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Abstract

Modern statistical inference has seen a tremendous increase in the size and
complexity of models and datasets. As such, it has become reliant on advanced com-
putational tools for implementation. A first canonical problem in this area is the
numerical approximation of integrals of complex and expensive functions. Numerical
integration is required for a variety of tasks, including prediction, model comparison
and model choice. A second canonical problem is that of statistical inference for
models with intractable likelihoods. These include models with intractable normal-
isation constants, or models which are so complex that their likelihood cannot be
evaluated, but from which data can be generated. Examples include large graphical
models, as well as many models in imaging or spatial statistics.

This thesis proposes to tackle these two problems using tools from the kernel
methods and Bayesian non-parametrics literature. First, we analyse a well-known
algorithm for numerical integration called Bayesian quadrature, and provide consis-
tency and contraction rates. The algorithm is then assessed on a variety of statistical
inference problems, and extended in several directions in order to reduce its compu-
tational requirements. We then demonstrate how the combination of reproducing
kernels with Stein’s method can lead to computational tools which can be used
with unnormalised densities, including numerical integration and approximation of
probability measures. We conclude by studying two minimum distance estimators
derived from kernel-based statistical divergences which can be used for unnormalised
and generative models.

In each instance, the tractability provided by reproducing kernels and their
properties allows us to provide easily-implementable algorithms whose theoretical
foundations can be studied in depth.
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Chapter 1

Challenges for Statistical

Computation

“Computations are an issue in statistics whenever

processing a dataset becomes a difficulty, a liability, or

even an impossibility.”

Green et al. [2015]

As illustrated by Green et al. [2015], computation has always been an issue

for large-scale statistical inference. Recently, computational issues have been exac-

erbated by increases in computing resources and the availability of larger datasets,

which has encouraged scientists to fit ever-more complex models. Keeping up with

these changes is a constant challenge for researchers in computational statistics. In

this thesis, we review some of the main problems in this area and contribute novel

methodology to two of them: (i) the problem of numerical integration of complex

and expensive functions, and (ii) the problem of statistical inference for models with

intractable likelihoods.

1.1 Challenge I: Numerical Integration and Sampling

Let (X ,F , µ) be a measure space1. A major issue preventing the application of many

complex statistical methodologies is the need to compute the Lebesgue integral of

1We assume the reader is familiar with notions of measure and probability theory. If this is not
the case, see Appendix A.2 for a brief introduction.
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some integrable functions f : X → R:

Π[f ] :=

∫
X
f(x)Π(dx), (1.1)

where Π is some probability measure on (X ,F) assumed to admit some probability

density function π with respect to some underlying reference measure µ on the space

X . The space X is called the state space and is usually a subspace of Rd or some

manifold embedded in Rd for some d ∈ N (where we adopt the convention that N
does not include 0).

From the point of view of statistical computation, the main issue arises when

these integrals cannot be evaluated in closed form and have to be estimated numeri-

cally. Historically, classical quadrature rules such as Gaussian quadratures have been

used extensively [Naylor and Smith, 1982; Smith et al., 1985]. These are however

only suitable for low-dimensional integrals with a smooth integrand. Nowadays,

it is common to use Monte Carlo (MC) methods [Meyn and Tweedie, 1993; Liu,

2001; Robert and Casella, 2004] to approximate the integral by taking an average of

function values at samples from Π (either identically and independently distributed

(IID) or approximately IID).

In both of the cases above, we obtain an approximation of the form:

Π̂[f ] :=
n∑
i=1

wif(xi), (1.2)

called quadrature (or cubature) rule, based on point sets (also called samples) xi ∈ X
and weights wi ∈ R for i = 1, . . . , n. Under certain regularity conditions, this esti-

mator converges to the solution of the integral as n→∞. For finite but large sample

sizes n, the estimator reasonably approximates the truth. However, these estima-

tors will have (potentially very) large errors whenever π is highly multimodal, the

state-space X is high-dimensional or the integrand f is computationally expensive to

evaluate. Adapting numerical integration methods to each of these scenarios is one

of the main tasks in computational statistics. We now highlight several applications

of numerical integration in statistics.

1.1.1 Applications in Bayesian Statistics

In Bayesian statistics [Robert, 1994; Gelman et al., 2013], once a model and a prior

have been specified, all that remains to be done is to repeatedly apply Bayes’ theorem

until we obtain a distribution on the variables of interest conditioned on every other

observable variable. Denote by X the matrix whose rows are data points {xi}ni=1
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from some data space denoted D and by θ ∈ Θ the parameters of a statistical model.

For simplicity, we assume that D and Θ are both Euclidean spaces. The simplest

formulation of Bayesian inference (assuming the existence of all densities) is the

following equation2:

p(θ|X) =
p0(θ)p(X|θ)

p(X)
, (1.3)

where p(X|θ) denotes the likelihood, or statistical model, and describes the plausi-

bility of the parameter taking value θ when X is observed. Furthermore, p0(θ) is the

prior density on the unknown model parameters θ and p(θ|X) denotes the posterior

density (after having observed X) on these same parameters. The quantity in the

denominator, p(X) is called the model evidence or marginal likelihood, and can be

expressed as

p(X) =

∫
Θ
p(X|θ)p0(θ)dθ. (1.4)

The model evidence is an example of an integral that almost always needs to be

computed, in this particular case in order to be able to evaluate our posterior on

parameters θ. This is not possible in all but special cases, in which case we call this

Bayesian approach a conjugate analysis.

Integrals are also required when predicting new data values x′ ∈ D. This can

be done by computing the posterior predictive distribution

p(x′|X) =

∫
Θ
p(x′|θ)p(θ|X)dθ, (1.5)

which allows us to propagate the uncertainty in our posterior through to predictions.

Similar integrals are also required to do model selection with Bayes factors [Kass

and Raftery, 1995] or for Bayesian model averaging [Hoeting et al., 1999].

Clearly, Bayesian inference would be restricted to very simple models without

numerical integration. This explains why Bayesian methods only became widely

popular across the sciences in the 1990s, at which point the statistics community

had been introduced to Markov Chain Monte Carlo (MCMC) methods [Robert and

Casella, 2011].

2There is a clear abuse of notation in this equation since p is used for different densities. However,
this is common in practice for ease of exposition.
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1.1.2 Applications in Frequentist Statistics

Challenging integrals are also ubiquitous in frequentist statistics, and are often

required for maximum likelihood estimation. Suppose we have IID realisations

{xi}ni=1 ⊂ D from a probability measure Pθ∗ from some parametric family of Borel

probability measures PΘ(D) = {Pθ : θ ∈ Θ} defined on D. Once again assume D
and Θ are Euclidean spaces and denote by p(·|θ) the Lebesgue density of Pθ. We

are interested in finding the “true” parameter θ∗ ∈ Θ which generated these sam-

ples, and the maximum likelihood approach proposes to do so by maximising the

expected log-likelihood under the data-generating process:

arg max
θ∈Θ

∫
D

log p(x|θ)p(x|θ∗)dx. (1.6)

In practice, the integral is usually approximated using a MC estimate with the

samples {xi}ni=1 that are readily available, and we get the following optimisation

problem:

arg max
θ∈Θ

1

n

n∑
i=1

log p(xi|θ). (1.7)

Numerical integration is therefore clearly fundamental here, and we may wish to

use more efficient methods to approximate the integral. Note that the approach is

of course only feasible if the likelihood can be evaluated in closed form. In the case

of latent variable models, this does not necessarily hold. Indeed, assume we have a

set of unobserved variables y (called nuisance parameters) in some space Y. In this

case, we would usually have access to a conditional likelihood p(x|y, θ) and therefore

need to integrate out all possible values of the latent variable y to get a marginal

likelihood:

p(x|θ) =

∫
Y
p(x|y, θ)p(y|θ)dy. (1.8)

which we can then use for maximum likelihood estimation. This will be infeasible

for most models and will once again require numerical integration; see Diggle et al.

[2013] for an example with log Gaussian Cox models or Grazzini et al. [2017] for a

example with agent-based models.
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1.1.3 Existing Methodology

The ubiquity of integration across statistics should now be clear to the reader. We

now move on to discuss how the problem of numerical integration can be tackled in

practice. In this section, we briefly review existing methodology, then discuss some

of their shortcomings. Recall that we assume throughout this chapter that (X ,F , µ)

is a measure space and Π is a probability measure with density (with respect to µ)

denoted π.

Monte Carlo Integration and Importance Sampling

Monte Carlo methods are quadrature rules based on uniform weights. The simplest

of those methods, which is usually simply referred to as “Monte Carlo” [Robert and

Casella, 2004; Glasserman, 2004], consists of obtaining IID realisations {xMC
i }ni=1

from the measure Π and approximating Π[f ] as:

Π̂MC[f ] :=
1

n

n∑
i=1

f
(
xMC
i

)
.

An illustration of such a point set is available in Figure 1.1 for the case where Π

is a uniform measure on the unit cube X = [0, 1]2. MC estimators are popular

in statistics owing to their wide applicability and their well-known properties. For

instance, under regularity conditions (omitted for brevity), the central limit theorem

gives that

√
n
(

Π̂MC[f ]−Π[f ]
)

D−→ N (0,Varπ[f ]), (1.9)

where
D−→ denotes convergence in distribution. We use the notation N (m, c) to

denote a normal distribution with mean m and covariance c, and Varπ[f ] = Π[f2]−
Π[f ]2 is the variance of f under Π. MC is well-suited to numerical integration

problems since it provides a dimension-independent convergence rate of OP (n−1/2)3.

A major limitation with MC is the need to sample IID realisations from Π,

which is only possible for a limited set of distributions. An alternative estimator

with weighted point sets is called importance sampling (IS) and is of the form:

Π̂IS[f ] :=
n∑
i=1

wIS
i f
(
xIS
i

)
, (1.10)

3We write that some function f(x) is O(g(x)) if the statement “∃M,x0 > 0 such that |f(x)| ≤
Mg(x) whenever x ≥ x0” holds. Furthermore, we write f(x) is OP (g(x)) if the statement holds
with high probability.
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where {xIS
i }ni=1 are IID realisations from another probability measure Π′ called im-

portance measure. This importance measure is defined on (X ,F) and is specified

a-priori by the user. Its density with respect to µ satisfies π′(x) > 0 whenever

π(x)f(x) 6= 0, and the IS weights are given by:

wIS
i :=

π(xi)

nπ′(xi)
, (1.11)

for i = 1, . . . , n. The IS estimator in Equation 1.10 can be be seen as an MC

estimator where the function f ′(x) = f(x)π(x)/π′(x) is integrated with respect to

the measure Π′. IS is most often used when IID sampling from Π is not feasible, or

because clever choices of importance distribution Π′ can lead to significant variance

reduction in the corresponding central limit theorem. However, IS tends to become

inefficient in high dimensions when most samples will have near zero weight. This

is due to the fact that, in high dimensions, regions of high probability will tend to

be concentrated on small subsets of the sample space X (a phenomenon known as

the curse of dimensionality; see [MacKay, 2003; Betancourt, 2017]).

An illustration of IS is given in Figure 1.1 (middle left), where IID realisa-

tions {xIS
i }ni=1 are obtained from some importance measure Π′ which is a truncated

Gaussian centred at the origin. The size of the samples is plotted proportional to

their weight (as given by Equation 1.11). As observed, there are fewer realisations

in the top right corner, but these have larger weights. This compensates for the fact

that Π′ has very low mass in that part of the domain. The choice of importance

distribution will be particularly efficient if the integrand f is such that π′(x) ∝ f(x).

In this case, Π′ would be the optimal importance sampling distribution and the IS

estimator would have lower asymptotic variance than the MC estimator.

Markov Chain Monte Carlo Integration

Often we only know π, the density of Π, up to a multiplicative constant. That

is, we are able to evaluate π̃ where π(x) = π̃(x)/Z for some unknown Z ∈ R+.

This is for example the case in Bayesian statistics where the probability measure Π

is a posterior measure and the normalisation constant Z is the model evidence in

Equation 1.4. In this case, neither MC or IS can be used, but MCMC methods [Meyn

and Tweedie, 1993; Robert and Casella, 2004] can be a useful alternative. The idea

behind MCMC is to generate correlated samples {xMCMC
i }ni=1 which, marginally, are

approximately IID realisations from the target measure Π by obtaining a realisation

from a Markov chain whose stationary measure is Π. The estimator of the integral
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Figure 1.1: Monte Carlo, importance sampling, Markov chain Monte Carlo and
quasi-Monte Carlo (Halton sequence) point sets. Plot of n = 100 points for each
algorithm for integration against a uniform distribution on [0, 1]2.

then becomes:

Π̂MCMC[f ] :=
1

n

n∑
i=1

f
(
xMCMC
i

)
. (1.12)

Recall that a Markov chain is a sequence of random variables X0, X1, . . . such that

the distribution of Xi is only conditional on Xi−1. A Markov chain may be specified

by an initial measure H0 (with density h0) for X0 and a transition measure T , (with

density t(·|x) : X → R+) from which we can sample. Xi is then a realisation from a

measure Hi with density given by hi(x
′) =

∫
X t(x

′|x)hi−1(x)dx. The measure Π is

called a stationary measure of the Markov chain if whenever Xi is a realisation from

Π, then Xi+1 is also a realisation from Π. This can be summarised succinctly with

the following condition: π(x′) =
∫
X t(x

′|x)π(x)dx. If the Markov chain is ergodic,

it will converge to its stationary measure independently of its initialisation.

The Metropolis-Hastings algorithm [Metropolis et al., 1953; Hastings, 1970]

is the most widely used example of MCMC. It aims to construct a Markov chain

converging to the desired target measure Π by the means of a proposal kernel K :

X ×X → [0, 1], where for each x ∈ X , K(·,x) is a probability measure with density

κ(·,x) : X → R. The algorithm proceeds as follows. First, draw a realisation x0 ∈ X
from H0. Then, at each iteration, given the current state xi ∈ X :

1. Propose a new state x̃ by obtaining a realisation from K(·,xi).

2. Accept the proposed state (i.e. set xi+1 = x̃) with probability A(x̃|xi) :=

min
{

1, π(x̃)κ(xi,x̃)
π(xi)κ(x̃,xi)

}
, else keep the previous state (i.e. set xi+1 = xi).

This induces a transition kernel T : X × X → [0, 1] where for fixed x ∈ X , induces
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a distribution T (·,x). When it exists, the density of T (·,x) is given by:

t(x′|x) := κ(x′,x)A(x′|x) + 1{x′=x}
(
1−A(x′|x)

)
,

where 1{x′=x} takes value 1 when x′ = x and 0 otherwise. Note that the computation

of A(x′|x) does not rely on the constant Z, due to a cancellation in the ratio.

In principle, there are only mild requirements on the proposal kernel required

to obtain an asymptotically correct algorithm. The choice of proposal kernel will

however have a high influence on the performance of the algorithm. Intuitively, the

aim is to choose a proposal kernel which will favour values with high probability of

acceptance. Concurrently, we would also like the proposal kernel to be designed so

that chain explores the state space well in a small number of iterations, so that the

realisations are as close to IID as possible.

A common choice is a symmetric distribution centred on the current state

of the chain, which gives the well-known random-walk Metropolis algorithm. This

algorithm is illustrated in Figure 1.1 (middle right) where we have used a Gaussian

proposal centred at the current state and with variance 0.1. The black dots give

the samples of the Markov chain and their size depends on the number of time they

are repeated in the chain. On the other hand, the dotted lines indicate the path of

the chain. This example can highlight the difficulty of tuning Markov chains; the

chain is not very efficient at covering the whole space and this could most likely be

resolved by increasing the variance of the proposal. It is also often possible to use

more efficient transition kernels.

A more advanced algorithm is the Metropolis-adjusted Langevin algorithm

[Rossky et al., 1978; Scalettar et al., 1986; Roberts and Rosenthal, 1998], which

exploits gradients by approximating the path of a diffusion which is invariant to

the target distribution. Duane et al. [1987] also later proposed a method based

on approximating Hamiltonian dynamics with potential energy given by the log

target density. This method was originally named Hybrid Monte Carlo, but is also

commonly known as Hamiltonian Monte Carlo [Neal, 2011; Betancourt, 2017; Barp

et al., 2018]. Informally, these two methods have the advantage of using transition

kernels directing the Markov chain towards areas of high probability and are hence

preferable to the random-walk Metropolis algorithm above.

Another alternative to these algorithms is to restrict our proposal measure

to a parametric family of transition kernels. We then assume that a member of this

family is a good choice, and attempt to learn the corresponding parameter on the fly.

Algorithms of this form are called adaptive MCMC algorithms [Gilks et al., 1994;
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Haario et al., 2001; Andrieu and Thoms, 2008]. Adaptive MCMC algorithms can be

very efficient, but proving their correctness is difficult since the Markov property no

longer holds since we are allowing the process to depend on more than the current

state.

Sequential Monte Carlo samplers

An approach which combines ideas from IS and MCMC are sequential Monte Carlo

(SMC) methods. SMC (and other particle-based schemes) have had an enormous in-

fluence in signal processing, and more generally filtering and smoothing in a Bayesian

context [Doucet and Johansen, 2011; Särkkä, 2013]. More recently SMC algorithms

have been proposed to sample from complex distributions, and these can be partic-

ularly efficient for multimodal target distributions.

SMC samplers [Chopin, 2002; Del Moral et al., 2006] start by defining a

sequence of probability measures Π0,Π1, . . . ,ΠT where ΠT = Π is the measure we

would like to integrate against. The main idea behind SMC is to sequentially obtain

realisations from this sequence of measures by moving a set of particles. If Π0 is

simple to sample from, and moving particles across consecutive measures in this

sequence is also relatively easy, then SMC samplers can render the task of sampling

from Π manageable even when sampling from Π directly (e.g. using MCMC) would

be difficult of even infeasible. The algorithm follows the following step. First,

we start by obtaining particles {xi}ni=1 as IID realisations from Π0, then at each

iteration of the algorithm:

1. Update the weights using the formula for IS weights in Equation 1.11 with

importance distribution Πt−1 and target Πt.

2. If some resampling criterion (described below) is satisfied, do a resampling

step. This means sampling (with replacement) from our current set of particles

according to their respective weights and setting the weights of the resampled

particle to 1/n.

3. Update the particles using MCMC step(s) with invariant measure Πt.

Once iteration T is attained, a last resampling step is used to obtain a final set of

equally-weighted particles which we will denote {xSMC
i }ni=1. When this procedure is

completed, we end up with an estimator:

Π̂SMC[f ] :=
1

n

n∑
i=1

f
(
xSMC
i

)
.
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The resampling strategy can be useful to avoid the degeneracy of particle weights

which is common with IS methods (i.e. most particles end up having near zero

weight). The most common resampling approach is the multinomial sampling de-

scribed above, but alternatives can be more efficient [Douc et al., 2005].

Note that to avoid resampling at every step, it is common to use a criterion

based on the variability of the current samples such as the effective sample size.

Another example, called conditional effective sample size, was proposed by Zhou

et al. [2016]. Given a set of weighted particles {xi, wi}ni=1 at iteration j, it can be

computed as:

CESS =
n (
∑n

i=1wizi)
2(∑n

i=1wiz
2
i

) ,

where zi = (π(xi)/π0(xi))
(tj−tj−1) for i = 1, . . . , n and π0 is the density of Π0.

Quasi-Monte Carlo Integration

All of the methods we have seen so far focus on approximating the target mea-

sure Π. When Π is simple, it is common to exploit properties of the integrands

instead. Quasi-Monte Carlo (QMC) methods [Dick and Pillichshammer, 2010; Dick

et al., 2013] are estimators based on point sets with grid-like structures and uni-

form weights, usually defined on some domain X which is the unit cube and for

integration against a measure Π which is the uniform measure on this cube:

Π̂QMC[f ] :=
1

n

n∑
i=1

f
(
xQMC
i

)
.

The point set {xQMC
i }ni=1 is chosen to minimise some notion of discrepancy between

an empirical measure and the measure Π. For this reason, they are often referred

to as “space-filling designs”, and different notions of discrepancy lead to different

QMC rules. These designs are either nested (i.e. the point set with n + 1 points

can be obtained by adding one point to the point set of size n) in which case they

are called “open”, or non-nested (the point set of size n+ 1 needs to be recomputed

from scratch) in which case they are called “closed”.

An example of an open QMC point set is the Halton sequence, which is given

in the case d = 2 in red in Figure 1.1 (right). It can be observed that the sequence

fills the space in a much more uniform way than the plot of MC points (in blue).

This space filling property means that the QMC rules can usually attain

faster convergence than MC methods. Under mild conditions on f , the error de-
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creases at the asymptotic rate O(n−1+ε) where ε denotes log terms. Specific methods

have also been used to obtain fast convergence rates of O(n−
α
d

+ε) in the classical

Sobolev spaces4 Wα
2 (X ), where α denotes the number of weak derivatives of func-

tions in the space.

It is also well-known [Sloan and Woźniakowski, 1998] that QMC can perform

particularly well in high dimensions; for example, a dimension-independent con-

vergence rate of O(n−α+ε) can be proved for Sobolev spaces of mixed dominating

smoothness (usually denoted Sα2 (X )).

Another direction of research has been randomised quasi-Monte Carlo which

proposes to randomise QMC point sets in a way which preserves their space-filling

properties. A particular example is the scrambling method of Owen [1997], which

can also be shown to converge fast for smooth functions (in mean-squared error).

Although QMC methods can be used to obtain fast convergence rates, they

tend to be impractical for many applications due to their restriction to the cube

and the uniform measure. Several ways of avoiding this issue have been proposed

in the literature, mostly focusing on transforming alternative problems to fit in this

setup, but these tend to be impractical.

Classical Deterministic Quadrature Rules

As already pointed out, another alternative which has historically been popular but

is now rarely used in modern statistical inference problems are classical deterministic

quadrature rules [Davis and Rabinowitz, 2007]. These rules are usually designed to

integrate functions on some interval (a, b) ⊂ R, and the weights and points are often

chosen so as to integrate any polynomial up to a certain degree exactly.

The simplest examples include the midpoint rule, consisting of one point

x1 = (b − a)/2 and weight w1 = |b − a|, and the trapezoidal rule, consisting of the

two points x1 = a, x2 = b and weights w1 = w2 = |b− a|/2. The two rules integrate

exactly all polynomials of degree 0 and 1 respectively, and are part of the family of

Newton-Cotes rules which are based on equally-separated points. These rules can be

either open5, in which case they integrate polynomials passing through all including

the boundary exactly, or closed, in which case they do not evaluate integrands on

the boundary. See Figure 1.2 for an illustration.

Another class of quadrature rule, which can integrate polynomials of order up

to n− 1 with n points are the Gaussian quadrature rules [Golub and Welsch, 1969].

Different examples of Gaussian quadrature rules exist, depending on the measure

4See Appendix A.1 for definitions and some additional background on functional analysis.
5Note that the concepts of open and closed are different to those used in the QMC literature.
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Figure 1.2: Closed Newton-Coates, open Newton Coates and Gauss-Legendre point
sets. Plot of n = 100 points of each method for integration against a uniform
distribution on [0, 1]2.

against which the integral is taken. For example, the Gauss-Hermite rule can be

used when the measure Π is Gaussian and the Gauss-Legendre rule (see Figure 1.2)

when the measure Π is uniform.

Similarly to some QMC sequences, classical deterministic quadrature rules

can also be nested: see for example the class of Fejér quadrature rules (also called

Clenshaw-Curtis quadrature rules).

The reason for their lack of use in statistics is that they are usually limited to

integration over one-dimensional intervals. Several attempts have been proposed to

scale these to multiple dimensions (in which case they are called cubature rules), in-

cluding tensor product structures and sparse quadrature structures such as Smolyak

sparse grids. However, these methods have not really been used in statistics due

to the fact that most classical deterministic quadrature rules require integrals to be

done against very simple measures such as the uniform or Gaussian measure.

Laplace Approximations and Variational Inference

We conclude with a brief discussion of optimisation-based methods such as the

Laplace approximation and variational inference. Although these methods do not

of themselves replace numerical integration, they are often used in order to approx-

imate distributions, and integrals with respect to the target distribution are then

replaced by integrals with respect to these surrogates.

The simplest approach is the Laplace approximation, which consists of fitting

a Gaussian with mean at the mode of the posterior and using the local geometry of

this mode for the covariance. This will of course be efficient if the posterior is peaked

and resembles a Gaussian, but can be extremely poor if the posterior has heavy tails

or is multimodal. Efficient modern implementations include the integrated nested

Laplace approximation (INLA) [Rue et al., 2009, 2016], which focuses on the class
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of latent Gaussian models.

An alternative approach is variational inference [Jordan et al., 1999; Blei

et al., 2017]. The aim here is to approximate some challenging probability density

(usually a Bayesian posterior), by choosing a parametric class of distributions, and

approximating the target density by the member of this class which is the closest in

some notion of distance (usually a statistical divergence).

This approach has the advantage that it is much less computationally de-

manding than most advanced Monte Carlo methods, but it also has several disad-

vantages. Firstly, it can be fairly limited if the variational family is not large enough.

Indeed, the main issue with variational inference is that it is not asymptotically ex-

act. That is, even with n→∞, we have no guarantee that the approximation error

will tend to zero if the target measure is not in the variational family. The method

is therefore not recommended if precise approximations are required.

Secondly, the divergences used in variational inference are non-convex objec-

tives and therefore cannot be minimised exactly. As a result, variational inference

approaches often end up significantly underestimating or overestimating the variance

of the target.

1.1.4 Issues Faced by Existing Methods

Following the introduction of common tools in numerical integration, we highlight

some of the challenges for these methods.

1) High Computational Cost

The most obvious issue is that of densities or integrands which are expensive to

evaluate. The term “expensive” can refer to either computational time or financial

cost. For example, complex integrands can take several hours on a computer to

be evaluated. Alternatively, in medical applications, evaluating an integrand might

mean having to run a set of experiments on some patients, which may incur a large

financial cost. These costs mean that a limited set of integrand evaluations are

available.

A class of problems for which this occurs is when we have to use a numerical

method at each evaluation of the density or integrand (or in fact any of their deriva-

tives). This is the case in the field of uncertainty quantification [Sullivan, 2016]

and inverse problems [Stuart, 2010; Dashti and Stuart, 2016] where evaluating the

likelihood often requires solving a differential equation numerically. Bui-Thanh and

Girolami [2014] give an example of Bayesian inference in a heat conduction problem
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which requires solving a partial differential equation with finite element methods

every time we want to obtain a realisation from the posterior. See also Mohamed

et al. [2010] for a similar problem in reservoir simulation, Martin et al. [2012] in

seismic models and Petra et al. [2014] for ice sheet models. Other challenging ap-

plications include Gaussian process models, which require numerically inverting a

potentially large positive definite matrix [Rasmussen and Williams, 2006].

A second class of problems is the so-called “tall data” problem, where the

number of samples entering the likelihood is very large. Examples of application

fields where this is a problem include astronomy [Sharma, 2017], spatial statistics

[Møller and Waagepetersen, 2004], as well as machine learning methods, e.g. topic

models [Griffiths and Steyvers, 2004; Blei et al., 2012] or neural networks [Goodfellow

et al., 2016].

This is particularly challenging for Bayesian statistics since the posterior dis-

tribution can become too computationally expensive to evaluate or simulate from

exactly, and has lead researchers to develop a range of new approximate algorithms;

see [Angelino et al., 2016] for an overview. Bardenet et al. [2017] also offer a discus-

sion of solutions in the Monte Carlo literature, whilst Hoffman et al. [2013] discuss

this issue in the context of variational inference. Another direction of research in

the tall data setting has been to consider methods to summarise large datasets with

a subset of representative weighted samples. This is called a coreset [Bachem et al.,

2017; Huggins et al., 2016; Campbell and Broderick, 2017] and can be used instead

of the entire dataset to reduce the computational cost associated with evaluating

likelihoods. However, these methodologies are still in their infancy and further de-

velopments are required.

2) High Dimensionality

A second challenge is the problem of concentration of measure that is particularly

problematic in high dimensions (and hence often called curse of dimensionality).

This concentration means that most of the state space has negligible probability

mass, and therefore uninteresting from an approximation point of view. Designing

samplers which can probe the relevant subset of the sample space X is therefore

challenging yet of critical importance.

To highlight only a few examples, sampling from the posterior over Bayesian

neural networks parameters is extremely challenging and requires efficient MCMC

proposals [Neal, 1995]. High dimensionality can also be a particular challenge in

model selection [Johnson and Rossell, 2012] and its applications to genomics [Li

and Zhang, 2010], or in phylogenetics [Larget and Simon, 1999; Mau et al., 1999]
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when sampling high dimensional structured spaces such as trees. Finally, we point

out that it is sometimes desirable to sample from spaces of functions. Applications

include fluid dynamics and computational tomography [Cotter et al., 2013].

A common solution for MCMC is to focus on samplers which take into ac-

count first and second order gradient information of log π, such as the Hamiltonian

Monte Carlo samplers discussed above. These can provide more efficient updates as

compared to simpler algorithms which do not take into account the density in the

proposal. For quadrature rules based on functional approximation, a common solu-

tion is to restrict the class of functions we are interested in approximating. See the

references in the previous section for an overview in the context of QMC methods.

3) Approximation of Complex Distributions

A particular challenge for sampling methods is when the density π is highly multi-

modal. The reason is that most of these methods are based on local moves: the next

sample is usually obtained by moving away from the location of the current sample.

However, in practice it is common for densities to have regions of low probability

between the modes, making moves between different modes a rare event. This mul-

timodality problem occurs for example in mixture models [Marin et al., 2005] or in

certain models driven by differential equations [Calderhead and Girolami, 2011]. In

multimodal cases, it is common to make use of tempering-based algorithms [Swend-

sen and Wang, 1986; Neal, 1996], but these can be challenging and expensive to

implement.

Sampling is also often complicated when the state-space X is not Euclidean,

but instead given by some manifold [Byrne and Girolami, 2013]. Examples of mani-

folds of interest in statistics include the circle and the sphere [Kent, 1982], which are

the central spaces of interest in directional statistics. Alternatively, computing inte-

grals on spaces of structured matrices such as the Stiefel and Grassmann manifold

is also useful in signal processing [Srivastava and Klassen, 2004] or computer vision

[Turaga et al., 2008]. Finally, another important scenario occurs in model compar-

ison, where sampling is sometimes done jointly across parameters and models and

the sample space is hence highly complex [Green, 1995].

4) Quantification of Numerical Error

Of course, it is only ever possible to evaluate an integrand at a finite number of

points n, and as such there is usually some numerical error remaining. For this

reason, quantifying the error remaining after finite computation is of paramount
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importance. There is however only very limited work in this area.

In the context of standard MC methods and IS, error estimates are usually

based on asymptotic results such as the central limit theorem (recall Equation 1.9).

Estimates of the asymptotic variance can be used to approximate the error of the

numerical scheme. However, there is in general no guarantee that the finite-sample

performance is acceptably close to the asymptotic performance. Similar approaches

can also be used for MCMC, with the added difficulty that the Markov structure

induces correlation across samples and that convergence of the chain to the target

distribution is difficult (if not impossible) to assess. In any case, these estimates tend

to be based on very weak assumption and therefore pessimistic in certain cases.

Indeed, these estimates are solely based on approximations of the measure with

respect to which we are integrating and do not use any properties of the integrand

of interest. As such, the same error estimate would be provided regardless of whether

we are integrating a constant function or a rough and highly-oscillatory function.

A partial remedy to this problem can be found in the information-based

complexity literature [Traub et al., 1983; Novak and Woźniakowski, 2008, 2010;

Novak, 2016; Ritter, 2000]. The general approach is to consider some arbitrary

function class H, and to study certain types of errors obtained by quadrature rules

when integrating functions f in this class. The most popular examples include the

worst-case integration error over H, given by:

ewor(Π̂; Π,H) := sup
‖f‖H=1

∣∣∣Π[f ]− Π̂[f ]
∣∣∣ . (1.13)

Another alternative is the average-case integration error, for which an additional

measure µH on the space of functions is required, and which is given by:

eavg(Π̂; Π, µH) =

∫
H

(
Π[f ]− Π̂[f ]

)
dµH(f). (1.14)

Unfortunately, these can only be computed for very limited combinations of prob-

ability measure Π and function space H due to the need to compute a supremum

over the unit ball of H, or an integral against µH. For this reason, these method

remain mostly analytical tools which allow theoreticians to guarantee the optimal-

ity of certain quadrature rules, rather than a practical tool for the assessment of

numerical error.

Finally, it is important to note that certain algorithms have been proposed to

approximate the numerical error, and use this approximation to make the methods

adaptive to the integrand. However, from an information-based complexity point
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of view, it can be shown under mild conditions that adaptivity is not helpful in the

sense that adaptive algorithms do not lead to faster asymptotic convergence rates for

the worst-case or average-case error [Ritter, 2000]. These approaches have however

shown to be useful in practice. For example, for classical deterministic quadrature

rules, several adaptive schemes have been proposed, usually based on Richardson

extrapolation (e.g. Romberg integration, which is a Newton-Coates method with

Richardson extrapolation), or epsilon-algorithms [Davis and Rabinowitz, 2007].

1.2 Challenge II: Intractable Models

We have now concluded our initial discussion of numerical integration, the main

challenge that will be tackled in this thesis. A second challenge is that of statisti-

cal models for which the density is not available. It should be clear from previous

sections that both Bayesian inference (see Equation 1.3) and maximum likelihood

inference (see Equation 1.7) are likelihood-based inference, meaning that they re-

quire us to be able to evaluate the likelihood at different data points and parameter

values. However, in the case of complex statistical models this may not be possible,

or computationally feasible. We now highlight two such scenarios.

1.2.1 Intractability in Unnormalised Models

A first scenario which is common in applications of statistics is when the likelihood

can only be accessed in an unnormalised form:

p(x|θ) =
p̄(x|θ)
Z(θ)

, (1.15)

where p̃(x|θ) is an unnormalised density which can be evaluated and Z(θ) ∈ R+

is an unknown normalisation constant which depends on the parameter vector

θ. Usually this scenario arises due to the high computational cost of evaluating

the normalisation constant, or because this constant is itself defined as some in-

tractable integral of the form Z(θ) =
∫
D p̃(x|θ)dx (when D is a continuous domain)

or Z(θ) =
∑

x∈D p̃(x|θ) (when D is a discrete, but very large, domain). Examples

include Gibbs distributions, which are popular in statistical physics and the study of

social networks [Caimo and Mira, 2015], as well as Markov random fields, which are

popular in image modelling and spatial statistics [Hyvärinen, 2006, 2007; Moores

et al., 2015].

Of course, this can be a particular challenge for maximum likelihood estima-

tion since we need to know the normalisation constant Z(θ) in order to solve the
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optimisation problem in Equation 1.7. Such problems have also received a lot of

attention in the Bayesian literature, where they are known as “doubly intractable”

problems due to the fact that both the normalisation constant of the likelihood

and the normalisation constant of the posterior (i.e. the model evidence) are un-

known. In these cases, combining Equations 1.3 and 1.15, we get that the posterior

distribution takes the form:

p(θ|X) =

p̄(X|θ)
Z(θ) p0(θ)

p(X)
. (1.16)

where both Z(θ) and p(X) are unknown. To resolve the issue of unknown normali-

sation constant for the likelihood, several authors have proposed to use plug-in MC

and MCMC estimates of the intractable integrals [Geyer, 1991; Lyne et al., 2015]

(this clearly this highlights another area where numerical integration is important!).

Other popular approaches have focused on approximations to the likelihood

and can be computed at much lower computational cost; see for example the pseudo-

likelihood method of Besag [1974] and related composite likelihood methods (see

Varin et al. [2011] for an overview). These are however not asymptotically exact

and it is not always easy to assess the bias created by the approximations.

In a frequentist setting, issues with these approaches have led to the devel-

opment of alternative methods to maximum likelihood, most notably score-based

inference methods such as score-matching [Hyvärinen, 2006, 2007; Karakida et al.,

2016] or proper scoring rules [Gneiting and Raftery, 2007; Dawid, 2007; Parry et al.,

2012] (see Chapter 4 for more details). These methods only require access to the

gradient of the log-density. Advantages include the fact that we can bypass the

computation of expensive normalisation constants whilst still obtaining an asymp-

totically exact solution since:

∇x log p(x|θ) = ∇x log p̄(x|θ) + ((((((∇x logZ(θ)︸ ︷︷ ︸
=0

= ∇x log p̄(x|θ). (1.17)

where ∇x is a vector of partial derivatives with respect to each of the coordinates

of x. In a Bayesian setting, pseudo-marginal approaches, including the exchange

algorithm [Murray et al., 2006; Møller et al., 2006] have been proposed to sample

from posterior distributions efficiently. These usually provide good approximations,

but at a high computational cost.

18



1.2.2 Intractability in Generative Models

A second scenario which recently received renewed interest is that of generative

models [Mohamed and Lakshminarayanan, 2016], sometimes also called implicit

models or likelihood-free models, for which the likelihood is not available in any

form. Instead, we assume that it is possible to obtain IID samples from the model

for any value of the parameter vector θ ∈ Θ. Let (U ,ΣU ,U) be a probability space.

Formally we regard generative models as a family of probability measures such that

for any value of the parameter θ ∈ Θ, we can obtain some IID data {xi}ni=1 from

the corresponding probability measure Pθ. This data is obtained in two steps: first

IID random variables {ui}ni=1 are obtained from U, then some map Gθ : U → X is

applied to each of these random variables to obtain Pθ distributed random variables:

xi = Gθ(ui) for i = 1, . . . , n.

Generative models are used throughout the sciences, including in the fields

of ecology [Wood, 2010; Beaumont, 2010; Hartig et al., 2011], population genetics

[Beaumont et al., 2002] or astronomy [Cameron and Pettitt, 2012]. They also appear

in machine learning as black-box models; see for example generative adversarial

networks (GANs) [Goodfellow et al., 2014; Dziugaite et al., 2015; Li et al., 2015]

and variational autoencoders (VAEs) [Kingma and Welling, 2014].

The problem of inference within generative models is of course very closely

related to the classical problem of density estimation [Diggle and Gratton, 1984]. To

tackle it, a common approach is the method of simulated moments and its special

case of indirect inference [Hall, 2005]. Here, the idea is to simulate data from Pθ
for a wide range of parameter values θ ∈ Θ and keep the parameter value for which

a weighted linear combination of moments (such as the mean or variance) of the

samples agree the most with moments of the data simulated from the true data

generating process.

Furthermore, another recent approach to this problem relating to optimal

transport of measure was discussed in Bassetti et al. [2006]; Bernton et al. [2017];

Genevay et al. [2018], where the authors proposed to minimise the Wasserstein

distance, or an approximation thereof, between an empirical probability measure

induced by the samples from the true data generating process and the statistical

model under consideration.

In a Bayesian context, a common approach to obtain an approximate pos-

terior is approximate Bayesian computation. Here, a parameter value θ is accepted

as a sample from the approximate posterior if data generated for this value is close

enough (in the sense of some summary statistics) to the data from the true gener-

ating process. See Marin et al. [2012]; Lintusaari et al. [2017] for an overview.
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1.3 Additional Challenges

We have now introduced the two main challenges studied in this thesis. For com-

pleteness, we briefly discuss some of the other contemporary challenges of compu-

tational statistics. The list below is of course far from complete.

Parallel Programming First, ongoing research is focusing on how to adapt exist-

ing algorithms to new hardware architectures such as GPUs or clusters of computers

[Suchard et al., 2010; Lee et al., 2010; Calderhead, 2014]. These new architectures

can help scale algorithms significantly, but require reducing communication costs

across threads as much as possible. Furthermore, many algorithms in statistics,

such as MCMC, are inherently sequential and so completely new algorithms may

need to be developed to take advantage of this type of hardware.

Optimisation A second challenge which we will not address in detail in this thesis

is that of convex and non-convex optimisation. This is of course useful for solving

likelihood-based inference such as the problem of maximum likelihood in Equation

1.7 or profile likelihood approaches [Murphy and van der Vaart, 2000]. Alterna-

tively, it can also be used in regression and functional approximation problems to

overcome the high computational costs associated with exact least-squares solutions.

Numerical optimisation remains far from a solved problem in similar settings where

sampling is challenging: high dimensional, multimodal and expensive applications.

Privacy/Security Finally, the privacy risks associated to the increasing digital-

isation of our society have been demonstrated by several authors (see for example

de Montjoye et al. [2015]), and recent studies [Kaufman et al., 2009] have demon-

strated that the public is getting increasingly sensitive to the risks associated with

sharing data about themselves. Another challenge is therefore to develop algorithms

for statistical inference and computation which include some notion of privacy. This

might mean inference methods with restricted access to data [Graepel et al., 2012],

or only access to noisy versions of the data, a common scenario in differential privacy

[Dwork, 2008].

1.4 Contributions of the Thesis

We have now concluded our discussion of important challenges in computational

statistics. The aim of this thesis is to explore how the theory of kernel methods

can be used to address some of the issues discussed in the previous section. Kernel

20



methods can be used for several tasks, most notably functional approximation. They

are very flexible since kernel spaces include a wide range of different function spaces

with varying regularity and properties such as smoothness and periodicity. They

can also be used for tractable computation in high- or infinite-dimensional spaces

by making use of a property called the kernel trick.

This thesis makes the following contributions to this area:

• Chapter 1 highlighted some of the main challenges in statistical computation,

focusing mainly on issues surrounding numerical integration and statistical

inference for models with intractable likelihoods. For numerical integration,

we discussed popular approaches in the statistics literature including classical

quadrature rules, as well as MC, QMC and MCMC methods. These methods

will later be used as a baseline in Chapter 3. This chapter was partly based

on Barp et al. [2018].

• Chapter 2 reviews background material, most notably the theory of repro-

ducing kernel Hilbert spaces (RKHS), stochastic processes, and their formal

relations. We also discuss how these have been successfully applied in machine

learning and statistical modelling, and highlight the strength and weaknesses

they provide for computational statistics. Finally, we discuss how stochastic

processes can be used in the context of Bayesian nonparametrics, and focus in

detail on the particular case of Gaussian processes.

• In Chapter 3, we introduce Bayesian probabilistic numerical methods. We

revisit in detail the Bayesian quadrature (BQ) algorithm of O’Hagan [1991],

and provide an extensive theoretical analysis of its properties. This includes

the first asymptotic convergence results, which will be based on an analysis of

quadrature rules in reproducing kernel Hilbert spaces. Later, we discuss details

required for the implementation of the method, then study the performance

of the method on a wide range of applied problems from computer graphics to

inference in dynamical systems. The chapter is partially based on Briol et al.

[2015b, 2016]; Oates et al. [2017d]; Briol and Girolami [2018].

• In Chapter 4, we propose several novel extensions to the basic BQ algorithm.

The first extension focuses on providing an approach to tackling several nu-

merical integration problems simultaneously by defining the BQ algorithm on

a vector-valued function space. This method will be particularly useful when

we have an application where multiple integrals of highly correlated functions

need to be computed simultaneously or sequentially. The two other novel ex-
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tensions consist of sampling schemes aimed at taking advantage of the prop-

erties of BQ estimator in order to speed up convergence to the solution of the

integral. These are based on the Frank-Wolfe algorithm and SMC samplers.

This chapter is partially based on Briol et al. [2015a, 2017]; Xi et al. [2018].

• Chapter 5 proposes several applications of kernel methods to solve problems

linked to intractable models (including both unnormalised and generative mod-

els). In particular, it discusses how Stein’s method, a popular tool to assess

convergence in probability theory, can be combined with kernel methods to ob-

tain flexible functional approximation tools for unnormalised models. Finally,

it discusses inference for unnormalised and generative models in the context

of minimal distance estimators. The chapter is partly based on Briol et al.

[2017]; Oates et al. [2018]; Chen et al. [2018].

• Chapter 6 concludes with a discussion of the contributions the thesis and

discusses potential extensions.
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Chapter 2

Kernel Methods, Stochastic

Processes and Bayesian

Nonparametrics

“Probability theory is nothing but common sense reduced

to calculation.”

Pierre-Simon Laplace

Reproducing kernel Hilbert spaces (RKHS) have had a significant impact in

the mathematical sciences. This is mainly due to a property called the “reproducing

property”, by which many quantities of interest are rendered tractable. Working in

a RKHS is therefore a convenient and practical choice.

When this is not directly feasible, it is often possible to embed a given space

into another, often larger, space using kernels. The reason embeddings are useful

is that many operations which are intractable or complex in the original space

can be trivial to implement in the embedding space. There are several ways in

which embeddings are commonly used. The first is called the “kernel trick”, and

consists of replacing inner products in the original space by kernel evaluations. This

has the advantage that the kernel is implicitly computing inner products in the

embedding space; an operation which may be infeasible by direct computation (since

the embedding space might be high-dimensional, or even infinite-dimensional). The

second type of embedding is the embedding of probability measures into a RKHS,

which allows comparison of these measures in a straightforward way. These two

types of embeddings will be used throughout this thesis to study quadrature rules.

RKHSs are also useful in a different context: the study of stochastic pro-
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cesses. In particular, it can be shown that every stochastic process with finite second

moment has a covariance function which corresponds to a reproducing kernel and

vice-versa. This is for example the case for Gaussian processes (GP). The RKHS

corresponding to the covariance of a GP is called its native space, and it can be used

to understand properties of the process. Finally, GPs and kernel methods have more

generally been studied and applied throughout the field of Bayesian nonparametrics,

which is concerned with infinite-dimensional Bayesian models.

This thesis makes use of these three intertwined research areas to propose

novel algorithms in computational statistics. The following chapter therefore intro-

duces well-known results which will be used throughout later chapters.

2.1 Kernel Methods

2.1.1 Introduction and Characterisations

Although the theory of Banach and Hilbert spaces does already give us a lot of struc-

ture to work with, we will focus mainly on a specific subclass of Hilbert spaces called

reproducing kernel Hilbert spaces, also sometimes called proper Hilbert spaces1.

These spaces have the property that functions which are close to one another in the

sense of the metric induced by the inner product will have close pointwise values.

More precisely, these are classes of functions where the evaluation functional is a

continuous mapping. RKHSs were introduced and later studied by many authors,

most notably Mercer [1909]; Bergman [1922]; Schoenberg [1937]; Aronszajn [1950]

and Schwartz [1964]. For the interested reader, a nice historical survey of these

spaces is presented in Stewart [1976]; Fasshauer [2011] and a rigorous modern treat-

ment can be found in Berlinet and Thomas-Agnan [2004]; Schaback and Wendland

[2006]; Steinwart and Christmann [2008].

A RKHS on some arbitrary non-empty set X is characterised by a function

k : X × X → R called a kernel2. For simplicity, we restrict ourselves to X ⊆ Rd

for d ∈ N in the remainder of this chapter. We say that a kernel is symmetric if it

satisfies k(x,y) = k(y,x) ∀x,y ∈ X . In the case of a RKHS, we are only interested

in a very specific type of kernel called a reproducing kernel:

Definition 1 (Reproducing kernel Hilbert space). A kernel k : X ×X → R is

a reproducing kernel of the Hilbert space H if and only if:

1Note that any reader unfamiliar with basic notions in functional analysis and topology is referred
to Appendix A.1.

2Reproducing kernels are not to be confused with the transition kernels discussed in the previous
chapter.
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1. ∀x ∈ X , k(·,x) ∈ H,

2. ∀x ∈ X , ∀f ∈ H, 〈f, k(·,x)〉H = f(x).

A Hilbert space with such a reproducing kernel is called a reproducing kernel Hilbert

space.

The second property above is called the reproducing property and is ex-

tremely useful for many applications of these spaces. Due to this property, k(·,x)

is often also called the representer of the evaluation functional. H is known as the

native space of k, and a RKHS is often denoted Hk to emphasise the reproducing

kernel k associated to it. Any reproducing kernel leads to a function space with

continuous evaluation functionals, as specified by Riesz’s representation theorem:

Theorem 1 (Riesz’s representation theorem. [Berlinet and Thomas-Agnan,

2004], Theorem 1). A Hilbert space of functions on X has a reproducing kernel if

and only if all the evaluation functionals ex : H → R such that ex(f) = f(x) ∀x ∈ X
are continuous on H.

An important class of kernels are positive definite kernels. We say that the

kernel k : X × X → R is a positive-definite kernel if:

n∑
i=1

n∑
j=1

αiαjk(xi,xj) > 0, (2.1)

∀n ∈ N,x1, . . . ,xn ∈ X , and for all non-zero α = (α1, . . . , αn) ∈ Rn. Positive definite

kernels are important because for every positive definite kernel k : X ×X → R, there

exits a unique RKHS Hk with k as its reproducing kernel and, on the other hand,

the reproducing kernel of a RKHS is unique and positive definite. This result, first

proved by Aronszajn [1950], is called the Moore-Aronszajn theorem.

Theorem 2 (Moore-Aronszajn theorem. Berlinet and Thomas-Agnan [2004],

Theorem 3). Let k : X ×X → R be a positive definite kernel. There exists only one

Hilbert space Hk of functions on X with k as reproducing kernel. The subspace H0

of Hk spanned by the functions k(·,x) for x ∈ X is dense in Hk and Hk is the set

of functions on X which are point-wise limits of Cauchy sequences in H0 with the

inner product

〈f, g〉H0
=

n∑
i=1

m∑
j=1

αiβjk(yj ,xi),

where f(x) =
∑n

i=1 αik(x,xi) and g(x) =
∑m

j=1 βjk(x,yj).
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Note that good intuition can be gained concerning the functions that actually

constitute a RKHS Hk by looking at the form of f and g in the above theorem. This

form makes it clear that many basic properties of the reproducing kernel viewed as a

function of one argument in its representer form k(·,x) will be inherited by functions

in Hk. This is for example the case for properties such as periodicity or smoothness.

2.1.2 Properties of Reproducing Kernel Hilbert Spaces

The fact that every positive definite kernel leads to a RKHS is useful since we only

need to verify Equation 2.1 to check whether the space associated to a kernel is

a RKHS. In general, it is hard to check the property directly, but an alternative

approach is available through the following result:

Theorem 3 (Kernel trick. Berlinet and Thomas-Agnan [2004], Lemma 1). Let

H0 be some Hilbert space with inner product 〈·, ·〉H0 and let φ : X → H0. Then, any

function k : X × X → R defined as k(x,y) := 〈φ(x), φ(y)〉H0
is positive definite.

To verify whether a given kernel leads to a RKHS, we therefore only need to

check whether it can be written as an inner product. The kernel trick is also useful

since it allows us to write operations involving high, or infinite-dimensional, spaces

using only evaluations of the kernel. In the machine learning literature, the map

φ : X → H0 is often called a feature map, whilst H0 is known as the feature space,

and the above lemma is known as the “kernel trick”. Note that the relationship

between kernel and feature map (or correspondingly feature space) is not one-to-

one.

Many algorithms have been “kernelised”, meaning that all inner products

are replaced by reproducing kernels [Schölkopf and Smola, 2002; Shawe-Taylor and

Cristianini, 2004; Hofmann et al., 2008]. Popular examples include support vector

machines and principal component analysis. In mathematical language, the kernel

trick corresponds to an embedding of the space X into the space H0, and the feature

space corresponds to an embedding space.

We now give several examples of feature maps. First, an obvious choice is

φ(x) = k(x, ·) where the feature space is the RKHS itself: H0 = Hk. Another exam-

ple is given by Mercer’s theorem, which was originally proposed in [Mercer, 1909].

See Riesz and Nagy [1990] for a detailed discussion and proof, but for convenience

in our context we consider the following simplified version as proposed by Muandet

et al. [2016].

Theorem 4 (Mercer Theorem. [Muandet et al., 2016], Theorem 2.1). Let X be

a compact Hausdorff space and µ a finite Borel measure with support X . Suppose
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k is a continuous positive definite kernel on X × X , and assume that it satisfies∫
X
∫
X k(x,y)f(x)f(y)dxdy > 0 for any non-zero f ∈ L2(X ; ν) where L2(X ; ν)

is the space of functions with
∫
X f(x)2ν(dx) < ∞. Define the integral operator

K : L2(X ; ν)→ L2(X ; ν), called the Hilbert-Schmidt operator, as:

K[f ](x) :=

∫
X
k(x,x′)f(x′)ν(dx′).

Then there is an orthonormal basis {ψi} of L2(X ; ν) consisting of eigenfunctions of

K such that the corresponding sequence of eigenvalues {λi} are non-negative. The

eigenfunctions corresponding to non-zero eigenvalues are continuous functions on X
and the kernel has the representation:

k(x,y) =
∞∑
i=1

λiψi(x)ψi(y),

where the convergence of the series is absolute and uniform.

All reproducing kernels satisfying this theorem are called Mercer kernels.

For Mercer kernels, we can easily obtain an explicit expression for a feature map

φ : X → H0 of the form φ(x) =
(√
λ1ψ1(x),

√
λ2ψ2(x), . . .

)
where H0 is the space

of square-summable sequences.

We note that Theorem 4 requires continuity of the kernel on X × X . From

now on we will assume that this is the case for all kernels in this thesis. For X being

a bounded interval in R, this assumption means that all of the functions in the

RKHS will be continuous. More general conditions for continuity of the elements

of a RKHS can be found in Section 1.5 of Berlinet and Thomas-Agnan [2004] (see

for example Theorem 17 therein). Several other properties of RKHSs are also worth

mentioning.

The first one is the concept of universality of the RKHS. In general, we say

that a RKHS is universal if it is rich enough to approximate any function of interest

arbitrarily well in some function class. There exists multiple notions of universality,

each depending on the choice of domain X , function space we want to approximate

and the type of approximation. See Sriperumbudur et al. [2010a] for an overview.

The second notion is that of a characteristic kernel, which relates to em-

bedding of probability measures in RKHSs [Sriperumbudur et al., 2010b]. De-

note by P(X ) the set of all Borel probability measures defined on the topological

space X . A kernel k : X × X → R is said to be characteristic if the function

Π[k(·,x)] =
∫
X k(·,x)Π(dx) ∈ Hk exists and is injective for all probability measures

Π ∈ P(X ) in the set. That is, any element of P(X ) is embedded to a unique element
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in Hk called the kernel mean or mean element.

Finally, the third property is that certain kernels induce a metric on the

space X , defined as [Schoenberg, 1937]: dk(x,y) :=
√
k(x,x)− 2k(x,y) + k(y,y);

see Berg et al. [1984] Chapter 3 Section 3 for an in-depth discussion. Clearly the

metric implies a notion of distance between points which depend on how similar their

features are (as given by properties of the feature/embedding map). It is therefore

possible to induce geometries of interest by reverse-engineering feature maps and

the choice of kernel will thus have considerable impact on applications.

2.1.3 Examples of Kernels and their Associated Spaces

We now highlight some of the popular choices in the literature, focusing mainly on

real valued kernels:

1. The family of polynomial kernels is given by:

k(x,y) :=
(
x>y + c

)p
, (2.2)

where c > 0 and p ∈ N. The RKHS corresponding to this kernel is a finite-

dimensional vector space and consists of all real valued pth order polynomials

on X .

2. The family of Matérn kernels [Matérn, 1960] is given by:

kν(x,y) := λ
21−ν

Γ(ν)

(√
2ν‖x− y‖2

σ

)
Jν

(√
2ν‖x− y‖2

σ

)
, (2.3)

where Jν is a Bessel function of the second kind, λ, σ > 0. The RKHS induced

from kν is norm-equivalent to Sobolev spaces W ν
2 (X ) [Adams and Fournier,

2003]3. Note that another class of kernels which are norm equivalent to Sobolev

spaces are Wendland’s polynomial kernels [Wendland, 2005].

The expression for the Matérn kernels is be tedious to evaluate in general, but

simplifies when ν = 1
2 + p for some p ∈ N. A few popular examples are given

below:

• k 1
2
(x,y) = λ exp (−‖x− y‖2/σ),

• k 3
2
(x,y) = λ

(
1 +
√

3‖x− y‖2/σ
)

exp
(
−
√

3‖x− y‖2/σ
)
,

• k 5
2
(x,y) = λ

(
1 +
√

5‖x− y‖2/σ + 5‖x− y‖22/3σ2
)

exp
(
−
√

5‖x− y‖2/σ
)
,

3See Appendix A.1 for a detailed definition.
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where in each case λ, σ > 0.

3. The squared-exponential kernel, also called Gaussian RBF kernel, is given by:

k(x,y) := λ exp

(
−‖x− y‖22

2σ2

)
, (2.4)

where λ, σ > 0. The functions in this RKHS are smoother and can in fact

be shown to be holomorphic (i.e. the functions are infinitely differentiable

and equal to their Taylor series). Define eαi : X → R such that eαi(x) :=√
(σ2)−αi/(αi!)x

αi exp
(
−x2/2σ2

)
. Then, Proposition 3.6 in Steinwart et al.

[2006] provides the following characterisation: for any function f : X → R
(with X ⊂ Rd with non-empty interior) in the RKHS with exponentiated-

quadratic kernel with lengthscale σ, ∃(bα) (where α := (α1, . . . , αd) ∈ Nd0 is a

multi-index) satisfying
∑

α∈Nd0
b2α <∞ such that f(x) =

∑
α∈Nd0

bα(eα1 ⊗ . . .⊗
eαd)(x) where ⊗ denotes the tensor product (i.e. ∀g, h : Y → R where Y ⊆ R,

g ⊗ h(y, y′) = g(y)h(y′) ∀y, y′ ∈ Y).

The last two kernels above are translation-invariant and radial; i.e. ∃f, g : R → R
such that the kernels can be written either as k(x,y) = f(x − y) and k(x,y) =

g(‖x − y‖2) respectively. This is common for most RKHS used in applications,

since this property allows us to study the induced RKHS through Fourier analysis

[Wendland, 2005]. Together with rotation invariance, these are also convenient

modelling assumptions.

To construct more complex reproducing kernels, one strategy consists of com-

bining several base kernels [Rasmussen and Williams, 2006]. For example, given two

real-valued reproducing kernels k1 and k2, the sum k(x,y) := k1(x,y) + k2(x,y)

and product k(x,y) := k1(x,y)k2(x,y) are also reproducing kernels. Furthermore,

given some function a : X → R, the rescaling k(x,y) := a(x)k1(x,y)a(y) and

convolution k(x,y) :=
∫
X×X k1(x, z)k2(z, z′)k1(z′,y)dzdz′ are reproducing kernels.

Finally, the restriction of a kernel on some domain X to some domain Y ⊂ X is

also a reproducing kernel. An interesting discussion of the resulting kernels can be

found in Duvenaud [2014].

2.1.4 Applications and Related Research

The useful properties of RKHSs discussed above have certainly helped spread the

use of these spaces to a wide range of applications. Although it is out of the scope

of this thesis to give a complete introduction, we now provide a brief overview of

these applications.
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First, RKHSs had a very large influence in the statistics community, most

notably in the theory of kriging [Krige, 1951], a widely used method for interpolation

in geostatistics. A detailed historical review of kriging highlighting the importance

of kernels (called variograms in this literature) is provided by Cressie [1990]. RKHS

theory has also been useful for providing a theoretical study of the closely related

spline interpolation [Wahba, 1991]. Kernels have also been used to study Gaussian

processes [Stein, 1999; Berlinet and Thomas-Agnan, 2004; Rasmussen and Williams,

2006]. A detailed description of the relationship between kernels and GPs can be

found in Kanagawa et al. [2018]. Most recently, it has also been useful in other

areas of statistics, such as hypothesis testing [Gretton et al., 2006, 2008, 2012a;

Chwialkowski et al., 2016] and sampling methods [Chen et al., 2010; Sejdinovic

et al., 2014; Strathmann et al., 2015; Liu and Wang, 2016; Chen et al., 2018].

In the numerical analysis literature, reproducing kernels are used to analyse

differential equations [Bergman and Schiffer, 1953], and to design numerical solvers

such as meshless methods [Babuska et al., 2003]. They also have a central role in

approximation theory; see Buhmann [2003] and Schaback and Wendland [2006].

Finally, reproducing kernels have had a significant impact in machine learn-

ing [Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004; Hofmann et al.,

2008], most notably in learning theory [Cucker and Smale, 2002]. They have also

helped project support vector machines [Boser et al., 1992] to the forefront of ma-

chine learning techniques.

2.2 Stochastic Processes

We have concluded our introduction to RKHSs and now move on to discuss stochas-

tic processes. As we will see, the theory of stochastic processes, and especially GPs,

is closely intertwined with that of RKHSs. Understanding this relation will be im-

portant in the theoretical developments of further chapters.

2.2.1 Introduction to Stochastic Processes

Stochastic processes are one of the major tools used throughout probability theory

and statistics, and providing a complete overview of this topic is out of the scope of

this thesis. In this chapter, we will mostly focus on the notions which will be useful

in the following chapters, and highlight connections with the theory of RKHSs.

Further details can be found in the books of Doob [1953]; Gikhman and Skorokhod

[1969]; Karlin and Taylor [1975]; Grimmett and Stirzaker [2001]; Koralov and Sinai

[2007]; Pavliotis [2014]. See also the paper by Meyer [2009] for a historical overview.
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To avoid delaying this further, we begin with the definition of stochastic process

(also called random process).

Definition 2 (Stochastic process). Let (X ,B(X )) be a measurable space consist-

ing of an index set X and its corresponding Borel σ-algebra B(X ). Let (Ω,F ,P) be a

probability space, and (Y,G) a measurable space. A stochastic process is a collection

{g(x, ·) : x ∈ X} such that for each fixed x ∈ X , g(x, ·) : Ω → Y is a random

variable.

Stochastic processes are informally viewed as random functions. For a fixed

x ∈ X , a stochastic process is a Y-valued random variable, whereas for a fixed

ω ∈ Ω, it consists of a (deterministic) function g(·, ω) : X → Y.

The set X is known as the sample space, where Y is the state space of the

stochastic process. In the literature, the sample space is often denoted using the

dummy variable T due to the historical context of random functions over time.

However, it is now common to have X be a multidimensional index (e.g. time and

space). In particular, when X ⊆ R2, the stochastic process is often called a random

field. Note that X can be either a finite or infinite index set.

The stochastic processes that we will look at in later chapters will have X
and Y being Euclidean spaces. For this reason, we will limit ourselves to this level

of generality for the remainder of the chapter.

A first example of stochastic process that we have already encountered in this

thesis are the discrete-time Markov chains used in MCMC methods, for example the

random-walk Metropolis algorithm with Gaussian proposal (see Chapter 1). In this

case X is clearly discrete and the process is real-valued. A second example is the

Langevin diffusion which was used to construct the Metropolis-adjusted Langevin

algorithm. In this case the index set is one dimensional and continuous: X = R+.

Furthermore, the discretisation of the diffusion is itself also a stochastic process, but

defined on a discrete space X .

2.2.2 Characterisations of Stochastic Processes

Now that we have introduced stochastic processes, we can ask ourselves how to

characterise and classify them further. There are two main ways in which we can

characterise stochastic processes, through their finite-dimensional distributions, and

through their Karhunen-Loève expansion.

31



Characterisation via Finite-Dimensional Distributions

The finite-dimensional distributions of a stochastic process is the family of distri-

butions of the Yn-valued random variables (g(x1, ·), . . . , g(xn, ·)) for all n ∈ N and

{xi}ni=1 ⊂ X .

There are several important properties of stochastic processes which are usu-

ally specified using finite-dimensional distributions of the process. First, we say

that a stochastic process is stationary if and only if the finite-dimensional dis-

tributions are invariant with respect to shifts in the index set. In other words,

the process is stationary if the distribution of (g(x1, ·), . . . , g(xn, ·)) is the same as

that of (g(x1 + x′, ·), . . . , g(xn + x′, ·)) for all x′ ∈ X such that xi + x′ ∈ X for all

i = 1, . . . , n and n ∈ N. Clearly it is important to understand whether the relation

between stochastic process and their finite-dimensional distributions is one-to-one.

The answer is yes under certain regularity conditions provided by the theorem be-

low. The result below will be given for real-valued stochastic processes, but this can

be significantly generalised as in Dudley [2002].

Theorem 5 (Kolmogorov Consistency Theorem, Koralov and Sinai [2007],

Theorem 12.8). Let {P{xi}ni=1
|{xi}ni=1 ⊂ X , n ∈ N} be a family of distributions each

associated to the product σ-algebra B(Rn). Suppose these satisfy:

• For every permutation {x′i}ni=1 of {xi}ni=1 ⊂ X and events A1, . . . , An ∈ F
with n ∈ N:

P{xi}ni=1
[(g(x1, ·), . . . , g(xn, ·)) ∈ A1 × . . .×An]

= P{x′i}ni=1

[(
g(x′1, ·), . . . , g(x′n, ·)

)
∈ A1 × . . .×An

]
.

• For every points {xi}ni=1 ⊂ X and events A1, . . . , An ∈ F with n ∈ N:

P{xi}ni=1
[(g(x1, ·), . . . , g(xn, ·)) ∈ A1 × . . .×An]

= P{xi}n+1
i=1

[(g(x1, ·), . . . , g(xn, ·), g(xn+1, ·)) ∈ A1 × . . .×An × Ω] .

Then there is a unique stochastic process whose finite-dimensional distributions co-

incide with this collection.

The first example goes back to the Markov chains introduced in the previous

chapter (the random-walk Metropolis algorithm and Metropolis-adjusted Langevin

algorithm). We notice that in both cases, their finite-dimensional distributions are
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given by

P{xi}ni=1
[(g(x1, ·), . . . , g(xn, ·)) ∈ A1 × . . .×An]

=

∫
A1

. . .

∫
An

T (dx1, dx0)× . . .× T (dxn,dxn−1).

for any event A1, . . . , An in F where T denotes the transition kernel of the chain.

This theorem also allows us to introduce our first characterisation of GPs.

A real-valued GP is a stochastic process g : X × Ω → R such that all the finite-

dimensional distributions are Gaussian, i.e., (g(x1, ·), . . . , g(xn, ·)) is an N (mn, cn)

random variable for some vector n-dimensional vector mn and cn an n×n symmetric

non-negative definite matrix ∀n ∈ N and {xi}ni=1 ⊂ X . GPs will be the basis of most

of the work in later chapters. Extended introductions can be found in Adler [1990];

Stein [1999]; Rasmussen and Williams [2006]. An important property is that two

GPs defined on the same measurable space are either equivalent or mutually singular

[Feldman, 1958].

Another example of stochastic process are Dirichlet processes [Ferguson,

1973]. We say a stochastic process is a Dirichlet process with base measure G
and concentration parameter α if and only if its finite-dimensional distributions are

Dirichlet distributions; i.e. given any finite measurable partition (X1, . . . ,Xn) of

X , we have that (g(X1, ·), . . . , g(Xn, ·)) are Dir(αG(X1), . . . , αG(Xn)) distributed for

some concentration parameter α > 0. Here, the notation Dir is used to denote a

Dirichlet distribution. Note that this case would require a more general version

of the Kolmogorov extension theorem than that presented in this thesis (see for

example Dudley [2002]).

Characterisation via the Karhunen-Loève Expansion

A second characterisation of stochastic processes is as an infinite series of basis

functions with random coefficients called a Karhunen-Loève expansion [Loève, 1978].

This expansion will depend on the first two moments of the stochastic process, which

are the mean function m : X → Y and covariance function c : X × X → Y. Denote

by EP[X] the expectation of some random variable X under P. The mean and

covariance function are defined as:

m(x) := EP [g(x, ω)] ,

c(x,y) := EP [(g(x, ω)−m(x)) (g(y, ω)−m(y))] .

Theorem 6 (Karhunen–Loève Theorem. Sullivan [2016], Theorem 11.4). Sup-
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pose that g : X × Ω → R is a stochastic process such that for all x,y ∈ X : (i)

g(x, ·) ∈ L2(Ω;P), (ii) m(x) = 0 and (iii) the covariance function c(x,y) is a con-

tinuous function of both x and y. Then:

g(x, ω) =

∞∑
j=1

Zj(ω)ψj(x),

where {ψj(x)}∞j=1 are orthonormal eigenfunctions of the Hilbert-Schmidt operator

C : L2(X )→ L2(X ) defined as C[f ] :=
∫
X c(x,y)f(y)dy and the eigenvalues {λj}∞j=1

are non-negative (assumed without loss of generality to be ordered λ1 > λ2 > . . .).

The convergence of the series is in L2(Ω;P) and uniform among compact families

of x ∈ X , with:

Zj(ω) =

∫
X
g(x, ω)ψj(x)dx.

Furthermore, the random variables Zj are centred, uncorrelated, and have variance

λj: EP[Zj ] = 0 and EP[ZjZk] = λjδjk.

This characterisation can be particularly useful for approximating the stochas-

tic process. First, it orthogonalises the stochastic and deterministic parts of the

stochastic process. Furthermore, since we have assumed that the eigenvalues are in

decreasing order, a truncation
∑L

j=1 Zj(ω)ψj(x) for L > 0 of this series is the best

L-dimensional approximation of the stochastic process in an L2(Ω;P) sense. Such a

truncation is therefore the analogue of principal component analysis for stochastic

processes. The truncation can also be useful for approximate sampling of a stochas-

tic process. Indeed, all that is required is to sample IID random variables {Zj}Lj=1.

See Huang et al. [2001] for a detailed study.

The Karhunen-Loeve characterisation therefore provides us with a second

definition of a GP as the series g(x, ω) :=
∑∞

j=1

√
λjεjψj(x), where {εj}∞j=1 are IID

N (0, 1) random variables and {λj , ψj}∞j=1 are the eigenvalues and eigenfunctions of

the Hilbert-Schmidt operator.

2.2.3 Connection Between Kernels and Covariance Functions

As hinted at previously, there is a close relationship between reproducing kernels and

covariance functions. Consider without loss of generality a stochastic process with

m = 0 and covariance function c. We say that a stochastic process is a second-order

stochastic process if EP[|g(x, ω)|2] < ∞ for all x ∈ X (i.e. the process has finite

second moment). It turns out that reproducing kernels correspond to covariance
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functions of second order stochastic processes:

Theorem 7 (Loève’s Theorem. Loève [1978], p132). A function c : X × X → R
is the covariance function of a second-order stochastic process if and only if it is

positive definite.

Focusing on the special case of Gaussian processes, we have that for any pair

of mean function m and reproducing kernel k, there exists a GP with mean m and

covariance k and vice versa; see Theorem 12.1.3 in Dudley [2002].

An important point however is that any realisation of a Gaussian process

(or in fact any second-order stochastic process) will usually not lie in the RKHS

associated with its kernel/covariance function. Several conditions for these functions

to lie in the RKHS are provided in [Driscoll, 1973; Lukić and Beder, 2001; Pillai

et al., 2007]. See also the extended discussion in Kanagawa et al. [2018].

2.3 Bayesian Nonparametric Models

We have now concluded our introduction to reproducing kernel Hilbert spaces and

stochastic processes, and highlighted their connections. These two research areas

are commonly used in Bayesian inference in cases where the parameter belongs to

a function space. This subfield of Bayesian inference is commonly called Bayesian

nonparametrics4 [Dey et al., 1998; Müller et al., 2015; Gine and Nickl, 2016; Ghosal

and van der Vaart, 2017].

2.3.1 Bayesian Models in Infinite Dimensions

It is often said that priors and posteriors on functions are infinite-dimensional. An

intuitive justification for this name is that assigning a distribution on a function

is often equivalent to assigning a distribution on an infinite sequence of scalars.

Consider the problem of constructing a prior model which is a stochastic process.

Assigning such a prior to a function is equivalent to selecting a prior distribution

for the stochastic part of the Karhunen-Loeve expansion of the stochastic process;

i.e. selecting a prior for the sequence {Zj}∞j=1 in Theorem 6.

Two canonical examples of priors in Bayesian nonparametrics are the Gaus-

sian process and the Dirichlet process (both introduced in the previous section).

Recently, infinite-dimensional models have become popular in the literature due to

the fact that they place probability mass on a wider range of models. This is not the

4This name is particularly misleading since the likelihoods are indeed parametric, but the pa-
rameter in this case is a function.
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case for parametric models, which place very restrictive assumptions on the data-

generating mechanism being modelled, and it that sense correspond to very strong

prior knowledge.

When working with Bayesian statistics for infinite-dimensional models, it

is necessary to to tread carefully as finite-dimensional intuitions and results do

not always carry through. Recall the statement of Bayes’ Theorem in Chapter 1,

Equation 1.3: π(θ|X) = π0(θ)π(X|θ)/π(X). Here, θ ∈ Θ was some parameter of

interest in some Euclidean space and this identity assumed the existence of densities

with respect to the Lebesgue measure on Θ. However, when Θ is not a subset of

some Euclidean space but some function space, this identity cannot hold since there

is no infinite-dimensional equivalent of the Lebesgue measure and so these densities

do not exist.

Instead, a generalisation of Bayes’ theorem in infinite dimensions can be given

in terms of Radon-Nikodym derivative of the posterior measure with respect to the

prior measure. The reason is that under regularity conditions on the likelihood, the

posterior will be absolutely continuous with respect to the prior (see Stuart [2010];

Dashti and Stuart [2016]). In these cases, denote by Π0 the prior measure and by

Π the posterior measure. Bayes’ Theorem can be expressed as:

dΠ

dΠ0
(θ) =

1

Z(X)
exp(−Φ(θ; X)), (2.5)

where Φ is called a potential and encapsulates information from the likelihood. The

normalisation constant ensures that the posterior Π is a probability measure:

Z(X) =

∫
Θ

exp(−Φ(θ; X))Π0(dθ). (2.6)

There are several additional challenges when working with priors on infinite-dimensional

spaces. First, specifying a prior on a large parameter space is hard. In infinite di-

mensions, any choice of prior will be mutually singular with respect to infinitely

many measures (i.e. these priors put zero mass on a very large class of functions),

and so infinite-dimensional priors can be thought of as being “infinitely informative”.

Eliciting a representative subjective prior is therefore challenging, and establishing

objective priors even more so.

An important property for Bayesian inference is posterior consistency. Pos-

terior consistency is the property that the posterior eventually concentrates in a

small neighborhood of the true parameter. In the finite-dimensional case, this will

hold under very mild conditions as long as the true parameter value is in the support
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of the prior; however, this will not be the case in infinite-dimensions. Early results

for consistency include the work of Doob [1949] and Schwartz [1965]. Several more

recent results, both positive and negative, have also been established [Diaconis and

Freedman, 1986; Freedman, 1999; Choi and Schervish, 2007; Owhadi et al., 2015].

One should therefore always verify that this property holds on a case-by-case basis.

Due to the fact that infinite-dimensional priors have support in an infinite-

dimensional space, they also tend to require more data than their parametric coun-

terparts. General asymptotic consistency rates, also sometimes called contraction

rates, have been established in the IID setting by Ghosal et al. [2000]; Shen and

Wasserman [2001] and the non-IID setting (including Gaussian time series and

Markov processes) by Ghosal and van Der Vaart [2007]. See also Chapter 8 of

Ghosal and van der Vaart [2017] for an overview of more recent results.

Finally, computation is challenging when the posterior is not in a well-known

family of models and needs to be approximated. For example, choosing good propos-

als for MCMC in high dimensions is complicated, and the use of standard proposals

such as random walks can lead to acceptance rates tending to zero as the dimension

of the problem increases. Extensive research is dedicated to the design of algorithms

with an acceptance rate which does not degrade as the dimension increases; see for

example Beskos et al. [2011, 2017]; Cotter et al. [2013].

Keeping all of the drawbacks above in mind, it is important to point out the

main philosophical appeal of the Bayesian methodology. Given a carefully chosen

prior, the posterior provides a full characterisation of the uncertainty about the

unknown parameter of interest (rather than a simple point estimate as would be

available with alternative methodologies).

2.3.2 Gaussian Processes as Bayesian Models

In the next section, we discuss in more detail one of the most popular models in

the Bayesian nonparametrics literature: Gaussian processes. These models will be

used extensively throughout Chapters 3 and 4. Over the years, GPs have been

used in a Bayesian setting on a range of applications. Examples include the field

of computer experiments [Kennedy and Hagan, 2001], Machine learning (including

as a regression and classification model) [Rasmussen and Williams, 2006], Bayesian

inverse problems [Stuart, 2010; Dashti and Stuart, 2016] and Bayesian numerical

methods [Larkin, 1972; Diaconis, 1988; O’Hagan, 1992].

GPs have been particularly popular models due to their conjugacy property:

under the assumption of exact function evaluations or function evaluations with

Gaussian noise, the posterior resulting from a GP is also a GP. More precisely,
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Figure 2.1: Sketch of a Gaussian process prior and posterior. The one-dimensional
function f (red) is increasingly well approximated by the posterior mean mn (blue)
as the number n of function evaluations is increased. The dashed lines represent
pointwise 95% posterior credible intervals.

denote by g : X × Ω → R a GP prior on some function f : X → R, with mean

m : X → R and covariance c : X × X → R. Denote by f ∈ Rn the vector of values

fi = f(xi), m ∈ Rn the vector of values mi = m(xi) for some data points in the

set X = {xi}ni=1. Furthermore, let c(x,X) = c(X,x)> denote the 1 × n vector

whose ith entry is c(x,xi) and C for the matrix with entries (C)i,j = c(xi,xj).

After conditioning the GP prior g on some data X observed with IID noise which is

N (0, σ2) distributed, the posterior gn : X ×Ω→ R is a GP with mean mn : X → R
and covariance cn : X ×X → R given by ([Rasmussen and Williams, 2006, Chapter

2]):

mn(x) = m(x) + c(x,X)(C + σ2In×n)−1(f −m), (2.7)

cn(x,x′) = c(x,x′)− c(x,X)(C + σ2In×n)−1c(X,x′), (2.8)

where In×n is the identity matrix of dimension n × n. The formal definition of gn

as a posterior model is tricky in the noiseless case since defining a likelihood is not

straightforward. However, we can formally see gn as a conditioned stochastic process

to avoid technical obfuscation. A sketch of the conditioning procedure is provided

in Figure 2.1.

The expression for the posterior given above only considers function evalu-

ations, but our observation model could be more complex. In fact, the conjugacy

property of GPs holds when the data consists of any bounded linear functional of f .

Useful example of observations include integrals over parts of the domain
∫
Y f(x)dx

for Y ⊆ X , or derivative observations ∇xf(x).

Unfortunately, the conjugacy property of GPs can break down in several

cases. First, if the hyperparameters γ of the covariance function c(x,y; γ) are un-
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known and a hierarchical Bayesian approach is taken (i.e. a prior is specified over

hyperparameters), then the problem is usually not conjugate anymore. These prob-

lems then require advanced MCMC methods to sample from the posterior [Filippone

and Girolami, 2014]. Another example where the conjugacy property is lost is in the

case of deep GPs [Damianou and Lawrence, 2013; Dunlop et al., 2017; Monterrubio-

Gómez et al., 2018], where the covariance function itself is modelled as a realisation

from a GP (up to several levels).

2.3.3 Practical Issues with Gaussian Processes

GPs will be used extensively throughout the remainder of this thesis, and we there-

fore pause to discuss issues relating to their practical implementation. This includes

how to select a particular type of GP prior for Bayesian inference, stability of the

numerical systems underlying conditional distributions, and issues relating to their

scalability in high dimensional or large data settings.

Prior Specification

Prior specification (also called model selection) is an important consideration for

working with GPs [Stein, 1999; Xu and Stein, 2017]. It consists of selecting the

mean function m : X → R and the covariance function c : X × X → R of the GP

prior; see Oakley [2002] for elicitation of priors in the area of computer experiments.

Since prior models are “infinitely informative” in the nonparametric case, this choice

will be of prime importance as it will significantly influence the result of the Bayesian

analysis. Care is therefore required.

The choice of mean function for GPs has received relatively little attention.

This is mainly due to the fact that an appropriate choice of prior mean should

be guided by problem-specific knowledge. A common practice is to set the mean

function to m = 0, then let the data influence the posterior. In cases where n

is large and the dimension of the domain X is low, this may be an acceptable

approach. However when this is not the case, the data will not be informative

about the function on the entire domain and, as a result, the posterior will revert to

the prior in areas which are unexplored. An arbitrary choice of prior such as m = 0

can therefore have severe consequences in these cases. To avoid this problem, it is

also possible to use a parametric model as prior mean, for example using a linear

combination of basis functions [Kennedy and Hagan, 2001], or use meta-learning;

see for example Fortuin and Ratsch [2019].

A problem which has received significantly more attention is the choice of

39



Figure 2.2: Importance of model selection for Gaussian processes. Left: Draws from
a Gaussian Process prior with mean zero and covariance a Gaussian RBF kernel
with lengthscale σ = 0.1 (red), σ = 1 (blue) and σ = 5 (green). Right:

covariance function. This is because the covariance function will determine essential

properties of the realisations and mean of the posterior. Some popular covariance

functions have already been introduced in Section 2.1.3 and other examples can also

be found in [Duvenaud, 2014]. It is common to base this choice on smoothness,

periodicity and tail properties.

As was seen in these examples, covariance functions also tend to have several

hyperparameters (jointly denoted by the vector γ) which need to be selected, and

will have a significant influence on the prior obtained. This is for example illustrated

in Figure 2.2 (left), where realisations from a GP with Gaussian RBF covariance

function (see Equation 2.4) are plotted for various values of the lengthscale σ but

fixed amplitude λ = 1. Similarly, Figure 2.2 (right) contains realisations from a GP

with Matérn covariance (see Equation 2.3) with lengthscale σ = 1 and amplitude

λ = 1 but varying smoothness hyperparameter ν. In both case, the hyperparameters

have a significant impact on the realisations obtained.

Consider a parametric covariance function c(x,x′; γl, γs), with a distinction

drawn here between scale hyperparameters γl and smoothness hyperparameters γs.

The former are defined as parameterising the norm of the associated RKHS, whereas

the latter affect the corresponding RKHS itself. Selection of γl, γs based on data can

only be successful in the absence of acute sensitivity to these hyperparameters. For

scale hyperparameters, a wide body of evidence demonstrates that this is usually

not a concern [Stein, 1999]. We now outline several approaches, which are described

in more details by Rasmussen and Williams [2006]:

• Marginalisation: A natural approach, from a Bayesian perspective, is to set

a prior on the hyperparameters γ and then to marginalise over the posterior

distribution on these parameters. Recent results for certain infinitely differen-
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tiable covariance functions establish minimax optimal rates for this approach,

including in the practically relevant setting where π is supported on a low-

dimensional sub-manifold of the ambient space X [Yang and Dunson, 2016].

However, the act of marginalisation itself involves an intractable integral which

will usually break the conjugacy property of GPs. It is therefore important to

keep in mind the additional computational resources required when assessing

the advantages provided by marginalisation.

• Cross-Validation: Another approach to the choice of covariance function is

cross-validation. It consists of separating the data into M ∈ N subsets then,

for a given hyperparameter value, conditioning the GP on M − 1 subsets and

assessing its predictive performance using the data points in the last subset.

The procedure is then repeated over all choices of M − 1 subsets, to obtain

an indication of how good the hyperparameter value is for prediction. This

procedure can then be repeated for several hyperparameter values, and the

best performing hyperparameter is retained.

Clearly, this method will be a robust approach to selecting hyperparameters

since it is less prone to suffer from outliers. However, it can be considered to

be less principled than marginalisation from a Bayesian point of view since

it selects a prior using the data. Another issue is that it can perform poorly

when the number n of data points is small, since the data needs to be further

reduced into M subsets. The performance estimates are known to have large

variance in those cases.

• Empirical Bayes: An alternative to the above approaches is empirical Bayes.

This consists in selecting hyperparameters γ to maximise the log-marginal

likelihood of the data {f(xi)}ni=1:

l(γ) = −1

2
f>C−1f − 1

2
log |C| − n

2
log 2π,

where |C| denotes the determinant of the matrix C. In practice, this objective

can be maximised using any numerical optimisation routine. Empirical Bayes

has the advantage of providing an objective function that is easier to optimise

relative to cross-validation but it is not fully Bayesian since it also makes use

of the data to select the hyperparameters. Empirical Bayes can lead to over-

confidence when n is very small, since the full irregularity of the function has

yet to be uncovered [Szabó et al., 2015]. In addition, it can be shown that

empirical Bayes estimates need not converge as n → ∞. This is for example
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the case when the GP is supported on infinitely differentiable functions [Xu

and Stein, 2017].

Selection of smoothness hyperparameters is a much harder problem and an

active area of theoretical research; see Szabó et al. [2015]. In some cases it is possible

to elicit a smoothness hyperparameter from physical or mathematical considerations,

such as a known number of derivatives of the function. Alternatively, the three

methods highlighted above can also be used for smoothness hyperparameters but

are much less well understood in this case.

Stability of the Numerical System

The main computational challenge associated with the use of GPs is inverting the

n × n Gram matrix C. This is required in order to obtain the posterior mean and

variance in Equation 2.7 and 2.8. When n is large, or in unfavourable hyperparam-

eter regimes, the inverse of the covariance matrix can become numerically unstable.

Understanding when this may happen is of great practical importance, and we refer

the reader to Chapter 12 of Wendland [2005] for a detailled discussion.

Consider Figure 2.3 where we highlight this problem for the simple case of GP

regression with Gaussian RBF covariance function where the function is evaluated

at 100 equidistant points on [0, 10]. When the covariance function has a large

lengthscale σ, the matrix is ill-conditioned since neighboring rows or columns are

very similar to one another. This may not be an issue from a theoretical viewpoint,

but it is likely that the matrix will become numerically singular. Schaback and

Wendland [2006] point out that this behaviour occurs for a large class of radial

kernels. Another observation in this paper is that the conditioning of the Gram

matrix will worsen with the smoothness of the covariance function.

Often it is the case that we need to compute the product C−1b where b

is a vector of length n. In this case, first solving the linear system b = Ca for a,

then computing the matrix-vector product tends to be more numerically stable than

computing the matrix inverse directly.

Several approaches to further improve stability include multipole expansions

[Greegard and Strain, 1991], domain decomposition methods [Beatson et al., 2001],

partition of unity methods [Babuska and Melenk, 1997], compactly supported kernels

[Floater and Iske, 1996; Wendland, 2005] and preconditioning of the covariance

matrix [Mouat, 2001].
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Figure 2.3: Ill-conditioning of the Gram matrix in Gaussian process regression. We
continue the example in Figure 2.2 and plot the Gram matrices corresponding to
100 equidistant points in [0, 10] for a GP with Gaussian RBF kernel with amplitude
hyperparameter λ = 1 and lengthscale hyperparameter σ = 0.1 (left) σ = 1 (middle)
and σ = 5 (right).

Scalability

In situations where obtaining data is cheap, the naive O(n3) computational cost

associated with inverting the covariance matrix renders GP regression slow. It

is then natural to ask whether the uncertainty quantification provided by GPs is

worth the increased off-line computational overhead. Below, several approaches to

reducing the computational overhead of GPs are highlighted.

Exact inversion can be achieved at low cost through exploiting structure in

the kernel matrix. Examples include: tensor product kernels [O’Hagan, 1991], circu-

lant embeddings [Davies and Bryant, 2013] and low-rank kernels such as polynomial

kernels. In addition there are many approximate inversion techniques. We highlight

a few below: reduced rank approximations [Quinonero-Candela and Rasmussen,

2005; Bach, 2013; El Alaoui and Mahoney, 2015], explicit feature maps designed

for additive kernels [Vedaldi and Zisserman, 2012], local approximations [Gramacy

and Apley, 2015], multi-scale approximations [Iske, 2004; Katzfuss, 2017], random

approximations of the kernel itself, such as random Fourier features [Rahimi and

Recht, 2007], spectral methods [Lazaro-Gredilla et al., 2010; Bach, 2017], hash ker-

nels [Shi et al., 2009], parallel programming [Dai et al., 2014] and efficient use of

data structures [Wendland, 2005][Section 14].

Furthermore, several approach to improve conditioning of the linear system

discussed in the previous also reduce the computational cost as a by-product. These

include the fast multipole methods and compactly supported covariance functions.

This, of course, does not represent an exhaustive list of the (growing) lit-

erature on kernel matrix methods. Note that the majority of approximate kernel
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methods do not come with probability models for the additional source of numerical

error introduced by the approximation.
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Chapter 3

Bayesian Numerical Integration:

Foundations

“We believe that they demonstrate very strongly that, in

a fundamental sense, Monte Carlo is statistically

unsound.”

[O’Hagan, 1984]

Our objective in this thesis will be to make use of the theory of reproducing

kernel Hilbert spaces to tackle challenges in computational statistics.

The first challenge that was previously highlighted is the numerical integra-

tion of expensive functions, and this will be the focus of the current chapter. In

particular, we will review an existing algorithm called Bayesian quadrature (BQ).

We will begin with a brief overview of the field of Bayesian probabilistic numerical

methods, then move on to the analysis of BQ. This will include consistency rates

and numerical experiments on a wide range of statistical applications. In Chapter

4, we will then propose novel extensions of the algorithm.

3.1 Bayesian Probabilistic Numerical Methods

3.1.1 Numerical Analysis in Statistics and Beyond

Numerical analysis is a subfield of mathematics extensively used throughout appli-

cations across the sciences (and beyond). There are several competing definitions

of the field, but it is often described by researchers as “the study of algorithms

for the problems of continuous mathematics”; see Trefethen [1992]. More precisely,

numerical analysis is concerned with how to best project continuous problems into
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discrete scales. Canonical examples include approximating the solution of integral

equations [Davis and Rabinowitz, 2007], differential equations [Hairer et al., 1993;

Hairer and Wanner, 1996], or even the solution of problems in interpolation [Wahba,

1991; Wendland, 2005], optimisation [Boyd and Vandenberghe, 2004; Nocedal and

Wright, 2006] and linear algebra [Trefethen and Bau, 1997].

In each of these cases, a continuous mathematical quantity, such as a function

or an operator, is discretised in a way such that the solution to the discretised

problem can be computed in closed form by a computer. Discretising the quantity

of interest in different manners leads to different algorithms, and the approximation

properties of each discretisation scheme is, of course, of great importance. For this

reason, a second less glamorous, yet popular, definition of numerical analysis is the

“study of numerical errors”.

A standard approach to developing a new algorithm in numerical analysis

goes as follows. First, it is important to check that the problem at hand is well-

posed and that the proposed algorithm is numerically stable. That is, we want

to verify that the method does not magnify approximation errors. A second step

consists of studying the convergence of the algorithm and the associated order of

this convergence in the size of the discretisation grid or mesh. This is done by

defining some notion of error and studying how this error decreases as the number

of iterations increases. These types of errors are usually chosen to be worst-case

errors over some set of assumptions on the problem, and therefore provide rather

conservative bounds on the error incurred by the use of a given algorithm; see

Chapter 1 for a brief discussion.

Numerical methods are essential to mathematical modelling in many applied

settings, as well as specifically within statistics and machine learning. Take for ex-

ample the field of Bayesian statistics: the biggest challenge here (as described in the

previous chapters) is the approximation of expensive or high dimensional integrals

which are required to obtain a posterior distribution on quantities of interest. At

this stage, numerical methods are usually considered by practitioners as computa-

tional black-boxes that return a point estimate for the integral, and whose numerical

error is then neglected. This means that the posterior distribution on the quantity

of interest will not account for the numerical error. Numerical integration is thus

one part of Bayesian inference for which uncertainty is not routinely accounted for

in a fully Bayesian way.

This lack of Bayesian uncertainty quantification should of course be alarming

to Bayesian statisticians. Can one really trust a posterior distribution which was

obtained by approximating an integral or differential equation? How would the
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posterior differ if this additional source of uncertainty was incorporated? These

questions are often ignored, but in many cases should probably not be.

3.1.2 Numerical Methods as Bayesian Inference Problems

The description of numerical analysis as the discretisation of a continuous quantity

should sound familiar to statisticians. It is in fact very much related to statistical

inference, where we are interested in inferring some unknown quantity by observing

a finite number of values, and in studying asymptotic properties of associated esti-

mators. In this case, the unknown quantity would be the solution of the continuous

mathematical problem (e.g. some intractable integral), and the data consists of

functionals of some underlying function (e.g. integrand evaluations).

As a Bayesian, a natural procedure would therefore be to think of the un-

known quantity as a random variable and specify a prior over it, then update one’s

beliefs using the observations available. This is the approach proposed by Bayesian

probabilistic numerical methods, which originate in the work of Poincaré [1896] and

were independently proposed by a number of eminent mathematicians and statisti-

cians in the 1970s, 1980s and 1990s [Larkin, 1972; Diaconis, 1988; O’Hagan, 1992;

Kadane and Wasilkowski, 1985; Skilling, 1991], and most recently reviewed in Hen-

nig et al. [2015]; Briol et al. [2015b] and Cockayne et al. [2017]. See also Oates and

Sullivan [2019] for a review of the early history of the field.

The Bayesian approach to numerical analysis did not see many significant

developments between the 1990s and 2010s. As Diaconis [1988] puts it in the late

1980s: “most people, even Bayesians, think this sounds crazy when they first hear

about it”. Indeed, back then the idea of using Bayesian statistics to solve numerical

analysis problems was unusual and the advantages against classical methods (which

had already been developed for decades) were unclear. To some extent, although

Bayesian methods are now more widely accepted, the criticism remains valid. This

question will be studied throughout this chapter.

Is it really useful to formulate numerical problem from the Bayesian view-

point, or are we just reformulating known algorithms in the Bayesian language?

This thesis argues that there is much more to Bayesian numerical methods than a

change of vocabulary. A first advantage of specifying a prior distribution is that

we are making all of our assumptions on the quantity of interest, or any subject of

computation, explicit. The prior also allows the user to add additional information

which does not fit into any of the existing methods. For example, BQ is very flexi-

ble and can incorporate a wide range of prior knowledge on the integrand through

selection of the mean and covariance function of a GP. We might know that the

47



integrand is periodic or monotonic, perhaps through inspection of the functional

form of f or via domain-specific knowledge, and this can directly be encoded in the

algorithm.

Second of all, Bayesian statistics is a principled way of performing uncertainty

quantification [Robert, 1994]. The recent work by Cockayne et al. [2017] outlines

how many Bayesian probabilistic numerical methods can be framed as Bayesian

inverse problems [Stuart, 2010; Dashti and Stuart, 2016]. Instead of point estimates

for the quantities of interest, these methods can in fact provide entire Bayesian

posteriors on these quantities. These posteriors should provide much more faithful

representations of our uncertainty than the classic worst-case error bounds. Note

that the notions of uncertainty and error discussed here are very different to those

used in numerical analysis. We are talking about epistemic uncertainty (representing

our personal lack of knowledge about a problem) rather than aleatoric uncertainty

(which concerns inherent randomness in a system).

Thirdly, the Bayesian approach is also useful in cases where numerical meth-

ods are used in a sequential manner. Of course, in many situations numerical error

will be negligible and no further action is required, but if numerical errors are prop-

agated through a computational pipeline and allowed to accumulate, then failure

to properly account for such errors could potentially have drastic consequences on

subsequent statistical inferences. Such consequences could be akin to the Lorenz’s

butterfly effect in chaos theory, where small changes to the initial state of a system

could have large consequences on later states. See Mosbach and Turner [2009] for

an example of numerical error accumulating when solving differential equations, and

Oates et al. [2017b] for a large-scale application of Bayesian probabilistic numerical

methods to a problem in electrical impedance tomography.

Finally, the Bayesian framework allows us to frame numerical problems in

the setting of transfer learning, where we re-use the computations performed for a

first numerical problem to improve the performance when solving a second numer-

ical problem. This will be illustrated in the case where we have multiple integrals

of interest Π[f1], . . . ,Π[fP ] (P ∈ N) in Chapter 4, and we will demonstrate how

knowledge of the correlation structure between f1, . . . , fP can be used to improve

the estimate of each of these integrals. This setting is not usually considered in

numerical analysis, but arises naturally from the statistical formulation.

3.1.3 Recent Developments in Bayesian Numerical Methods

Since the early 1980s, a range of Bayesian probabilistic numerical methods have been

invented and developed to address most canonical problems in numerical analysis.
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Of course, there are many statistical methods for functional approximation; see for

example GPs and Dirichlet processes as introduced in the previous chapter. We now

provide a brief overview for other canonical problems:

• Ordinary Differential Equations: The first method for ordinary differen-

tial equations was proposed by Skilling [1991] and an approximate Bayesian

framework using GPs was introduced in Chkrebtii et al. [2016]. Raissi et al.

[2017] later proposed a version using multifidelity GPs.

Hennig and Hauberg [2014]; Schober et al. [2014] provided a probabilistic

version of Runge-Kutta methods, which takes the form of a filtering model

which was further studied in Schober et al. [2018]. Various priors were later

explored in [Magnani et al., 2017], and Kersting and Hennig [2016] explored

the close link between the solutions of the ordinary differential equations and

quadrature. Similar algorithms with a filtering flavour were also proposed by

Teymur et al. [2016, 2018] in the case of multi-step methods.

In a separate line of research, Conrad et al. [2017] proposed an uncertainty

quantification framework which proceeds by introducing random noise at each

step of any existing numerical solver. This was further studied from a theo-

retical point of view in Lie et al. [2017] and extended to a random time-step

formulation in Abdulle and Garegnani [2017].

• Partial Differential Equations: Extensions of Chkrebtii et al. [2016]; Con-

rad et al. [2017] were also proposed for partial differential equations. The first

independent work for partial differential equations is due to Owhadi [2015],

who framed the problem of numerical homogenisation as a Bayesian inference

problem. Later, [Cockayne et al., 2016; Oates et al., 2017b] developed proba-

bilistic meshless methods which allow for uncertainty quantification within the

popular stochastic collocation methods. Finally, Owhadi [2017]; Owhadi and

Zhang [2017]; Owhadi and Scovel [2017] developed gamblets, a computation-

ally efficient approach in the case of hierarchical information. More generally,

[Owhadi and Scovel, 2017] also provided an in-depth discussion of the link

between methods which are optimal in Bayesian and game-theoretic settings.

• Optimisation: By far the most popular Bayesian numerical method is called

Bayesian optimisation [Mockus, 1989]. It is widely applicable and used ex-

tensively throughout machine learning [Snoek et al., 2012], both in academic

research and throughout industry. Further work includes Hennig and Kiefel

[2013], who provided a probabilistic perspective on Quasi-Newton methods,
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Mahsereci and Hennig [2015], who introduced a probabilistic line search algo-

rithm, and Wills and Schön [2017], who combined both of the methods above.

• Linear Algebra: So far, less work has been done at the intersection of linear

algebra and Bayesian statistics. Hennig [2015] has proposed a probabilis-

tic interpretation for certain solvers of unconstrained linear systems, whilst

Bartels and Hennig [2016] proposed an extension for the specific case of least-

squares. Fitzsimons et al. [2017] proposed a Bayesian approach to inferring

log-determinants. Finally, Cockayne et al. [2018] proposed a Bayesian version

of the conjugate gradient method.

Of course, one of the canonical problems which has not been discussed so far

is numerical integration. This will be the focus of the remainder of this chapter.

We conclude this section with a remark on the definition of Bayesian numerical

methods. Although most of the methods above claim to be Bayesian, they do not

all satisfy some of the main Bayesian principles, such as propagation of uncertainty

by conditioning and marginalisation. A formal definition of a Bayesian probabilistic

numerical method was proposed by Cockayne et al. [2017], and a discussion of which

methods satisfy this definition can be found in Table 1 in that paper.

Although some of these methods are not fully Bayesian, they may be con-

sidered as being approximately Bayesian. The goal of such methods is then to

strike a good balance between the useful properties of Bayesian methods and the

computational challenges and other practicalities surrounding implementation.

3.2 Bayesian Quadrature

For the remainder of this chapter, we study an algorithm called Bayesian Quadrature

(BQ) [O’Hagan, 1991] which proposes a Bayesian approach to numerical integration.

In this section, we introduce BQ and relate it to the study of quadrature rules in

RKHSs. We then provide theoretical results for several variants of BQ in Section 3.3,

before discussing details of importance for its efficient implementation in Section 3.4.

Finally, we study its performance on several problems in statistics and engineering

in Sections 3.5 and 3.6

3.2.1 Introduction to Bayesian Quadrature

Let (Ω,F ,P) be a probability space and (X ,B(X )) be a measurable space with

X ⊂ Rd for d ∈ N and let B(X ) be a Borel σ-algebra. Let f : X → R be some

function for which we would like to compute the integral Π[f ].
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Recall that a quadrature rule describes any functional of the form of a linear

combination of function values: Π̂[f ] =
∑n

i=1wif(xi) for some states (or samples)

{xi}ni=1 ⊂ X and weights {wi}ni=1 ⊂ R. The notation Π̂[f ] is motivated by the

fact that this expression can be re-written as the integral of f with respect to an

empirical measure Π̂ =
∑n

i=1wiδ(xi), where δ(xi) is a Dirac measure (i.e. for all

A ∈ B(X ), δxi(A) = 1 if xi ∈ A, δxi(A) = 0 if xi /∈ A). The weights wi can be

negative and need not satisfy
∑n

i=1wi = 1.

BQ begins by defining a stochastic process g : X × Ω → R formally seen

as a prior model for the integrand f . The most popular choice, originally made

by Larkin [1972], is to consider a GP, but others could also be used. Recall from

Chapter 2 that a GP can be characterised by its mean function and its covariance

function: m(x) = EP[g(x, ω)] and c(x,x′) = EP[(g(x, ω)−m(x))(g(x′, ω)−m(x′))].

From now on, we assume without loss of generality that m ≡ 0. Conditioning the

GP at quadrature points X = {xi}ni=1 ⊂ X gives a new GP denoted gn : X ×Ω→ R.

This GP has mean mn(x) = m(x) + c(x,X)C−1(f −m) and covariance function

cn(x,x′) = c(x,x′) − c(x,X)C−1c(X,x′). For simplicity we will assume there is

no measurement error. After obtaining the conditioned GP gn, the final step is

to produce a distribution on the value of the integral Π[gn] by considering the

pushforward of the process gn through the integration operator. A sketch of the

procedure is presented in Figure 3.1 and the relevant formulae are now provided.

Proposition 1 (BQ posterior distribution on the solution of the integral).

The distribution of Π[gn] is Gaussian with mean and variance1

E[Π[gn]] = Π[c(·,X)]C−1f , (3.1)

V[Π[gn]] = ΠΠ[c(·, ·)]−Π[c(·,X)]C−1Π[c(X, ·)]. (3.2)

All of the proofs in this thesis can be found in Appendix B, ordered by

Chapter and in the order in which they appear in the main text. In particular, see

B.1 for all the proofs in this chapter.

Here, ΠΠ[c(·, ·)] denotes the integral of c with respect to each argument.

It can be seen that the computational cost of obtaining this full posterior (in the

worst-case O(n3)) is much higher than that of obtaining a point estimate for the

integral using MC methods. However, many methods for scaling GPs (discussed in

the previous chapter) can be used to speed this up. Karvonen and Särkkä [2018]

also proposed a novel scalable method specifically targeted to scaling BQ.

1The mean and variance are taken with respect to P, but we do not repeatedly specify this to
avoid overloading the notation.
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Figure 3.1: Sketch of Bayesian quadrature. The top row shows the approximation of
the integrand f (red) by the posterior mean mn (blue) as the number n of function
evaluations is increased. The dashed lines represent point-wise 95% posterior credi-
ble intervals. The bottom row shows the Gaussian distribution with mean E[Π[gn]]
and variance V[Π[gn]] and the dashed black line gives the true value of the integral
Π[f ].

Since BQ formally associates g with a prior on f , Π[gn] in turn provides

a posterior distribution over the value of the integral Π[f ] representing our epis-

temic uncertainty. An interesting remark is that Equation 3.1 takes the form of a

quadrature rule:

E[Π[gn]] = Π̂BQ[f ] :=
n∑
i=1

wBQ
i f(xi), (3.3)

with weight vector given by wBQ := (Π[c(X, ·)]C−1)>. Furthermore, the posterior

variance in Equation 3.2 does not depend on function values {f(xi)}ni=1, but only

on the location of the states {xi}ni=1 and the choice of covariance function c. This

is useful as it allows state locations and weights to be precomputed and reused.

However, it also means that the variance is completely driven by the choice of prior.

A valid quantification of uncertainty thus relies on a well-specified prior; we consider

this issue further in Section 3.42.

The BQ mean (Equation 3.1) coincides with classical quadrature rules for

specific choices of covariance function c. For example, in one dimension a Brownian

covariance function c(x, x′) = min(x, x′) leads to a posterior mean mn that is a

2Note that other choices of priors for f will give posteriors which do not necessarily have this
property.
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piecewise linear interpolant of f between the states {xi}ni=1, i.e. the trapezium rule

[Suldin, 1959]. Similarly, Särkkä et al. [2016] constructed a covariance function c

for which Gauss-Hermite quadrature is recovered, and Karvonen and Särkkä [2017]

showed how other polynomial-based quadrature rules can be recovered. In another

research direction, Karvonen et al. [2018] showed how it is possible to design a BQ

rule whose mean corresponds to the point estimate of any cubature rule.

Clearly the point estimator in Equation 3.3 is a natural object; it has also

received attention in both the kernel quadrature literature [Sommariva and Vianello,

2006] and empirical interpolation literature [Kristoffersen, 2013]. In those contexts,

the point estimator is derived from different assumptions on the integrand: namely,

that it is an element of a RKHS with kernel c, rather than a draw from a GP with

covariance c.

Although other stochastic processes could of course be used as priors [Cock-

ayne et al., 2017], GPs are popular due to their conjugacy properties, and the

terminology Bayesian quadrature usually refers to this case. Note that other names

for BQ with GP priors include Gaussian-process quadrature or kernel quadrature.

Alternative prior which are conjugate include Student-t process, and these could

afford heavier tails for values assumed by the integrand.

There has been a wide range of applications of BQ, including to other numer-

ical methods in optimisation, linear algebra and functional approximation [Kersting

and Hennig, 2016; Fitzsimons et al., 2017], inference in complex computer models

[Oates et al., 2017d], and problems in econometrics [Oettershagen, 2017] and com-

puter graphics [Brouillat et al., 2009; Marques et al., 2013; Briol et al., 2015b; Xi

et al., 2018].

3.2.2 Quadrature Rules in Reproducing Kernel Hilbert Spaces

Next we review how analysis of the approximation properties of the quadrature rule

Π̂BQ[f ] can be carried out in terms of functional approximation in some RKHS.

Denote by Hk a RKHS with some kernel k : X × X → R. Furthermore, denote its

inner product 〈·, ·〉Hk and associated norm ‖ ·‖Hk . In the remainder of this thesis all

kernels k are assumed to satisfy
∫
X k(x,x)Π(dx) <∞. In particular this guarantees∫

X f(x)2Π(dx) <∞ for all f ∈ Hk. An important object in the study of quadrature

rules is the kernel mean µ(Π) : X → R, defined as

µ(Π)(x) := Π[k(·,x)]. (3.4)
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The kernel mean is an element of the RKHSHk as a consequence of
∫
X k(x,x)Π(dx) <

∞ [Smola et al., 2007]. The kernel mean is often also called the representer of inte-

gration, which is justified by the fact that ∀f ∈ Hk:

Π[f ] =

∫
X
f(x)Π(dx) =

∫
X

〈
f, k(·,x)

〉
Hk

Π(dx)

=
〈
f,

∫
X
k(·,x)Π(dx)

〉
Hk

= 〈f, µ(Π)〉Hk .

since the integral and inner product commute due to the existence of µ(Π) as a

Bochner integral [Steinwart and Christmann, 2008, p510].

The main reason that RKHSs are popular in the study of quadrature rule is

the reproducing property, which permits an elegant theoretical analysis with many

quantities of interest, such as worst-case and average-case errors, becoming tractable.

In the language of kernel means, quadrature rules of the form Π̂[f ] =
∑n

i=1wif(xi)

can be written as Π̂[f ] = 〈f, µ(Π̂)〉Hk where µ(Π̂) is the approximation to the kernel

mean given by µ(Π̂)(x) = Π̂[k(·,x)] (or equivalently, it is the kernel mean with re-

spect to the empirical measure Π̂). For fixed f ∈ Hk, the integration error associated

with Π̂[f ] can be expressed as

Π̂[f ]−Π[f ] = 〈f, µ(Π̂)〉Hk − 〈f, µ(Π)〉Hk = 〈f, µ(Π̂)− µ(Π)〉Hk .

A tight upper bound for the error is obtained by the Cauchy-Schwarz inequality:∣∣∣Π̂[f ]−Π[f ]
∣∣∣ ≤ ‖f‖Hk ∥∥∥µ(Π̂)− µ(Π)

∥∥∥
Hk
. (3.5)

The expression above, sometimes called the Koksma-Hlawka inequality [Hickernell,

1998], decouples the magnitude in Hk of the integrand f from the kernel mean

approximation error. The first term in this bound is a constant on which we have

no control since it depends on the integrand f . However, since the second term does

not depend on f , it is common to design quadrature rules to minimise it, as this

will lead to an integration error which is small for all functions in Hk. The following

sections discuss how quadrature rules can be tailored to target this term.

3.2.3 Optimality of Bayesian Quadrature Weights

An interesting well-known fact is that the worst-case error (WCE) in the RKHS Hk
is characterised as the error in estimating the kernel mean (also called maximum

mean discrepancy (MMD) [Gretton et al., 2006]):
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Proposition 2 (The WCE in a RKHS corresponds to the MMD).

e(Π̂; Π,Hk) := sup
‖f‖Hk≤1

∣∣∣Π[f ]− Π̂[f ]
∣∣∣ = ‖µ(Π̂)− µ(Π)‖Hk .

Minimisation of the WCE in Hk is natural and corresponds to solving a least-

squares problem in the feature space induced by the kernel: Let X denote quadrature

points {xi}ni=1 and w = (w1, . . . , wn) ∈ Rn denote the vector of quadrature weights,

z ∈ Rn be a vector such that zi = µ(Π)(xi), and K ∈ Rn×n be the matrix with

entries (K)i,j = k(xi,xj). Combining Proposition 2 with direct calculation gives a

tractable formula for the WCE in Hk:

e(Π̂; Π,Hk)2 = ‖µ(Π̂)− µ(Π)‖2Hk

=

n∑
i,j=1

wiwjk(xi,xj)− 2

n∑
i=1

wi

∫
X
k(x,xi)Π(dx) (3.6)

+

∫
X

∫
X
k(x,x′) Π(dx)Π(dx′)

= w>Kw − 2w>Π[k(X, ·)] + ΠΠ[k(·, ·)]. (3.7)

Several optimality properties for integration in RKHSs were provided in Section 4.2

of Novak and Woźniakowski [2008]. Relevant to this work is that given n evaluations

of the function, an optimal estimate in the sense of the WCE in Hk can, without

loss of generality, take the form of a quadrature rule Bakhvalov [1971]. To be more

precise, any non-linear and/or adaptive estimator (where the location of function

evaluations are chosen adaptively) can be matched in terms of asymptotic WCE

in Hk by a quadrature rule as we have defined. Note that of course, adaptive

quadrature may provide superior performance for a single fixed function f , and the

minimax result may not be true in general outside the RKHS framework [Novak,

1996].

To relate these ideas to BQ, consider the challenge of deriving an optimal

quadrature rule, conditional on fixed states {xi}ni=1, that minimises the WCE in the

RKHS Hk over weights w. The solution to this convex problem is w = K−1z and

is called kernel quadrature in the literature.

Clearly, if the reproducing kernel k is equal to the covariance function c of the

GP prior, then the posterior mean from BQ is identical to the optimal quadrature

rule in the RKHS [Kadane and Wasilkowski, 1985]. Furthermore, with k = c, the BQ

posterior variance can be obtained in terms of WCE. In fact the following inequality

can be obtained: V[Π[gn]] = e(Π̂BQ; Π,Hk)2. Regarding optimality, the problem is
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thus reduced to selection of states {xi}ni=1.

3.2.4 Selection of States

Optimal Point Sets An optimal Bayesian Quadrature rule would select states

to globally minimise the variance V[Π[gn]], or equivalently the WCE in Hk:{
xOBQ
i

}n
i=1

:= arg min
{xi}ni=1⊂X

e(Π̂BQ; Π,Hk).

Optimal BQ corresponds to classical quadrature rules (e.g. Gauss-Hermite) for

specific choices of kernels [Karvonen and Särkkä, 2017]. However it cannot in general

be implemented because optimising the states is in general NP-hard [Schölkopf and

Smola, 2002, Section 10.2.3].

In earlier work, several approaches have been made for the choice of quadra-

ture points. For example, O’Hagan [1991] considered states {xi}ni=1 that are em-

ployed in Gaussian quadrature methods. Rasmussen and Ghahramani [2002] used

MC realisations. Recent work by Gunter et al. [2014]; Briol et al. [2015a] selected

states using experimental design to target the variance V[Π[gn]]. These different

approaches are now briefly recalled.

Monte Carlo Methods MC, IS, MCMC and QMC (all introduced in Chapter 1)

are widely used in statistical computation. Here we pursue the idea of using these

algorithms to generate states for BQ, with the aim to exploit BQ to account for

the possible impact of numerical integration error on inferences made in statistical

applications. In MCMC it is possible that two states xi = xj are identical. To

prevent the covariance matrix C from becoming singular, duplicate states should be

discarded. This is justified since the information contained in function evaluations

fi = fj is not lost. This does not introduce additional bias into BQ methods, in

contrast to MC methods.

We define the following Bayesian estimators, which correspond to BQ algo-

rithms where the integrand is conditioned at MC, IS, MCMC and QMC states:

Π̂BMC[f ] :=
∑n

i=1w
BQ
i f(xMC

i ), Π̂BIS[f ] :=
∑n

i=1w
BQ
i f(xIS

i ),

Π̂BMCMC[f ] :=
∑n

i=1w
BQ
i f(xMCMC

i ), Π̂BQMC[f ] :=
∑n

i=1w
BQ
i f(xQMC

i ),

where {xMC
i }ni=1 are IID realisations from Π, {xIS

i }ni=1 are IID realisations

from some importance distribution Π′, {xMCMC
i }ni=1 are samples from a Markov

chain with invariant distribution Π and {xQMC
i }ni=1 is a QMC point set.
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This two-step procedure requires no modification to existing sampling meth-

ods, and has the advantage that each estimator is associated with a full poste-

rior distribution. We refer to quadrature rules of the form Π̂BMC[f ] as Bayesian

Monte Carlo (BMC), Π̂BIS[f ] as Bayesian importance sampling (BIS), Π̂BMCMC[f ]

as Bayesian Markov chain Monte Carlo (BMCMC) and Π̂BQMC[f ] as Bayesian quasi-

Monte Carlo (BQMC). As previously discussed, BMC and BIS were first proposed

by Rasmussen and Ghahramani [2002], but to date we are not aware of any previous

use of BMCMC, presumably due to analytic intractability of the kernel mean when

π is unnormalised. BQMC has been described by Hickernell et al. [2005]; Marques

et al. [2013]; Särkkä et al. [2016]. Note that other Monte Carlo sampling meth-

ods could also be used. For example, Briol et al. [2017] proposed to combine SMC

methods with BQ weights. This will be further discussed in Chapter 4).

Experimental Design Methods An alternative approach to the choice of states

comes from the experimental design literature. The simplest example is a greedy

algorithm that sequentially minimises V[Π[gn]]. This method, commonly referred to

as sequential Bayesian Quadrature [Osborne et al., 2012; Gunter et al., 2014] consists

of repeating the following step: xSBQ
n := arg maxx∈X Π[c(·,X)]C−1Π[c(X, ·)] where

X = (x1, . . . ,xn,x)>. More sophisticated optimisation algorithms have also been

used. For example, Eftang and Stamm [2012] proposed adaptive procedures to

iteratively divide the domain of integration into subdomains and Briol et al. [2015a]

used conditional gradient algorithms (this will be discussed in detail in Chapter

4). Several gradient-based global optimisation algorithms were also considered in

Oettershagen [2017].

3.3 Theoretical Results for Bayesian Quadrature

The role of the following section is to derive convergence rates for BQ algorithms.

We begin by discussing a general set of tools which can be used to derive such rates,

then focus specifically on the case of Π̂MC[f ], Π̂MCMC[f ] and Π̂QMC[f ]. Further

results for an experimental design-based BQ rule will later be given in Chapter 4.

The main setting we consider assumes that the true integrand f belongs to

a RKHS Hk and that the GP prior is based on a covariance function c which is

identical to the kernel k of Hk. This assumption is of course more natural from

a kernel approximation point of view (in which case the algorithm is called kernel

quadrature) than for the Bayesian viewpoint. Indeed, it would be more natural for

the latter case to assume that f was a realisation from a GP with covariance k; an
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event which has probability zero of happening in most cases of interest [Driscoll,

1973; Lukić and Beder, 2001] . Further results which build up on our results and

consider prior misspecification can be found in [Kanagawa et al., 2016, 2017]. These

could be used to provide theoretical guarantees under the more natural Bayesian

assumptions.

3.3.1 Convergence and Contraction Rates

The convergence results in this thesis are based on two simple lemmas. The first

lemma, shows that probabilistic integrators provide a point estimate that is at least

as good as their non-probabilistic counterparts:

Lemma 1 (Bayesian reweighting bound). Consider the quadrature rule Π̂[f ] =∑n
i=1wif(xi) and the corresponding BQ rule Π̂BQ[f ] =

∑n
i=1w

BQ
i f(xi). Then

e(Π̂BQ; Π,Hk) ≤ e(Π̂; Π,Hk).

Proof. Since the BQ rule corresponds to the optimally weighted quadrature rule in

Hk, we must have that:

e(Π̂BQ; Π,Hk)2 =

(
inf

w∈Rn
sup

‖f‖Hk≤1

∣∣∣∣∣Π[f ]−
n∑
i=1

wif(xi)

∣∣∣∣∣
)2

≤

(
sup

‖f‖Hk≤1

∣∣∣Π[f ]− Π̂[f ]
∣∣∣)2

= e(Π̂; Π,Hk)2

Clearly, whenever we have a BQ rule based on reweighting an existing quadra-

ture rule (e.g. BMC, BIS, BMCMC or BQMC), it is straightforward to obtain an

upper bound on the WCE convergence rate if a convergence rate is known for the

original rule. Results based on Lemma 1 are useful in that they provide us with

some guarantees on the performance of the method, but tend to be unsatisfying for

several reasons. First, they can lead to loose upper bounds since they do not take

into account any gains in reweighing. Furthermore, since the BQ weights tend to be

more expensive to compute, it is questionable whether reweighting can actually be

beneficial from a point estimate point of view (there is of course still the advantage,

from an uncertainty quantification point of view, of having a Bayesian estimator).

The second lemma which we use to derive convergence rates often leads to

more satisfying results although it is not sharp in general [Ritter, 2000, Proposition

II.4]. The lemma shows that the convergence of Π̂BQ[f ] is controlled by quality of

the GP mean approximation mn:
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Lemma 2 (Regression bound). Let f ∈ Hk and fix states {xi}ni=1 ⊂ X . Then

we have
∣∣Π[f ]− Π̂BQ[f ]

∣∣ ≤ ‖f −mn‖L2(X ;Π).

Proof. Applying Jensen’s inequality we get:

∣∣∣Π[f ]− Π̂BC[f ]
∣∣∣2 =

(∫
X
f(x)−mn(x)Π(dx)

)2

≤
∫
X

(f(x)−mn(x))2Π(dx) = ‖f −mn‖2L2(X ;Π),

Taking square roots gives the required result.

Using the lemma above, we can transfer known results from the literature on

approximation with kernel interpolants, (or equivalently GP means) to results for

BQ rules. These results usually depend on the kernel and on space-filling properties

of the point set selection method for the domain X . An important quantity to

formalise this statement is the fill distance of a point set X = {xi}ni=1:

hX = sup
x∈X

min
i=1,...,n

‖x− xi‖2. (3.8)

Other quantities of interest include qX := 1
2 minj 6=k ‖xj−xk‖2, the separation radius,

and ρX := hX/qX, the mesh ratio. For most sensible choices of point sets, we have

hX → 0 as n → ∞. For kernel interpolants, it is common to have an upper bound

on the error: |f(x)−mn(x)| ≤ Cv(hX)‖f‖Hk , where the role of v can be compared

with that of the power function in the scattered data approximation literature (see

Wendland [2005][Section 11.1] for more details) and will depend on the kernel k.

Such results can clearly be combined with Lemma 2 to get rates for BQ.

We now have two results, Lemma 1 and 2, which refer to the point estimators

provided by BQ and can be used to provide convergence rates. However, we also

aim to quantify the change in probability mass as the number of samples increases

and a contraction rate is therefore also of interest. Fortunately, it is also possible to

obtain such rates from convergence rates of the point estimators:

Lemma 3 (BQ contraction bound). Assume f ∈ Hk and a GP prior with

covariance k was specified. Suppose that e(Π̂BQ; Π,Hk) ≤ γn where γn → 0 as

n → ∞. Let Iδ = [Π[f ] − δ,Π[f ] + δ] be an interval of radius δ > 0 centred on the

true value of the integral. Then

P{Π[f ]− δ < Π[gn] < Π[f ] + δ} = 1−O(exp(−(δ2/2)γ−2
n )).

This result demonstrates that the posterior distribution is well-behaved;
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probability mass concentrates in a neighbourhood of Π[f ]. Hence, if our prior is

well calibrated (see Chapter 2), the posterior provides uncertainty quantification

over the solution of the integral as a result of performing a finite number n of

integrand evaluations.

3.3.2 Monte Carlo, Important Sampling and MCMC Point Sets

The three lemmas from the previous section provide us with a set of tools which

can be used to analyse BQ rules based on specific point sets. In this section, we

provide results for BQ rules based on points obtained through several Monte Carlo

methods.

All of the results in this section will be on X = [0, 1]d with d ∈ N for

simplicity, although this assumption can be relaxed in all cases. As a baseline, we

begin by noting a general result for BMC estimation under weak conditions on the

RKHS which is based on Lemma 1:

Theorem 8 (Consistency and contraction of BMC for functions in RKHSs

with bounded kernel). Let X = [0, 1]d, d ∈ N and Hk be a RKHS satisfying

supx∈X k(x,x) < ∞. Then: e(Π̂BMC; Π,Hk) = OP (n−
1
2 ). Furthermore, if f ∈ Hk

and δ > 0:

P{Π[f ]− δ < Π[gn] < Π[f ] + δ} = 1−OP (exp(−Cδn
1
d )),

where Cδ > 0 depends on δ.

In fact, similar results can also be obtained for IS and MCMC. As previously

discussed, results based on Lemma 1 can be far from tight. This is clearly highlighted

by the result in the theorem below, obtained using Lemma 2. These will assume

that our RKHS is norm-equivalent to Hα, a classical Sobolev space of order α. We

will need one of the following conditions on the point sets:

(A1) The states are generated IID from the measure Π, which is assumed to have

a density bounded away from zero on X .

(A2) The states are generated IID from some importance measure Π′, which is

assumed to have a density bounded away from zero on X .

(A3) The states are generated by a reversible, uniformly ergodic Markov chain that

targets the measure Π, which is assumed to have a density bounded away from

zero on X .
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Furthermore, a minor technical assumption that enables us to simplify the presen-

tation of results below is that the set X = {xi}ni=1 may be augmented with a finite,

predetermined set Y = {yi}mi=1 where m does not increase with n. Clearly this has

no bearing on asymptotics.

Theorem 9 (Consistency and contraction of BMC, BIS and BMCMC in

Hα). Let X = [0, 1]d and let Hk be norm-equivalent to Hα where α > d/2, α ∈ N.

Suppose Π̂BQ[f ] is a BQ rule with point set satisfying (A1), (A2) or (A3). Then:

e(Π̂BQ; Π,Hk) = OP

(
n−α/d+ε

)
for all ε > 0 arbitrarily small. Furthermore, if f ∈ Hk and δ > 0,

P{Π[f ]− δ < Π[gn] < Π[f ] + δ} = 1−OP
(

exp
(
−Cδn2(αd−ε)

))
,

where Cδ > 0 depends on δ and ε is arbitrarily small.

The use of ε is common in the literature on quadrature rules in order to hide

O(log n) terms. The convergence rate improves with smoothness, but it suffers from

a curse of dimensionality. When the assumption that α > d
2 does not hold, a root-n

rate can still be recovered from Theorem 8. The Matérn kernel leads to function

spaces which are norm-equivalent to the Sobolev spaces Hα, and so the result above

provide a bound for some of the most common BQ rules. A lower bound for the

WCE of randomised algorithms in Hα in this setting is OP (n−α/d−1/2) [Novak and

Woźniakowski, 2010]. Thus our result shows that the point estimate is at most one

MC rate away from being optimal.

The control variate trick of Bakhvalov [2015] can be used to achieve the op-

timal randomised WCE, but this steps outside of the Bayesian framework. Bach

[2017] obtained a similar result for fixed n and a specific importance sampling distri-

bution. However, this specific importance sampling distribution is difficult to sample

from in general, and his analysis does not directly imply our asymptotic results and

vice versa. After completion of this work, similar results appeared in Oettershagen

[2017]; Bauer et al. [2017]; Kanagawa et al. [2017].

A slight extension of Theorem 9 shows that certain infinitely differentiable

kernels lead to exponential rates. These include the Gaussian RBF kernel introduced

in Chapter 2, as well as the multiquadric kernel: k(x,y) = (c2 + ‖x−y‖22)
1
2 and the

inverse-multiquadric kernel k(x,y) = (c2 + ‖x− y‖22)−
1
2 for c > 0.

Theorem 10 (Consistency and contraction of BMC, BIS and BMCMC in

RKHSs with infinitely differentiable kernels). Let X = [0, 1]d, and assume
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that Hk is a RKHS which is norm-equivalent to the RKHS with Gaussian RBF

kernel, multiquadric kernel or inverse-multiquadric kernel. Suppose Π̂BQ[f ] is a BQ

rule with states satisfying either (A1), (A2) or (A3). Then:

e(Π̂BQ; Π,Hk) = OP
(

exp(−Cn1/d−ε)
)

for C > 0 and ∀ε > 0 arbitrarily small. Furthermore, if f ∈ Hk and δ > 0,

P{Π[f ]− δ < Π[gn] < Π[f ] + δ} = 1−OP
(

exp
(
−Cδ exp(2n

1
d

+ε)
))

,

where Cδ > 0 depends on δ and ε > 0 can be arbitrarily small.

Once again, there is a curse of dimensionality kicking in, but it is difficult to

assess how strong it will be since Cδ is usually not known in practice.

The theorems above can be generalised in several directions:

1. We can consider more general domains X . Specifically, the scattered data

approximation bounds that are used in our proof apply to any compact do-

main X ⊂ Rd that satisfies an interior cone condition [Wendland, 2005, p.28].

Following Wendland [2005][Section 3.3], a domain X ⊂ Rd is said to sat-

isfy an interior cone condition if there exists an angle θ ∈ (0, π/2) and a

radius r > 0 such that ∀x ∈ X , a unit vector ξ(x) exists such that the cone

{x + λy : y ∈ Rd, ‖y‖2 = 1,y>ξ(x) ≥ cos θ, λ ∈ [0, r]} is contained in X . This

condition essentially excludes domains with pinch-points on the boundaries,

i.e. regions with a ≺ shape. Technical results in this direction were established

in Oates et al. [2018]; Kanagawa et al. [2017].

2. We can consider other spaces Hk. Similar results can be obtained for power

kernels, thin-plate splines and compact support kernels using the bounds pro-

vided in [Wendland, 2005, Section 11].

3. As discussed in [Kanagawa et al., 2017; Xi et al., 2018], the results above will

also hold for certain quasi-uniform point sets. We say X is a quasi-uniform

grid on X ⊂ Rd if it satisfies hX ≤ C1n
− 1
d for some C1 > 0. If such a quasi-

uniform point set also satisfies hX ≤ C2qX,X for some C2 > 0, then the same

rates as for MC/IS/MCMC will be attained.

4. All of the proofs in this section are based on showing that MC, IS and MCMC

all lead to realisations which are close to a grid with high probability, and

therefore reduce the fill distance at the same rate as this grid (once again

with high probability). A sensible question is therefore “Should we should be
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using a grid in the first place?”. The answer will be no in general. Indeed,

for integration, we are only interested in approximating the integrand well

in regions of high probability for the distribution we are integrating against.

Evaluating it in regions of low probability would be wasteful since these do not

contribute much to the value of the integral. In general, these considerations

will enter the rate constants, but our proof techniques do not allow us to track

the dependence explicitly.

3.3.3 Quasi-Monte Carlo Point Sets

The previous section provided some theoretical results for BMC, BIS and BMCMC

under various assumptions on the RKHS. The cases considered were (i) RKHSs

with bounded kernel (Theorem 8), (ii) RKHSs norm-equivalent to a Sobolev space

(Theorem 9) and (iii) RKHSs with infinitely differentiable kernel norm-equivalent

to either the Gaussian RBF, multiquadric or inverse-multiquadric kernel (Theorem

10). Clearly, the stronger were the assumptions on the function class, the faster

the convergence rates were. In this section, we provide a similar set of theorems for

QMC point sets, under slightly different assumptions on the kernel (dictated by the

QMC point sets studied).

The most commonly used QMC sequences are called low-discrepancy se-

quences, and include (amongst others) the Halton and Sobol sequences. In this

case, the notion of discrepancy is given by the star discrepancy [Dick and Pil-

lichshammer, 2010]: D∗({xi}ni=1) = supa∈[0,1]d | 1n
∑n

i=1 1{xi∈Ia} −
∫
X xdx| where

Ia = [0, a1) × . . . × [0, ad). A low-discrepancy sequence is a point sequence such

that D∗({xi}ni=1) = O(log(n)dn−1). Our first result, based on Lemma 1, provides

convergence and contraction rates for the WCE under the assumption that the

RKHS is norm-equivalent to a Sobolev space of smoothness α:

Theorem 11 (Consistency and contraction of BQMC in Sobolev spaces).

Consider X = [0, 1]d with Π uniform on X . Let Hk be a RKHS norm equivalent

to Hα, a Sobolev space of smoothness α (α ∈ N and α ≥ d
2). Suppose that states

{xi}ni=1 are obtained from a low-discrepancy sequence. Then:

e(Π̂BQMC; Π,Hk) = O(n−1+ε)

for all ε > 0 arbitrarily small. Furthermore if f ∈ Hk and δ > 0,

P{Π[f ]− δ < Π[gn] < Π[f ] + δ} = 1−O(exp(−Cδn2−ε)),
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where Cδ > 0 depends on δ and ε > 0 can be arbitrarily small.

Note that this result improves on the result for BMC for d
2 ≤ α < d, is the

same as BMC for α = d, and is suboptimal for α > d. The sub-optimal in the latter

case is due to the use of a crude upper bound in the proof and it should be possible

to improve on this in future work.

We now consider more interesting spaces of functions whose mixed partial

derivatives exist and for which even faster convergence rates can be obtained using

BQMC. Denote the Sobolev space of dominating mixed smoothness by Sα, where

α is the order of the space. To build intuition, note that Sα is norm-equivalent

to the RKHS generated by a tensor product of Matérn kernels [Sickel and Ullrich,

2009], or indeed a tensor product of any other univariate Sobolev space-generating

kernel. For Sα, an appropriate QMC point set would be a higher-order digital net;

for details see Dick and Pillichshammer [2010].

Theorem 12 (Consistency and contraction of BQMC in Sobolev spaces

of mixed dominating smoothness). Consider X = [0, 1]d with Π uniform on X .

Let Hk be norm-equivalent to Sα, where α ≥ 2, α ∈ N. Suppose states are chosen

according to a higher-order digital (t, α, 1, αm×m, d) net over Zb for some prime b

where n = bm. Then:

e(Π̂BQMC; Π,Hk) = O(n−α+ε)

for all ε > 0 arbitrarily small. If f ∈ Hk and δ > 0,

P{Π[f ]− δ < Π[gn] < Π[f ] + δ} = 1−O(exp(−Cδn2α−ε)),

where Cδ > 0 depends on δ and ε > 0 can be arbitrarily small.

This result shows that the posterior is again well-behaved. Indeed, the rates

of convergence and contraction are much faster in Sα compared to Hα. In terms of

point estimation, this is the optimal rate for any deterministic algorithm for inte-

gration of functions in Sα [Novak and Woźniakowski, 2010]. These results should be

understood to hold on the subsequence n = bm, as QMC methods do not in general

give guarantees for all n ∈ N. It is not clear how far this result can be generalised, in

terms of π and X since this would require the use of different QMC point sets. The

case of QMC for infinitely differentiable kernels was recently studied in Fasshauer

et al. [2012]; the results therein for Smolyak point sets imply (exponential) conver-

gence and contraction rates for BQMC via the same arguments that we have made

explicit for the space Sα.
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3.4 Considerations for Practical Implementation

This concludes our theoretical study of the use of Monte Carlo methods for BQ.

We have so far discussed BQ algorithms, and proved that they can provide point

estimators with optimal, or near-optimal, consistency rates in most cases of interest.

Chapter 4 will highlight extensions based on experimental design strategies. In the

next section, we discuss details which are relevant to the practical implementation of

BQ. In particular, we discuss our strategy for prior selection and highlight problems

relating to the (lack of) tractability of kernel means.

3.4.1 Prior Specification for Integrands

An important point to make is that the theoretical results in the previous section

do not address the important issue of whether the scale of the posterior uncertainty

provides an accurate reflection of the actual numerical error. This is closely related

to the well-studied problem of prior specification, which was discussed in Chapter

2. In the context of BQ, cross-validation and marginalisation should be reserved

for cases where the integrand is very expensive to evaluate, in which case these

approaches will be worthwhile from a computational point of view. When this is

not the case, it will be preferable to use empirical Bayes. This is the main approach

we will use in the remainder of this paper.

Note that it is sometimes possible to analytically marginalise certain types

of scale parameters without impacting the conjugacy of the stochastic process. For

example, the result below highlights how to marginalise an amplitude parameter

using an objective prior:

Proposition 3 (BQ with marginalised amplitude parameter). Suppose our

covariance function takes the form c(x,y;λ) = λc0(x,y) where c0 : X × X → R
is itself a covariance function and λ > 0 is an amplitude parameter. Consider the

improper prior p(λ) ∝ 1
λ . Then the induced distribution on Π[gn] is a Student-t

distribution with mean and variance

E [Π[gn]] = Π [c0(·,X)] C−1
0 f ,

V [Π[gn]] =
f>C−1

0 f

n

(
ΠΠ[c0(·, ·)]−Π[c0(·,X)]C−1

0 Π[c0(X, ·)]
)
,

and n degrees of freedom. Here (C0)i,j = c0(xi,xj), (c0(·,X))i = c0(·,xi), c0(·,X) =

c0(X, ·)>.

Empirical results in the remainder of this section support the use of this

approach, though we do not claim that this strategy is optimal.
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X Π c Reference

[0, 1]d Unif(X ) Wendland Tensor Product Oates et al. [2017c]
[0, 1]d Unif(X ) Matérn Weighted Tensor Product Section 3.6.3
[0, 1]d Unif(X ) Exponentiated Quadratic Use of error function
Rd Mixt. of Gaussian Exponentiated Quadratic Kennedy [1998]
Sd Unif(X ) Gegenbauer Section 3.6.4

Arbitrary Unif(X ) / Mixt. of Gauss. Trigonometric Integration by parts
Arbitrary Unif(X ) Splines Wahba [1991]
Arbitrary Known moments Polynomial Tensor Product Briol et al. [2015a]

Rd α−stable α−stable Nishiyama and Fukumizu
[2016], Section 6.

Rd Generalized hyperbolic Generalized hyperbolic Nishiyama and Fukumizu
[2016], Section 6.

Table 3.1: A non-exhaustive list of distribution Π and covariance function c pairs
that provide a closed-form expression for both the mean µ(Π)(x) = Π[c(·,x)] and
the initial error Π[µ(Π)].

3.4.2 Tractable and Intractable Kernel Means

Recall that the BQ posterior mean is of the form Π̂BQ[f ] = Π[c(·,X)]c(X,X)−1f(X),

and it should therefore be clear that the method can only ever be applied when the

kernel mean Π[c(·,x)] can be evaluated in closed form. This section highlights the

limited range of scenarios when this can be achieved, and highlights alternative

strategies when this is not possible.

Tractable Kernel-Distribution Pairs

A few cases of covariance-measure pairs (c,Π) where the kernel mean is available

in closed form are recorded in Table 3.1. In the event that the covariance function-

distribution pair (c,Π) of interest does not lead to a closed-form covariance function

mean, it is sometimes possible to determine another covariance function-density pair

(c′,Π′) for which Π′[c′(·,x)] is available and such that f(x)π(x)/π′(x) ∈ Hc′ . Then

one can construct an importance sampling estimator

Π[f ] =

∫
X
f(x)π(x)dx =

∫
X
f(x)

π(x)

π′(x)
π′(x)dx = Π′

[
f
π

π′

]
,

and proceed as above.

Bayesian Quadrature with Approximate Kernel Means

When obtaining a tractable kernel mean is not feasible, an alternative is to work with

an approximate Bayesian quadrature rule as described in this section. Our approach

is to consider a BQ rule based on a quadrature approximation of the kernel mean de-

noted aΠ̂BQ[f ]. The weights of this quadrature rule are awBQ = C−1
aΠ[c(X, ·)] and
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these approximate the optimal BQ weights based on a quadrature approximation

aΠ[c(X, ·)] of the kernel mean [see also Proposition 1 in Sommariva and Vianello,

2006]. The following lemma demonstrates that we can bound the contribution of

this error and inflate our posterior to reflect the additional uncertainty due to the

approximation, so that uncertainty quantification is still provided.

Proposition 4 (WCE for BQ with approximate kernel mean). Consider

an empirical measure aΠ =
∑m

j=1 awjδ(xj) which approximates the measure Π.

Then BQ can be performed analytically with respect to aΠ; denote this estimator

by aΠ̂BQ[f ]. Moreover,

e(aΠ̂BQ; Π,Hc)2 ≤ e(Π̂BQ; Π,Hc)2 +
√
ne(aΠ; Π,Hc)2.

Under approximate BQ, the posterior variance cannot be computed in closed-

form, but computable upper-bounds can be obtained and these can then be used to

propagate numerical uncertainty through the remainder of our statistical task. The

idea here is to make use of the triangle inequality:

e(aΠ̂BQ; Π,Hc) ≤ e(aΠ̂BQ; aΠ,Hc) + e(aΠ; Π,Hc). (3.9)

The first term on the RHS is now available analytically and its square is given by:

e(aΠ̂BQ; aΠ,Hc)2 = aΠaΠ[c(·, ·)] − aΠ[c(·,X)]C−1
aΠ[c(X, ·)]. For the second term,

explicit upper bounds exist in the case where states axi are independent random

samples from Π. For instance, from [Song, 2008, Theorem 27] we have, for a radial

covariance function c, uniform awj = m−1 and independent axi ∼ Π,

e(aΠ; Π,Hc) ≤
2√
m

sup
x∈X

√
c(x,x) +

√
log(2/δ)

2m
(3.10)

with probability at least 1− δ. See also Altun and Smola [2006]; Szabó et al. [2016].

(For dependent axj , the m in Equation 3.10 can be replaced with an estimate for

the effective sample size). More efficient quadrature rules, such as QMC methods

could of course also be used.

Write Cn,γ,δ for a 100(1− γ)% credible interval for Π[f ] defined by the con-

servative upper bound described in Equations 3.9 and 3.10. Then we conclude that

Cn,γ,δ is a 100(1− γ)% credible interval with probability at least 1− δ. Note that,

even though the credible region has been inflated, it still contracts to the truth,

since the first term on the right-hand side in Proposition 4 can be bounded by the

sum of e(aΠ̂BQ; Π,Hc) and e(aΠ̂; Π,Hc), both of which vanish as n,m→∞.
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We pause to briefly discuss the utility and significance of such an approach.

Obviously, the new approximation problem (that of approximating Π with aΠ) could

also be computed with a BQ method, and we may hence end up in an “infinite

regress” scenario [O’Hagan, 1991], where the new kernel mean is itself unknown

and so on. However, one level of approximation may be enough in many scenarios.

Indeed, by using MC to select {axj}mj=1 and increasing m sufficiently faster than n,

the error term
√
ne(aΠ; Π,Hc)2 can be made to vanish faster than e(Π̂BQ; Π,Hc)2

and hence the WCE for aΠ̂BQ will be asymptotically identical to the WCE for the

(intractable) exact BQ estimator Π̂BQ. Therefore, it will be reasonable to expend

computational effort on raising m in settings where evaluation of the integrand con-

stitutes the principal computational. This is because approximating the kernel mean

only requires sampling m times, but does not require us to evaluate the integrand.

A formal analysis of the trade-off between m and n in terms of statistical efficiency

and computational cost will be important future work.

There are also several possible alternative approaches. First, Oates et al.

[2017c] proposed a fully Bayesian approach to the problem. The idea is to provide

two prior models: one on the integrand f and one on the measure Π. One poten-

tial choice of model for Π is a Dirichlet process mixture model, in which case the

posterior distribution on the kernel mean remains tractable for certain classes of

covariance functions such as the Gaussian RBF covariance. This approach hence

allows us to work without direct access to the kernel mean, but is also useful more

generally when using BQ with intractable measures (such as an unnormalised or

generative model). Another approach using Bayesian estimators of the kernel mean

(following the methodology proposed in Flaxman et al. [2016]) was also discussed

in the supplementary material of Oates et al. [2017c].

Another alternative is to construct a covariance function for which the kernel

mean will always be available in closed form. Such an approach is possible using

tools from Stein’s method [Oates et al., 2017c, 2018; Oates and Girolami, 2016].

This will be discussed in detail in Chapter 5.

3.5 Simulation Study

We have now completed our introduction and theoretical study of BQ. The aims of

the remainder of this chapter are two-fold. Firstly, in this section, we validate the

preceding theoretical analysis and in particular:

1. Assess the uncertainty quantification properties of BQ estimators when using

marginalisation and empirical Bayes to select parameters of the GP covariance
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Figure 3.2: Non-isotropic test functions for evaluation of the uncertainty quantifica-
tion provided by Bayesian Monte Carlo and Bayesian quasi-Monte Carlo. Empirical
Bayes was used for σ whilst λ was marginalised. Left: The test functions f1 (top),
f2 (bottom) in d = 1 dimension. Right: Solutions provided by Monte Carlo (MC;
black) and Bayesian MC (BMC; red), for one typical realisation. 95% credible re-
gions are shown for BMC and the green horizontal line gives the exact value of the
integral. The blue curve gives the corresponding lengthscale parameter selected by
empirical Bayes.

function. This is done by studying the frequentist coverage of our posterior

distributions for several test functions of varying regularity.

2. Verify that the convergence rates from Section 3.3 hold in practice and verify

how tight these are (all of the results are upper bounds on the error).

Secondly, in the next section, we will explore the use of BQ in a range of

problems arising in contemporary statistical applications each demonstrating some

advantages and disadvantages of the approach.

3.5.1 Assessment of Uncertainty Quantification

Our baseline problems for studying the uncertainty quantification provided by BQ

include a non-isotropic test function with an “easy” setting f1(x) = exp
(
sin(5x1)2 − ‖x‖22

)
and a “hard” setting: f2(x) = exp

(
sin(20x1)2 − ‖x‖22

)
. The easy test function does
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not vary much (see Figure 3.2), and as such will be easy to integrate using an

interpolation-based method such as BQ. On the other hand, the hard test function

is more variable and will hence be more difficult to approximate for the GP under-

lying BQ, but will not be significantly more difficult for MC since it is not based

on interpolation. One realisation of states {xi}ni=1, generated independently and

uniformly over X = [−5, 5]d (initially d = 1), was used to estimate Π[f1] and Π[f2].

We work in a RKHS characterised by tensor products of Matérn kernels

kα(x,x′) = λ

d∏
i=1

21−α

Γ(α)

(√
2α|xi − x′i|
σi2

)α
Kα

(√
2α|xi − x′i|
σi2

)
,

where Kα is the modified Bessel function of the second kind. Closed-form kernel

means exist in this case for α = p+ 1/2 whenever p ∈ N.

In this setup, empirical Bayes was used to select the lengthscale parameters

σ = (σ1, . . . , σd) ∈ (0,∞)d of the kernel, while the amplitude parameter λ was

marginalised as in Proposition 3. The smoothness parameter was fixed at α = 7/2.

Note that all test functions will be in the space Hα for any α > 0 and there is a

degree of arbitrariness in this choice of prior.

Results are shown in Figure 3.2. Error-bars are used to denote the 95%

posterior credible regions for the value of the integral and we also display the val-

ues σ̂i of the length scale σi selected by empirical Bayes. The term “credible” is

used loosely since the σ̂i are estimated rather than marginalised. The σ̂i appear to

converge rapidly as n → ∞; this is encouraging but we emphasise that Section 3.3

does not provide theoretical guarantees for empirical Bayes (all the results assume a

fixed covariance function). On the negative side, over-confidence is possible at small

values of n. Indeed, the BQ posterior is liable to be over-confident under empirical

Bayes, since in the absence of evidence to the contrary, empirical Bayes selects large

values for σ that correspond to more regular functions; this is most evident in the

“hard” case.

Next we computed coverage frequencies for 100(1 − γ)% credible regions.

For each sample size n, the process was repeated over many realisations of the

states {xi}ni=1, shown in Figure 3.3. It may be seen that (for n large enough) the

uncertainty quantification provided by empirical Bayes is over-cautious for the easier

function f1, whilst being well-calibrated for the more complicated functions such as

f2. As expected, we observed that the coverage was over-confident for small values

of n.

We can also study the performance in the case where both lengthscale σ and

amplitude λ are optimised using empirical Bayes. In general this performed worse
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Figure 3.3: Coverage of Bayesian Monte Carlo (with marginalisation) on the test
functions . Here we used empirical Bayes for σ with λ marginalised in dimensions
d = 1 (top) and d = 3 (bottom). Coverage frequencies (computed from 500 (top)
or 150 (bottom) realisations) were compared against notional 100(1−γ)% Bayesian
credible regions for varying level γ and number of observations n. The upper-left
quadrant represents conservative credible intervals whilst the lower-right quadrant
represents over-confident intervals. Left: “Easy” test function f1. Right: “Hard”
test function f2.

than when λ was marginalised. In Figure 3.4 (top row) we study this case for the

“easy” and “hard” test functions for d = 1. We notice that empirical Bayes led to

over-confident inferences in the “low n” regime, but attains approximately correct

frequentist coverage for larger n. Results are also shown in Figure 3.4 (bottom row)

for when d = 5 but we have a single lengthscale parameter σ = σ1 = . . . = σ5.

Clearly more integrand evaluations are required for empirical Bayes to attain a
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Figure 3.4: Coverage of Bayesian Monte Carlo (without marginalisation) on the test
functions. Here, both σ and λ were picked using empirical Bayes. Results are shown
for d = 1 (top) and d = 5 (bottom). Coverage frequencies Cn,γ (computed from
100 (top) or 50 (bottom) realisations) were compared against notional 100(1− γ)%
Bayesian credible regions for varying level γ. Left: “Easy” test function f1. Right:
“Hard” test function f2.

good frequentist coverage of the credible intervals, due to the curse of dimension.

However, the frequentist coverage was once again reasonable for large n.

In summary, the results above illustrate the extent to which uncertainty

quantification in possible using BQ. In particular, for our examples, we observed

reasonable frequentist coverage if the number n of samples was not too small.
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3.5.2 Validation of Convergence Rates

Our second set of experiments attempts to study whether the asymptotic conver-

gence rates are realised in practice. We note that for kernels with a fixed lengthscale

and amplitude parameter, the variance V[Π[gn]], or equivalently the worst-case er-

ror in Hc, is independent of the integrand and may be plotted as a function of n.

The results below demonstrate that theoretical rates are observed in practice for

d = 1 for BMC and BQMC; however, at large values of d, more data are required

to achieve accurate estimation and increased numerical instability was observed.

BMC In Section 3.3.2, it was proven that the square-root of the BMC posterior

variance converges at the rate OP (n−α/d+ε) when Hc is a Sobolev space of order α >

d/2. Figure 3.5 (top row) depicts empirical convergence results obtained for d = 1

(left) and d = 5 (right), for one typical realisation. In the one dimensional case, the

OP (n−α/d+ε) theoretical convergence rates are broadly attained and indeed exceeded

by at most one Monte Carlo rate. At larger values of n, numerical regularisation

takes effect and damages the rate of convergence. In the higher dimensional case, the

only rate proven in this work is OP (n−1/2) since α < d/2 in all cases p = α+ 1/2 ∈
{3/2, 5/2, 7/2} considered. These results show that a faster rate is attainable in

practice, illustrating a gap in our theory.

BQMC In Section 3.3.3 it was proven that the square-root of the BQMC standard

variance converges at the rate O(n−α+ε) when Hc is a Sobolev space of dominating

mixed smoothness and order α > 1/2. Figure 3.5 (bottom row) depicts empirical

convergence results obtained for d = 1 (left) and d = 5 (right), for one typical

realisation. In the one dimensional case, the O(n−α+ε) theoretical convergence rate

is broadly attained in all cases p = α + 1/2 ∈ {3/2, 5/2, 7/2} considered. However,

in the d = 5 case, the rates are not observed for the number n of evaluations

considered. This helps us demonstrate the important point that the rates we provide

are asymptotic, and may require large values of n before being observed in practice.
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Figure 3.5: Convergence rates for Bayesian Monte Carlo and Bayesian quasi-Monte
Carlo. WCE (or posterior standard deviation) for one realisation of BMC and
BQMC on [0, 1]d for d = 1 (left) and d = 5 (right). Here we considered BMC in
Sobolev spaces Hα (top row), and BQMC in Sobolev spaces of mixed dominating
smoothness Sα (bottom row). The results are obtained using tensor product Matérn
kernels of smoothness α = 3/2 (red), α = 5/2 (green) and α = 7/2 (blue). Dotted
lines represent the theoretical convergence rates established for each kernel. The
black line represents the corresponding standard Monte Carlo or quasi-Monte Carlo
rate. Kernel parameters were fixed to (σ, λ) = (0.02, 1) (top left), (σ, λ) = (1.2, 1)
(top right), (σ, λ) = (0.005, 1) (bottom left) and (σ, λ) = (1, 0.5) (bottom right).

3.6 Some Applications to Statistics and Engineering

Now that we have studied the suitability of BQ as a tool for uncertainty quantifica-

tion in numerical analysis, we explore possible roles for BMC, BMCMC and BQMC

in statistical applications. Four case studies, carefully chosen to highlight both the

strengths and the weaknesses of BQ are presented:

1. A problem of Bayesian model selection, which is usually solved using thermo-

dynamic integration, and for which we would like to model numerical error in

the computation of model evidences.

2. A problem of computing posterior expectations over the parameters of some

large-scale partial differential equation-based computer model of subsurface
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flow for which MCMC sampling is computationally expensive.

3. A high-dimensional numerical integration problem occurring in semi-parametric

random effect models when trying to access the observed data likelihood which

was previously solved using QMC.

4. A problem of numerical integration in computer graphics for the rendering of

virtual environments, for which BQ was previously used without theoretical

guarantees.

3.6.1 Case Study 1: Large-Scale Model Selection

Consider the problem of selecting a single best model among a set {Mi}Mi=1, based

on data y assumed to arise from a true model in this set. The Bayesian solution

is to select the maximum a-posteriori model. We focus on the case with uniform

prior on models p(Mi) = 1/M , and this problem hence reduces to finding the

largest marginal likelihood pi = p(y|Mi) since the maximum-a-posteriori model

satisfies p(Mi|y) = p(y|Mi)/M
∑M

j=1 p(y|Mj) ∝ p(y|Mi). The pi are usually

intractable integrals over the parameters θi associated with modelMi. One widely-

used approach to model selection is to estimate each pi in turn, say by p̂i, then to take

the maximum of the p̂i over i = 1, . . . ,M . In particular, thermodynamic integration

is one approach to approximation of marginal likelihoods pi for individual models

[Gelman and Meng, 1998; Friel and Pettitt, 2008].

In many contemporary applications the maximum a-posteriori model is not

well-identified, for example in variable selection where there are very many candidate

models. Then, the computation becomes sensitive to numerical error in the p̂i, since

an incorrect model Mi, i 6= k can be assigned an overly large value of p̂i due to

numerical error, in which case it could be selected in place of the correct maximum

a-posteriori model. Below we explore the potential to exploit BQ to surmount this

problem.

Thermodynamic Integration with Bayesian Quadrature

To simplify notation below we consider computation of a single pi and suppress

dependence on the index i corresponding to model Mi. Denote the parameter

space by Θ. For t ∈ [0, 1] (an inverse temperature) define the power posterior Πt,

a measure over Θ with density πt(θ) ∝ p(y|θ)tp(θ). The thermodynamic identity is
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formulated as a double integral [Gelman and Meng, 1998]:

log p(y) =

∫ 1

0

∫
Θ

log p(y|θ)πt(θ)dθdt.

The thermodynamic integral can be re-expressed as log p(y) =
∫ 1

0 g(t)dt, g(t) =∫
Θ f(θ)πt(θ)dθ, where f(θ) = log p(y|θ). Standard practice is to discretise the

outer integral using a quadrature rule and estimate the inner integral using MCMC.

Intuitively, this may be a convenient way of computing the model evidence since it

requires sampling over the power posteriors, which will be tempered versions of the

posterior. This will tend to be easier since tempering reduces the difficulties which

come with multimodality of a target distribution.

Letting 0 = t1 < · · · < tm = 1 denote a fixed temperature schedule, we thus

use the trapezium rule to obtain:

log p(y) ≈
m∑
i=2

(ti − ti−1)
ĝi + ĝi−1

2
, ĝi =

1

n

n∑
j=1

log p(y|θi,j),

where {θi,j}nj=1 are MCMC samples from πti . Several improvements have been pro-

posed, including the use of higher-order numerical quadrature for the outer integral

[Friel et al., 2014; Hug et al., 2016] and the use of control variates for the inner

integral [Oates et al., 2016, 2017c].

Our proposal is to apply BQ to both the inner and outer integrals. This

is instructive, since nested integrals are prone to propagation and accumulation

of numerical error. In the Bayesian approach, the two integrands f and g are

each assigned prior probability models. For the inner integral we assign a prior

f ∼ N (0, cf ). Our data here are the nm× 1 vector f where f(i−1)n+j = f(θi,j). For

estimating gi with BQ we have m times as much data as for the MC estimator ĝi,

which makes use of only n function evaluations. Here, information transfer across

temperatures is made possible by the explicit model for f underpinning BQ.

In the posterior, g = (g(t1), . . . , g(tT )) is a Gaussian random vector with

g|f ∼ N (µ,Σ) where the mean and covariance are given by µa = Πta [cf (·,X)]C−1
f f

and Σa,b = ΠtaΠtb [cf (·, ·)]] − Πta [cf (·,X)]C−1
f Πtb [Cf (X, ·)], where X = {θi,j}nj=1

and Cf is a nm× nm covariance matrix defined by cf .

For the outer integral, it is known that discretisation error can be substantial;

Friel et al. [2014] proposed a second-order correction to the trapezium rule to miti-

gate this bias, while Hug et al. [2016] pursued the use of Simpson’s rule. Attacking

this problem from the probabilistic perspective, we do not want to place a stationary
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prior on g(t), since it is known from extensive empirical work that g(t) will vary

more at smaller values of t. Indeed the rule-of-thumb ti = (i/m)5 is commonly used

[Calderhead and Girolami, 2009].

We would like to encode this information into our prior. To do this, we

proceed with an importance sampling step log p(y) =
∫ 1

0 g(t)dt =
∫ 1

0 h(t)π(t)dt.

The rule-of-thumb implies an importance distribution π(t) ∝ 1/(ε+ 5t4/5) for some

small ε > 0, which renders the function h = g/π approximately stationary (made

precise in the following subsection). A stationary GP prior h ∼ N (0, ch) on the

transformed integrand h provides the encoding of this prior knowledge that was

used. Under this construction, the posterior log p(y) is Gaussian with mean and

covariance defined as E[log p(y)] = Π[ch(·,T)]C−1
h µ and

V[log p(y)] = ΠΠ[ch(·, ·)]−Π[ch(·,T)]C−1
h Π[ch(T, ·)]︸ ︷︷ ︸

(∗)

+ Π[ch(·,T)]C−1
h ΣC−1

h Π[ch(T, ·)]︸ ︷︷ ︸
(∗∗)

,

where T = {ti}mi=1 and Ch is an m×m covariance matrix defined by ch. The term

(∗) arises from BQ on the outer integral, while the term (∗∗) arises from propagating

numerical uncertainty from the inner integral through to the outer integral.

Experimental Setup

As a test-bed that captures the salient properties of model selection discussed above,

we considered variable selection for logistic regression:

p(y|β) =
N∏
i=1

pi(β)yi [1− pi(β)]1−yi ,

logit(pi(β)) = γ1β1xi,1 + . . . γdβdxi,d, γ1, . . . , γd ∈ {0, 1}

where the modelMk specifies the active variables via the binary vector γ = (γ1, . . . , γd).

A model prior p(γ) ∝ d−‖γ‖1 was employed. Given a modelMk, the active parame-

ters βj were endowed with independent priors βj ∼ N (0, τ−1), where here τ = 0.01.

A single dataset of size N = 200 were generated from model M1 with pa-

rameter β = (1, 0, . . . , 0); as such the problem is under-determined (there are in

principle 210 = 1024 different models) and the true model is not well-identified. The

selected model is thus sensitive to numerical error in the computation of marginal

likelihood. In practice we limited the model space to consider only models with∑
γi ≤ 2; this speeds up the computation and, in this particular case, only rules

out models that have much lower posterior probability than the actual maximum

a-posteriori model. There were thus 56 models being compared.
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In this work we used the manifold Metropolis-adjusted Langevin algorithm

[Girolami and Calderhead, 2011] in combination with population MCMC. Popula-

tion MCMC shares information across temperatures during sampling, yet previous

work has not leveraged evaluation of the log-likelihood f from one sub-chain ti to

inform estimates derived from other sub-chains ti′ , i
′ 6= i. In contrast, this occurs

naturally in the BQ framework.

Here MCMC was used to generate a small number, n = 200, of samples on

a per-model basis, in order to simulate a scenario where numerical error in com-

putation of marginal likelihood will be non-negligible. A temperature ladder with

m = 10 runs was employed, for the same reason, according to the recommendation

of Calderhead and Girolami [2009]. No convergence issues were experienced; the

same MCMC setup has previously been successfully used in Oates et al. [2016].

We motivate a prior for the unknown function g based on the work of

Calderhead and Girolami [2009], who advocated the use of a power-law schedule

ti = ( i−1
m−1)5, i = 1, . . . ,m, based on an extensive empirical comparison of possi-

ble schedules. A “good” temperature schedule approximately satisfies the criterion

|g(ti)(ti+1− ti)| ≈ m−1, on the basis that this allocates equal area to the portions of

the curve g that lie between ti and ti+1, controlling bias for the trapezium rule. Sub-

stituting ti = ( i−1
m−1)5 into this optimality criterion produces |g(ti)|((i+ 1)5 − i5) ≈

m4. Now, letting i = θm, we obtain |g(θ5)|(5θ4m4 + o(m4)) ≈ m4. Formally

treating θ as continuous and taking the m → ∞ limit produces |g(θ5)| ≈ 0.2θ−4

and so |g(t)| ≈ 0.2t−4/5. From this we conclude that the transformed function

h(t) = 5t4/5g(t) is approximately stationary and can reasonably be assigned a sta-

tionary GP prior. However, in an importance sampling transformation we require

that π(t) has support over [0, 1]. For this reason we took π(t) = 1.306/(0.01+5t4/5)

in our experiment.

The covariance matrix Σ cannot be obtained in closed-form due to intractabil-

ity of the kernel mean Πti [cf (·, θ)]. We therefore explored an approximation aΣ such

that plugging in aΣ in place of Σ provides an approximation to the posterior vari-

ance V[log p(y)] for the log-marginal likelihood. This took the form

aΣi,j := aΠtiaΠtj [cf (·, ·)]− aΠti [cf (·,X)]C−1
f aΠtj [cf (X, ·)],

where an empirical distribution aπ = 1
100

∑100
i=1 δ(xi) was employed based on the first

m = 100 samples, while the remaining samples X = {xi}200
i=101 were reserved for the

covariance computation. This heuristic approach becomes exact as m→∞, in the

sense that aΣi,j → Σi,j , but under-estimates covariance at finite m.
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Figure 3.6: Bayesian quadrature for thermodynamic integration. Illustration on
variable selection for logistic regression (with true modelM1). Standard and prob-
abilistic thermodynamic integration were used to approximate marginal likelihoods
and, hence, the posterior over models. Each row represents an independent re-
alisation of MCMC, while the data y were fixed. Left: Standard Monte Carlo,
where point estimates for marginal likelihood were assumed to have no associated
numerical error. Right: BQ, where a model for numerical error on each integral
was propagated through into the posterior over models. The probabilistic approach
produces a “probability distribution over a probability distribution”, where the nu-
merical uncertainty is modelled on top of the usual uncertainty associated with
model selection.

In experiments below, both cf and ch were taken to be Gaussian covariance

functions; for example: cf (x,x′) = λf exp
(
− ‖x − x′‖22/2σ2

f

)
parameterised by

λf and σf . This choice was made to capture smoothness of both integrands f

and h involved. For this application we found that, while the σ parameters were

possible to learn from data using empirical Bayes, the λ parameters required a

large number of data to pin down. Therefore, for these experiments we fixed λf =

0.1×mean(fi,j) and λh = 0.01×mean(hi). In both cases the remaining covariance

function parameters σ were selected using empirical Bayes.

Results

Results are shown in Figure 3.6. Here we compared approximations to the model

posterior obtained using the standard method versus the probabilistic method, over
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Figure 3.7: Calibration of Bayesian quadrature for thermodynamic integration in
model selection. Estimates of marginal likelihoods pi = p(y|Mi). On the x-axis we
show point estimates obtained by ignoring numerical error (the standard approach).
On the y-axis we present the posterior mean estimates and ± one posterior standard
deviation that aims to capture the extent of numerical error.

two realisations of the MCMC (the data y were fixed). The computation associated

with BQ required less time, in total, than the time taken by MCMC.

An advantage of the Bayesian probabilistic numerical method approach is

that it models numerical uncertainty on top of the usual statistical uncertainty.

The same model was not always selected when numerical error was ignored and de-

pended on the MCMC random seed. In contrast, under the probabilistic approach,

either M1 or M2 could feasibly be the maximum a-posteriori under any of the

MCMC realisations, up to numerical uncertainty. The top row of Figure 3.6 shows

a large posterior uncertainty over the marginal likelihood for M27. This could be

used as an indicator that more computational effort should be expended on this

particular integral. The posterior variance was dominated by uncertainty due to

discretisation error in the outer integral, rather than the inner integral. This sug-

gests that numerical uncertainty could be reduced by allocating more computational

resources to the outer integral rather than the inner integral.
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Figure 3.8: The Teal South oil field. Left: Computer model for the Teal South oil
field. Simulation of this model requires significant computational resources. This
renders any statistical analysis challenging due to the small number of data points
(i.e. simulations) which can be obtained. Right: Location of the oil field.

3.6.2 Case Study 2: Computer Experiments

For our second case study, we consider an industrial scale computer model for the

Teal South oil field, New Orleans [Hajizadeh et al., 2011] (see Figure 3.8). Condi-

tional on field data, posterior inference was facilitated using state-of-the-art MCMC

[Lan et al., 2016]. Oil reservoir models are generally challenging for MCMC. First,

simulating from those models can be time-consuming, making the cost of individual

MCMC samples a few minutes to several hours. Second, the posterior distribution

will often exhibit strongly non-linear concentration of measure. Here we computed

statistics of interest using BMCMC, where the uncertainty quantification afforded

by BQ aims to enable valid inferences in the presence of relatively few MCMC

samples.

Quantification of the uncertainty associated with predictions is a major topic

of ongoing research in this field [Mohamed et al., 2010; Hajizadeh et al., 2011;

Park et al., 2013] due to the economic consequences associated with inaccurate

predictions of quantities such as future oil production rate. A probabilistic model

for numerical error in integrals associated with prediction could provide a more

complete uncertainty assessment.

The Teal South model is a partial differential equation computer model for

an oil reservoir. The model studied is on an 11 × 11 grid with 5 layers. It has

9 parameters representing physical quantities of interest. These include horizontal

permeabilities for each of the 5 layers, the vertical to horizontal permeability ratio,

aquifer strength, rock compressibility and porosity. For our experiments, we used an

emulator of the likelihood model documented in Lan et al. [2016] in order to speed

up MCMC; however this might be undesirable in general due to the additional

uncertainty associated with the approximation in the results obtained.
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Figure 3.9: Bayesian Markov chain Monte Carlo estimates of posterior means on
the parameter of the Teal South oil field model (centered around the exact values).
The green line gives the exact value of the integral. The MCMC (black line) and
BMCMC point estimates (red line) provided similar performance. The MCMC 95%
confidence intervals, based on estimated asymptotic variance (black dotted lines),
are poorly calibrated whereas with the BMCMC 95% credible intervals (red dotted
lines) provide a more honest uncertainty assessment.

The particular integrals that we considered are posterior means for each

model parameter, and we compared against an empirical benchmark obtained with

brute force MCMC. BMCMC was employed with a Matérn α = 3/2 covariance

function whose lengthscale parameter was selected using empirical Bayes and the

amplitude parameter was fixed to λ = 1.

Due to intractability of the posterior distribution, the kernel mean is un-

available in closed form. To overcome this, the methodology in Section 3.4.2 was

employed to obtain an empirical estimate of the kernel mean (half of the MCMC

samples were used with BQ weights to approximate the integral and the other half
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with MC weights to approximate the kernel mean). Equation 3.9 was used to upper

bound the intractable BQ posterior variance. For the upper bound to hold, states

axj must be independent samples from Π, whereas here they were obtained using

MCMC and were therefore not independent. In order to ensure that MCMC samples

were “as independent as possible” we employed sophisticated MCMC methodology

developed by Lan et al. [2016]. Nevertheless, we emphasise that there is a gap

between theory and practice here that we hope to fill in future research.

Estimates for posterior means were obtained using both standard MCMC and

BMCMC, shown in Figure 3.9. For this example the posterior distribution provides

sensible uncertainty quantification for integrals 1, 3, 6-9, but was over-confident for

integrals 2, 4, 5. The point accuracy of the BMCMC estimator matched that of the

standard MCMC estimator. The lack of faster convergence for BMCMC appears to

be due to inaccurate estimation of the kernel mean and we conjecture that alternative

exact approaches, such as Oates et al. [2017c], may provide improved performance

in this context. However, standard confidence intervals obtained from the central

limit theorem for MCMC with a plug-in estimate for the asymptotic variance were

over-confident for parameters 2-9.

3.6.3 Case Study 3: High-Dimensional Random Effects

Our aim here was to explore whether more flexible representations afforded by

weighted combinations of Hilbert spaces could help scale BQ when X is high-

dimensional. The focus was BQMC, but the methodology could be applied to BQ

rules with other point sets.

Weighted Spaces

The formulation of high (and infinite)-dimensional QMC can be achieved with a

construction known as a weighted Hilbert space. These spaces, defined below, are

motivated by the observation that many integrands encountered in applications

seem to vary more in lower dimensional projections compared to higher dimensional

projections. Our presentation below follows Section 2.5.4 and 12.2 of Dick and

Pillichshammer [2010], but the idea goes back at least to Wahba [1991, Chapter 10].

As usual with QMC, we work in X = [0, 1]d and Π uniform over X . Let

I = {1, 2, . . . , d}. For each subset u ⊆ I, define a weight γu ∈ (0,∞) and denote

the collection of all weights by γ = {γu}u⊆I . Consider the space Hγ of functions of

the form f(x) =
∑

u⊆I fu(xu), where fu belongs to a RKHS Hcu with kernel cu and

xu denotes the components of x that are indexed by u ⊆ I. This is not restrictive,
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since any function can be written in this form by considering only u = I. We turn

Hγ into a Hilbert space by defining an inner product 〈f, g〉γ :=
∑

u⊆I γ
−1
u 〈fu, gu〉u

where γ = {γu : u ⊆ I}. Constructed in this way, Hγ is a RKHS with kernel

cγ(x,x′) =
∑

u⊆I γucu(x,x′). Intuitively, the weights γu can be taken to be small

whenever the function f does not depend heavily on the |u|-way interaction of the

states xu. Thus, most of the γu will be small for a function f that is effectively

low-dimensional. A measure of the effective dimension of the function is given by∑
u⊆I γu; in an extreme case d could even be infinite provided that this sum remains

bounded [Dick et al., 2013].

The (canonical) weighted Sobolev space of dominating mixed smoothness Sαγ
is defined by taking each of the component spaces to be Sα. Constructed in this

way, Sαγ is a RKHS with kernel

cα,γ(x,x′) =
∑
u⊆I

γu
∏
i∈u

(
α∑
k=1

Bk(xi)Bk(x
′
i)

(k!)2
− (−1)α

B2α(|xi − x′i|)
(2α)!

)
,

where the Bk are Bernoulli polynomials. In finite dimensions, BQMC rules based

on a higher-order digital nets attain optimal WCE rates O(n−α+ε) for this RKHS:

Proposition 5 (Consistency of BQMC in weighted Sobolev spaces of

mixed dominating smoothness). Let Hc be a RKHS that is norm-equivalent

to Sαγ . Then BQMC based on a digital (t, α, 1, αm ×m, d)-net over Zb attains the

optimal rate e(Π̂BQMC; Π,Hc) = O(n−α+ε) for any ε > 0, where n = bm.

The QMC rules in Proposition 5 do not explicitly take into account the values

of the weights γ. The net used in the proposition above is a popular QMC point set

for Sαγ , and we refer the reader to Dick et al. [2013] for more details.

An algorithm that tailors QMC states to specific weights γ is known as the

component by component (CBC) algorithm; further details can be found in [Kuo,

2003]. In principle the CBC algorithm can lead to improved rate constants in high

dimensions, because effort is not wasted in directions where f varies little, but the

computational overheads are also greater. We did not consider CBC algorithms for

BQMC in this work.

Note that the weighted Hilbert space framework allows us to bound the WCE

independently of dimension providing that
∑

u∈I γu <∞ [Sloan and Woźniakowski,

1998]. This justifies the use of “high-dimensional” in this context. Analogous re-

sults for functional approximation were provided by Fasshauer et al. [2012] for the

Gaussian kernel. Further details are provided in Section 4.1 of Dick et al. [2013].
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Semi-Parametric Random Effects Regression

For illustration we considered generalised linear models, and focus on a Poisson semi-

parametric random effects regression model studied by Kuo et al. [2008, Example

2]. The context is inference for the parameters β of the following model

Yj |λj ∼ Po(λj),

log(λj) = β0 + β1z1,j + β2z2,j + u1φ1(z2,j) + · · ·+ udφd(z2,j),

uj ∼ N(0, τ−1) independent.

Here z1,j ∈ {0, 1}, z2,j ∈ (0, 1) and φj(z) = [z − κj ]+ where κj ∈ (0, 1) are prede-

termined knots. We took d = 50 equally spaced knots in [min z2,max z2]. Infer-

ence for β requires multiple evaluations of the observed data likelihood p(y|β) =∫
Rd p(y|β,u)p(u)du and therefore is a candidate for BQ methods, in order to model

the cumulative uncertainty of estimating multiple numerical integrals.

In order to transform this integration problem to the unit cube we per-

form the change of variables xj = Φ−1(uj) so that we wish to evaluate p(y|β) =∫
[0,1]d p(y|β,Φ(x))dx. Here Φ−1(x) denotes the standard Gaussian inverse cumu-

lative distribution function applied to each component of x. BQ proceeds under

the hypothesis that the integrand f(x) = p(y|β,Φ(x)) belongs to (or at least can

be well approximated by functions in) Sαγ for some smoothness parameter α and

some weights γ. Intuitively, the integrand f(x) is such that an increase in the

value of xj at the knot κj can be compensated for by a decrease in the value of

xj+1 at a neighbouring knot κj+1, but not by changing values of x at more remote

knots. Therefore we expect f(x) to exhibit strong individual and pairwise depen-

dence on the xj , but expect higher-order dependency to be weaker. This motivates

the weighted space assumption. Sinescu et al. [2012] provides theoretical analysis

for the choice of weights γ. Here, weights γ of order two were used; γu = 1 for

|u| ≤ dmax, dmax = 2, γu = 0 otherwise, which corresponds to an assumption of

low-order interaction terms (though f can still depend on all d of its arguments).

Results

Results in Figure 3.10 showed that the 95% posterior credible regions more-or-

less cover the truth for this problem, suggesting that the uncertainty estimates

are appropriate. On the negative side, the BQMC method does not encode non-

negativity of the integrand and, consequently, some posterior mass is placed on

negative values for the integral, which is not meaningful. To understand the effect
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Figure 3.10: Bayesian quasi-Monte Carlo for semi-parametric random effects regres-
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[Error bars show 95% credible regions. To improve visibility results are shown on the
log-scale; error bars are symmetric on the linear scale. A brute-force QMC estimate
was used to approximate the true value of the integral p(y|β) where β = (0, 1, 1)
was the data-generating value of the parameter.]

of the weighted space construction here, we compared against the BQMC point

estimate with d-way interactions (u ∈ {∅, I}). An interesting observation was that

these point estimates closely followed those produced by QMC.

3.6.4 Case Study 4: Computer Graphics

BQ can be defined on arbitrary manifolds, with formulations on non-Euclidean

spaces suggested as far back as Diaconis [1988] and recently exploited in the context

of computer graphics [Brouillat et al., 2009; Marques, 2013].

Global Illumination Integrals

Below we analyse BQMC on the d-sphere Sd = {x = (x1, . . . , xd+1) ∈ Rd+1 : ‖x‖2 =

1} in order to estimate integrals of the form Π[f ] =
∫
Sd f(x)Π(dx), where Π is the

spherical measure (i.e. uniform over Sd with
∫
Sd Π(dx) = 1).

BQ is applied to compute global illumination integrals used in the rendering

of surfaces [Pharr and Humphreys, 2004], and we therefore focus on the case where

d = 2. Uncertainty quantification is motivated by inverse global illumination [e.g.

Yu et al., 1999], where the task is to make inferences from noisy observation of

an object via computer-based image synthesis; a measure of numerical uncertainty

could naturally be propagated in this context. Below, to limit scope, we restrict
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Figure 3.11: Global illumination integrals in computer graphics. The California lake
environment map, shown, was used in our experiment.

attention to uncertainty quantification in the forward problem.

The models involved in global illumination are based on three main factors:

a geometric model for the objects present in the scene, a model for the reflectivity

of the surface of each object and a description of the light sources provided by an

environment map. The light emitted from the environment will interact with objects

in the scene through reflection. This can be formulated as an illumination integral3:

Lo(ωo) = Le(ωo) +

∫
S2

Li(ωi)ρ(ωi, ωo)[ωi · n]+Π(dωi). (3.11)

The quantity Lo(ωo) is called the outgoing radiance and represents the outgoing light

in the direction ωo. Le(ωo) represents the amount of light emitted by the object itself

(which we will assume to be known) and Li(ωi) is the light hitting the object from

direction ωi. The term ρ(ωi, ωo) is the bidirectional reflectance distribution function,

which models the fraction of light arriving at the surface point from direction ωi

and being reflected towards direction ωo. Here n is a unit vector normal to the

surface of the object. A sketch of the problem is provided in Figure 3.11. Our

investigation is motivated by strong empirical results for BQMC in this context

obtained by Marques et al. [2013].

To assess the performance of BQMC we consider a typical illumination inte-

gration problem based on a California lake environment. The goal here is to compute

intensities for each of the three red, green and blue colour channels corresponding

to observing a virtual object from a fixed direction ωo. We consider the case of

an object directly facing the camera (wo = n). For the bidirectional reflectance

3Although the integrand is only positive on part of the sphere, we have extended the integral to
the entire sphere in order to be able to use a QMC point set defined for integration on the sphere.
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distribution function we took ρ(ωi, ωo) = (2π)−1 exp(ωi · ωo − 1). The integrand

f(ωi) = Li(ωi)ρ(ωi, ωo)[ωi · ωo]+ was modelled in a Sobolev space of low smooth-

ness. In contrast, Marques et al. [2013] viewed Equation 3.11 as an integral with

respect to π(ωi) ∝ ρ(ωi, ωo) and posited a space of smooth integrands restricted to

the hemisphere. The approach that we propose has two possible advantages; (i) it

provides a closed-form expression for the kernel mean, (ii) a rougher kernel may be

more appropriate in the context of illumination integrals, as pointed out by Brouil-

lat et al. [2009]. The specific function space that we consider is the Sobolev space

Hα(Sd) for α = 3/2 (defined below).

Experimental Setup

The function spaces that we consider are Sobolev spaces Hα(Sd) for α > d/2, ob-

tained using the reproducing kernel c(x,x′) =
∑∞

l=0 λlP
(d)
l (x>x′), x,x′ ∈ Sd, where

λl � (1 + l)−2α and P
(d)
l are normalised Gegenbauer polynomials [Brauchart et al.,

2014]. A particularly simple expression for the kernel in d = 2 and Sobolev space α =

3/2 can be obtained by taking λ0 = 4/3 along with λl = −λ0×(−1/2)l/(3/2)l where

(a)l = a(a+1) . . . (x+l−1) = Γ(a+l)/Γ(a) is the Pochhammer symbol. Specifically,

these choices produce c(x,x′) = 8/3−‖x−x′‖2, x,x′ ∈ S2. This covariance function

is associated with a tractable kernel mean Π[c(x,x′)] =
∫
S2 c(x,x

′)Π(dx′) = 4/3 and

hence the initial error is also available ΠΠ[c] =
∫
S2 Π[c(x,x′)]Π(dx) = 4/3.

The states {xi}ni=1 could be generated with MC. In that case, analogous re-

sults to those obtained in Section 3.3.2 can be obtained. Specifically, from Theorem

7 of Brauchart et al. [2014], classical MC leads to slow convergence e(Π̂MC; Π,Hk) =

OP (n−1/2). Rather than focusing on MC methods, we may also be interested in re-
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Figure 3.13: Worst-case error of Bayesian Monte Carlo and Bayesian quasi-Monte
Carlo for global illumination integrals. Left: A spherical t-design over S2. Right The
worst-case error, for Monte Carlo (MC), Bayesian MC (BMC), Quasi MC (QMC)
and Bayesian QMC (BQMC).

sults based on spherical QMC point sets. We briefly introduce the concept of a

spherical t-design [Bondarenko et al., 2013] which is define as a set {xi}ni=1 ⊂ Sd

satisfying
∫
Sd f(x)Π(dx) = 1

n

∑n
i=1 f(xi) for all polynomials f : Sd → R of degree at

most t. (i.e. f is the restriction to Sd of a polynomial in the usual Euclidean sense

Rd+1 → R). We now provide rates for Bayesian estimators in both of these cases.

Proposition 6 (Consistency of BMC and BQMC for integration on the

sphere). Suppose that X = Sd and Π is a uniform measure on this sphere. Assume

that Hc is norm equivalent to a Sobolev space of smoothness α = 3
2 on X . Then, if

d = 2: e(Π̂BMC; Π,Hc) = OP (n−3/4).

Furthermore, ∀d ≥ 2 there exists Cd such that for all n ≥ Cdtd there exists a

spherical t-design on Sd with n states. When d = 2, the use of a spherical t-design

leads to a rate of e(Π̂BQMC; Π,Hc) = O(n−3/4).

The rate in Proposition 6 is best-possible for a deterministic method in

H 3
2
(S2) [Brauchart et al., 2014]. Although both BMC and BQMC have the same

convergence rate, the rate constant will usually be better for the QMC case (although

this is not explicit in our theoretical result). Additional theoretical results on point

estimates can be found in Fuselier et al. [2014]. Although explicit spherical t-designs

are not currently known in closed-form, approximately optimal point sets have been

computed numerically to high accuracy. Our experiments were based on such point

sets provided on http://web.maths.unsw.edu.au/~rsw/Sphere/EffSphDes/sf.

html [Accessed 24 Nov. 2015].
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Results

Both BMC and BQMC were tested on an environment map freely available at:

http://www.hdrlabs.com/sibl/archive.html [Accessed 23 May 2017]. To ensure

fair comparison, identical kernels were taken as the basis for both methods.

Figure 3.12 shows performance in red/green/blue-space. For this particular

test function, the BQMC point estimate was almost identical to the QMC estimate

at all values of n. Overall, both BMC and BQMC provided sensible quantification

of uncertainty for the value of the integral at all values of n that were considered.

In Figure 3.13, the value of the WCE is plotted for each of the four methods consid-

ered (MC, QMC, BMC, BQMC) as the number of states increases. Both BMC and

BQMC appear to attain the same rate forH3/2(S2), although BQMC provides a con-

stant factor improvement over BMC. Note that O(n−3/4) was shown by Brauchart

et al. [2014] to be best possible for a deterministic method in the space H3/2(S2).
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Chapter 4

Bayesian Numerical Integration:

Advanced Methods

“The most popular option, however, is to drown our

sorrows in alcohol, get punch drunk, and stumble around

all night. The technical term for this is Markov chain

Monte Carlo, or MCMC for short”

Pedro Domingos, The Master Algorithm

The previous chapter introduced BQ and focused mostly on its variants based

on MC, IS, MCMC and QMC point sets. We then provided theory on their asymp-

totic properties and showed that these optimally-weighted quadrature rules can pro-

vide significant improvements in convergence rate under smoothness assumptions on

the integrand. We also demonstrated the coverage properties of these Bayesian esti-

mators on some toy problems and a range of applied statistical inference problems.

An important takeaway is that Bayesian numerical methods can provide use-

ful uncertainty quantification for problems in numerical analysis. This will however

usually come with some significant additional computational cost. In the case of BQ

with conjugate Gaussian or Student-t models, the worst-case computational cost will

be O(n3), whereas for non-conjugate models, the cost could be significantly greater

due to the additional necessity of approximating the posterior with MCMC. Be-

fore deciding whether to use a Bayesian probabilistic numerical method, one should

therefore balance this additional cost with the value provided by the uncertainty

quantification.

What is clear is that BQ will be most useful for models where evaluating

the integrand f is expensive. In these cases, it is most likely that the numerical

error remaining will be large, and a model of this error will hence be useful. The
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fast convergence rates provided by BQ are also useful here, since it will allow us to

reduce the error with fewer function evaluations.

In this chapter, we focus on several extensions of BQ which could help further

reduce the number of integrand evaluations to attain a fix error threshold.

• Section 4.1 proposes an extension of BQ to model several integrands simulta-

neously or sequentially. This formulation allows us to obtain a joint posterior

on the integral of these functions. On the technical side, this requires the

use of vector-valued reproducing kernel Hilbert spaces, which we will use to

encode the correlation across integrands. This extension of BQ is useful as

it can improve the speed of convergence of the associated estimators and can

provide more accurate quantification of uncertainty.

The rest of the chapter will then focus on efficient point selection schemes for BQ.

Even though obtaining the optimal set of points for BQ is an intractable problem,

we demonstrate that several point selection schemes can significantly improve on

the use of simple MC, MCMC or QMC point sets.

• Section 4.2 proposes a sampling scheme closely related to the idea of experi-

mental design and which is based on the Frank-Wolfe algorithm. Points are

chosen sequentially to minimise the posterior variance on V[Π[gn]]. We can

also prove convergence results in this case, although this is limited to kernels

corresponding to finite-dimensional RKHSs.

• Section 4.3 proposes a sequential MC sampler which aims to approximate the

optimal BQ importance sampling distribution for a fixed number of integrand

n. Once again this will be particularly useful when the integrand is expensive

and so the choice of where to evaluate the function is of great importance.

4.1 Bayesian Quadrature for Multiple Related Integrals

We have already discussed several advantages of probabilistic numerical methods

such as quantification of the uncertainty associated with numerical error. However,

one property which has not been studied so far is the possibility of jointly inferring

several quantities of interest (although briefly mentioned in Hennig et al. [2015] for

linear algebra). In this section, we study the problem of numerically integrating a

sequence of functions f1, . . . , fP , which are correlated to one another, with respect to

some probability measure Π. In many applications where we are faced with this type

of problem, we also have prior knowledge about correlations between the individual
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fp. However, this information is often ignored and the integrals are approximated

individually. This is not principled from a Bayesian point of view since it means we

are not conditioning on all available information. In this section, we extend the BQ

algorithm to solve this problem by building a joint model of f1, . . . , fP in order to

obtain a joint posterior on the integrals Π[f1], . . . ,Π[fP ]. Such a joint model allows

for better finite-sample performance, and can also lead to more refined posterior

distributions on each of the individual integrals.

4.1.1 Multi-output Bayesian Quadrature

Suppose we have a sequence of functions fp : X → R (p = 1, . . . , P ) for which we

are interested in numerically computing integrals of the form Π[fp]. For notational

convenience, we will restrict ourselves to the case where all of the input domains are

identical and denoted X , all of the probability measures are identical and denoted

Π, and the input sets X = {Xp}Pp=1 consist of n points Xp = (xp1, . . . ,xpn) per

output function fp. This setup can be made more general if necessary, but these

assumptions will significantly simplify presentation. We reframe the integration

problem as that of integrating some vector-valued function f : X → RP such that

f(x) = (f1(x), . . . , fP (x))>. In other words. we want to estimate the vector Π[f ] =

(Π[f1], . . . ,Π[fP ])>. In this multiple-integrals setting, we could consider generalised

quadrature rules of the form:

Π̂[fp] =
P∑

p′=1

n∑
i=1

(Wi)pp′fp′(xp′i),

where Wi ∈ RP×P are weight matrices and (Wi)pp′ gives the influence of the value

of fp′ at xp′i on the estimate of Π[fp]. The quadrature rule for f can be rewrit-

ten in compact form as Π̂[f ] = W>f(X) for some weight matrix W ∈ RnP×P

(a concatenation of the weight {Wi}ni=1) and function-evaluations vector f(X) =

(f1(x11), . . . , f1(x1n), . . . , fP (xP1), . . . , fP (xPn))>.

These generalised quadrature rules encompass popular MC methods such as

control variates or functionals [Glasserman, 2004; Oates et al., 2017c], multi-level

Monte Carlo Giles [2015] and multi-fidelity Monte Carlo [Peherstorfer et al., 2016b].

However, it is important to point out that these MC methods can only deal with very

specific relations between integrands, usually requiring
(∫
X (fp(x)− fp′(x))2Π(dx)

) 1
2

to be small for all pairs of integrands fp, fp′ . Our method will be able to make use

of much more complex relations between functions.

We propose to approach this problem using an extended version of BQ, where
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we impose a prior stochastic process g : X × Ω → RP which is a GP with mean a

zero vector of size P and covariance function C : X × X → RP×P . This is often

called a multi-output GP or co-kriging model Álvarez and Lawrence [2011]). C is

now matrix-valued and has entries (C(x,x′))pp′ = EP[gp(x, ω)gp′(x
′, ω)]. In this case

the stochastic process after observing some data is denoted gn and is once again a

GP. This GP has vector-valued mean mn : X → RP and matrix-valued covariance

Cn : X × X → RP×P given by:

mn(x) = C(x,X)C(X,X)−1f(X), (4.1)

Cn(x,x′) = C(x,x′)−C(x,X)C(X,X)−1C(X,x′). (4.2)

for C(x,X) = (C(x,x1), . . . , C(x,xn)) ∈ RP×nP and Gram matrix C(X,X) ∈
RnP×nP is:

C(X,X) =


(C(X1,X1))1,1 . . . (C(X1,XP ))1,P

(C(X2,X1))2,1
... (C(X2,XP ))2,P

...
...

...

(C(XP ,X1))P,1 . . . (C(XP ,XP ))P,P

 .

where (C(Xp,Xp′))p,p′ is an n× n matrix.

Notice the similarity between Equations 4.1 and 4.2 and the equations for

the posterior GP in the uni-output case in Chapter 2. The distribution Π[gn] can

also be obtained whenever the kernel mean Π[C(·,x)] and initial error ΠΠ [C] are

available in closed form, and will also be closely related to the result in Proposition

1 in Chapter 3:

Proposition 7 (Multi-output BQ posterior distribution on the solution of

the integrals). Consider multi-output BQ with a GP prior on f = (f1, . . . , fP )>

which has mean 0 and covariance function C. The distribution of Π[gn] is a P -

dimensional Gaussian distribution with mean and covariance matrix:

E [Π[gn]] = Π[C(·,X)]C(X,X)−1f(X),

V [Π[gn]] = ΠΠ [C]−Π[C(·,X)]C(X,X)−1Π[C(X, ·)].

The proof is identical to the uni-output case and hence omitted. In this case,

we clearly end up with a generalised quadrature rule with weight matrix: WBQ =

C(X,X)−1Π [C(·,X)]> ∈ RnP×P . In general, the computational cost for computing

the posterior mean and variance is now of order O(n3P 3) instead of the O(n3) for

the uni-output setting. However, several choices of covariance functions can reduce
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this cost significantly, and it is also possible to obtain sparse GP approximations

[Álvarez and Lawrence, 2011].

The choice of covariance function C is of course once again of great im-

portance since it encodes prior knowledge about each of the integrand and their

correlation structure and should be made based on the application considered. We

also remark that matrix valued covariance functions C can be described in term of

some scalar-valued covariance function r on the extended space X × {1, . . . , P} as

(C(x,x′))pp′ = r((x, p), (x′, p′)). We now present two choices of covariance functions

which are popular in the literature and will be used in the applications:

• The simplest example are separable covariance functions, which are of the

form

C(x,x′) = Bc(x,x′),

where B ∈ RP×P is symmetric and positive definite, and c : X × X → R is

a scalar-valued covariance function. This treats the covariance as the product

of two scalar-valued covariance functions, one defined on X and the other

on {1, . . . , P}. If all of the elements fp of the vector-valued function f are

evaluated on the same data set X = (x1, . . . ,xn), then the Gram matrix

can be expressed as C(X,X) = B ⊗ c(X,X) where ⊗ denotes the Kronecker

product. Due to properties of the Kronecker, its inverse can then be computed

as C(X,X)−1 = B−1 ⊗ c(X,X)−1. It is straightforward to show that similar

expressions can be obtained for the multi-output analogues of the kernel mean:

Π[C(·,X)] = B⊗Π[c(·,X)] = B⊗
(∫
X c(x,X)Π(dx)

)
and initial error ΠΠ[C] =

B ΠΠ[c] = B
∫
X×X c(x,x

′)Π(dx)Π(dx′). These expressions can of course be

obtained in closed form whenever the kernel mean and initial error of the

scalar-valued covariance function are available in closed form. This type of

covariance function can lead to a lower computational cost of order O(n3 +

P 3) when evaluating all fp on the same input set and using tensor product

formulations.

A particular case of interest is the linear model of co-regionalisation where the

matrix is of the form (B)pp′ =
∑R

i=1 a
i
pa
i
p′ for some aip ∈ R.

• An alternative is the process convolution covariance function [Ver Hoef and

Barry, 1998; Higdon, 2002; Álvarez and Lawrence, 2011], which models inte-

grands f1, . . . , fP as blurred transformations of R different underlying func-
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tions. It is given by:

(C(x,x′))p,p′ = cp,p′(x,x
′) + cwp(x,x

′)δp,p′ ,

where δpp′ = 1 if p = p′ and 0 else. Here there are two parts of the kernel, first

cp,p′ : X ×X → R, which encodes correlation across integrands and is defined

as:

cp,p′(x,x
′) =

R∑
i=1

∫
X
Gip(x− z)

∫
X
Gip′(x

′ − z′)ci(z, z
′)dz′dz.

The second part is cwp : X × X → R, and it models the part which is not

shared accross integrands. Gip : X → R is a blurring kernel which is a continu-

ous function either having compact support or being square integrable. Note

that the term “blurring kernel” does not mean the function is a reproducing

kernel. Notice that taking Gip(x − z) = aipδ(x − z) (where δ(·) represents a

Dirac function) reduces this covariance function to the linear model of co-

regionalisation.

It is common to combine covariance functions, by summing them (C(x,x′) =∑Q
q=1 Cq(x,x

′)) in order to obtain more flexible models. The use of both of these

covariances will be explored in the experiments.

4.1.2 Convergence for Priors with Separable Covariance Functions

In this section, we begin by exploring properties of multi-output BQ as an optimally-

weighted quadrature algorithm in some vector-valued RKHS HC. Denote the norm

and inner product of HC by ‖ · ‖C and 〈·, ·〉C respectively. Vector-valued RKHSs

were extensively studied in Pedrick [1957]; Micchelli and Pontil [2005]; Carmeli

et al. [2006, 2010]; De Vito et al. [2013], and generalise the notion of a RKHS

to vector-valued functions. In the vector-valued case, there is an extension of the

Moore-Aronszajn theorem which guarantees a one-to-one correspondence between

the RKHS HC and the kernel C. Furthermore, Theorem 3.1 in Micchelli and Pontil

[2005] shows that the minimiser of the variational problem:

min
h∈HC

{
‖h‖2C : h : X → RP ,h(xi) = f(xi) ∀xi ∈ X

}
takes the form of gn, the multi-output GP with mean and covariance given in

Proposition 7. We can therefore extend the result from Chapter 2 which shows that

Π̂BQ[fp] is an optimally weighted quadrature rule. In the multi-output case, we give
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a result for the WCE of individual integrands:

e(Π̂; Π,HC, p) = sup
‖f‖C≤1

∣∣∣Π[fp]− Π̂[fp]
∣∣∣ .

Proposition 8 (Multi-output BQ is optimally-weighted). For a fixed point

set X, denote by Π̂[f ] = W>f(X) any quadrature rule for the vector-valued function

f = (f1, . . . , fP ) and by WBQ the weights of the multi-output BQ rule with prior

mean 0 and covariance function C. Assume that all integrands are evaluated on the

same point set X. Then, ∀p = 1, . . . , P :

WBQ = arg min
W∈RnP×P

e(Π̂; Π,HC, p).

In specific cases, it is also possible to characterise the rate of convergence

of the worst-case error for each element fp. This is for example the case when

all integrands are evaluated on the same point set X and the prior is based on a

separable covariance function.

Theorem 13 (Consistency of multi-output BQ with separable covariance

function). Suppose we want to approximate Π[f ] for some f : X → RD and Π̂BQ[f ]

is the multi-output BQ rule with the covariance function C(x,x′) = Bc(x,x′) for

some positive definite B ∈ RD×D and scalar-valued kernel c : X × X → R. Then,

∀p = 1, . . . , P , we have:

e(Π̂BQ; Π,HC, p) = O
(
e(Π̂BQ; Π,Hc)

)
.

A small extension to sums of seperable covariance functions can also be useful

in applications.

Proposition 9 (Consistency for multi-output BQ with sums of covariance

functions). Suppose that C(x,x′) =
∑Q

q=1 Cq(x,x
′). Then:

e(Π̂BQ; Π,HC, p) = arg max
q∈{1,...,Q}

O
(
e(Π̂BQ; Π,HCq , p)

)
.

It is interesting to note that the point estimator in this case will be the same

as that of uni-output BQ. However the posterior variance on each integrands will

usually be smaller, but of the same order, in the multi-output BQ. This can be

explained intuitively by the fact that, when adding a new integrand, we can only

gain by a constant factor since we always evaluate the functions at the same input

points. In fact the proof of Theorem 13 provides an expression for this improvement
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factor (in terms of WCE) for any integrand fp, and this depends explicitly on its

correlation with the other functions: |
∑P

i,j=1(B−1)ijBipBjp|. From a practitioner’s

viewpoint, this can clearly be used to balance the value of using several integrands to

reduce the uncertainty on the error with the additional computational cost incurred.

We now give a result in the misspecified setting. This result assumes that

the points cover the space well and that the function f is assumed to be smoother

than it is. In this case, it is still possible to recover the optimal convergence rate:

Theorem 14 (Consistency of multi-output BQ with seperable covariance

in misspecified settings). Let cα be the kernel of some RKHS norm-equivalent to

a Sobolev space on some domain X with Lipschitz boundary1 and satisfying an in-

terior cone condition. Consider the BQ rule Π̂BQ[f ] based on a separable covariance

function Cα(x,x′) = Bcα(x,x′). Assume all integrands are evaluated on the same

point set X corresponding to a quasi-uniform grid on X , and suppose that f ∈ HCβ

where d
2 ≤ β ≤ α. Then, ∀p = 1, . . . , P :∣∣∣Π[fp]− Π̂BQ[fp]

∣∣∣ = O
(
n−

β
d

+ε
)
,

for some ε > 0.

This last theorem demonstrate that the method is rate adaptive as long as we

choose a covariance function which is too smooth. This however also demonstrates a

drawback of the method: if one of the integrands is rough but all other are smooth,

then the worst-case error could potentially converge slowly for all of them

Before moving on to the numerical experiments, it is important to highlight

some limitations of our theoretical analysis. Most notably, the assumption that all

integrands are evaluated at the same points is a very strong requirement, which

will often not hold in practice. In fact, it may not even be desirable, since in this

case the individual estimates of the integrals are identical to using a uni-output BQ

rule. The only advantage therefore come from a reduced WCE, and hence a refined

estimate of our epistemic uncertainty regarding the value of these integrals.

4.1.3 Numerical Experiments

We now proceed to illustrate the performance of multi-output BQ on a range of toy

problems and real-world applications in order to illustrate the advantages, but also

the limitations, of the methodology.

1Domains with Lipschitz boundaries are formally introduced in Appendix A.1.
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Prior Specification

One of the main challenges with multi-output BQ is the selection of appropriate

hyperparameters. In this section, we consider multi-output BQ with covariance

function C which is parameterised by γ = (γ1, . . . , γl) ∈ Rl. To optimise these

parameters, we propose to use an empirical Bayes approach and maximise the log-

marginal likelihood:

l (γ) = −1

2
f(X)>C(X,X)−1f(X)− 1

2
log |C(X,X)| − nP

2
log(2π).

This can be efficiently optimised by making use of gradients, given by:

∂l (γ)

∂γi
=

1

2
f(X)>C(X,X)−1∂C(X,X)

∂γi
C(X,X)−1f(X)− 1

2
Tr

(
C(X,X)−1∂C(X,X)

∂γi

)
.

for all i = 1, . . . , l. Clearly, this is just one option for parameter selection, and the

reader is referred to Chapter 3 for alternatives to empirical Bayes.

Multi-fidelity modelling

Consider the problem of integrating some function fhigh : X → R representing

some complex engineering model of interest. We may be interested in such integrals

for a variety of tasks, including statistical inference or optimisation. These models

usually require the simulation of underlying physical systems, which can make each

evaluation prohibitively expensive and will therefore limit the number of integrand

evaluations n to the order of tens or hundreds.

To tackle this issue, multi-fidelity modelling proposes to build cheap, but less

accurate, approximations f low
1 , . . . , f low

P−1 : X → R to the model of interest fhigh. The

cheaper models can then be used to accelerate computation for the task of interest.

Several approaches are possible. One could for example use surrogate models (e.g.

support vector machines, GPs or neural networks), projection-based models (Krylov

subspace or reduced basis methods) or a models where the underlying physics is

simplified; see Peherstorfer et al. [2016a] for an overview.

In this section, we consider the problem of numerical integration in such a

multi-fidelity setup. Two related methods for MC estimation are the multi-fidelity

MC estimator [Peherstorfer et al., 2016a] and the multilevel MC of Giles [2015],

both of which are based on control variate identities.

We approach this problem with multi-output BQ on the vector-valued func-

tion f = (fhigh, f low
1 , . . . , f low

P−1)>. Note that multi-output GPs were already pro-

posed for multi-fidelity modelling in [Perdikaris et al., 2016; Raissi and Karniadakis,
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2016; Parussini et al., 2017], and we extend their methodologies to the task of nu-

merical integration. We consider two toy problems from the work of Raissi and

Karniadakis [2016] to highlight some of the advantages and disadvantages of our

methodology:

1. A step function on X = [0, 2]:

f low
1 (x) =

0, 0 ≤ x ≤ 1

1, 1 < x ≤ 2
fhigh(x) =

−1, 0 ≤ x ≤ 1

2, 1 < x ≤ 2

2. The Forrester function with Jump on X = [0, 1]:

f low
1 (x) =

(3
2x−

1
2)2 sin(12x− 4) + 10(x− 1), x ≤ 1

2

3 + (3
2x−

1
2)2 sin(12x− 4) + 10(x− 1), x > 1

2

fhigh(x) =

 2f low(x)− 20(x− 1), x ≤ 1
2

4 + 2f low(x)− 20(x− 1), x > 1
2

Of course, the theory developed in the previous section does not apply to this case

since we are interested in evaluating the low-fidelity integrand more frequently than

the high-fidelity integrand. An extension of the theory which fits this setting is

reserved for future work.

The functions considered and the corresponding posteriors with credible in-

tervals are given in Figure 4.1. The uni-output and multi-output BQ estimates for

integration of these functions against a uniform measure Π are given in the table

in Figure 4.2. In both cases, 20 equidistant points are used, with point number

4, 10, 11, 14 and 17 used to evaluate the high fidelity model and the others used for

the low fidelity model. The choice of hyperparameters was made using empirical

Bayes for both the seperable and process convolution covariances.

Note that both of these problems are challenging for several reasons. Firstly,

due to their discontinuity, the integrands are not in the RKHS HC corresponding to

the covariance function C used in the multi-output BQ prior. More concerningly,

the problems are misspecified in the sense that the true function is not even in the

support of the prior. It is therefore difficult to interpret the posterior distribution

on Π[f ], and we end up with credible intervals which are too wide. This is for exam-

ple illustrated in the values of the posterior variance for the high-fidelity Forrester

function.

Secondly, in each case, the high and low-fidelity models are defined on dif-
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Figure 4.1: Test functions and Gaussian process interpolants in multi-fidelity mod-
elling. Plot of the Step function (top) and Forrester function (bottom) in blue with
GP 95% credible intervals in red. The plots on the left correspond to uni-output BQ,
the plots in the middle to multi-output BQ with the linear co-regionalisation model
and the plots on the right to multi-output BQ with process convolution covariance.

ferent scales and so require tuning of several kernel hyperparameters. This can of

course make it challenging for multi-output BQ since the number of function evalu-

ations n is small and the empirical Bayes performance will tend to be inefficient in

those cases.

Despite these two issues, it is interesting to note that both of the multi-

output BQ methods manage to significantly outperform uni-output BQ in terms

of point estimate, as the sharing of data allows the multi-output models to better

represent the main trends in the functions. Furthermore, the multi-output BQ does

not suffer from the issues of overconfident posterior credible intervals present in

uni-output BQ. To see this, contrast for example the posterior variances for the

high-fidelity step function. The process convolution prior allows for much more
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Model BQ LMC-BQ PC-BQ

Step (l) 0.024 (0.223) 0.021 (0.213) 0.016 (0.516)
Step (h) 0.405 (0.03) 0.09 (0.091) 0.036 (0.155)

For. (l) 0.076 (4.913) 0.076 (4.951) 0.075 (33.954)
For. (h) 3.962 (3.984) 2.856 (27.01) 1.063 (63.801)

Figure 4.2: Uni-output and multi-output Bayesian quadrature estimates for multi-
fidelity modelling. Performance of uni-output BQ and multi-output BQ with linear
model of co-regionalisation kernel (LMC-BQ) and process convolution kernel (PC-
BQ) on the step function (Step) and the Forrester function with jump (For.) in the
low fidelity (l) and high fidelity (h) cases. The values given are absolute errors with
the variance in brackets.

complex functions, which likely explains that it provides significant gains over the

linear co-regionalisation model.

Global illumination

Our second application of multi-output BQ revisits the global illumination example

from Chapter 3. We follow the setup previously described and consider the problem

as Π[fω0 ] =
∫
S2 f

ω0(ωi)Π(dωi) where Π is the uniform measure on S2, and fω0(ωi) =

Li(ωi)ρ(ωi, ω0)[ωi · ω0]+ is a function which can be evaluated by making a call to

an environment map (which we consider to be a black box). One scenario which is

common in these type of problems is to look at an object from different angles ω0,

with the camera moving. In this case, it is reasonable to assume that the different

integrands fω0 will be very similar when the difference in the angle ω0 is small, and it

is therefore natural to consider jointly estimating their integrals. In the experiments

we consider f1, . . . , f5 on a great circle of the sphere at intervals determined by an

angle of 0.005π.

We therefore consider two-output and five-output BQ with different IID re-

alisations X1, . . . ,X5 from the uniform measure Π. We propose to use a separable

covariance with scalar-valued RKHS Hc being a Sobolev space of smoothness 3
2 over

S2: c(x,x′) = 8
3 − ‖x− x′‖22. For the matrix B representing the covariance between

outputs, we propose to make this covariance proportional to the difference in angle at

which the camera looks at the object. In particular we choose (B)ij = exp(ωi ·ωj−1)

for simplicity. This could be generalised to include a lengthscale and amplitude hy-

perparameter inferred by empirical Bayes, however this would most likely require a

larger value of n.

Results for integration error are given in Figure 4.3. As noticed, the inte-
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Figure 4.3: Uni-output and multi-output Bayesian quadrature estimates in the global
illumination problem. Plot of error estimates for f1 (top) and f2 (bottom), in the
case of the red, green and blue channels. The log-error is plotted for uni-output BQ
(red), two-output and five-output BQ based on the linear model of co-regionalisation
(blue and magenta respectively) and standard MC (dotted black).

gration error (for a fixed number of evaluations n of each integrand) is significantly

reduced by increasing the number of outputs P . Since the experiments use different

point sets for each integrand, it is reasonable to assume that the convergence rate

obtained in practice will be at least as good as that for identical point sets.

Proposition 10 (Consistency of multi-output BMC with separable covari-

ance function on the sphere). Let X be the sphere S2 and suppose all integrands

are evaluated on the same point set X which consists of IID realisations from the

uniform measure on X . Furthermore, assume C is a separable kernel with c defined

above. Then:

e(Π̂BQ; Π,HC, p) = OP

(
n−

3
4

)
.

The same rate with improved rate constant was observed in Chapter 3 when

using QMC point sets, and similar gains could be obtained in this multi-output case.

Before concluding this section, we note that there a significant potential

further gains for the use of multi-output BQ for this application. Similar integration

problems need to be computed for three colors in every pixel of an image, and for

every image in a video. This is challenging computationally and limits the use of
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MC methods to a few dozen points. Designing specific matrix-valued kernels for this

application could provide enormous gains since we usually end up with thousands of

correlated integrands. Furthermore, the weights only depend on the choice of kernel

and not on function values. They could therefore be precomputed off-line and later

used in real-time in parallel at no more computational cost than MC weights.

Conclusion and Future work

There are several potential extensions of multi-output BQ which we reserve for

future work. One important question remaining is that of the choice of sampling

distribution. In the multi-output case, the problem is even more complex than in the

uni-output case due to the interaction between the different integration problems.

However, the literature on the design of experiments for co-kriging/multi-output

GPs may provide some useful algorithm, and the use of more advanced sampling

distributions will certainly provide significant gains.

The multi-output BQ methodology has the potential to impact a wide range

of applications domains, the most obvious being areas where co-kriging/multi-output

GPs are already being used. Other areas also include multivariate time series anal-

ysis and time-evolving computer models Conti and O’Hagan [2010], model compar-

ison in Bayesian statistics or even the development of new probabilistic numerical

methods.

4.2 Efficient Point Selection Methods I: The Frank-Wolfe

Algorithm

The remainder of this chapter studies efficient sampling strategies for uni-output

BQ. In particular, this section studies BQ from the point of view of experimental

design, which has been shown to be promising in previous work Osborne et al.

[2012]; Huszár and Duvenaud [2012]; Gunter et al. [2014]. Design of experiments

for GP models is an active area of research [Krause et al., 2008; Beck and Guillas,

2016] with much relevance to the problem at hand. In this section, we propose two

novel algorithms specialised to the numerical integration setting. These are based

on optimisation routines to sequentially minimise the posterior variance on V[Π[gn]].

Our starting point is recent work by Chen et al. [2010]; Bach et al. [2012],

who cast the design of quadrature rules as a problem in convex optimisation that

can be solved using the Frank-Wolfe (FW) algorithm. This algorithm is combined

with the optimal weights of BQ, and we prove that exponential rates hold for pos-

terior consistency under a finite-dimensional RKHS assumption. The methodology
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is explored in simulations and also applied to a challenging model selection problem

from cellular biology, where numerical error could lead to misallocation of expensive

resources.

4.2.1 Frank-Wolfe Bayesian Quadrature

The Frank-Wolfe (FW) algorithm, also called the conditional gradient algorithm, is

a convex optimisation method introduced in Frank and Wolfe [1956] designed for

problems of the form arg ming∈G J(g) where the function J : G → R is convex and

continuously differentiable. A particular case of interest in this section will be when

the domain G is a compact and convex space of functions, as recently investigated

in Jaggi [2013].

At each iteration i, the FW algorithm computes a linearisation of the ob-

jective function J at the previous state gi−1 ∈ G along its gradient (DJ)(gi−1) and

selects an ‘atom’ ḡi ∈ G that minimises the inner product taken between a state g

and (DJ)(gi−1). The new state gi ∈ G is then a convex combination of the previous

state gi−1 and of the atom ḡi. This convex combination depends on a step size ρi

which is predetermined and different versions of the algorithm may have different

step size sequences. The various steps of this algorithm will be formalised below.

Quadrature Rules from the Frank-Wolfe Algorithm

Recall from the previous chapter that approximating the kernel mean Π[c(·,x)]

is equivalent to choosing a quadrature rule which will minimise the WCE in the

RKHS Hc. Recently, this insight led Bach et al. [2012] to frame integration as a FW

optimisation problem whose objective function is minimised when µ(Π) is perfectly

approximated. In particular, the optimisation domain G ⊆ Hc is a space of functions

and the objective function is given by half the WCE squared:

J(g) =
1

2

∥∥g −Π[c(·,x)]
∥∥2

Hc . (4.3)

In this functional approximation setting, minimisation of J is carried out over

G = M, where M denotes the marginal polytope of the RKHS Hc. The marginal

polytope M is defined as the closure of the convex hull of {c(·,x)}x∈X , so that in

particular the kernel mean is an element ofM. Assuming as in Lacoste-Julien et al.

[2015] that c(·,x) is uniformly bounded in feature space (i.e. ∃R > 0 : ∀x ∈ X ,

‖c(·,x)‖Hc ≤ R), then M is a closed and bounded set and can be optimised over.

In order to formalise the algorithm, we introduce the Fréchet derivative of

J , denoted DJ , such that for H∗c being the dual space of Hc, we have the unique
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map DJ : Hc → H∗c such that for each g ∈ Hc, (DJ)(g) is the function mapping

h ∈ Hc to (DJ)(g)(h) =
〈
g − Π[c(·,x)], h

〉
Hc . We also introduce the bilinear map

〈·, ·〉× : Hc×H∗c → R which, for F ∈ H∗c given by F (g) = 〈g, f〉Hc , is the rule giving

〈h, F 〉× = 〈h, f〉Hc . The FW algorithm at iteration i can now be summarised in the

two steps below:

1. Compute a new atom: ḡi = argming∈G
〈
g, (DJ)(gi−1)

〉
×.

2. Move in the direction of the new atom: gi = (1− ρi)gi−1 + ρiḡi.

A particular advantage of the FW algorithm is that it returns ‘sparse’ solutions

which are linear combinations of the atoms {ḡi}ni=1 [Bach et al., 2012]. This property

wouldn’t necessarily hold for any optimisation method and, as shown below, is

particularly convenient as it leads to a weighted estimate for the kernel mean:

gn =

n∑
i=1

( n∏
j=i+1

(
1− ρj−1

)
ρi−1

)
ḡi :=

n∑
i=1

wFW
i ḡi = Π̂FW[c(·,x)],

where by default ρ0 = 1 which leads to all wFW
i ∈ [0, 1] when ρi = 1/(i+ 1). Since

minimisation of a linear function can be restricted to extreme points of the domain,

the atoms will be of the form ḡi = c(·,xFW
i ) for some xFW

i ∈ X . The minimisation in

g over G therefore becomes a minimisation in x over X and this algorithm therefore

provides us with quadrature points. Using the reproducing property, we can show

that the FW estimate is indeed a quadrature rule:

Π̂FW[f ] =
〈
f,

n∑
i=1

wFW
i ḡi

〉
Hc

=
n∑
i=1

wFW
i

〈
f, c(·,xFW

i )
〉
Hc =

n∑
i=1

wFW
i f(xFW

i ).

As a side effect, the FW algorithm also provides a weighted empirical measure

Π̂FW =
∑n

i=1w
FW
i δ(xFW

i ).

In summary, at each iteration i, the FW algorithm hence selects a design

point xFW
i ∈ X which induces an atom ḡi and gives us an approximation Π̂FW[c(·,x)]

of the kernel mean Π[c(·,x)].

Step 1: Selection of new quadrature points

We now highlight in detail the first step, which at iteration i, consists of choosing

a new point xFW
i . Let {w(i)

l }
i−1
l=1 denote the FW weights assigned to each of the

previous design points {xFW
l }

i−1
l=1 at the previous iteration. The choice of new design

point is done by computing the derivative of the objective function J(gi−1) and

finding the point x∗ which minimises the inner product arg ming∈G
〈
g, (DJ)(gi−1)

〉
×.
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To do so, we need to obtain an equivalent expression of the minimisation of the

linearisation of J (denoted DJ) in terms of kernel values and evaluations of the

kernel mean Π[c(·,x)]. Since minimisation of a linear function can be restricted to

extreme points of the domain, we have that

arg ming∈G
〈
g, (DJ)(gi−1)

〉
× = arg minx∈X

〈
c(·,x), (DJ)(gi−1)

〉
×

= arg minx∈X
〈
c(·,x), gi−1 −Π[c(·,x)]

〉
Hc

= arg minx∈X

〈
c(·,x),

i−1∑
l=1

w
(i−1)
l c(·,xl)−Π[c(·,x)]

〉
Hc

= arg minx∈X

i−1∑
i=1

w
(i−1)
l

〈
c(·,x), c(·,xl)

〉
Hc

−
〈
c(·,x),Π[c(·,x)]

〉
Hc

= arg minx∈X

i−1∑
l=1

w
(i−1)
l c(x,xl)−Π[c(·,x)](x).

Our new design point xFW
i is therefore the point x∗ which minimises this

expression. Note that the total computational cost is O(n2) since we need to loop

through all previous samples at each iteration. Note also that this equation may

not be convex and may require us to make use of approximate methods to find

the minimum x∗. To do so, we sample M points (where M is large) and pick the

sample which minimises the expression above. From Lacoste-Julien et al. [2015]

this introduces an additive error term of size O(M−1/4), which does not impact our

convergence analysis provided that M vanishes sufficiently quickly as a function n.

In all experiments at the end of this section we took n to be a few hundreds and M

between 10, 000 and 50, 000 so that this error will be negligible.

It is important to note that sampling from Π is likely to be suboptimal

for optimising this expression. One may be better off using another optimisation

method which does not require convexity (for example, Bayesian optimisation). This

would however lead to larger computational costs at each iteration.

Step 2: Selection of a step size sequence

Several choices are possible for the step size sequence, the most common of which is

to have a decreasing sequence ρi = 1/(i+ 1) since this will lead to equally-weighted

points. However, the step size can also be chosen adaptively. An extension of the

FW algorithm known as Frank Wolfe with line-search (FWLS) uses a line-search
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method to find the optimal step size ρi at each iteration:

ρ∗i = argminρ∈[0,1]J ((1− ρ)gi−1 + ρ ḡi) .

This leads to improved solutions, but comes at a higher computational cost. Once

again, the approximation obtained by FWLS has a sparse expression as a convex

combination of all the previously visited states and we obtain an associated quadra-

ture rule. For the problem of computing integrals, this optimisation step can actually

be obtained analytically.

Proposition 11 (Optimal Frank-Wolfe line-search step size for quadrature

rules). The optimal step size sequence {ρ∗i }i∈N for minimising the objective function

J(g) as given in Equation 4.3 is given by:

ρ∗i =

∑i−1
l=1

∑i−1
m=1w

(i−1)
l w

(i−1)
m c(xl,xm)−

∑i−1
l=1 w

(i−1)
l

[
c(xl,xi) + Π[c(xl, ·)]

]
+ Π[c(xi, ·)]∑i−1

l=1

∑i−1
m=1w

(i−1)
l w

(i−1)
m c(xl,xm)− 2

∑i−1
l=1 w

(i−1)
l c(xl,xi) + c(xi,xi)

.

FWLS has theoretical convergence rates that can be stronger than standard

versions of FW but has computational cost which is O(n3). The authors in Garber

and Hazan [2015] provide a survey of FW-based algorithms and their convergence

rates under different regularity conditions on the objective function and domain of

optimisation.

Frank-Wolfe Quadratures with Optimal Weights

To combine the advantages of a Bayesian method with the efficient point-selection

of the FW algorithm, we propose Frank-Wolfe Bayesian Quadrature (FWBQ) and

Frank-Wolfe line-search Bayesian Quadrature (FWLSBQ):

Π̂FWBQ[f ] :=
∑n

i=1w
BQ
i f(xFW

i ), Π̂FWLSBQ[f ] :=
∑n

i=1w
BQ
i f(xFWLS

i ),

where {xFW
i }ni=1 and {xFWLS

i }ni=1 are FW and FWLS point sets respectively.

These two algorithms will combine the efficient point selection strategy of the FW

(or FWLS) algorithm with the RKHS-optimal weights provided by BQ, and the

uncertainty quantification properties of the Bayesian interpretation.

4.2.2 Consistency and Contraction in Finite-Dimensional Spaces

An important question is whether it is possible to provide consistency results for

this algorithm. Indeed, to the best of our knowledge, there has never been any
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consistency result for BQ based on experimental design selection of point sets. The

answer is yes, but this will be under the assumption that the integrand f belongs

to a finite-dimensional RKHS Hc. This assumption is in line with recent literature

on the FW algorithm [Bach et al., 2012; Garber and Hazan, 2015; Jaggi, 2013], but

is unfortunately rather restrictive for the quadrature application. Unfortunately,

there are no general results for the FW or FWLS in infinite-dimensional RKHSs.

See Bach et al. [2012] and Grunewalder [2018] for a detailed discussion and intuitive

explanation of the issues encountered in infinite-dimensional spaces. The result

below follows from the Bayesian reweighting bound (Lemma 1) and a result of Bach

et al. [2012]:

Theorem 15 (Consistency of FWBQ and FWLSBQ in finite-dimensional

RKHSs). Assume that X is a compact subset of Rd and that π(x) > 0 ∀x ∈ X .

Let c be a reproducing kernel corresponding to a finite-dimensional RKHS Hc, and

denote by Π̂FWBQ[f ] and Π̂FWLSBQ[f ] the BQ estimators with prior covariance c

based on FW (with step size ρi = 1/(i + 1) for all i) and FWLS point sets. Then

∃C > 0 such that:

e(Π̂FWBQ; Π,Hc) = O(n−1), e(Π̂FWLSBQ; Π,Hc) = O (exp (−Cn)) .

In the case of FWBQ, if f ∈ Hc and δ > 0,

P{Π[f ]− δ < Π[gn] < Π[f ] + δ} = 1−OP (exp(−Cδn2)),

where Cδ > 0 depends on δ. Similarly, for FWLSBQ, if f ∈ Hc and δ > 0,

P{Π[f ]− δ < Π[gn] < Π[f ] + δ} = 1−OP (exp(−C1,δn
2 − C2,δ exp(C1,δn))),

where C1,δ, C2,δ > 0 depends on δ.

Even though this is not explicit in our result above, the choice of covariance

function affects the convergence of the FWBQ and FWLSBQ methods. Clearly, we

expect faster convergence if the function we are integrating is ‘close’ to the space

of functions induced by our covariance function. Indeed, the covariance function

specifies the geometry of the marginal polytope M, that in turn directly influences

the rate constant associated with FW optimisation.

We note that FWBQ and FWLSBQ will have a convergence rate that is

atleast as good as that of FW and FWLS, but there is no guarantee in our theory

on how much better this rate will be. This will all boil down to how close the
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Figure 4.4: The Frank-Wolfe algorithm for integration of test functions against a
mixture of Gaussian distribution. Left: Worst-case error for several quadrature
rules. Both FWBQ and FWLSBQ are seen to outperform FW and FWLS, with
sequential Bayesian quadrature (SBQ) performing best overall. Right: Point sets
obtained from the Frank-Wolfe algorithm for a mixture of Gaussian distribution.
Density of a mixture of 20 Gaussian distributions, displaying the first n = 25 design
points chosen by FW (red), FWLS (orange) and sequential Bayesian quadrature
(green).

FW/FWLS weights will be to the FWBQ/FWLSBQ weights. This would be an

interesting topic of research for future work.

4.2.3 Numerical Experiments

Simulation Study

To facilitate the experiments in this section we employed a Gaussian RBF covari-

ance function c(x,x′) := λ2 exp(− 1
2σ2 ‖x − x′‖22). This corresponds to an infinite-

dimensional RKHS which is not covered by Theorem 15. Gaussian RBF covariance

functions are convenient since the kernel mean Π[c(·,x)] is analytically tractable

when Π is a mixture of Gaussian distributions (see Table 3.1).

For this simulation study, we took Π to be a 20-component mixture of 2D-

Gaussian distributions. MC is often used for such distributions but has a slow

convergence rate of OP (n−1/2). FW and FWLS are known to converge more quickly

and are in this sense preferable to MC [Bach et al., 2012]. In our simulations (Figure

4.4, left), both our novel methods FWBQ and FWLSBQ decreased the WCE much

faster than the FW/FWLS methods of Bach et al. [2012]. All methods use the same

hyperparameters for the covariance function: an amplitude parameter of λ = 1 and

a lengthscale of σ = 0.8.

The principle advantage of our proposed methods is that they reconcile the-
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Figure 4.5: Quantifying numerical error in a model selection problem using Frank-
Wolfe Bayesian Quadrature. FWBQ was used to model the numerical error of each
integral p(Mi|X) explicitly. For integration based on n = 10 design points, FWBQ
tells us that the computational estimate of the model posterior will be dominated
by numerical error. When instead n = 50 or n = 100 design points are used,
uncertainty due to numerical error becomes much smaller but not yet small enough
to determine the maximum a-posteriori estimate. This only occurs for n = 200.

oretical tractability with a Bayesian estimator based on the sequential optimisation

of sample locations. An interesting remark is that sequential Bayesian quadrature

seems to give even better performance as n increases. An intuitive explanation is

that sequential Bayesian quadrature picks points to minimise the WCE whereas

FWBQ and FWLSBQ only minimise an approximation of the WCE (its linearisa-

tion along DJ). In addition, the sequential Bayesian quadrature weights are optimal

at each iteration, which is not true for FWBQ and FWLSBQ. We conjecture that

Theorem 15 provides upper bounds on the rates of sequential Bayesian quadrature.

This conjecture is partly supported by Figure 4.4 (right), which shows that sequen-

tial Bayesian quadrature selects similar design points to FW/FWLS (but weights

them optimally). Note also that both FWBQ and FWLSBQ give very similar result.

This is not surprising as FWLS has no guarantees over FW in infinite-dimensional

RKHSs [Jaggi, 2013].

Proteomic Model Selection Problem

A topical bioinformatics application that extends recent work by Oates et al. [2014]

is presented. The objective is to select among a set of candidate models {Mi}Mi=1
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for protein regulation. This choice is based on a dataset X of protein expression

levels, in order to determine a ‘most plausible’ biological hypothesis for further

experimental investigation. Each Mi is specified by a vector of kinetic parameters

θi in some Euclidean space Θi (full details in the supplementary materials of [Briol

et al., 2015a]). The goal of this experiment is very closely related to the model

selection problem for logistic regression which was presented in Chapter 3.

Recall that Bayesian model selection requires that these parameters are in-

tegrated out against a prior p(θ) to obtain marginal likelihood (or model evidence)

terms p(X|Mi) =
∫
θi∈Θi

p(X|θ,Mi)p(θi)dθi. Our integration problem therefore

consists of integrating the function f(θ) = p(X|θ) against the prior measure on

parameters. In this experiment, we assume a priori that all models are equally

likely (p(Mi) = 1/M for all i = 1, . . . ,M), so that the posterior over each model is

given by p(Mi|X) = p(X|Mi)/M
∑M

j=1 p(X|Mj) ∝ p(X|Mi). Our focus here is on

obtaining the maximum a-posteriori model, defined as the maximiser of the poste-

rior model probability p(Mi|X). Numerical error in the computation of each term

p(Mi|X), if unaccounted for, could cause us to return a model that is different from

the true maximum a-posterior estimate and lead to the misallocation of valuable

experimental resources.

The problem is quickly exaggerated when the number M of models increases,

as there are more opportunities for one of the p(Mi|X) terms to be too large due to

numerical error. In Oates et al. [2014], the number m of models was combinatorial

in the number of protein kinases measured in a high-throughput arrays (currently on

the order of 102 but in principle up to the order of 104). This led Oates et al. [2014]

to deploy substantial computing resources to ensure that numerical error in each

estimate of p(Mi|X) was individually controlled. As previously highlighted, the

use of BQ in this setting allows for quantification of our uncertainty over the value

of each of the integrals p(Mi|X). As such we can determine, on-line, the precise

point in the computational pipeline when numerical uncertainty near the maximum

a-posteriori estimate becomes acceptably small, and cease further computation.

The FWBQ methodology was applied to one of the model selection tasks in

Oates et al. [2014]. In Figure 4.5 (top left) we display posterior model probabilities

for each of M = 352 candidates models, where a low number (n = 10) of samples

were used for each integral. (For display clarity only the first 50 models are shown.)

In this low-n regime, numerical error introduces a second level of uncertainty that we

quantify by combining the FWBQ error models for all integrals in the computational

pipeline; this is summarised by a box plot (rather than a single point) for each of the

models. These box plots reveal that our estimated posterior model probabilities are
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Figure 4.6: Comparison of experimental design-based quadrature rules on the pro-
teomics application. Left: Value of the WCE2 for FW (black), FWLS (red), FWBQ
(green), FWLSBQ (orange) and sequential Bayesian quadrature (blue). Right: Em-
pirical distribution of weights. The dotted line represent the weights of the FWLS,
which has all weights wi = 1/n. Note that the distribution of BQ weights ranges
from −17.39 to 13.75 whereas all versions of FW have weights limited to [0, 1] and
have to sum to 1.

completely dominated by numerical error. In contrast, when n is increased through

50, 100 and 200 (again, see Figure 4.5), the uncertainty due to numerical error

becomes negligible. At n = 200 we can conclude that model 26 is the true maximum

a-posteriori estimate and further computations can be halted. Correctness of this

result was confirmed using the more computationally intensive methods in Oates

et al. [2014].

In Figure 4.6 (left) we compared the relative performance of FWBQ, FWLSBQ

and sequential Bayesian quadrature on this problem. The figure shows that the BQ

weights reduced the WCE by orders of magnitude relative to FW and FWLS and

that sequential Bayesian quadrature converged more quickly than methods based

on the FW algorithm. This is partly explained by the fact that the BQ weights are

not limited to non-negative value, as seen in Figure 4.6 (right).

4.3 Efficient Point Selection Methods II: A sequential

Monte Carlo sampler

The FW algorithm is clearly a useful tool for point selection in BQ. The algorithm

selects points one-by-one in an adaptive manner and was shown to give good results

for any value of n at which one may wish to stop. There is however no guarantee

that this will be the best one can do if the total number of points n is known a-priori.

Our goal in this section will be to focus on this particular problem, and to

do so we propose an extension of BIS. In Chapter 3, we showed that BMC and

BIS converge at a rate determined by the ratio α/d, where α and d encode the
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smoothness and dimension of the integrand (see Theorem 9). However, this section

highlights that the rate constant C is highly sensitive to the distribution of the

random points and the choice of prior on the integrand. More importantly, it is also

dependent on the number of realisations n. This section proposes a novel algorithm

to approximate an optimal importance measure which takes the form of an SMC

sampler with adaptive tempering.

4.3.1 Limitations of Bayesian Importance Sampling

For the default MC estimator, we have a root-mean-squared error bound:√
E[Π̂MC[f ]−Π[f ]]2 ≤ CMC(f ; Π)√

n
, (4.4)

where CMC(f ; Π) is the standard deviation of the integrand f under Π, and the ex-

pectation is with respect to the joint distribution of the points. When MCMC meth-

ods are used instead; the rate-constant CMCMC(f ; Π) is then related to the asymp-

totic variance of f under the Markov chain sample path. Considerations of compu-

tational cost place emphasis on methods to reduce the rate constant CMC(f ; Π). For

the MC estimator, this rate constant can be made smaller via IS, where an optimal

choice of importance distribution Π′ is one that minimises CMC(fπ/π′; Π′), and its

density is available in explicit closed-form: π∗(x) = |f(x)|π(x)/
∫
X |f(x)|π(x)dx;

see Theorem 3.3.4 in Robert and Casella [2004]. However, the root-mean-squared

error remains asymptotically gated at O(n−1/2).

Similar issues arise for BQ estimators based on Monte Carlo point sets. In

particular, a trivial modification of the consistency result for BIS (with importance

distribution Π′) in Theorem 9 gives the following root-mean-squared error bound:√
E[Π̂BIS[f ]−Π[f ]]2 ≤ C(f ; Π′)

nα/d−ε
,

when α > d
2 and where both the integrand f and each argument of the covariance

function c admit continuous mixed weak derivatives of order α and ε > 0 can be

arbitrarily small.

One notable disadvantage of BIS is that little is known about how the rate

constant C(f ; Π′) depends on the choice of sampling distribution Π′. In contrast

to IS, no general closed-form expression has been established for an optimal impor-

tance distribution Π′ for BQ (the technical meaning of ‘optimal’ is defined below).

Moreover, limited practical guidance is available on the selection of the sampling

distribution. An exception is in [Bach, 2017], but the distribution proposed in this
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Figure 4.7: Influence of the importance distribution in Bayesian importance sam-
pling. Performance of BIS with covariance function c(x, x′) = exp(−(x − x′)2) on
the test function f(x) = 1 + sin(2πx), where the target measure was N (0, 1), while
n samples were generated from N (0, σ2).

paper can usually not be obtained in closed-form. In applications, it is therefore

usual to take Π′ = Π. This choice is convenient but leads to estimators that are not

efficient, as highlighted below.

Consider the toy problem with state space X = R, target distribution Π

which is a N (0, 1), a single test function f(x) = 1 + sin(2πx) and covariance func-

tion c(x,x′) = exp(−‖x − x′‖22). For this problem, consider a range of sampling

distributions Π′ of the form N (0, σ2) for σ ∈ (0,∞). In this case Π[f ] = 1 is avail-

able in closed-form. Figure 4.7 plots an empirical estimate for the root-mean-squared

error given by

R̂n,σ =

√√√√ 1

M

M∑
m=1

(Π̂n,m,σ[f ]−Π[f ])2,

where Π̂n,m,σ[f ] is the mth of M independent BIS estimates for Π[f ] based on n

samples drawn from the distribution Π′ with standard deviation σ. It is seen that

the choice of σ = 1 which corresponds to BMC (i.e. Π′ = Π) is suboptimal. Notice

that the values of σ that minimise the root-mean-squared error are uniformly greater

than σ = 1 (dashed line) and depend on the number n of samples. The intuition

here is that samples from the tails of the distribution are rather informative for

building the interpolant f̂ underlying BQ. We should therefore over-sample these

values via a heavier-tailed Π′. The same intuition is used for column sampling and

to construct leverage scores [Mahoney, 2011; Drineas et al., 2012].

Another problem is that the integrand f will in general belong to an infinitude

of Hilbert spaces, while for BIS (and in fact any BQ algorithm) a single covariance

function c must be selected. This choice will in general significantly affect the

performance of the BIS estimator. We extend the toy problem above based on a class
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Figure 4.8: Sensitivity of Bayesian importance sampling to the choice of both the
covariance function and importance distribution. Here the same setup as Figure
4.7 was used with n = 25 (top left), n = 50 (top right) and n = 75 (bottom).
The Gaussian RBF covariance function c(x,x′) = exp(−‖x − x′‖22/`2) was used
for various choices of parameter ` ∈ (0,∞). The root-mean-squared error (over
M = 300 repetitions) is sensitive to choice of ` for all choices of σ, suggesting that
on-line kernel learning could be used to improve over the default choice of ` = 1 and
σ = 1 (dashed lines).

of Gaussian RBF covariance functions c(x,x′) = exp(−‖x− x′‖22/`2) parameterised

by ` ∈ (0,∞). Results showed that, for all choices of the sampling parameter σ, the

root-mean-squared error of BQ is sensitive to choice of ` and the default choice of

` = 1 is not optimal.

Results, shown in Figure 4.8, demonstrate two principles that guided the

methodological development in this section. Firstly, length scales ` that are ‘too

small’ to learn from n samples do not permit good approximations f̂ and lead in

practice to high root-mean-squared error. At the same time, if ` is taken to be ‘too

large’ then efficient approximation at size n will also be sacrificed. This is of course

well understood from a theoretical perspective and is borne out in our empirical

results.

Secondly, the ‘sweet spot’, where σ and ` lead to minimal root-mean-squared

error, will in general be quite small. However, the problem of optimal choice for σ

and ` does not seem to become more or less difficult as n increases. This suggests that
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a method for selection of σ (and possibly also of `) ought to be effective regardless

of the number n of states that will be used.

4.3.2 Robustness of Bayesian Quadrature to the Choice of Kernel

One question which is of course of interest is whether the same issues also arise for

BQ methods based on experimental design. For example, in the previous section,

the selection of points was approached as a greedy optimisation problem where

the WCE was minimised given the location of the previous points. This approach

has demonstrated considerable success in applications, but the WCE is strongly

dependent on the choice of covariance function c and the sequential optimisation

approach is hence vulnerable to prior misspecification. For this reason, experimental

design approaches tend to be less robust to prior misspecification than alternative

approaches where the sampling mechanism does not depend on the prior.

To demonstrate this lack of robustness to misspecified priors, we once again

considered integration against some measure Π which is a N (0, 1). We focused on

functions that can be well approximated using BQ rules with the covariance function

c(x,x′) = exp(−‖x − x′‖22/`2). We studied sequential Bayesian quadrature where

the length scale was fixed at ` = 0.01 and we consider a more regular integrand,

such as that shown in Figure 4.9 (left). The location of the states obtained using

sequential Bayesian quadrature and BMC are shown in Figure 4.9 (right). It is

clear that the greedy selection of points is not an efficient use of computation for

integration of the integrand against N (0, 1). Of course, a bad choice of length scale

parameter ` can in principle be alleviated by kernel learning, but this will not be

robust in the case when n is very small.

More work will be required to better understand when methods such as

sequential Bayesian quadrature or FWBQ can be reliable in the presence of unknown

covariance function hyperparameters. Related work on subsample selection, such

as leverage scores [Bach, 2013], can also be non-robust to misspecified covariance

functions. The partial solution of online kernel learning requires a sufficient number

n of data and is not always practicable in small-n regimes that motivate BQ.

The next section consider the selection of good importance sampling distri-

bution for BIS estimators. Although our method also makes use of c to select Π′, it

reverts to Π′ = Π in the limit as the length scale of c is made small. In this sense,

our algorithm offers more robustness to covariance function misspecification than

optimisation methods.
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Figure 4.9: Lack of robustness of experimental-design based quadrature rules. Left:
Toy integrand. Right: Sequential Bayesian quadrature does not lead to adequate
placement of points when the covariance function is misspecified. Here the length
scale of the covariance function was fixed to ` = 0.01, points selected by sequential
Bayesian quadrature are represented as red whereas points drawn from Π, as used
in BIS, are shown in blue.

4.3.3 Sequential Monte Carlo Bayesian Quadrature

The main contributions of this section are twofold. First, we formalise the problem

of optimal sampling for BIS as an important and open challenge in computational

statistics. To be precise, our target is an optimal sampling distribution for BIS,

defined as

Π∗ ∈ arg min
Π′

sup
‖f‖H≤1

√
E[Π̂BIS[f ]−Π[f ]]2. (4.5)

for some functional class H to be specified and where Π′ denotes the sampling

distribution of Π̂BIS[f ]. In general a (possibly non-unique) optimal Π∗ will depend

on H and, unlike for IS, also on the covariance function c and the number of samples

n used in the quadrature. It is also not possible to obtain it in closed form.

Second, we propose a novel and automatic method for selection of Π′ that is

rooted in approximation of the unavailable Π∗. The overall approach is facilitated

with an efficient SMC sampler and called sequential Monte Carlo Bayesian quadra-

ture (SMC-BQ). In brief, our method considers candidate sampling distributions of

the form Π′ = Π1−t
0 Πt for t ∈ [0, 1] and Π0 a reference distribution on X .

Our SMC sampler has several features to enable automation of the method:

(i) it chooses a discretisation for t in an adaptive manner, and (ii) it uses a stopping

criterion based on estimates of the root-mean-squared error. Finally, an extension is

proposed for the case where kernel learning is required. Although we do not provide

formal guarantees on the quality of the resulting approximation, our algorithm is

motivated through several ansatzs and later shown to perform well in applications.
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Similar results to those presented in Chapter 3 would not make sense in this case

since we are interested in performance for a fixed value of n.

A Sequential Monte Carlo Sampler

To begin, consider the integrand f , covariance function c and number of evaluations

n as fixed. The following ansatz is central to our proposed SMC-BQ method: An

optimal distribution Π∗ (in the sense of Equation 4.5) can be well-approximated by

a distribution of the form

Πt = Π1−t
0 Πt, t ∈ [0, 1] (4.6)

for a specific (but unknown) ‘inverse temperature’ parameter t = t∗. Here Π0 is a

reference distribution to be specified and which should be chosen to be uninformative

in practice. It is assumed that all Πt have densities who can be normalised. The

motivation for this ansatz stems from the toy problem in the previous subsection,

where Π is a N (0, 1) and Πt is a N (0, σ2) cast with t = σ−1 and Π0 an (improper)

uniform distribution on R. In general, tempering generates a class of distributions

which over-represent extreme events relative to Π. This property has the potential to

improve performance for BIS, as was once again demonstrated with the toy example.

The ansatz of Equation 4.6 reduces the nonparametric sampling problem for

BQ to the one-dimensional parametric problem of selecting a suitable t ∈ [0, 1].

The problem can be further simplified by focusing on a discrete temperature ladder

{ti}Ti=0 such that t0 = 0, ti < ti+1 and tT = 1. This reduced problem, where

we seek an optimal index i∗ ∈ {0, . . . , T}, is still non-trivial as no closed-form

expression is available for the root-mean-squared error at each candidate ti. To

construct our proposed SMC-BQ algorithm, we require a second ansatz, namely

that the root-mean-squared error is convex in t and possesses a global minimum in

the range t ∈ (0, 1). This second ansatz (borne out in numerical results in Figure

4.7) motivates an algorithm that begins at t0 = 0 and tracks the root-mean-squared

error until an increase is detected, say at ti; at which point the index i∗ = i − 1 is

fixed and used within a BQ algorithm.

To realise such an algorithm, we propose to exploit SMC samplers [Chopin,

2002; Del Moral et al., 2006], already briefly introduced in Chapter 1. Here, a set of

weighted particles {(wj ,xj)}Nj=1 is first obtained where {xj}Nj=1 are IID realisations

from Π0 and wj = 1
N for j = 1, . . . , N . Note that we take the number of particles

N to be greater than the desired number of quadrature points n. Then, at iteration

i, the particle approximation to Πti−1 is reweighted, resampled and subject to a
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Figure 4.10: Implementation of the stopping criterion for sequential Monte Carlo
Bayesian quadrature. A linear smoother (dashed line) was based on 5 consecutive
(inverse) temperature parameters ti−4, ti−3, ti−2, ti−1, ti. To begin it is required that
5 temperatures are considered (left panel). The algorithm terminates on the first
occasion when the linear smoother takes a positive gradient (right panel).

Markov transition, to deliver a particle approximation {(w′j ,x′j)}Nj=1 to Πti . Re-

sampling occurs when the effective sample size, ‖w‖−2
2 drops below a fraction ρ of

the total number N of particles. In this work we took ρ = 0.95 which is a common

default.

At iteration i, a subset of size n is drawn (without replacement) from the

unique elements in {x′j}Nj=1, from the particle approximation to Πti , and proposed

for use in BQ. This ensures that covariance matrices have full rank. It does not

introduce bias into BQ, since in general Π′ need not equal Π. A criterion, defined

below, is used to determine whether the resultant BQ error has increased relative

to Πti−1 . If this is the case, then the distribution Πti−1 from the previous iteration

is taken for use in BQ. Otherwise the algorithm proceeds to ti+1 and the process

repeats. In the degenerate case where the root-mean-squared error has a minimum

at tT , the algorithm defaults to standard BQ with Π′ = Π.

Stopping criterion for the Sequential Monte Carlo sampler

The SMC-BQ algorithm is designed to track the root-mean-squared error as t is

increased. However, the root-mean-squared error is not available in closed form.

We now derive a tight upper bound on the root-mean-squared error that is used as

a stopping criterion. Recall the Cauchy-Schwarz upper bound on the integration

error given in Equation 3.5 in Chapter 3. At each iteration of the SMC algorithm,

it can be adapted to obtain: |Π̂[f ] − Π[f ]| ≤ e(Π̂BQ; Π,Hc)‖f‖Hc where Π̂BQ[f ] =∑n
j=1w

BQ
j f(xj). This motivates the following upper bound on the mean-squared

error:

E[(Π̂BQ[f ]−Π[f ])2] ≤ E[e(Π̂BQ; Π,Hc)2]︸ ︷︷ ︸
(∗)

‖f‖2Hc︸ ︷︷ ︸
(∗∗)

. (4.7)
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The term (∗) can be estimated with the bootstrap approximation

R2 =
M∑
m=1

e(Π̂m
BQ; Π,Hc)2

M
,

where Π̂m
BQ[f ] =

∑n
j=1w

BQ
m,jf(x̃m,j) is a BQ rule based on quadrature points x̃m,j

which are independent draws from {xj}Nj=1. In SMC-BQ the term (∗∗) is an un-

known constant and the statistic R, an empirical proxy for the root-mean-squared

error, is monitored at each iteration. The algorithm terminates once an increase in

this statistic occurs.

The problem with the naive approach of comparing R estimated at ti−1

directly with R estimated at ti is that MC error can lead to an incorrect impres-

sion that R is increasing, when it is in fact decreasing, and cause the algorithm to

terminate when estimation is poor (see Figure 4.10 and note the jaggedness of the

estimated R curve as a function of inverse temperature t). Our solution was to apply

a least-squares linear smoother to the estimates for R over 5 consecutive tempera-

tures. This approach, illustrated in Figure 4.10, determines whether the gradient of

the linear smoother is positive or negative, and in this way we are able to provide

robustness to MC error in the termination criterion. In particular, the algorithm

requires at least 5 temperature evaluations before termination is considered (Figure

4.10; left) and terminates when the gradient of the linear smoother becomes positive

for the first time (Figure 4.10; right).

Adaptive Selection of Temperature Ladder

We conclude by noting that this whole procedure will be highly dependent on the

choice of temperature ladder. The choice of temperature schedule {ti}Ti=0 influences

several aspects of SMC-BQ: (i) The SMC approximation to Πti is governed by the

“distance” (in some appropriate metric) between Πti−1 and Πti , (ii) The speed at

which the minimum t∗ can be reached is linear in the number of temperatures

between 0 and t∗, and (iii) The precision of BQ depends on the approximation

t∗ ≈ ti∗ .
Factors (i,iii) motivate the use of a fine schedule with T large, while (ii)

motivates a coarse schedule with T small. For this work, a temperature schedule

was used that is well suited to both (i) and (ii), while a strict constraint ti−ti−1 ≤ ∆

was imposed on the grid spacing to acknowledge (iii). The specific schedule used

in this work was determined based on the conditional effective sample size (CESS)

of the current particle population, as proposed in the recent work of Zhou et al.
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[2016] and previously discussed in Chapter 1. The construction for the temperature

schedule makes use of a sequential least squares programming algorithm and consists

of two steps. Given the current temperature ti−1, these steps are given by:

1. Perform a binary search in [ti−1, 1] by solving CESS({(wj ,xj)}Nj=1, t) = N · ρ.

2. Select ti as the solution to min{ti−1 + ∆, t}.

Sequential Monte Carlo Bayesian Quadrature

Putting all of the above together, our SMC-BQ algorithm can be summarised with

the following steps:

1. Initialise the N particles using IID samples from Π0.

2. Compute the current value of the stopping criterion.

3. Whilst the stopping criterion hasn’t increased:

(a) Select a new temperature value ti adaptively using the conditional effec-

tive sample size criterion.

(b) Move the particles towards Πti using an SMC step.

(c) Compute the value of the stopping criterion.

4. Return a BQ estimator based on n samples from the final distribution.

Note that the above algorithm assumes that the covariance function is fixed

a-priori. If this is note the case, we propose to estimate kernel parameters γ via

an empirical Bayes approach. This algorithm is then called sequential Monte Carlo

Bayesian quadrature with kernel learning (SMC-BQ-KL). In this extended algo-

rithm, the function evaluations are obtained at the first n (of N) states {xj}nj=1 and

the parameters γ are updated in each iteration of the SMC. this can be summarised

in the following step:

3. (d) Update the parameters of the covariance functions using empirical Bayes.

Note that for SMC-BQ-KL the term (∗∗) is non-constant as it depends on the kernel

hyperparameters; then (∗∗) can in addition be estimated as ‖f̂‖2Hc = w>Cγw and

we monitor the product of R and ‖f̂‖Hc , with termination when an increase is

observed.
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Figure 4.11: Performance of Sequential Monte Carlo Bayesian quadrature on the
running illustration. The left plot shows SMC-BQ against BQ, whilst the right plot
illustrates the versions with kernel learning.

Figure 4.12: Histograms for the optimal (inverse) temperature parameter t∗. Left:
Estimate of t∗ provided under the termination criterion. Right: Estimate of t∗

obtained by estimating R over a grid for t ∈ [0, 1] and returning the global minimum.
The similarity of these histograms is supportive of the convexity ansatz.

4.3.4 Numerical Experiments

To summarise, we have developed a novel procedure, SMC-BQ (and an extension

SMC-BQ-KL), designed to approximate the optimal BQ estimator based on the un-

available optimal distribution in Equation 4.5 where the supremum over the unit ball

of some RKHS Hc. Empirical results in the previous sections suggest that SMC-BQ

has the potential to provide a powerful and general algorithm for numerical inte-

gration. The additional computational cost of optimising the sampling distribution

does however have to be counterbalanced with the potential reduction in numerical

error, and so this method will mainly be of practical interest for problems with

expensive integrands or complex target distributions. The following section reports

experiments designed to test this claim.

Simulation Study

To continue our illustration from the previous section, we investigated the perfor-

mance of SMC-BQ and SMC-BQ-KL for integration of f(x) = 1 + sin(2πx) against
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a N (0, 1) measure. Here the reference measure Π0 was taken to be N (0, 82). All

experiments employed SMC with N = 300 particles, random walk Metropolis tran-

sitions for the MCMC steps, the resample threshold was taken to be ρ = 0.95 and

the maximum grid size ∆ = 0.1.

Figure 4.11 (left) reports results for SMC-BQ against BQ, for fixed length-

scale ` = 1. Corresponding results for SMC-BQ-KL against BQ-KL are shown in

the plot on the right. It was observed that SMC-BQ (respectively SMC-BQ-KL)

outperformed BQ (resp. BQ-KL) in the sense that, on a per-function-evaluation

basis, the mean-squared error achieved by the proposed method was lower than for

the standard method. The largest reduction in mean-squared error achieved was

about 8 orders of magnitude (correspondingly 4 orders of magnitude in root-mean-

squared error). A fair approximation to the σ = 2 method, which is approximately

optimal for n = 75 (c.f. results in Figure 4.7), was observed. As an aside, we note

that the mean-squared error was gated at 10−16 for all methods to avoid numerical

ill-conditionning of the Gram matrix C.

To understand whether the termination criterion was suitable (and, by ex-

tension, to examine the validity of the convexity ansatz, in Figure 4.12 we presented

histograms for both estimated and actual optimal (inverse) temperature parameter

t∗. Figure 4.13 (left) reports the dependence on the choice of initial distribution Π0.

There was relatively little influence on the root-mean-squared error obtained by the

method for this wide range of initial distribution, which supports the purported

robustness of the method.

We also test the method on more complex integrands in Figure 4.14: f(x) =

1+sin(4πx) and f(x) = 1+sin(8πx). These are more challenging for BQ since they

are more difficult to interpolate due to their higher periodicity. However, SMC-BQ

still manages to adapt to the complexity of the integrand and performs as well as

the best importance sampling distribution (σ = 2).

As an extension, we also study the robustness to the dimensionality of the

problem. We consider the generalisation of our main test function to f : Rd → R
given by f(x) = 1 +

∏d
j=1 sin(2πxj). Notice that the integral can still be computed

analytically and equals 1. We present results for d = 2, d = 3 and d = 10 in Figure

4.15. These two cases are more challenging for both the BQ and SMC-BQ methods,

since the higher dimension implies a slower convergence rate. Once again, we notice

that SMC-BQ manages to adapt to the complexity of the problem at hand, and

provides improved performance on simpler sampling distributions.

Finally, we considered replacing the IID samples from Π with samples drawn

from a quasi-random point sequence. Figure 4.13 (right) reports results where draws
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Figure 4.13: Sensitivity of sequential Monte Carlo Bayesian quadrature to the choice
of initial distribution and to the random number generator. Left: Comparison of
the performance of SMC-BQ on the running illustration of Figures 4.7 and 4.8 for
varying initial distribution Π0 = N (0, σ2). Right: Performance of sequential quasi-
Monte Carlo samplers for Bayesian quadrature. Comparison between BIS and BQ
with xj = Φ−1(uj) where the {uj}nj=1 are the first n terms in the Halton sequence
and Φ is the standard Gaussian cumulative density function.

Figure 4.14: Performance of sequential Monte Carlo Bayesian quadrature for syn-
thetic problems of increasing complexity. BQ and SMC-BQ are use to integrate
f(x) = 1 + sin(4πx) (top) and f(x) = 1 + sin(8πx) (bottom) against N (0, 1). The
SMC sampler was initiated with a N (0, 82) distribution. The covariance function
used was a Gaussian RBF with length scales ` = 0.25 (top) and ` = 0.15 (bottom)
each chosen to reflect the complexity of the functions.

from N (0, 1) were produced based on a Halton sequence. In this case, the perfor-

mance is improved by up to 10 orders of magnitude in mean-squared error when the

sampling is done with respect to a range of tempered sampling distribution (here

N (0, 32)). This suggests that a SQMC approach [Gerber and Chopin, 2015] could

provide further improvement.
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Figure 4.15: Performance of Sequential Monte Carlo Bayesian quadrature on the
running illustration in increasing dimensions. BQ and SMC-BQ are used to in-
tegrate f(x) = 1 +

∏d
j=1 sin(2πxj) against a N (0, I) distribution for d = 2 (top

left), d = 3 (top right) and d = 10 (bottom). The SMC sampler was initiated
with a N (0, 82I) distribution. The covariance function used was a Gaussian RBF
c(x,y) = exp(−

∑d
j=1(xj−yj)2/`2j ) with the length scales `1 = · · · = `d = 0.25 were

used.

Inference for Differential Equations

Consider the model given by du/dt = f(t|θ) with solution u(t|θ) depending on

unknown parameters θ. Suppose we can obtain observations through the following

noise model (likelihood): y(ti) = u(ti|θ) + ei at times 0 = t1 < . . . < tn where we

assume ei ∼ N(0, σ2) for known σ > 0. Our goal is to estimate u(T |θ) for a fixed

(potentially large) T > 0. To do so, we will use a Bayesian approach and specify a

prior p(θ), then obtain samples from the posterior π(θ) := p(θ|y) using MCMC. The

posterior predictive mean is then defined as: Π[u(T |·)] =
∫

Θ u(T |θ)π(θ)dθ, and this

can be estimated using an empirical average from the posterior samples. This type of

integration problem is particularly challenging as the integrand requires simulating

from the differential equation at each iteration. Furthermore, with large T or the

fine grid, the computational cost will be large.

For a tractable test-bed, we considered Hooke’s law, given by the following
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Figure 4.16: Performance of sequential Monte Carlo Bayesian quadrature for an
inverse problem based on an ordinary differential equation. The top plot illustrates
the physical system, the middle plot shows observations of the differential equation,
whilst the bottom plot illustrates the superior performance of SMC-BQ against BQ.

second order homogeneous ordinary differential equation given by θ5(d2u/dt2) +

θ4(du/dt) + θ3u = 0, with initial conditions u(0) = θ1 and du
dt (0) = θ2. This

equation represents the evolution of a mass on a spring with friction [Robinson,

2004, Chapter 13]. More precisely, θ3 denotes the spring constant, θ4 the damping

coefficient representing friction and θ5 the mass of the object. Since this differential

equation is an overdetermined system we fixed θ5 = 1. In this case, if θ2
4 ≤ 4θ3, we

get a damped oscillatory behaviour as presented in Figure 4.3.4 (top). Data were

generated with σ = 0.4, (θ1, θ2, θ3, θ4) = (1, 3.75, 2.5, 0.5) and with log-normal priors

with scale equal to 0.5 were selected for all parameters.

To implement BQ under an unknown normalisation constant for Π, we fol-

lowed Oates et al. [2017c] and made use of a Gaussian RBF covariance function that

was adapted with Stein’s method. This will be discussed at length in Chapter 5.

More precisely, we considered a kernel of the form

c(θ, θ′) = 1 +
d∑
j=1

∂2cb(θ, θ
′)

∂θj∂θ′j
+ sj(θ)

∂cb(θ, θ
′)

∂θ′j
+ sj(θ

′)
∂cb(θ, θ

′)

∂θj
+ sj(θ)sj(θ

′)cb(θ, θ
′),

where cb is a Gaussian RBF covariance function cb(θ, θ
′) = exp(−

∑d
j=1(θj−θ′j)2/`2j )

and sj(θ) = (∇ log π(θ))j is the score function. Using integration by parts, we can

easily check that Π[c(·, θ)] = 1 and ΠΠ̄[c] = 1. We can also obtain the derivatives

in closed form: ∂c(θ, θ′)/∂θj = −2`−2
j (θj − θ′j)c(θ, θ

′), ∂c(θ, θ′)/∂θ′j = 2`−2
j (θj −
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θ′j)c(θ, θ
′) and ∂2c(θ, θ′)/∂θj∂θ

′
j = (2`2j − 4(θj − θ′j)2`−4

j )c(θ, θ′). Furthermore, we

can obtain expressions for the score function for posterior densities as follows sj(θ) =

∂ log π(θ)/∂θj + ∂ log π(y|θ)/∂θj .
The reference distribution Π0 was an wide uniform prior on the hypercube

[0, 10]4. Brute force computation was used to obtain a benchmark value for the

integral. For the SMC algorithm, an independent log-normal transition kernel was

used at each iteration with parameters automatically tuned to the current set of

particles. Results in Figure 4.3.4 demonstrate that SMC-BQ outperforms BQ for

these integration problems. These results improve upon those reported in Oates

et al. [2018] for a similar integration problem based on parameter estimation for

differential equations.

128



Chapter 5

Statistical Inference and

Computation with Intractable

Models

“Despite the progress made over the last 30 years, the

reasons for the effectiveness of Stein’s method still remain

something of a mystery.”

Barbour and Chen [2005]

This final chapter moves on from Bayesian probabilistic numerical methods

and focuses on our second challenge. As highlighted in Chapter 1, modern statistical

inference needs to cope with increasingly complex models, and in particular models

with intractable densities. Two cases were highlighted: unnormalised models, where

the densities can only be evaluated up to some unknown normalisation constant, and

generative models, where the densities cannot be evaluated but it is nevertheless

possible to obtain realisations from the model for any given parameter value. In

this section, we study two notions of distance between probability measures with

the useful property that they can be easily estimated for distributions for which

evaluation (exact, or approximate) of densities is not possible.

The case of unnormalised models will be discussed in Section 5.1. The chapter

will begin with an introduction to Stein’s method, which originates in probability

theory as an analytical tool to prove the asymptotic convergence of sequences of

random variables, and has lately been used across computational statistics. We

will then discuss how Stein’s method can be combined with reproducing kernels to

create a useful notion of distance between an empirical measure and a posterior
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measure whose density is unnormalised. This distance is called kernel Stein dis-

crepancy (KSD) and closely relates to the WCE studied in previous chapters. We

then highlight two algorithms making use of KSDs to create quadrature rules for

posterior integrals as well as efficient samplers for complex posterior distributions.

These will be closely related to the BQ and FW algorithms, but will allow us to

by-pass the greatest drawback of these algorithms: intractable kernel means.

In the remainder of the Chapter, we will then discuss the use of kernel-based

notions of discrepancy as statistical estimators. First, Section 5.2.2 will introduce

a novel statistical inference algorithm for unnormalised models with KSD, then

Section 5.2 will discuss a similar approach for the case of generative models using

the WCE in some RKHS. In both cases, we will connect the estimators to proper

scoring rules and use notions from information geometry to derive efficient numerical

optimisation routines for practical implementation.

5.1 Stein’s Method and Reproducing Kernels

5.1.1 Distances on Probability Measures

As discussed, we would like to have an easily computable notion of distance between

two complex probability measures, such as statistical divergences. Let X be a metric

space, and denote by P(X ) be the set of Borel probability measures on this space.

Statistical divergences are functions of the form D : P(X ) × P(X ) → R+ that

satisfy D(P1||P2) = 0 if and only if P1 = P2 for all P1,P2 ∈ P(X ). Divergences are

usually not symmetric and do not satisfy the triangle inequality. Divergences have

many uses in statistical computation including, amongst other examples, inference

in statistical models [Kass and Vos, 1997] and the construction of novel variational

inference schemes [Jordan et al., 1999; Blei et al., 2017], numerical optimisation

algorithms [Amari, 1998; Karakida et al., 2016] or robust inference [Knoblauch et al.,

2018]. As highlighted below, there exists many divergences with useful “principled”

properties, but a common drawback is that they are hard or impossible to compute

for most complex models.

The most commonly used divergence is the Kullback-Leibler (KL) divergence:

DKL(P1||P2) :=

∫
X

log

(
dP1

dP2

)
dP1, (5.1)

where dP1/dP2 is the Radon-Nikodym derivative of P1 with respect to P2. The

KL divergence is closely linked to the field of information complexity (where it is

often called the information gain or relative entropy), and is also popular due to
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its invariance to transformations of the coordinates of X and its convexity in the

first argument. In fact, the KL divergence is a special case of two important classes

of divergences: the f-divergences and the Bregman divergences [Amari, 2016]. The

former is a class of divergences of the form Df (P1||P2) =
∫
X f(dP1/dP2)dP2 for

some convex function f satisfying f(1) = 0, which includes the Hellinger distance

(f(x) = (
√
x− 1)2) and the total-variation distance (f(x) = 1/2(x− 1)).

Instead of using statistical divergences, it is also common to directly work

with metrics or pseudo-metrics on probability measures. Pseudo-probability met-

rics are functions dH : P(X ) × P(X ) → R+ which satisfy (i) dH(P1,P1) = 0, (ii)

symmetry: dH(P1,P2) = dH(P2,P1), and (iii) the triangle inequality: dH(P1,P3) ≤
dH(P1,P2)+dH(P2,P3) for all probability measures P1,P2,P3 ∈ P(X ). Furthermore,

probability metrics are pseudo-probability metrics which satisfy (iv) dH(P1,P2) = 0

if and only if P1 = P2. Clearly, all probability metrics are divergences, but the

converse does not necessarily hold. The most common pseudo-probability metrics

are the integral (pseudo-)probability metrics [Müller, 1997; Sriperumbudur et al.,

2010b, 2012; Sriperumbudur, 2016]:

dH(P1,P2) := sup
f∈H

∣∣∣∣∫
X
f(x)P1(dx)−

∫
X
f(x)P2(dx)

∣∣∣∣ . (5.2)

Equation 5.2 should of course be familiar, since it corresponds to the definition

of WCE for integration in H. Familiar examples of integral (pseudo-)probability

metrics include the following:

(i) The total variation distance, obtained using the unit ball of the set of bounded

functions H = {f : X → R : supx∈X |f(x)| ≤ 1},

(ii) The 1−Wasserstein distance (or Kantorovich metric or earth mover’s dis-

tance), obtained by the unit-ball of 1-Lipschitz functions: H = {f : X →
R : supx 6=y∈X |f(x)− f(y)|/‖x− y‖ ≤ 1},

(iii) The Dudley probability metric, obtained by considering the set of bounded

Lipschitz functions: H = {f : X → R : supx 6=y∈X |f(x) − f(y)|/‖x − y‖ +

supx∈X |f(x)| ≤ 1},

(iv) The maximum mean discrepancy for which H is taken to be the unit ball of

some RKHS Hk: H = {f : X → R : ‖f‖Hk ≤ 1}.

Under rather weak conditions on X , examples (i), (ii) and (iii) are all probability

metrics, but (iv) is only a probability metric under certain conditions on the kernel

(and otherwise is a pseudo-probability metric). Any kernel which makes (iv) a
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probability metric is called a characteristic kernel [Sriperumbudur et al., 2010b].

Other examples of integral probability metrics can also be found in [Müller, 1997;

Sriperumbudur et al., 2010b, 2012; Sriperumbudur, 2016].

Taking a step back to our objective of finding a statistical distance which

can be computed for intractable models, it should be obvious that all of the diver-

gences and metrics highlighted above are somewhat inadequate for our purpose. The

KL divergence requires access to densities in normalised form, whilst the integral

probability metrics require computation of a supremum over H. Computing these

notions of distance will hence usually be impossible whenever the model is in an

unnormalised or generative form.

In the next section, we will derive a distance between probability measures

called kernel Stein discrepancy (KSD) [Chwialkowski et al., 2016; Liu et al., 2016],

which bypasses these issues for unnormalised models. KSDs can be recovered from

maximum mean discrepancies (MMDs) by specific choice of kernels, and under sev-

eral assumptions can be shown to be statistical divergences. MMDs were extensively

discussed in previous chapters and correspond to the WCEs in some RKHSs. Let

k : X ×X → R be the reproducing kernel of a RKHS Hk of functions X → R. From

Proposition 2 in Chapter ?? we have that the MMD has a straightforward expres-

sion in term of integrals of the kernel k. Furthermore, recall from Equation 3.7 in

Chapter 3 that given an empirical measure Qn =
∑n

i=1wiδ(xi), where {xi}ni=1 ⊂ X
and w = (w1, . . . , wn) ∈ Rn, and a target measure P, the MMD is given by1:

MMD (Qn,P)2 :=

∫
X×X

k(x,x′)P(dx)P(dx′)− 2
n∑
i=1

wi

∫
X
k(xi,x)P(dx)

+
n∑

i,j=1

wiwjk(xi,xj).

As we have already clearly highlighted in Chapter 4, there are very few cases where

we can actually compute this expression in closed form. Certainly, this will in general

not be possible whenever the density p of P is unnormalised.

5.1.2 Kernel Stein Discrepancies

In this section, we introduce a divergence based on MMD where the underlying

RKHS has a kernel with certain properties which allow us to avoid intractability

issues in the case of unnormalised densities. Our method is based on Stein’s method

1Note that we changed the notation from Chapter 3 to emphasise that we now see the MMD as
a function of two probability measures.
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[Stein, 1972], which was first used as a tool for constructing a central limit theorem

for dependent variables.

Stein Discrepancies

Stein’s method is based on three components: a probability measure Q, a function

space G (called Stein space), and an operator TQ (called Stein operator), which

together satisfy the following equation called Stein’s identity:∫
X
TQ[g](x)P(dx) = 0 ∀g ∈ G ⇔ P = Q. (5.3)

In this case, it is said that the Stein operator characterises the measure Q. Stein’s

method has mostly been developed for analytic convergence results in probability

theory; see the reviews by Barbour and Chen [2005]; Chen et al. [2011]; Barbour

and Chen [2014]; Ross [2011]. More recently, it has also been used for several

tasks in statistics: the analysis of maximum likelihood estimators [Anastasiou and

Reinert, 2017, 2018; Anastasiou, 2017], the comparison of prior distributions in

Bayesian inference [Ley et al., 2017; Ghaderinezhad and Ley, 2018] and goodness-of-

fit testing [Gaunt et al., 2017]. Later in this section, we will also discuss applications

to numerical integration [Oates et al., 2018, 2017c] and approximation of posterior

measures [Chen et al., 2018, 2019]

Of course, finding triplets of probability measures, operators and function

space which satisfy Stein’s identity (Equation 5.3) can be challenging. Under regu-

larity conditions on q (the density of Q), a common choice of operator when X = Rd

is linked to the generator of an overdamped Langevin equation [Barbour and Chen,

2005; Gorham et al., 2016] and hence referred to as Langevin Stein operator:

LQ[g](x) =
〈∇, q(x)g(x)〉

q(x)
= 〈g(x),∇ log q(x)〉+ 〈∇, g(x)〉, (5.4)

where ∇ = ( ∂
∂x1

, . . . , ∂
∂xd

)> and 〈∇, g(x)〉 =
∑d

j=1
∂gj(x)
∂xj

. This operator must oper-

ate on a Stein class G of vector-valued functions mapping from X to Rd. We can

also choose operators based on infinitesimal generators of other diffusions, see for

example the following generator of an Itô diffusion process:

IQ[g](x) =
〈∇, q(x)∇g(x)〉

q(x)
= 〈∇g(x),∇ log q(x)〉+ ∆g(x), (5.5)

which can be used with Stein classes of scalar-valued functions on the domain X ,

and where ∆g(x) = 〈∇,∇g(x)〉 =
∑d

j=1
∂2gj(x)

∂x2
j

is called the Laplacian of g. There
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are many other such operators; for example a generalised version of the above two

is studied by Gorham et al. [2016]:

SQ[g](x) =
〈∇, q(x)(a(x) + c(x))g(x)〉

q(x)
. (5.6)

where g : X → Rd is a vector-valued function, a : X → Rd×d is a positive semi-

definite matrix-valued function and c : X → Rd×d is a skew symmetric matrix-valued

function. Note that the three Stein operators above can be evaluated without knowl-

edge of the normalisation constant of q. They are also all based on the generator

of a diffusion process, and can be derived using the generator approach to Stein’s

method, which was introduced in Barbour [1988]. The importance of the particular

choice of Stein operator is unclear for the applications of interest in this thesis. The

main property of interest here comes from the Stein identity which allows us to

construct zero-mean functions.

Kernel Stein Discrepancies

It turns out that the Stein identity (Equation 5.3) can be extremely useful to simplify

the expression of integral probability metrics. In particular, it allows us to remove

the problem of integration against one of the measures (which may have had an

unnormalised density). Taking the function class of the IPM to be the image of

functions in the Stein class through the corresponding Stein operator leads to a

general class of divergences, called Stein discrepancy, and first proposed by Gorham

and Mackey [2015]:

DStein (P1||P2) = sup
g∈G

∣∣∣∣∫
X
TP2 [g](x)P1(dx)−

∫
X
TP2 [g](x)P2(dx)

∣∣∣∣
= sup

g∈G

∣∣∣∣∫
X
TP2 [g](x)P1(dx)

∣∣∣∣ . (5.7)

where TP2 is a Stein operator adapted to P2 and we can hence use Equation 5.3

to obtain the second identity. Note that this expression will only be a divergence

under regularity conditions on the function class G. Intuitively, we want the func-

tion class to be large enough to differentiate the two measures well. When this is

the case, we clearly will have the property that whenever P1 is equal to P2, then∫
X TP2 [g](x)P1(x) = 0 so the Stein divergence will have value zero. The general

notion of Stein discrepancy with an underlying RKHS Hk as Stein class leads to the
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kernel Stein discrepancy (KSD):

KSD (P1||P2) := sup
‖g‖Hk≤1

∣∣∣∣∫
X
TP2 [g](x)P1(dx)

∣∣∣∣ . (5.8)

Note that the choice of base RKHS could also be optimised, as proposed in Jitkrit-

tum et al. [2017]. Alternative choices of Stein classes are also possible; see for

example the complete graph Stein discrepancies and spanner Stein graph discrep-

ancies of Gorham and Mackey [2015] or the random feature Stein discrepancies of

Huggins and Mackey [2018]. Larger function classes could also be used, but they

will tend to make the Stein discrepancy intractable.

If the Stein operator maps scalar-valued functions to other scalar-valued

functions, we will take the function class G to be a RKHS Hk with reproducing

kernel k : X × X → R. Alternatively, if the Stein operator maps vector-valued

functions to scalar-valued functions, we will take the function class G to be the unit

ball of some vector-valued RKHS which takes the form of the tensor product space

Hk⊗ . . .⊗Hk (also sometimes written as Hdk where d ∈ N is the number of elements

in the tensor). In either case, under regularity conditions, the image of G under a

Stein operator TP is a scalar-valued RKHS, denoted HkP . When this is the case, the

kernel kP : X × X → R of HkP is called a Stein reproducing kernel and takes the

form kP(x,x′) = TPT̄Pk(x,x′), where k is called a base kernel. Here, T̄P correspond

to the operator TP but acting on the second argument of the function. Note that we

emphasise the distribution P to which the Stein kernel is adapted to in the notation

kP. The KSD can alternatively be obtained from the MMD with a Stein kernel

adapted to the second argument of the discrepancy, and can hence be expressed as:

KSD (P1||P2)2 =

∫
X×X

kP2(x,x′)P1(dx)P1(dx′)− 2

∫
X×X

kP2(x,x′)P1(dx)P2(dx′)

+

∫
X×X

kP2(x,x′)P2(dx)P2(dx′)

=

∫
X×X

kP2(x,x′)P1(dx)P1(dx′). (5.9)

The expression above was simplified using the fact that Stein reproducing kernels are

elements of a Stein class corresponding to a Stein operator TP2 , and hence possess

the useful property that the kernel mean satisfies
∫
X kP2(x,x′)P2(dx) = 0 and hence∫

X×X kP2(x,x′)P2(dx)P2(dx′) = 0 and
∫
X×X kP2(x,x′)P1(dx)P2(dx′) = 0. This is

the main property of interest from the point of view of computational statistics.

Clearly, the expression above may not be a metric anymore since it might
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not be symmetric as the kernel depends on one of the arguments. However, under

regularity assumptions on the base kernel, the expression above will be a statistical

divergence. Recall that a kernel is called characteristic if and only if the correspond-

ing MMD is a probability metric. To parallel this notion, we will call a Stein kernel

a characteristic Stein reproducing kernel if and only if the corresponding KSD is a

statistical divergence. This will be a strong assumption on the Stein kernel which

will need to be checked on a case-by-case basis.

When the first argument is an empirical measure Qn =
∑n

i=1wiδ(xi) ap-

proximating some measure Q, the expression further simplifies to:

KSD(Qn||P) =

√√√√ n∑
i,j=1

wiwjkP(xi,xj).

The equation above can be seen as an exact expression for the KSD between Qn

and P, or an approximation of the KSD between Q and P.

Langevin Kernel Stein Discrepancies

We will now focus on the case where G is a vector-valued RKHS Hk ⊗ . . .⊗Hk and

where the operator is the Langevin Stein operator in Equation 5.4 adapted to some

measure P. In this case, we have a Stein reproducing kernel of the form [Oates and

Girolami, 2016; Oates et al., 2017c, 2018]:

kP(x,x′) = 〈∇1,∇2k(x,x′)〉+ 〈∇1k(x,x′),∇ log p(x′)〉 (5.10)

+〈∇2k(x,x′),∇ log p(x)〉+ k(x,x′)〈∇ log p(x),∇ log p(x′)〉.

where ∇1k(x,y) = (∂k(x,y)/∂x1, . . . , ∂k(x,y)/∂xd)
> and

∇2k(x,y) = (∂k(x,y)/∂y1, . . . , ∂k(x,y)/∂yd)
>. We now have a kernel which de-

pends on the measure P, but notice that it only depends on it through ∇ log p, which

itself can be evaluated without access to the normalisation constant of p. The KSD

between two measures P1 and P2 with continuously differentiable densities is hence:

KSD (P1||P2) =
∥∥∥∫
X

[〈k(x, ·),∇ log p2(x)〉+ 〈∇x, k(x, ·)〉]P1(dx)
∥∥∥
Hk

=

∫
X×X
〈∇ log p2(x)−∇ log p1(x),∇ log p2(x′)−∇ log p1(x′)〉

×k(x,x′)P1(dx)P1(dx′), (5.11)
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which can be seen either as Stein discrepancy with Stein space Hk ⊗ . . . ⊗ Hk or

as the MMD with underlying Langevin Stein kernel as given in Equation 5.10, but

adapted to P2. The KSD with Langevin Stein operator is a statistical divergence

whenever it is based on a characteristic Stein kernel, which will impose certain

regularity conditions on the base reproducing kernel k and the densities of the two

measures. We now present several sufficient conditions for the property to hold (in

all cases X ⊆ Rd):

• Theorem 2.2 in [Chwialkowski et al., 2016] shows that the Langevin KSD is a

divergence if the kernel k is C0-universal, P1 and P2 both admit continuously

differentiable densities p1 and p2, and
∫
X ‖∇ log p2(x)−∇ log p1(x)‖22P1(dx) <

∞ and
∫
X kP2(x,x)P1(x) <∞.

• Proposition 3.3 in Liu et al. [2016] shows that the Langevin KSD is a divergence

if the kernel k is integrally strictly positive definite, P1 and P2 admit continuous

densities p1 and p2, and
∫
X ‖∇ log p2(x)−∇ log p1(x)‖22P1(dx) <∞.

This Langevin kernel Stein discrepancy was recently used for several tasks across

statistics, including hypothesis testing [Chwialkowski et al., 2016; Liu et al., 2016],

sampling [Liu and Wang, 2016; Liu and Lee, 2017; Liu, 2017] and convergence of

sampling methods [Gorham and Mackey, 2017]. For the remainder of this section,

we will highlight two more applications: the approximation of posterior measures,

using a method called Stein points [Chen et al., 2018, 2019], and the construction

of control variates in MC and MCMC integration [Oates et al., 2017c, 2018].

5.1.3 Stein Reproducing Kernels for Approximating Measures

We have already seen in previous chapters how quadrature estimators need efficient

point selection methods for enhanced performance. KSDs can be useful for this

task, especially in cases where the integrals of interest are taken against measures

with densities known only up to normalisation constants (as is usually the case in

Bayesian statistics).

This subsection briefly discusses one approach, called Stein points [Chen

et al., 2018, 2019]. The philosophy behind Stein points is to see the problem of

approximating a target measure Π (against which we would like to integrate) as an

optimisation problem. More precisely, we propose to select points {xi}ni=1 to form

an empirical measure Π̂n = 1
n

∑n
i=1 δ(xi) which approximates Π well. This is done

by minimising the KSD between these two measures.

arg min
{xi}ni=1⊂X

KSD(Π̂n||Π). (5.12)
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This can equivalently be seen as selecting the optimal states with respect to the

WCE in HkΠ
for an equally-weighted quadrature rule. For the remainder of Section

5.1, we will use the notation DkΠ
({xi}ni=1) to denote the kernel Stein discrepancy

with Langevin Stein operator. This choice is made to make the dependence on the

point set explicit.

Note that point-selection algorithms based on optimisation of statistical di-

vergences already exist in the literature. These include the minimum energy de-

signs of Joseph et al. [2015, 2017], which minimise the energy distance, the Stein

variational gradient descent algorithm of Liu and Wang [2016]; Liu [2017], which

minimises the KL divergence, and the kernel herding and FW algorithms of Chen

et al. [2010]; Bach et al. [2012], which minimise MMD.

Obviously, the problem in Equation 5.12 is a highly non-convex optimisation

problem, which will be high-dimensional in the case where we want a high number

of points n. To reduce the complexity of this problem, we propose two different

point-sequences.

The first and simplest algorithm that we consider follows a greedy strategy

and is hence called Stein greedy points. The initial point x1 is taken to be a global

maxima of the density π of Π, then each subsequent point xn is taken to be a global

minima of Dk,π({xi}ni=1), with the objective function being viewed as a function of

xn with {xi}n−1
i=1 being fixed. This is equivalent to selecting:

xn ∈ arg min
x∈X

n−1∑
i=1

kΠ(xi,x) +
kΠ(x,x)

2
. (5.13)

As seen in Chapter 4, another approach is to use a FW algorithm, which boils down

to solving the problem: arg ming∈M
1
2‖g−Π[kΠ(·,x)]‖2HkΠ

, whereM is the marginal

polytope of the RKHS HkΠ
(see Equation 4.3 in Chapter 4). As might be expected,

the objective function is closely related to KSD; for g(x) = 1
n

∑n
i=1 kΠ(xi,x):

DkΠ
({xi}ni=1) = ‖g −Π[kΠ(·,x)]‖HkΠ

.

This leads us to our second algorithm, where the initial point x1 is once

again taken to be a global maximum of the density π; which in the context of

this algorithm corresponds to an element g1(x) = kΠ(x1,x). Then, at iteration

n > 1, the convex combination gn = n−1
n gn−1 + 1

n ḡn is constructed where the

element ḡn encodes a direction of steepest descent. Given that minimisation of a

linear objective over a convex set can be restricted to the boundary of that set, it

follows that ḡn(x) = k(xn,x) for some xn ∈ X (see step 1 of the algorithm in 4.2.1).
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The second algorithm, called Stein herding, can hence be concisely summarised as

follows. First select x1 ∈ arg maxx∈X π(x), then at iteration n > 1:

xn ∈ arg min
x∈X

n−1∑
i=1

kΠ(xi,x). (5.14)

The Stein greedy and Stein herding updates (Equations 5.13 and 5.14 respectively)

are very similar to one another. First, the Stein greedy update can be seen as a

regularised version of the Stein herding update, with regulariser 1
2kΠ(x,x). The two

updates coincide if kΠ(x,x) is a constant. This is true for most reproducing kernels

used in practice as these tend to be isotropic, however, this is typically not true for

a Stein reproducing kernel such as the Langevin Stein kernel in Equation 5.10.

The Stein greedy and Stein herding algorithms both require solving a global

(non-convex) optimisation problem over X at each iteration. In practice, this will

be infeasible, and the use of numerical methods such as a grid search, MC search or

Nelder-Mead search will be required. Both algorithm will also have roughly the same

computational cost, which will be O(n2) in addition to any computational cost of the

global optimisation routine. We thus anticipate applications in which the evaluation

of π (or its gradient) constitutes the principal computational bottleneck.

We now highlight the performance of Stein points on a synthetic example

popular in the sampling literature: the Rosenbrock density. The Rosenbrock target

has density of the form: log π(x) ∝ −100(x2 − x2
1)2 − (1 − x1)2, which tends to be

challenging since the region of high density is narrow and has high curvature (see

Figure 5.1). We demonstrate the performance of the Stein greedy algorithm on this

target, where a Monte Carlo search is performed at iteration, using a high number

of IID uniform points on [−4, 4] × [−1, 10]. The KSD used in this example used a

base kernel which was an inverse-multiquadric kernel k(x,x′) = (‖x − x′‖22 + 1)−l

with parameter l = 0.7. As seen in Figure 5.1, the Stein greedy algorithm is able to

select representative points from this target. This required a large number of Monte

Carlo points due to the fact that the region of high density is very narrow.

Further applications to problems in Bayesian computation were also pre-

sented in [Chen et al., 2018, 2019], including approximating the posterior distribu-

tion over parameters of a GP model, and the posterior distribution over parameters

of an integrated generalised autoregressive conditional heteroskedasticity model.

On the theoretical side, under regularity conditions, it is in fact possible to

show that both the Stein greedy and Stein herding algorithms will minimise KSD

asymptotically. One such condition is that kΠ is Π-sub-exponential, which means

that PZ∼Π[kΠ(Z,Z) ≥ t] ≤ c1e
−c2t for some constants c1, c2 > 0 and all t ≥ 0.
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Figure 5.1: Stein greedy points for the Rosenbrock density. The algorithm starts at
the global maximum x0 = (1, 1) of the density, then greedily add points to minimise
the Langevin KSD. In this case, the inner-optimisation loops where performed using
a Monte Carlo search with IID uniform random variables on [−4, 4]× [−1, 10].

Theorem 16 (Consistency of Stein greedy points). Suppose that the Stein

reproducing kernel kΠ is a Π-sub-exponential reproducing kernel. Then ∃c1, c2 > 0

such that for all {xi}ni=1 satisfying

kΠ(xj ,xj)

2
+

j−1∑
i=1

kΠ(xi,xj) ≤
δ

2
+ min

x∈X :kΠ(x,x)≤R2
j

kΠ(x,x)

2
+

j−1∑
i=1

kΠ(xi,x)

with
√

2 log(j)/c2 ≤ Rj ≤ ∞ for each j = 1, . . . , n, we have

e(Π̂n; Π,HkΠ
) = DkΠ

({xi}ni=1) ≤ eπ/2

√
2 log(n)

c2n
+
c1

n
+
δ

n
.

The proof of this result can be found in the supplementary material of Chen

et al. [2018], and a similar theorem for the herding case can also be found in this

paper. We note a particular strength of this theorem: the rate holds even when

the global optimisation routine at each iteration has not converged. Indeed, the

δ/2 term allows for error at each iteration. Another advantage is that we do not

require the kernel to be bounded, but weaken this condition to Π−sub-exponential.

We note that the theorem gives a convergence rate of OP (n−
1
2

+ε) for functions in

HkΠ
. This is not particularly fast when compared with rates for optimally-weighted
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quadrature rules in Chapter 3. However, Stein points have the significant advantage

that they can be used without access to a kernel mean. The result in this theorem

also does not seem to match the impressive approximation properties highlighted in

Figure 5.1 or Chen et al. [2018], indicating that there is most likely a gap between

empirical results and the theory available for these algorithms.

To summarise, we have now proposed two algorithms, called Stein greedy and

Stein herding, for the approximation of measures whose densities are only known

up to normalisation constants. This is particularly useful in the case of Bayesian

statistics, where the posterior often includes an intractable integral which is hard to

approximate. In this section, we illustrated how these algorithms can be particularly

efficient at this task, and given theoretical backing for this performance.

In terms of theory, one question remains: is minimising a KSD a sensible

objective for obtaining a point set? Or in other words, is the RKHS HkΠ
large

enough to differentiate two measures? The answer to this question can be shown

to be affirmative under several conditions on the base kernel and target measure.

Gorham and Mackey [2017] (Section 3.2 and 3.3) and Chen et al. [2018] (Section 5.2)

provided sufficient conditions to guarantee convergence in distribution of Π̂n to the

target measure Π for several heavy-tail kernels (such as the inverse-multiquadric).

This was later extended to pre-conditioned kernels in Chen et al. [2019].

5.1.4 Stein Reproducing Kernels for Numerical Integration

Recall our main challenge of numerically approximating integrals Π[f ] =
∫
X f(x)Π(dx),

and assume the measure Π admits a continuously differentiable density π with re-

spect to the Lebesgue measure. We will show in this section that Stein’s method

can be extremely useful in creating efficient quadrature rules which can be used as

control variates for MC and MCMC integration.

Assume that we have access to a set of points {xi}ni=1 ⊂ X such that the em-

pirical measure 1
n

∑n
i=1 δ(xi) is a good approximation of the target Π. These points

might be Π-distributed, realisations of a Markov chain with invariant distribution

Π, or even obtained with deterministic methods, such as the Stein points algorithms

from the previous subsection. For the sake of simplicity, we will limit ourselves to

MC and MCMC methods.

We have already seen how these point sets lead to quadrature rules, and have

discussed/studied their performance through several error criterion. For example,
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in the MC or MCMC case, recall that the central limit theorem states that

√
n

(
1

n

n∑
i=1

f(xi)−Π[f ]

)
D−→ N (0, σ2),

In the MC case, the variance of the central limit theorem is σ2
MC = Varπ[f ], which

corresponds to the variance of f under Π. On the other hand, in the MCMC case, the

central limit theorem has variance: σ2
MCMC = Varπ[f ] + 2

∑∞
k=1 Covπ[f(X0), f(Xk)]

[Jones, 2004]. Direct MC or MCMC estimation of Π[f ] would hence be prohibitive

whenever f had high variance with respect to the target Π. To reduce the error of

these schemes, it is common to use control variates, which are functions f̃CV : X → R
such that the integral Π[f̃CV] is known analytically. In this case, we can rewrite the

integral of interest as

Π[f ] = Π[f ]−Π[f̃CV] + Π[f̃CV] = Π[f − f̃CV] + Π[f̃CV],

where now the second term is known in closed form and the first term needs to be

estimated using some quadrature rule:

Π[f ] ≈ Π̂[f − f̃CV] + Π[f̃CV]. (5.15)

If f̃CV is chosen such that Varπ[f − f̃CV] is much smaller than Varπ[f ], the error in

approximating Π[f ] via Equation 5.15 will be lower than when using direct MC or

MCMC integration.

In general, such a function f̃CV may be directly available through domain-

specific knowledge [Newton, 1994; Henderson and Glynn, 2002], but this is rarely

the case in general. Alternatively, control variate can sometimes be built using

known properties of the method used for obtaining samples. See Andradóttir et al.

[1993]; Hammer and Tjelmeland [2008]; Dellaportas and Kontoyiannis [2012] for

control variates based on the proposal densities of MCMC samplers, and Hickernell

et al. [2005] for control variates specialised to QMC. An obvious drawback is that

these approaches cannot be used in general settings where properties of {xi}ni=1 are

unknown. A more general and applicable approach is the following. First, separate

X = {xi}ni=1 into two sets X1 = {xi}mi=1 and X2 = {xi}ni=m+1. Then:

1. Use X1 to build an approximation f̃CV of f in some space H such that ∀h ∈
H,∃c ∈ R such that Π[h] = c is known in closed form.

2. Approximate Π[f − f̃CV] using a quadrature rule based on X2.
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In this case, if the integrand can be approximated at a fast rate in m, then Varπ[f−
f̃CV] will decrease at a fast rate which may reduce the integration error at a faster

rate than the Monte Carlo rate.

Clearly the first step will be the most challenging as finding a function space

H with the property that the integral of all functions is known in closed-form will

be non-trivial. An example is given in Paisley et al. [2012]; Wang et al. [2013], who

use a Taylor expansion of the integrand. Unfortunately, this will only be a feasible

approach when integrating against simple probability measures, like a Gaussian or

uniform, but we would like a general methodology which can be applied to any

measure with density known up to normalisation constant.

However, the first step is clearly amenable to the use of Stein’s method. Any

function of the form f̃CV = TΠ[g] + c for g ∈ G and c ∈ R, where TΠ and G are

a pair of Stein operator and Stein class, is a possible choice of control variate. In

this case, step 1 reduces to finding a function of this form leading to the greatest

reduction in numerical integration error. It is common to select g from a parametric

family of functions {gθ}θ∈Θ, in which case the search in G is replaced by a search

over the parameter space Θ. This problem can be solved by considering a general

discrepancy loss function, which given a value in Θ, returns a value describing the

suitability of gθ. We now highlight two examples.

The first example is to choose θ by interpolation, which can be done by

solving numerically f̃CV(x) = TΠ[gθ](x) + c = f(x) in terms of (c, θ). Of course,

selecting f̃CV by interpolation will indirectly minimise the variance Varπ[f − f̃CV],

and the variance will take value zero if we interpolate the function exactly. A second

option would be to select gθ to minimise the asymptotic variance Varπ[f − f̃CV] =

Varπ[f − TΠ[gθ] − c] directly. In this case, the term c is not needed and can be

set to zero by default. This is because the variance is not affected by constants:

Varπ[f − TΠ[gθ]] = Varπ[f − TΠ[gθ]− c].
Our proposed strategy for building control variates is therefore the following.

First, separate X = {xi}ni=1 into two sets X1 = {xi}mi=1 and X2 = {xi}ni=m+1 and

fix a Stein operator TΠ and parametric Stein class G. Then:

1. Use X1 to select a control variate of the form f̃CV = TΠ[gθ] + c by minimising

a loss function in θ.

2. Compute a quadrature approximation of Π[f − f̃CV] using X2.

It turns out that many existing control variates methodologies available in the lit-

erature can be recovered as special cases of this approach. We now highlight a few

examples.
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1. Motivated by a specific Hamiltonian differential operator from statistical physics,

Assaraf and Caffarel [1999]; Mira et al. [2013] proposed to perform step 1 using

functions:

TΠ[gθ](x) = −
∆[P (x|θ)

√
π(x)]

2
√
π(x)

+
P (x|θ)∆[

√
π(x)]

2
√
π(x)

where P (x|θ) is a class of polynomials of order p ∈ N with coefficients sum-

marised in the vector θ. They estimate the coefficients θ by minimising

Varπ[f − f̃CV]. Full implementation details can be found in Papamarkou et al.

[2014]. This can be shown to be equivalent to using the Itô Stein operator in

Equation 5.5 together with a Stein class consisting of polynomials of order p.

2. Another example, called control functionals, was recently proposed in Oates

et al. [2017a,c, 2018]; Oates and Girolami [2016]. These control variates are

based on interpolants in a RKHS of the form LΠ[gθ](x) =
∑m

i=1 θikΠ(x,xi)

with xi ∈ X and θi ∈ R ∀i = 1, . . . ,m, and where the kernel kΠ is the Langevin

Stein reproducing kernel previously defined in Equation 5.10. Finding the

optimal θ for interpolation can be solved in closed form as a least-squares

problem. Control functionals were shown to be effective for variance reduction

and can lead to faster convergences rates than direct MCMC integration [Oates

et al., 2018].

3. Zhu et al. [2018] also approached this problem using neural networks and used

functions of the form: LΠ[gθ](x) = 〈∇x, g(x|θ)〉+ 〈g(x|θ),∇x log π(x)〉, where

g(x|θ) are vector-valued neural networks with weights θ. Zhu et al. [2018]

then propose to use an estimate of the mean-squared error to optimise the

parameters. Neural networks have been shown to be particularly effective at

approximating high dimensional functions which can be written as a compo-

sition of low-dimensional functions [Poggio et al., 2017].

Before concluding this section, we note that the integral of a control variate

can itself be used as a stand-alone quadrature estimator. Indeed, we can simply

disregard the estimator of Π[f − f̃CV] and use Π[f̃CV] as an estimate of Π[f ] in

Equation 5.15. For example, when considering the control functionals approach of

Oates et al. [2018, 2017c], we notice that the integral Π[f̃CV] can be obtained in

closed form, and actually corresponds to the BQ estimator of Π[f ] obtained when

using the kernel k+. This is in fact what was done in Chapter 4 for the differen-

tial equation example. Stein’s method therefore provides us with an alternative to

the methodologies developed in Chapter 3 for BQ with intractable kernel means.
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Unfortunately, one drawback of this approach is that the estimators will be biased.

5.2 Kernel-based Estimators for Intractable Models

We have now completed our discussion of the use of Stein’s method for statisti-

cal computation. Clearly Stein’s identity is a very useful tool to construct novel

methodology for numerical integration, and there is scope for much further work

in this area. In the second part of this chapter, we will highlight another use of

Stein’s method and kernel methods: statistical inference for models with intractable

likelihoods. We will focus on both unnormalised models, which will be tackled using

KSDs, and generative models, for which we will use MMDs.

5.2.1 Minimum Distance Estimators

Our kernel-based estimators for intractable models fall within the class of minimum

distance estimators, which are introduced below together with the related field of

information geometry. Information geometry [Amari, 1987, 2016; Barndorff-Nielsen,

1978] is concerned with the geometry of statistical manifolds. These are manifolds

for which each point corresponds to a Borel probability measure P ∈ P(X ). Com-

monly, these manifolds correspond to parametric families PΘ(X ) ⊂ P(X ) which are

classes of probability measures Pθ indexed by a parameter θ = (θ1, . . . , θp) ∈ Θ. An

obvious choice of coordinates on a statistical manifold is given by the parameter θ.

The parameter space Θ will be assumed to be a subset of Rp for some p ∈ N for the

remainder of this chapter, but could itself be a space of functions.

A common example of statistical manifold is the exponential family, which

is a class of probability measures with probability density function of the form:

p(x|θ) = h(x) exp (〈θ, T (x)〉 − c(θ)) , (5.16)

for some function h : X → R of the form h(x) ∝ exp(b(x)), which is the density of

some base measure, some summary statistic T : X → Rp and some normalisation

constant c : Θ → R which guarantees that p(x|θ) is a probability density function

(i.e. is normalised). In this case, the parameter space is given by Θ = {θ ∈ Rp :

log c(θ) =
∫
X h(x) exp(〈θ, T (x)〉)dx < ∞}. The formulation above is in terms of

a parameterisation called the natural parameterisation. The exponential family is

a large family which includes some classical distributions such as the Gaussian,

Poisson, Dirichlet and Gamma distributions. It also includes many more complex

models such as graphical models, including pairwise interaction models [Lin et al.,
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2016], or certain neural networks [Gutmann and Hyvärinen, 2012].

Going back to the concept of statistical manifold, we need to construct a

notion of distance on a parametric class of probability models. This will usually

be derived from a statistical divergence. Although a divergence does not define a

metric on P(X ), it induces a symmetric tensor g whose matrix (gij) is positive semi-

definite: gij(θ) := −(∂2/∂αi∂βj)D
(
Pα||Pβ

)
|θ=α=β. When gij(θ) is positive definite

for all θ ∈ Θ, it defines a function g which maps θ to the matrix gij(θ). This is called

the metric tensor or information metric, and can be used to define a Riemannian

geodesic distance Amari [2016].

Minimum Distance Estimators and Scoring Rules

Consider now the problem of statistical inference for a given statistical model. A

common approach is to consider some loss function L : Θ→ R based on a divergence

between an element of the parametric family PΘ(X )) and an empirical probability

measure Qm = 1
m

∑m
j=1 δ(yj) obtained from the IID realisations {yj}mj=1 available to

us from the correct model Q. These estimators are called minimum distance estima-

tors and are given by the solution of the following (usually non-convex) optimisation

problem:

θ̂m = arg min
θ∈Θ

L(θ) = arg min
θ∈Θ

D(Qm||Pθ). (5.17)

See the books of Pardo [2005] and Basu et al. [2011] for more details, or the recent

paper by Jewson et al. [2018] for a Bayesian alternative. In special cases, this

optimisation problem can be solved in closed form, but it will generally be necessary

to employ numerical optimisation routines. Clearly, this pair of parametric family

and statistical divergence directly leads to the notion of statistical manifold, and we

will be able to use information geometry to study this problem.

Minimum distance estimators are closely connected to the concept of scoring

rules [Gneiting and Raftery, 2007; Dawid, 2007; Parry et al., 2012], although not all

scoring rules lead minimum distance estimators2. A scoring rule is a function S :

X×P(X )→ R such that S(x,P) quantifies the accuracy of a model P upon observing

the realisation x. A scoring rule is said to be strictly proper if
∫
X S(x,P2)P1(dx)

is uniquely minimised when P1 = P2. Any strictly proper scoring rule induces a

divergence of the form DS(P1||P2) =
∫
X S(x,P2)P1(dx)−

∫
X S(x,P2)P2(dx), which

by construction will be minimised when P1 = P2. These divergences can then be

2We note that the name “scoring rule” is in no way related to the score function∇ log p, although
some scoring rules might depend on ∇ log p.
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used as loss functions to get minimum distance estimators of the form:

θ̂Sm = arg min
θ∈Θ

DS(Qm||Pθ) = arg min
θ∈Θ

∫
X
S(y,Pθ)Qm(dy) (5.18)

= arg min
θ∈Θ

1

m

m∑
j=1

S(yj ,Pθ).

See the work by Mameli and Ventura [2015] and Dawid et al. [2016] for asymp-

totic properties of such estimators, and Merkle and Steyvers [2013] for advice on

choosing a scoring rule. A popular choice of strictly proper scoring rules are the

local strictly proper scoring rules, which only depend on the log-likelihood and its

derivatives [Parry et al., 2012; Ehm and Gneiting, 2012; Parry, 2016]. Note that

scoring rules can also be defined for discrete domains [Dawid et al., 2012]. Esti-

mators based on scoring rules require finding the solution to the following equa-

tions in θ:
∑m

j=1∇θS(yj ,Pθ) = 0, which are called estimating equations and where

0 = (0, . . . , 0)> ∈ Rp. For strictly proper scoring rules, one can easily show that

these estimating equations are unbiased (i.e.
∫
X ∇θS(x,Pθ)Pθ(dx) = 0), and as a

consequence the associated estimators are consistent (see for example Theorem 1

and Corollary 2 of Dawid [2007]).

There are two scenarios of interest in the context of minimum distance es-

timator: The M-closed and M-open cases. First, in the M-closed case, we assume

that Q is an instance of the parametric family PΘ(X ). The statistical inference

problem therefore boils down to finding the value θ∗ ∈ Θ such that Pθ∗ corresponds

to Q. Alternatively, in the M-open case, Q can be any probability measure in P(X ),

and is not necessarily in the parametric family PΘ(X ). In this case, we look for

the value θ∗ such that Pθ∗ is the closest possible to Q in terms of some statistical

divergence. Obviously, the M-closed case is much more restrictive, but can be more

easily understood from a theoretical viewpoint. The M-open case, on the other

hand, reflects the practical realities illustrated by George E. P. Box’s now famous

phrase: “all models are wrong, but some are useful”. The M-open case is, however,

much harder to analyse from a theoretical viewpoint.

The M-open setting requires us to study the robustness of an estimator, which

is concerned with corruptions in the data generating process. For example, in applied

statistics, data might be assumed to correspond to IID realisations of some model

but might in fact consist of correlated observation. Alternatively, we might be in an

M-open setting where our data consists of realisations from a mixture distribution

consisting of a model from the parametric family, and of some distribution of outliers.

The reader is referred to Huber and Ronchetti [2009] or Chapter 10 in Steinwart and
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Christmann [2008] for extensive introductions. Here, the choice of divergence will

significantly influence the robustness of the associated estimator. There is usually a

trade-off between robustness and efficiency of estimators, and the choice of scoring

rule should hence be made with this in mind.

An important concept in robust statistics is that of the influence function

IFS : X × PΘ(X ) → R where IFS(z,Pθ) measures the impact of an infinitesimal

contamination of the data generating model Pθ in the direction of a Dirac measure

located at some point z. The influence function of a minimum distance estimator

based on a scoring rule S is given by [Dawid and Musio, 2014]:

IFS(z,Pθ) =

(∫
X
∇θ∇θS(x,Pθ)Pθ(dx)

)−1

∇θS(z,Pθ). (5.19)

where (∇θ∇θS(x,Pθ))jk = ∂2S(x,Pθ)/∂θj∂θk. The supremum of the influence func-

tion over z ∈ X is called the gross-error sensitivity, and if it is finite, we say that

an estimator is bias-robust (also called B-robust, or robust in the sense of Hampel)

[Hampel, 1971].

Maximum Likelihood Estimation

To illustrate the definitions above, we now consider the most widely studied exam-

ple of minimum distance estimator. When using the KL divergence, the minimum

distance estimator in Equation 5.17 becomes equivalent to maximum likelihood es-

timators [Fisher, 1922]:

arg min
θ∈Θ

L(θ) = arg min
θ∈Θ

DKL(Qm||Pθ) = arg max
θ∈Θ

1

m

m∑
j=1

log p(yj |θ). (5.20)

This can be derived as strictly proper scoring rule from the log-score: SKL(x,P) =

− log p(x). Since it is a strictly proper scoring rule, we can trivially show that

maximum likelihood estimation is consistent in the M-closed case.

In the case of exponential family models, the problem of maximum likelihood

estimation can be simplified significantly. In this case,∇θS(x,Pθ) = −∇θ log p(x|θ) =

−T (x) + ∇θc(θ), and so maximum likelihood estimation is equivalent to solving

the following estimation equations:
∑m

j=1 T (yj) = −∇θc(θ). Clearly this requires

knowledge of the normalisation constant of the model or, more precisely, of the

derivative of the log normalisation constant. Maximum likelihood estimation will

hence not be feasible in cases where this constant is not available in closed form.

Since minimum distance estimators are based on parametric families and
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divergences, the performance of these estimators will be closely interlinked with

the geometry of the corresponding statistical manifold. The metric tensor obtained

from the KL-divergence is called the Fisher information metric. It corresponds to

the covariance of the score vectors of the distribution:

gKL
jk (θ) =

∫
X

(
∂ log p(x|θ)

∂θj

)(
∂ log p(x|θ)

∂θk

)
p(x|θ)dx.

Geometric quantities can be useful to understand asymptotic properties of the es-

timator. The most common example of this is the Cramer-Rao theorem (see for

example Amari [2016], Theorem 7.7) which states that for any asymptotically un-

biased estimator θ̂ of θ, we have: E[(θ̂j − θj)(θ̂k − θk)] ≥ (1/m)gKL
jk , where the

expectation is taken with respect to the distribution of the data-generating process.

Since maximum likelihood estimation attains this lower bound, we say that it is effi-

cient. Unfortunately, as previously mentioned, efficiency often has to be traded with

robustness and maximum likelihood estimation is not robust. This can be noticed

by looking at the influence function (obtained by plugging in SKL into Equation

5.19):

IFKL(z,Pθ) =

(
−
∫
X
∇θ∇θ log p(x|θ)p(x|θ)dx

)−1

(−∇θ log p(z|θ))

= gKL(θ)−1∇θ log p(z|θ).

Even for simple models such as a Gaussian distribution with unknown standard

deviation, the influence function will be O(z) and hence unbounded, clearly demon-

strating the lack of bias-robustness of maximum likelihood estimation.

Maximum likelihood methods have nonetheless been widely popular in the

past due to the likelihood principle [Young and Smith, 2005], which states that, given

a model, all of the evidence in a data set which is relevant to parameter inference is

contained in the likelihood function. There are however several limitations to this

approach, the most obvious being the requirement to have access to the likelihood

(or equivalently the log-likelihood). We will now highlight alternative loss functions

for use when the likelihood is not available.

5.2.2 Estimators for Unnormalised Models

A first scenario which is common in statistics is when the likelihood p(x|θ) is not

available due to an unknown normalisation constant Z(θ) (which depends on the

parameter vector θ). Usually this is due to the high computational cost of evalu-

ating the normalisation constant, or because this constant is itself defined as some
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intractable integral. In this case, the optimisation problem in Equation 5.20 cannot

be solved since the normalisation constant depends on θ but is unavailable, and

maximum likelihood estimation is hence not feasible.

In this section, we will discuss classes of estimators which can by-pass the

need for normalisation constants. The first estimators discussed are the score-

matching estimatorswhich are extensively used in machine learning. These will

be formally discussed in the context of minimum distance estimators, will be shown

to both originates from the notion of Stein discrepancy. Once this connection is

made, we will discuss estimators based on other underlying Stein classes, such as

kernel spaces.

Score Matching Estimators

The issue of intractable normalisation constants has led to the development of sta-

tistical inference methods based on the score function. This is because the score

function ∇x log p(x|θ) does not depend on Z(θ), and so can be evaluated even when

the likelihood is unnormalised. This is a major advantage since it allows us to by-

pass the computation of expensive normalisation constants whilst still obtaining an

asymptotically exact solution. An example of divergence based on the score func-

tion is the score-matching divergence (SM) [Hyvärinen, 2006, 2007], also called the

Hyvärinen or Fisher divergence, and which is defined as:

DSM(P1||P2) :=

∫
X
‖∇x log p1(x)−∇x log p2(x)‖22 P1(dx). (5.21)

This divergence can also be generalised to include higher-order derivatives of the

log-likelihood; see Lyu [2009]. Using integration by parts, Hyvärinen [2006] (The-

orem 1) showed that the SM divergence can be rewritten in a convenient form

when considered as a function of θ ∈ Θ ⊆ Rp: DSM(Q||Pθ) =
∫
X
(
∆x log p(x|θ) +

1
2‖∇x log p(x|θ)‖22

)
Q(dx) +C for some C ∈ R which does not depend on θ. The SM

estimator minimises this divergence over θ ∈ Θ and hence clearly does not depend

on the intractable constant C:

θ̂SM
m = arg min

θ∈Θ
DSM(Qm||Pθ), (5.22)

DSM(Qm||Pθ) =
1

m

d∑
l=1

m∑
j=1

∆y log p(yj |θ) +
1

2
‖∇y log p(yj |θ)‖22. (5.23)

The SM estimator can also be derived from a strictly proper scoring rule of the

form: SSM(x,P) = ∆x log p(x) + 1
2‖∇x log p(x)‖22. A direct implication is that the
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SM estimator is consistent in the M-closed case (since the estimating equations are

unbiased), although it may not necessarily be efficient. The SM estimator is clearly

a local scoring rule, since it depends on P only through derivatives of log p.

It is however not necessarily bias-robust. Take the case of a one-dimensional

Gaussian distribution with mean zero and unknown standard deviation. Then

∇θSSM(z,Pθ) = (2 + z2)/θ3, so the influence function is IFSM(z,Pθ) = O(z2) and is

hence clearly unbounded.

The metric tensor for the Hyvärinen divergence was derived by [Karakida

et al., 2016] and is given by: gSM(θ) =
∫
X (∇θ∇x log p(x|θ))(∇θ∇x log p(x|θ))>Pθ(dx),

where (∇θ∇x log p(x|θ))jk = ∂2 log p(x|θ)/∂xj∂θk. The SM estimators have been

shown to be useful for a variety of applications, including imaging models [Koster

and Hyvärinen, 2009; Kingma and LeCun, 2010; Swersky et al., 2011], directional

statistics [Mardia et al.] and point processes [Sahani et al., 2016]. They have also

be shown to be connected to popular inference methods for denoising autoencoders

[Vincent, 2011]. They do however have important failure modes, most notably in

the case of mixtures [Wenliang et al., 2018].

An interesting fact, first pointed out in an open-access version of Sriperum-

budur et al. [2017] and later in Forbes and Lauritzen [2015], is that we can compute

the SM estimator for exponential families in closed form. Define the following sum-

mary statistics:

• A({yj}mj=1) = 1
m

∑m
j=1

∑d
l=1

∂T (yj)
∂(yi)l

(
∂T (yj)
∂(yi)l

)>
,

• B({yj}mj=1) = 1
m

∑m
j=1

∑d
l=1

∂b(yj)
∂(yi)l

(
∂T (yj)
∂(yi)l

)>
+ ∆T (yj),

• C({yj}mj=1) = 1
m

∑m
j=1

1
2‖∇yb(yj)‖22 + ∆yb(yj).

where b, T are given in Equation 5.16 and (yi)l denotes the lth component of the vec-

tor yi. Then the divergence can be written as a quadratic form, and the estimating

equations become linear θ:

DSM(Qm||Pθ) =
1

2
θ>A({yj}mj=1)θ +B({yj}mj=1)>θ + C({yj}mj=1),

θ̂SM
m = −B({yj}mj=1)A({yj}mj=1)−1.

The expressions above are particular useful as they circumvent the need for numer-

ical optimisation routines.

Note that Sriperumbudur et al. [2017] generalises the score matching loss to

the case where the sufficient statistic and natural parameter are infinite dimensional,

and proves consistency with finite sample bounds, both for the infinite and finite
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dimensional cases. Proposition 1 and 2 in Forbes and Lauritzen [2015] also indepen-

dently show consistency of these estimators, and provide a central limit theorem.

Minimum Stein Discrepancy Estimators

We propose to generalise the SM methodology originally proposed by Hyvärinen

[2006]. Our proposed approach is to consider Stein discrepancies which are based

on the score function, or higher derivatives of the log likelihood, within a minimum

distance estimator framework. More precisely, we consider estimators of the form

θ̂Stein
m = arg minθ∈ΘDStein(Qm||Pθ)2 where

DStein(Qm||Pθ) := sup
g∈G

∣∣∣∣∣∣ 1

m

m∑
j=1

TPθ [g](yj)

∣∣∣∣∣∣ ,
G is a Stein class and TPθ is a Stein operator adapted to Pθ. Two potential choices

of Stein operators which would not require normalisation of the likelihoods are the

Langevin Stein operator and Itô Stein operator. This approach is a generalisation

of the SM estimators since the Hyvärinen divergence is a Stein discrepancy:

Proposition 12 (Score-Matching Estimators as Minimum Stein Discrep-

ancy Estimators). Let X ⊆ Rd for d ∈ N and consider the Stein operator SP in

Equation 5.6 for some function a : X → Rd×d taking values in the space of positive

semi-definite matrices and function c : X → Rd×d taking values in the space of

skew-symmetric matrices. Let m(x) = a(x) + c(x) and define the Stein class:

G := {g = (g1, . . . , gd) ∈ (C1(X ) ∩ L2(X ;Q))d : ‖gj‖L2(X ;Q) ≤ 1 ∀j = 1, . . . , d}.

Then, we get a diffusion-based Stein discrepancy of the form:

D(Q||Pθ) =

∫
X
‖(∇x log p2(x)−∇x log p1(x))m(x)‖22 p1(x)dx (5.24)

and can obtain a diffusion-based minimum Stein discrepancy estimator:

θ̂ = arg min
θ∈Θ

∫
X
‖m(x)>∇x log p(x|θ)‖22Q(dx)

+2

∫
X

〈
∇x,m(x)m(x)>∇x log p(x|θ)

〉
Q(dx)

In particular, we note that the contrusction above generalises score-matching

estimators. Indeed, the score-matching estimator of Hyvärinen [2006] is a diffusion-

based minimum Stein discrepancy estimator where a(x) = Id×d and c(x) = 0, the
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non-negative score matching estimator of Hyvärinen [2007] is a diffusion-based min-

imum Stein discrepancy estimator where a(x) = diag((x1, . . . , xd)) and c(x) = 0

and finally, the generalised non-negative score matching estimator of Yu et al.

[2018] is a diffusion-based minimum Stein discrepancy estimator where a(x) =

diag((h1(x1)
1
2 , . . . , hd(xd)

1
2 ) and c(x) = 0.

Langevin Kernel Stein Discrepancy Estimators

The Hyvärinen divergence is not the only possible choice of Stein discrepancy which

can be used for estimation. One drawback of the Hyvärinen divergence is the need

for second derivatives of the log-likelihood with respect to the data. It turns out

that the KSD with Langevin Stein operator can help us get rid of this requirement.

This choice of Stein discrepancy gives us the following estimator:

θ̂KSD = arg min
θ∈Θ

KSD(Q||Pθ)2 = arg min
θ∈Θ

∫
X

∫
X
kPθ(x,y)Q(dx)Q(dy).

where, in this case, the Stein reproducing kernel is based on the Langevin Stein

operator adapted to Pθ and is of the form:

kPθ(x,y) = 〈∇x log p(x|θ),∇y log p(y|θ)〉k(x,y) + 〈∇1,∇2k(x,y)〉 (5.25)

+〈∇x log p(x|θ),∇2k(x,y)〉+ 〈∇y log p(y|θ),∇1k(x,y)〉.

Sufficient conditions for kPθ to be a characteristic Stein kernel, and as a by-product

for the KSD with Langevin Stein operator to be a divergence, were summarised in

Section 5.1.2. When kPθ is a characteristic Stein kernel, we get the following metric

tensor:

Proposition 13 (Information Metric of the Kernel Stein Discrepancy with

Langevin Stein Operator). Consider a KSD based on a Langevin Stein operator

adapted to some measure Pθ, with density p(x|θ), and base kernel k : X × X → R.

Assume kPθ is a characteristic Stein reproducing kernel. The information metric

corresponding to this divergence is given by:

gjk(θ) = 2

d∑
l=1

∫
X

∫
X
k(x,y)

∂2 log p(x|θ)
∂xl∂θj

∂2 log p(y|θ)
∂yl∂θk

Pθ(dx)Pθ(dy).

Given IID realisations {yj}mi=1 from the model of interest Q, we can obtain

an unbiased estimate of the square of the KSD [Liu et al., 2016, Equation 14] using
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a U-statistic, which leads to a computable estimator:

KSDU (Qm||Pθ)2 =
1

m(m− 1)

m∑
i 6=j

kPθ(yi,yj), (5.26)

θ̂KSD
m = arg min

θ∈Θ
KSDU (Qm||Pθ)2. (5.27)

This estimator is particularly useful as it removes the need for second order deriva-

tives of the log-likelihood with respect to the data. The added flexibility of the

kernel can also be an advantage.

Similarly to SM, it is possible to obtain a closed form expression for the KSD

estimator in the case of statistical models in some exponential family.

Proposition 14 (Kernel Stein Discrepancy for Exponential Family). As-

sume kPθ is a characteristic Stein reproducing kernel adapted to some element P from

some exponential family and constructed with the Langevin Stein operator. Define

the following summary statistics:

A({yj}mj=1) =
1

m(m− 1)

m∑
i 6=j
〈∇T (yi),∇b(yj)〉k(yi,yj) + 〈∇T (yi),∇2k(yi,yj)〉

+〈∇T (yj),∇b(yi)〉k(yi,yj) + 〈∇T (yj),∇1k(yj ,yi)〉.

B({yj}mj=1) =
1

m(m− 1)

m∑
i 6=j
〈∇T (yi),∇T (yj)〉k(yi,yj),

C({yj}mj=1) =
1

m(m− 1)

m∑
i 6=j
〈∇1k(yi,yj),∇b(yj)〉+ 〈∇2k(yi,yj),∇b(yi)〉

+〈∇1,∇2k(yi,yj)〉+ 〈∇b(yi),∇b(yj)〉k(yi,yj).

Then, the U-statistic approximation of the KSD based on the Langevin Stein operator

and its corresponding estimator are given by:

KSDU (Qm||Pθ)2 = θ>A({yj}mj=1)θ +B({yj}mj=1)θ + C({yj}mj=1),

θ̂KSD
m = −B({yj}mj=1)A({yj}mj=1)−1.

Once again, these expressions will be particularly useful as they allow us

to avoid the use of numerical optimisation routines. Note that similar work has

recently appeared in Li and Turner [2018], but the aim in that work is to estimate

the scores rather than the parameters.
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5.2.3 Estimators for Generative Models

We have now completed our introduction to KSD estimators for unnormalised mod-

els. A second case of interest is that of generative models. These models have the

particular feature that their likelihood cannot be evaluated in closed form, but they

can instead be sampled from. Let (U ,ΣU ,U) be a probability space. Formally we

regard generative models as a family of probability measures PΘ(X ) such that for

any θ ∈ Θ, we can obtain some IID realisations {xi}ni=1 ⊂ X from Pθ. These real-

isations are obtained in two steps: first sample IID random variables {ui}ni=1 from

U, then apply some map Gθ : U → X to each of these realisations to obtain Pθ
distributed random variables; i.e. xi = Gθ(ui) for i = 1, . . . , n. Alternatively, we

say Pθ is the pushforward of U under Gθ.

Examples of minimum distance estimators for generative models include es-

timators based on approximations of the Wasserstein distance [Basu et al., 1998;

Bassetti et al., 2006; Genevay et al., 2018]. In this section, we focus instead on a

kernel-based estimator related to MMD.

Minimum Maximum Mean Discrepancy Estimators

We propose to use an approximation of the square of the MMD within a mini-

mum distance estimator framework. Once again, this minimum distance estimator

originates from a scoring rule, called kernel scoring rule in the literature. The scor-

ing rule which leads to the MMD is well known in the literature [Eaton, 1982;

Dawid, 2007; Huszár, 2013; Zawadzki and Lahaie, 2015; Steinwart and Ziegel, 2017;

Masnadi-Shirazi, 2017], and takes the form:

S(x,Pθ) = k(x,x)− 2

∫
X
k(x,y)Pθ(dy) +

∫
X×X

k(y, z)Pθ(dy)Pθ(dz) (5.28)

= k(x,x)− 2

∫
X
k(x, Gθ(u))U(du) +

∫
X×X

k(Gθ(u), Gθ(v))U(du)U(dv).

There is also ample evidence of its applicability to complex generative models, due

to the recent line of work on MMD generative adversarial networks [Dziugaite et al.,

2015; Li et al., 2015, 2017; Sutherland et al., 2017; Arbel et al., 2018]. Suppose k

is characteristic, then the MMD is a divergence, and the scoring rule is a strictly

proper scoring rule. However, the scoring rule is not local since it depends on k.

The information metric for this divergence is given by:

Proposition 15 (Information Metric of the Maximum Mean Discrepancy

Squared). Suppose Pθ is a generative model, defined as the pushforward of U under
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Gθ. Assume that k : X ×X → R is a characteristic kernel. Then the MMD squared

is a divergence with associated information metric given by:

g(θ) =

∫
U

∫
U
∇θGθ(u)>∇1∇2k(Gθ(u), Gθ(v))∇θGθ(v)U(du)U(dv).

where (∇1∇2k(x,y))jk = ∂2k(x,y)/∂xj∂yk.

Unfortunately, the MMD squared cannot be computed in closed form, but

it can be approximated using a U-statistic, and a corresponding estimator can be

obtained:

θ̂MMD
m = arg min

θ∈Θ
MMD2

U (Qm,Pθ),

MMD2
U (Qm,Pθ) =

∫
X

∫
X
k(x,y)Pθ(dx)Pθ(dy)− 2

m

m∑
j=1

∫
X
k(x,yj)Pθ(dx)

+
1

m(m− 1)

∑
j 6=j′

k(yj ,yj′).

In practice we may not be able to compute expectations with respect to Pθ ex-

actly so the loss MMD(Qm,Pθ) is intractable. However if the generative map Gθ is

sufficiently cheap to evaluate, then approximations via Monte Carlo estimation is

feasible by generating n� m samples. In this regime, it may be of interest to first

consider the estimator θ̂MMD
m to understand the behaviour in the limit of large data

size. Alternatively, if the generative map is expensive to evaluate, then we would

expect the number of realisations of the generative model to be roughly of the same

order as the number of data points. In this case, fluctuations arising from the both

the approximation of generative distribution Pnθ and data distribution Qm will affect

the efficiency. We thus study a second U-statistic approximation of the MMD, as

well as its corresponding minimum distance estimator:

θ̂MMD
n,m = arg min

θ∈Θ
MMD2

U,U (Qm,Pnθ )

MMD2
U,U (Qm,Pnθ ) =

1

n(n− 1)

∑
i 6=i′

k(xi,xi′)−
2

mn

m∑
j=1

n∑
i=1

k(xi,yj)

+
1

m(m− 1)

∑
j 6=j′

k(yj ,yj′).

An interesting point is that MMD estimators will usually be bias-robust. Take our

example of a univariate Gaussian model with unknown standard deviation. In this
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case, using a Gaussian kernel k(x, y) = exp(−(x − y)2/2σ2), the scoring rule can

be derived in closed form using Gaussian identities (see for example Appendix C of

Briol et al. [2015a] or Example 3 in Sriperumbudur et al. [2012]). This allows us to

notice that IFMMD(z,Pθ) = O
(
(z2/θ + σ2) exp(−z2(2θ2 + 2σ2)−1)

)
, which is clearly

bounded in z and is therefore bias-robust. Furthermore, the choice of lengthscale

σ will impact the gross-error sensitivity. More generally, MMD estimators will be

bias-robust under the following assumptions:

Proposition 16 (Bias-Robustness of Maximum Mean Discrepancy Esti-

mation). Consider an MMD estimator for a model Pθ, seen as the pushforward of

some measure U through the parametric map Gθ, based on the reproducing ker-

nel k. Assume that (i) k is characteristic, (ii) ‖ − 2
∫
U ∇θk(x, Gθ(u))U(du) +∫

U
∫
U ∇θk(Gθ(u), Gθ(v))U(du)U(dv)‖∞ < ∞ ∀x ∈ X , and (iii) the matrix given

by
∫
U
∫
U ∇θ∇θk(Gθ(u), Gθ(v))U(du)U(dv) is invertible. Then, minimum MMD es-

timators are bias-robust.

Although these conditions might be challenging to check on a case by case

basis, they only usually required assumptions on the tails of the kernel and gener-

ative map, as well as that of their derivatives with respect to the parameter. The

conditions can hence be useful for selecting kernels.

Unfortunately, since the MMD estimators are not based on the score function,

the estimating equations will not be linear and it will not usually be possible to solve

them explicitly in the case of exponential families.

5.2.4 Practical Considerations

As will now be obvious, the choice of loss function (or equivalently of kernel and

kernel hyperparameters), and of numerical optimisation routine will be of great

importance for practical implementation. These tuning choices will influence the

performance of our estimators in three main ways: the asymptotic efficiency of the

estimator, the robustness of the estimator and the difficulty of optimising the loss

function.

Numerical Optimisation

Recall our goal of inferring the parameter θ ∈ Θ by minimising the loss function

L(θ) = KSD(Q||Pθ)2 or L(θ) = MMD(Q,Pθ)2. These loss functions are usually

non-convex, and potentially high-dimensional when the parameter space is large,

which might lead to computational challenges for practical implementation.
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Several optimisation algorithms could be used, but we propose to focus on

gradient-based methods. A common approach is gradient descent, which consists

of initialising at θ0 ∈ Θ, then iterating over descent steps. For the tth iteration, we

have the following update:

θ(t) = θ(t−1) − ηt∇θL(θ(t−1)),

where {ηt}t∈N is a step size sequence chosen to guarantee convergence to a local

minimum. To use gradient descent for our minimum distance estimators based on

KSDs and MMDs, we will need the gradient of these statistical divergences with

respect to the parameters of the model:

Proposition 17 (Gradients of the Kernel Stein Discrepancy and Maximum

Mean Discrepancy Loss Functions). The gradient of the KSD loss function

LKSD(θ) := KSD(Q||Pθ)2 is given by:

∇θLKSD(θ) =

∫
X

∫
X

[
k(x,y)∇θ∇x log p(x|θ)∇y log p(y|θ)

+k(x,y)∇θ∇y log p(y|θ)∇x log p(x|θ) +
(
∇θ∇x log p(x|θ)

)
∇2k(x,y)

+∇θ∇y log p(y|θ)∇1k(x,y)
]
Q(dx)Q(dy).

The gradient of the MMD loss function LMMD(θ) := MMD(Q,Pθ)2, when Pθ is the

pushforward of some base measure U through the map Gθ, is given by:

∇θLMMD(θ) =

∫
U

∫
U
∇θGθ(u) (∇1k(Gθ(u), Gθ(v)) +∇2k(Gθ(v), Gθ(u)))>U(du)U(dv)

−2

∫
U

∫
X
∇θGθ(u)∇1k(Gθ(u),y)U(du)>Q(dy).

The usual way to motivate gradient descent methods is to say that they se-

quentially decrease the objective function in the optimal direction. However, since

we are optimising within a specific statistical manifold, notions of distance are dif-

ferent from Euclidean spaces and the classic gradient descent algorithm does not

decrease the objective in an optimal direction anymore. The algorithm is still a

valid optimisation algorithm, but it will require a large number of iterations to at-

tain the minimum of the loss function. On a manifold, the gradient vector of the

function L (i.e. the optimal descent direction) is given by the vector field∇gL, which

in a local coordinate system is: ∇gL(θ) = g−1(θ)∇θL(θ), where g−1(θ) is the inverse

of the matrix g(θ). The natural generalisation of the gradient descent is then to fol-

low the geodesics of the manifold: pt = exppt−1
(−ηt∇gL(pt−1)), where exp maps
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the tangent vector vp at some p ∈ M to the point expp(vp) := γ(1) ∈ M, where

γ is the unique geodesic s.t. γ(0) = p, γ̇ = vp. However it is often hard to follow

geodesics exactly in practice. Instead, the Euclidean space formula for the exponen-

tial, expθ v = θ+ v, suggests the following iterations: θ(t) = θ(t−1) − ηt∇gL(θ(t−1)).

This corresponds to natural gradient algorithms [Amari, 1998, 2016]. These

algorithms were previously introduced in the context of the KL divergence and

SM divergence, but we can straightforwardly derive similar algorithms for the KSD

and MMD using some of our previously-derived formulae for information metrics

in Propositions 13 and 15. Raskutti and Mukherjee [2015] also reinterpreted this

algorithm as a mirror descent algorithm, whilst Pascanu and Bengio [2014]; Martens

[2014] demonstrated its connections to many popular optimisation algorithms for

training large machine learning models.

For minimum distance estimation based on KSD, we can use the information

metric derived in Proposition 13 and the gradient derived in Proposition 17. Since

these will not be available in closed form, we can approximate the trajectories of the

natural gradient algorithm by using U-statistic approximations of these quantities.

In this case, we target the minimiser of L̂KSD
U (θ) = KSD2

U (Qm||Pθ). The gradient

descent algorithm follows the iterations θ(t) = θ(t−1) − ηt∇θL̂KSD
U (θ(t−1)) whilst the

natural gradient descent algorithm follows the iterations

θ(t) = θ(t−1) − ηt(gKSD
U (θ(t−1)))−1∇θL̂KSD

U (θ(t−1)).

On the other hand, for minimum distance estimation based on MMD, we propose

to target the minimiser of L̂MMD
U,U (θ) = MMD2

U,U (Qm,Pnθ ). To do so, we can use

U-statistic approximations of the information metric in Proposition 15 and gradient

in Proposition 17. The gradient descent algorithm follows the iterations θ(t) =

θ(t−1) − ηt∇θL̂MMD
U,U (θ(t−1)) whilst the natural gradient descent algorithm follows:

θ(t) = θ(t−1) − ηt(gMMD
U,U (θ(t−1)))−1∇θL̂MMD

U,U (θ(t−1)).

Note that we cannot expect to find a unique minimum to this problem since reali-

sations from the generative model are obtained at each iteration. This is necessary

in order to compute L̂MMD
U,U at a new parameter value, but implies that a different

objective function is optimised at each iteration. Consistency properties of MMD es-

timators and of U-statistics approximations do however guarantee that the algorithm

above will move towards a minimum of the idealised loss function MMD(Q,Pθ)2 as

n and m grow.

The U-statistic approximations might lead to parameter values outside the
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domain Θ, so we also introduce a projection operator Proj : Rp → Θ, applied after

each step, and which maps parameters to their closest value in Θ in terms of some

norm to be defined. The approximation may also mean that the metric tensor is not

invertible, and regularisation might be required to resolve this issue. Finally, using

the same samples for the U-statistic of the gradient and of the information metric

may lead to strong biases.

In any case, finding the minimiser may still be challenging for several reasons:

1. The gradient descent procedures will be expensive in certain settings. Let

X ⊆ Rd and Θ ⊂ Rp. For KSD estimation, the cost of each iteration of

gradient descent is O(mpd), whilst the cost of each iteration of natural gradient

descent is O(m2p2d + p3). On the other hand, for MMD estimation the cost

of each iteration of gradient descent is O
(
(n2 + nm)pd2

)
whilst the cost of

each natural gradient descent iteration is O
(
(n2 + nm)p2d2 + p3

)
. The cost

for MMD estimation is linear in the number of data points m, but quadratic

in the number of simulated samples n. We note that taking n = m is optimal

in terms of computational cost.

This computational cost could be made linear in n by considering approxima-

tions of the MMD or KSD as found in Chwialkowski et al. [2015]; Jitkrittum

et al. [2017]. In large data settings, subsampling b elements uniformly at ran-

dom from {yj}mj=1 may lead to significant speed-ups. The additional term in

the natural gradient descent algorithm incurs a O(p3) cost due to the need to

invert a matrix, which for large-p settings may be prohibitive. In these cases,

approximate linear solvers could also be used to reduce this cost.

2. The gradient of the generator ∇θGθ may not be available, precluding exact

gradient descent inference. In this case, the method of finite difference stochas-

tic approximation [Kushner and Yin, 2003] can be used to approximate the

descent direction. Finally, it is important to point out that the loss function

may be non-convex and that we might converge to a local minimum.

Kernel Selection

Kernel selection for KSD and MMD estimators is delicate, since it will significantly

influence the geometry of the statistical manifolds, and will hence have a significant

impact on a range of issues including the efficiency and robustness of the estimators.

This was clearly demonstrated by the Gaussian distribution example used

throughout the section. This example highlighted the impact of the choice of kernel

hyperparameters on the robustness of the method. First, the KSD estimator was
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shown to be non-bias-robust, but the choice of lengthscale could help reduce the

growth of the influence function. Later on, the MMD estimator was shown to be

bias-robust, but the choice of lengthscale could impact the gross-error sensitivity.

The kernel can therefore be seen as an additional free parameters to adapt these

estimators to the problem at hand; something which is not possible with estimators

based on the KL or SM divergence.

Since the choice of kernel will also impact the loss function itself, practical

considerations should also prevail and it might be of interest to select a kernel which

makes the loss function easy to minimise with gradient descent. The natural gradient

algorithm will however be able to alleviate some of these issues by adapting directly

to the geometry induced by the choice of kernel.

Previous work on the use of maximum mean discrepancy for hypothesis test-

ing could also guide our choice of kernel. A common approach in that case was to

study the asymptotic distribution of the tests, and choose kernel parameters so as

to minimise the power of the test. Extensions where a linear combination of kernels

whose weights are optimised was proposed in Gretton et al. [2012b], and Sutherland

et al. [2017] used this approach for inference with generative adversarial networks.

Note that this will require using held out data, which might therefore decrease the

accuracy of our estimators.

Simulation Study

To highlight in detail all of the important theoretical and practical details discussed

earlier in the section, our simulation study will focus solely on Gaussian models.

Although this is of course not the intended class of models for KSD and MMD

estimators, working with Gaussian models will be convenient because they are simple

enough to be analysed in detail.

Gaussian Models as Unnormalised Models

We begin by discussing the estimators which make use of the log-likelihood of the

model in a normalised or unnormalised form: KL, SM and KSD estimators. We

will focus on a problem where our target is a multi-dimensional isotropic Gaussian

distributionN (µ,Σ) with mean µ = (µ1, . . . , µd) and d×d scaled diagonal covariance

matrix Σ with diagonal entries (σ2
1, . . . , σ

2
d). To begin with, we will assume that both

the mean vector and the diagonal values of the covariance function are unknown such

that θ = (µ1, . . . , µd, σ1, . . . , σd) and Θ = Rd × Rd+.

The loss function for the one-dimensional case is plotted as a function of
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Figure 5.2: Descent trajectories of gradient descent and natural gradient descent
algorithms on a one-dimensional Gaussian model for estimators based on the KL,
SM and KSD divergences. We compare 20 iterations of gradient descent (pink)
and natural gradient descent (orange) with constant step sizes. The loss function
optimised are the KL, SM and KSD divergence with inverse-multiquadric kernel and
Gaussian RBF kernel, each computed using m = 100 realisations. The minimum
of the empirical loss functions are represented with an orange star. All of the
optimisation algorithms were initialised at the θ0 = (2.5, 1.6) and data was obtained
from a model with θ∗ = (1.5, 2).

the mean and standard deviation in Figure 5.2. Clearly, the loss function varies

in geometry according to the choice of divergence, but is always convex since the

Gaussian distribution is an example of the exponential family of distributions. For

illustration, we still used numerical optimisation routines to tackle this problem

(although a closed form solution was provided in Proposition 14). As seen in Figure

5.2, natural gradient algorithms are able to leverage knowledge of the geometry of

the statistical manifold to provide more efficient updates towards the minimum.

Indeed, the algorithm approximates a geodesic between the starting position and

the minimum, resulting in a direct line when seen as a function of the parameters,

which are the coordinates of the manifold. On the other hand, the gradient descent

follows descent directions which are perpendicular to the contour lines of the heat
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Figure 5.3: Performance of natural gradient descent algorithms on a 20-dimensional
Gaussian model for estimators based on the KL, SM and KSD divergences. Con-
sider an inference problem in an M-closed setting with m = 300 samples of a 20
dimensional Gaussian model with 40 parameters (mean vector and diagonal entries
of the covariance function). The top plots compares the speed at which the gra-
dient descent (GD) algorithms (full line) and the natural gradient descent (NGD)
algorithms (dashed line) minimise each loss function. The KSD was computed with
an inverse-multiquadric kernel with lengthscale parameter l = 1. The bottom plots
compute l1 and l2 errors between the estimated parameter at iteration t and the
true parameter θ∗.

map, which results in slower convergence towards the minimum.

We now extend this experiment to a Gaussian distribution on X = R20, in

which case the parameter space Θ ⊂ R40. This is significantly more challenging since

in a high-dimensional data space X , empirical approximations of the divergences

will not be as accurate. Furthermore, the optimisation problem also becomes more

challenging in higher dimensions. Figure 5.3 compares the use of the KL, SM and

KSD for estimation of this problem. Once again, the natural gradient algorithms

are able to minimise the loss functions in fewer iterations. This time, the speed up

obtained by the natural gradient algorithm is much more significant than in lower

dimensions. This clearly highlights the advantage of making use of the geometry of

the statistical inference problem.
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Figure 5.4: Maximum mean discrepancy estimator based on a Gaussian RBF kernel
for a Gaussian location model. Top: Comparison of the loss landscape for various
lengthscale values. Bottom Left: Robustness problem with varying location z for
the Dirac but threshold fixed to ε = 0.2. Bottom Right: Robustness problem with
varying threshold but fixed location for the Dirac at z = 10.

Gaussian Models as Generative Models

We now consider inference for generative models using the MMD. We use a synthetic

generative model Pθ which is a multi-dimensional isotropic Gaussian distribution

N (µ, σ2) with mean vector µ and covariance σ2 where σ2 > 0 so that θ = (µ, σ). In

this case U is a standard Gaussian distribution N (0, 1) distribution on U = R and

Gµ,σ(u) = µ+σu. We have that ∇µGµ,σ(u) = 1 and ∇σGµ,σ(u) = u. For simplicity,

and to understand the performance of the model for location and scale parameters

separately, we first study the case where µ∗ is unknown but σ∗ known, which we call

location model, then later move on to the case where µ∗ is known but σ∗ unknown,

which we call scale model.

Starting with the location model, we first generate realisations from the

Gaussian model with known scale parameter σ = 1 and unknown location parameter

µ∗ = θ∗ = 0. The landscape of the loss function of an MMD estimator with Gaussian

RBF kernel is presented in Figure 5.4 (top). We notice that the choice of lengthscale

has a significant influence on this landscape. When the lengthscale is smaller than 5

or larger than 25, large parts of the loss function are flat. In those case, optimising

this loss function will be challenging with gradient-based methods. We will hence

need to repeatedly reinitialise the algorithm to be able to minimise the function.
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Figure 5.5: Maximum mean discrepancy estimator based on a Gaussian RBF kernel
for a Gaussian scale model. Top: Comparison of the loss landscape for various
lengthscale values. Bottom Left: Robustness problem with varying location z for
the Dirac but threshold fixed to ε = 0.2. Bottom Right: Robustness problem with
varying threshold but fixed location for the Dirac at z = 10.

When the lengthscale is in the interval [5, 25], the loss function will be amenable to

gradient-based methods.

To highlight some of the issues surrounding robustness of kernel estimators,

we also propose two additional experiments in an M-open setting. For these ex-

periments, the data is generated from a measure Q corresponding to a mixture of

the model P∗ with unknown parameter µ∗ = 0, attributed a weight 1 − ε for some

ε ∈ [0, 1], and a Dirac measure at some point z, considered to be an outlier and

attributed a weight of ε. Figure 5.4 (bottom left) shows the l1 error between the

true value θ∗ and the MMD estimator θMMD
n,m for n = m = 500 as a function of the lo-

cation z of the Dirac when ε = 0.2. The MMD estimator has the desirable property

that as z → ∞, the estimator ignores the corruption from the outlier. This clearly

illustrates one of the advantages of bias-robust estimators. In Figure 5.4 (bottom

right), z = 10 but we vary ε. In this case, the corruption only affects the estimator

in a significant manner when ε approaches a value around 0.5, in which case we

realistically cannot consider z as an outlier anymore. In both of these plots, we see

that the lengthscale has a significant impact on the robustness of the estimator.

Moving on to the scale model, we repeat the three experiments previously

performed on the location model in Figure 5.5. The same conclusions can be ob-
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tained in this case: once again a value of the lengthscale which is either too large or

too small will make the loss function impossible to minimise using gradient-based

method, and the lengthscale has a significant impact on the robustness.

Summary

Kernel-based estimator can be useful for a variety of challenging statistical inference

problems involving complex intractable models such as unnormalised or generative

models. In this section, we framed the study of these estimators in the context of

minimum distance estimators and strictly proper scoring rules, and discussed their

bias-robustness.

Clearly, much more work remains from a theoretical viewpoint. First, ongo-

ing work is focusing on proving consistency of these estimators, as well central limit

theorems for the M-closed setting. These results do not follow directly from classical

consistency and central limit theorem results from the scoring rule literature [Dawid

and Musio, 2014] due to the necessity of using (multiple) U-statistic approximations

of quantities of interest. It will also be interesting to study other types of robustness

[Huber and Ronchetti, 2009].

From the point of view of applications, it will also be interesting to test some

of the methodology described in this section on a wide range of models, including

unnormalised graphical models from the imaging literature, or complex generative

models from the ABC literature.
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Chapter 6

Discussion

6.1 Contributions of the Thesis

Kernel methods have been used extensively across the computational sciences, in-

cluding in statistics, machine learning, applied mathematics and engineering. The

reason for their popularity lies in their ease of use, with the reproducing property

providing a useful tool which renders many quantities of interest computable.

The goal of this thesis was to demonstrate that these advantages can also be

useful in building algorithms in computational statistics. We highlighted how repro-

ducing kernels can be used to tackle two of the most pressing problems in this area

(introduced at length in Chapter 1): the numerical approximation of integrals of ex-

pensive and highly complex functions, and the construction of statistical estimators

for inference within models where the likelihood cannot be evaluated.

To do so, the thesis began by reviewing known results on reproducing kernel

Hilbert spaces, stochastic processes, and Bayesian nonparametrics (in Chapter 2).

All of these notions were used throughout the following chapters, which contain the

novel contributions of the thesis. The first part of the thesis began with the use of

kernel methods in Bayesian probabilistic numerical methods, and highlighted their

use in the well-known Bayesian quadrature (BQ) algorithm:

• In Chapter 3, we first showed how BQ can be formally analysed using the

theory of reproducing kernel Hilbert spaces (RKHS). This allowed us to pro-

vide some theoretical guarantees on its asymptotic performance in the form of

consistency and contraction rates. This contribution helped fill a major gap

in the numerical analysis and probabilistic numerics literatures, which was

preventing the large-scale use of BQ in statistical computation.

We then provided an extensive simulation study which was devoted to the
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uncertainty quantification properties of these algorithms, and then applied

BQ on a wide range of problems in computational statistics. This assessment

should be helpful for readers interested in understanding the advantages, but

also limitations, of the methodology.

The conclusions of this chapter are clear, and can be interpolated to most

Bayesian probabilistic numerical methods. Providing exact Bayesian uncer-

tainty quantification for the output of numerical methods is computationally

expensive, and the associated model selection is a delicate task. It should

therefore only be attempted in situations where the function underlying the

numerical method is expensive and understanding the associated epistemic

uncertainty is of importance for the application.

• With this last point in mind, Chapter 4 used insights from the theory of

kernel methods to develop novel extensions to BQ. These aimed at pushing

the performance capabilities of the algorithm to the fullest, in the sense of

requiring a number of integrand evaluation n as small as possible.

Section 4.1 began with a novel extension of BQ to vector-valued RKHS, which

is helpful when multiple related integrals need to be computed simultaneously

or sequentially. This extension allowed us to build estimators which re-use

information to estimate multiple integrals. As such, these estimators are sig-

nificantly less data intensive, but come with an increase in computational

cost. Once again, theoretical work from the RKHS literature was essential in

proving consistency and contraction results.

We then proposed two new algorithms for efficient point selection.

i. The first algorithm, called Frank-Wolfe Bayesian Quadrature (FWBQ)

and presented in Section 4.2, used the fact that function-space conditional

gradient algorithms can be made tractable in RKHS. In this setting, new

points can be obtained analytically in terms of kernel evaluations. This

property is convenient as it allowed us to build a practical algorithm

based on experimental-design principles, with theoretical properties that

could be formally analysed.

ii. The second algorithm, called sequential Monte Carlo Bayesian quadrature

(SMC-BQ) and presented in Section 4.3, attempts to approximate an

optimal importance sampling distribution for BQ algorithms. Here, we

make use of the fact that an upper bound on the integration error for

functions in a RKHS can be straightforwardly approximated to create an
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efficient criterion for selection of the sampling distribution. Once again,

this should provide useful methodology for applications of BQ.

The second part of the thesis (in Chapter 5) then discussed how to make

use of kernel methods when models have a likelihood which cannot be evaluated in

closed form, but only in some unnormalised or generative form.

• In the case of unnormalised models, we looked at the recent combination

of reproducing kernels with Stein’s method to construct a statistical diver-

gence called kernel Stein discrepancy (KSD). We then highlighted two novel

algorithms which extend BQ and FW to the design of numerical integration

methodologies for integration against unnormalised densities. The extension

is significant since these algorithms were previously restricted to cases where

kernel means can be obtained in closed form and can now be applied to a wide

range of problems. In particular, they can now be used in Bayesian inference

where integrals often need to be computed against unnormalised posterior

densities.

• We then studied some existing and novel minimum distance statistical es-

timators based on kernel-based discrepancies, such as the maximum mean

discrepancy and the KSD. We discussed the flexibility of these methods, and

highlighted how the choice of kernel can be used to adapt the geometry induced

by the divergence to the need of the application at hand. We then provided

novel numerical optimisation algorithms which exploit the geometry induced

by these discrepancies to provide efficient implementation of our estimators.

6.2 Remaining Challenges

Future work related to each specific algorithm was already highlighted in the relevant

chapters, but we point out common themes below.

• Kernel selection. A key gap in the literature on reproducing kernels is a

satisfactory answer to the question of kernel choice. For Bayesian probabilistic

numerical methods or kernel-based statistical estimators, we have highlighted

that this choice will have a significant impact on performance, and proposed

some heuristics for making this choice. However, further work will be required

before we can make full use of the capabilities of these methods.

For Bayesian probabilistic numerical methods, kernel selection is part of the

problem of eliciting infinite-dimensional priors. Eliciting such information
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from domain experts is a challenging task which will require extensive fur-

ther work. Some work has discussed cases in which maximum a-posteriori

estimates of Bayesian algorithms correspond to existing methods in numeri-

cal analysis for certain choices of kernels (See Särkkä et al. [2016]; Karvonen

and Särkkä [2017] for integration, or Owhadi [2015]; Cockayne et al. [2016] for

differential equations). This work is a useful first step in this direction. How-

ever, further work should focus on the construction of kernels which include

all of the information available to the user, including boundary conditions or

knowledge of the smoothness satisfied by solutions of the differential equation.

For kernel-based statistical estimators, the choice of kernel relates to the ques-

tion “which reproducing kernel can distinguish two probability measures in

the most efficient manner?”. The answer to this question obviously depends

on these two measures, and on the form in which these are available. For

two empirical measures and a fixed functional form of kernel, it is possible

to choose kernel parameters based on the asymptotic distribution of a kernel

two sample test [Gretton et al., 2012a]. It is, however, not clear that this

choice will work well for small sample sizes. Another issue is how to choose

the functional form itself. Gorham and Mackey [2017] highlighted how KSDs

are highly sensitive to the choice of base kernel, but it is still unclear how to

make this choice in general.

• Approximate computation. Kernels provide significant advantages over al-

ternative methods due to the tractability provided by the kernel trick, but this

usually comes with increased computational cost. Kernel-based interpolants

usually have an O(n3) cost, and kernel-based discrepancies usually require

O(n2) computations. Many approximation schemes exist for both cases, but

it is still unclear whether these schemes can be combined with the algorithms

in this thesis whilst simultaneously retaining the theoretical results.

For Bayesian probabilistic numerical methods, the use of approximate kernel

interpolants could help build algorithms which are (computationally) compet-

itive with non-Bayesian algorithms. This will however require careful assess-

ment of the impact of the approximations on the resulting posterior, and tight

bounds on the distance between the exact and approximate posterior to assess

whether the uncertainty quantification provided is still useful.

For kernel-based estimators, many of the approximate methods from kernel hy-

pothesis testing Gretton et al. [2009]; Jitkrittum et al. [2017] could be adapted

to the statistical estimators. This will however require novel theoretical re-
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sults guaranteeing consistency of these estimators, as well as novel numerical

optimisation algorithms.

• Kernels on non-Euclidean spaces. Many of the algorithms proposed in

this thesis could be adapted to more general domains. Indeed, the thesis

usually focused on applications where the domain X was a Euclidean space or

a sphere, but kernels existing for other spaces such as spaces of integers, graphs,

time series and strings also exist [Schölkopf and Smola, 2002; Rasmussen and

Williams, 2006]. Adapting the algorithms in this thesis to these spaces could

provide significant performance enhancements for specific applications. For

example, Oates et al. [2017a]; Ehler et al. [2019] demonstrated how BQ and

its variant with Stein reproducing kernels can be formally constructed and

analysed on manifolds. None of the other spaces mentioned have yet been

considered in statistical computation, but have however been shown to be

useful for applications such as natural language processing [Lodhi et al., 2017]

or chemistry [Vert and Mahé, 2009]. We can therefore hope that they could

be helpful to extend our algorithms.

Overall, this thesis has highlighted several areas where the theory of kernel

methods (and associated fields) can provide insight and novel tools for statistical

computation. The hope is that these contributions will help statistical methodology

cope with the ever increasing computational needs of large-scale applications.
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P. R. Conrad, M. Girolami, S. Särkkä, A. M. Stuart, and K. Zygalakis. Statistical analysis of

differential equations: introducing probability measures on numerical solutions. Statistics

and Computing, 27(4):1065–1082, 2017.

S. Conti and A. O’Hagan. Bayesian emulation of complex multi-output and dynamic com-

puter models. Journal of Statistical Planning and Inference, 140:640–651, 2010.

S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White. MCMC methods for functions:

Modifying old algorithms to make them faster. Statistical Science, 28(3):424–446, 2013.

N. Cressie. The origins of kriging. Mathematical Geology, 22(3):239–252, 1990.

F. Cucker and S. Smale. On the mathematical foundations of learning. Bulletin of the

American Mathematical Society, 39(1):1–49, 2002.

176



B. Dai, B. Xie, N. He, Y. Liang, A. Raj, M. Balcan, and L. Song. Scalable kernel methods

via doubly stochastic gradients. In Advances in Neural Information Processing Systems,

pages 3041–3049, 2014.

A. C. Damianou and N. D. Lawrence. Deep Gaussian processes. Proceedings of the 16th

International Conference on Artificial Intelligence and Statistics, 31:207–215, 2013.

M. Dashti and A. M. Stuart. The Bayesian approach to inverse problems. In Handbook of

Uncertainty Quantification. 2016.

T. M. Davies and D. J. Bryant. On circulant embedding for Gaussian random fields in R.

Journal of Statistical Software, 55(9), 2013.

P. J. Davis and P. Rabinowitz. Methods of Numerical Integration. Courier Corporation,

2007.

A. P. Dawid. The geometry of proper scoring rules. Annals of the Institute of Statistical

Mathematics, 59(1):77–93, 2007.

A. P. Dawid and M. Musio. Theory and applications of proper scoring rules. Metron, 72

(2):169–183, 2014.

A. P. Dawid, S. Lauritzen, and M. Parry. Proper local scoring rules on discrete sample

spaces. Annals of Statistics, 40(1):593–608, 2012.

A. P. Dawid, M. Musio, and L. Ventura. Minimum scoring rule inference. Scandinavian

Journal of Statistics, 43(1):123–138, 2016.

Y. A. de Montjoye, L. Radaelli, V. K. Singh, and A. S Pentland. Unique in the shopping

mall: On the reidentifiability of credit card metadata. Science, 347(6221):536–539, 2015.

E. De Vito, V. Umanità, and S. Villa. An extension of Mercer theorem to matrix-valued

measurable kernels. Applied and Computational Harmonic Analysis, 34(3):339–351, 2013.

P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers. Journal of the

Royal Statistical Society Series B: Statisitical Methodology, 68:411–436, 2006.

P. Dellaportas and I. Kontoyiannis. Control variates for estimation based on reversible

Markov chain Monte Carlo samplers. Journal of the Royal Statistical Society Series B:

Statistical Methodology, 74(1):133–161, 2012.

D. Dey, P. Muller, and D. Sinha. Practical Nonparametric and Semiparametric Bayesian

Statistics. Springer, Lecture Notes in Statistics, 1998.

P. Diaconis. Bayesian numerical analysis. Statistical Decision Theory and Related Topics

IV, pages 163–175, 1988.

P. Diaconis and D. Freedman. On the consistency of Bayes estimates. Annals of Statistics,

14(1):1–26, 1986.

J. Dick and F. Pillichshammer. Digital Nets and Sequences - Discrepancy Theory and Quasi-

Monte Carlo Integration. Cambridge University Press, 2010.

J. Dick, F. Y. Kuo, and I. H. Sloan. High-dimensional integration: The quasi-Monte Carlo

way. Acta Numerica, 22:133–288, 2013.

P. J. Diggle and R. J. Gratton. Monte Carlo methods of inference for implicit statistical

models. Journal of the Royal Statistical Society Series B: Statistical Methodology, 46(2):

193–227, 1984.

177



P. J. Diggle, P. Moraga, B. Rowlingson, and B. M. Taylor. Spatial and spatio-temporal

log-Gaussian Cox processes: extending the geostatistical paradigm. Statistical Science,

28(4):542–563, 2013.

J. L. Doob. Application of the theory of martingales. Le Calcul des Probabilites et ses

Applications, Colloques Internationaux du Centre National de la Recherche Scientifique,

13:23–27, 1949.

J. L. Doob. Stochastic Processes. Wiley, 1953.
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Appendix A

Background Material

This thesis requires some basic understanding of functional analysis and probability

theory. For completeness, we now provide a brief introduction to the important

concepts from these fields that are used in the main text.

A.1 Topology and Functional Analysis

Denote by X some abstract set. In this section, we will start by discussing some

useful examples of such sets for computational statistics, which will be required to

formalise the methodology throughout this thesis. Most of these notions will be

used to formalise certain properties of sets which readers will find intuitive from

the Euclidean space setting. Specifically, we will discuss metric space, vector spaces

and inner product spaces of functions and measures. Most of the material in this

section is based on Kreyszig [1989]; Folland [1984]. The basic space which we will

work with is a topological space. Denote by ∅ the empty set, A ∪ B the union of

the sets A and B, and A ∩B the intersection of the sets A and B.

Definition 3 (Topological Space, Kreyszig [1989] p19). We call topological space

any pair (X , C) consisting of a space X and collection of open subsets of X denoted C

such that: (i) ∅ ∈ C and X ∈ C, (ii) any arbitrary union (countable or uncountable)

of elements of C is in C, and (iii) the intersection of finitely many elements of C

is in C.

An class of topological spaces often used in probability theory are the Haus-

dorff spaces. A space X is a Hausdorff space (See p27 in Arkhangel’skii and Pon-

tryagin [1991]) if any two distinct points x,y ∈ X can be separated by disjoint

neighbourhoods; i.e., there exist open subsets Y and Z of X such that x ∈ Y,y ∈ Z
and Y ∩ Z = ∅.
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A useful property of topological spaces is compactness. A topological space

X is compact if for every collection C of open subsets of X such that X =
⋃

x∈C x,

there is a finite subset F of C such that X =
⋃

x∈F x.

The simplest example of topological space on which a notion of distance can

be defined is called a metric space:

Definition 4 (Metric space. Kreyszig [1989], Definition 1.1-1). A metric space is

a pair (X , d), where X is a set and d : X×X → R is a metric on X ; i.e. ∀x,y, z ∈ X
we have: (i) d(x,y) is real-valued, finite and non-negative, (ii) d(x,y) = 0⇔ x = y,

(iii) d(x,y) = d(y,x) (symmetry), and (iv) d(x,y) ≤ d(x, z) + d(z,y) (triangle

inequality).

Another useful property is that a subspace Y of a metric space X is a dense

subspace if and only if for every point in X exists as a limit of a sequence in the

subspace Y.

All metric spaces are Hausdorff spaces. A simple example of metric space

which will be familiar to most readers is the Euclidean space X = Rd (d ∈ N)

combined with the 2-norm metric d(x,y) =
√∑d

i=1(xi − yi)2 for all x = (x1, . . . , xd)

and y = (y1, . . . , yd) in X .

It is also possible to consider metric spaces of functions. For example, the

space X = C[a, b] of all real-valued continuous functions on some interval [a, b] ⊂ R,

together with the metric d1(f, g) = maxx∈[a,b] |f(x)− g(x)| for f, g ∈ X forms a

metric space. Similarly, so does the space X = L2[a, b] of square-integrable func-

tions with the metric d2(f, g) =
√∫ b

a (f(x)− g(x))2 dx. In this case the integral is

defined as a Lebesgue integral and each element of this space are equivalent classes

of functions (a technicality required due to measure-zero sets). It is also possible to

generalise this space to L2(X ; Π) where Π is a probability measure, in which case

we have d3(f, g) =
√∫
X (f(x)− g(x))2 Π(dx).

In the theory of metric spaces, an important type of sequence {xn}n∈N ⊂ X
are Cauchy sequences. A sequence is said to be Cauchy if for every ε > 0, ∃N(ε)

such that d(xm,xn) < ε for every m,n > N . The metric space X is then said to

be complete if every Cauchy sequence in X converges (i.e ∃x ∈ X called limit such

that limn→∞ d(xn,x) = 0).

Let us now consider functions mapping from some metric space X to itself.

We say a sequence {fn}n∈N converges pointwise to the function f if and only if

limn→∞ fn(x) = f(x) for all x ∈ X . Furthermore, we say the sequence {fn}n∈N
converges uniformly to f if and only if supx∈X |fn(x)− f(x)| → 0 as n→∞.

All of the examples above are examples of complete metric spaces, but not all

198



metric spaces are complete. For example, R− {a} (for some a ∈ R) equipped with

the 2-norm metric is not a complete space. Completeness of the space means that

the space is “well behaved” in many aspect, most notably in that we can establish

notions of continuity of mappings from a complete metric space to another. We now

move on to another important type of space:

Definition 5 (Real vector space. Kreyszig [1989], Definition 2.1-1). A real vector

space is a non-empty set X of elements, called vectors, together with two algebraic

operations called vector addition and multiplication of vectors by scalars.

An important class of metric spaces are obtained by taking a vector space

and inducing a metric on it using a norm; these are called Banach spaces:

Definition 6 (Banach space. Kreyszig [1989], Definition 2.2-1). A norm is a

function ‖ · ‖ : X → R with the following properties ∀x,y ∈ X , α ∈ R: (i) ‖x‖ ≥ 0,

(ii)‖x‖ = 0⇔ x = 0, (iii)‖αx‖ = |α|‖x‖, and (iv) ‖x + y‖ ≤ ‖x‖+ ‖y‖.
A Banach space X is a vector space with a norm ‖ · ‖ defined on it, such that

the space is complete in the metric d(x,y) = ‖x− y‖ induced by this norm.

We remark that the Euclidean space with 2-norm, C[a, b] with metric d1 and

L2[a, b] with metric d2 are all examples of Banach spaces. Although this is in no

way a requirement, the thesis will mostly focus on Banach spaces whose elements

are functions (or equivalence classes of functions) from some abstract domain X to

R.

On a Banach space, we say a sequence {xn}n∈N is absolutely convergent if

and only if
∑

n∈N ‖xn‖ <∞.

The norm of a Banach space generalises the elementary concept of the length

of a vector. However, we are still missing a notion of angles, which is provided in

the Euclidean context by a dot product, a special case of inner product:

Definition 7 (Hilbert space. Kreyszig [1989], Definition 3.1-1). We call a space

X an inner product space if it has a function 〈·, ·〉 : X × X → R, called inner

product, which satisfies: (i) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉, (ii) 〈αx,y〉 = α〈x,y〉, (iii)

〈x,y〉 = 〈y,x〉, and (iv) 〈x,x〉 ≥ 0 and 〈x,x〉 = 0⇔ x = 0.

A Hilbert space is an inner product space such that the space is complete in

the metric d(x,y) =
√
〈x− y,x− y〉 induced by the inner product.

Clearly, we hence have that Hilbert spaces are always Banach spaces with

norm/metric induced by an inner product. Note that the converse is not always true

as it is possible to have Banach spaces with norms defined without an inner product
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structure. The Euclidean space with 2-norm and L2[a, b] space with metric d2 are

both examples of Hilbert space, but C[a, b] with metric d1 is not equipped with a

norm which can be written as an inner product, and therefore is not a Hilbert space.

An important example of Hilbert space are Sobolev space [Adams and Fournier,

2003]. Suppose X ⊆ Rd. When α ∈ N, these spaces are defined as:

Wα
2 (X ) :=

{
f ∈ L2(X ) : Dνf ∈ L2(X ) exists ∀ν ∈ Nd0 with |ν| ≤ α

}
,

with inner product 〈f, g〉Wα
2 (X ) :=

∑
|ν|≤α〈Dνf,Dνg〉L2(X ) for all f, g ∈ Wα

2 (X )

where Dνf = ∂|ν|f/∂xν1
1 . . . ∂xνdd denotes the total derivative corresponding to the

multi-index ν = (ν1, . . . , νd) ∈ Np0. This means that all of the functions in this space

will have smoothness α.

It is also possible to have fractional Sobolev spaces; i.e. the smoothness

α > 0 can take any positive real value. For X = Rd and denoting by f̂(ξ) =∫
X d f(x) exp(−2πi〈x, ξ〉)dx the Fourier transform of f , these spaces are given by:

Hα(Rd) :=

{
f ∈ L2(Rd) :

∫
Rd

∣∣∣f̂(ξ)
∣∣∣2 (1 + ‖ξ‖2)αdξ <∞

}
,

with associated inner product 〈f, g〉Hα(Rd) :=
∫
f̂(ξ)ĝ(ξ)(1 + ‖ξ‖2)αdξ for all f, g ∈

Hα(Rd) where ĝ denoted the complex conjugate of ĝ.

A final interesting example are the Sobolev spaces of dominating mixed

smoothness which are defined as:

Sα2 (X ) :=

f ∈ L2(X ) :
∑
∀j:νj≤α

Dνf ∈ L2(X )


with inner product given by 〈f, g〉Sα2 :=

∑
∀j:νj≤α〈D

νf,Dνg〉L2(X ). Clearly Sα2 (X )

requires α derivatives in each coordinate, a stronger assumption than for Wα
2 (X )

which only requires the sum of coordinate derivatives to be α.

Many functional approximation results in Sobolev spaces require more reg-

ularity from the domain. One type of domains which is commonly used is domains

with Lipschitz boundaries, which we introduce below. To do so, we begin with

special Lipschitz domains. For d > 2, we say that an open set X ⊂ Rd is a spe-

cial Lipschitz domain if there exists a rotation of X , denoted by X̃ , and a function

φ : Rd−1 → R that satisfy the following: (i) X̃ = {x,y ∈ Rd : y > φ(x)}, (ii) φ is a

Lipschitz function such that |φ(x)−φ(x′)| ≤M‖x−x′‖∀x,x′ ∈ Rd−1, where M > 0

is called the Lipschitz bound of X .

With this definition now complete, we can define the notion of a domain with
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Lipschitz boundary. Let X ⊂ Rd be an open set and ∂X be its boundary. We say

the boundary is Lipschitz ∃ε,M > 0,K ∈ N and open sets U1, . . . , UL ⊂ Rd where

L ∈ N ∪ {∞} such that the following holds: (i) ∀x ∈ ∂X , ∃i such that B(x, ε), the

ball centred at x of radius ε, satisfies B(x, ε) ⊂ Ui, (ii) Ui1 ∩ . . . ∩ UiK+1 = ∅ for

any distinct indices {i1, . . . , iK+1}, and (iii) for each index i, there exists a special

Lipschitz domain Xi ⊂ Rd with Lipschitz bound b such that Ui ∩ X = Ui ∩ Xi and

b ≤M .

Going back to Hilbert spaces, an important property which we will make

extensive use of is the Cauchy-Schwarz inequality, which states that:

Lemma 4 (Cauchy-Schwarz inequality. [Kreyszig, 1989], Lemma 3.2-1). For

all x,x′ in some inner-product space X , the following holds: |〈x,x′〉| ≤ ‖x‖‖x′‖.

We now conclude this section with important definitions and properties of

operators. Let X ,Y be vector spaces. We say an operator A : X → Y is a linear

operator if and only if A[αx + βx′] = αA[x] + βA[x′] for all α, β ∈ R and x,x′ ∈ X .

We also say that the linear operator A is bounded if and only if ∃C > 0 such that

‖A[x]‖Y ≤ C‖x‖X ∀x ∈ X . Finally, we call eigenvector (or eigenfunction in the case

where X is a function space) any non-zero v ∈ X that only changes by a constant

factor when applying the operator. That is, we call eigenvector any v such that

A[v] = λv, and λ ∈ R is then called the eigenvalue corresponding to v. We call

linear functional any linear operator A : X → R. We say that a linear functional is

continuous if and only if it is bounded. The set of all bounded linear functionals on

some normed space X constitutes a normed space itself, called the dual space and

denoted X ∗. It has norm defined as: ‖A‖X ∗ = supx∈X :‖x‖=1 |A(x)| and is itself a

Banach space.

A.2 Measure and Probability Theory

We have now completed our basic introduction to functional analysis. In this section,

we recall definitions and theorems in measure and probability theory. The reader is

referred to Williams [1991]; Grimmett and Stirzaker [2001]; Dudley [2002]; Koralov

and Sinai [2007] for an in-depth introduction. Note that some of this section relies

on the section above, and so the reader should read these two sections in the order

they appear if unfamiliar with functional analysis.

In probability theory, we are interested in formalising the notion of random

events on some abstract set X . This is done by considering a basic collection of

events F closed under a countable number of elementary set operations, called σ-

algebra, and imposing a notion of size on these, called a probability measure and
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usually denoted P. The pair (X ,F) is called a measurable space and any element of

F is called a F-measurable subset of X . The triplet (X ,F ,P) is called a probability

space. We now recall the definitions of each of these:

Definition 8 (σ-algebra, Williams [1991] p15-16). A collection F of subsets of

some abstract set X is called a sigma-algebra of subsets of X if: (i) X ∈ F , (ii)

A ∈ F ⇒ Ac ∈ F and (iii) Ai ∈ F for all i ∈ N⇒
⋃
i∈NAi ∈ F .

Note that using properties in the definition above, we can also show that a

σ-algebra F satisfies the following property: Ai ∈ F for all i ∈ N ⇒
⋂
i∈NAi ∈ F .

When X is a topological space, the most common example of σ-algebra is

the Borel σ-algebra, denoted B(X ), which consist of the σ-algebra generated by the

family of open subsets of X . This is the smallest σ-algebra of X such that the open

subsets of X are included.

Now that we have our basic collection of subsets, we can construct a notion

of size called a measure, in order to get a measure space:

Definition 9 (Measure and probability space, Williams [1991] p18). Let (X ,F)

be a measurable space. A map P : F → [0,∞] is called a measure on (X ,F) if

P is countably additive (or σ−additive, that is, satisfies: (i) P(∅) = 0, and (ii)

{Ai}i∈N ∈ F are disjoint sets with A =
⋃
i∈NAi, then P(A) =

∑
i∈N P(Ai). Then P

is a measure and the triple (X ,F ,P) is a measure space. Furthermore, if P(X ) = 1,

P is called a probability measure and (X ,F ,P) is called a probability space.

If A =
⋃n
i=1Ai implies P(A) =

∑n
i=1 P(Ai) only for finite n, then P is called

a finitely additive measure.

In the case where X is a subset of R and F = B(X ), the most common exam-

ple of measure is the Lebesgue measure. In general, when (X ,F ,P) is a probability

space, the set X is often referred to as the sample space and any element A ∈ F is

called an event. We say that an event A ∈ F happens almost surely if P(A) = 1.

Let P1,P2 be two probability measures on the same measurable space (X ,F).

P1 is said to be absolutely continuous with respect to P2 if ∀A ∈ F , P2(A) = 0

implies P1(A) = 0. If P1 is absolutely continuous with respect to P2 and P2 is

absolutely continuous with respect to P1, then the two probability measures are

said to be equivalent. Finally, P1 and P2 are said to be orthogonal if ∃A ∈ F such

that P1(A) = 1 and P2(A) = 0.

Now that we have defined probability spaces, we can discuss the most im-

portant property of functions defined on these spaces:

Definition 10 (Measurable function, Williams [1991] p29-31). Let (X1,F1) and

(X2,F2) be two measurable spaces. Suppose that h : X1 → X2 and for A ⊆ X2,
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define h−1(A) := {x ∈ X1 : h(x) ∈ A}. Then h is called F1/F2-measurable if

h−1 : F2 → F1, that is, h−1(A) ∈ F1, ∀A ∈ F2.

Note that the σ-algebra with respect to which a function is measurable is

usually obvious from the context and we simply refer to the function h as being

measurable rather than F1/F2-measurable. A useful property is that the sum,

product, composition, infimum and supremum of a sequence of measurable functions

is also measurable.

When X is a topological space, a common example is the class of Borel

functions, which consists of all B(X )-measurable functions. However, a much more

important example of measurable function are random variables, which are simply

measurable functions on probability spaces:

Definition 11 (Random variable, Williams [1991] p31). Let (X1,F1,P) be a

probability space and (X2,F2) be a measurable space. We call random variable any

function X : X1 → X2 which is F1/F2-measurable.

When (X2,F2) is (R,B(R)), we call the random variable a real-valued random

variable. Let (X ,F ,P) be a probability space and denote by X some real-valued

random variable on this space. We call LX : B(R)→ [0, 1] defined as LX := P ◦ X−1

the law of the random variable X, and this is a probability measure on (R,B(R)).

The function FX : R → [0, 1] defined as FX(c) := LX(−∞, c] = P(X ≤ c) is then

called the cumulative distribution function of the random variable X.

Finally, we say the sub-σ-algebras F1,F2, . . . of a σ-algebra F are indepen-

dent if, whenever Ai ∈ Fi for i ∈ N and i1, . . . , in are distinct, then: P(
⋂n
k=1Aik) =∏n

k=1 P(Aik). We also say that random variables are independent if the σ-algebras

generated by these random variable are independent.

An important notion for this thesis is that of the Lebesgue integral
∫
fdµ of

a measurable function f against a measure µ. The definition is separated in three

parts: (i) show that the integral of simple functions can be easily obtained in closed

form, (ii) show that the integral of positive functions can be defined as the limit of

integrals of simple functions, and finally (iii) write the integral of the function of

interest as the sum of integrals of positive functions. Each step is highlighted below:

• Simple measurable functions can be defined as functions of the form f̃(x) =∑m
k=1 akδ(Ak) for ak ∈ [0,∞] and Ak ∈ F (where δ(A) = 1 if x ∈ A, and

δ(A) = 0 otherwise). The integral of a simple function is then given by:∫
f̃dµ =

∑m
k=1 akµ(Ak).

• By the monotone convergence theorem (p51 of Williams [1991]), we have that

if a sequence of positive measurable functions fn converges pointwise to f from
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below then
∫
fndµ→

∫
fdµ. Note that this is meaningful even if the limit is

infinite.

• For the integrand f of interest, define f+(x) = max(f(x), 0) and f−(x) =

max(−f(x), 0). Then clearly f+ and f− are both positive measurable func-

tions, and we can write
∫
fdµ =

∫
f+dµ−

∫
f−dµ (note that this only makes

sense if we do not have both
∫
f+dµ and

∫
f−dµ being infinite).

These three steps combined allow us to define the Lebesgue integral
∫
fdµ in terms

of limits of integrals of simple functions. A special case of Lebesgue integrals are

expectations, in which case the integrand f is a random variable and the measure

µ is a probability measure. These are sometimes denoted Eµ[f ].

An important notion for this thesis, defined as a Lebesgue integral, is that

of the Radon-Nikodym derivative. Suppose that µ1, µ2 are two σ-finite measures

on some measurable space (X ,F) and assume that µ2 is absolutely continuous with

respect to µ1. Then there exists a measurable function f : X → [0,∞), called

Radon-Nikodym derivative, defined such that for any event A: µ2(A) =
∫
A fdµ1.

The probability density function p of a probability measure P corresponds to the

Radon-Nikodym derivative of this measure with respect to the Lebesgue measure.
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Appendix B

Proofs of Theoretical Results

The second appendix contains the proofs of all of the main results in the thesis (which

were omitted from the main text for brevity). These are classified by chapters, and

presented in order of appearance in the thesis.

B.1 Proofs of Chapter 3

Proof of Proposition 1

Proof. Repeated application of Fubini’s theorem on the expressions for the mean

and covariance of gn produces:

E[Π[gn]] =

∫
Ω

∫
X
gn(x, ω)Π(dx)P(dω) =

∫
X
mn(x)Π(dx).

V[Π[gn]] =

∫
Ω

[∫
X
gn(x, ω)Π(dx)−

∫
X
mn(x)Π(dx)

]2

P(dω)

=

∫
X

∫
X

∫
Ω

[g(x, ω)−mn(x)][g(x′, ω)−mn(x′)]P(dω)Π(dx)Π(dx′)

=

∫
X

∫
X
cn(x,x′)Π(dx)Π(dx′).

The proof is completed by substituting the expressions for mn and cn into these

equations.

Proof of Proposition 2

Proof. From Equation 3.5 in Chapter 3 of the main text e(Π̂; Π,Hk) ≤ ‖Π̂[k(x, ·)]−
Π[k(x, ·)]‖Hk . For the converse inequality, consider the specific integrand f =

Π̂[k(x, ·)] − Π[k(x, ·)]. Then, from the supremum definition of the dual norm,
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e(Π̂; Π,Hk) ≥ |Π̂[f ]−Π[f ]|/‖f‖Hk . Now we use the reproducing property:

|Π̂[f ]−Π[f ]|
‖f‖Hk

=
|〈f, Π̂[k(x, ·)]−Π[k(x, ·)]〉Hk |

‖f‖Hk
=

e(Π̂; Π,Hk)2

e(Π̂; Π,Hk)
= e(Π̂; Π,Hk).

Proof of Lemma 3

Proof. Assume without loss of generality that δ < ∞. The distribution of Π[gn]

is Gaussian with mean un and variance vn. Since vn = e(Π̂BQ; Π,Hk)2 we have

vn ≤ γ2
n. Now the posterior probability mass on Iδ

c is given by
∫
Iδ

c φ(r|un, vn)dr,

where φ(r|un, vn) is the probability density function of the N (un, vn) distribution.

Denote by Φ the cumulative distribution function of a N (0, 1). From the definition

of δ we get the upper bound

P{Π[gn] /∈ Iδ} ≤
∫ Π[f ]−δ

−∞
φ(r|un, vn)dr +

∫ ∞
Π[f ]+δ

φ(r|un, vn)dr

= 1 + Φ
( Π[f ]− un√

vn︸ ︷︷ ︸
(∗)

− δ
√
vn

)
− Φ

( Π[f ]− un√
vn︸ ︷︷ ︸

(∗)

+
δ
√
vn

)
.

From the definition of the WCE we have that the terms (∗) are bounded by ‖f‖Hk <
∞, so that asymptotically as γn → 0 we have

P{Π[gn] /∈ Iδ} . 1 + Φ
(
− δ/
√
vn
)
− Φ

(
δ/
√
vn
)

. 1 + Φ
(
− δ/γn

)
− Φ

(
δ/γn

)
. erfc

(
δ/
√

2γn
)
.

where erfc(x) denotes the complementary error function. The result follows from

the fact that erfc(x) . exp(−x2/2) for x sufficiently small.

Proof of Theorem 8

Proof. The assumption supx∈X k(x,x) <∞ implies that all f ∈ Hk are bounded on

X . For MC estimators, Lemma 33 of Song [2008] show that for these functions, the

WCE converges in probability at the classical rate e(Π̂MC; Π,Hk) = OP (n−1/2). For

their corresponding Bayesian estimators, it follows straightforwardly from Lemma

1 that the root-n rate is an upper bound, and we hence have: e(Π̂BMC; Π,Hk) =

OP (n−
1
2 ). Furthermore, the above consistency result applied to Lemma 3 gives the

contraction result.
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Proof of Theorem 9

Proof. Consider first the case of IS points (MC points are a special case). Initially

consider fixed states X = {xi}ni=1 (i.e. fixing the random seed) and Hk = Hα. From

a standard result in functional approximation due to Wu and Schaback [1993], see

also Wendland [2005, Theorem 11.13], there exists C > 0 and h0 > 0 such that, for

all x ∈ X and hX < h0, |f(x) −mn(x)| ≤ ChαX‖f‖Hk ; i.e. v(h) = hα for Sobolev

spaces of smoothness α. We augment X with a finite number of states Y = {yi}mi=1

to ensure that hX∪Y < h0 always holds. From the regression bound (Lemma 2),

∣∣Π̂BIS[f ]−Π[f ]
∣∣ ≤ ‖f −mn‖2 =

(∫
X

(f(x)−mn(x))2 Π′(dx)

)1/2

≤
(∫
X

(ChαX∪Y‖f‖Hk)2 Π′(dx)

)1/2

= ChαX∪Y‖f‖Hk .

It follows that e(Π̂BIS; Π,Hk) ≤ C1h
α
X∪Y for some C1 > 0. Now, taking an ex-

pectation EX over the samples X generated IID from the importance sampling

distribution Π′, we have:

EX[e(Π̂BIS; Π,Hk)] ≤ CEX[hαX∪Y] ≤ CEX[hαX]. (B.1)

From Lemma 2 in Oates et al. [2018], we have a scaling relationship such that,

for hX∪Y < h0, we have EX[hαX] = O(n−α/d+ε) for ε > 0 arbitrarily small. From

Markov’s inequality, convergence in mean implies convergence in probability and

thus, using Equation B.1, we have e(Π̂BIS; Π,Hk) = OP (n−α/d+ε). This completes

the proof for Hk = Hα. More generally, if Hk is norm-equivalent to Hα then the

result follows from the fact that e(Π̂BIS; Π,Hk) ≤ λe(Π̂BIS; Π,Hα) for some λ > 0.

Note that the same arguments follow for BMCMC, except that Lemma 3 in [Oates

et al., 2018] should be used instead of Lemma 2.

Proof of Theorem 10

Proof. The proof follows that of Theorem 9, but uses a different power function.

From Table 11.1 in Wendland [2005], we obtain upper bounds on the power function

for the Gaussian RBF, multiquadric and inverse-multiquadric kernels. In the case

of the Gaussian RBF kernel, this is given by v1(hX) = exp(−C1| log(hX)|/hX) =

exp(−C1/h
1−ε′
X ) for some C1 > 0 and ε′ > 0 arbitrarily small. For the multiquadric

and inverse-multiquadric kernels this is v2(hX) = exp(−C2/hX) for some C2 > 0.

We are now interested in the behaviour of the WCE. For the Gaussian RBF ker-
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nel, this is given by e(Π̂BIS; Π,Hk) = OP (exp(−Cn1/d−ε)) = OP (v1(n−1/d+ε)) =

OP (exp(−C1n
1/d−ε′′)), where ε′′ > 0 can be arbitrarily small, whilst for the multi-

quadric and inverse-multiquadric we have e(Π̂BIS; Π,Hk) = OP
(

exp(−Cn1/d−ε)
)

=

OP (v2(n−1/d+ε)) = OP (exp(−C2n
1/d−ε)). This completes the proof. Similarly to

Theorem 9, the proof also follows for MC and MCMC points.

Proof of Theorem 11

Proof. The Koksma-Hlawka inequality (Theorem 2.9 in Niederreiter [1992]) states

that |Π[f ] − ΠQMC[f ]| ≤ D∗({xi}ni=1)VHK(f) where VHK(f) denotes total variation

of f in the sense of Hardy and Krause, and D∗({xi}ni=1) is the star discrepancy.

Taking the supremum over the unit ball of Hk and using Lemma 1:

e(Π̂BQMC; Π,Hk) ≤ e(Π̂QMC; Π,Hk) ≤ e(Π̂QMC; Π,Hα)

≤ sup
‖f‖Hα≤1

VHK(f)D∗({xi}ni=1)

Now we have that ∃C > 0 such that VHK(f) ≤ C for any f in a Sobolev space. We

therefore have that

e(Π̂BQMC; Π,Hk) ≤ C ×D∗({xi}ni=1) ≤ C1n
−1+ε

for some C1 > 0 since low-discrepancy sequence satisfy D∗({xi}ni=1) = O(n−1+ε).

Proof of Theorem 12

Proof. From Theorem 15.21 of Dick and Pillichshammer [2010], which assumes α ≥
2, α ∈ N, the QMC rule Π̂QMC based on a higher-order digital (t, α, 1, αm×m, d) net

over Zb for some prime b satisfies e(Π̂QMC; Π,Hk) ≤ Cd,α(log n)dαn−α = O(n−α+ε)

for Sα the Sobolev space of dominating mixed smoothness order α, where Cd,α > 0

is a constant that depends only on d and α (but not on n). The result follows

immediately from norm equivalence and Lemma 1. The contraction rate follows

from Lemma 3.

Proof of Proposition 3

Proof. Conditional on a value of λ and following Proposition 1, Π[gn] is is a Gaussian

distribution with mean and variance given by E[Π[gn]] = Π[c0(·,X)]C−1
0 f and:

V[Π[gn]] = λ{ΠΠ[c0(·, ·)]−Π[c0(·,X)]C−1
0 Π[c0(X, ·)]}
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Furthermore, the posterior on the amplitude parameter satisfies

p(λ|f) ∝ p(f |λ)p(λ) =
1

(2π)n/2λ
n
2

+1|C0|
1
2

exp

(
− 1

2λ
f>C−1

0 f

)
which corresponds to an inverse-gamma distribution with parameters α = n

2 and β =
1
2 f>C−1

0 f . We therefore have that (Π[gn], λ) is distributed as normal-inverse-gamma

and the marginal distribution for Π[gn] is a Student-t distribution, as claimed.

Proof of Proposition 4

Proof. Define z = Π[c(X, ·)] and az = aΠ[c(X, ·)]. Let ε = az − z, write aΠ̂BQ =∑n
i=1 aw

BQ
i δ(xi) and consider

e(aΠ̂BQ; Π,Hc)2 = ‖aΠ̂BQ[c(x, ·)]−Π[c(x, ·)]‖2Hc
= aw

>
BQCawBQ − 2aw

>
BQz + ΠΠ[c]

= (C−1
az)>C(C−1

az)− 2(C−1
az)>z + ΠΠ[c]

= (z + ε)>C−1(z + ε)− 2(z + ε)>C−1z + ΠΠ[c]

= e(Π̂BQ; Π,Hc)2 + ε>C−1ε.

Use ⊗ to denote the tensor product of RKHS. Now, since

εi = azi − zi = aΠ̂[c(x,xi)]−Π[c(x,xi)] = 〈aΠ̂[c(x, ·)]−Π[c(x, ·)], c(·,xi)〉Hc ,

we have that:

ε>C−1ε =
∑
i,i′

(C−1)i,i′
〈
aΠ̂[c(x, ·)]−Π[c(x, ·)], c(·,xi)

〉
Hc

×
〈
aΠ̂[c(x, ·)]−Π[c(x, ·)], c(·,xi′)

〉
Hc

=
〈
aΠ̂[c(x, ·)]−Π[c(x, ·)]

)
⊗
(
aΠ̂[c(x, ·)]−Π[c(x, ·)]

)
,∑

i,i′

(C−1)i,i′c(·,xi)⊗ c(·,xi′)
〉
Hc⊗Hc

and hence

ε>C−1ε ≤ ‖aΠ̂[c(x, ·)]−Π[c(x, ·)]‖2Hc
∥∥∥∑
i,i′

(C−1)i,i′c(·,xi)⊗ c(·,xi′)
∥∥∥
Hc⊗Hc

.
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From Proposition 2 we have ‖aΠ̂[c(x, ·)]−Π[c(x, ·)]‖Hc = e(aΠ̂; Π,Hc) so it remains

to show that the second term is equal to
√
n. Indeed,∥∥∥∑

i,i′

(C−1)i,i′c(·,xi)⊗ c(·,xi′)
∥∥∥2

Hc

=
∑
i,i′,l,l′

(C−1)i,i′(C
−1)l,l′

〈
c(·,xi)⊗ c(·,xi′), c(·,xl)⊗ c(·,xl′)

〉
Hc

=
∑
i,i′,l,l′

(C−1)i,i′(C
−1)l,l′(C)il(C)i′,l′ = Tr(CC−1CC−1) = n.

This completes the proof.

Proof of Proposition 5

Proof. The proof follows by combining Theorem 15.21 of Dick and Pillichshammer

[2010] with Lemma 1.

Proof of Proposition 6

Proof. The first result follows from the regression bound argument (Lemma 2) to-

gether with a functional approximation result in Le Gia et al. [2012, Theorem 3.2].

The result for QMC with spherical t-designs follows from combining Hesse

and Sloan [2005]; Bondarenko et al. [2013] and Lemma 1.

B.2 Proofs of Chapter 4

Proof of Proposition 8

Proof. Denote by ep the vertical vector of length P with dth entry taking value 1

and all other entries taking value 0, and by Cp
x(y) = C(y,x)ep the dth column of

C(y,x). We notice that the representer of the integral is given by:

Π[fp] = Π[f>ep] = Π
[
〈f ,C(·,x)ep〉HC

]
= 〈f ,Π [C(·,x)ep]〉HC

= 〈f ,Π [Cp
x]〉HC

and so, using the Cauchy-Schwartz inequality, we get: |Π[fp]−Π̂[fp]| ≤ ‖f‖HC
‖Π[Cp

x]−
Π̂[Cp

x]‖HC
. Taking supremums, we obtain the following expression for the worst-case

integration error:

sup
‖f‖HC

≤1

∣∣∣Π[fp]− Π̂[fp]
∣∣∣ =

∥∥∥Π[Cp
x]− Π̂[Cp

x]
∥∥∥
HC
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We note that Π[Cp
x] ∈ HC and that the multi-output BQ rule is given by Π̂BQ[Cp

x] =

Π[C(·,X)]C(X,X)−1Cp
x(X) and corresponds to an optimal interpolant in the sense

of Theorem 3.1 in Micchelli and Pontil [2005]. We must therefore have that, for

fixed quadrature points X, any quadrature rule Π̂[Cp
x] satisfies:∥∥∥Π[Cp

x]− Π̂BQ[Cp
x]
∥∥∥
HC

≤
∥∥∥Π[Cp

x]− Π̂[Cp
x]
∥∥∥
HC

.

Combining the equation above with the expression for the worst-case integration

error of fp gives us our final result.

Proof of Theorem 13

Proof. For the sake of clarity, we will distinguish between uni-output BQ and multi-

output BQ rules and weights by adding subscripts corresponding to their kernel; i.e.

ΠC
BQ[f ] and WC

BQ denote the multi-output case and Πc
BQ[f ] and Wc

BQ denote the

uni-output case. We start this proof by expressing the weights of the multi-output

BQ algorithm in terms of weights for the uni-output BQ algorithm:

WC
BQ = Π[C(·,X)]C(X,X)−1 = (Π[B⊗ c(·,X)]) (B⊗ c(X,X))−1

= (B⊗Π[c(·,X)])
(
B−1 ⊗ c(X,X)−1

)
= BB−1 ⊗Π[c(·,X)]c(X,X)−1

= ID ⊗wc
BQ.

Using the above, we can find an expression for the multi-output BQ approximation

with some kernel C1 = Bc1 of the project mean element with respect to kernel

C2 = Bc2 in terms of the uni-output BQ approximation with kernel c1 of the kernel

mean of c2.

Π̂C1
BQ[(C2)px] = (C2)px(X)WC1

BQ = (C2)px(X)(I ⊗wc1
BQ) = (Bep ⊗ c2(X,x))(I⊗wc1

BQ)

= BepI⊗ c2(X,x)wc1
BQ = BepΠ̂

c1
BQ[c2(·,x)].
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As discussed, taking both kernels to be the same, the integration error for each

individual integrand can be bounded as follows:

sup
‖f‖HC2

≤1

∣∣∣Π[fp]− Π̂C1
BQ[fp]

∣∣∣2 =
∥∥∥Π [(C2)px]− Π̂C1

BQ [(C2)px]
∥∥∥2

HC2

=
∥∥∥(Bep)

(
Π [c2(·,x)]− Π̂c1

BQ [c2(·,x)]
)∥∥∥2

HC2

=

P∑
i,j=1

(B−1)ij ×
〈
Bip(Π [c2(·,x)]− Π̂c1

BQ [c2(·,x)]),

Bjp(Π [c2(·,x)]− Π̂c1
BQ [c2(·,x)])

〉
Hc2

=

P∑
i,j=1

(B−1)ijBipBjp

∥∥∥Π [c2(·,x)]− Π̂c1
BQ [c2(·,x)]

∥∥∥2

Hc2

≤ K
∥∥∥Π [c2(·,x)]− Π̂c1

BQ [c2(·,x)]
∥∥∥2

Hc2
.

Here, we first used the definition of worst-case error, then the definition of the

HC2 norm in terms of Hc2 norm (as given for the separable kernel in Álvarez and

Lawrence [2011]), and the final inequality follows by taking K > 0 to be K =

|
∑P

i,j=1(B−1)ijBipBjp|. Taking the square-root on either side gives us:

sup
‖f‖HC2

≤1

∣∣∣Π[fp]− Π̂C1
BQ[fp]

∣∣∣ ≤ √
K
∥∥∥Π [c2(·,x)]− Π̂c1

BQ [c2(·,x)]
∥∥∥
Hc2

=
√
K sup
‖f‖Hc2≤1

∣∣∣Π[fp]− Π̂c1
BQ[fp]

∣∣∣ .
We can take C1 equal to C2 to get:

sup
‖f‖HC

≤1

∣∣∣Π[fp]− Π̂C
BQ[fp]

∣∣∣ ≤ √
K sup
‖f‖Hc≤1

∣∣∣Π[fp]− Π̂c
BQ[fp]

∣∣∣ .
The convergence for the separable kernel case is therefore driven by the convergence

of the scalar-valued kernel. We can therefore use results from the uni-output case in

the previous chapter or in Briol et al. [2015b]; Oates et al. [2018]; Briol et al. [2017];

Kanagawa et al. [2017] to complete the proof.

Proof of Proposition 9

Proof. Note that if the kernel is actually of the form C(x,x′) =
∑Q

q=1 Bqcq(x,x
′),

we can use the triangle inequality satisfied by the norm of HC to show that (for
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some C2 > 0):

sup
‖f‖HC

≤1

∣∣∣Π[fp]− Π̂BQ[fp]
∣∣∣ ≤ C2

Q∑
q=1

∥∥∥Π [cq(·,x)]− Π̂BQ [cq(·,x)]
∥∥∥2

Hc
,

so that the overall convergence is dominated by the slowest decaying term.

Proof of Theorem 14

Proof. Recall that hX denotes the fill distance and ρX denotes the mesh ratio.

Denote by Π̂Cα
BQ[f ] the multi-output BQ rule based on Cα, Π̂cα

BQ[f ] the uni-output

BQ rule based on cα and f̂αp the interpolant corresponding this rule. We start by

upper bounding the integration error in the uni-output case:∣∣∣Π[f ]− Π̂cα
BQ[f ]

∣∣∣ ≤ K1‖π‖L∞(X )‖f − f̂α‖L1(X ) ≤ K2‖f − f̂α‖L2(X )

≤ K3h
β
Xρ

α
X‖f‖L2(X ) ≤ K4h

β
Xρ

α
X‖f‖Wβ

2 (X )
≤ K5h

β
Xρ

α
X‖f‖Hcβ ,

for some K1, . . . ,K5 > 0. Note that this argument closely follows Kanagawa et al.

[2017]. The first and second inequality correspond to Holder’s inequality and the

third inequality follows from Theorem 4.2 in Narcowich et al. [2006]. Finally, the

fourth and fifth inequalities follow from the definition the Sobolev norm and the

norm-equivalence of Hcβ and W β
2 (X ).

Dividing the above by ‖fp‖β on both sides and taking supremums over the

unit ball of Hcβ we get a result for the worst-case error in the uni-output case:

e(Hcβ , Π̂
cα
BQ,X) ≤ K6h

β
Xρ

α
X. We can then upper bound the integration error in the

multi-output case using Theorem 13 as follows:∣∣∣Π[fp]− Π̂Cα
BQ[fp]

∣∣∣ ≤ ‖f‖Cβe(HCβ , Π̂
Cα
BQ,X, p) ≤ K6‖f‖Cβe(Hcβ , Π̂

cα
BQ,X)

≤ K7‖f‖Cβh
β
Xρ

α
X,

for some K6,K7 > 0. When using a quasi-uniform grid, then we can use the as-

sumption that hX ≤ CqX for some constant C > 0 and the fact that hX converges

as n−
1
d to show that the integration error satisfies:∣∣∣Π[fp]− Π̂Cα

BQ[fp]
∣∣∣ ≤ K7‖f‖Cβh

β
Xρ

α
X,X ≤ K8‖f‖Cβh

β
X = O

(
n−

β
d

)
,

for some K8 > 0.
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Proof of Proposition 10

Proof. The results follows from combining Theorem 13 with the rate for the scalar-

valued Matérn 3
2 covariance function provided in Proposition 6.

Proof of Proposition 11

Proof. First, from the definition of J :

J
(
(1− ρ)gi−1 + ρc(·,xi)

)
=

1

2

〈
(1− ρ)gi−1 + ρc(·,xi)−Π[c(·,x)],

(1− ρ)gi−1 + ρc(·,xi)−Π[c(·,x)]
〉
Hc

=
1

2

[
(1− ρ)2

〈
gi−1, gi−1

〉
Hc + 2(1− ρ)ρ

〈
gi−1, c(·,xi)

〉
Hc

+ 2ρ2
〈
c(·,xi), c(·,xi)

〉
Hc − 2(1− ρ)

〈
gi−1,Π[c(·,x)]

〉
Hc

− 2ρ
〈
c(·,xi),Π[c(·,x)]

〉
Hc +

〈
Π[c(·,x)],Π[c(·,x)]

〉
Hc

]
.

Taking the derivative of this expression with respect to ρ, we get:

∂J
(
(1− ρ)gi−1 + ρc(·,xi)

)
∂ρ

=
1

2

[
− 2(1− ρ)

〈
gi−1, gi−1

〉
Hc + 2(1− 2ρ)

〈
gi−1, c(·,xi)

〉
Hc

+ 2ρ
〈
c(·,xi), c(·,xi)

〉
Hc + 2

〈
gi−1,Π[c(·,x)]

〉
Hc

− 2
〈
c(·,xi),Π[c(·,x)]

〉
Hc

]
= ρ

[〈
gi−1, gi−1

〉
Hc − 2

〈
gi−1, c(·,xi)

〉
Hc +

〈
c(·,xi), c(·,xi)

〉
Hc

= ρ
∥∥gi−1 − c(·,xi)

∥∥2

Hc −
〈
gi−1 − c(·,xi), gi−1 −Π[c(·,x)]

〉
Hc .

Setting this derivative to zero gives us the following optimum:

ρ∗ =

〈
gi−1 −Π[c(·,x)], gi−1 − c(·,xi)

〉
Hc∥∥∥gi−1 − c(·,xi)

∥∥∥2

Hc

.

Clearly, differentiating a second time with respect to ρ gives ‖gi−1−c(·,xi)‖2Hc ,
which is non-negative and so ρ∗ is a minimum. One can show using geometrical ar-

guments about the marginal polytope M that ρ∗ will be in [0, 1] [Jaggi, 2013].
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The numerator of this line-search expression is〈
gi−1 −Π[c(·,x)], gi−1 − c(·,xi)

〉
Hc

=
〈
gi−1, gi−1

〉
Hc −

〈
Π[c(·,x)], gi−1

〉
Hc −

i−1∑
l=1

w
(i−1)
l c(xl,xi) + Π[c(·,xi)]

=
i−1∑
l=1

i−1∑
m=1

w
(i−1)
l w(i−1)

m c(xl,xm)−
i−1∑
l=1

w
(i−1)
l

[
c(xl,xi) + Π[c(xl,x)]

]
+ Π[c(xi,x)].

Similarly the denominator is∥∥gi−1 − c(·,xi)
∥∥2

Hc =
〈
gi−1 − c(·,xi), gi−1 − c(·,xi)

〉
Hc

=
〈
gi−1, gi−1

〉
Hc − 2

〈
gi−1, c(·,xi)

〉
Hc +

〈
c(·,xi), c(·,xi)

〉
Hc

=

i−1∑
l=1

i−1∑
m=1

w
(i−1)
l w(i−1)

m c(xl,xm)− 2

i−1∑
l=1

w
(i−1)
l c(xl,xi) + c(xi,xi).

Proof of Theorem 15

Proof. Using Lemma 1 from Chapter 3, we have that BQ rules are optimally weighted

inHc and so we have that e(Π̂FWBQ; Π,Hc) ≤ e(Π̂FW; Π,Hc) and e(Π̂FWLSBQ; Π,Hc) ≤
e(Π̂FWLS; Π,Hc). Now, the values attained by the objective function J along the

path {gi}ni=1 determined by the FW and FWLS algorithm can be expressed in terms

of the half the WCE squared. We therefore have that: e(Π̂FWBQ; Π,Hc)2‖f‖Hc ≤
21/2J

1/2
FW(gn) and e(Π̂FWLSBQ; Π,Hc)2‖f‖Hc ≤ 21/2J

1/2
FWLS(gn), since ‖f‖Hc ≤ 1. To

complete the proof we leverage recent analysis of the FW algorithm with steps

ρi = 1/(n + 1) and the FWLS algorithm. Specifically, from [Bach et al., 2012,

Proposition 1] we have that:

J(gn) ≤

{
2diam(M)4

R2 n−2 for FW with step size ρi = 1/(i+ 1)

diam(M)2 exp(−R2n/diam(M)2) for FWLS

where diam(M) is the diameter of the marginal polytopeM and R is the radius of

the smallest ball centered at Π[c(·,x)] included in M. This proves our consistency

result, and the contraction result follows from Lemma 3.
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B.3 Proofs of Chapter 5

Proof of Proposition 12

Proof of Proposition 12. Consider the diffusion Stein discrepancy, obtained by com-

bining the expression for the Stein discrepancy with the diffusion-based Stein oper-

ator SP[g](x) and the function class G. We first note that

SP[g](x) = 〈m(x)>∇x log p(x|θ), g(x)〉+ 〈∇x,m(x)g(x)〉.

The discrepancy with this operator is then given by

D(P1||P2) = sup
g∈G

∣∣∣∣∫
X
SP2 [g](x)P1(dx)

∣∣∣∣ = sup
g∈G

∣∣∣∣∫
X

(SP2 [g](x)− SP1 [g](x))P1(dx)

∣∣∣∣
= sup

g∈G

∣∣∣∣∫
X
〈m(x)>(∇x log p2(x)−∇x log p1(x)), g(x)〉p1(x)dx

∣∣∣∣ ,
Using the Cauchy-Schwarz inequality, we get:

D(P1||P2) ≤ sup
g∈G

∣∣∣∣∫
X

∥∥∥m(x)> (∇x log p2(x)−∇x log p1(x))
∥∥∥

2
‖g(x)‖2 p1(x)dx

∣∣∣∣ .
This inequality is tight, and attained when g(x) = m(x)>(∇x log p2(x)−∇x log p1(x)),

so that the supremum is attained at that point. We therefore end up with a dis-

crepancy of the form:

D(P1||P2) =

∫
X

∥∥∥m(x)> (∇x log p2(x)−∇x log p1(x))
∥∥∥2

2
P1(dx).

In order to obtain a computable estimator, we will follow the proof of Theorem 1 in

Hyvärinen [2006] and use an integration-by-part trick. To do so, we first expand the

integrand in the expression for the discrepancy and take p1(x) = q(x) (the density

of the data-generating model Q) and p2(x) = p(x|θ):

‖m(x)>(∇x log p(x|θ)−∇x log q(x))‖22
= ‖m(x)>∇x log p(x|θ)‖22 + ‖m(x)>∇x log q(x)‖22

−2〈m(x)>∇x log p(x|θ),m(x)>∇x log q(x)〉
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When integrating the above, the second term does not depend on θ and can hence

be ignored for the purpose of minimisation over parameters. We then end up with:∫
X

[
‖∇x log p(x|θ)m(x)‖22 − 2

〈
m(x)>∇x log p(x|θ),m(x)>∇x log q(x)

〉]
Q(dx)

Using integration-by-parts, we can get obtain an expression for the second term

which does not depend on the density q:∫
X

〈
m(x)>∇x log p(x|θ),m(x)>∇x log q(x)

〉
Q(dx)

=

∫
X

〈
∇x log p(x|θ),m(x)m(x)>∇x log q(x)

〉
Q(dx)

= −
∫
X

〈
∇x,m(x)m(x)>∇x log p(x|θ)

〉
q(x)dx

= −
∫
X

〈
∇x,m(x)m(x)>∇x log p(x|θ)

〉
Q(dx)

Combing this equation with the previous one completes the proof.

Proof of Proposition 13

Proof. The information metric is defined as: g(θ) = −∂2KSD(Pα||Pβ)2

∂α∂β

∣∣
α=β=θ

. We

hence require the following expression, where the Stein reproducing kernel is adapted

to the measure Pα:

∂2KSD(Pα||Pβ)2

∂α∂β
=

∂2

∂α∂β

[ ∫
X

∫
X
kPβ (x,y)p(x|α)p(y|α)dxdy

−2

∫
X

∫
X
kPβ (x,y)p(x|α)p(y|β)dxdy

+

∫
X

∫
X
kPβ (x,y)p(x|β)p(y|β)dxdy

]
= −2

∫
X

∫
X

∂2[kPβ (x,y)p(x|α)p(y|β)]

∂α∂β
dxdy

= −2

d∑
l=1

∫
X

∫
X
k(x,y)

∂2 log p(x|α)

∂xl∂αj

∂2 log p(y|α)

∂yl∂αk
Pα(dx)Pβ(dy).

The proof is completed by taking α = β in the expression above.
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Proof of Proposition 14

Proof. In the case of exponential families, the score function can be expressed as:

∇x log p(x|θ) = θ>∇T (x) +∇b(x). Combining this expression together with Equa-

tions 5.25 and 5.26 gives us our first result:

KSDU (Qm||Pθ)2 = θ>A({yj}mj=1)θ +B({yj}mj=1)θ + C({yj}mj=1)

Taking the derivative with respect to the parameter vector θ and setting to zero

gives θ>A({yj}mj=1) +B({yj}mj=1) = 0. Solving this system of linear equations then

gives θ = −B({yj}mj=1)A({yj}mj=1)−1, which concludes the proof.

Proof of Proposition 15

Proof. The information metric is defined as: g(θ) = −∂2MMD(Pα||Pβ)2

∂α∂β

∣∣
α=β=θ

. We

hence require the following expression:

∂2MMD(Pα||Pβ)2

∂α∂β
=

∂2

∂α∂β

[ ∫
U

∫
U
k(Gα(u), Gα(v))U(du)U(dv)

−2

∫
U

∫
U
k(Gα(u), Gβ(v))U(du)U(dv)

+

∫
U

∫
U
k(Gβ(u), Gβ(v))U(du)U(dv)

]
= −2

∂2

∂α∂β

∫
U

∫
U
k(Gα(u), Gβ(v))U(du)U(dv)

= −2

∫
U

∫
U

(∇αGα(u))>∇1∇2k(Gα(u), Gβ(v))∇βGβ(v)U(du)U(dv)

The proof is completed by taking α = β in the expression above.

Proof of Proposition 16

Proof. Consider the influence function obtained from the kernel scoring rule as given

in Equation 5.28:

IFMMD(z,Pθ) =

(∫
X
∇θ∇θSMMD(x,Pθ)Pθ(dx)

)−1

∇θSMMD(z,Pθ).

It is straightforward to show that under assumptions (i-iv) in Proposition 16, the

influence function is bounded in z, which directly implies that the estimator is bias-

robust.

218



Proof of Proposition 17

Proof. Consider the expression for the Langevin Stein operator KSD obtained by

combining Equation 5.9 with Equation 5.10. Taking the derivative with respect to

the parameters of the model, we get:

∇θLKSD(θ) =

∫
X

∫
X
∇θkPθ(x,y)Q(x)Q(dy)

=

∫
X

∫
X

[
k(x,y)∇θ∇x log p(x|θ)∇y log p(y|θ)

+k(x,y)∇θ∇y log p(y|θ)∇x log p(x|θ) +
(
∇θ∇x log p(x|θ)

)
∇2k(x,y)

+∇θ∇y log p(y|θ)∇1k(x,y)
]
Q(dx)Q(dy).

Let us now consider the loss function based on the MMD squared. The loss function

and it’s gradient are given by

∇θLMMD(θ) = ∇θ
[ ∫
U

∫
U
k(Gθ(u), Gθ(v))U(du)U(dv)− 2

∫
U

∫
X
k(Gθ(u),x)U(du)Q(dx)

+

∫
X

∫
X
k(x,y)Q(dx)Q(dy)

]
=

∫
U

∫
U
∇θk(Gθ(u), Gθ(v))U(du)U(dv)− 2

∫
U

∫
X
∇θk(Gθ(u),x)U(du)Q(dx)

=

∫
U

∫
U
∇θGθ(u) (∇1k(Gθ(u), Gθ(v)) +∇2k(Gθ(v), Gθ(u)))U(du)U(dv)

−2

∫
U

∫
X
∇θGθ(u)∇1k(Gθ(u),y)U(du)Q(dy)

219


	List of Figures
	Acknowledgments
	Declarations
	Abstract
	Abbreviations
	Chapter Challenges for Statistical Computation
	Challenge I: Numerical Integration and Sampling
	Applications in Bayesian Statistics
	Applications in Frequentist Statistics
	Existing Methodology
	Issues Faced by Existing Methods

	Challenge II: Intractable Models
	Intractability in Unnormalised Models
	Intractability in Generative Models

	Additional Challenges
	Contributions of the Thesis

	Chapter Kernel Methods, Stochastic Processes and Bayesian Nonparametrics
	Kernel Methods
	Introduction and Characterisations
	Properties of Reproducing Kernel Hilbert Spaces
	Examples of Kernels and their Associated Spaces
	Applications and Related Research

	Stochastic Processes
	Introduction to Stochastic Processes
	Characterisations of Stochastic Processes
	Connection Between Kernels and Covariance Functions

	Bayesian Nonparametric Models
	Bayesian Models in Infinite Dimensions
	Gaussian Processes as Bayesian Models
	Practical Issues with Gaussian Processes


	Chapter Bayesian Numerical Integration: Foundations
	Bayesian Probabilistic Numerical Methods
	Numerical Analysis in Statistics and Beyond
	Numerical Methods as Bayesian Inference Problems
	Recent Developments in Bayesian Numerical Methods

	Bayesian Quadrature
	Introduction to Bayesian Quadrature
	Quadrature Rules in Reproducing Kernel Hilbert Spaces
	Optimality of Bayesian Quadrature Weights
	Selection of States

	Theoretical Results for Bayesian Quadrature
	Convergence and Contraction Rates
	Monte Carlo, Important Sampling and MCMC Point Sets
	Quasi-Monte Carlo Point Sets

	Considerations for Practical Implementation
	Prior Specification for Integrands
	Tractable and Intractable Kernel Means

	Simulation Study
	Assessment of Uncertainty Quantification
	Validation of Convergence Rates

	Some Applications to Statistics and Engineering
	Case Study 1: Large-Scale Model Selection
	Case Study 2: Computer Experiments
	Case Study 3: High-Dimensional Random Effects
	Case Study 4: Computer Graphics


	Chapter Bayesian Numerical Integration: Advanced Methods
	Bayesian Quadrature for Multiple Related Integrals
	Multi-output Bayesian Quadrature
	Convergence for Priors with Separable Covariance Functions
	Numerical Experiments

	Efficient Point Selection Methods I: The Frank-Wolfe Algorithm
	Frank-Wolfe Bayesian Quadrature
	Consistency and Contraction in Finite-Dimensional Spaces
	Numerical Experiments

	Efficient Point Selection Methods II: A sequential Monte Carlo sampler
	Limitations of Bayesian Importance Sampling
	Robustness of Bayesian Quadrature to the Choice of Kernel
	Sequential Monte Carlo Bayesian Quadrature
	Numerical Experiments


	Chapter Statistical Inference and Computation with Intractable Models
	Stein's Method and Reproducing Kernels
	Distances on Probability Measures
	Kernel Stein Discrepancies
	Stein Reproducing Kernels for Approximating Measures
	Stein Reproducing Kernels for Numerical Integration

	Kernel-based Estimators for Intractable Models
	Minimum Distance Estimators
	Estimators for Unnormalised Models
	Estimators for Generative Models
	Practical Considerations


	Chapter Discussion
	Contributions of the Thesis
	Remaining Challenges

	Bibliography
	Appendix Background Material
	Topology and Functional Analysis
	Measure and Probability Theory

	Appendix Proofs of Theoretical Results
	Proofs of Chapter 3
	Proofs of Chapter 4
	Proofs of Chapter 5


