

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/130123

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/130123
mailto:wrap@warwick.ac.uk

Coarse-Grained Complexity for Dynamic Algorithms

Sayan Bhattacharya∗ Danupon Nanongkai† Thatchaphol Saranurak‡

Abstract
To date, the only way to argue polynomial lower bounds for
dynamic algorithms is via fine-grained complexity arguments.
These arguments rely on strong assumptions about specific
problems such as the Strong Exponential Time Hypothesis
(SETH) and the Online Matrix-Vector Multiplication Con-
jecture (OMv). While they have led to many exciting dis-
coveries, dynamic algorithms still miss out some benefits and
lessons from the traditional “coarse-grained” approach that
relates together classes of problems such as P and NP. In this
paper we initiate the study of coarse-grained complexity the-
ory for dynamic algorithms. Below are among questions that
this theory can answer.

What if dynamic Orthogonal Vector (OV) is
easy in the cell-probe model? A research program for
proving polynomial unconditional lower bounds for dynamic
OV in the cell-probe model is motivated by the fact that
many conditional lower bounds can be shown via reductions
from the dynamic OV problem (e.g. [Abboud, V.-Williams,
FOCS 2014]). Since the cell-probe model is more powerful
than word RAM and has historically allowed smaller upper
bounds (e.g. [Larsen, Williams, SODA 2017; Chakraborty,
Kamma, Larsen, STOC 2018]), it might turn out that dy-
namic OV is easy in the cell-probe model, making this re-
search direction infeasible. Our theory implies that if this
is the case, there will be very interesting algorithmic conse-
quences: If dynamic OV can be maintained in polylogarith-
mic worst-case update time in the cell-probe model, then so
are several important dynamic problems such as k-edge con-
nectivity, (1 + ε)-approximate mincut, (1 + ε)-approximate
matching, planar nearest neighbors, Chan’s subset union and
3-vs-4 diameter. The same conclusion can be made when we
replace dynamic OV by, e.g., subgraph connectivity, single
source reachability, Chan’s subset union, and 3-vs-4 diame-
ter.

Lower bounds for k-edge connectivity via dy-

namic OV? The ubiquity of reductions from dynamic OV

raises a question whether we can prove conditional lower

bounds for, e.g., k-edge connectivity, approximate mincut,

and approximate matching, via the same approach. Our

theory provides a method to refute such possibility (the so-

called non-reducibility). In particular, we show that there

are no “efficient” reductions (in both cell-probe and word

RAM models) from dynamic OV to k-edge connectivity un-

der an assumption about the classes of dynamic algorithms

whose analogue in the static setting is widely believed. We

are not aware of any existing assumptions that can play the

same role. (The NSETH of Carmosino et al. [ITCS 2016]

is the closest one, but is not enough.) To show similar re-

∗University of Warwick, UK.
†KTH Royal Institute of Technology, Sweden.
‡Toyota Technological Institute at Chicago, USA. Work par-

tially done while at KTH Royal Institute of Technology.

sults for other problems, one only need to develop efficient

randomized verification protocols for such problems.

1 Introduction

In a dynamic problem, we first get an input instance
for preprocessing, and subsequently we have to handle
a sequence of updates to the input. For example, in
the graph connectivity problem [35, 42], an n-node
graph G is given to an algorithm to preprocess. Then
the algorithm has to answer whether G is connected
or not after each edge insertion and deletion to G.
(Some dynamic problems also consider queries. (For
example, in the connectivity problem an algorithm
may be queried whether two nodes are in the same
connected component or not.) Since queries can be
phrased as input updates themselves, we will focus
only on updates in this paper. Algorithms that handle
dynamic problems are known as dynamic algorithms.
The preprocessing time of a dynamic algorithm is the
time it takes to handle the initial input, whereas the
worst-case update time of a dynamic algorithm is the
maximum time it takes to handle any update. Although
dynamic algorithms are also analyzed in terms of their
amortized update times, we emphasize that the results
in this paper deal only with worst-case update times. A
holy grail for many dynamic problems – especially those
concering dynamic graphs under edge deletions and
insertions – is to design algorithms with polylogarithmic
update times. From this perspective, the computational
status of many classical dynamic problems still remain
widely open.

Example: Family of Connectivity Problems.
A famous example of a widely open question is for
the family of connectivity problems: (i) The problem
of maintaining whether the input dynamic graph is
connected (the dynamic connectivity problem) admits
a randomized algorithm with polylogarithmic worst-
case update time. It is an active, unsettled line of
research to determine whether it admits deterministic
polylogarithmic worst-case update time (e.g. [28, 26,
35, 37, 67, 58, 42, 73, 52, 53]). (ii) The problem of
maintaining whether the input dynamic graph can be
disconnected by deleting an edge (the dynamic 2-edge
connectivity problem) admits polylogarithmic amortized
update time [37, 38], but its worst-case update time

(even with randomization) remains polynomial [68].
(iii) For dynamic k-edge connectivity with k ≥ 3, the
best update time – amortization and randomization
allowed – suddenly jumps to Õ(

√
n) where Õ hides

polylogarithmic terms. Indeed, it is a major open
problem to maintain a (1 + ε)-approximation to the
value of global minimum cut in a dynamic graph in
polylogarithmic update time [68]. Doing so for k-edge
connectivity with k = O(log n) is already sufficient to
solve the general case.

Other dynamic problems that are not known to
admit polylogarithmic update times include approx-
imate matching, shortest paths, diameter, max-flow,
etc. [68, 61]. Thus, it is natural to ask: can one ar-
gue that these problems do not admit efficient dynamic
algorithms?

A traditionally popular approach to answer the
question above is to use information-theoretic argu-
ments in the bit-probe/cell-probe model. In this model of
computation, all the operations are free except memory
accesses. (In more details, the bit-probe model con-
cerns the number of bits accessed, while the cell-probe
model concerns the number of accessed cells, typically
of logarithmic size.) Lower bounds via this approach
are usually unconditional, meaning that it does not
rely on any assumption. Unfortunately, this approach
could only give small lower bounds so far; and getting a
super-polylogarithmic lower bound for any natural dy-
namic problem is an outstanding open question is this
area [46].

More recent advances towards answering this ques-
tion arose from a new area called fine-grained complex-
ity. While traditional complexity theory (henceforth we
refer to it as coarse-grained complexity) focuses on classi-
fying problems based on resources and relating together
resulting classes (e.g. P and NP), fine-grained com-
plexity gives us conditional lower bounds in the word
RAM model based on various assumptions about spe-
cific problems. For example, assumptions that are par-
ticularly useful for dynamic algorithms are the Strong
Exponential Time Hyposis (SETH), which concerns the
running time for solving SAT, and the Online Matrix-
Vector Multiplication Conjecture (OMv), which con-
cerns the running time of certain matrix multiplication
methods (more at, e.g., [57, 3, 34]). In sharp contrast
to cell-probe lower bounds, these assumptions often lead
to polynomial lower bounds in the word RAM model,
many of which are tight.

While the fine-grained complexity approach has led
to many exciting lower bound results, there are a num-
ber of traditional results in the static setting that seem
to have no analogues in the dynamic setting. For ex-
ample, one reason that makes the P 6= NP assump-

tion so central in the static setting is that proving and
disproving it will both lead to stunning consequences:
If the assumption is false then hundreds of problems
in NP and bigger complexity classes like the polyno-
mial hierarchy (PH) admit efficient algorithms; other-
wise the situation will be the opposite.1 In contrast, we
do not see any immediate consequence to dynamic algo-
rithms if someone falsified SETH, OMv, or any other as-
sumptions.2 As another example, comparing complex-
ity classes allows us to speculate on various situations
such as non-reducibility (e.g. [4, 43, 19]), the existence
of NP-intermediate problems [44] and the derandom-
ization possibilities (e.g. [40]). (See more in Section 4.)
We cannot anticipate results like these in the dynamic
setting without the coarse-grained approach, i.e. by
considering analogues of P, NP, BPP and other com-
plexity classes that are defined based on computational
resources.

Our Main Contributions. We initiate a system-
atic study of coarse-grained complexity theory for dy-
namic problems in the bit-probe/cell-probe model of
computation. We now mention a couple of concrete im-
plications that follow from this study.

Consider the dynamic Orthogonal Vector (OV)
problem (see Definition 2.4). Lower bounds conditional
on SETH for many natural problems (e.g. Subgraph
connectivity, ST-reachability, Chan’s subset union, 3-
vs-4 Diameter) are based on reductions from dynamic
OV [3]. This suggests two research directions: (I)
Prove strong unconditional lower bounds for many nat-
ural problems in one shot by proving a polynomial cell-
probe lower bound for dynamic OV. (II) Prove lower
bounds conditional on SETH for the family of connec-
tivity problems mentioned in the previous page via re-
ductions (in the word RAM model) from dynamic OV.
Below are some questions about the feasibility of these
research directions that our theory can answer. We are
not aware of any other technique in the existing litera-
ture that can provide similar conclusions.

(I) What if dynamic OV is easy in the cell-probe
model? For the first direction, there is a risk that
dynamic OV might turn out to admit a polylogarithmic
update time algorithm in the cell-probe model. This is

1For further consequences see, e.g., [1, 20, 21] and references
therein.

2An indirect consequence would be that some barriers were

broken and we might hope to get better upper bounds. This is
however different from when P=NP where many hard problems

would immediately admit efficient algorithms. Note that some
consequences of falsifying SETH have been shown recently (e.g.
[2, 71, 31, 22, 62, 41, 23]); however, we are not aware of any

consequence to dynamic algorithms. It might also be interesting
to note that Williams [72] estimates the likelihood of SETH to be
only 25%.

because lower bounds in the word RAM model do not
necessarily extend to the cell-probe model. For example,
it was shown by Larsen and Williams [47] and later by
Chakraborty et al [17] that the OMv conjecture [34] is
false in the cell-probe model.

Will all the efforts be wasted if dynamic OV turns
out to admit polylogarithmic update time in the cell-
probe model? Our theory implies that this will also
lead to a very interesting algorithmic consequence: If
dynamic OV admits polylogarithmic update time in the
cell-probe model, so do several important dynamic prob-
lems such as k-edge connectivity, (1 + ε)-approximate
mincut, (1 + ε)-approximate matching, planar nearest
neighbors, Chan’s subset union and 3-vs-4 diameter.
The same conclusion can be made when we replace dy-
namic OV by, e.g., subgraph connectivity, single source
reachability, Chan’s subset union, and 3-vs-4 diameter
(see Theorem 2.1). Thus, there will be interesting con-
sequences regardless of the outcome of this line of re-
search.

Roughly, we reach the above conclusions by proving
in the dynamic setting an analogue of the fact that
if P=NP (in the static setting), then the polynomial
hierarchy (PH) collapses. This is done by carefully
defining the classes Pdy, NPdy and PHdy as dynamic
analogues of P, NP, and PH, so that we can prove such
statements, along with NPdy-completeness and NPdy-
hardness results for natural dynamic problems including
dynamic OV. We sketch how to do this in Sections 2, 5.

(II) Lower bounds for k-edge connectivity via
dynamic OV? As discussed above, whether dynamic
k-edge connectivity admits polylogarithmic update time
for k ∈ [3, O(log n)] is a very important open question.
There is a hope to answer this question negatively via
reductions (in the word RAM model) from dynamic
OV. Our theory provides a method to refute such a
possibility (the so-called non-reducibility). First, note
that any reduction from dynamic OV in the word RAM
model will also hold in the (stronger) cell-probe model.
Armed with this simple observation, we show that
there are no “efficient” reductions from dynamic OV
to k-edge connectivity under an assumption about the
complexity classes for dynamic problems in the cell-
probe model, namely PHdy 6⊆ AMdy ∩ coAMdy (see
Theorem 2.2). We defer defining the classes AMdy and
coAMdy, but note two things. (i) Just as the classes
AM and coAM (where AM stands for Arthur-Merlin)
extend NP in the static setting, the classes AMdy and
coAMdy extend the class NPdy in a similar manner. (ii)
In the static setting it is widely believed that PH 6⊆ AM
∩ coAM because otherwise the PH collapses. Roughly,
the phrase “efficient reduction” from problems X to Y
refers to a way of processing each update for problem X

by quickly feeding polylogarithmic number of updates
as input to an algorithm for Y . All reductions from
dynamic OV in the literaturethat we are aware of are
efficient reductions.

Remark: We define our complexity classes in the
cell-probe model, whereas the reductions from dynamic
OV are in the word RAM model. This does not make
any difference, however, since any reduction in the word
RAM reduction continues to have the same guarantees
in the (stronger) cell-probe model.

To show a similar non-reducibility result for any
problem X, one needs to prove that X ∈ AMdy ∩
coAMdy, which boils down to developing efficient ran-
domized verification protocols for such problems. We
explain this in more details in Section 2.

We are not aware of any existing assumptions
that can lead the same conclusion as above. To our
knowledge, the only conjecture that can imply results of
this nature is the Nondeterministic Strong Exponential
Time Hypothesis (NSETH) of [16]. However, it needs
a stronger property of k-edge connectivity that is not
yet known to be true. (In particular, Theorem 2.2
follows from the fact that k-edge connectivity is in
AMdy∩coAMdy. To use NSETH, we need to show that it
is in NPdy ∩ coNPdy.) Moreover, even if such a property
holds it would only rule out deterministic reductions
since NSETH only holds for deterministic algorithms.

Paper Organization. In Section 2, we explain our
contributions in details, including the conclusions above
and beyond. We discuss related works and future
directions in Sections 3 and 4. An overview of our main
NPdy-completeness proof is in Section 5.

2 Our Contributions in Details

We show that coarse-grained complexity results similar
to the static setting can be obtained for dynamic prob-
lems in the bit-probe/cell-probe model of computation,3

provided the notion of “nondeterminism” is carefully de-
fined. Recall that the cell-probe model is similar to the
word RAM model, but the time complexity is measured
by the number of memory reads and writes (probes);
other operations are free. Like in the static setting, we
only consider decision dynamic problems, meaning that
the output after each update is either “yes” or “no”.
Note the following remarks.

• Readers who are familiar with the traditional com-
plexity theory may wonder why we do not consider
the Turing machine. This is because the Turing ma-
chine is not suitable for implementing dynamic al-

3Throughout the paper, we use the cell-probe and bit-probe

models interchangeably since the complexity in these models are
the same up to polylogarithmic factors.

gorithms, since we cannot access an arbitrary tape
location in O(1) time. There is no efficient algo-
rithm even for a basic data structure like the binary
search tree.

• Our results for decision problems extend naturally
to promised problems which are useful when we
discuss approximation algorithms. We do not dis-
cuss promised problems here to keep the discussions
simple.

• Readers who are familiar with the oblivious ad-
versaries assumption for randomized dynamic al-
gorithms may wonder if we consider this assump-
tion here. This assumption plays no role for de-
cision problems, since an algorithm that is correct
with high probability (w.h.p.) under this assump-
tion is also correct w.h.p. without the assumption
(in other words, its output reveals no information
about its randomness). Because of this, we do not
discuss this assumption in this paper.

We start with our main results which can be ob-
tained with appropriate definitions of complexity classes
Pdy ⊆ NPdy ⊆ PHdy for dynamic problems: These
classes are described in details later. For now they
should be thought of as analogues of the classes P, NP
and PH (polynomial hierarchy).

Theorem 2.1. (Pdy vs. NPdy) Below, the phrase “effi-
cient algorithms” refers to dynamic algorithms that are
deterministic and require polylogarithmic worst-case up-
date time and polynomial space to handle a polynomial
number of updates in the bit-probe/cell-probe model.

1. The dynamic orthogonal vector (OV) problem is
“NPdy-complete”, and there are a number of dy-
namic problems that are “NPdy-hard” in the sense
that if Pdy 6= NPdy, then they admit no efficient al-
gorithms. These problems include decision versions
of Subgraph connectivity, ST-reachability, Chan’s
subset union, and 3-vs-4 Diameter (see Tables 2, 3
for more).

2. If Pdy = NPdy then Pdy = PHdy, meaning that
all problems in PHdy (which contains the class
NPdy) admit efficient algorithms. These problems
include decision versions of k-edge Connectivity,
(1+ε)-approximate Matching,4 (1+ε)-approximate

4Technically speaking, (1 + ε)-approximate matching is a

promised or gap problem in the sense that for some input instance
all answers are correct. It is in promise− PHdy which is bigger
than PHdy . We can make the same conclusion for promised

problems: If Pdy = NPdy , then all problems in promise− PHdy

admit efficient algorithms.

mincut, Planar nearest neighbors, Chan’s subset
union and 3-vs-4 Diameter (see Tables 2, 4 for
more).

Thus, proving or disproving Pdy 6= NPdy will both
lead to interesting consequences: If Pdy 6= NPdy, then
many dynamic problems do not admit efficient algo-
rithms. Otherwise, if Pdy = NPdy, then many problems
admit efficient algorithms which are not known or even
believed to exist.

Remark: We can obtain similar results in the
word-RAM model, but we need a notion of “efficient
algorithms” that is slightly non-standard in that a
quasi-polynomial preprocessing time is allowed. (In
contrast, all our results hold in the standard cell-probe
setting.) We postpone discussing word-RAM results to
later in the paper to avoid confusions.

As another showcase, our study implies a way to
show non-reducibility, like below.

Theorem 2.2. Assuming PHdy 6⊆ AMdy ∩ coAMdy,
the k-edge connectivity problem cannot be NPdy-hard.
Consequently, there is no “efficient reduction” from the
dynamic Orthogonal Vector (OV) problem to k-edge
connectivity.

From the discussion in Section 1, recall that the k-
edge connectivity problem is currently known to admit
a polylogarithmic amortized update time algorithm for
k ≤ 2, and a O(

√
npolylog(n)) update time algorithm

for k ∈ [3, O(log n)]. It is a very important open problem
whether it admits polylogarithmic worst-case update
time. Theorem 2.2 rules out a way to prove lower
bounds and suggest that an efficient algorithm might
exist.

A more important point beyond the k-edge con-
nectivity problem is that one can prove a similar re-
sult for any dynamic problem X by showing that X ∈
AMdy ∩ coAMdy or, even better, X ∈ NPdy ∩ coNPdy.
See Section 4 for some candidate problems for X. This
is easier than showing a dynamic algorithm for X itself.
Thus, this method is an example of the by-products of
our study that we expect to be useful for developing
algorithms and lower bounds for dynamic problems in
future. See Section 2.4 for more details. As noted in
Section 1, we are not aware of any existing technique
that is capable of deriving a non-reducibility result of
this kind.

The key challenge in deriving the above results is
to come up with the right set of definitions for various
dynamic complexity classes. We provide some of these
definitions and discussions here, but defer more details
to later in the paper.

2.1 Defining the Complexity Classes Pdy and
NPdy Class Pdy. We start with Pdy, the class of
dynamic problems that admit “efficient” algorithms
in the cell-probe model. For any dynamic problem,
define its update size to be the number of bits needed
to describe each update. Note that we have not yet
defined what dynamic problems are formally. Such a
definition is needed for a proper, rigorous description
of our complexity classes, and can be found in the full
version of the paper. For an intuition, it suffices to keep
in mind that most dynamic graph problems – where
each update is an edge deletion or insertion – have
logarithmic update size (since it takes O(log n) bits to
specify an edge in an n-node graph).

Definition 2.1. (Pdy; brief) A dynamic problem
with polylogarithmic update size is in Pdy if it admits a
deterministic algorithm with polylogarithmic worst-case
update time for handling a sequence of polynomially
many updates.

Examples of problems in Pdy include connectivity
on plane graphs and predecessor; for more, see Table 1.
Note that one can define Pdy more generally to include
problems with larger update sizes. Our complexity
results hold even with this more general definition.
However, since our results are most interesting for
problems with polylogarithmic update size, we focus on
this case in this paper to avoid cumbersome notations.

Class NPdy and nondeterminism with re-
wards. Next, we introduce our complexity class NPdy.
Recall that in the static setting the class NP consists
of the set of problems that admit efficiently verifiable
proofs or, equivalently, that are solvable in polynomial
time by a nondeterministic algorithm. Our notion of
nondeterminism is captured by the proof-verification
definition where, after receiving a proof, the verifier does
not only output YES/NO, but also a reward, which is
supposed to be maximized at every step.

Before defining NPdy more precisely, we remark that
the notion of reward is a key for our NPdy-completeness
proof. Having the constraint about rewards potentially
makes NPdy contains less problems. Interestingly, all
natural problems that we are aware of remains in NPdy

even with this constraint. This might not be a big
surprise, when it is realized that in the static setting
imposing a similar constraint about the reward does not
make the class (static) NP smaller; see more discussions
below. We now define NPdy more precisely.

Definition 2.2. (NPdy; brief) A dynamic problem Π
with polylogarithmic update size is in NPdy if there is
a verifier that can do the following over a sequence of
polynomially many updates: (i) after every update, the
verifier takes the update and a polylogarithmic-size proof

as an input, and (ii) after each update, the verifier
outputs in polylogarithmic time a pair (x, y), where
x ∈ {Y ES,NO}and y is an integer (representing a
reward) with the following properties.5

1. If the current input instance is an YES-instance
and the verifier has so far always received a proof
that maximizes the reward at every step, then the
verifier outputs x = Y ES.

2. If the current input instance is a NO-instance,
then the verifier outputs x = NO regardless of the
sequence of proofs it has received so far.

To digest the above definition, first consider the
static setting. One can redefine the class NP for
static problems in a similar fashion to Definition 2.2
by removing the preprocessing part and letting the only
update be the whole input. Let us refer to this new
(static) complexity class as “reward-NP”. To show that
a static problem is in reward-NP, a verifier has to output
some reward in addition to the YES/NO answer. Since
usually a proof received in the static setting is a solution
itself, a natural choice for reward is the cost of the
solution (i.e., the proof). For example, a “proof” in
the maximum clique problem is a big enough clique,
and in this case an intuitive reward would be the size
of the clique given as a proof. Observe that this is
sufficient to show that max clique is in reward-NP. In
fact, it turns out that in the static setting the complexity
classes NP and reward-NP are equal. (Proof sketch:
Let Π be any problem in the original static NP and V
be a corresponding verifier. We extend V to V ′ which
outputs x = Y ES/NO as V and outputs y = 1 as a
reward if x = Y ES and y = 0 otherwise. It is not hard
to check that V ′ satisfies conditions in Definition 2.2.)

To further clarify Definition 2.2, we now consider
examples of some well-known dynamic problems that
happen to be in NPdy.

Example 1. (Subgraph Detection) In the dy-
namic subgraph detection problem, an n-node and
k-node graphs G and H are given at the preprocessing,
for some k = polylog(n). Each update is an edge
insertion or deletion in G. We want an algorithm to
output YES if and only if G has H as a subgraph.

This problem is in NPdy due to the following ver-
ifier: the verifier outputs x = Y ES if and only if the
proof (given after each update) is a mapping of the edges
in H to the edges in a subgraph of G that is isomorphic
to H. With output x = Y ES, the verifier gives reward
y = 1. With output x = NO, the verifier gives reward

5Later in the paper, we use x = 1 and x = 0 to represent
x = Y ES and x = NO, respectively.

y = 0. Observe that the proof is of polylogarithmic size
(since k = polylog(n)), and the verifier can calculate its
outputs (x, y) in polylogarithmic time. Observe further
that the properties stated in Definition 2.2 are satisfied:
if the current input instance is a YES-instance, then the
reward-maximizing proof is a mapping between H and
the subgraph of G isomorphic to H, causing the verifier
to output x = Y ES; otherwise, no proof will make the
verifier output x = Y ES.

The above example is in fact too simple to show the
strength of our definition that allows NPdy to include
many natural problems (for one thing, y is simply 0/1
depending on x). The next example demonstrates how
the definition allows us to develop more sophisticated
verifiers for other problems.

Example 2. (Connectivity) In the dynamic con-
nectivity problem, an n-node graph G is given at the
preprocessing. Each update is an edge insertion or dele-
tion in G. We want an algorithm to output YES if and
only if G is connected.

This problem is in NPdy due to the following veri-
fier. After every update, the verifier maintains a forest
F of G. A proof (given after each update) is an edge
insertion to F or an ⊥ symbol indicating that there is
no update to F . It handles each update as follows.

• After an edge e is inserted into G, the verifier
checks if e can be inserted into F without creating
a cycle. This can be done in O(polylog(n)) time
using a link/cut tree data structure [65]. It outputs
reward y = 0. (No proof is needed in this case.)

• After an edge e is deleted from G, the verifier checks
if F contains e. If not, it outputs reward y = 0
(no proof is needed in this case). If e is in F , the
verifier reads the proof (given after e is deleted). If
the proof is ⊥ it outputs reward y = 0. Otherwise,
let the proof be an edge e′. The verifier checks if
F ′ = F \ {e} ∪ {e′} is a forest; this can be done
in O(polylog(n)) time using a link/cut tree data
structure [65]. If F ′ is a forest, the verifier sets
F ← F ′ and outputs reward y = 1; otherwise, it
outputs reward y = −1.

After each update, the verifier outputs x = Y ES if and
only if F is a spanning tree of G.

Observe that if the verifier gets a proof that maxi-
mizes the reward after every update, the forest F will
always be a spanning forest (since inserting an edge
e′ to F has higher reward than giving ⊥ as a proof).
Thus, the verifier will always output x = Y ES for YES-
instances in this case. It is not hard to see that the
verifier never outputs x = Y ES for NO-instances, no
matter what proof it receives.

In short, a proof for the connectivity problem is the
maximal spanning forest. Since such proof is too big
to specify and verify after every update, our definition
allows such proof to be updated over input changes.
(This is as opposed to specifying the densest subgraph
from scratch every time as in Example 1.) Allowing this
is crucial for most problems to be in NPdy, but create
difficulties to prove NPdy-completeness. We remedy this
by introducing rewards.

Note that if there is no reward in Definition 2.2,
then it is even easier to show that dynamic connectivity
and other problems are in NPdy. Having an additional
constraint about rewards potentially makes less prob-
lems verifiable. Luckily, all natural problems that we
are aware of that were verifiable without rewards re-
main verifiable with rewards. Problems in NPdy include
decision/gap versions of (1 + ε)-approximate matching,
planar nearest neighbor, and dynamic 3SUM; see Ta-
ble 2 for more. The concept of rewards (introduced
while defining the class NPdy) will turn to be crucial
when we attempt to show the existence of a complete
problem in NPdy. See Section 2.2 and Section 5 for more
details.

It is fairly easy to show that Pdy ⊆ NPdy, and we
conjecture that Pdy 6= NPdy.

Previous nondeterminism in the dynamic
setting. The idea of nondeterministic dynamic algo-
rithms is not completely new. This was considered by
Husfeldt and Rauhe [39] and their follow-ups [58, 56,
75, 45, 69], and has played a key role in proving cell-
probe lower bounds in some of these papers. As dis-
cussed in [39], although it is straightforward to define
a nondeterministic dynamic algorithm as the one that
can make nondeterministic choices to process each up-
date and query, there are different ways to handle how
nondeterministic choices affect the states of algorithms
which in turns affect how the algorithms handle future
updates (called the “side effects” in [39]). For example,
in [39] nondeterminism is allowed only for answering a
query, which happens to occur only once at the very end.
In [58], nondeterministic query answering may happen
throughout, but an algorithm is allowed to write in the
memory (thus change its state) only if all nondetermin-
istic choices lead to the same memory state.

In this paper we define a different notion of non-
determinism and thus the class NPdy. It is more gen-
eral than the previous definitions in that if a dynamic
problem admits an efficient nondeterministic algorithm
according to the previous definitions, it is in our NPdy.
In a nutshell, the key differences are that (i) we allow
nondeterministic steps while processing both updates
and queries and (ii) different choices of nondetermin-
ism can affect the algorithm’s states in different ways;

however, we distinct different choices by giving them
different rewards. These differences allow us to include
more problems to our NPdy (we do not know, for ex-
ample, if dynamic connectivity admits nondeterministic
algorithms according to previous definitions).

2.2 NPdy-Completeness Here, we sketch the idea
behind our NPdy-completeness and hardness results.
We begin by introducing a problem is called dynamic
narrow DNF evaluation problem (in short, DNFdy), as
follows.

Definition 2.3. (DNFdy; informally) Initially, we
have to preprocess (i) an m-clause n-variable DNF
formula6 where each clause contains O(polylog(m))
literals, and (ii) an assignment of (boolean) values to
the variables. Each update changes the value of one
variable. After each update, we have to answer whether
the DNF formula is true or false.

It is fairly easy to see that DNFdy ∈ NPdy: After
each update, if the DNF formula happens to be true,
then the proof only needs to point towards one satisfied
clause, and the verifier can quickly check if this clause
is satisfied or not since it contains only O(polylog(m))
literals. Surprisingly, it turns out that this is also a
complete problem in the classs NPdy.

Theorem 2.3. (NPdy-completeness of DNFdy)
The DNFdy problem is NPdy-complete. This means that
DNFdy ∈ NPdy, and if DNFdy ∈ Pdy, then Pdy = NPdy.

To start with, recall the following intuition for
proving NP-completeness in the static setting (e.g. [6,
Section 6.1.2] for details): Since Boolean circuits can
simulate polynomial-time Turing machine computation
(i.e. P ⊆ P/poly), we view the computation of the
verifier V for any problem Π in NP as a circuit C.
The input of C is the proof that V takes as an input.
Then, determining whether there is an input (proof)
that satisfies this circuit (known as CircuitSAT) is NP-
complete, since such information will allow the verifier
to find a desired proof on its own. Attempting to extend
this intuition to the dynamic setting might encounter
the following roadblocks.

1. Boolean circuits cannot efficiently simulate algo-
rithms in the RAM model without losing a linear
factor in running time.Furthermore, an alternative
such as circuits with “indirect addressing” gates
seems useless, because this complex gate makes the
model more complicated. This makes it more diffi-
cult to prove NPdy-hardness.

6Recall that a DNF formula is in the form C1∨· · ·∨Cm, where
each “clause” Ci is a conjunction (AND) of literals.

2. Since the verifier has to work through several up-
dates in the dynamic setting, the YES/NO out-
put from the verifier alone is insufficient to indicate
proofs that can be useful for future updates. For ex-
ample, suppose that in Example 2 the connectivity
verifier is allowed to output only x ∈ {Y ES,NO},
and we get rid of the concept of a reward. Con-
sider a scenario where an edge e (which is part of
F) gets deleted from G, and G was disconnected
even before this deletion. In this case, the veri-
fier can indicate no difference between having e′

(i.e. finding a reconnecting edge) and ⊥ (i.e. doing
nothing) as a proof (because it has to output x = 0
in both cases). Having e′ as a proof, however, is
more useful for the future, since it helps maintain
a spanning forest.

It so happens that we can solve (ii) if the verifier
additionally outputs an integer y as a reward. Asking
more from the verifier makes less problems verifiable
(thus smaller NPdy). Luckily, all natural problems we
are aware of that were verifiable without rewards remain
verifiable with rewards!

To solve (i), we use the fact that in the cell-
probe model a polylogarithmic-update-time algorithm
can be modeled by a polylogarithmic-depth decision
assignment tree [49], which naturally leads to a complete
problem about a decision tree (we leave details here;
see Section 5 for more). It turns out that we can
reduce from this problem to DNFdy (Definition 2.3);
the intuition being that each bit in the main memory
corresponds to a boolean variable and each root-to-leaf
path in the decision assignment tree can be thought of
as a DNF clause. The only downside of this approach is
that a polylogarithmic-depth decision tree has quasi-
polynomial size. A straightforward reduction would
cause quasi-polynomial space in the cell-probe model.
By exploiting the special property of DNFdy and the
fact that the cell-probe model only counts the memory
access, we can avoid this space blowup by “hardwiring”
some space usage into the decision tree and reconstruct
some memory when needed.

The fact that the DNFdy problem is NPdy-complete
(almost) immediately implies that many well-known
dynamic problems are NPdy-hard. To explain why this
is the case, we first recall the definition of the dynamic
sparse orthogonal vector (OVdy) problem.

Definition 2.4. (OVdy) Initially, we have to prepro-
cess a collection of m vectors V = {v1, . . . , vm} where
each vj ∈ {0, 1}n, and another vector u ∈ {0, 1}n.
It is guaranteed that each vj ∈ {0, 1}n has at most
O(polylog(m)) many nonzero entries. Each update flips
the value of one entry in the vector u. After each up-

date, we have to answer if there is a vector v ∈ V that
is orthogonal to u (i.e., if uT v = 0).

The key observation is that the OVdy problem
is equivalent to the DNFdy problem, in the sense
that OVdy ∈ Pdy iff DNFdy ∈ Pdy. The proof
is relatively straightforward (the vectors vj and the
individual entries of u respectively correspond to the
clauses and the variables in DNFdy), and we defer it
to the full version of the paper. In [3], Abboud and
Williams show SETH-hardness for all of the problems
in Table 3. In fact, they actually show a reduction from
OVdy to these problems. Therefore, we immediately
obtain the following result.

Corollary 2.1. All problems in Table 3 are NPdy-
hard.

2.3 Dynamic Polynomial Hierarchy By intro-
ducing the notion of oracles, it is not hard to extend
the class NPdy into polynomial-hierarchy for dynamic
problems, denoted by PHdy. Roughly, PHdy is the
union of classes Σdyi and Πdy

i , where (i) Σdy1 = NPdy,

Πdy
1 = coNPdy, and (ii) we say that a dynamic problem

is in class Σdyi (resp. Πdy
i) if we can show that it is in

NPdy (resp. coNPdy) assuming that there are efficient
dynamic algorithms for problems in Σi−1. The details
appear in the full version of the paper.

Example 3. (k- and (<k)-edge connectivity) In
the dynamic k-edge connectivity problem, an n-node
graph G = (V,E) and a parameter k = O(polylog(n))
is given at the time of preprocessing. Each update is an
edge insertion or deletion in G. We want an algorithm
to output YES if and only if G has connectivity at least
k, i.e. removing at most k− 1 edges will not disconnect
G. We claim that this problem is in Πdy

2 . To avoid
dealing with coNPdy, we consider the complement of
this problem called dynamic (¡k)-edge connectivity,
where x = Y ES if and only if G has connectivity less
than k. We show that (¡k)-edge connectivity is in Σdy2 .

We already argued in Example 2 that dynamic
connectivity is in NPdy = Σdy1 . Assuming that there
exists an efficient (i.e. polylogarithmic-update-time)
algorithm A for dynamic connectivity, we will show
that (¡k)-edge connectivity is in NPdy. Consider the
following verifier V. After every update in G, the
verifier V reads a proof that is supposed to be a set
S ⊆ E of at most k − 1 edges. V then sends the update
to A and also tells A to delete the edges in S from G.
If A says that G is not connected at this point, then
the verifier V outputs x = Y ES with reward y = 1;
otherwise, the verifier V outputs x = NO with reward

y = 0. Finally, V tells A to add the edges in S back in
G.

Observe that if G has connectivity less than k and
the verifier always receives a proof that maximizes the
reward, then the proof will be a set of edges disconnecting
the graph and V will answer YES. Otherwise, no proof
can make V answer YES. Thus the dynamic (¡k)-edge
connectivity problem is in NPdy if A exists. In other
words, the problem is in Σdy2 .

By arguments similar to the above example, we can
show that other problems such as Chan’s subset union
and small diameter are in PHdy; see Table 4 for more.

The theorem that plays an important role in our
main conclusion (Theorem 2.1) is the following.

Theorem 2.4. If Pdy = NPdy, then PHdy = Pdy.

To get an idea how to proof the above theorem,
observe that if Pdy = NPdy, then A in Example 3 exists
and thus dynamic (¡k)-edge connectivity are in Σdy1 =
NPdy by the argument in Example 2; consequently, it is
in Pdy! This type of argument can be extended to all
other problems in PHdy.

2.4 Other Results and Remarks In previous sub-
sections, we have stated two complexity results, namely
NPdy-completeness/hardness and the collapse of PHdy

when Pdy = NPdy. With right definitions in place, it is
not a surprise that more can be proved. For example,
we obtain the following results:

1. If NPdy ⊆ coNPdy, then PHdy = NPdy ∩ coNPdy.

2. If NPdy ⊆ AMdy ∩ coAMdy, then PHdy ⊆ AMdy ∩
coAMdy.

Here, coNPdy, AMdy, and coAMdy are analogues of
complexity classes coNP, AM, and coAM. The details
appear in the full version of the paper.

While the coarse-grained complexity results in this
paper are mostly resource-centric (in contrast to fine-
grained complexity results that are usually centered
around problems), we also show that this approach
is helpful for understanding the complexity of specific
problems as well, in the form of non-reducibility. In
particular, the following results are shown in the full
version of the paper:

1. Assuming PHdy 6= NPdy ∩ coNPdy, the two state-
ments cannot hold at the same time.

(a) Connectivity is in coNPdy. (This would be the
case if it is in Pdy.)

(b) One of the following problems is NPdy-
hard: approximate minimum spanning for-
est (MSF), d-weight MSF,bipartiteness, and
k-edge connectivity.

2. k-edge connectivity is in AMdy ∩ coAMdy. Conse-
quently, assuming PHdy 6⊆ AMdy ∩ coAMdy, k-edge
connectivity cannot be NPdy-hard.

Note that both PH 6= NP ∩ coNP and PH 6⊆
AM∩coAM are widely believed in the static setting since
refuting them means collapsing PH. While we can show
that PHdy would also collapse if PHdy = NPdy∩coNPdy,
it remains open whether this is the case for PHdy ⊆
AMdy∩coAMdy; in particular is PHdy ⊇ AMdy∩coAMdy?

When a problem Y cannot be NPdy-hard, there is
no efficient reduction from an NPdy-hard problem X to
Y , where an efficient reduction is roughly to a way to
handle each update for problem X by making polyloga-
rithmic number of updates to an algorithm for Y (such
reduction would make Y an NPdy-hard problem). Con-
sequently, this rules out efficient reductions from dy-
namic OV, since it is NPdy-complete. As a result, this
rules out a common way to prove lower bounds based on
SETH, since previously this was mostly done via reduc-
tions from dynamic OV [3]. (A lower bound for dynamic
diameter is among a very few exception [3].)

2.5 Relationship to Fine-Grained Complexity
As noted earlier, it turns out that the dynamic OV prob-
lem is NPdy-complete. Since most previous reductions
from SETH to dynamic problems (in the word RAM
model) are in fact reductions from dynamic OV [3], and
since any reduction in the word RAM model applies also
in the (stronger) cell-probe model, we get many NPdy-
hardness results for free. In contrast, our results above
imply that the following two statements are equivalent:
(i) “problem Π cannot be NPdy-hard” and (ii) “there is
no efficient reduction from dynamic OV to Π”, where
“efficient reductions” are reduction that only polynomi-
ally blow up the instance size (all reductions in [3] are
efficient). In other words, we may not expect reduc-
tions from SETH that are similar to the previous ones
for k-edge connectivity, bipartiteness, etc.

Finally, we emphasize that the coarse-grained ap-
proach should be viewed as a complement of the fine-
grained approach, as the above results exemplify. We
do not expect to replace results from one approach by
those from another.

2.6 Complexity classes for dynamic problems
in the word RAM model As an aside, we managed
to define complexity classes and completeness results for
dynamic problems in the word RAM model as well. We

refer to Pdy and NPdy as RAM− Pdy and RAM− NPdy

in the word-RAM model. One caveat is that for tech-
nical reasons we need to allow for quasipolynomial pre-
processing time and space while defining the complexity
classes RAM− Pdy and RAM− NPdy. We discuss this
in more details in the full version of the paper.

3 Related Work

There are several previous attempts to classify dynamic
problems. First, there is a line of works called “dynamic
complexity theory” (see e.g. [24, 70, 63]) where the
general question asks whether a dynamic problem is in
the class called DynFO. Roughly speaking, a problem is
in DynFO if it admits a dynamic algorithm expressible
by a first-order logic. This means, in particular, that
given an update, such algorithm runs in O(1) parallel
time, but might take arbitrary poly(n) works when
the input size is n. A notion of reduction is defined
and complete problems of DynFO and related classes
are proven in [36, 70]. However, as the total work
of algorithms from this field can be large (or even
larger than computing from scratch using sequential
algorithms), they do not give fast dynamic algorithms
in our sequential setting. Therefore, this setting is
somewhat irrelevant to our setting.

Second, a problem called the circuit evaluation
problem has been shown to be complete in the following
sense. First, it is in P (the class of static problems).
Second, if the dynamic version of circuit evaluation
problem, which is defined as DNFdy where a DNF-
formula is replaced with an arbitrary circuit, admits a
dynamic algorithm with polylogarithmic update time,
then for any static problem L ∈ P, a dynamic version of
L also admits a dynamic algorithm with polylogarithmic
update time. This idea is first sketched informally since
1987 by Reif [60]. Miltersen et al. [50] then formalized
this idea and showed that other P-complete problems
listed in [51, 32] also are complete in the above sense.7

The drawback about this completeness result is that
the dynamic circuit evaluation problem is extremely
difficult. Similar to the case for static problems that
reductions from EXP-complete problems to problems in
NP are unlikely, reductions from the dynamic circuit
evaluation problem to other natural dynamic problems
studied in the field seem unlikely. Hence, this does not
give a framework for proving hardness for other dynamic
problems.

Our result can be viewed as a more fine-grained
completeness result than the above. As we show that
a very special case of the dynamic circuit evaluation

7But they also show that this is not true for all P-complete
problems.

problem which is DNFdy is already a complete problem.
An important point is that DNFdy is simple enough
that reductions to other natural dynamic problems are
possible.

Finally, Ramalingam and Reps [59] classify dynamic
problems according to some measure,8 but did not give
any reduction and completeness result.

4 Future Directions

One byproduct of our paper is a way to prove non-
reducibility. It is interesting to use this method to shed
more light on the hardness of other dynamic problems.
To do so, it suffices to show that such problem is in
AMdy ∩ coAMdy (or, even better, in NPdy ∩ coNPdy).
One particular problem is whether connectivity is in
NPdy ∩ coNPdy. It is known to be in AMdy ∩ coAMdy

due to the randomized algorithm of Kapron et al [42].
It is also in NPdy (see Example 2). The main question
is whether it is in coNPdy. (Techniques from [53, 73, 52]
almost give this, with verification time no(1) instead of
polylogarithmic.) Having connectivity in NPdy∩coNPdy
would be a strong evidence that it is in Pdy, meaning
that it admits a deterministic algorithm with polylog-
arithmic update time. Achieving such algorithm will
be a major breakthrough. Another specific question is
whether the promised version of the (2−ε) approximate
matching problem is in AMdy ∩ coAMdy. This would
rule out efficient reductions from dynamic OV to this
problem. Whether this problem admits a randomized
algorithm with polylogarithmic update time is a major
open problem. Other problems that can be studied in
this direction include approximate minimum spanning
forest (MSF), d-weight MSF,bipartiteness, dynamic set
cover, dominating set, and st-cut.

It is also very interesting to rule out efficient reduc-
tions from the following variant of the OuMv conjecture:
At the preprocessing, we are given a boolean n×n ma-
trix M and boolean n-dimensional row and column vec-
tors u and v. Each update changes one entry in either u
or v. We then have to output the value of uMv. Most
lower bounds that are hard under the OMv conjecture
[34] are via efficient reductions from this problem. It
is interesting to rule out such efficient reductions since
SETH and OMv are two conjectures that imply most
lower bounds for dynamic problems.

Now that we can prove completeness and relate
some basic complexity classes of dynamic problems, one
big direction to explore is whether more results from
coarse-grained complexity for static problems can be

8They measure the complexity dynamic algorithms by compar-

ing the update time with the size of change in input and output
instead of the size of input itself.

reconstructed for dynamic problems. Below are a few
samples.

1. Derandomization: Making dynamic algorithms de-
terministic is an important issue. Derandomiza-
tion efforts have so far focused on specific prob-
lems (e.g. [52, 53, 10, 11, 9, 13, 12, 14]). Study-
ing this issue via the class BPPdy might lead us
to the more general understanding. For example,
the Sipser-Lautermann theorem [64, 48] states that
BPP ⊆ Σ2 ∩ Π2, Yao [74] showed that the exis-
tence of some pseudorandom generators would im-
ply that P = BPP , and Impagliazzo and Wigder-
son [40] suggested that BPP = P (assuming that
any problem in E = DTIME(2O(n)) has circuit
complexity 2Ω(n)). We do not know anything simi-
lar to these for dynamic problems.

2. NP-Intermediate: Many static problems (e.g.
graph isomorphism and factoring) are considered
good candidates for being NP-intermediate, i.e. be-
ing neither in P nor NP-complete. This paper
leaves many natural problems in NPdy unproven
to be NPdy-complete. Are these problems in fact
NPdy-intermediate? The first step towards this
question might be proving an analogues of Ladner’s
theorem [44], i.e. that an NPdy-intermediate dy-
namic problem exists, assuming Pdy 6= NPdy. It is
also interesting to prove the analogue of the time-
hierarchy theorems, i.e. that with more time, more
dynamic problems can be solved. (Both theorems
are proved by diagonalization in the static setting.)

3. This work and lower bounds from fine-grained com-
plexity has focused mostly on decision problems.
There are also search dynamic problems, which al-
ways have valid solutions, and the challenge is how
to maintain them. These problems include maxi-
mal matching, maximal independent set, minimal
dominating set, coloring vertices with (∆ + 1) or
more colors, and coloring edges with (1 + ε)∆ or
more colors, where ∆ is the maximum degree (e.g.
[8, 12, 7, 66, 25, 33, 54]). These problems do not
seem to correspond to any decision problems. Can
we define complexity classes for these problems and
argue that some of them might not admit polylog-
arithmic update time? Analogues of TFNP and its
subclasses (e.g. PPAD) might be helpful here.

There are also other concepts that have not been dis-
cussed in this paper at all, such as interactive proofs,
probabilistically checkable proofs (PCP), counting prob-
lems (e.g. Toda’s theorem), relativization and other
barriers. Finally, in this paper we did not discuss amor-
tized update time. It is a major open problem whether

similar results, especially an analogue of NP-hardness,
can be proved for algorithms with amortized update
time.

5 An Overview of the NPdy-Completeness Proof

In this section, we present an overview of one of our
main technical contributions (the proof of Theorem 2.3)
at a finer level of granularity. In order to explain the
main technical insights we focus on a nonuniform model
of computation called the bit-probe model, which has
been studied since the 1970’s [30, 49].

5.1 Dynamic Complexity Classes Pdy and NPdy

We begin by reviewing (informally) the concepts of a
dynamic problem and an algorithm in the bit-probe
model. Consider any dynamic problem Dn. Here, the
subscript n serves as a reminder that the bit-probe
model is nonuniform and it also indicates that each
instance I of this problem can be specified using n
bits. We will will mostly be concerned with dynamic
decision problems, where the answer Dn(I) ∈ {0, 1} to
every instance I can be specified using a single bit. We
say that I is an YES instance if Dn(I) = 1, and a
NO instance if Dn(I) = 0. An algorithm An for this
dynamic problem Dn has access to a memory memn, and
the total number of bits available in this memory is
called the space complexity of An. The algorithm An
works in steps t = 0, 1, . . . , in the following manner.

Preprocessing: At step t = 0 (also called the preprocess-
ing step), the algorithm gets a starting instance I0 ∈ Dn
as input. Upon receiving this input, it initializes the
bits in its memory memn and then it outputs the answer
Dn(I0) to the current instance I0.

Updates: Subsequently, at each step t ≥ 1, the algo-
rithm gets an instance-update (It−1, It) as input. The
sole purpose of this instance-update is to change the
current instance from It−1 to It. Upon receiving this
input, the algorithm probes (reads/writes) some bits in
the memory memn, and then outputs the answer Dn(It)
to the current instance It ∈ Dn. The update time of An
is the maximum number of bit-probes it needs to make
in memn while handling an instance-update.

One way to visualize the above description as fol-
lows. An adversary keeps constructing an instance-
sequence (I0, I1, . . . , Ik, . . .) one step at a time. At
each step t, the algorithm An gets the corresponding
instance-update (It−1, It), and at this point it is only
aware of the prefix (I0, . . . , It). Specifically, the algo-
rithm does not know the future instance-updates. After
receiving the instance-update at each step t, the algo-
rithm has to output the answer to the current instance
Dn(It). This framework is flexible enough to capture

dynamic problems that allow for both update and query
operations, because we can easily model a query oper-
ation as an instance-update. Furthermore, w.l.o.g. we
assume that an instance-update in a dynamic problem
Dn can be specified using O(log n) bits.

For technical reasons, we will work under the fol-
lowing assumption. This assumption will be implicitly
present in the definitions of the complexity classes Pdy

and NPdy below.

Assumption 1. A dynamic algorithm An for a dy-
namic problem Dn has to handle at most poly(n) many
instance-updates.

We now define the complexity class Pdy.

Definition 5.1. (Class Pdy) A dynamic decision
problem Dn is in Pdy iff there is an algorithm An
solving Dn which has update time O(polylog(n)) and
space-complexity O(poly(n)).

In order to define the class NPdy, we first introduce
the notion of a verifier in Definition 5.2. Subsequently,
we introduce the class NPdy in Definition 5.3. We have
already discussed the intuitions behind these concepts
in Section 1 after the statement of Definition 2.2.

Definition 5.2. (Dynamic verifier) We say that a
dynamic algorithm Vn with space-complexity O(poly(n))
is a verifier for a dynamic decision problem Dn iff it
works as follows.

Preprocessing: At step t = 0, the algorithm Vn gets
a starting instance I0 ∈ Dn as input, and it outputs
an ordered pair (x0, y0) where x0 ∈ {0, 1} and y0 ∈
{0, 1}polylog(n).

Updates: Subsequently, at each step t ≥ 1, the algorithm
Vn gets an instance-update (It, It−1) and a proof πt ∈
{0, 1}polylog(n) as input, and it outputs an ordered pair
(xt, yt) where xt ∈ {0, 1} and yt ∈ {0, 1}polylog(n). The
algorithm Vn has O(polylog(n)) update time, i.e., it
makes at most O(polylog(n)) bit-probes in the memory
during each step t. Note that the output (xt, yt) depends
on the instance-sequence (I0, . . . , It) and the proof-
sequence (π1, . . . , πt) seen so far.

Definition 5.3. (Class NPdy) A decision problem
Dn is in NPdy iff it admits a verifier Vn which sat-
isfy the following properties. Fix any instance-sequence
(I0, . . . , Ik). Suppose that the verifier Vn gets I0 as in-
put at step t = 0 and the ordered pair ((It−1, It), πt) as
input at every step t ≥ 1. Then:

1. For every proof-sequence (π1, . . . , πk), we have xt =
0 for each t ∈ {0, . . . , k} where Dn(It) = 0.

Dynamic
Problems

Preprocess Update Queries Ref.

Numbers
Sum/max a set S of

numbers
insert/delete a
number in S

return
∑
x∈S x or maxx∈S x Folklore

Predecessor given x, return the maximum
y ∈ S where y ≤ x.

Geometry
2-dimensional
range counting

a set S of points
on a plane

insert/delete a
point in S

given [x1, x2]× [y1, y2], return
|S ∩ ([x1, x2]× [y1, y2])|

[55, after
Theorem

7.6.3]
Incremental
planar nearest
neighbor

insert a point to
S

given a point q, return p ∈ S
which is closest to q

[55, Theorem
7.3.4.1]

Vertical ray
shooting

a set S of
segments on a
plane

insert/delete a
segment in S

given a point q, return the
segment immediately above q

[18, Theorem
3.7]

Graphs
Dynamic
problems on
forests

a forest F
insert/delete an
edge in F s.t. F
remains a forest

given two nodes u and v, decide
if u and v are connected in F [65, 35, 5]
given a node u, return the size of
the tree containing u

many more
kinds of updates

many more kinds of query

Connectivity on
plane graphs

a plane graph G
(i.e. a planar
graph on a fixed
embedding)

insert/delete an
edge in G such
that G has no
crossing on the
embedding

given two nodes u and v, decide
if u and v are connected in G

[28, 27]

2-edge
connectivity on
plane graphs

given two nodes u and v, decide
if u and v are 2-edge connected
in G

[29]

(2 + ε)-approx.
size of maximum
matching

a general graph
G

insert/delete an
edge in G

decide whether the size of
maximum matching is at most k
or at least (2 + ε)k for some k
and constant ε > 0

[15]

Table 1: Problems in Pdy. Some problems are strictly promise problems, but our class can be extended easily to
include them.

Dynamic Problems Preprocess Update Queries

Connectivity an undirected
unweighted graph G

insert/delete an edge
in G

given two nodes u and v, decide
if u and v are connected in G

(1 + ε)-approx. size of
maximum matching

an undirected
unweighted graph G

insert/delete an edge
in G

decide whether the size of
maximum matching is at most k
or at least (1 + ε)k for some k
and constant ε > 0

Subgraph detection a graph G and H
where |V (H)| =
polylog(|V (G)|)

insert/delete an edge
in G

decide whether H is a subgraph
of G

uMv (entry update) u, v ∈ {0, 1}n and
M ∈ {0, 1}n×n

update an entry of u
or v

decide whether uTMv = 1
(multiplication over Boolean
semi-ring).

3SUM a set S of numbers insert/delete a
number in S

decide whether there is a, b, c ∈ S
where a+ b = c

Planar nearest
neighbor

a set S of points on a
plane

insert a point to S given a point q, return p ∈ S
which is closest to q

Erikson’s problem [57] a matrix M choose a row or a
column and increment
all number of such
row or column

given k, is the maximum entry in
M at least k?

Langerman’s problem
[57]

an array A given (i, x), set
A[i] = x

is there a k such that∑k
i=1A[i] = 0?

Table 2: Problems in NPdy that are not known to be in Pdy. Some problems are strictly promise problems, but
our class can be extended easily to include them.

Dynamic Problems Preprocess Update Queries

Pagh’s problem with
emptiness query [3]

A collection X of sets
X1, . . . , Xk ⊆ [n]

given i, j, insert
Xi ∩Xj into X

given i, is Xi = ∅?

Chan’s subset union
problem [3]

A collection of sets
X1, . . . , Xn ⊆ [m]. A
set S ⊆ [n].

insert/deletion an
element in S

is ∪i∈SXi = [m]?

Single source
reachability Count
(#s-reach)

a directed graph G
and a node s

insert/delete an edge count the nodes reachable from s.

2 Strong components
(SC2)

a directed graph G insert/delete an edge are there more than 2 strongly
connected components?

st-max-flow a capacitated directed
graph G and nodes s
and t

insert/delete an edge the size of s-t max flow.

Subgraph global
connectivity

a fixed undirected
graph G

turn on/off a node is a graph induced by turned on
nodes connected?

3 vs. 4 diameter an undirected graph G insert/delete an edge is a diameter of G 3 or 4?
ST -reachability a directed graph G

and sets of node S
and T

insert/delete an edge is there s ∈ S and t ∈ T where s
can reach t?

Table 3: Problems that are NPdy-hard.

Dynamic Problems Preprocess Update Queries

Small dominating set a graph G insert/delete an edge Is there a dominating set of size
at most k?

Small vertex cover a graph G insert/delete an edge Is there a vertex cover of size at
most k?

Small maximal
independent set

a graph G insert/delete an edge Is there a maximal independent
set of size at most k?

Small maximal
matching

a graph G insert/delete an edge Is there a maximal matching of
size at most k?

Chan’s Subset Union
Problem

a collection of sets
X1, . . . , Xn from

universe [m], and a
set S ⊆ [n]

insert/delete an index
in S

is ∪i∈SXi = [m]?

3 vs. 4 diameter a graph G insert/delete an edge Is the diameter of G 3 or 4?
Euclidean k-center a point set X ⊆ Rd

and a threshold T ∈ R
insert/delete a point Is there a set C ⊆ X where

|C| ≤ k and
maxu∈X minv∈C d(u, v) ≤ T

k-edge connectivity a graph G insert/delete an edge Is G k-edge connected?

Table 4: Problems in PHdy that are not known to be in NPdy. The parameter k in every problem must be at
most polylog(n) where n is the size of the instance.

2. If the proof-sequence (π1, . . . , πk) is reward-
maximizing (defined below), then we have xt = 1
for each t ∈ {0, . . . , k} with Dn(It) = 1,

The proof-sequence (π1, . . . , πk) is reward-maximizing
iff the following holds. At each step t ≥ 1, given the
past history (I0, . . . , It) and (π1, . . . , πt−1), the proof πt
is chosen in such a way that maximizes the value of yt.
We say that such a proof πt is reward-maximizing.

Just as in the static setting, we can easily prove
that Pdy ⊆ NPdy and we conjecture that Pdy 6= NPdy.
The big question left open in this paper is to resolve this
conjecture.

Corollary 5.1. We have Pdy ⊆ NPdy.

5.2 A complete problem in NPdy One of the main
results in this paper shows that a natural problem
called dynamic narrow DNF evaluation (denoted by
DNFdy) is NPdy-complete. Intuitively, this means that
(a) DNFdy ∈ NPdy, and (b) if DNFdy ∈ Pdy then
Pdy = NPdy.9 We now give an informal description
of this problem.

Dynamic narrow DNF evaluation (DNFdy): An
instance I of this problem consists of a triple (Z, C, φ),
where Z = {z1, . . . , zN} is a set of N variables, C =
{C1, . . . , CM} is a set of M DNF clauses, and φ : Z →

9To be more precise, condition (b) means that every problem
in Pdy is Pdy-reducible to DNFdy .

{0, 1} is an assignment of values to the variables. Each
clause Cj is a conjunction (AND) of at most polylog(N)
literals, where each literal is of the form zi or ¬zi for
some variable zi ∈ Z. This is an YES instance if at least
one clause C ∈ C is true under the assignment φ, and
this is a NO instance if every clause in C is false under
the assignment φ. Finally, an instance-update changes
the assignment φ by flipping the value of exactly one
variable in Z.

It is easy to see that the above problem is in NPdy.
Specifically, if the current instance is an YES instance,
then a proof πt simply points to a specific clause Cj ∈ C
that is true under the current assignment φ. The proof
πt can be encoded using O(logM) bits. Furthermore,
since each clause contains at most polylog(N) literals,
the verifier can check that the clause Cj specified
by the proof πt is true under the assignment φ in
O(polylog(N)) time. On the other hand, no proof can
fool the verifier if the current instance is a NO instance
(where every clause is false). All these observations can
be formalized in a manner consistent with Definition 5.3.
We will prove the following theorem.

Theorem 5.1. The DNFdy problem described above is
NPdy-complete.

In order to prove Theorem 5.1, we consider an
intermediate dynamic problem called First-DNFdy.

First-DNFdy: An instance I of First-DNFdy consists
of a tuple (Z, C, φ,≺). Here, the symbols Z, C and

φ denote exactly the same objects as in the DNFdy

problem described above. In addition, the symbol ≺
denotes a total order on the set of clauses C. The answer
to this instance I is defined as follows. If every clause
in C is false under the current assignment φ, then the
answer to I is 0. Otherwise, the answer to I is the first
clause Cj ∈ C according to the total order ≺ that is true

under φ. It follows that First-DNFdy is not a decision
problem. Finally, as before, an instance-update for the
First-DNFdy changes the assignment φ by flipping the
value of exactly one variable in Z.

We prove Theorem 5.1 as follows. (1) We first show
that First-DNFdy is NPdy-hard. Specifically, if there
is an algorithm for First-DNFdy with polylog update
time and polynomial space complexity, then Pdy =
NPdy. We explain this in more details in Section 5.2.1.
(2) Using a standard binary-search trick, we show
that there exists an O(polylog(n)) time reduction from
First-DNFdy to DNFdy. Specifically, this means that
if DNFdy ∈ Pdy, then we can use an algorithm for
DNFdy as a subroutine to design an algorithm for
First-DNFdy with polylog update time and polynomial
space complexity. Theorem 5.1 follows from (1) and (2),
and the observation that DNFdy ∈ NPdy.

5.2.1 NPdy-hardness of First-DNFdy Consider
any dynamic decision problem Dn ∈ NPdy. Thus, there
exists a verifier Vn for Dn with the properties mentioned
in Definition 5.3. Throughout Section 5.2.1, we assume
that there is an algorithm for First-DNFdy with polyno-
mial space complexity and polylog update time. Under
this assumption, we will show that there exists an algo-
rithm An for Dn that also has O(poly(n)) space com-
plexity and O(polylog(n)) update time. This will imply
the NPdy-hardness of First-DNFdy.

The high-level strategy: The algorithm An will use
the following two subroutines: (1) The verifier Vn for Dn
as specified in Definition 5.2 and Definition 5.3, and (2)
A dynamic algorithm A∗ that solves the First-DNFdy

problem with polylog update time and polynomial space
complexity.

To be more specific, consider any instance-sequence
(I0, . . . , Ik) for the problem Dn. At step t = 0,
after receiving the starting instance I0, the algorithm
An calls the subroutine Vn with the same input I0.
The subroutine Vn returns an ordered pair (x0, y0).
At this point, the algorithm An outputs the bit x0.
Subsequently, at each step t ≥ 1, the algorithm An
receives the instance-update (It−1, It) as input. It then
calls the subroutine A∗ in such a manner which ensures
that A∗ returns a reward-maximizing proof πt for the
verifier Vn (see Definition 5.3). This is explained in more

details below. The algorithm An then calls the verifier
Vn with the input ((It−1, It), πt), and the verifier returns
an ordered pair (xt, yt). At this point, the algorithm An
outputs the bit xt.

To summarize, the algorithm An uses A∗ as a
dynamic subroutine to construct a reward-maximizing
proof-sequence (π1, . . . , πk) – one step at a time. Fur-
thermore, after each step t ≥ 1, the algorithm An calls
the verifier Vn with the input ((It−1, It), πt). The ver-
ifier Vn returns (xt, yt), and the algorithm An outputs
xt. Item (1) in Definition 5.3 implies that the algo-
rithm An outputs 0 on all the NO instances (where
Dn(It) = 0). Since the proof-sequence (π1, . . . , πk) is
reward-maximizing, item (2) in Definition 5.3 implies
that the algorithm An outputs 1 on all the YES in-
stances (where Dn(It) = 1). So the algorithm An al-
ways outputs the correct answer and solves the problem
Dn. We now explain how the algorithm An calls the
subroutine A∗, and then analyze the space complexity
and update time of An. The key observation is that we
can represent the verifier Vn as a collection of decision
trees, and each root-to-leaf path in each of these trees
can be modeled as a DNF clause.

The decision trees that define the verifier Vn:
Let memVn denote the memory of the verifier Vn. We
assume that during each step t ≥ 1, the instance-update

(It−1, It) is written in a designated region mem
(0)
Vn ⊆

memVn of the memory, and the proof πt is written

in another designated region mem
(1)
Vn ⊆ memVn of the

memory. Each bit in memVn can be thought of as
a boolean variable z ∈ {0, 1}. We view the region

memVn \ mem
(1)
Vn as a collection of boolean variables Z =

{z1, . . . , zN} and the contents of memVn \ mem
(1)
Vn as an

assignment φ : Z → {0, 1}. For example, if φ(zj) = 1
for some zj ∈ Z, then it means that the bit zj in

memVn \ mem
(1)
Vn is currently set to 1. Upon receiving

an input ((It−1, It), πt), the verifier Vn makes some

probes in memVn \ mem
(1)
Vn according to some pre-defined

procedure, and then outputs an answer (xt, yt). This
procedure can be modeled as a decision tree Tπt

. Each
internal node (including the root) in this decision tree
is either a ”read” node or a ”write” node. Each read-
node has two children and is labelled with a variable
z ∈ Z. Each write-node has one child and is labelled
with an ordered pair (z, λ), where z ∈ Z and λ ∈ {0, 1}.
Finally, each leaf-node of Tπt

is labelled with an ordered
pair (x, y), where x ∈ {0, 1} and y ∈ {0, 1}polylog(n).
Upon receiving the input ((It−1, It), πt), the verifier Vn
traverses this decision tree Tπt . Specifically, it starts
at the root of Tπt

, and then inductively applies the
following steps until it reaches a leaf-node.

• Suppose that it is currently at a read-node of Tπt

labelled with z ∈ Z. If φ(z) = 0 (resp. φ(z) = 1),
then it goes to the left (resp. right) child of
the node. On the other hand, suppose that it is
currently at a write-node of Tπt which is labelled
with (z, λ). Then it writes λ in the memory-bit z
(by setting φ(z) = λ) and then moves on to the
only child of this node.

Finally, when it reaches a leaf-node, the verifier Vn
outputs the corresponding label (x, y). This is the way
the verifier operates when it is called with an input
((It−1, It), πt). The depth of the decision tree (the
maximum length of any root-to-leaf path) is at most
polylog(n), since as per Definition 5.2 the verifier makes
at most polylog(n) many bit-probes in the memory
while handling any input.

Each possible proof π for the verifier can be specified
using polylog(n) bits. Hence, we get a collection of
O(2polylog(n)) many decision trees T = {Tπ} – one tree
Tπ for each possible input π. This collection of decision
trees T completely characterizes the verifier Vn.

DNF clauses corresponding to a decision tree
Tπt

: Suppose that the proof π is given as part of the
input to the verifier during some update step. Consider
any root-to-leaf path P in a decision tree Tπ. We can
naturally associate a DNF clause CP corresponding to
this path P . To be more specific, suppose that the
path P traverses a read-node labelled with z ∈ Z
and then goes to its left (resp. right) child. Then
we have a literal ¬z (resp. z) in the clause CP that
corresponds to this read-node.10 The clause CP is the
conjunction (AND) of these literals, and CP is true
iff the verifier Vn traverses the path P when π is the
proof given to it as part of the input. Let C = {CP :
P is a root-to-leaf path in some tree Tπ ∈ T } be the
collection of all these DNF clauses.

Defining a total order ≺ over C: We now define
a total order ≺ over C which satisfies the following
property: Consider any two root-to-leaf paths P and
P ′ in the collection of decision trees T . Let (x, y) and
(x′, y′) respectively denote the labels associated with the
leaf nodes of the paths P and P ′. If CP ≺ CP ′ , then
y ≥ y′. Thus, the paths with higher y values appear
earlier in ≺.

Finding a reward-maximizing proof: Suppose that
(I0, . . . , It−1) is the instance-sequence of Dn received by
An till now. By induction, suppose that An has man-
aged to construct a reward-maximizing proof-sequence
(π1, . . . , πt−1) till this point, and has fed this as input to

10W.l.o.g. we can assume that no two read nodes on the same
path are labelled with the same variable.

the verifier Vn (which is used as a subroutine). At the
present moment, suppose that An receives an instance-
update (It−1, It) as input. Our goal now is to find a
reward-maximizing proof πt at the current step t.

Consider the tuple (Z, C, φ,≺) where

Z = memVn \ mem
(1)
Vn is the set of variables, C = {CP :

P is a root-to-leaf path in some decision tree Tπ} is
the set of DNF clauses, the assignment φ : Z → {0, 1}
reflects the current contents of the memory-bits in

memVn \ mem
(1)
Vn , and ≺ is the total ordering over C

described above. Let CP ′ ∈ C be the answer to this
First-DNFdy instance (Z, C, φ,≺), and suppose that the
path P ′ belongs to the decision tree Tπ′ corresponding
to the proof π′. A moment’s thought will reveal that
πt = π′ is the desired reward-maximizing proof at step
t we were looking for, because of the following reason.
Let (x′, y′) be the label associated with the leaf-node
in P ′. By definition, if the verifier gets the ordered
pair ((It−1, It), π

′) as input at this point, then it will
traverse the path P ′ in the decision tree Tπ′ and return
the ordered pair (x′, y′). Furthermore, the path P ′

comes first according to the total ordering ≺, among
all the paths that can be traversed by the verifier at
this point. Hence, the path P ′ is chosen in such a way
that maximizes y′, and accordingly, we conclude that
yt = y′ is a reward-maximizing proof at step t.

Wrapping up: Handling an instance-update
(It−1, It). To summarize, when the algorithm An re-
ceives an instance-update (It−1, It), it works as follows.
It first writes down in the instance-update (It−1, It)

in mem
(0)
Vn and accordingly updates the assignment φ :

Z → {0, 1}. It then calls the subroutine A∗ on the
First-DNFdy instance (Z, C, φ,≺). The subroutine A∗
returns a reward-maximizing proof πt. The algorithm
An then calls the verifier Vn as a subroutine with the or-
dered pair ((It−1, It), πt) as input. The verifier updates
at most polylog(n) many bits in memVn and returns an
ordered pair (xt, yt). The algorithm An now updates
the assignment φ : Z → {0, 1} to ensure that it is syn-
chronized with the current contents of memVn . This re-
quires O(polylog(n)) many calls to the subroutine A∗
for the First-DNFdy instance. Finally, An outputs the
bit xt ∈ {0, 1}.

Bounding the update time of An: Notice that after
each instance-update (It−1, It), the algorithm An makes
one call to the verifier Vn and at most polylog(n) many
calls to A∗. By Definition 5.2, the call to Vn requires
O(polylog(n)) time. Furthermore, we have assumed
that A∗ has polylog update time. Hence, each call to
A∗ takes O(polylog(N,M)) = O(polylog(2polylog(n))) =
O(polylog(n)) time. Since the algorithm An makes at
most polylog(n) many calls to A∗, the total time spent

in these calls is still O(polylog(n)). Thus, we conclude
that An has O(polylog(n)) update time.

Bounding the space complexity of An: The space
complexity of An is dominated by the space complexi-
ties of the subroutines Vn and A∗. As per Definition 5.2,
the verifier Vn has space complexity O(poly(n)).

We next bound the memory space used by the
subroutine A∗. Note that in the First-DNFdy in-
stance, we have a DNF clause CP ∈ C for every root-
to-leaf path P of every decision tree Tπ. Since a
proof π consists of polylog(n) bits, there are at most
O(2polylog(n)) many decision trees of the form Tπ. Fur-
thermore, since every root-to-leaf path is of length at
most polylog(n), each decision tree Tπ has at most
O(2polylog(n)) many root-to-leaf paths. These two ob-
servations together imply that the set of clauses C is of
size at most O

(
2polylog(n) · 2polylog(n)

)
= O(2polylog(n)).

Furthermore, as per Definition 5.2 there are at most
O(poly(n)) many bits in the memory memVn , which
means that there are at most O(poly(n)) many vari-
ables in Z. Thus, the First-DNFdy instance (Z, C, φ,≺)
is defined over a set of N = poly(n) variables and a
set of M = 2polylog(n) clauses (where each clause con-
sists of at most polylog(n) many literals). We have as-
sumed that A∗ has quasipolynomial space complexity.
Thus, the total space needed by the subroutine A∗ is
O(2polylog(N,M)) = O(2polylog(n)).

Unfortunately, the bound of 2polylog(n) is too large
for us. Instead, we will like to have a space complexity
of O(poly(n)). Towards this end, we introduce a new
subroutine S∗n that acts as an interface between the
subroutine A∗ and the memory memA∗ used by A∗
(the details appear in the full version of the paper).
Specifically, as we observed in the preceding paragraph,
the memory memA∗ consists of 2polylog(n) many bits
and we cannot afford to store all these bits during the
execution of the algorithm An. The subroutine S∗n has
the nice properties that (a) it has space complexity
O(poly(n)) and (b) it can still return the content of
a given bit in memA∗ in O(polylog(n)) time. In other
words, the subroutine S∗n stores the contents of memA∗

in an implicit manner, and whenever the subroutine A∗
wants to read/write a given bit in memA∗ , it does that by
calling the subroutine S∗n. This ensures that the overall
space complexity of A∗ remains O(poly(n)). However,
the subroutine S∗n will be able perform its designated
task with polylog(n) update time and poly(n) space
complexity only if the algorithm An is required to
handle at most poly(n) many instance-updates after the
preprocessing step. This is why we need Assumption 1
while defining the complexity classes Pdy and NPdy.

To summarize, we have shown that the algorithm

An has polylog update time and polynomial space
complexity. This implies that the First-DNFdy problem
is NPdy-hard.

Acknowledgement

Nanongkai and Saranurak thank Thore Husfeldt for
bringing [39] to their attention.

This project has received funding from the Eu-
ropean Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 715672. Nanongkai
and Saranurak were also partially supported by the
Swedish Research Council (Reg. No. 2015-04659).

References

[1] S. Aaronson. P=?NP. Electronic Colloquium on
Computational Complexity (ECCC), 24:4, 2017. 2

[2] A. Abboud, K. Bringmann, H. Dell, and J. Nederlof.
More consequences of falsifying SETH and the orthogo-
nal vectors conjecture. In STOC, pages 253–266. ACM,
2018. 2

[3] A. Abboud and V. V. Williams. Popular conjectures
imply strong lower bounds for dynamic problems. In
FOCS, pages 434–443, 2014. 2, 8, 9, 13

[4] D. Aharonov and O. Regev. Lattice problems in NP
∩ coNP. J. ACM, 52(5):749–765, 2005. announced at
FOCS’04. 2

[5] S. Alstrup, J. Holm, K. de Lichtenberg, and M. Tho-
rup. Maintaining information in fully dynamic trees
with top trees. ACM Trans. Algorithms, 1(2):243–264,
2005. 12

[6] S. Arora and B. Barak. Computational Complexity - A
Modern Approach. Cambridge University Press, 2009.
7

[7] S. Assadi, K. Onak, B. Schieber, and S. Solomon.
Fully dynamic maximal independent set with sublinear
update time. In STOC, pages 815–826. ACM, 2018. 10

[8] S. Baswana, M. Gupta, and S. Sen. Fully dynamic
maximal matching in o(log n) update time. SIAM J.
Comput., 44(1):88–113, 2015. Announced at FOCS’11.
10

[9] A. Bernstein. Deterministic partially dynamic sin-
gle source shortest paths in weighted graphs. In
ICALP, volume 80 of LIPIcs, pages 44:1–44:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. 10

[10] A. Bernstein and S. Chechik. Deterministic decremen-
tal single source shortest paths: beyond the o(mn)
bound. In STOC, pages 389–397. ACM, 2016. 10

[11] A. Bernstein and S. Chechik. Deterministic partially
dynamic single source shortest paths for sparse graphs.
In SODA, pages 453–469. SIAM, 2017. 10

[12] S. Bhattacharya, D. Chakrabarty, M. Henzinger, and
D. Nanongkai. Dynamic algorithms for graph coloring.
In SODA, pages 1–20. SIAM, 2018. 10

[13] S. Bhattacharya, M. Henzinger, and G. F. Italiano.
Deterministic fully dynamic data structures for vertex
cover and matching. SIAM J. Comput., 47(3):859–887,
2018. 10

[14] S. Bhattacharya, M. Henzinger, and D. Nanongkai.
New deterministic approximation algorithms for fully
dynamic matching. In STOC, pages 398–411. ACM,
2016. 10

[15] S. Bhattacharya, M. Henzinger, and D. Nanongkai.
Fully dynamic approximate maximum matching and

minimum vertex cover in O(log3 n) worst case up-
date time. In Proceedings of the Twenty-Eighth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, Jan-
uary 16-19, pages 470–489, 2017. 12

[16] M. L. Carmosino, J. Gao, R. Impagliazzo, I. Miha-
jlin, R. Paturi, and S. Schneider. Nondeterministic
extensions of the strong exponential time hypothesis
and consequences for non-reducibility. In ITCS, pages
261–270. ACM, 2016. 3

[17] D. Chakraborty, L. Kamma, and K. G. Larsen. Tight
cell probe bounds for succinct boolean matrix-vector
multiplication. In STOC, pages 1297–1306. ACM,
2018. 3

[18] T. M. Chan and Y. Nekrich. Towards an optimal
method for dynamic planar point location. In IEEE
56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 Octo-
ber, 2015, pages 390–409, 2015. 12

[19] A. Condon. The complexity of stochastic games. Inf.
Comput., 96(2):203–224, 1992. 2

[20] S. Cook. The P versus NP problem. The millennium
prize problems, page 86, 2006. 2

[21] S. A. Cook. The importance of the P versus NP
question. J. ACM, 50(1):27–29, 2003. 2

[22] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Ned-
erlof, Y. Okamoto, R. Paturi, S. Saurabh, and
M. Wahlström. On problems as hard as CNF-SAT.
ACM Trans. Algorithms, 12(3):41:1–41:24, 2016. 2

[23] E. Dantsin and A. Wolpert. Exponential complexity
of satisfiability testing for linear-size boolean formulas.
In CIAC, volume 7878 of Lecture Notes in Computer
Science, pages 110–121. Springer, 2013. 2

[24] S. Datta, R. Kulkarni, A. Mukherjee, T. Schwentick,
and T. Zeume. Reachability is in dynfo. In ICALP
(2), volume 9135 of Lecture Notes in Computer Science,
pages 159–170. Springer, 2015. 9

[25] Y. Du and H. Zhang. Improved algorithms for
fully dynamic maximal independent set. CoRR,
abs/1804.08908, 2018. 10

[26] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nis-
senzweig. Sparsification-a technique for speeding up
dynamic graph algorithms (extended abstract). In
FOCS, pages 60–69. IEEE Computer Society, 1992. 1

[27] D. Eppstein, G. F. Italiano, R. Tamassia, R. E. Tar-
jan, J. Westbrook, and M. Yung. Maintenance of a
minimum spanning forest in a dynamic plane graph.
J. Algorithms, 13(1):33–54, 1992. 12

[28] G. N. Frederickson. Data structures for on-line up-
dating of minimum spanning trees, with applications.
SIAM J. Comput., 14(4):781–798, 1985. 1, 12

[29] G. N. Frederickson. Ambivalent data structures for
dynamic 2-edge-connectivity and k smallest spanning
trees. SIAM J. Comput., 26(2):484–538, 1997. 12

[30] M. L. Fredman. Observations on the complexity
of generating quasi-gray codes. SIAM J. Comput.,
7(2):134–146, 1978. 11

[31] J. Gao, R. Impagliazzo, A. Kolokolova, and R. R.
Williams. Completeness for first-order properties on
sparse structures with algorithmic applications. In
SODA, pages 2162–2181. SIAM, 2017. 2

[32] R. Greenlaw, J. Hoover, and W. L. Ruzzo. A com-
pendium of problems complete for p (preliminary).
1991. 9

[33] M. Gupta and S. Khan. Simple dynamic algorithms for
maximal independent set and other problems. CoRR,
abs/1804.01823, 2018. 10

[34] M. Henzinger, S. Krinninger, D. Nanongkai, and
T. Saranurak. Unifying and strengthening hardness for
dynamic problems via the online matrix-vector multi-
plication conjecture. In STOC, pages 21–30, 2015. 2,
3, 10

[35] M. R. Henzinger and V. King. Randomized fully
dynamic graph algorithms with polylogarithmic time
per operation. J. ACM, 46(4):502–516, 1999. appeared
in STOC’95. 1, 12

[36] W. Hesse and N. Immerman. Complete problems for
dynamic complexity classes. In LICS, page 313. IEEE
Computer Society, 2002. 9

[37] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-
logarithmic deterministic fully-dynamic algorithms for
connectivity, minimum spanning tree, 2-edge, and
biconnectivity. In STOC, pages 79–89. ACM, 1998.
1

[38] J. Holm, E. Rotenberg, and M. Thorup. Dynamic

bridge-finding in Õ(log2 n) amortized time. In SODA,
pages 35–52. SIAM, 2018. 1

[39] T. Husfeldt and T. Rauhe. New lower bound tech-
niques for dynamic partial sums and related problems.
SIAM J. Comput., 32(3):736–753, 2003. 6, 17

[40] R. Impagliazzo and A. Wigderson. P = BPP if E
requires exponential circuits: Derandomizing the XOR
lemma. In STOC, pages 220–229. ACM, 1997. 2, 10

[41] H. Jahanjou, E. Miles, and E. Viola. Local reductions.
In ICALP (1), volume 9134 of Lecture Notes in Com-
puter Science, pages 749–760. Springer, 2015. 2

[42] B. M. Kapron, V. King, and B. Mountjoy. Dy-
namic graph connectivity in polylogarithmic worst
case time. In Proceedings of the Twenty-Fourth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, New Orleans, Louisiana, USA, January
6-8, 2013, pages 1131–1142, 2013. 1, 10

[43] A. R. Klivans and D. van Melkebeek. Graph noni-
somorphism has subexponential size proofs unless the
polynomial-time hierarchy collapses. SIAM J. Com-
put., 31(5):1501–1526, 2002. announced at STOC’99.

2
[44] R. E. Ladner. On the structure of polynomial time

reducibility. J. ACM, 22(1):155–171, 1975. 2, 10
[45] K. G. Larsen. Logarithmic cell probe lower bounds for

non-deterministic static data structures. 6
[46] K. G. Larsen, O. Weinstein, and H. Yu. Crossing the

logarithmic barrier for dynamic boolean data structure
lower bounds. STOC, 2018. 2

[47] K. G. Larsen and R. R. Williams. Faster online matrix-
vector multiplication. In SODA, pages 2182–2189.
SIAM, 2017. 3

[48] C. Lautemann. BPP and the polynomial hierarchy.
Inf. Process. Lett., 17(4):215–217, 1983. 10

[49] P. B. Miltersen. Cell probe complexity - a survey. In In
19th Conference on the Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS),
1999. Advances in Data Structures Workshop, 1999. 7,
11

[50] P. B. Miltersen, S. Subramanian, J. S. Vitter, and
R. Tamassia. Complexity models for incremental
computation. Theor. Comput. Sci., 130(1):203–236,
1994. 9

[51] S. Miyano, S. Shiraishi, and T. Shoudai. A list of
P-complete problems. Kyushu Univ., Res. Inst. of
Fundamental Information Science, 1990. 9

[52] D. Nanongkai and T. Saranurak. Dynamic spanning
forest with worst-case update time: adaptive, las vegas,

and o(n1/2 - ε)-time. In STOC, pages 1122–1129.
ACM, 2017. 1, 10

[53] D. Nanongkai, T. Saranurak, and C. Wulff-Nilsen. Dy-
namic minimum spanning forest with subpolynomial
worst-case update time. In FOCS, pages 950–961.
IEEE Computer Society, 2017. 1, 10

[54] K. Onak, B. Schieber, S. Solomon, and N. Wein.
Fully dynamic MIS in uniformly sparse graphs. In
ICALP, volume 107 of LIPIcs, pages 92:1–92:14.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2018. 10

[55] M. H. Overmars. Design of Dynamic Data Structures.
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1987. 12

[56] M. Patrascu. Lower Bound Techniques for Data Struc-
tures. PhD thesis, Cambridge, MA, USA, 2008.
AAI0821553. 6

[57] M. Patrascu. Towards polynomial lower bounds for
dynamic problems. In STOC, pages 603–610. ACM,
2010. 2, 13

[58] M. Patrascu and E. D. Demaine. Logarithmic lower
bounds in the cell-probe model. SIAM J. Comput.,
35(4):932–963, 2006. announced at STOC’04 and
SODA’04. 1, 6

[59] G. Ramalingam and T. W. Reps. On the computa-
tional complexity of dynamic graph problems. Theor.
Comput. Sci., 158(1&2):233–277, 1996. 10

[60] J. H. Reif. A topological approach to dynamic graph
connectivity. Inf. Process. Lett., 25(1):65–70, 1987. 9

[61] P. Sankowski. Faster dynamic matchings and vertex
connectivity. In SODA, pages 118–126. SIAM, 2007. 2

[62] R. Santhanam and S. Srinivasan. On the limits of
sparsification. In ICALP (1), volume 7391 of Lecture
Notes in Computer Science, pages 774–785. Springer,
2012. 2

[63] T. Schwentick and T. Zeume. Dynamic complexity:
recent updates. SIGLOG News, 3(2):30–52, 2016. 9

[64] M. Sipser. A complexity theoretic approach to ran-
domness. In STOC, pages 330–335. ACM, 1983. 10

[65] D. D. Sleator and R. E. Tarjan. A data structure for
dynamic trees. In STOC, pages 114–122. ACM, 1981.
6, 12

[66] S. Solomon and N. Wein. Improved dynamic graph
coloring. In ESA, volume 112 of LIPIcs, pages 72:1–
72:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2018. 10

[67] M. Thorup. Near-optimal fully-dynamic graph connec-
tivity. In STOC, pages 343–350. ACM, 2000. 1

[68] M. Thorup. Fully-dynamic min-cut. In STOC, pages
224–230. ACM, 2001. 2

[69] Y. Wang and Y. Yin. Certificates in data structures. In
ICALP (1), volume 8572 of Lecture Notes in Computer
Science, pages 1039–1050. Springer, 2014. 6

[70] V. Weber and T. Schwentick. Dynamic complexity
theory revisited. In STACS, volume 3404 of Lecture
Notes in Computer Science, pages 256–268. Springer,
2005. 9

[71] R. Williams. Improving exhaustive search implies
superpolynomial lower bounds. SIAM J. Comput.,
42(3):1218–1244, 2013. Announced at STOC’10. 2

[72] R. R. Williams. Some estimated likelihoods for com-
putational complexity. 2018. 2

[73] C. Wulff-Nilsen. Fully-dynamic minimum spanning
forest with improved worst-case update time. In
STOC, pages 1130–1143. ACM, 2017. 1, 10

[74] A. C. Yao. Theory and applications of trapdoor
functions (extended abstract). In FOCS, pages 80–91.
IEEE Computer Society, 1982. 10

[75] Y. Yin. Cell-probe proofs. TOCT, 2(1):1:1–1:17, 2010.
6

	1 Introduction
	2 Our Contributions in Details
	2.1 Defining the Complexity Classes Pdy and NPdy
	2.2 NPdy-Completeness
	2.3 Dynamic Polynomial Hierarchy
	2.4 Other Results and Remarks
	2.5 Relationship to Fine-Grained Complexity
	2.6 Complexity classes for dynamic problems in the word RAM model

	3 Related Work
	4 Future Directions
	5 An Overview of the NPdy-Completeness Proof
	5.1 Dynamic Complexity Classes Pdy and NPdy
	5.2 A complete problem in NPdy
	5.2.1 NPdy-hardness of First-DNFdy

