has been a useful concept to mankind through the ages. The avoidance of risk

has arguably contributed to society right from its inception, when neolithic hunter-

gatherers turned to agriculture for a more stable food supply. More recently, on the

back of mathematical and probabilistic advances in the 17th century, John Graunt

is credited with producing the first life table in 1661, estimating the chance of death

based on a person’s age. This allowed Halley [Halley, 1693] to develop the first life

annuity, and determine the premium that should be paid. This, in turn, lead to

James Dodson founding the Equitable Life Assurance Society [Hickman, 2004] in

1762. Advancements in calculation and statistics improved actuarial understanding

of pricing such products over the next two and a half centuries.

At the turn of the twentieth century, Bachelier [Bachelier, 1900] pioneered

the idea of modelling stocks with Brownian Motion. In the 1970s, Black, Scholes,

and Merton invented the risk-neutral argument for pricing derivatives. They showed

that, if a financial claim could be replicated by the sum of the gains from a sequence

of self-financing trades (delta hedges) made dynamically in the underlying assets,

then the initial wealth required is the arbitrage-free price of the claim. Of course,

such a sequence of trades does not take into account any risk preference, but instead

hedges perfectly the risk at each time. Harrison and Kreps [Harrison and Kreps,

1979] introduced the concept of the risk-neutral probability measure, also known as

the equivalent martingale measure, under which the stock price is a martingale. Such

a probability measure exists if and only if the market is arbitrage-free; this is known

as the (first) Fundamental Theorem of Asset Pricing [Delbaen and Schachermayer,

1997].
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A complete market is one where every claim is perfectly hedgable. The

second Fundamenteal Theorem of Asset Pricing is that the equivalent martingale

measure is unique. Then, any claim may be priced as the (discounted) expectation

of its terminal value under this equivalent martingale measure. In a market that is

not complete, we cannot hedge every claim perfectly, but instead look to superhedge

every claim; in the absence of arbitrage, the initial wealth required for superhedging

a claim is the supremum of the expected value of the claim under each equivalent

martingale measure.

Another critical concept in the field of Financial Mathematics is that of

Markowitz’s mean-variance criterion [Markowitz, 1952], which was a crucial insight

into how to maximise expected return on a portfolio of stocks whilst controlling the

risk. Equating the variance with the risk of the portfolio penalises equally quick

losses and quick gains.

Regulators and investors seek to limit exposure to losses (the “downside”

risk) without penalising gains. The problem of quantifying this downside risk gave

rise to the theory of coherent risk measures, described in the seminal paper [Artzner

et al., 1999]. The key idea is to give the downside risk of a claim X in terms of

an amount of cash ρ(X) to be added to the position so that the aggregate position

X + ρ(X) is acceptable to the regulator. We say a position is acceptable if the risk

is less than zero. We model ρ as a functional on some space of random variables to

the extended real line; this is to be defined more precisely in the next section.

The first and most widely used example of a monetary risk measure is Value

at Risk, under which a position is acceptable if the probability of a loss is beneath

a certain level. Value at Risk is essentially a quantile function of the distribution of

the claim. While it is easy to see how this probability may be empirically estimated

from historical data, the potential magnitude of the loss is not taken into account,

and more importantly, Value at Risk is not sub-additive, and hence discourages

diversification.

The axiomatic study of risk measures allows for a choice of a few basic tenets

that the risk measure should satisfy, and from which come a rich and interesting

discussion. The two axioms on which everyone can agree are monotonicity and cash-

additivity. Monotonicity is that if a financial position is better in all states of the

world, then it should have lower risk. Cash-additivity is that if a cash amount is

added to a position, then the risk of the position is reduced by exactly the amount

of cash.

Convexity is motivated in part by how Value at Risk discourages diversifi-

cation. Convexity is the requirement that the risk of a convex combination of two
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positions should be less than the convex combination of the risks of the two positions.

Thus we see that, if we have any two acceptable claims, then diversifying between

the two positions yields something that is still acceptable. Under these three basic

assumptions, and assuming that ρ has the Fatou property, we may represent the

functional ρ as

ρ(X) = sup
Q
{EQ[−X]− α(Q)},

for some penalty function α on probability measures Q. We see that the dual

representation takes into account expected losses under various probability measures

Q, with each Q given more or less weight according to the penalty function α.

An important technical assumption on ρ is that it have the Fatou property:

whenever (Xn) is a sequence of random variables in L∞ tending to X in probability

such that sup ‖Xn‖∞ <∞, then

ρ(X) ≤ lim inf
n→∞

ρ(Xn).

If ρ satisfies the further assumption of positive homogeneity, then we say that

ρ is coherent. Positive homogeneity is the condition that if the position is scaled

up by a positive number, then the risk scales up by that number. It is easy to see

that the penalty function in the dual representation α is then a convex-analytical

indicator function, taking the value 0 on a subset Q of probability measures, and

+∞ outside this set. The dual representation then takes the form

ρ(X) = sup
Q

EQ[−X].

A great deal of research has been conducted into risk measures that are law

invariant. These are those risk measures that depend on a claim X only through

the distribution of X. In fact, law invariant measures automatically have the Fatou

property, as shown in [Jouini et al., 2006]. Law invariant risk measures admit the

Kusuoka representation [Kusuoka, 2001]

ρ(X) = sup
µ∈M1((0,1])

{∫
(0,1]

AVaRα(X)µ(dα)− β(µ)

}

whereM1((0, 1]) is the space of all probability measures on the interval (0, 1] abso-

lutely continuous w.r.t. the Lebesgue measure, and β is a suitable penalty function.
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1.2 Basic functional analytic results

We cover some basic functional analytic notions here. First, let X be a real vector

space. There are several closely-related theorems under the name of Hahn-Banach.

We present one such theorem.

Theorem 1.2.1 (Hahn-Banach). Let X be a real vector space, and let p : X → R
be a sub-linear function:

p(x+ y) ≤ p(x) + p(y) and p(λx) = λp(x) for λ > 0.

Let Y be any subspace of X , and suppose that f : Y → R is a linear functional such

that f(y) ≤ p(y) for all y ∈ Y. Then there exists a linear functional f̃ : X → R
such that

f̃ |Y = f and f̃(x) ≤ p(x) for all x ∈ X .

See page 57 of [Rudin, 1991].

Let (X , τ) be a topological vector space. X is locally convex if there is a non-

empty family {pα}α of seminorms on X (see [Rudin, 1991], p. 25). For example, any

normed space is locally convex, and hence is any Banach space (a complete normed

space), and hence is Lp for p ≥ 1. An important non-example is L0, the space of all

measurable functions.

Example 1.2.2. L0 with the topology of convergence in measure is not locally

convex. For a proof, refer to Theorem 13.41 of [Aliprantis and Border, 2006].

The dual space of X , denoted X ∗, is the vector space of the continuous

linear functionals on X . The initial topology of X with respect to a set E of linear

functionals on X is denoted σ(X , E), and this is the coarsest topology under which

all functionals in E are continuous.

The weak topology is the coarsest topology such that all linear functionals

in X ∗ are continuous. The weak topology is denoted σ(X ,X ∗). Of course, since

σ(X ,X ∗) is the coarsest topology such that every element of X ∗ is continuous, it

must be that σ(X ,X ∗) ⊂ τ .

The weak∗-topology on X ∗ is the coarsest topology such that each element of

X when viewed as a functional on X ∗ is continuous. The weak∗-topology is denoted

σ(X ∗,X ).

Example 1.2.3. For subsequent chapters, a particularly useful example to intro-

duce is X = L1(Ω,F ,P) for a probability triple (Ω,F ,P). The duality is established
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through linear functionals of the form

Y : X → R, X 7→ 〈X,Y 〉 = E[XY ]

for X ∈ L1(Ω,F ,P), and so X ∗ = L∞(Ω,F ,P) (see [Fremlin, 2001], 243F). The dual

of L∞(Ω,F ,P) is the space ba(Ω,F ,P) of all finitely additive finite signed measures

on F , absolutely continuous w.r.t. P (see [Dunford and Schwartz, 1958] p296),

topologised by the total variation norm. We choose to work with L∞ together with

the weak∗-topology σ(L∞, L1), yielding the dual space L1. The double dual of our

original space L1 is again L1.

The closure of a subset E ⊂ X , denoted E, is the smallest closed set con-

taining E. Equivalently, E is the union of E together with all its limit points. If the

closure is taken in the weak∗-topology, then the closure is denoted E
w∗

; however,

the w∗ is omitted when it is clear from the context which closure is taken.

The spaces that we work with are not first-countable, i.e., they do not have

a countable neighbourhood basis. Thus sequential closure is not equivalent to topo-

logical closure ([Sieradski, 1992] p 120). We require the stronger notion of nets for

considering all limit points. A net in X is a function from a directed set (A,<) to

X . We shall denote a net as (xα)α∈A.

A function f from X to the extended real line R ∪ {±∞} is weak∗-lower

semicontinuous (l.s.c.) at a point x ∈ X if

lim inf f(xα) = lim
β∈A

inf
α<β

f(xα) ≥ f(x)

for any net xα
w∗→ x, where xα

w∗→ x denotes that the net (xα) converges to x in the

weak∗-topology. A function f is l.s.c. if f is l.s.c. at every point x ∈ X . A level set

of a function f is a set

{X ∈ X : f(x) ≤ α} for some α ∈ R ∪ {+∞}

A function f is weak∗-l.s.c. if and only if the level sets of f are weak∗-closed. We

shall omit the weak∗ qualifier and assume that it is clear from the context henceforth.

A function f is convex if f(θX + (1 − θ)Y ) ≤ θf(X) + (1 − θ)f(Y ) for

0 ≤ θ ≤ 1 and X,Y ∈ X .

The Fenchel conjugate of a function f : X → R ∪ {±∞} is a function f∗ :

X ∗ → R defined by

f∗(Y ) = sup
X∈X
{〈X,Y 〉 − f(X)}.
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We define the Fenchel biconjugate f∗∗ : X ∗∗ → R to be (f∗)∗: for X ∈ X ∗∗,

f∗∗(X) = sup
Y ∈X ∗

{〈X,Y 〉 − f∗(Y )}.

We shall assume further that X is Hausdorff, which is equivalent to saying

that any net will have an unique limit, if the limit exists. The following is from

[Borwein and Lewis, 2010], p76:

Theorem 1.2.4 (Fenchel-Moreau Duality). Let X be a locally convex and Hausdorff

topological vector space, and take f : X → R∪ {±∞}. The following are equivalent:

(i) f∗∗ = f ;

(ii) f is a proper, convex, and weak∗-l.s.c. function.

See also [Lai and Lin, 1988].

A cone is a set C ⊂ X such that tx ∈ C for any x ∈ C, and t ≥ 0. We denote

the smallest convex set containing a subset E ⊂ X by convE; its closure is convE.

The polar cone of a cone C is

C∗ = {Y ∈ X ∗ : 〈X,Y 〉 ≤ 0}.

The slight abuse of the ∗ notation is explained via the convex analysis indicator

function of a set E:

δE(x) =

0 for x ∈ E,

+∞ otherwise.

We see that δ∗C = δC∗ for a cone C.

Theorem 1.2.5 (Bipolar Theorem). Let X be a locally convex Hausdorff topological

vector space. For a cone C ⊆ X ,

C∗∗ = conv{C}.

This follows from the Fenchel-Moreau duality Theorem; see p57 of [Borwein

and Lewis, 2010].

We now show a lemma that is useful for Chapters 2 and 3.

Lemma 1.2.6. Suppose for each t ∈ T, Ct ⊂ E is a closed convex cone. Then

(∩tCt)∗ = conv {∪tC∗t } = ⊕tC∗t .
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Proof. The second equality is clear. For the first, we first show (∩tCt)∗ ⊇ conv {∪tC∗t }:

∩Ct ⊆ Cs ∀s ∈ T

=⇒ (∩tCt)∗ ⊇ C∗s ∀s ∈ T

=⇒ (∩tCt)∗ ⊇ ∪sC∗s
=⇒ (∩tCt)∗ ⊇ conv {∪tC∗t }.

since (∩tCt)∗ is closed and convex. Conversely, for (∩tCt)∗ ⊆ conv {∪tC∗t }:

∀s ∈ T, C∗s ⊆ conv {∪tC∗t }

=⇒ ∀s ∈ T, Cs ⊇
(

conv {∪tC∗t }
)∗

using C∗∗s = Cs

=⇒ ∩sCs ⊇
(

conv {∪tC∗t }
)∗

=⇒ (∩tCt)∗ ⊆ conv {∪tC∗t }.

1.3 Monetary, convex and coherent measures of risk

A good introduction to convex risk measures is given by Föllmer and Schied [Föllmer

and Schied, 2004]. Throughout, we work on the measurable space (Ω,F), and we

suppose claim X belongs to the collection X of bounded measurable functions on

(Ω,F) containing constant functions.

1.3.1 Notation

We fix a terminal time T ∈ N, a discrete time set T := {0, 1, . . . , T}. We fix a

probability space (Ω,F ,P), where P is the reference measure or objective measure.

The filtration (Ft)t∈T describes the information available at each time point. The

space of all F-measurable random variables is denoted L0 = L0(Ω,F ,P); we denote

L0(Ω,Ft,P) by L0
t . The space of all P-integrable (respectively P-essentially bounded)

Ft-measurable random variables is L1
t (resp. L∞t ). The space of Ft-measurable (re-

spectively integrable; essentially bounded) Rd+1-valued random variables is denoted

L0
t = L0(Ω,Ft,P;Rd+1) (resp. L1

t ; L∞t ). A subscript ‘+’ denotes the positive orthant

of a space, and ‘++’ denotes strict positivity; for example, the set of non-negative

(respectively strictly positive) essentially bounded random variables is L∞+ (resp.

L∞++). Similarly, a subscript ‘−’ denotes the negative orthant of a space.
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1.3.2 Basic definitions

Definition 1.3.1. A functional ρ : X → R ∪ {+∞} with ρ(0) = 0 is called a

monetary risk measure if the following two properties hold:

(M) Monotonicity : if X ≤ Y , then ρ(X) ≥ ρ(Y ).

(TI) Translation invariance: for every constant function m we have ρ(m + X) =

ρ(X)−m.

A monetary risk measure taking only finite values is Lipschitz continuous

with respect to the supremum norm, with Lipschitz constant 1. Indeed,

X ≤ Y + ‖X − Y ‖ (M)
=⇒ ρ(X) ≥ ρ(Y + ‖X − Y ‖) (TI)

= ρ(Y )− ‖X − Y ‖,

so ρ(Y )−ρ(X) ≤ ‖X−Y ‖. Performing the same steps with X and Y interchanged,

we see that

|ρ(X)− ρ(Y )| ≤ ‖X − Y ‖.

Definition 1.3.2. For a monetary risk measure ρ, the set

Aρ = {X ∈ X : ρ(X) ≤ 0}

is the acceptance set of ρ.

We may treat the acceptance set A as the primitive object, and recover the

risk measure ρA via

ρA(X) = inf{m ∈ R : m+X ∈ A}.

Thus a monetary risk measure of a claim X may be seen as the amount of capital

required to ensure that the position X is acceptable to the investor. For the reader’s

convenience, we list some properties of acceptance sets.

Proposition 1.3.3. The acceptance set A of a monetary risk measure ρ is non-

empty and has the following properties:

1. inf{m ∈ R : m ∈ A} > −∞;

2. (A is solid) X ∈ A, Y ∈ X , Y ≥ X =⇒ Y ∈ A;

3. (closure property) for X ∈ A and Y ∈ X ,

{λ ∈ [0, 1] : λX + (1− λ)Y ∈ A} is closed in [0, 1].

8



Definition 1.3.4. A monetary risk measure ρ is called a convex risk measure if, in

addition to axioms (M) and (TI), ρ satisfies

(C) Convexity : ρ(θX + (1− θ)Y ) ≤ θρ(X) + (1− θ)ρ(Y ) for 0 ≤ θ ≤ 1.

In fact, in conjunction with (M) and (TI), we could assume the seemingly

weaker

(QC) Quasi-convexity : ρ(θX + (1− θ)Y ) ≤ max{ρ(X), ρ(Y )} for 0 < θ < 1.

See [Föllmer and Schied, 2004] for details.

Definition 1.3.5. A convex risk measure ρ is called a coherent risk measure if, in

addition to axioms (M), (TI) and (C), ρ satisfies

(PH) Positive homogeneity : for λ ≥ 0 we have ρ(λX) = λρ(X).

Under (PH), (C) is equivalent to

(S) Subadditivity : ρ(X1 +X2) ≤ ρ(X1) + ρ(X2).

Proposition 1.3.6. Suppose ρ is a monetary risk measure with acceptance set Aρ
as defined above.

• ρ is a convex risk measure if and only if Aρ is a convex set;

• ρ is positively homogeneous if and only if Aρ is a cone.

In particular, ρ is a coherent risk measure if and only if Aρ is a convex cone.

1.3.3 Robust representation of convex and coherent risk measures

LetM1 be all the probability measures on the space (Ω,F), and letM1,f be the set

of all finitely additive set functions µ on (Ω,F), normalised to µ(Ω) = 1. We write

Eµ[X] for the integral of a bounded, µ-measurable X with respect to µ ∈ M1,f ;

see Part I, Chapter III, section 2 of [Dunford and Schwartz, 1958], or Appendix

A.6 of [Föllmer and Schied, 2004]. Observe that for Q ∈ M1,f , the functional

X 7→ EQ[−X] − α(Q) is convex, monotone, and translation invariant on X . These

three properties are preserved when optimising over Q ∈M1,f , so

ρ(X) := sup
Q∈M1,f

(
EQ[−X]− αmin(Q)

)
is a convex risk measure. Interestingly, every convex measure is representable in

this form:
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Theorem 1.3.7. Any convex risk measure ρ on X is of the form

ρ(X) = max
Q∈M1,f

(
EQ[−X]− αmin(Q)

)
, for X ∈ L∞(P), (1.1)

where the penalty function αmin is given by

αmin(Q) := sup
X∈Aρ

EQ[−X] for Q ∈M1,f .

Moreover, αmin is the minimal penalty function which represents ρ, i.e., any penalty

function α for which eq. (1.1) holds satisfies α(Q) ≥ αmin(Q) for any Q ∈M1,f .

This is Theorem 4.15 of [Föllmer and Schied, 2004]. Note that the supremum

is attained for some finitely additive measure with total mass 1, so we can replace

the supremum with a maximum. It is natural to consider under what conditions

α is supported on M1, the set of probability measures (that is, those measures in

M1,f that are also sigma-additive).

Definition 1.3.8. A convex risk measure ρ has a robust representation whenever

ρ(X) = sup
Q∈Qρ

{E[−X]− α(Q)}, (1.2)

where α :M1 → (−∞,+∞] is a given penalty function, and

Qρ = {Q ∈M1 : α(Q) <∞, and EQ[X] is well-defined for any X ∈ X}.

We may think of Qρ as a collection of credible scenarios, whose credibility

is expressed through the penalty function; a lower value of α(Q) would signify a

greater belief in the probabilistic model Q.

Suppose ρ admits a robust representation (1.2) with penalty function α.

Then the representation also holds for penalty function

αmin(Q) = sup
X∈X
{EQ[−X]− ρ(X)} = sup

X∈Aρ
EQ[−X].

Furthermore, the penalty αmin is the minimal such function, in the sense that α(Q) ≥
αmin(Q) for any Q ∈ M1. We now provide sufficient conditions for which ρ has a

robust representation.

Theorem 1.3.9. Let ρ be a convex risk measure. The following two statements are

equivalent.
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(i) ρ is continuous from below, i.e.

Xn(ω) ↑ X(ω) for each ω ∈ Ω =⇒ ρ(Xn) ↓ ρ(X);

(ii) ρ satisfies the Lebesgue property, i.e. for any bounded sequence Xn converging

pointwise to X on Ω,

lim
n→∞

ρ(Xn) = ρ(X).

If (i) and (ii) are satisfied, then ρ admits the robust representation (1.2), and further

ρ(X) = max
Q∈M1

{EQ[−X]− αρ(Q)},

i.e. the minimal penalty function αmin is concentrated on M1, and the supremum

is attained.

Fixing a probabilistic model

Fix P on (Ω,F). Recall that X = L∞(Ω,F ,P) = L∞(P) with the supremum norm is

a Banach space. The dual space of L∞(P) is ba(Ω,F ,P), the space of all bounded,

finitely additive measures µ on (Ω,F) such that µ(A) = 0 whenever P(A) = 0. If

µ ∈ ba(P) satisfies µ(Ω) = 1, then we call µ a finitely additive probability measure.

Let M1(P) ⊂ ba(P) denote the set of probability measures absolutely continuous

with respect to P. The following is due to Delbaen, [Delbaen, 2000]:

Theorem 1.3.10. Suppose ρ : L∞(P)→ R is a coherent risk measure. Then there

is a convex σ(ba(P), L∞(P))-closed set Pba of finitely additive probabilities, such

that

ρ(X) = sup
µ∈Pba

Eµ[−X]. (1.3)

For general convex measures, we have the following characterisation.

Theorem 1.3.11. Let ρ : L∞ → R be a convex risk measure. Then the following

are equivalent.

(a) ρ can be represented by some penalty function supported on M1(P).

(b) ρ can be represented by the restriction of the minimal penalty function αmin to

M1(P):

ρ(X) = sup
Q∈M1(P)

{EQ[−X]− αmin(Q)}.

11



(c) ρ is continuous from above, i.e.

Xn ↓ X P-a.s. =⇒ ρ(Xn) ↑ ρ(X).

(d) ρ satisfies the Fatou property, i.e. for any bounded sequence Xn converging

P-a.s. to X,

lim inf
n→∞

ρ(Xn) ≥ ρ(X).

(e) ρ is lower semicontinuous for the weak∗ topology σ(L∞, L1).

(f) The acceptance set Aρ of ρ is weak∗ closed in L∞, i.e. Aρ is closed with respect

to the topology σ(L∞, L1).

See [Delbaen, 2000] for a proof. Following on from Theorem 1.3.10, we have:

Corollary 1.3.12. The minimal penalty function αmin of a coherent risk measure

ρ takes only the values 0 and +∞. In particular,

ρ(X) = max
Q∈Qmax

EQ[−X] for X ∈ L∞(P),

for the convex set

Qmax = {Q ∈ ba(P) : αmin(Q) = 0},

and Qmax is the largest set of measures for which the representation (1.3) holds.

The interpretation of the measure P needs some thought. In practice, prob-

abilities are dependent on modelling choices, and different investors might assign

different values to events. However, everyone must be able to agree which events

are impossible, and hence, the possible events with probability strictly positive,

without agreeing on the numerical value of such a probability. Only knowledge of

events of probability zero is important. In this way, P is thought of as a representa-

tive from a class of equivalent probability measures P≈ = {Q : Q ∼ P}, that define

what is and what is not possible.

Lp(Ω,F ,P)

For certain applications, a larger class of random variables are needed for the set

of claims X , particularly for modelling unbounded claims. A possible space with

elegant theory readily available is Lp(Ω,F ,P), the space of Lp-integrable random

variables, with 1 ≤ p <∞. The extra choice in claims does not come without cost;
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the set of probability measures in the dual space is limited:

Mq = {Q ∈M1 :
dQ
dP
∈ Lq},

where q = p/p− 1 is the Hölder conjugate of p.

One wrinkle when evaluating claims that are possibly unbounded, say in

Lp(P) for p ∈ (1,∞), is that in general Lp(P) 6= Lp(Q) for Q ∈ P≈. Thus any

results depend on the choice of objective measure.

Orlicz hearts

Continuing to generalise, Orlicz spaces are a generalisation of the Lebesgue spaces

discussed above. See [Cheridito and Li, 2009] for more detail. Let Φ be a Young

function, that is, a left-continuous function that is convex, limx→0+ Φ(x) = 0, and

limx→∞Φ(x) =∞. Define the Luxemburg norm1

‖X‖Φ := inf{α > 0 : EP[Φ(|X|/α)] ≤ Φ(1)}.

The Orlicz space is the subset of L0 of all measurable functions LΦ := {X ∈ L0 :

‖X‖Φ <∞}.
The Orlicz heart for function Φ is

HΦ := {X ∈ LΦ : E[Φ(c|X|)] <∞ ∀c > 0}.

If Φ jumps to +∞, then HΦ = {0}. So we assume that Φ is finite-valued. In this

case, Φ is its own Fenchel biconjugate, Φ = Φ∗∗. A risk measure on an Orlicz heart

has the dual representation

ρ(X) = max
Q∈MΦ∗

{EQ[−X]− α(Q)} for X ∈ HΦ

where MΦ∗ = {Q ∈M1 : dQdP ∈ L
Φ∗}. See [Cheridito and Li, 2009].

1Some authors prefer the definition ‖X‖Φ := inf{α > 0 : EP[Φ(|X|/α)] ≤ 1}; however, this leads
to a messy constant Φ(1) appearing throughout. Under our definition, ‖1‖Φ = 1.
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1.3.4 Examples

Worst case risk measure

Consider the measure defined by

ρmax(X) = − inf
ω∈Ω

X(ω) ∀X ∈ X .

This is the least upper bound for the potential loss in any eventuality. It is the most

conservative measure of risk, due to the inequality

ρ(X) ≤ ρ(inf
Ω
X(ω)) = ρmax(X) (assuming normalisation ρ(0) = 0).

The acceptance set is the positive orthant L∞+ , the cone of all non-negative bounded

random variables. Clearly ρmax is coherent. Fixing P, and taking Pba to be all

probability measures in ba(P), we have the representation of Theorem 1.3.10.

Scenario measures and floors

Fix Q a set of probabilities, and consider “floors” f : Q → R with supQ f(Q) <∞.

We define the acceptability set

A = {X ∈ L∞ : ∀Q ∈ Q, EQ[X] ≥ f(Q)}.

We may represent this convex risk measure with the penalty function

α(Q) =

−f(Q) for Q ∈ Q,

+∞ otherwise

We note that ρ is coherent whenever f ≡ 0 on Q.

Risk measures from utility

Extending the previous example, fix a class of probability measures Q, fix a utility

function u on R, and fix levels cQ ∈ R for each Q ∈ Q, such that supQ∈Q cQ < ∞.

Define the acceptability set

A = {X ∈ L∞ : ∀Q ∈ Q, EQ[u(X)] ≥ u(cQ)}.

The acceptability set is convex, inducing a convex risk measure.
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Entropic risk measures

These measures are well-suited to Orlicz hearts. The entropic risk measure is

eγ(X) = sup
Q∈M1

(EQ[−X]− γh(Q|P)) = γ lnEP

(
exp

(
−1

γ
X

))
where the relative entropy h is defined as

h(Q|P) = EP

(
dQ
dP

ln
dQ
dP

)
whenever the integral is finite.

This is studied in [Acciaio and Penner, 2011, Föllmer and Knispel, 2013, Barrieu

and El Karoui, 2004].

Value at Risk

Fix a probability P on (Ω,F), and define the upper quantile function

q+
X(λ) = inf{x : P[X ≤ x] > t}.

Then the Value at Risk at level λ is the monetary risk measure given by

VaRλ(X) = −q+
X(λ) = inf{m ∈ R : P[m+X < 0] ≤ λ}

It is clear that VaRλ is positively homogeneous; the following example shows that

VaRλ is not convex, and hence VaRλ is not a coherent risk measure.

Example 1.3.13. Consider an investment into two defaultable corporate bonds,

each with return rate r ∈ (0, 1) in a market with zero risk-free interest rate. Both

bonds are independent and identically distributed, with payoff

Xi =

−1 with probability p ∈ (0, 1),

r with probability 1− p.
for i = 1, 2.

A smart investor wishing to invest capital 1 in these two bonds might diversify the

risk posed by each individual bond by investing half of her funds in X1 and the

other half in X2. Define Y := (X1 +X2)/2. The probability of a negative outcome

when splitting funds between the bonds is the probability of at least one of the two

bonds defaulting. Since r < 1, we see that this is larger than the probability of a
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negative outcome when investing in a single bond:

P[Y < 0] = 1− P[neither default] = 1− (1− p)2 = p(2− p) > p.

Thus, taking λ ∈ (p, p(2− p)), we have

VaRλ(X1) = −r < 0 but VaRλ(Y ) =
1− r

2
> 0.

So VaRλ discourages investing in Y compared to investing in X1!

Average Value at Risk

An important example is the Average Value at Risk ; this name is potentially the

least misleading amongst other names in the literature, including Tail Value at Risk,

Expected Shortfall, and Conditional Value at Risk. For a level λ ∈ (0, 1], we define

the Average Value at Risk to be

AVaRλ(X) =
1

λ

∫ λ

0
VaRα(X) dα.

We may extend this definition to encompass λ = 0 by

AVaR0(X) :=: VaR0(X) := ess sup(−X).

This is consistent with another definition obtained via the optimized certainty

equivalent/Fenchel-Moreau duality

AVaRλ(X) =
1

λ
inf
z∈R
{E[(z −X)+]− λz} =

1

λ
E[(q+

X(λ)−X)+]− q+
X(λ).

Theorem 1.3.14. For λ ∈ (0, 1], AVaRλ is a coherent risk measure which is con-

tinuous from below, with the robust representation

AVaRλ(X) = max
Q∈Qλ

E[−X]

where Qλ := {Q� P : dQdP ≤
1
λ}. Moreover Qλ is the maximal set for which a robust

representation of the above form occurs.

We introduce a fascinating property of AVaRλ with a definition:

Definition 1.3.15. A monetary risk measure ρ is law-invariant if ρ(X) = ρ(Y )

whenever X and Y have the same distribution under P.
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All the previous examples, with the exception of the worst-case risk measure

have been law-invariant; in particular, VaRλ and AVaRλ are law-invariant. The next

result shows that AVaRλ is, in some sense, a basic building block of any law-invariant

convex risk measure.

Theorem 1.3.16. A convex risk measure ρ is law-invariant and continuous from

above if and only if

ρ(X) = sup
µ∈M1((0,1])

{∫
(0,1]

AVaRλ(X)µ(dλ)− βmin(µ)

}
,

where M1((0, 1]) is the set of probability measures on (0, 1], and

βmin(µ) = sup
X∈Aρ

∫
(0,1]

AVaRλ(X)µ(dλ).

For a proof, see Theorem 4.57 of [Föllmer and Schied, 2004]. When ρ is

coherent, the positive scaling implies βmin(µ) ∈ {0,+∞} for any µ. We thus have

the representation

ρ(X) = sup
µ∈M1((0,1])

∫
(0,1]

AVaRλ(X)µ(dλ). (1.4)

Distortions and Choquet integrals

A distortion function is a non-decreasing function g : [0, 1] → [0, 1] with g(0) = 0

and g(1) = 1. Define the distorted probability measure Q by Q[A] = g(P[A]) for any

A ∈ F . Then we may define a monetary risk measure to be the negative expectation

under the distorted measure Q:

ρg(X) = EQ[−X] =

∫ 0

−∞
(1− g(P[−X > x]) dx−

∫ ∞
0

g(P[−X > x]) dx. (1.5)

The above may be written as a Choquet integral

ρg(X) =

∫
(−X) dc where c = g ◦ P.

Note that Q ∼ P if and only if the mapping g is continuous and one-to-one. By

linearity of expectation, any ρg constructed in the above manner is positively ho-

mogeneous and translation invariant.

Theorem 1.3.17. The distorted risk measure ρg is coherent if and only if g is

concave.
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For a proof of this, see [Sereda et al., 2010]. A range of popular measures

may be cast in this setting, including VaRλ, which is obtained from distortion

gVaRλ(x) = 1[λ,1](x),

and AVaRλ, which is obtained from distortion

gAVaRλ(x) =
x

λ
1[0,λ](x) + 1[λ,1](x) =

(x
λ

)
∧ 1.

We note that gAVaRλ is indeed a concave distortion, whereas gVaRλ is not.

We have so far seen two representations of coherent risk measures, namely

(1.4) and (1.5); it is natural to ask how they are related. To simplify matters, we fix

a probability measure µ ∈ M1(0, 1] and assume the supremum is attained in (1.4)

for this µ:

ρµ(X) :=

∫
(0,1]

AVaRλ(X)µ(dλ).

We may find a concave distortion function g such that ρµ = ρg for ρg defined as in

(1.5).

Theorem 1.3.18. In the above notation, µ and g are related through

∂+g(α) =

∫
(α,1]

λ−1 µ(dλ),

where ∂+ denotes the right derivative.

As an illustration of why this might be true, we assume g is continuously

differentiable, and so ∂+g = g′. By definition of AVaRλ,

ρµ(X) =

∫
(0,1]

AVaRλ(X)µ(dλ)

=

∫
(0,1]

1

λ

∫ λ

0
VaRα(X) dαµ(dλ).

By swapping the order of integration, and using the equality in the statement,

ρµ(X) =

∫ 1

0
dα

(∫
(α,1]

λ−1 µ(dλ)

)
VaRα(X)

= −
∫ 1

0
g′(α)q+

X(α) dα,

where q+
X is the upper quantile function defined previously. Now we employ the
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change of variables t = g(α):

ρµ(X) = −
∫ 1

0
q+
X(g−1(t)) dt

= −EQ[X]

= ρg(X).

A rigorous discussion may be found in [Föllmer and Schied, 2004], Theorem 4.64.

The interested reader may look to [Denneberg, 1990, Wang et al., 1997, Robert and

Thérond, 2013, Föllmer and Knispel, 2013] for more.

1.3.5 Dynamic convex and coherent risk measures

In this subsection we briefly survey an area that has received much attention in

the last decade. We work on a filtered probability space (Ω,F , (Ft)t∈T,P), for T :=

[0,∞). By suitable embeddings, we may reduce to the case of discrete time, finite

time horizon, etc.. We assume F0 trivial, containing every P-null set, and the

filtration is right-continuous. Write L∞(Ω,Ft,P) = L∞t .

Definition 1.3.19. A map ρt : L∞ → L∞t is a conditional convex risk measure if it

satisfies the following properties for all X,Y ∈ L∞:

(i) Conditional translation invariance: for all mt ∈ L∞t ,

ρt(X +mt) = ρt(X)−mt.

(ii) Monotonicity: X ≤ Y =⇒ ρt(X) ≥ ρt(Y ).

(iii) Conditional convexity: for any λ ∈ L∞t with 0 ≤ λ ≤ 1,

ρt(λX + (1 + λ)Y ) ≤ λρt(X) + (1− λ)ρt(Y ).

A conditional convex risk measure is a conditional coherent risk measure if, in ad-

dition to properties (i)-(iii), ρt satisfies

(iv) Conditional positive homogeneity: for any λ ∈ L∞t with λ ≥ 0,

ρt(λX) = λρt(X).

A sequence (ρt)t∈T is a dynamic convex risk measure if ρt is a conditional convex

risk measure for each t ∈ T.
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The conditional convex risk measure ρt induces an acceptance set

At := {X ∈ L∞ : ρt(X) ≤ 0}.

As in the static case, we may recover the conditional risk measure ρt via

ρt(X) = ess inf{Y ∈ L∞t : X + Y ∈ At} P-a.s.

so that ρt(X) is the minimal conditional captial requirement to be added to claim

X to achieve time-t acceptability.

Robust representation

We summarise robust representation results that carry over from the static case. As

before, letM1(P) denote the set of probability measures absolutely continuous with

respect to P.

Theorem 1.3.20 (From [Acciaio and Penner, 2011]). For a conditional risk measure

ρt the following are equivalent:

1. ρt has the robust representation

ρt(X) = ess sup
Q∈Qt

{EQ[−X|Ft]− αt(Q)},

where

Qt := {Q ∈M1(P) : Q = P|Ft}

and αt maps Qt to the set of Ft-measurable random variables with values in

R ∪ {+∞}, such that

ess sup
Q∈Qt

{−αt(Q)} ∈ R.

2. ρt has the robust representation in terms of the minimal penalty function

αmin
t (Q) = ess sup

X∈At
EQ[−X|Ft].

3. ρt has the robust representation

ρt(X) = ess sup
Q∈Qft

{EQ[−X|Ft]− αmin
t (Q)} P-a.s.,

where

Qft := {Q ∈M1(P) : Q = P|Ft , EQ[αmin
t (Q)] <∞}.
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4. ρt has the Fatou property: for any bounded sequence (Xn)n∈N ⊆ L∞ converging

P-a.s. to some X ∈ L∞,

ρt(X) ≤ lim inf
n→∞

ρt(Xn) P-a.s..

5. ρt is continuous from above: for any bounded sequence (Xn)n∈N ⊆ L∞, and

X ∈ L∞,

Xn ↓ X P-a.s. =⇒ ρt(Xn) ↑ ρt(X) P-a.s..

6. The acceptance set At ⊆ L∞ of ρt is σ(L∞, L1)-closed.

Time-consistency

The fundamental idea behind time-consistency is the following: suppose at time t,

an investor, when choosing between claims X and Y , is indifferent. Then at time

s ≤ t, she should be indifferent. There are many notions of time-consistency in the

literature; we follow the approach of Delbaen [Delbaen, 2006b].

Fix P a probability measure on (Ω,F = F∞). Let S be a closed convex set

of probability measures containing P, where every element is absolutely continuous

with respect to P. We identify probability measures Q on F∞ that are absolutely

continuous w.r.t. P, with their densities dQ
dP , so with a subset of functions in L1. We

write Se for the set of measures in S that are also equivalent to P.

For each stopping time τ and bounded r.v. X, we would like to define the

coherent risk measure

ρτ (X)
?
= ess sup

Q∈S
EQ[−X|Fτ ].

However, Q does not necessarily have to be in Se, the set of measures equivalent

to P. So the equality would not hold P-a.s.. A more sensible definition, using the

density of Se in S, is

ρτ (X) := ess sup{EQ[−X|Fτ ] : Q ∈ S,Q ∼ P},

for each stopping time τ and bounded r.v. X.

Definition 1.3.21. The set S is called time consistent if, for any pair of stopping

times σ ≤ τ and any pair of r.v.s X,Y ∈ L∞, we have that

ρτ (X) ≥ ρτ (Y ) =⇒ ρσ(X) ≥ ρσ(Y ).
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Multiplicative stability

Definition 1.3.22. Fix Q0 ∈ S, Q ∈ Se, and define their associated change of

measure martingales Z0
t = E

[
dQ0

dP |Ft
]

and Zt = E
[
dQ
dP |Ft

]
. Fix a stopping time τ ,

and define L by

Lt :=

Z0
t for t ≤ τ,

Z0
τ
Zt
Zτ

for t ≥ τ.

The set of probability measures S ⊂ L1, is multiplicatively stable (henceforth, m-

stable) if any L constructed in the above way is a change of measure martingale

defining a measure belonging to S.

Theorem 1.3.23. The following are equivalent:

(1) The set S is m-stable.

(2) For every bounded random variable X, the family {ρT (X) : T is a stopping time}
is recursive:

for any two stopping times σ ≤ τ, we have ρσ(X) = ρσ(−ρτ (X)).

(3) For every bounded r.v. X and for every stopping time σ, we have ρ0(X) ≥
ρ0(−ρσ(X)).

(4) The set S is time consistent.

(5) The family {ρT (X) : T is a stopping time} satisfies the supermartingale prop-

erty:

∀Q ∈ S and all pairs of stopping times σ ≤ τ we have ρσ(X) ≥ EQ[ρτ (X)|Fσ].

Proof. The proof we give here is due to Delbaen, [Delbaen, 2006b].

(1) =⇒ (2): By the tower property of conditional expectation,

ρσ(X) = ess sup
Q

EQ[−X|Fσ] = ess sup
Q

EQ[EQ[−X|Fτ ]|Fσ].

m-stability implies that the essential supremum is the same, whether using the same

measure Q ∈ S throughout, or “switching” to another measure Q̃ ∈ S after stopping

time σ, where Q̃ agrees with Q up to time σ. More formally stated, for stopping
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times ν ≤ σ ≤ τ <∞, m-stability implies the equality of the sets{(
Zτ
Zσ

,
Zσ
Zν

)
: Z defines a measure in Se

}
=

{(
Z ′τ
Z ′σ

,
Zσ
Zν

)
: Z,Z ′ define measures in Se

}
.

Thus,

ess supQ EQ[EQ[−X|Fτ ]|Fσ] = ess supQ ess supQ̃ EQ[EQ̃[−X|Fτ ]|Fσ].

The second essential supremum optimises over measures Q̃ for events after σ, hence

we may write

ρσ(X) = ess supQ EQ[ess supQ̃ EQ̃[−X|Fτ ]|Fσ]

= ess supQ EQ[ρτ (X)|Fσ]

= ρσ(ρτ (X)).

(2) =⇒ (3) is clear.

(3) =⇒ (1): Suppose that Z1 and Z2 are change of measure martingales

defining elements Q1 and Q2 in S. Let σ be a stopping time, and suppose that

Z1
σ
Z2
∞
Z2
σ

is not in the set S. The set S is closed and convex, so by the Hahn-Banach

theorem, there is a random variable X ∈ L∞ such that

EQ1 [EQ2 [−X|Fσ]] ≡ EP

[
Z1
σ

Z2
∞
Z2
σ

(−X)

]
> sup

Q∈S
EQ[−X].

By definition of ρσ and ρ0,

EQ1 [EQ2 [−X|Fσ]] ≤ EQ1 [ρσ(X)] ≤ ρ0(ρσ(X)).

But by definition, ρ0(ρσ(X)) ≡ supQ∈S EQ[−X], which shows the required contra-

diction.

(2) =⇒ (4): Suppose that for bounded random variables X and Y and

stopping times σ ≤ τ , we have ρτ (X) ≤ ρτ (Y ). By hypothesis,

ρσ(X) = ρσ(−ρτ (X)) and ρσ(Y ) = ρσ(−ρτ (Y )).

Since −ρτ (X) ≥ −ρτ (Y ), we use monotonicity of ρσ to deduce ρσ(X) ≥ ρσ(Y ).

(4) =⇒ (2): Set Y = −ρτ (X), and observe that we have the equality ρτ (Y ) =
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ρτ (−ρτ (X)) = ρτ (X), which we view as the system of inequalities

ρτ (Y ) ≥ ρτ (X) and ρτ (X) ≥ ρτ (Y ).

By hypothesis (4) applied to both of the above inequalities, we have ρσ(X) =

ρσ(Y ) = ρσ(−ρτ (X)).

(1)⇐⇒ (5): we provide this equivalent condition without proof as a sample

of related results for convex risk functionals, which study the dynamics of the penalty

function of time-consistent convex risk measures. The interested reader may refer

to [Delbaen, 2006b], Theorem 12 for a proof of the statement as it appears here,

and for a broader perspective, may refer to [Föllmer and Penner, 2006, Acciaio and

Penner, 2011, Delbaen et al., 2010].

1.4 Transaction costs

In any market for an asset that may be both bought and sold, in general, there is no

one true price of the asset; rather one for each of buying, and selling. The bid price

(“bid”) is the maximum that a market participant will offer to pay for the asset,

and the ask price (“ask”) is the minimum that a holder of the asset will accept to

part with the asset.

In any sufficiently liquid market, for a particular asset, various types of orders

come in and get matched. If the market is functioning correctly, and both prices

exist, then the bid price will be below the ask. The more liquid the asset, the tighter

the difference between bid and ask (the bid-ask spread). The less liquid an asset

becomes, the wider the bid-ask spread. This widening represents an increase in risk

associated to this asset: the market is, on the whole, less certain on the price, and

less willing to buy and buy at bids close to asks and sell at asks close to bids. Market

depth is another factor affecting the bid-ask spread, which is linked with liquidity.

Assuming that the market is sufficiently deep (relative to trade sizes) and

liquid, a bid price will not move upon a small order to sell at that price, so we

may focus modelling of such a market to just bid and ask prices, simplifying the

information contained in the order book to just a pair of values at any particular

time.

For a multi-asset market, where each asset satisfies the assumptions above,

there is a pair of values for each asset. In such a multi-asset market, suppose that

any asset in the market may be bought and sold in units of any other asset: for

example a currency market where dollars may be exchanged for an amount of either
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pounds sterling, or euros2. In this case, the bids and asks at time t may be arranged

in a matrix, denoted Πt = (πijt )i,j∈1,2,...,d, where πijt is the amount of asset i that

is required for 1 unit of asset j at time t. Of course, 1/πjit is the amount that 1 of

asset j is worth in units of i, so that the bid-ask spread of asset j in terms of i is[
1

πjit
, πijt

]
.

The exchanging of one unit of asset i to j via a third asset k should not

result in more than exchanging from i to j directly: we may not create money from

essentially no risk: we assume that there is no arbitrage. Mathematically,

πikt π
kj
t ≥ π

ij
t .

From this, and the fact that we assume the bid-ask prices in the matrix are

positive real numbers, we have that πiit = 1. From this, we have πijt ≥ 1

πjit
.

Proportional transaction costs In many examples, where there is little uncer-

tainty on the value of the asset being traded, the bid-ask spread will be of small

order relative to either the bid or the ask, and the proportion

ask − bid
bid

≈ λ

is approximately constant through time. This is a useful further simplification of

the modelling of bid and ask prices, as we only need model a single price process,

and then multiply by (1 + λ).

1.4.1 The Fundamental Theorem of Asset Pricing under transac-

tion costs in discrete time

An investor trades in the market under bid-ask spreads Π. Suppose that the investor

starts with a zero initial endowment, denote the set of all claims attainable by

terminal time T to be AT .

Arbitrage considerations form a cornerstone of modern Financial Mathemat-

ics. A probabilistic consideration of arbitrage goes back to (at least) Ramsey’s and

de Finetti’s Dutch Book Theorem in the 1930s.

An arbitrage is a way of making a riskless profit. Say that we are trading in

an asset S, with no transaction costs. From a zero initial endowment, an arbitrage

2the case where, for example, dollars may be exchanged for a basket comprising a mixture of
pounds and euros is naturally more general and shall be discussed later
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is a self-financing investment strategy that replicates a claim that is positive, and

not identically zero. On a finite probability space (Ω,F ,P), let the convex cone of

all claims attainable from zero initial wealth be A . Then A is arbitrage-free if

A ∩ L∞+ (Ω,F ,P) = {0},

where L∞+ (Ω,F ,P) is the positive orthant of L∞(Ω,F ,P). The Fundamental The-

orem of Asset Pricing (FTAP) is that absence of arbitrage is equivalent to the

existence of an equivalent martingale measure. An equivalent martingale measure

is a measure under which the price process S is a martingale.

For more general probability spaces, we need stronger notions of no arbitrage.

For example, the Kreps-Yan theorem (Theorem 5.2.2 of [Delbaen and Schacher-

mayer, 2006]) shows that existence of an equivalent local martingale measure is

equivalent to the no free lunch condition,

A ∩ L∞+ (Ω,F ,P) = {0},

where the closure is taken in the weak∗-topology.

In the case where transaction costs are present, the FTAP fails. Assume that

multiple assets are traded according to a bid-ask matrix Π, that satisfies, for each t,

• πijt > 0 for all i, j;

• πiit = 1; and

• πikt π
kj
t ≥ π

ij
t .

Indeed, in section 3 of [Schachermayer, 2004] there is an example of a set

of claims A ⊂ L0 attainable from 0 endowment which satisfies no-arbitrage, but

whose closure A in L0 has an arbitrage. In the same work, it is shown that if A

satisfies a stronger assumption of robust no-arbitrage, then A is closed in L0, and

there exists a strictly consistent price process. The converse is also shown: that if

there is a strictly consistent price process, then robust no-arbitrage holds.

A bid-ask process (Πt) satisfies the robust no-arbitrage condition if there is

a bid-ask process (Π̃t) satisfying no-arbitrage, and such that each bid-ask interval[
1

π̃jit
, π̃ijt

]
is contained in the relative interior of

[
1

πjit
, πijt

]
.

The solvency cone K(Πt) of a bid-ask matrix Πt is the cone of all claims that

may be liquidated to a non-negative value according to the prices Πt. It is given

by taking the cone of all positive units in each of the assets ei, together with the

exchanges πijt ei−ej . A consistent price process (Zt) is a process that, at each t, lives
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in the polar cone of the solvency cone K(Πt)
∗. A strictly consistent price process

lies in the relative interior of K(Πt)
∗.

The theorem from [Schachermayer, 2004] is

Theorem 1.4.1 (Schachermayer). A bid-ask process satisfies the robust no-arbitrage

condition if and only if it admits a strictly consistent pricing process.

We may characterise the closure of the cone A in L0 as follows, from [Jacka

et al., 2008]:

Theorem 1.4.2 (Jacka, Berkaoui, Warren). There exists an adjusted bid-ask process

Π̃ such that the associated cone of claims Ã satisfies A ⊆ Ã ⊆ A . Moreover, either

Ã contains an arbitrage, or it is arbitrage-free and closed.
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Chapter 2

Predictable representation

2.1 Introduction

Insurers reserve for future financial risks by investing in a suitably prudent asset.

Reserving is done in a particular unit of account, typically cash, or any other asset

universally agreed to always hold positive value. We call such assets numéraires,

examples of which include paper assets, such as currencies, or physical commodi-

ties. Reserving a sufficient amount ensures that the risk carried by the insurer is

acceptable. In some circumstances, the choice of numéraire is clear; in others, it is

not, for example insurers reserving for claims in multiple currencies. We model the

sufficient amount to reserve by a coherent measure of risk.

Coherent risk measures were first introduced by Artzner, Delbaen, Eber and

Heath [Artzner et al., 1997, Artzner et al., 1999], in order to give a broad axiomatic

definition for monetary measures of risk. Financial positions are modelled as es-

sentially bounded random variables on a suitable probability space (Ω,F ,P). A

coherent risk measure is a real-valued functional on L∞(Ω,F ,P) defined in defini-

tion 1.3.5. A coherent risk measure assigns a real value to every financial position:

those with non-positive risk are deemed acceptable. We denote by A the set of

acceptable claims. It is easily shown that A is a cone in L∞.

A coherent risk measure is a reserving mechanism: we assume that an insurer

is making a market in (or at least reserving for) risk according to a coherent risk

measure ρ and they charge or reserve for a random claim X the price ρ(X). Thus

the aggregate position of holding the risky claim X and reserving adequately should

always be acceptable to the insurer.

A risk measure ρ satisfies the Fatou property if, for any Xn converging to X
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in probability,

lim inf
n

ρ(Xn) ≥ ρ(X).

A risk measure satisfies the Fatou property if and only if, for a set of probability

measures Q absolutely continuous with respect to P, we can represent ρ as

ρ(X) = sup
Q∈Q

EQ[X],

as shown in Theorem 1.3.11.

Fix a probability triple (Ω,F ,P). Recall that the dual of L∞(Ω,F ,P) is

the space of all finitely additive measures on (Ω,F) that are absolutely continuous

with respect to P. The Fatou property allows us to restrict our search for dual

optimisers to elements in L1(Ω,F ,P), identified with probability measures through

their Radon-Nikodym derivative. We say that a probability measure Q � P is

identified to a random variable Z ∈ L1 if dQ/dP = Z holds P-almost surely. We

equip the space L∞ with the weak∗ topology σ(L∞, L1), so the topological dual is

L1. The acceptance set A is weak∗-closed.

We assume that the insurer can trade at finitely many times {0, 1, . . . , T}. At

each time t, the insurer can re-evaluate the risk, conditional on the information in the

sigma algebra Ft. A conditional coherent risk measure is the natural generalisation

of a coherent risk measure; again, such a measure ρt satisfies the Fatou property if

and only if, for a set Qt of P-absolutely continuous probability measures we may

represent ρt by

ρt(X) = ess sup
Q∈Qt

EQ[X|Ft].

In what follows, we fix Qt = Q for all t, and define At as the set of all claims

X ∈ L∞(Ω,F ,P) with ρt(X) ≤ 0. Of course, At is a cone.

The simplest act of reserving is to hold a set amount of cash ρ(X) until the

insurer must pay the claim X. More generally, starting with an amount ρ(X) of

cash, an insurer trades in any financial asset available, constructing a self-financing

strategy with a terminal value equal to or exceeding the value of the claim X at

maturity. If this strategy is built by trading in the set of assets V = (v0, . . . , vd) as

numéraires, then we shall say that the claim may be represented by the vector V.

The components of V are FT -measurable. We need not liquidate the portfo-

lio at any time but we shall adopt the view in the subsequent that we have identified

a particular claim X for which we wish to reserve, in units of an identified numéraire,

which we call the reference numéraire. For simplicity, we assume that this numéraire

is the zero-th component v0 of V, and write v0
t ≡ 1 for any time t. Thus, when we
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cash up at time T , the reserving portfolio Y = (Y 0, . . . , Y d) is liquidated friction-

lessly, we obtain a value Y · V in the reference numéraire, and used to cover the

claim X. The net position will be X − Y ·V at time T .

If we allow ourselves a large enough collection of assets in the definition of V,

then representation is always possible: to hedge the bounded claim X we need only

buy and hold a claim whose value is X. Interest, therefore, should be focused on

choosing a parsimonious collection of representing numéraires V, and in identifying

when such a collection is representing.

Predictable representability For X to be predictably representable, we mean

that X is attainable (representable) as a weak∗-limit of nets X = limαX
α of sums

of claims Xα =
∑

tC
α
t , where each Cαt is realised over the time period (t, t + 1],

pays out at time t+ 1, and is acceptable at time t.

A claim X is predictably representable in V if, starting from a reserve ρ(X),

we may transfer risk through each time period by trading in V in an acceptable

manner, such that the terminal wealth equals the value of the claim: for portfolios

Yt ∈ L∞(Ω,Ft,P;Rd+1), we have

X = ρ0(X) +
T−1∑
t=0

(Yt+1 − Yt) ·V,

where each increment satisfies ρt((Yt+1 − Yt) ·V) ≤ 0.

A reason for why we term this mechanism predictable is by analogy to the pre-

dictable representation result for martingales: a martingale M has the predictable

representation property if, for any martingale X there exists a predictable process

H such that X is the Ito integral of H with respect to M . A secondary reason for

why we term this mechanism predictable is that when a claim is predictably repre-

sentable, it must be the case that at time t, given a portfolio Yt that reserves for a

claim X, there will exist a portfolio Yt+1 at time t+ 1 such that the exchange of Yt

for Yt+1 is acceptable at time t. Thus the risk over (t, t + 1] is seen to be hedged

before the time period, at time t.

We write At(V) for the set of all portfolios in V that are time-t acceptable.

The acceptance set A0 is predictably V-representable if it is the weak∗-closure of

the sum of the cones Kt(A,V) := At(V) ∩ L∞(Ω,Ft+1,P;Rd+1),

A0(V) = ⊕T−1
t=0 Kt(A,V).

A key contribution of this chapter is to provide the dual characterisation of
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V-representability. Recall Delbaen’s multiplicative stability (henceforth m-stability)

condition, on the set of probability measures Q. We identify probability measures

in Q via Radon-Nikodym derivative with random variables in the dual cone

A∗0 = {Z ∈ L1 : E[ZX] ≤ 0 ∀X ∈ A0}.

The dual cone A∗0 is m-stable if, for any stopping time τ and Z1, Z2 ∈ A∗0 such that

E [Z1 | Fτ ] = αE [Z2 | Fτ ], then αZ2 ∈ A0(V)∗. See [Delbaen, 2006a]. Likewise, the

dual cone A0(V)∗ is V-m-stable if, for any stopping time τ and Z1, Z2 ∈ A0(V)∗

such that E [Z1 | Fτ ] = αE [Z2 | Fτ ], then αZ2 ∈ A0(V)∗. To show the equivalence of

V-m-stability and V-representability, we present an elegant dual of each summand

in the representation Kt(A,V)∗ = Mt(A(V)∗), called the predictable pre-image

of A0(V)∗ at time t. Aside from being useful in proving the equivalence of V-

predictable representability and predictable V-m-stability, the predictable pre-image

of a predictably m-stable convex cone A0(V)∗ at time t is a concrete description of

the dual of the set of portfolios held at time t in order to maintain an acceptable

position until time t+ 1.

A risk measure is time-consistent if ρt = ρt◦ρt+1. That is, today’s reserve for

a claim X is precisely enough to reserve for tomorrow’s reserve for X; see [Gianin,

2006, Delbaen, 2006a, Riedel, 2004, Roorda et al., 2005] for examples of such mea-

sures. The sequence (ρt) is not necessarily time-consistent; see for example [Boda

and Filar, 2006, Cheridito and Stadje, 2009].

We prove that V-representability is equivalent to time-consistency of the risk

measure. A risk measure is time-consistent if ρt = ρt ◦ρt+1. That is, today’s reserve

for a claim X is precisely enough to reserve for tomorrow’s reserve for X; see [Gianin,

2006, Delbaen, 2006a, Riedel, 2004, Roorda et al., 2005] for examples of such mea-

sures. The sequence (ρt) is not necessarily time-consistent; see for example [Boda

and Filar, 2006, Cheridito and Stadje, 2009]. Considerations of time-consistency are

important for banks modelling Risk-Weighted Assets (RWAs) under the Basel III

accords. A recent consultative document [on Banking Supervision, 2013] highlights

the change in methodology from using risk measures based on Value at Risk (VaR)

to those based on Expected Shortfall (ES), also known as Average Value at Risk

(AVaR, see [Embrechts et al., 2014]). As shown by Cheridito and Stadje [Cheridito

and Stadje, 2009], AVaR is not time-consistent.

In section 2, we elaborate on our generalisations of the three properties:

namely V-time-consistency, V-representability, and V-m-stability. Throughout the

section we illustrate our definitions with a toy example of Average Value at Risk.
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The main result of this chapter is the equivalence of the three properties.

In section 3, we provide some examples. In section 4, we prove that the L0 clo-

sure of the acceptance set is the sum of the L0-closures of the cones Kt(A,V). In sec-

tion 5, we prove the main result. A key step in the equivalence of V-representability

and V-m-stability is the following result for Ct a sequence of closed convex cones:

(∩tCt)∗ = conv {∪tC∗t } ,

where convA denotes the closure of the convex hull of a set A. We highlight the role

that the filtration (Ft)t plays.

2.2 Pricing measures

We recall some definitions and concepts. We fix a terminal time T ∈ N, a dis-

crete time set T := {0, 1, . . . , T}. We fix a probability space (Ω,F ,P), where P
is the reference measure or objective measure. The filtration (Ft)t∈T describes the

information available at each time point. The space of all P-essentially bounded

F-measurable random variables is L∞ = L∞(Ω,F ,P); we abbreviate L∞(Ω,Ft,P)

to L∞t . The space of essentially bounded Rd-valued random variables is L∞(Rd) =

L∞(Ω,F ,P;Rd). We denote the cone of non-negative (respectively strictly positive)

essentially bounded random variables by L∞+ (resp. L∞++). At each time t ∈ T, we

wish to price monetary risks using all information available at that time. Recall the

following definition, adapted from [Detlefsen and Scandolo, 2005]:

Definition 2.2.1. A map ρt : L∞ → L∞t for t ∈ T is a conditional convex risk

measure if, for all X,Y ∈ L∞, it has the following properties:

• Conditional cash invariance: for all m ∈ L∞t ,

ρt(X +m) = ρt(X) +m P-almost surely;

• Monotonicity: if X ≤ Y P-almost surely, then ρt(X) ≤ ρt(Y );

• Conditional convexity: for all λ ∈ L∞t with 0 ≤ λ ≤ 1,

ρt(λX + (1− λ)Y ) ≤ λρt(X) + (1− λ)ρt(Y ) P-almost surely;

• Normalisation: ρt(0) = 0 P-almost surely.

Furthermore, a conditional convex risk measure is called coherent if it also satisfies
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• Conditional positive homogeneity: for all λ ∈ L∞t with λ ≥ 0,

ρt(λX) = λρt(X) P-almost surely.

Our interest lies chiefly in reserving for and pricing liabilities. We see a

positive random variable X as a gain, and a negative X as a loss, which explains

the choice of sign in the cash invariance property, and the direction of monotonicity.

Definition 2.2.2. A convex risk measure satisfies the Fatou property if, for any

bounded sequence (Xn)n≥1 ⊂ L∞ converging to X ∈ L∞ in probability, we have

ρt(X) ≤ lim inf
n→∞

ρt(X
n).

The Fatou property is equivalent to continuity from above: ρt is continuous

from above if, whenever (Xn)n≥1 ⊂ L∞ is a non-increasing sequence such that

Xn
s ↓ Xs P-a.s. for all s ∈ Tt, then

ρt(X
n) ↓ ρt(X) P-a.s. as n→∞

Definition 2.2.3. A dynamic convex pricing measure is a collection ρ = (ρt)t=0,...,T ,

where each ρt is a conditional convex pricing measure satisfying the Fatou property

with representing set of measures Q:

ρt(X) = ess sup
Q∈Q

EQ[X|Ft].

The acceptance set of a conditional convex pricing measure ρt : L∞ → L∞t is

At = {X ∈ L∞ : ρt(X) ≤ 0}.

For the following results, we refer the reader to Chapter 1. We equip the space L∞

with the weak∗-topology σ(L∞, L1), so that the topological dual will be L1. Recall

that a set C of claims is arbitrage-free whenever

C ∩ L∞+ = {0}.

Proposition 2.2.4. Define (At)t to be the acceptance sets of the dynamic condi-

tional coherent pricing measure ρt : L∞ → L∞t satisfying the Fatou property. Then
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At is a weak∗-closed1 convex cone that is stable under multiplication by bounded

positive Ft-measurable random variables, contains L∞− , and is arbitrage-free.

Numéraires A numéraire is a random variable v ∈ L∞++ such that 1/v ∈ L∞++.

We shall from here on fix a finite collection of numéraires V = (v0, . . . , vd), with

v0 ≡ 1.

2.2.1 Time-consistency

In this and the subsequent sections we identify the probability measures Q of the set

Q with their Radon-Nikodym derivative dQ
dP . We trust that which version is to be

used will be clear from the context. The following definition is taken from Acciaio

et al. [Acciaio et al., 2012].

Definition 2.2.5. A dynamic convex pricing measure for random variables (ρt)t∈T

is (strongly) time-consistent if for all t ≤ T − 1, and for all X ∈ L∞,

ρt(X) = ρt(ρt+1(X)).

We note that the reserve for X at time t is ρt(X). The generalisation of

strong time-consistency to V-time-consistency is:

Definition 2.2.6. A dynamic convex risk measure ρ = (ρt)t=0,...,T is predictably V-

time-consistent if, for any X ∈ A0, we may find a net Xα converging in the weak∗

sense to X, and a net πα = (παt )t=0,...,T−1 such that παt ∈ L∞(Ft+1;Rd+1), and

(i) for each t,

ρt(π
α
t ·V) ≤ 0;

(ii) for each α,

T−1∑
t=0

παt ·V ≥ Xα Q-almost-surely for each Q ∈ Q.

When V ≡ 1, strong time-consistency implies V-time-consistency. Of course,

for any X ∈ L∞, we have X − ρ0(X) ∈ A0. Assuming strong time-consistency, take

πt = ρt+1(X)− ρt(X), so that ρt(πt) = 0 and

X − ρ0(X) =
T−1∑
t=0

πt.

1in L∞, i.e., At is closed in the topology σ(L∞t , L
1
t )
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We illustrate predictable time-consistency in a finite sample space Ω with a

sign-changed version of Average Value at Risk.

Example 2.2.7 (Average Value at Risk). Consider the filtered probability space

Ω = {1, 2, 3, 4} with F0 trivial, F1 = σ({1, 2}, {3, 4}), F2 = 2Ω = F (describing a

binary branching tree on two time steps). Define AVaR, the Average Value at Risk

pricing measure, by

AVaR(X) :=
1

λ

∫ λ

0
−VaRα(X) dα,

We may represent AVaR as

AVaR(X) = sup
Q∈Qλ

EQ[X],

where

Qλ =

{
probability measures Q� P :

dQ
dP
≤ 1

λ

}
noting the sign change to make AVaR a pricing measure; see section 4.4 of [Föllmer

and Schied, 2011]. We set λ = 1
50 , while the objective measure is given by

P[{1}] =
1

100
, P[{2}] = P[{3}] =

9

100
, and P[{4}] =

81

100
.

For notational convenience, we represent a probability measure Q by the a quartuple

of its values on atoms, Q({i}) =: qi, and similarly we write X(i) = xi for a random

variable X : Ω→ R. It is easy to see that the representing set Qλ is

Qλ = {Q = (q1, q2, q3, q4) :

4∑
i=1

qi = 1, 0 ≤ q1 ≤
1

2
, qi ∈ [0, 1] for i = 2, 3, 4}.

Qλ is the convex hull of 6 points:

Qλ = conv{(1
2 ,

1
2 , 0, 0), (1

2 , 0,
1
2 , 0), (1

2 , 0, 0,
1
2)

(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}

The set of time-0 acceptable claims is

A0 = {X = (x1, x2, x3, x4) :

4∑
i=1

qixi ≤ 0 for Q ∈ Qλ}.

Clearly, X ∈ A0 if and only if
∑4

i=1 qixi ≤ 0 for each of the six extreme points Q of
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Qλ. These six inequalities are neatly summarised as

A0 = {X = (x1, x2, x3, x4) : xi ≤ 0 for i = 1, 2, 3, 4;

or x1 ≥ 0 and xi ≤ −x1 for i = 2, 3, 4}.

Define X0 := 1{1} − 1{2,3,4}. Then it is clear that

A0 = {αX0 − β : α ≥ 0, β ∈ L∞+ }.

The time-1 acceptance set is

A1 = {X = (x1, x2, x3, x4) : q1x1 + q2x2 ≤ 0 and q3x3 + q4x4 ≤ 0 for Q ∈ Qλ}

= L∞− .

Claim (AVaR0,AVaR1) is not time-consistent.

Proof. It is easy to check that we have AVaR0(X0) = 0, AVaR1(X0) = 1{1,2}−1{3,4},
and thus

AVaR0(AVaR1(X0)) = AVaR0(1{1,2} − 1{3,4}) = 1 > 0 = AVaR0(X0).

Now we set V = (v0, v1), where v0 ≡ 1 by convention, and v1 = X0 + 2, so

that

v1 = 31{1} + 1{2,3,4} > 0.

Claim (AVaR0,AVaR1) is predictably V-time-consistent.

Proof. For any acceptable risk X ∈ A0 we may set X = αX0 − β, where β is some

non-negative random variable taking the value 0 on the event {1}. We reserve for X

by holding α in v1 and −2α in cash v0, giving a mapping Y0 from acceptable risks

X to initial reserving portfolios in V:

Y0 =

(
−2α

α

)
. (2.1)

Clearly Y0 ·V = αX0.
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Set

Y1 =

(
−(2α+ 3

2β(2))1{1,2} − (α+ β(3) ∧ β(4))1{3,4}

(α+ 1
2β(2))1{1,2}

)
, (2.2)

so that

Y1 ·V = αX0 − β(2)1{2} − β(3) ∧ β(4)1{3,4}.

Now, let π0 = Y0 and π1 = Y1 − Y0. We have ρ0(π0 ·V) ≤ 0, ρ1(π1 ·V) ≤ 0 and

π0 ·V + π1 ·V ≥ αX0− β. Thus (AVaR0,AVaR1) is predictably V-time-consistent.

2.2.2 Predictable representability

Given any cone D in L∞ and our vector V of numéraires, we define the collection

of portfolios attaining D to be

D(V) = {Y ∈ L∞(Ω,F ,P;Rd+1) : Y ·V ∈ D}.

The set of time-t acceptable portfolios that are Ft+1-measurable is Kt(A,V) :=

At(V) ∩ L∞t+1(Rd+1).

Definition 2.2.8. The cone A(V) is predictably decomposable if

A(V) = ⊕T−1
t=0 Kt(A,V),

where the closure is taken in the weak∗ topology. In this case, the cone A is pre-

dictably represented by V.

Example 2.2.7 (Continued). [Average Value at Risk] We return to the setting of

Example 2.2.7.

Claim The acceptance set A0 is not predictably represented by 1.

Proof. We note that

K0(A0, 1) = {X ∈ L∞(F1) : X ∈ A0} = L∞− (F1)

K1(A0, 1) = A1 = L∞−

IfA0 is to be predictably represented by 1, we must have thatA0 = K0(A0, 1)+

K1(A0, 1) = L∞− ; however A0 contains X0 which is not in L∞− .

Now set V = (1, 31{1} + 1{2,3,4}) as before.
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Claim The set A0 is predictably represented by V.

Proof. For any X ∈ A0 we may write X = αX0 − β, for α ≥ 0 and β ∈ L∞+ .

Defining π0 = Y0 and π1 = Y1 − Y0 for Y0, Y1 as in eqs. (2.1) and (2.2), we have

that X ≤ π0 · V + π1 · V ∈ K0(A0,V) ⊕ K1(A0,V). Any non-positive random

variable is in any of the Kt(A0,V) for t = 0, 1, so X is in the sum, proving that

A0 ⊆ K0(A0,V)⊕K1(A0,V). The reverse inclusion is clear.

2.2.3 Stability properties

We recall Delbaen’s m-stability condition, on a standard stochastic basis (Ω,F , (Ft)t,P):

Definition 2.2.9 (Delbaen [Delbaen, 2006a]). A set of probability measures S ⊂
L1(Ω,F ,P) is m-stable if for elements QZ ∈ S and P ∼ QW ∈ S, with associated

density martingales Zt = E
[
dQZ
dP

∣∣∣Ft] and Wt = E
[
dQW
dP

∣∣∣Ft], and for each stopping

time τ , the martingale L defined as

Lt =

Zt for t ≤ τ
Zτ
Wτ
Wt for t ≥ τ

defines an element in S.

Note that a set S is m-stable if, whenever τ is a stopping time, and Z,W ∈ S
are such that Zτ = αWτ , then αW ∈ S. Just take α = Zτ

Wτ
, and then L = αW in

the above definition. We now define a vector-valued generalisation of m-stability,

for a subset D ⊂ L1
+(Rd+1).

Definition 2.2.10. The subset D ⊂ L1
+(Rd+1) is predictably m-stable if, whenever

τ ≤ T is a stopping time, and whenever Z,W ∈ D with

E [Z | Fτ ] = αE [W | Fτ ] ,

then αW is also in D.

Note that α is Fτ -measurable.

Definition 2.2.11. The cone D ⊂ L1
+ is said to be predictably V-m-stable if DV =

{YV : Y ∈ D} is predictably m-stable.

Remark 2.2.12. In the case d = 0, we have V ≡ 1 and so the requirement that a set

of Radon-Nikodym derivatives D ⊂ L1
+ is 1-m-stable is precisely the requirement

that D is m-stable.
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Every random vector Z in A0(V)∗ can be written as a multiple of V, that

is, Z = Z̃V with Z̃ ∈ A∗0. See Section 2.4.1 for a proof of the following

Lemma 2.2.13. Suppose that V is a collection of d + 1 numéraires, and D is a

convex cone in L∞. Then

D(V)∗ = D∗V.

Remark 2.2.14. In light of Lemma 2.2.13, we may check that A0(V)∗ ≡ A∗0V is

predictably stable in the following way. We first associate to each Z ∈ A∗0 the

probability measure QZ , defined through its Radon-Nikodym derivative

dQZ

dP
=

Z

E[Z]
.

We note that if Z,W ∈ A0(V)∗, then we may find Z̃, W̃ ∈ A∗0 such that Z = Z̃V

and W = W̃V. The assumption that v0 ≡ 1 gives the equivalence of the condition

E [Z | Fτ ] = mE [W | Fτ ] with the condition

EQZ̃ [V|Fτ ] = EQW̃ [V|Fτ ]. (2.3)

The set A0(V)∗ is predictably V-m-stable if, for any stopping time τ ≤ T , whenever

Z̃, W̃ ∈ A∗0 are such that (2.3) holds, then

E
[
Z̃
∣∣∣Fτ]

E
[
W̃
∣∣∣Fτ]W ∈ A∗0(V).

Example 2.2.7 (Continued). We return to the setting of Example 2.2.7.

Claim A∗0 is not m-stable.

Proof. Define measures Q1 = (1
2 ,

1
2 , 0, 0) ∈ Qλ and Q2 = (1

2 , 0,
1
2 , 0) ∈ Qλ. We form

the time-1 pasting of the measures Q1 and Q2 by setting

dQ̃
dP

=
E
[
dQ1

dP

∣∣∣F1

]
E
[
dQ2

dP

∣∣∣F1

] dQ2

dP

so that Q̃ = (1, 0, 0, 0). Now q̃1 = 1 > 1
2 which shows Q̃ 6∈ Qλ, and so Qλ is not

m-stable.

Now set V = (1, 31{1} + 1{2,3,4}) as before.
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Claim A∗0 is V-m-stable.

Proof. First, consider the pasting Q̃ = Q⊕τ Q′ of measures Q and Q′ in Qλ at the

stopping time τ :

dQ̃
dP

=
E
[
dQ
dP

∣∣∣Fτ]
E
[
dQ′
dP

∣∣∣Fτ]
dQ′

dP

=
dQ′

dP
1{τ=0} +

E
[
dQ
dP

∣∣∣F1

]
E
[
dQ′
dP

∣∣∣F1

] dQ′
dP

1{τ=1} +
dQ
dP

1{τ=2}.

By Remark 2.2.14, we fix Z̃ and Z̃ ′ in A∗0 with associated probability measures Q
and Q′ that additionally satisfy

EQ[v1|Fτ ] = EQ′ [v
1|Fτ ],

and we aim to show that Q̃ ∈ Qλ. On the event {τ = 0} (respectively {τ = 2}), we

have that Q̃ = Q′ (resp. Q̃ = Q) and the bound Q̃(1) ≤ 1
2 is trivially satisfied. The

event {τ = 1} is one of ∅, {1, 2}, {3, 4}, Ω. Writing Q = (qi)
4
i=1, for ω ∈ {1, 2, 3, 4},

EQ[v1|F1](ω) =
3q1 + q2

q1 + q2
1{q1+q2>0}1{1,2}(ω) + 1{q3+q4>0}1{3,4}(ω)

We may paste measures Q and Q′ that satisfy

3q1 + q2

q1 + q2
1{q1+q2>0}1{1,2}+1{q3+q4>0}1{3,4} =

3q′1 + q′2
q′1 + q′2

1{q′1+q′2>0}1{1,2}+1{q′3+q′4>0}1{3,4}

on {τ = 1}, which simplifies to the requirement that

q1

q2
1{q1+q2>0}1{1,2}∩{τ=1} + 1{q3+q4>0}1{3,4}∩{τ=1}

=
q′1
q′2
1{q′1+q′2>0}1{1,2}∩{τ=1} + 1{q′3+q′4>0}1{3,4}∩{τ=1}.

(2.4)

On {τ = 1} ⊃ {1}, the pasting Q̃ weights {1} as

Q⊕τQ′({1}) = (q1+q2)
q′1

q′1 + q′2
1{q′1+q′2>0} = (q1+q2)

q′1
q′2

q′1
q′2

+ 1
1{q′1+q′2>0}

(2.4)
= q11{q1+q2>0}
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The other cases are easy to check. Thus Q⊕τ Q′ ∈ A∗0, and A∗0 is V-m-stable.

2.2.4 Main result

We fix numéraires V, a coherent pricing measure ρ = (ρt)t with convex representing

set of probability measures Q, and take At to be the acceptance set of ρt for t ∈ T.

The main result is

Theorem 2.2.15. The following are equivalent:

(i) (ρt)t∈T is predictably V-time-consistent;

(ii) A0 is predictably represented by V;

(iii) A0(V)∗ is predictably m-stable.

Proof. The proof may be found in Section 2.4.

We now highlight particularly interesting waypoints in the proof of the main

Theorem.

Thinking of the conditional expectation E[·|Ft+1] as a projection from L1(Rd+1)

to L1
t+1(Rd+1), we define the predictable pre-image of D at time t by first projecting

D to L1
t+1(Rd+1), then taking the Ft-cone, and finally taking the pre-image under

the projection E[·|Ft+1]. The Ft-cone of a set E is

coneFt E = {αw1 + βw2 : α, β ∈ L∞+ (Ft), w1, w2 ∈ E}.

More concisely:

Definition 2.2.16. For D ⊂ L1
+, we define for each time t the predictable pre-image

of D by

Mt(D) := {Z ∈ L1(Rd+1) :∃αt ∈ L0
t,+, ∃Z ′ ∈ D

such that αtZ
′ ∈ L1(Rd+1) and E [Z | Ft+1] = αtE

[
Z ′
∣∣Ft+1

]
}.

(2.5)

The predictable pre-image of a set D ⊂ L1
+ is key to understanding pre-

dictably stable convex cones, as shown in the following two lemmas:

Lemma 2.2.17. Suppose D ⊂ L1
+. If D is a predictably stable convex cone, then

D =

T−1⋂
t=0

Mt(D).
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Lemma 2.2.18. Suppose D ⊂ L1
+, and define

[D] :=
T−1⋂
t=0

(convMt(D)) ,

where Mt(D) is as defined in (2.5), the symbol conv denotes the closure in L1 of

the convex hull.

(a) [D] is the smallest stable closed convex cone in L1 containing D;

(b) D = [D] if and only if D is a stable closed convex cone in L1.

We prove both these lemmas in Section 2.4.1.

The proof of equivalence of statements (ii) and (iii) of Theorem 2.2.15 is

underpinned by the following

Theorem 2.2.19. For any t ∈ {0, 1, . . . , T − 1}, for D ⊂ L1
+,

Kt(A,V) = (Mt(A(V)∗))∗. (2.6)

Thus we have characterised each “summand” in the representation (cf. def-

inition 2.2.8) as a dual set of the predictable pre-image of the dual of the set of

acceptable portfolios in V.

2.3 Examples

In this section we present a brief exposition of the versatility of the framework.

2.3.1 Modelling transaction costs

We now present an example motivated by buying and selling a stock in a market

with transaction costs across two time periods (T = 2). Let N1 and N2 be two

independent and identically distributed standard Gaussian random variables under

objective measure P. Fix M > 0 and define the truncated random variables Ñi :=

Ni ∧M , for i = 1, 2. Define the constant aM such that EP[exp(Ñi − aM )] = 1:

aM := logEP[exp(Ñ1)] = log
(
e

1
2 Φ(M − 1) + eM (1− Φ(M))

)
.

Define the filtration by F0 trivial, F1 = σ(Ñ1), and F2 = σ(Ñ1, Ñ2).

The market consists of a “cash account” v0 ≡ 1 and a “stock” with time-2

price

v1 = exp
(
Ñ1 + Ñ2 − 2aM

)
.
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Set V = (v0, v1). At time 0, to buy 1 unit of v1 a purchaser must pay 1 + λ

cash, and to sell 1 unit of v1 a vendor receives 1 − λ. At time 1, knowing the

value of Ñ1, buying 1 unit of v1 costs (1 + λ)eÑ1−aM , and selling 1 unit of v1 makes

(1−λ)eÑ1−aM . Define the F1-cone of a set E by coneF1 E = {αw : α ∈ L∞+ (F1), w ∈
convE}. If we also allow wealth to be consumed, we arrive at the following set of

claims to which we may trade from zero initial wealth:

A = cone {(−(1 + λ), 1), (1− λ,−1)} ·V

⊕ coneF1

{
(−(1 + λ)eÑ1−aM , 1), ((1− λ)eÑ1−aM ,−1)

}
·V

⊕ (−L∞+ ).

In the sum, the first term describes those claims that can be realised at time 0,

the second term describes those claims that can be realised at time 1, and the last

describes consumption of wealth at any time. It is easy to show that the dual of A
is

Q :=
{
Q� P : EQ[v1] ∈ [1− λ, 1 + λ] and EQ[exp(Ñ2 − aM )|F1] ∈ [1− λ, 1 + λ]

}
.

Note that Q is a convex set of probability measures that is not m-stable. Define

a coherent pricing measure by ρt(X) = supQ∈Q EQ[X|Ft] for t = 0, 1. We have

ρ0(v1) = 1 + λ, but

ρ1(v1) = eÑ1−aM sup
Q∈Q

EQ[eÑ2−aM |F1] = (1 + λ)eÑ1−aM ,

and so

ρ0(ρ1(v1)) = (1 + λ) sup
Q∈Q

EQ[eÑ1−aM ] =
(1 + λ)2

1− λ
> ρ0(v1).

The last line follows from the inequalities for any Q ∈ Q:

1 + λ ≥ EQ[v1] = EQ[eÑ1−aMEQ[eÑ2−aM |F1]] ≥ (1− λ)EQ[eÑ1−aM ].

Now, we may show that Q must be V-m-stable: we take two measures QΛ

and QM with Radon-Nikodym derivatives Λ and M , form the pasting at a stopping

time τ ∈ {0, 1, 2}, and check that the pasted measure Q̃, defined by

dQ̃
dP

=
M

E[M |Fτ ]
E[Λ|Fτ ]
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is also in Q. Noting that 1{τ=2} = 1− 1{τ≤1} ∈ L∞1 , we calculate

EQ̃[exp(Ñ2 − aM )|F1] = E
[(

M

E[M |F1]
1{τ≤1} +

Λ

E[Λ|F1]
1{τ=2}

)
exp(Ñ2 − aM )

∣∣∣∣F1

]
= EQM [exp(Ñ2 − aM )|F1]1{τ≤1} + EQΛ [exp(Ñ2 − aM )|F1]1{τ=2},

so we see that the condition EQ̃[exp(Ñ2 − aM )|F1] ∈ [1 − λ, 1 + λ] is satisfied. To

satisfy the definition of V-m-stability, we need only check that Q̃ ∈ Q for those QΛ

and QM that satisfy

EQΛ [v1|Fτ ] = EQM [v1|Fτ ].

Hence, we now calculate

EQ̃[v1] = E
[
E[Λ|Fτ ]

E[M |Fτ ]
E[Mv1|Fτ ]

]
= E

[
E[Λ|Fτ ]EQM [v1|Fτ ]

]
= E

[
E[Λ|Fτ ]EQΛ [v1|Fτ ]

]
= EQΛ [v1].

Thus Q is V-m-stable.

2.3.2 A Haezendonck–Goovaerts risk measure

The following is an example employing the so-called Haezendonck–Goovaerts risk

measures; we refer the reader to the work of Bellini and Rosazza Gianin [Bellini

and Gianin, 2008]. Consider a two-period binary branching tree, with P{ω} = 1
4

for all four elements ω ∈ Ω. We choose a (normalised) Young function Φ(x) = x2,

and define the Orlicz premium principle to be the unique solution Hα(X) of the

equation

E
[
Φ

(
X

Hα(X)

)]
= 1− α for X 6= 0; Hα(0) := 0.

Fix α = 1
2 , and rearrange the above to see H 1

2
(X) =

√
2‖X‖2 =

√
2
(
E
[
X2
]) 1

2 . We

now define the Haezendonck measure to be

ρ0(X) = sup
Q∈Q

EQ[X] where Q := {Q� P : EQ[Y ] ≤ H 1
2
(Y ) ∀Y ∈ L∞+ }.

We write Q({i}) =: qi for a measure Q on (Ω,F), and X(i) = xi for a random

variable X on (Ω,F ,P). First, we characterise Q. Note that the constraint in the
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definition of Q implies

sup
0 6=Y ∈L∞+

E
[
dQ
dP

Y

‖Y ‖2

]
≤
√

2.

The supremum is attained upon choosing Y = dQ
dP , so the above inequality implies∥∥∥dQdP ∥∥∥2

2
≤ 2, thus

Q =

{
Q = (q1, . . . , q4) : qi ≥ 0,

4∑
i=1

qi = 1,
4∑
i=1

q2
i ≤

1

2

}
.

Q is not m-stable Define measures QΛ and QM from Λ2 = 2× 1{1,2} and M2 =

2×1{1,3} respectively. We see that both are elements of Q, and their restrictions to

(Ω,F1) are described by Λ1 = E[Λ2|F1] = 2× 1{1,2}, and M1 = E[M2|F1] = 1. We

form the time-1 pasting of the measures QΛ and QM by setting

dQ̃
dP

=
Λ1

M1
M2 = 4× 1{1}.

Here,
∑4

i=1 q̃
2
i = 1 > 1

2 , so Q̃ 6∈ Q, and the set Q is not m-stable.

Now, set

V =
(

1,
√

21{1} + 1,
√

21{3} + 1
)
.

Q is V-m-stable We calculate EQ[V|F1] as in Example 2.2.7, to see that, for

Q,Q′ ∈ Q, our additional condition is

q1

q2
1{q1+q2>0} =

q′1
q′2
1{q′1+q′2>0} and

q3

q4
1{q3+q4>0} =

q′3
q′4
1{q′3+q′4>0}.

Thus we see that any pasting Q⊕t=1 Q′ that satisfies this condition is in fact equal

to Q, which is trivially in Q.

2.3.3 Reserving for cash flows

We describe a probabilistic approach to wealth processes using the notation of

Acciaio, Föllmer, and Penner [Acciaio et al., 2012]. As before, we fix a termi-

nal time T < ∞, a discrete time set T := {0, 1, . . . , T}, and a stochastic basis

(Ω,F , (Ft)t∈T,P). On the product space Ω := Ω× T, define the optional σ-algebra
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up to time t ∈ T as

F t := σ (As × {s}, At × Tt : s ≤ t, As ∈ Fs) , where Tt := {t, t+ 1, . . . , T},

F := FT .

Define the reference probability measure P := P⊗ µ on (Ω,F) via the expectation

EP [X] = E

[
T∑
s=0

Xsµs

]

where E = EP and µ is an optional random probability measure on T, i.e., an Ft-
adapted process such that µt > 0 for all t ∈ T and

∑
t∈T µt = 1.

We use the underline to denote multiperiod variants of standard notation;

for example L∞ := L∞(Ω,F , P ) is the space of all bounded random variables on the

extended probability space (Ω,F , P ), elements of which may alternatively be viewed

as processes X = (Xt)t∈T. We write L1(Rd+1) := L1(Ω,F , P ;Rd+1) (respectively

L∞(Rd+1)) for P -integrable (resp. bounded) random variables X such that each Xt

is Rd+1-valued, for t ∈ T. Non-negative elements of L∞ are denoted by L∞+ , and

F t-measurable elements of L∞ are denoted by L∞t .

For 0 ≤ t ≤ s ≤ T , define the projection πs,t : L∞ → L∞

πs,t(X)r = 1{s≤r}Xr∧t, for r ∈ T.

Define R∞ to be those adapted processes X ∈ L∞, and set R∞t,s = πs,t(R∞)

and R∞t = πt,T (R∞). We use the notation X|t for the conditional expectation

EP [X|F t] ≡ E[X|F t], which may be viewed as a process, constant after time t; we

write Xt to denote the time-t realisation of the process X.

We remark that there is a one-to-one correspondence between pricing mea-

sures for processes ρt : R∞t → L∞t and pricing measures ρ
t

: R∞ → L∞t for random

variables on Ω equipped with the optional σ-algebra, via

ρ
t
(X) =

t−1∑
s=0

Xs1{s} + ρt(πt,T (X))1Tt . (2.7)

2.4 Proof of main result

First, we show equivalence of predictable time-consistency and predictable repre-

sentability.
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Proof of Theorem 2.2.15, equivalence of (i) and (ii). (i)⇒ (ii): Since the setsKt(A,V) :=

At(V) ∩ L∞t+1(Rd+1) are all subsets of A0, we only need demonstrate that A0 ⊆
⊕T−1
t=0 Kt(A,V).

Take X ∈ A0, and suppose that (i) holds. We proceed by backwards induc-

tion on t. For each t, there exist nets παt ∈ L∞(Ft+1;Rd+1) such that

lim
α
ρt(π

α
t ·V) ≤ 0 and X = lim

α

T−1∑
s=0

παs ·V.

Set

εβt = sup
α≥β
{ρt(παt ·V)},

and note that for α ≥ β, for any t,

παt − ε
β
t e

0 ∈ Kt(A,V),

where e0 = (1, 0, 0, . . . , 0) ∈ Rd+1. Summing over times t, we obtain

T−1∑
s=0

(παs − εβs e0) ·V ∈ ⊕T−1
s=0 Ks(A,V) ·V.

Limiting over α, we have for any β, the weak∗ limit X −
∑T−1

s=0 ε
β
s is an element of

⊕T−1
t=0 Kt(A,V) ·V.

For each s, we note that

εs := lim
β
εβs = lim sup

α
ρs(π

α
s ·V) = lim

α
ρs(π

α
s ·V) ≤ 0.

Limiting over β, we have

X −
T−1∑
s=0

εs ∈ ⊕T−1
t=0 Kt(A,V) ·V.

The set ⊕T−1
t=0 Kt(A,V) ·V is a cone containing the negative orthant, thus it contains∑T−1

s=0 εs as well. Thus X =
(
X −

∑T−1
s=0 εs

)
+
∑T−1

s=0 εs ∈ ⊕
T−1
t=0 Kt(A,V) ·V, and

the desired inclusion is proved.

(ii) ⇒ (i): Suppose that A0(V) = ⊕T−1
t=0 Kt(A,V). Then, for any X ∈ A0,

for each t there exists a sequence πnt ∈ Kt(A,V) ⊆ L∞(Ft+1;Rd+1), so that X =

limn→∞
∑T−1

s=0 π
n
s · V, and ρt(π

n
t · V) ≤ 0 for each n, so in particular the limit as

n→∞ is also non-positive.
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Proof of Theorem 2.2.15, equivalence of (ii) and (iii). To simplify the notation, de-

note A(V) by B. Assume now that B is a weak∗-closed convex cone in L∞(Rd+1)

which is arbitrage-free, so that B∗∗ = B. Also, define

Kt(B) := {X ∈ L∞(Ft+1,Rd+1) : αX ∈ B for any α ∈ L∞+ (Ft)}.

Recall that B is predictably representable if

B = ⊕T−1
t=0 Kt(B).

We must show the equivalence of the two conditions

(ii’) B is predictably representable; and

(iii’) B∗ is predictably stable.

(ii’) ⇒ (iii’): Assuming B is predictably representable, it follows from The-

orem 2.2.19 that

B = ⊕tKt(B)
w∗

= ⊕tMt(B∗)∗
w∗
.

Taking the dual, we find that

B∗ = ∩tMt(B∗)∗∗ = ∩tconvMt(B∗)

where the last equality follows from the Bipolar Theorem. Hence, B∗ = [B∗], and

by Lemma 2.2.18, B∗ is predictably stable.

(iii’) ⇒ (ii’): Assuming B is a weak∗-closed convex cone, note that B∗ is a

convex cone closed in (L1, σ(L1,L∞)). Assuming further that B∗ is stable,

B∗ = ∩tMt(B∗) by Lemma 2.2.17

= ∩tKt(B)∗ by eq. (2.6).

Now we may apply Lemma 1.2.6 to deduce

B ≡ B∗∗ = ⊕tKt(B)
w∗

and B is predictably representable, as required.

Proof of Theorem 2.2.19. We set B = A(V), as above.

First we prove that Mt(B∗) ⊂ Kt(B)∗. For arbitrary Z ∈ Mt(B∗), there

exist Z ′ ∈ B∗ and α ∈ L0
+(Ft) with αZ ′ ∈ L1 and Z|t+1 = αZ ′|t+1.
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Note that, for any X ∈ Kt(B),

E[Z ·X] = E[Z|t+1 ·X] = E[αZ ′|t+1 ·X] = lim
n→∞

E[(α1{α≤n}X) · Z ′|t+1] ≤ 0,

since α1{α≤n}X ∈ B and Z ′ ∈ B∗. Hence Z ∈ Kt(B), and since Z is arbitrary, we

have shown that Mt(B∗) ⊂ Kt(B)∗.

For the reverse inclusion,Mt(B∗)∗ ⊂ Kt(B), note that B∗ ⊂Mt(B∗) implies

Mt(B∗)∗ ⊂ B, and

L∞+ (Ft)Ms(D) =Ms(D) =⇒ for X ∈Mt(B∗)∗, g ∈ L∞+ (Ft), E[X · gZ] ≤ 0

=⇒ L∞+ (Ft)Mt(B∗)∗ =Mt(B∗)∗.

Define

Bt := {X ∈ L∞(FT ,Rd+1) : gX ∈ B for any g ∈ L∞+ (Ft)}.

Thus Mt(B∗)∗ ⊆ Bt. To finish the proof, we need only show that X ∈ Mt(B∗)∗ is

Ft+1-measurable, since Bt ∩ L∞(Ft+1,Rd+1) = Kt(B).

To this end, note that for any Z ∈ L1(Rd+1), it is true that Z − Z|t+1 ∈
Mt(B∗), whence E[(Z − Z|t+1) ·X] ≤ 0. We deduce that

E[(Z − Z|t+1) ·X] = E[(X −X|t+1) · Z] ≤ 0 ∀Z ∈ L1(Rd+1),

and X = X|t+1 P-a.s..

2.4.1 Proofs of Lemmas

Lemma 2.4.1. Let D ⊂ L1
+(Rd+1). The following are equivalent:

(i) for each t ∈ {0, 1, . . . , T}, whenever Y,W ∈ D are such that there exists Z ∈ D,

a set F ∈ Ft, positive processes α, β ∈ L0(Ft) with αY, βW ∈ L1(Rd+1) and

X := 1FαY + 1F cβW satisfies E [X | Ft] = E [Z | Ft] ,

then X is also a member of D;

(ii) D is predictably stable, that is, for each stopping time τ ≤ T , whenever Z,W ∈
D are such that

E [Z | Fτ ] = mE [W | Fτ ] ,

then mW is also a member of D.

Proof of Lemma 2.4.1. (ii) =⇒ (i): We suppose that (ii) holds, and fix t ∈ T.
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We aim for a triple of random variables Y,W,Z in D, together with an F ∈ Ft, and

α, β as required in condition (i), such that we can apply (ii) twice to show that the

resulting X defined in condition (i) is a member of D.

First, let τ = T1F + t1F c and suppose Z,W ∈ D satisfy E
[
Zi
∣∣Fτ ] =

mE
[
W i
∣∣Fτ ] for all i. By (ii), we have X̃ := mW ∈ D. Writing

β :=
E
[
Zi
∣∣Ft]

E [W i | Ft]
1{E[W i |Ft]>0},

we may express X̃ = Z1F + βW1F c .

Second, let τ̃ = t1F + T1F c and suppose Y ∈ D satisfies E
[
X̃i
∣∣∣Fτ] =

m̃E
[
Y i
∣∣Fτ ] for all i. By (ii), we have X := m̃Y ∈ D. Writing

α :=
E
[
X̃i
∣∣∣Ft]

E [Y i | Ft]
1{E[Y i |Ft]>0},

we may express X = αY 1F + βW1F c .

Now, we have a t fixed, Y,W,Z ∈ D, a set F ∈ Ft, and positive r.v.s

α, β ∈ L0(Ft). We have already that X ∈ D, thus it remains to check2 that X and

Z as defined above satisfy E [X | Ft] = E [Z | Ft].

E [X | Ft] = 1FE [αY | Ft] + 1F cE [βW | Ft]

= 1FE

 E
[
X̃i
∣∣∣Ft]

E [Y i | Ft]
1{E[Y i |Ft]>0}Y

∣∣∣∣∣∣Ft


+ 1F cE

[
E
[
Zi
∣∣Ft]

E [W i | Ft]
1{E[W i |Ft]>0}W

∣∣∣∣∣Ft
]

= 1FE
[
X̃
∣∣∣Ft]+ 1F cE [Z | Ft]

= E [Z | Ft] ,

which establishes statement (i).

(i) =⇒ (ii): Say (i) holds; then (ii) holds for when τ = T trivially. Now

suppose that (ii) holds for any stopping time τ ≥ k+1 a.s., and proceed by backward

induction on the lower bound of the stopping times. Fix an arbitrary stopping time

τ̃ ≥ k a.s., and define F = {τ̃ ≥ k + 1} and the stopping time τ∗ := τ̃1F + T1F c .

Note that τ∗ ≥ k + 1, since F c = {τ̃ = k}.
We shall now take Z,W ∈ D that satisfy E

[
Zi
∣∣Fτ̃ ] = mE

[
W i
∣∣Fτ̃ ] for all

2the integrability conditions αY, βW ∈ L1(Rd+1) are easily verified.
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i, and aim to show that mW is indeed an element of D, with the help of condition

(i).

To this end, define

Y := W
E
[
Zi
∣∣Fτ∗]

E [W i | Fτ∗ ]
1{E[W i |Fτ∗ ]>0} = 1FW

E
[
Zi
∣∣Fτ̃ ]

E [W i | Fτ̃ ]
1{E[W i |Fτ̃ ]>0} + Z1F c .

By the inductive hypothesis, Y is in D, thanks to the bound τ∗ ≥ k + 1, .

Now, we have t = k fixed, Y,W,Z ∈ D, a set F ∈ Ft, and positive random

variables α ≡ 1, β := 1F c
E[Zi |Fk]
E[W i |Fk]

. Define

X := 1FαY + 1F cβW

= W1F
E
[
Zi
∣∣Fτ̃ ]

E [W i | Fτ̃ ]
1{E[W i |Fτ̃ ]>0} +W1F c

E
[
Zi
∣∣Fk]

E [W i | Fk]
1{E[W i |Fk]>0}

= W
E
[
Zi
∣∣Fτ̃ ]

E [W i | Fτ̃ ]
1{E[W i |Fτ̃ ]>0}.

It is elementary to check that X and Z as defined above satisfy E [X | Fk] =

E [Z | Fk]. Thus by (i), X is an element ofD, which completes the inductive step.

Proof of Lemma 2.2.13. First take Z ∈ D∗. For any X ∈ D(V) we have E[ZV ·
X] ≤ 0 and so ZV ∈ D(V)∗, thus D(V)∗ ⊇ D∗V.

For the reverse inclusion, denote by ei the ith canonical basis vector in Rd+1.

First, since V · α(viej − vjei) = 0, we have

α(viej − vjei) ∈ D(V) ∀α ∈ L∞.

Take Z ∈ D(V)∗. Now, for any i, j ∈ {1, . . . , d}, α ∈ L∞, we have

E[Z · α(viej − vjei)] ≤ 0.

Reversing i and j in the above, we may write E[Z ·α(viej − vjei)] = 0, and allowing

first α = 1{Z·(viej−vjei)>0} then α = 1{Z·(viej−vjei)<0}, we see that in fact,

Z · (viej − vjei) = 0 a.s. for any i, j,

and so, taking i = 0 we have Zj = Z0vj a.s. for each j, thus any Z ∈ D(V)∗ must be

of the form Z0V for some Z0 ∈ L1. Now, given C ∈ D, take X such that X ·V = C
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(which implies that X ∈ D(V)), then

0 ≥ E[WV ·X] = E[WC],

and since C is arbitrary, it follows that W ∈ D∗. Hence D(V)∗ ⊆ D∗V.

Proof of Lemma 2.2.17. The inclusion D ⊂ ∩T−1
t=0 Mt(D) is trivial. In the fol-

lowing, we write Z|t for E [Z | Ft].
Now Z ∈ ∩T−1

t=0 Mt(D), and we aim to show that Z ∈ D. So, for all t ∈
{0, 1, . . . , T − 1}, there exist βt ∈ L0

t,+ and Zt ∈ D such that βtZ ∈ L1 and Z|t+1 =

βtZ
t|t+1.

Define

ξT−1 = ZT−1

ξt = 1Ftκtξ
t+1 + 1F ct

Zt for t ∈ {0, 1, . . . , T − 2},

where Ft = {βt > 0} and κt = βt+1/βt.

Note Z = Z|T = βT−1Z
T−1|T = βT−1ξ

T−1 and

Z = β0κ0κ1 · · ·κT−2ξ
T−1 = β0ξ

0.

Thus we only need to show ξ0 is in the cone D to deduce that Z = β0ξ
0 is in D.

Claim For all t ∈ {0, 1, . . . , T − 1}, we have ξt|t+1 = Zt|t+1 and ξt ∈ D.

We shall proceed by backwards induction, starting from the observation

ξT−1 = ZT−1 ∈ D. Suppose that for s ≥ t + 1, we have ξs|s+1 = Zs|s+1 and

ξs ∈ D.

ξt|t+1 = E
[
1Ftκtξ

t+1 + 1F ct
Zt
∣∣Ft+1

]
= E

[
1FtκtZ

t+1 + 1F ct
Zt
∣∣Ft+1

]
Now, whilst βt > 0, i.e. on the event Ft,

E
[
κtZ

t+1
∣∣Ft+1

]
=

1

βt
E
[
βt+1Z

t+1
∣∣Ft+1

]
=

1

βt
E [Z|t+2 | Ft+1] =

Z|t+1

βt
= Zt|t+1

allowing us to conclude

ξt|t+1 = E
[
1FtZ

t|t+1 + 1F ct
Zt
∣∣Ft+1

]
= Zt|t+1.
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By hypothesis D is stable, so by the alternative definition of stability (Lemma 2.4.1),

we see that ξt ∈ D.

Proof of Lemma 2.2.18. It is clear that [D] is a closed convex cone in L1. To

see that [D] is stable, we use the definition of stability according to Lemma 2.4.1.

Fix t ∈ {0, 1, . . . , T}, and suppose Y,W ∈ [D] are such that there exists Z ∈ [D], a

set F ∈ Ft, positive processes α, β ∈ L0(Ft) with αY, βW ∈ L1(Rd+1) and

X := αY 1F + βW1F c

satisfies E [X | Ft] = E [Z | Ft]. We aim to show X is also a member of [D], that is,

X ∈ convMs(D) ∀0 ≤ s ≤ T − 1.

First consider s ∈ {0, 1, . . . , t− 1}. From the definition of Ms(D),

Z ∈ convMs(D) and E [X | Ft] = E [Z | Ft] =⇒ X ∈ convMs(D),

since the membership of an integrable Z in Ms(D) only depends on its conditional

expectation E [Z | Fs+1]. More generally, we show

Z ∈ convMs(D) and E [X | Ft] = E [Z | Ft] =⇒ X ∈ convMs(D).

Take a sequence (Zn) ⊂ convMs(D) such that Zn → Z in L1. Define the sequence

Xn := E [Zn | Ft] +X − E [X | Ft] .

Note that Xn → X as n → ∞ and for each n, E [Xn | Ft] = E [Zn | Ft]. So Xn ∈
convMs(D), thus X ∈ convMs(D).

Now consider s ∈ {t, t + 1, . . . , T − 1}. We begin by choosing sequences

(Y n), (Wn) ⊂ convMs(D) such that Y n → Y and Wn → W in L1. Define, for

n,K ∈ N,

Xn,K := 1{α≤K}αY
n
1F + 1{β≤K}βW

n
1F c .

The fact that Xn,K ∈ convMs(D) follows from the following two elementary prop-

erties:

1. if Z ∈ convMs(D) and g ∈ L∞+ (Ft), then gZ ∈ convMs(D);3 and

3Let Z ∈Ms(D). Then

∃αt ∈ L0
t,+, ∃Z′ ∈ D such that αtZ ∈ L1 and Z|t+1 = αtZ

′|t+1

=⇒ ∃αtg ∈ L0
t,+, ∃Z′ ∈ D such that αtgZ ∈ L1 and gZ|t+1 = αtgZ

′|t+1
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2. if Zi ∈ convMs(D) for i = 1, 2, then Z1 + Z2 ∈ convMs(D).

Now, for any K fixed, 1{α≤K}αY
n → 1{α≤K}αY as n → ∞, and similarly

1{β≤K}βW
n → 1{β≤K}βW . Since αY and βW are integrable, we now send K →∞

to see that

X = lim
K→∞

lim
n→∞

Xn,K ∈ convMs(D)

which completes the proof that X is indeed a member of [D].

To show minimality of [D] in the class of stable closed convex cones containing

D, we note that if D ⊂ D′ then [D] ⊂ [D′]. Taking D′ to be another stable closed

convex cone containing D, we have D′ = [D′] by Lemma 2.2.17, and so D′ contains

[D]. To show the equivalence in statement (b), the forward implication is due to the

stability of [D], and the reverse is Lemma 2.2.17.

and then take convex hulls.
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Chapter 3

Multi-currency reserving

3.1 Introduction

Coherent risk measures (CRMs) were introduced in [Artzner et al., 1999]. A key ex-

ample was based on the Chicago Mercantile Exchange’s margin requirements. The

Basel III accords mandate the use of Average Value at Risk (a coherent risk measure

unlike the widely-used Value at Risk (VaR)measure, which is not coherent) for re-

serving risk-capital for certain derivatives-based liabilities [on Banking Supervision,

2013]. Many financial institutions have regulatory or other reasons for testing their

reserves and a dynamic version of coherent risk measures is a model for this process.

In the previous chapter we outlined an approach to reserving for risk based

on CRM’s. The potential drawback of reserving with CRM’s, as has been pointed

out repeatedly, is the problem of time-consistency (see, for example [Bielecki et al.,

2017] and references therein): one can view the time-t reserve for a liability payable

at a later time T as itself a liability, payable at time t. A serial version of this shows

that (for example) a regulator who imposes the reserving requirements implicit in

the CRM is actually requiring a sequence of reserves ρt(X) – one at each time-point

where reserves are audited– for a liability X, and consequently it can be argued that

one actually needs an initial reserve of ρ0 ◦ · · · ◦ ρT−1(X). Delbaen [Delbaen, 2006a]

gave a necessary and sufficient condition, termed multiplicative stability (henceforth

m-stability), for this latter quantity to equal ρ0(X), which does not hold in general,

although the inequality

ρ0 ◦ · · · ◦ ρT−1(X) ≥ ρ0(X)

does. In particular, Average- or Tail-Value at Risk (also known as Expected Short-

fall) is not, in general, time-consistent.

It is normally assumed, in the context of CRM’s, that assets and liabilities
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are discounted to time-0 values. Since CRM’s are measures of monetary risk for

amounts payable at time t, we think it is clearer to take the prospective view that

liabilities are expressed in terms of time-T units and so at time 0, the risk or reserve

is expressed in terms of units of a zero-coupon bond (or currency) payable at T . Of

course, as soon as one adopts this approach it is clear that our assets need not just

correspond to the unit of account and we should consider the possibility of holding

multiple currencies or assets to perform the reserving function. In [Jacka et al.,

2019] we showed how multiple currencies allowed the possibility of an extended

version of time-consistency: predictable V-time consistency. We envisaged a set of

assets numbered 0, 1, . . . , d with random terminal values V = (v0, v1, . . . , vd) (given

in the distinguished unit of account) and gave a necessary and sufficient condition

(Theorem 2.15 of [Jacka et al., 2019]) for time-consistent, multi-asset reserving to

work for any specific CRM.

Examples of CRMs include superhedging prices in incomplete frictionless

markets and (as we shall see) minimal hedging endowments in markets with pro-

portional transaction costs.

In this paper we consider a stronger version of multi-asset time-consistency

which corresponds to explicitly adjusting portfolios (and which therefore seems ap-

propriate to situations where trading of the assets held as reserves is possible) which

includes both these situations. We term this version optional time-consistency, and

see it as the appropriate setting for many situations, including those mentioned

above.

We shall give necessary and sufficient conditions for A, the cone of accept-

able claims corresponding to a CRM, ρ, to be expressible as the (closure in the

appropriate topology of the) sum, over times t, of trades in the underlying assets

which are acceptable at time t (Theorem 3.3.13). We will then show that under

this condition we obtain a version of the Fundamental Theorem of Asset Pricing for

CRMs (Theorem 3.4.5). Finally, in Theorem 3.6.1 we shall show the equivalence

between optionally time-consistent CRMs and a generalisation (corresponding to

permitting trades in baskets of assets) of the models for trading with proportional

transaction costs introduced by Jouini and Kallal [Jouini and Kallal, 1995], devel-

oped by Cvitanic and Karatzas [Cvitanić and Karatzas, 1996], Kabanov [Kabanov,

1999], Kabanov and Stricker (see [Kabanov and Stricker, 2001]) and further studied

by Schachermayer [Schachermayer, 2004] and Jacka, Berkaoui and Warren [Jacka

et al., 2008], amongst others. For more recent developments see Bielecki, Cialenco

and Rodriguez [Bielecki et al., 2015] and their survey paper [Bielecki et al., 2017].
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3.2 Preliminaries

Insurers reserve for future financial risks by investing in suitably prudent and suffi-

ciently liquid assets, typically bonds, or any other asset universally agreed always to

hold positive value. We call such assets numéraires, examples of which include paper

assets, such as currencies, and physical commodities. Reserving a sufficient amount

ensures that the risk carried by the insurer is acceptable to the insurer and (possibly)

to regulatory authorities, customers and their agents. In some circumstances, the

choice of numéraire is clear; in others, it is not, for example when insurers reserve

for claims in multiple currencies. It is common to calculate reserves by a “prudent”

calculation of expected value in a pessimistic or “worst realistic case” scenario. We

assume that the minimal amount sufficient to form the reserve is modelled by a

coherent risk measure (CRM); see [Föllmer and Schied, 2011] for an introduction to

CRM’s.

We assume the availability of a finite collection of numéraires numbered

(0, . . . , d). We examine the problem of reserving for a risk at a terminal time T ,

through adjusting the reserving portfolio held in the numéraire “currencies” at dis-

crete times t = 0, 1, . . . , T . The terminal value of the numéraires (in units of account)

is denoted V = (v0, v1, . . . , vd), and we assume that each vi is a strictly positive, FT -

measurable, bounded random variable, with Euclidean norm bounded away from 0.

Thus, to value any portfolio Y of holdings in the elements in V, we take the inner

product Y ·V and, conversely, any bounded X may be written in the form Y ·V
with Y bounded . We regard the portfolio Y as corresponding to a liability of Y ·V
at terminal time T .

A coherent risk measure is a reserving mechanism: we assume that an insurer

is reserving for risk according to a conditional coherent risk measure ρt, at each

time t. They reserve the amount ρt(X) for a random claim X. Thus the aggregate

position of holding the risky claim X and reserving adequately should always be

acceptable to the insurer. The set At of acceptable claims at time t consists of those

FT -measurable bounded random variables with non-positive ρt. We shall say that

the portfolio Yt reserves at time t for a claim X if

X − Yt ·V ∈ At.
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3.3 Optional representation and multi-currency time con-

sistency

3.3.1 Time-consistency

An insurer who has insured the claim X needs to hold a sequence of portfolios

Y0, Y1, . . . , YT (one for each time point at which a reserve calculation is to be made)

so that the risk is adequately reserved for, and so that no unacceptable risk is

assumed in any one exchange of portfolios. That is to say, in the optional case, from

time t − 1 until just before time t, the insurer holds a portfolio Yt−1 ∈ L∞(Ft−1)

of the numéraires as an acceptable reserve for X, and will wish to exchange to a

new reserving portfolio Yt. The insurer may only exchange to the new portfolio Yt

if the risk of the adjustment is acceptable, i.e. ρt(Yt · V − Yt−1 · V) ≤ 0. Thus

all the transfer of risk occurs instantaneously at time t (we shall see in section 3.6

that the analogy with a trading set-up is no coincidence). This is in contrast to

the predictable case developed in [Jacka et al., 2019], where the idea is that the

time-(t− 1) reserve is an adequate reserve for the hedging portfolio needed at time

t. In the predictable case, the acceptable risk is carried between the time points

t− 1 and t, whereas in the optional case an explicit exchange of known amounts of

the numéraires needs to take place at time t to update the reserve portfolio.

We shall say that the dynamic risk measure is (optionally) V-time-consistent

if this property holds (at least in a limiting sense) for each claim X, starting from

an initial reserve ρ0(X).

Definition 3.3.1. A dynamic convex risk measure ρ = (ρt)t=0,...,T is optionally V-

time-consistent if, for any X ∈ A, we may find a sequence Xn in A and a sequence

πn = (πnt )t=0,...,T−1 such that πnt ∈ L∞(Ft) for each t, and

(i)

Xn → X almost surely (3.1)

(ii) for each t,

ρt(π
n
t ·V) ≤ 0 P a.s.;

(iii) for each n ∈ N,
T−1∑
t=0

πnt ·V = Xn P-almost-surely.

Remark 3.3.2. By the subsequence property, we can replace the almost sure conver-

gence in (3.1) by convergence in L0 without affecting the definition.
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3.3.2 Representability of claims

We may view optional V-time-consistency as a condition on the sequences of port-

folios that can superhedge a claim X. Given a V-time-consistent dynamic CRM

(ρt), we may (at least in a limiting sense) express X as the sum of the initial reserve

ρ0(X) and the (T + 1) adjustments at times 0, 1, . . . T (where we set Y−1 to be any

vector in L0 with ρ0(Y ·V) = ρ0(X), for example ρ0(X)
ρ0(V·1)1):

X = ρ0(X) +
T∑
t=0

(Yt − Yt−1) ·V,

where each adjustment satisfies ρt((Yt − Yt−1) ·V) ≤ 0. Each adjustment Yt − Yt−1

is an Ft-measurable portfolio with t-acceptable valuation; we call the set of such

portfolios Kt(A,V). We seek to answer the question “Is it possible to represent

every claim in A by a series of such adjustments?”

Given any cone D in L∞ and our vector V of numéraires, we define the

collection of portfolios attaining D to be

D(V) = {Y ∈ L∞ : Y ·V ∈ D}.

The set of time-t acceptable portfolios that are Ft-measurable is denoted

Kt(A,V) := At(V) ∩ L∞(Ft). (3.2)

Definition 3.3.3. The cone A in L∞ is said to be optionally V-representable if

A(V) = ⊕Tt=0Kt(A,V), (3.3)

where the closure is taken in the weak∗ topology. If this is the case, we also say

that A is optionally represented by V. When V is fixed, we also say that A(V) is

optionally represented if (3.3) holds.

Remark 3.3.4. It is an easy exercise to show that

Kt(A,V) = {X ∈ L∞(Ft,Rd+1) : αX ∈ A for any α ∈ L∞+ (Ft)}. (3.4)

This characterisation is used repeatedly in what follows and in the proof of Theorem

3.3.18.

From now on, where there is no ambiguity, we shall write Kt for Kt(A,V).
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3.3.3 Stability

We recall Delbaen’s m-stability condition, on a standard stochastic basis (Ω,F , (Ft)t=0,...,T ,P):

Definition 3.3.5 (Delbaen [Delbaen, 2006a]). A set of probability measures Q ⊂
L1(Ω,F ,P) is m-stable if for elements Q1,Q2 ∈ Q, with associated density martin-

gales ΛQ1

t = E
[
dQ1

dP

∣∣∣Ft] and ΛQ2

t = E
[
dQ2

dP

∣∣∣Ft], and for each stopping time τ , the

martingale L defined as

Lt =

ΛQ1

t for t ≤ τ
ΛQ1

τ

ΛQ2
τ

ΛQ2

t for t ≥ τ

defines an element, Q, in Q. The probability measure Q is also defined by the

properties that

Q
∣∣
Fτ = Q1

∣∣
Fτ and Q(·|Fτ ) = Q2(·|Fτ ) Pa.s.,

so Q pastes together the laws Q1 and Q2 at time τ .

We generalise m-stability by allowing extra freedom over one time period

when pasting two measures together and by only pasting measures satisfying a

consistency condition relating to V:

Definition 3.3.6. Let τ be a stopping time, and Q1,Q2 be two probability measures

absolutely continuous with respect to P. The set Q1 ⊕opt
τ Q2 of optional pastings of

Q1 and Q2 consists of all Q̃ such that

(i) Q̃
∣∣
Fτ = Q1

∣∣
Fτ ,

and

(ii) for any A ∈ FT , Q̃(A|F(τ+1)∧T ) = Q2(A|F(τ+1)∧T ).

We make explicit the freedom over the time period (τ, τ + 1] by writing

any optional pasting in terms of the two measures being pasted, and a “one-step

density”:

Lemma 3.3.7. For τ a stopping time, and Q1, Q2 two probability measures,

Q1⊕opt
τ Q2 =

Q̃� P : ΛQ̃ = ΛQ1

τ R
ΛQ2

ΛQ2

(τ+1)∧T

, for some R ∈ L1
+(F(τ+1)∧T ) s.t. E [R | Fτ ] = 1


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Definition 3.3.8. The set of probability measures Q is optionally V-m-stable if,

whenever τ is a stopping time, Q1,Q2 ∈ Q, and Q̃ ∈ Q1⊕opt
τ Q2 has the (additional)

property that

EQ̃[V|Fτ ] = EQ1 [V|Fτ ], (3.5)

then Q̃ is also in Q.

Example 3.3.9. It is easy to check that given an (Ft)0≤t≤T -adapted and bounded

process X, the collection, QX , of Equivalent Martingale Measures for X is optionally

XT -m-stable.

Note that a set that is optionally 1-m-stable is automatically m-stable but

the converse is false.

The following proposition gives an equivalent definition of optional V-m-

stability in terms of the dual cone A(V)∗.

Proposition 3.3.10. Suppose, without loss of generality, that the set of pricing

measures Q is convex and closed (so the set of densities is closed in the topology of

L1), and let D = A(V)∗. The following are equivalent:

(i) Q is optionally V-m-stable

(ii) for each t ∈ {0, 1, . . . , T}, whenever Y,W ∈ D are such that there exists Z ∈ D,

an event F ∈ Ft, positive random variables α, β ∈ L0
+(Ft+1) with αY, βW ∈ L1

and X := 1FαY + 1F cβW satisfies

E [X | Ft] = E [Z | Ft] , (3.6)

then X is a member of D.

The proof can be found in Section 3.7.1.

Definition 3.3.11. We shall say that an arbitrary cone D̃ ⊆ L1
T satisfying condition

(ii) of Proposition 3.3.10 is optionally m-stable.

Lemma 3.3.12. Suppose that V is a collection of d + 1 numéraires, and D is a

convex cone in L∞. Then

D(V)∗ = D∗V.

The proof can be found in Section 3.7.1.
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3.3.4 An Equivalence Theorem

Our first result is a set of conditions equivalent to optional V-time-consistency,

including a precise statement of V representability, and a dual characterisation

which pertains to the convex set of probability measures Q that define the risk

measure.

This result resembles that obtained in [Jacka et al., 2019] for predictable

versions of these concepts.

To show the equivalence of V-m-stability and V-representability, we find the

dual of each Kt, which we call the optional pre-image of A(V)∗ at time t. Aside from

its utility in proving the equivalence of V-optional representability and optional V-

m-stability, the optional pre-image of an optionally m-stable convex cone A(V)∗ at

time t is a concrete description of the dual of the set of portfolios held at time t in

order to maintain an acceptable position at time t.

We fix the vector of numéraires V, a coherent pricing measure ρ = (ρt)t with

a closed, convex representing set of probability measures Q, and take At to be the

acceptance set of ρt for t ∈ T. The main result is

Theorem 3.3.13. The following are equivalent:

(i) (ρt)t∈T is optionally V-time-consistent;

(ii) A is optionally represented by V;

(iii) Q is optionally V-m-stable.

Example 3.3.14. [A generic example] Given a positive X ∈ L1
T , and a sequence of

random, closed, convex sets I := (It)t=0,...,T in Rd+1, each measurable with respect

to E(Rd+1,Ft), the relevant Effros σ-algebra (see Remark 4.2 of [Jacka et al., 2008]),

let

QXI := {Q ∼ P : EQ[X|Ft] ∈ It for each t},

then QXI is optionally X-m-stable. Note that X need not be in L∞.

To recover the case of EMMs, simply take X to be MT , the terminal value of a

positive P-martingale and It to be the singleton {Mt}. Of course, X is not necessarily

in L∞, but we may rectify this by taking V = (v0, . . . , vd), where vi =
M i
T∑

jM
j
T

, and

letting Q be defined as the set Q := {Q : ΛQ =
∑
jM

j
T∑

j EQ̃M
j
T

ΛQ̃ for some Q̃ ∈ QXI }.

We give the proof of Theorem 3.3.13 in two steps. First, we will show equiva-

lence of (ii) optional V- representability and (iii) optional V-m-stability. The proof

of the equivalence of (i) optional V-time-consistency and optional representability is
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given after we have proved Theorem 3.4.5 – a version of the Fundamental Theorem

of Asset Pricing.

Definition 3.3.15. For D ⊂ L1
+, we define, for each time t, the optional pre-image

of D by

Mt(D) := {Z ∈ L1 :∃αt ∈ L0
t,+, ∃Z ′ ∈ D

such that αtZ
′ ∈ L1(Rd+1) and E [Z | Ft] = αtE

[
Z ′
∣∣Ft]}.

(3.7)

The optional pre-image of a set D ⊂ L1
+ is key in understanding optionally

stable convex cones, as shown in the following two lemmas:

Lemma 3.3.16. Suppose D ⊂ L1
+. If D is an optionally stable convex cone, then

D =

T⋂
t=0

Mt(D).

If S ⊂ L1, we denote by the conv(S) the closure in L1 of the convex hull of

S.

Lemma 3.3.17. Suppose D ⊂ L1
+, and define

[D] :=
T⋂
t=0

(convMt(D)) ,

(where Mt(D) is as defined in (3.7)). Then

(a) [D] is the smallest stable closed convex cone in L1 containing D;

(b) D = [D] if and only if D is a stable closed convex cone in L1.

We prove both these lemmas in Section 3.7.1. The proof of equivalence of

statements (ii) and (iii) of Theorem 3.3.13 is underpinned by the following

Theorem 3.3.18. For any t ∈ {0, 1, . . . , T − 1},

Kt = (Mt(A(V)∗))∗. (3.8)

The proof is given in Section 3.7.1.

Thus we characterise each “summand” in the representation (cf. Defini-

tion 3.3.3) as the dual of the optional pre-image of the dual of the set of acceptable

portfolios in V.
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Proof of Theorem 3.3.13, equivalence of (ii) and (iii). By assumption, A(V) is a

weak∗-closed convex cone in L∞(Rd+1) which is arbitrage-free, so that A(V)∗∗ =

A(V). Recall that A(V) is optionally representable if

A(V) = ⊕Tt=0Kt.

Thanks to Proposition 3.3.10, we must show the equivalence of the two conditions

(ii’) A(V) is optionally representable; and

(iii’) A(V)∗ is optionally V −m-stable.

(ii’) ⇒ (iii’): Assuming A(V) is optionally representable, it follows from

Theorem 3.3.18 that

A(V) = ⊕tKt = ⊕tMt(A(V)∗)∗.

Taking the dual, we find that

A(V)∗ = ∩tMt(A(V)∗)∗∗ = ∩tconvMt(A(V)∗)

where the second equality follows from the Bipolar Theorem. Hence, A(V)∗ =

[A(V)∗], and so by Lemma 3.3.17, A(V)∗ is optionally stable.

(iii’) ⇒ (ii’): Assuming A(V) is a weak∗-closed convex cone, note that

A(V)∗ is a convex cone closed in (L1, σ(L1,L∞)). Assuming further that A(V)∗ is

stable,

A(V)∗ = ∩tMt(A(V)∗) by Lemma 3.3.16

= ∩tK∗t by eq. (3.8).

Now we may apply the Bipolar Theorem to deduce

A(V) ≡ A(V)∗∗ = ⊕tKt

and A(V) is optionally representable, as required.
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3.4 The Fundamental Theorem of Multi-currency Re-

serving

As announced in the introduction, we now discuss closure properties in L0 of the

decomposition of a V-optionally representable acceptance set A.

By analogy to the definition in [Schachermayer, 2004], we define a trading

cone as follows:

Definition 3.4.1. C ⊂ L0(Rd+1,Ft) is said to be a (time-t) trading cone if C

is closed in L0 and is closed under multiplication by non-negative, bounded, Ft-
measurable random variables.

We recall Lemma 4.6 of [Jacka et al., 2008] which we quote here (suitably

rephrased) for ease of reference:

Theorem 3.4.2. Let C be a closed convex cone in L0(F), then

C is stable under multiplication by (scalar) elements of L∞+ (F) (3.9)

if and only if there is a random closed cone MC such that

C = {X ∈ L0(F) : X ∈MC a.s.}. (3.10)

We shall demonstrate that if A is V-representable then (K0
t )0≤t≤T , the L0-

closures of the cones Kt, are trading cones, whose sum is closed, and equal to the

L0-closure of A(V), which is is arbitrage-free.

This is a version of the (First) Fundamental Theorem of Asset Pricing (FTAP).

For the rest of this section closures in L0 or L0 will be denoted by a simple

overline, whereas weak∗ closure of a set S will be denoted S
w

We setA0(V) := A(V),

the closure of A(V) in L0. Recall that A0(V) is arbitrage-free whenever

A0(V) ∩ L0
+ = {0},

and define the trading cone

Ct = {X ∈ L0
t : cX ∈ A0(V) for all c ∈ L∞+ (Ft)}.

Note that closure in L0 of Ct follows immediately from the closure of A0(V).

Lemma 3.4.3. For each t, K0
t is a trading cone and if X ∈ L0

t then X ∈ K0
t iff

X.EQ[V |Ft] ≤ 0 for all Q ∈ Q.
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Proof. Now if X ∈ L∞t then X ∈ Kt if and only if EQ[X.V |Ft] = X.EQ[V |Ft] ≤
0 for all Q ∈ Q. It follows that K0

t = {X ∈ L0
t : X.EQ[V |Ft] ≤ 0 for all Q ∈ Q}

and this is obviously a trading cone.

It follows from Theorem 3.4.2 and Lemma 3.4.3 that

Lemma 3.4.4. There are random closed cones MC
t and MK

t such that

Ct = {Y ∈ L0
t : Y ∈MC

t a.s.}

K0
t = {Y ∈ L0

t : Y ∈MK
t a.s.}

and the polar (in Rd+1) of MK
t is cone({EQ[V|Ft] : Q ∈ Q}), the random closed

cone generated by {EQ[V|Ft] : Q ∈ Q}.

We now give the main theorem of this section:

Theorem 3.4.5. The set G := ⊕tCt is closed in L0, arbitrage-free and equals H :=

⊕tK0
t (A,V). Moreover, if A is V-representable, then their common value is A0(V)

and then A0, the closure in L0 of A is given by

A = A0(V).V = ⊕tK0
t (A,V).V. (3.11)

Proof. The proof is in three steps. We will show that:

1. G is closed in L0.

2. Ct = K0
t (A,V) (and G is arbitrage-free) establishing equality of G and H.

3. A0(V) = H if A is V-representable and A0 = A0(V).V.

Proof of 1. We recall Definition 2.6 and Lemma 2.7 (suitably rephrased) from [Jacka

et al., 2008]

Definition 3.4.6. Suppose J is a sum of convex cones in L0:

J = M0 + . . .+MT .

We call elements of M0× . . .×MT whose components almost surely sum to 0, null-

strategies (with respect to the decomposition M0 + . . .+MT ) and denote the set of

them by N (M0 × . . .×MT ).

For convenience we denote C0 × . . .× CT by C .
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Lemma 3.4.7. (Lemma 2 in [Kabanov et al., 2003]) Suppose that

J = M0 + . . .+MT

is a decomposition of J into trading cones; then J is closed if N (M0 × . . . ×MT )

is a vector space and each Mt is closed in L0.

Since we have already established that each Ct is a trading cone, applying

Lemma 3.4.7 to the decomposition of G, we only need to prove that the null strategies

N (C ) form a vector space. The argument is standard: since G is a cone, we need

only show that ξ = (ξ0, . . . , ξT ) ∈ N (C ) implies that −ξ ∈ N (C ). To do this, given

ξ ∈ N (C ), fix a t and a bounded non-negative c ∈ L0
t with a.s. bound b. Then,

since ξ is null,

−cξt = bξ0 + . . . bξt−1 + (b− c)ξt + bξt+1 + . . .+ bξT ,

and each term in the sum is clearly in the relevant Cs and hence in A0. Since c and

t are arbitrary, −ξt ∈ Ct for each t and so −ξ ∈ N (C ).

It is clear from (3.4) that Kt ⊆ Ct and hence, by closure of Ct that K0
t ⊆ Ct.

Thus H ⊆ G.

Proof of 2. Recall from [Jacka et al., 2008] that consistent price processes

for H are those martingales valued in (MK
t )∗ at each time step. Since ΛQ

t VQ
t is

such a martingale (for any Q ∈ Q), the collection of consistent price processes for

the sequence of trading cones K0
t (A,V) is non-empty and so, by Theorem 4.11 of

[Jacka et al., 2008], H is arbitrage-free.

The consistent price processes for ⊕tCt are those martingales valued in

(MC
t )∗ at each time step. We now claim that, for each t,

(MC
t )∗ = (MK

t )∗.

Once we establish this, equality follows on taking the random polar cones in Rd+1.

First, observe that Ct ⊇ K0
t (A,V) implies (MC

t )∗ ⊆ (MK
t )∗ almost surely.

So, assume that (MC
t )∗ is a strict subset of (MK

t )∗. Then there exists Q ∈ Q such

that

P(EQ[V|Ft] 6∈MC
t ) > 0.

For this Q, we form the consistent price process Zt = ΛQ
t EQ[V|Ft] ∈ (MK

t )∗. Form

the frictionless trading cones

Ct(Z) := {X ∈ L0
t : X · Zt ≤ 0}
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and we have an arbitrage-free and closed cone Ã = ⊕tCt(Z) from the FTAP. Clearly

Ã contains A0(V), and so Ct(Z) is contained in Ct, whence Zt ∈ MC
t a.s., contra-

dicting the assumption of strict inclusion.

Proof of 3. If A is V-representable then

A0(V) = (⊕tKt)
w

= ⊕tK0
t = H

but, as we have already established, H is closed. Finally, since A ⊃ Kt.V it is clear

that A0 ⊇ H.V. Conversely, since A0 = A(V).V = ⊕Kt
w
.V = ⊕Kt.V, it follows

that A0 ⊆ H.V

3.5 Completing the Proof of Theorem 3.3.13

Proof of Theorem 3.3.13: the equivalence of (i) and (ii). We shall use the result from

Theorem 3.4.5 that if (iii) (and hence (ii)) holds then

A0(V) = ⊕tK0
t (A,V)

and

A0 = ⊕tK0
t (A,V).V, (3.12)

where the superscript 0 represents closure in L0 or L0. Now define

condition (iv):

A ⊆ ⊕tK0
t (A,V). (3.13)

Clearly (3.12)⇒(3.13) and hence that (ii)⇒(iv). It is also clear that (i)⇔(iv)

So it just remains to prove that (iv)⇒(ii). Suppose (iv) holds. We shall show

that A ⊆ ⊕tKt.V or, equivalently (since A is a closed convex cone), that

(⊕tKt.V)∗ ⊆ A∗. (3.14)

Define

Gt = (⊕Ts=tKs.V)∗ and Bt := L∞ ∩ ⊕Ts=tK0
s .V

Now, since ( L∞ ∩ ⊕tK0
t .V)∗ ⊆ A∗ we may show (3.14) by proving, by induction

that

Gt ⊆ B∗t . (3.15)

Clearly (3.15) holds for t = T since KT = {X ∈ L∞ : X.V ≤ 0 a.s. } and

K0
T = {X ∈ L0 : X.V ≤ 0 a.s.} so BT = L∞− = KT .V.
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Now suppose that (3.15) holds for t = u + 1. Take arbitrary Z ∈ Gu and

X ∈ Bu. Then X = αu.V + Y , for some Y ∈ ⊕Ts=u+1K
0
s .V and αu ∈ K0

u. For

integer n > 0 set Fn = {||αu|| ≤ n, then αu1Fn ∈ Ku and Y 1Fn = X1Fn −
αu1Fn ∈ L∞ (since X ∈ L∞). Since each K0

t is closed under multiplication by

1Fn for t ≥ u, it follows that Y 1Fn ∈ Bu+1 with X1Fn = αu.V1Fn + Y 1Fn and

hence X1Fn ∈ Bu. Since Z ∈ Gu+1 it follows from the induction hypothesis that

EZX1Fn = EZ(Y 1Fn + αu.V1Fn) ≤ EZ(αu.V1Fn). Now αu.V1Fn ∈ Ku.V and

Z ∈ (Ku.V)∗ so E[ZX1Fn ] ≤ 0. Thus, by dominated convergence, E[ZX] ≤ 0 and

since X is an arbitrary element of Bu it follows that Z ∈ B∗u and so Gu ⊆ B∗u,

establishing the inductive step.

3.6 Associating a pricing mechanism to a market with

proportional transaction costs

Having made the connection in Section 3.4 between optionally-representable CRM’s

and trading cones, in this section, we directly associate the reserving mechanism to

a hedging strategy in a market with transaction costs. This is achieved by adding

an extra time period (T, T + 1] to the market with transaction costs, in which all

positions are cashed out into a base numéraire v0. We do this by imposing numéraire

risks that are so disadvantageous as to force a risk-averse agent to sell-up at time

T , rather than in the additional period.

Let e0 = (1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 1) denote the canonical basis of

Rd+1. Recall that in a market with transaction costs the basic set-up has a collection

of assets (labelled 0, . . . , d) and random bid-ask prices πi,jt at each trading time

t ∈ {0, . . . , T}. Thus πi,jt is the number of units of asset i that can be exchanged

for one unit of asset j at time t. The corresponding trading cone, which we denote

by K̃0
t (πt) is generated by these trades together the possibility of consumption so

that K̃t(πt) is the (closed) cone generated by non-negative Ft-measurable multiples

of the vectors −ei and ej − πijt ei, for i, j ∈ {0, 1, . . . , d}. The set of claims available

from zero endowment is then

BT (π) =
T⊕
t=0

K̃0
t (πt).

We (initially) assume that the closure of BT (π) in L0 is arbitrage-free. Note that

thanks to Theorem 1.2 of [Jacka et al., 2008] we may (and shall) then assume that, by

amending the bid-ask prices if necessary, Bt(π) is closed. The proof of this theorem
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also establishes that the null strategies for the resulting trading cones form a vector

space.

We denote the L0-closure of the set of acceptable claims under a risk measure

generated by a collection of absolutely continuous probability measures,Q, by A0
Q.

We will show that each market corresponds to a CRM

Theorem 3.6.1. For the sequence of transaction cost matrices (πijt )t=0,1,...,T , , there

is a stochastic basis (Ω̃, F̃ , F̃, P̃), a vector of numéraires V ∈ L∞(Ω̃, F̃ , P̃;Rd+1), and

a set of optionally V-m-stable probability measures Q such that the closure (in L0) of

the corresponding set of FT -measurable attainable claims is the collection of claims

attainable by trading in the underlying assets:

BT (π) = A0
Q(V) ∩ L0(FT ).

The key element in the proof is to add an extra trading period (T, T + 1]

at the end in which all positions are cashed out into asset 0. However, we impose

numéraire risks that are so disadvantageous as to force the agent to sell up in the

preceding time period, rather than in the additional period. To generate the final,

frictionless prices, we add on a simple “coin spin” for each other asset. We encode

the d binary choices (either buy or sell each of the other d numéraires) as {0, 1}d,
and define µ to be the uniform measure on ({0, 1}d, 2{0,1}d). Thus, we define the

augmented sample space Ω̃ := Ω × {0, 1}d, and define the product sigma-algebra

and measure:

F̃ := F ⊗ 2{0,1}
d
),

P̃ := P⊗ µ.

We augment the filtration trivially, by setting F̃t := Ft ⊗ {∅, {0, 1}d}. We employ

the obvious embedding of L∞(Ω,Ft,P) in L∞(Ω̃, F̃t, P̃); it should be clear from

context to which version of L0 we are referring.

Fix 0 < ε < 1 small. Define the Rd+1-valued random variable Ṽ = (ṽ0, ṽ1, . . . , ṽd),

for ω ∈ Ω, ω′ ∈ {0, 1}d, by

ṽ0(ω, ω′) = 1, (3.16)

ṽi(ω, ω′) = (1− ω′i)(1− ε)
1

πi,0T (ω)
+ ω′i(1 + ε)π0,i

T (ω). (3.17)

The interpretation of Ṽ is this: arriving at time T at a bid-ask spread
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[
1

πi,0T (ω)
, π0,i
T (ω)

]
for numéraire i in state ω, we spin a coin. If the coin shows heads

(ω′i = 1), the (T + 1)-price of asset i is slightly higher than the T -ask price, and any

negative holding of i to time T + 1 makes a loss compared to cashing out at time

T . If the coin shows tails (ω′i = 0), the (T + 1)-price of asset i is slightly lower than

the T -bid price, and any positive holding of i makes a loss. Any risk-averse agent

will seek to avoid these losses by cashing out into asset 0 at time T .

Now we define the frictionless bid-ask matrix at time T + 1 by

πijT+1 :=
ṽj

ṽi
.

The trading cone K̃0
T+1(πT+1) is generated by positive FT+1-measurable multiples

of the vectors −ei and ej−πijT+1ei, for i, j ∈ {0, 1, . . . , d}. Define the cone BT+1(π) =

BT (π) + K̃0
T+1(πT+1).

The collection of consistent price processes for the original set of claims BT (π)

is

B◦T (π) = {Z ∈ L1
T (Rd+1) : E[Z|Ft] ∈ K̃0

t (πt)
∗ a.s. for t = 0, 1, . . . , T}.

By Theorem 4.11 of [Jacka et al., 2008], since BT (π) is closed and has no arbi-

trage, there exists at least one consistent price process Z for BT (π). The following

proposition shows that the cone BT+1(π) is arbitrage-free.

Proposition 3.6.2. There is a consistent price process for BT+1(π).

Proof. We extend any consistent price process for BT (π) to a consistent price process

for BT+1(π) by multiplying by the Radon-Nikodym derivative for the martingale

measure for each coin spin. For any Z ∈ B◦T , define λZ > 0 such that the one-period

process
(
Zi/Z0, λZ ṽi

)
is a P̃-martingale for each i. Then

ZT+1 = Z0λZṼ (3.18)

defines a consistent price process for the cone BT+1(π).

We first show that such a λZ always exists. Note that Z ∈ K̃0
T (πT )∗ gives

that, ω-a.e.,

ZjT (ω)

ZiT (ω)
≤ πijT (ω) ≤ πi,0T (ω)π0,j

T (ω) <
1 + ε

1− ε
πi,0T (ω)π0,j

T (ω) =
ṽj(ω, 1)

ṽi(ω, 0)
,

with ṽj(ω, 1) understood to be ṽj(ω, ω′)
∣∣
ω′j=1

etc. Fixing ω ∈ Ω and i 6= 0, we see
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that

Z
i
T (ω) :=

ZiT (ω)

Z0
T (ω)

∈ (ṽi(ω, 0), ṽi(ω, 1)).

The martingale measure for such an one-period binary tree model is determined by

the probability of “heads”

θ(ω, i) =
Z
i
T − ṽi(ω, 0)

ṽi(ω, 1)− vi(ω, 0)
.

Now set

λZ(ω, ω′) = 2d
d∏
i=1

θ(ω, i)ω
′
i(1− θ(ω, i))1−ω′i

Clearly, λZ is a.s. positive and bounded, Ẽ[λZ |FT ] = 1 and ZiT+1 ∈ L1 since

Ẽ[ZiT+1] = Ẽ[λZṼiZ
0
T ] = E[ZiT ] by the the positivity of ZiT+1, Fubini’s Theorem

and the definition of µ and λZ

Similarly, for any XT ∈ L∞T (Rd+1),

EP̃[XT · ZT+1] = EP[XT · Z0
TEP̃[(λZṼ)|FT ]] = EP[XT · ZT ]. (3.19)

Setting XT = 1Aei for A ∈ FT , for any i, we see that ZT = EP̃[ZT+1|FT ], and ZT+1

is thus a consistent price process as required.

Proposition 3.6.3. The cone BT+1(π) := ⊕T+1
t=0 K̃

0(πt) is closed in L0, and is

arbitrage-free.

Proof. From Theorem 4.11 of [Jacka et al., 2008], we have that the closure of BT+1(π)

in L0 is arbitrage-free. We will show that the set of null strategies

N (K̃0
0 (π0), . . . , K̃0

T (πT ), K̃0
T+1(πT+1))

is a vector space, and conclude from Lemma 3.4.6 that the cone BT+1(π) is closed

in L0, and we are done.

Take

(x0, . . . , xT+1) ∈ N (K̃0
0 (π0), . . . , K̃0

T (πT ), K̃0
T+1(πT+1)).

Let

x = x0 + · · ·+ xT , so that x+ xT+1 = 0. (3.20)

We see that xT+1 is an FT -measurable element of K̃0
T+1(πT+1). We claim that

xT+1 ∈ BT (π): since xT+1 ∈ BT+1, for any consistent price process Z for the cone
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BT+1(π), and any n ∈ N,

0 ≥ E[ZT+1xT+11{||xT+1||<n}] = E[ZTxT+11{||xT+1||<n}],

so xT+11{||xT+1||<n} ∈ BT (π) for all n, and so xT+1 ∈ BT (π) by closure of BT (π).

Since xT+1 ∈ BT (π), there exist y0 ∈ K̃0
0 (π0), . . . , yT ∈ K̃0

T (πT ) with xT+1 =

y0 + · · ·+ yT . Then, rewriting (3.20), we see that

(x0 + y0) + . . .+ (xT + yT ) = 0.

Since each term in this sum is in the relevant trading cone, we see that (x0 +

y0), . . . , (xT + yT )) is in N (K̃0
0 , . . . , K̃

0)T . Now, by assumption, this is a vector

space so that each −(xt + yt) ∈ K̃0
t (πt), and so, since K̃0

t (πt) is a cone containing

yt, each −xt is in K̃0
t (πt).

The bid-ask prices are frictionless at time T +1, so xT+1 ∈ K̃0
T+1(πT+1) may

be written as u1 − u2, where u1 ∈ lin(K̃0
T+1(πT+1)), and u2 ≥ 0. Note that

0 ≤ u2 = u1 − xT+1 = u1 + x ∈ BT (π),

but since BT (π) is arbitrage-free, u2 = 0, and so −xT+1 ∈ K̃0
T+1(πT+1) and thus the

set of null strategies is a vector space.

The final prices Ṽ above are, in general unbounded, so we transform these

by normalising, setting

V = (v0, . . . , vd) where vi :=
ṽi∑
j ṽj

.

Finally, we define the set of measures

Q = {QZ : Z is a consistent price process for BT (π)}, where
dQZ

dP̃
:=

Z0
Tλ

ZT (ṽ0)∑
j Z

j
0

.

It is easy to check that these are probability measures from the fact that the Z’s are

consistent price processes and hence strictly positive, vector-valued martingales.

The proof of the main result is now clear:
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Proof of Theorem 3.6.1. We observe that

K0
t (AQ(V)) = {X ∈ L0

t : X.EQ[V|Ft] ≤ 0 a.s. for all Q ∈ Q}

= {X ∈ L0
t : X.Zt ≤ 0 a.s. for all consistent Z}

It follows that

K0
t (πt) = {Y ∈ L0

t : Y.Zt ≤ 0 a.s. for all consistent Z} = {Y ∈ L0
t : Y ∈ K0

t (Q)}

and so

BT = A0
Q

3.7 Appendix

3.7.1 Proofs of subsidiary results

Proof of Proposition 3.3.10. By Lemma 3.3.12, we may write D = cone{dQdPV :

Q ∈ Q}.
(i) =⇒ (ii): We suppose that (i) holds, and fix t ∈ {0, 1, . . . , T}, Y,W,Z ∈ D,

F ∈ Ft, α, β ∈ L0
+(Ft+1) and X ∈ L1

+ as in the hypothesis of (ii). We show that

X ∈ D by applying (i) twice. First, take τ = t1F + T1F c , and define QZ and ΛZt

via
dQZ

dP
=

Z0

E[Z0]
and ΛZt = E

[
dQZ

dP

∣∣∣∣Ft]
and analogously for QY , ΛY . Note that Z = E[Z0]ΛZV. We now form an optional

pasting of QZ and QY at time τ , as Q̂, via

Λ̂ = ΛZt

(
αE[Y 0]ΛYt+1

E[Z0]ΛZt

)
ΛY

ΛYt+1

1F + ΛZ1F c .

This is an optional pasting, thanks to eq. (3.6): on F , we have E
[
αY 0

∣∣Ft] =

E
[
Z0
∣∣Ft], and so the factor in parentheses has conditional Ft-expectation of 1 on

F . We shall apply (i) to deduce that Q̂ ∈ Q, and for this we must show that

EQ̂[V|Fτ ] = EQZ [V|Fτ ].
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We compute the left hand side to be

EQ̂[V|Fτ ] =
1

Λ̂t
E
[

Λ̂V
∣∣∣Ft]1F + V1F c

= E

[(
αE[Y 0]ΛYt+1

E[Z0]ΛZt

)
ΛY

ΛYt+1

V

∣∣∣∣∣Ft
]
1F + V1F c

=
1

E [Z0 | Ft]
E [αY | Ft]1F + V1F c

Condition (3.6) shows that, on F , E [αY | Ft] = E [Z | Ft], so we conclude

that Q̂ ∈ Q. We repeat the above steps for stopping time σ = T1F +t1F c , measures

Q̂ and QW ,

Λ̃ = Λ̂1F + Λ̂t

(
βE[W 0]ΛWt+1

E[Z0]ΛZt

)
ΛW

ΛWt+1

1F c .

Condition (3.6) gives that EQ̃[V|Fτ ] = EQ̂[V|Fτ ], and so Q̃ ∈ Q by (i). It is simple

to show that X = E[Z0]Λ̃V, and thus X ∈ D as required.

(ii) =⇒ (i): Say (ii) holds; then (i) holds for when τ = T trivially. Now

suppose that (i) holds for any stopping time τ ≥ k+1 a.s., and proceed by backward

induction on the lower bound of the stopping times. Fix an arbitrary stopping time

τ̃ ≥ k a.s., and define F = {τ̃ ≥ k + 1} and the stopping time τ∗ := τ̃1F + T1F c .

Note that τ∗ ≥ k + 1, since F c = {τ̃ = k}.
We shall now take Q1,Q2 ∈ Q and Q̃ ∈ Q1⊕opt

τ̃ Q2 that satisfy eq. (3.5), and

aim to show that Q̃ is indeed an element of Q, with the help of condition (ii). Define

Λi = dQi/dP for i = 1, 2. Take a pasting of Q1 and Q2 at time τ∗, Q∗ ∈ Q1⊕opt
τ∗ Q2,

with Radon-Nikodym derivative

Λ∗ = Λ1
τ∗R

∗ Λ2

Λ2
(τ∗+1)∧T

with R∗ ∈ L1
+(F(τ∗+1)∧T ) and E [R∗ | Fτ∗ ] = 1. We note that Λ̃ := dQ̃/dP can be

written as

Λ̃ = Λ1
τ̃ R̃

Λ2

Λ2
(τ̃+1)∧T

= Λ1
τ∗R̃

Λ2

Λ2
(τ∗+1)∧T

1F + Λ1
1F c .

Set X = Λ̃V, W = Z = Λ1V, Y = Λ2, α = R̃/R∗, β = 1 to satisfy the hypothesis

of (ii). Thus, X ∈ D, whence Q̃ ∈ Q. This completes the inductive step.

Proof of Theorem 3.3.18. We set B = A(V), as above.

First we prove that Mt(B∗) ⊂ Kt(B)∗. For arbitrary Z ∈ Mt(B∗), there
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exist Z ′ ∈ B∗ and α ∈ L0
+(Ft) with αZ ′ ∈ L1 and Z|t = αZ ′|t.

Note that, for any X ∈ Kt(B),

E[Z ·X] = E[Z|t ·X] = E[αZ ′|t ·X] = lim
n→∞

E[(α1{α≤n}X) · Z ′|t] ≤ 0,

since α1{α≤n}X ∈ B and Z ′ ∈ B∗. Hence Z ∈ Kt(B), and since Z is arbitrary, we

have shown that Mt(B∗) ⊂ Kt(B)∗.

For the reverse inclusion,Mt(B∗)∗ ⊂ Kt(B), note that B∗ ⊂Mt(B∗) implies

Mt(B∗)∗ ⊂ B, and

L∞+ (Ft)Ms(D) =Ms(D) =⇒ for X ∈Mt(B∗)∗, g ∈ L∞+ (Ft), E[X · gZ] ≤ 0

=⇒ L∞+ (Ft)Mt(B∗)∗ =Mt(B∗)∗.

Define

Bt := {X ∈ L∞(FT ,Rd+1) : gX ∈ B for any g ∈ L∞+ (Ft)}.

Thus Mt(B∗)∗ ⊆ Bt. To finish the proof, we need only show that X ∈ Mt(B∗)∗ is

Ft-measurable, since Bt ∩ L∞(Ft,Rd+1) = Kt(B).

To this end, note that for any Z ∈ L1(Rd+1), it is true that Z−Z|t ∈Mt(B∗),
whence E[(Z − Z|t) ·X] ≤ 0. We deduce that

E[(Z − Z|t) ·X] = E[(X −X|t) · Z] ≤ 0 ∀Z ∈ L1(Rd+1),

and X = X|t P-a.s.
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Chapter 4

Trading to acceptability

In a single time period, we aim to assign a value at time zero to the risk entailed

by holding contingent claim X due at time 1. A coherent risk measure assigns to

each claim X a (possibly infinite) number, and is monotone, translation invariant,

convex and positively homogeneous.

It may be argued that the requirement of positive homogeneity is not nat-

ural: risk may grow in a non-linear fashion as the size of a claim increases; an

investor might invest $10 aggressively, and $10 million in a more cautious manner.

Removing the requirement of positive homogeneity, we have the notion of a convex

risk measure, as studied by Föllmer and Schied, and independently by Frittelli and

Rosazza Gianin. We represent a convex risk measure as

ρ(X) = max
Q∈M1,f

(
EQ[−X]− αmin(Q)

)
for M1,f the set of all finitely additive set functions Q : F → [0, 1] which are

normalised to Q[Ω] = 1, and αmin a penalty function.

Such risk measures induce a set of claims X that are acceptable: the set

of claims X for which no additional capital is required to take on claim X, i.e.

ρ(X) ≤ 0. Alternatively we may regard the set of acceptable claims as a fundamental

object, and define a risk measure based on that set. Carr, Geman and Madan [Carr

et al., 2001] proposed that a claim should be acceptable whenever every reasonable

person would agree that the potential gains from claim X adequately compensate

for the potential losses. Formally, we have a finite collection of probability measures,

one for each reasonable person, and to each measure we associate a ‘floor’. A claim

X is acceptable if and only if the expected gain under each measure exceeds the

associated floor. The authors also extend the notion of no-arbitrage pricing.

Larsen et al. [Larsen et al., 2005] consider a similar situation, fixing these
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scenario (probabillity) measures and floors, and looking at trading in continuous

time against a semimartingale price process to a position of acceptable wealth at

the terminal time. The authors characterise the set of time-t acceptable positions,

showing a result in the same vein as the first fundamental theorem of asset pricing: if

one cannot form a martingale measure as a convex combination of scenario measures

(with some scaling), then we may trade to acceptability from any initial wealth.

In section 2 we describe an extension of the ideas in Larsen et al. [Larsen

et al., 2005] and Pınar [Pınar, 2011], and show a solution to the problem in one time

period.

4.1 Trading to acceptability

We summarise the key results of Larsen et al. [Larsen et al., 2005]. The market

consists of one risk-free asset with zero interest rate, and one risky asset S modelled

as an L2-integrable special local semimartingale, defined on filtered probability space

(Ω,F , {Ft}0≤t≤T ,P), with time horizon T . The investor chooses an adapted trading

strategy π in the Hardy space H2(S) such that the stochastic integral (π ·S)t is also

L2-integrable:

π ∈ H2(S) =⇒ ‖π‖2H2(S) := ‖π · S‖2H2 := E
([∫ ·

s
πu dSu

]
T

)
<∞.

Acceptability. We have a finite collection Pi, i = 1, . . . , d of scenario measures,

each absolutely continuous w.r.t. P, and each associated with a floor f i ∈ R. We

assume that each change of measure martingale Zi, defined by

ZiT =
dPi

dP
, Zit = E[ZiT |Ft] for 0 ≤ t ≤ T

is in L2. Define the convex hull of the scenario measures to beQ =conv
{
Pi : i = 1, . . . , d

}
.

Any time-T wealth X ∈ L2(FT ) is acceptable if it falls in the set

GT =
{
X ∈ L2(Ω,FT ,P) : ∀Q ∈ Q, EQX ≥ fQ

}
where

fQ := sup

{
d∑
i=1

αif i :

d∑
i=1

αiPi = Q, 0 ≤ αi ≤ 1,

d∑
i=1

αi = 1

}
.
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Now, any time-t wealth X ∈ L2(Ft) for t ≤ T is (time-t) acceptable whenever it

falls in the set

Gt =

{
X ∈ L2(Ω,Ft,P) : ∃π s.t. X +

∫ T

t
πu dSu ∈ GT

}
.

Theorem 4.1.1 (Larsen et al. [Larsen et al., 2005]). For every t ∈ [0, T ], we have

Gt = Xt, where

Xt := {X ∈ L2(Ft,P) : ∀Q ∈ Ct, EQX ≥ fQ},

for Ct the set of probability measures

Ct := {Q ∈ Q : Q� P,
dQ
dP
∈ L2(FT ), S is a loc. mart. under Q on [t, T ]}.

4.1.1 Gain–loss based convex risk limits in discrete-time trading

Pınar [Pınar, 2011] considered the following development of the above problem.

Assume that prices are supported on a finite probability space (Ω,F ,P), where

Ω = {ωi : i = 1, . . . , N}. The market evolves as a scenario tree, with root node 0,

and leaf nodes n ∈ NT which correspond one-to-one with ω ∈ Ω.

At every time t ∈ {1, . . . , T − 1}, at node n ∈ Nt we choose a strategy πnt .

X is Fs-measurable. Define ∆t = St+1 − St. Wealth evolves as

W s,X,π
t = X +

T−1∑
s

πt∆t

For the element ω ∈ Ω corresponding to leaf node n ∈ NT , we have the stress

measures defined as Pi(ω) = pin, and recursively

pin =
∑

k∈C(n)

pik

We redefine the notion of time-s acceptability to the (stronger) condition
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that there is a strategy π such that

EPi

(X +

T−1∑
u=s

πt(St+1 − St)

)+

−λ

(
X +

T−1∑
u=s

πt(St+1 − St)

)− ≥ f i ∀i = 1, . . . , d.

Theorem 4.1.2. For every t ∈ [0, T ], we have Gt = Xt, where

Xt := {X ∈ Ft : ∀(Q,Y) ∈ Ct, EYX ≥ fQ},

for Ct the set of pairs of measures

Ct := {(Q,Y) : Q ∈ Q, dY
dQ
∈ [1, λ], (Su)t≤u≤T is a martingale under 1

Y(Ω)Y}.

We point out that Pınar provides a proof via the duality theory of linear

programming. In the next section, we aim to extend this setting somewhat.

4.1.2 Our model

Fix a finite time horizon T . We consider a market consisting of a bond with zero

risk-free interest rate, and one risky stock S = (St)0≤t≤T . On filtered probability

space (Ω,F , (Ft)0≤t≤T ,P) we model S as an L∞(Ω,F ,P)-bounded martingale1. As

usual, F0 is trivial and contains all P-null sets in F , and the filtration is right-

continuous; furthermore assume FT = F . We assume S is adapted to filtration

(Ft), and in particular S0 is almost surely constant.

We assume that the investor may trade between the stock and bond fric-

tionlessly, so that the wealth process for initial endowment X ∈ L∞(Ω,Fs,P) and

adapted, P-essentially bounded trading strategy π = (πt)s≤t≤T is

W s,X,π
t = X +

∫ t

s
πu dSu.

To begin, we fix a measure space (M,Σ) and a collection of scenario measures

P = {Pµ ∼ P : µ ∈M},
1for now, we exploit the fact that L∞ is the dual of L1, and any measure Q equivalent to P has

Radon-Nikodym derivative dQ
dP ∈ L

1. We may relax this assumption later, as is done in [Delbaen,
2000].
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each absolutely continuous with respect to objective measure P. For each µ ∈ M ,

we may define the Radon-Nikodym derivative

Zµ :=
dPµ

dP
∈ L1(Ω,F ,P).

LetM1(M,Σ) be the set of all probability measures on (M,Σ). Define the collection

of L1-integrable variables

Z :=

{∫
M
Zµ ν(dµ) : ν ∈M1(M,Σ)

}
,

which we identify with the “convex hull” of P,

Q =

{
Q ∼ P :

dQ
dP
∈ Z

}
.

Assumption 4.1.3. Z is norm-closed and convex.

Distances between probability measures inQ are taken to be the L1-distances

between the respective Radon-Nikodym derivatives in Z.

For each of the measures Pµ ∈ P there is a floor fµ, µ ∈M .

Assumption 4.1.4. supµ∈M fµ <∞.

For fixed λ, the investor must trade such that at the terminal time T ,

EPµ [(W s,X,π
T )+ − λ(W s,X,π

T )−] ≥ fµ for each µ ∈M.

Pınar’s problem is precisely when the state space Ω is assumed finite, time is discrete,

M = {1, . . . , d}, and Σ = 2M . Each measure Q ∈ Q has a floor, defined by

fQ := sup

{∫
M
fµ ν(dµ) : ν ∈M1(M,Σ),

dQ
dP

=

∫
M
Zµ ν(dµ)

}
To this end, we take the set of all initial endowments for which the above

conditions are satisfied:

Gs(λ) =
{
X ∈ L∞(Ω,Fs,P) : ∃π s.t. ∀Q ∈ Q, EQϕ(W s,X,π

T ) ≥ fQ
}

where

ϕ(W ) := W+ − λW−.
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Pınar characterised Gs(λ) in the discrete time and finite state space setting as

Gs(λ) = Xs(λ) :=

{
X ∈ L∞(Ω,Fs,P) : ∀Q ∈ Q, ∀Y ∈ ỸQ,s,

∫
X dY ≥ fQ

}
where

YQ :=

{
Y : Y ∼ Q and

dY
dQ
∈ [1, λ]

}
,

and for s ∈ [0, T ],

ỸQ,s :=

{
Y ∈ YQ :

∫
Sv1G dY = Su1G ∀s ≤ u ≤ v ≤ T and G ∈ Fu

}
.

We write ỸQ,0 =: ỸQ. From these definitions, we can easily deduce the following

two results:

Proposition 4.1.5. EQϕ(W ) = inf
Y∈YQ

∫
W dY.

Proof. We first show that the left hand side is less than the right hand side in the

equation above.

inf
Y∈YQ

∫
W dY = inf

Y∈YQ
EQ

[
W
dY
dQ

]
= inf

Y∈YQ

{
EQ

[
W+ dY

dQ

]
− EQ

[
W−

dY
dQ

]}
≥ inf

Y∈YQ
EQ

[
W+ dY

dQ

]
− sup

Y∈YQ

EQ

[
W−

dY
dQ

]
≥ EQϕ(W ).

For the reverse inequality, note the measure Y0 defined by

dY0

dQ
= 1{{W>0}} + λ1{{W≤0}}

attains this minimum.

Proposition 4.1.6. Gs(λ) ⊆ Xs(λ).

Proof. Take X ∈ Gs(λ). Then, by the previous proposition,

∃π s.t. EQϕ(W s,X,π
T ) = inf

Y∈YQ

∫
W s,X,π
T dY ≥ fQ ∀Q ∈ Q.
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Using the fact that ỸQ,s ⊆ YQ for any s ∈ [0, T ],

=⇒ ∃π s.t. inf
Ỹ∈ỸQ,s

∫
W s,X,π
T dỸ ≥ fQ ∀Q ∈ Q.

Finally, noting that
∫
W s,X,π
T dỸ =

∫
X dỸ for any Ỹ ∈ ỸQ,s, we have X ∈ Xs(λ).

In the next subsection, we shall work on proving the reverse inclusion, namely

Gs(λ) ⊇ Xs(λ), in one period of discrete time.

4.1.3 Equivalence in one period

We assume S0 ∈ R is non-random. Write ∆(ω) = S1(ω) − S0. The problem posed

to the investor is to optimally choose the strategy π ∈ R at time 0 to attain wealth

W = X + π∆ at terminal time 1 satisfying the convex constraints. Fix λ > 1. In

one period, the above definitions of G and X can be simplified to

G =
{
X ∈ R : ∃π ∈ R s.t. ∀Q ∈ Q, EQϕ(X + π∆) ≥ fQ

}
,

X =
{
X ∈ R : ∀Q ∈ Q, ∀Y ∈ ỸQ, XY(Ω) ≥ fQ

}
.

We aim to show the following:

Theorem 4.1.7. X = G.

By work in the previous subsection, we already have the inclusion G ⊆ X .

Thus it remains to show the implication

X 6∈ G =⇒ X 6∈ X ,

which is written more explicitly in the following proposition.

Proposition 4.1.8. If, for every π ∈ R, there exists Q ∈ Q so that EQϕ(X+π∆) <

fQ, then there is a Q ∈ Q, and there is a Y ∈ ỸQ such that XY(Ω) < fQ.

We now set up some appropriate notation to show this result. Define the set

of measures

R := {Q ∈ Q : EQϕ(∆) ≤ 0 ≤ −EQϕ(−∆)},

and note that R inherits convexity from Q. Also, for fixed π ∈ R, define the set of

measures

Qπ := {Q ∈ Q : EQϕ(X + π∆) < fQ},
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and again note that Qπ inherits convexity from Q. We immediately observe

Lemma 4.1.9. Q ∈ R if and only if ỸQ 6= ∅.

Proof. Fix Q ∈ Q. Set

β = 1{∆≥0} + λ1{∆<0} and β = λ1{∆≥0} + 1{∆<0}.

For any Y ∈ YQ, define the Radon-Nikodym derivative β by

dY
dQ

= β ∈ [1, λ].

Then we have the bounds∫
∆ dY =

∫
β∆ dQ ≥

∫
β∆ dQ = EQϕ(∆),

∫
∆ dY =

∫
β∆ dQ ≤

∫
β∆ dQ = −EQϕ(−∆).

So we have the inclusion{∫
∆ dY : Y ∈ YQ

}
⊆ [EQϕ(∆),−EQϕ(−∆)].

We now show the reverse inclusion. For any θ ∈ [0, 1], the L1(Q)-integrable random

variable βθ := θβ + (1− θ)β ∈ [1, λ] is the Radon-Nikodym derivative w.r.t. Q of a

measure Yθ ∈ YQ with∫
∆ dYθ = θ

∫
β∆ dQ + (1− θ)

∫
β∆ dQ = θEQϕ(∆) + (1− θ)(−EQϕ(−∆)),

so that the endpoints of the above interval are attained for θ = 0 and θ = 1. So we

have shown the equality{∫
∆ dY : Y ∈ YQ

}
= [EQϕ(∆),−EQϕ(−∆)].

To complete the proof, by definition of R,

Q ∈ R ⇐⇒ 0 ∈ [EQϕ(∆),−EQϕ(−∆)].

The above condition is equivalent to the existence of a θ ∈ [0, 1] such that∫
∆ dYθ = 0,
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since the integral on the left is a convex combination of the left and right limits

of the interval [EQϕ(∆),−EQϕ(−∆)]. But if there exists such a θ, then Yθ is a

martingale measure, and so Yθ ∈ ỸQ 6= ∅.

A key idea in understanding the connection between the sets G and X is the

following Proposition.

Proposition 4.1.10. Fix a probability measure Q ∈ R, a martingale measure Y ∈
ỸQ, and a π ∈ R. Then

EQϕ(X + π∆) = XY(Ω) ⇐⇒ dY
dQ

= β(π,γ) a.s. on {X + π∆ 6= 0},

where

β(π,γ) := 1{X+π∆>0} + λ1{X+π∆<0} + γ1{X+π∆=0}.

Proof. The Proposition crystallises the observation that

XY(Ω) = EQ

[
dY
dQ

(X + π∆)

]
≥ EQ [ϕ(X + π∆)] ,

with equality if and only if

(i) on the set {X+π∆ > 0}, the Radon-Nikodym derivative dY
dQ takes the essential

infimal value of 1, and

(ii) on the set {X + π∆ < 0}, dY
dQ takes the essential supremal value of λ.

On the set {X+π∆ = 0}, there is no contribution to either integral on both sides of

the inequality, so the Radon-Nikodym derivative dY
dQ may assume any value γ ∈ [1, λ]

for the equality in the statement to hold. In the case that Q{X + π∆ 6= 0} > 0, we

are forced to choose the γ ∈ [1, λ] such that β(π,γ) defines a martingale measure Y;

otherwise, the choice of γ is unrestricted in [1, λ].

For the rest of this section, we assume the hypothesis of Proposition 4.1.8,

namely

for every π ∈ R, Qπ 6= ∅. (4.1)

Following on from Proposition 4.1.10, we look simultaneously for a pair (π∗, γ∗) ∈
R×[1, λ] and a probability measure Q∗ ∈ Qπ∗ such that β(π∗,γ∗) defines a martingale

measure Y∗ via
dY∗

dQ∗
= β(π∗,γ∗).
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To this end, we define

C :=
⋂
π∈R
Qπ,

the set of measures Q under which the expectation of ϕ(X + π∆) fails to weakly

exceed the floor fQ, no matter what the value of π. To proceed, we must examine

two cases: R ∩ C 6= ∅ and R ∩ C = ∅. In the former case R ∩ C 6= ∅, we may

select a Q∗ ∈ R∩C. Such a measure Q∗ belongs to Qπ for any value of π; by virtue

of membership in R, we may choose values of π = π∗ and γ = γ∗ to produce a

martingale measure Y∗ via the formula dY∗
dQ∗ = β(π∗,γ∗). Then,

Gc =
{
X ∈ R : ∀π ∈ R, ∃Q ∈ Q s.t. EQϕ(X + π∆) < fQ

}

=

X ∈ R : ∃(π∗, γ∗) ∈ R× [1, λ], ∃Q∗ ∈ Qπ∗

s.t.
dY∗

dQ∗
= β(π∗,γ∗), Y∗ ∈ ỸQ, and EQ∗ϕ(X + π∆) = XY∗(Ω) < fQ


⊆
{
X ∈ R : ∃Q∗ ∈ Q, ∃Y∗ ∈ ỸQ∗ , XY∗(Ω) < fQ

∗
}

= X c.

In the latter case R ∩ C = ∅, we shall derive the following contradiction to our

assumption (4.1),

Proposition 4.1.11. R ∩ C = ∅ =⇒ ∃π ∈ R : Qπ = ∅.

Topological considerations. We equip Z ≡ {dQdP : Q ∈ Q} with the induced

(subspace) topology in L1(Ω,F ,P). We may speak of a topology on Q, referring to

the topology induced from the natural identification of Q with Z. For π ∈ R we

may establish the natural correspondence between Qπ and Zπ :=
{
dQ
dP : Q ∈ Qπ

}
.

Define the function

Ψ : Q× R 3 (Q, π) 7→ Ψ(Q, π) := EQϕ(X + π∆)− fQ.

The function Ψ is central to the problem, and so it is worthwhile to present its

properties, to be used in the sequel.

Lemma 4.1.12. Ψ enjoys the following properties:

(i) The function π 7→ Ψ(Q, π) is concave on R.

(ii) The function Q 7→ Ψ(Q, π) is convex on Q.
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(iii) For fixed Q, we have the following bounds on π 7→ Ψ(Q, π), for all π ∈ R:

EQϕ(∆ sgn(π))|π|−(λ|X|+fQ) ≤ Ψ(Q, π) ≤ EQϕ(∆ sgn(π))|π|+(2λ|X|−fQ)

where sgn(x) = 1{x>0} − 1{x<0} is the signum function. In particular,

EQϕ(∆) < 0 ⇐⇒ Ψ(Q, π)→ −∞ as π → +∞,

0 < −EQϕ(−∆) ⇐⇒ Ψ(Q, π)→ −∞ as π → −∞.

Proof. These statements follow easily from the definitions.

Property (iii) formalises the idea that “far out, π 7→ Ψ(Q, π) is of linear

growth”. From property (ii), we have that the set Qπ = {Q ∈ Q : Ψ(Q, π) < 0} is

open and convex in Q for all π, and the set Qcπ is closed in Q for all π.

The case R ∩ C = ∅. We first reduce the case R ∩ C = ∅ to the case C = ∅.

Proposition 4.1.13.

C ≡
⋂
π∈R
Qπ ⊂ R.

Proof. Define

Q∞ := lim inf
π→∞

Qπ and Q−∞ := lim inf
π→−∞

Qπ.

We aim to show

Q∞ ∩Q−∞ ⊂ R.

Note the two equations

Q±∞ = {Q ∈ Q : lim
π→±∞

Ψ(Q, π) ∈ [−∞, 0)}.

Due to λ > 1, no measure Q will produce a constant π 7→ Ψ(Q, π) except in

trivial situations, which we may exclude. Take Q ∈ Q∞ ∩ Q−∞. Then at least

one of the two limits limπ→±∞Ψ(Q, π) are −∞. If both limits are −∞, then

Q ∈ R by the equivalences given in property (iii) of Lemma 4.1.12. Now suppose

limπ→+∞Ψ(Q, π) > −∞ and limπ→−∞Ψ(Q, π) = −∞. Then, from the bounds on

Ψ it must be that EQϕ(∆) = 0, and that 0 < −EQϕ(−∆), so Q ∈ R. The case

where limπ→+∞Ψ(Q, π) = −∞ and limπ→−∞Ψ(Q, π) > −∞ is analogous.

The result is clear, as
⋂
π∈RQπ ⊂ Q∞ ∩Q−∞.
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Proof of Proposition 4.1.11. We assume that:

(i) for every π ∈ R, we have Qπ 6= ∅, and

(ii)
⋂
π∈RQπ = ∅.

We aim for a contradiction, showing these two conditions cannot happen in tandem.

Define

Π(Q) = {π ∈ R : Q 6∈ Qπ} = {π ∈ R : Ψ(Q, π) ≥ 0}

and note by assumption (ii), there is no measure Q such that for any π, Q ∈ Qπ.

So for any measure Q there is a π such that Q 6∈ Qπ, so

for every Q ∈ Q, Π(Q) 6= ∅.

Suppose that
⋂

Q∈QΠ(Q) 6= ∅. Then we may find some strategy π∗ ∈
⋂

Q∈QΠ(Q)

such that the function Ψ(Q, π∗) ≥ 0 for every Q ∈ Q, which contradicts our as-

sumption (i). Thus we can consider the dual set of conditions

(i’)
⋂

Q∈QΠ(Q) = ∅, and

(ii’) for every Q ∈ Q, we have Π(Q) 6= ∅.

If we can show that the conditions (i’) and (ii’) together lead to a contradic-

tion, we have achieved our aim. We assume (i’) and (ii’).

By property (i) of Lemma 4.1.12, the set Π(Q) is a closed interval in the

extended real line [−∞,+∞] with the standard topology.

Define the endpoints of Π(Q) to be

`Q = inf Π(Q) ∈ [−∞,∞] and rQ = sup Π(Q) ∈ [−∞,∞].

We re-write condition (i’):⋂
Q∈Q

Π(Q) = ∅ ⇐⇒ ` := sup
Q∈Q

`Q > inf
Q∈Q

rQ =: r.

The strict inequality in the above line shows that we implicitly rule out both the

cases where ` = −∞ and r = +∞. For each N ∈ N, we choose probability measure

Q(0,N) so that `Q(0,N) > `− 1
N whenever ` <∞,

`Q(0,N) > N whenever ` =∞.
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We choose Q(1,N) so thatrQ(1,N) < r + 1
N whenever r > −∞,

rQ(1,N) < −N whenever r = −∞.

Now choose N ∈ N such that `Q(0,N) > rQ(1,N) . This is accomplished in the case

` <∞ and r > −∞ by any integer

N >
2

`− r
.

Drop the N from the notation, Q(0,N) = Q(0), etc.. For all θ ∈ [0, 1], define

the convex combination Qθ = θQ(1) + (1− θ)Q(0). For legibility, we shall write

`Qθ = `(θ), and rQθ = r(θ).

In this notation, we have

r(1) < `(0).

Claim. The subsets of [0, 1]

U := {θ ∈ [0, 1] : Qθ ∈ Qc`(0)}

V := {θ ∈ [0, 1] : Qθ ∈ Qcr(1)}

are intervals closed in [0, 1].

Proof of Claim. We prove the statement for U ; the result for V is analo-

gous. Take θ1, θ2 ∈ U , θ1 < θ2. Suppose θ ∈ (θ1, θ2), but θ 6∈ U , which

means that Qθ ∈ Q`(0). We have that Q1 ∈ Qπ for any π > r(1), and in

particular Q1 ∈ Q`(0). By convexity of Q`(0), we have Qθ2 ∈ Q`(0), that

is, θ2 6∈ U , a contradiction. So U is an interval. Closure follows from the

closedness of Qc`(0).

Set

ã = sup{θ ∈ [0, 1] : Qθ ∈ Qc`(0)},

b̃ = inf{θ ∈ [0, 1] : Qθ ∈ Qcr(1)}.

Claim. ã < b̃.
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Proof of Claim. Otherwise, take any θ ∈ [̃b, ã], and note

θ ≥ b̃ =⇒ Qθ ∈ Qcr(1); θ ≤ ã =⇒ Qθ ∈ Qc`(0).

Furthermore,

∀π > r(1), Q1 ∈ Qπ and ∀π < `(0), Q0 ∈ Qπ.

By convexity of each Qπ for π ∈ (r(1), `(0)), we have

∀π ∈ (r(1), `(0)), ∀θ ∈ [0, 1], Qθ ∈ Qπ.

Summarising,

Qθ ∈ Qcr(1), Qθ ∈
⋂

π∈(r(1),`(0))

Qπ, and Qθ ∈ Qc`(0).

i.e. Ψ(Qθ, r(1)) ≥ 0, i.e. sup
π∈(r(1),`(0))

Ψ(Qθ, π) < 0, i.e. Ψ(Qθ, `(0)) ≥ 0.

which contradicts concavity of π 7→ Ψ(Qθ, π).

Set

θ̃ =
ã+ b̃

2
.

We assume Π(Qθ̃) 6= ∅. By construction, we know that

θ̃ > ã =⇒ Qθ̃ ∈ Q`(0) =⇒ ∀π ≤ `(0), Qθ̃ ∈ Qπ.

θ̃ < b̃ =⇒ Qθ̃ ∈ Qr(1) =⇒ ∀π ≥ r(1), Qθ̃ ∈ Qπ.

Thus, the interval Π(Qθ̃) does not intersect [r(1), `(0)], so Π(Qθ̃) lies either wholly

to the left or wholly to the right of [r(1), `(0)]. Either r(θ̃) < r(1) or `(θ̃) > `(0).

If `(θ̃) > `(0), then define

a = θ̃,

b = b̃.

If r(θ̃) < r(1), then define

a = ã,

b = θ̃.

We now view the above workings as one step of an iterative scheme. Set
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a(0) = 0 and b(0) = 1, and for k = 0, 1, 2, . . . define recursively

ã(k) = sup{θ ∈ [a(k), b(k)] : Qθ ∈ Qc`(a(k))},

b̃(k) = inf{θ ∈ [a(k), b(k)] : Qθ ∈ Qcr(b(k))}.

As before, ã(k) < b̃(k); define

θ̃(k) =
ã(k) + b̃(k)

2
.

We assume that Π(Qθ̃(k)) 6= ∅. As before, we have the following dichotomy:

either `(θ̃(k)) > `(a(k)), in which case set

a(k + 1) = θ̃(k),

b(k + 1) = b̃(k);

or r(θ̃(k)) < r(b(k)), in which case set

a(k + 1) = ã(k),

b(k + 1) = θ̃(k).

The intervals [a(k), b(k)] are nested, that is, [a(k), b(k)] ⊃ [a(k + 1), b(k + 1)]. At

each step, the length of each interval at least halves:

b(k + 1)− a(k + 1) ≤ 1

2
(b(k)− a(k))

thus these two sequences converge to the same limit θ∗ ∈ [0, 1],

a(k) ↑ θ∗ and b(k) ↓ θ∗.

We assume that Π(Qθ∗) 6= ∅, thus Π(Qθ∗) = [`∗, r∗] for some real numbers `∗ < r∗.

By definition,

r(b(k)) ≥ r(b(k + 1)) ≥ r and `(a(k)) ≤ `(a(k + 1)) ≤ ` ∀k ≥ 0.

So we have constructed bounded monotone sequences of real numbers, with limits

defined to be

r(b(k)) ↓ r∞ and `(a(k)) ↑ `∞, where clearly r∞ < `∞.

We immediately derive the contradiction:

Lemma 4.1.14. In the above notation, `∞ = `∗ and r∞ = r∗.
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Proof. We show the former equality; the latter is analogous.

We begin by noting that, by construction, we have Π(Qθ∗) ∩ (r∞, `∞) = ∅,

so that the closed interval Π(Qθ∗) is either wholly to the left or wholly to the right

of the open interval (r∞, `∞).

The central idea of this proof is the following:

Claim. For each k, Qa(k) ∈ Qc`∞ .

Proof of Claim. We know that `(a(k)) ≤ `∞ for any k, so we have

∀k, Qa(k) ∈ Qc`∞ ⇐⇒ ∀k, r(a(k)) ≥ `∞.

Suppose the condition on the right is not satisfied: there is a k0 such that

r(a(k0)) < `∞. By definition of r(a(k0)), we have

Qa(k0) ∈ Qπ ∀π ∈ (r(a(k0)),+∞).

Using the fact that Q(1) ∈ Qπ for any π > r(1), we certainly have

Q(1) ∈ Qπ for π ≥ r(a(k0)) ≥ `(a(k0)) ≥ `(0) > r(1).

By convexity of Qπ for π > r(a(k0)), we have

∀π > r(a(k0)), ∀θ ∈ [a(k0), θ∗], Qθ ∈ Qπ.

Whence for any k > k0, we have `(a(k)) ≤ r(a(k0)) < `∞, which contra-

dicts `(a(k)) ↑ `∞.

The sequence Qa(k) is norm convergent to Qθ∗ as k →∞ since a(k) ↑ θ∗, and

so by closure of Qc`∞ , we conclude

Qθ∗ ∈ Qc`∞ , in particular, `∞ ∈ Π(Qθ∗).

This has two crucial ramifications:

1. the interval Π(Qθ∗), containing the value `∞, is wholly to the right of the

interval (r∞, `∞), so that `∗ ≥ `∞;

2. `∞ ∈ [`∗, r∗], so that `∗ ≤ `∞.

Hence `∗ = `∞.

This completes the proof of Proposition 4.1.11.
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