Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Advances in ultra-low contact force nanometric surface metrology

Tools
- Tools
+ Tools

Howard, Lowell Paine (1993) Advances in ultra-low contact force nanometric surface metrology. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_Theses_Howard_1993.pdf - Unspecified Version - Requires a PDF viewer.

Download (6Mb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b1415244~S15

Request Changes to record.

Abstract

This dissertation describes the theoretical design, practical construction and experimental use of a novel profiler intended to bridge the gap between atomic force microscopes (AFMs) and conventional stylus instruments. More specifically, it may be regarded as a hybrid instrument, combining the long-range of stylus instruments with the low contact force, high-speed operation of the AFM. The heart of the new instrument is a miniature capacitance-based force probe, constructed of glass and ceramic materials chosen primarily for thermal stability. This force probe can sense forces encompassing the range from atomic force levels (10¯7 N) to stylus instrument levels (10-⁴ N). Probes used in subsequent studies range from ISO standard spherical diamond styli (radii 2, 5 and 10 ᶙm) to 20 nm radius Berkovich diamond tips. A custom designed low excitation voltage, high frequency capacitance gage, used to monitor the sub-nanometer displacements of the force probe is presented. To measure surface profiles, the force probe is mounted on a PZT actuator and, much like an AFM, follows a contour of constant force under servo control.
The specimen traverses underneath the force probe on an ultra-precision kinematic slideway using a flat glass datum surface and polymeric dry bearings. A novel, inexpensive laser interferometer used to monitor specimen position and control data acquisition of the profiler is described. In this manner, profiler repeatability is enhanced to the nanometer level in two axes. Profiler performance is tested for repeatability, noise force servo bandwidth and temperature stability. A force servo response bandwidth of 300 Hz was ascertained. This compares favorably with the sub- ten Hz responses of stylus instruments.
A series of experiments designed to validate the high-speed performance of the profiler are presented. This high speed operation is some 10 to 100 times faster than conventional stylus instruments. Dynamic, non-linear interactions between the stylus tip and specimen are first derived and then examined experimentally. These dynamic interactions may eventually make it possible to measure specimen internal damping and interface stiffness or mechanical properties at the point contact level.

Item Type: Thesis (PhD)
Subjects: T Technology > T Technology (General)
Library of Congress Subject Headings (LCSH): Nanotechnology, Metrology, Electrical engineering -- Research, Surfaces (Technology), Surfaces (Technology) -- Measurement, Electric measurements, Electronic measurements, Measurement
Official Date: June 1993
Dates:
DateEvent
June 1993Submitted
Institution: University of Warwick
Theses Department: Department of Engineering
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Smith, Stuart
Extent: xi, 245 leaves :illustrations
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us