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Abstract

Background: There is widespread concern across the clinical and research communities that clinical trials,
powered for patient reported outcomes, testing new surgical procedures are often expensive and
time-consuming, particular when the new intervention is shown to be no better than the standard.
Conventional (non-adaptive) randomized controlled trials (RCTs) are perceived as being particularly inefficient
in this setting. Therefore, we have developed an adaptive group sequential design that allows early endpoints
to inform decision making and show, through simulations and a worked example, that these designs are feasible
and often preferable to conventional non-adaptive designs. The methodology is motivated by an on-going
clinical trial investigating a saline-filled balloon, inserted above the main joint of the shoulder at the end of
arthroscopic debridement, for treatment of tears of rotor cuff tendons. This research question and setting is
typical of many studies undertaken to assess new surgical procedures.

Methods: Test statistics are presented, based on the setting of two early outcomes, and methods for
estimation of sequential stopping boundaries are described. A framework for the implementation of simulations
to evaluate design characteristics is also described.

Results: Simulations show that designs with one, two and three early looks are feasible and, with appropriately
chosen futility stopping boundaries, have appealing design characteristics. A number of possible design options
are described that have good power, and have high probability of stopping for futility if there is no evidence of
a treatment effect at early looks. A worked example, with code in R, provides a practical demonstration of how
the design might work in a real study.

Conclusions: In summary, we show that adaptive designs are feasible and could work in practice. We describe
the operating characteristics of the designs and provide guidelines for appropriate values for the stopping
boundaries for the START:REACTS (Sub-acromial spacer for Tears Affecting Rotator cuff Tendons: a
Randomised, Efficient, Adaptive Clinical Trial in Surgery) study.

Trial registration: ISRCTN Registry: ISRCTN17825590. Registered on 5th March 2018.
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Background
New surgical procedures are usually introduced based on what a surgeon believes

might benefit patients and nothing more. While pharmaceuticals undergo rigorous

clinical trials before introduction, this is not the case for surgical procedures, which

are often introduced based purely on basic science (such as cadaveric testing) or

small case series data only. There is a need to develop new processes and methodol-
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ogy to introduce surgical procedures safely [1–3], with early randomised controlled

trials (RCTs) in specialist centres used to determine whether a treatment is likely to

be safe, clinically effective and cost effective prior to widespread uptake. Large clin-

ical trials powered for patient reported outcomes are typically expensive and often

take more than five years from award to completion. Ineffective, unsafe and costly

treatments may be used for many years before they are removed from practice. This

is clearly unacceptable and unethical. Conversely, very effective treatments may be

withheld from widespread practice until trials are complete, leading to long delays in

the delivery of worthwhile treatments for patients. Trial designs are required which

can efficiently and rapidly determine that a procedure is ineffective or harmful, but

will also adapt to demonstrate superiority if the technique is a genuine improve-

ment on standard care. There is a growing awareness amongst both funders and

researchers that conventional clinical trial designs are not the best option in many

settings, and that novel adaptive design methods offer the potential to undertake

clinical trials in a much more flexible manner, whilst retaining trial integrity.

An adaptive clinical trial allows for prospectively planned changes to be made to

some aspects of the design, as it proceeds, using data collected from participants

recruited into the study. These types of designs have grown in popularity in recent

years [4] providing flexibility for trialists to, for instance, refine sample sizes, drop

interventions (or doses of a drug), identify and focus recruitment on responsive sub-

groups (enrichment) or stop studies early [5]. For trials of new surgical interventions

the option to potentially stop the study early, has particular appeal.The advantage

of stopping a trial early are twofold. First in many widely encountered settings it is

likely to make the trial design more efficient [5, 6]. For instance, if a test treatment

is in truth much less effective than initially anticipated (or is totally ineffective),

then the expected sample size and duration of a design that allows early stopping

will be less than a comparable conventional fixed sample size (non-adaptive) design.

Second, stopping a study early because an intervention is shown to be ineffective

(under the null hypothesis) or conversely is shown to be effective (under the alter-

native) is clearly ethically beneficial, as it allows people to receive better treatments

faster. Adaptive designs offer the potential of considerable advantages when com-

pared to more conventional fixed designs, however there are often barriers to their

implementation [7], and disadvantages such as the requirement to use or develop

more complex statistical tools, the additional pressures on data monitoring and

collection and the maintenace of trial integrity [8].

In surgical trials, participants are often routinely followed-up at a number of occa-

sions (e.g. 3, 6 and 12 months) and the main study outcome(s) collected at each

occasion. Therefore, at an interim analyses there will be some participants with

3m data, some with 3m and 6m data and some with 3m, 6m and 12m data. If

interim analyses are limited to only those participants with 12m data (primary

outcome), then the opportunities for early stopping if there is evidence to support

either treatment futility or efficacy may well be severely limited due to time con-

straints; i.e. recruitment may well have completed before enough 12m outcome data

are available for reliable decision making. If early endpoints are correlated with the

definitive (final) study endpoint, then clearly an analysis that ignores the early

endpoints for interim decision making is likely to be inefficient. Stallard [9] showed
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that using short-term (or what others often call early endpoint) data, in the setting

of a seamless phase II/III clinical trial with treatment selection with a single early

endpoint, leads to increases in statistical power when these data are correlated with

the primary endpoint.

As a consequence of the perceived lack of efficiency and inflexibility of traditional

RCTs, the UK National Institute for Health Research [10] is funding a surgical

RCT that will use a novel adaptive study design approach, developed specifically

for the evaluation of new surgical procedures (Efficacy and Mechanism Evaluation

Programme: 16/61 Evaluation of new surgical procedures through the use of novel

study designs). This RCT provides the motivation for the work outlined here. In

this paper we adapt the approach previously described by Stallard [9], which used

a single early endpoint in a treatment selection design. Here we generalise to the

setting with more than one early endpoint for comparing two treatment groups [11],

and outline how the methodology can be used for interim decision making using an

ongoing study of sub-acromial spacers for rotator cuff tendon tears as an exemplar.

We start by providing the clinical context and then develop a model for the dis-

tribution of the outcomes, and give an expression for an appropriate test statistic

and describe how inferences and decisions about stopping are made in the chosen

setting. Simulations are undertaken and operating characteristics are illustrated for

a wide range of design options. The aim of the work described here is to outline

the process undertaken to develop a design for the specific trial that motivated

this work, the final selection of the design options for that study will be made by

and remain confidential within the study team. A practical worked example, using

synthetic data, is used to explain how the selected design would work in practice.

Although the focus here is on a particular surgical intervention and a specific trial,

we believe that the methodology described will have wider application for many

other clinical procedures in areas outside of the chosen setting.

Clinical context

The rotator cuff is a group of muscles around the shoulder that help to stabilise

the joint and initiate movement. Tears of the tendons of the rotator cuff, typically

where they attach onto the humerus, are very common. Patients may present with

persisting pain, loss of movement, and substantial limitations in their activities of

daily living. Treatment often consists of physiotherapy but if this is not successful

then surgery to repair the tear may be required. Sometimes the tears cannot be

repaired and there are very few effective treatments in this situation. Arthroscopic

debridement has traditionally been used in this setting, it is an operation to clear

space around the tendons and shoulder to allow it to move more freely and with less

pain. There are concerns that this operation has little benefit over non-operative

care [12], leading to calls for innovative solutions to treat this painful and disabling

condition [13]. A newly available treatment option is a saline-filled balloon inserted

above the main joint of the shoulder at the end of an arthroscopic debridement;

the InSpace balloon device [14]. It is simple to deploy and adds less than 10 min-

utes to the operation. However, it is costly and evidence for efficacy is scant [15].

It provides a cushion inside the shoulder joint that should improve biomechanics
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and hence reduce pain and improve shoulder function. We are running an adaptive,

patient-assessor blinded, RCT across multiple centres in the UK, comparing stan-

dard arthroscopic debridement to standard arthroscopic debridement plus insertion

of the InSpace balloon.

Methods
START:REACTS study

The START:REACTS study [16] (Sub-acromial spacer for Tears Affecting Rotator

cuff Tendons: a Randomised, Efficient, Adaptive Clinical Trial in Surgery) com-

menced recruitment in autumn 2018; ISRCTN registration ISRCTN17825590 [17].

Recruitment is expected to take 24 months. In the following subsections we discuss

important issues that motivated and determined the final study design, and provide

a mathematical description of the methods that will be used to allow the possibility

of early stopping.

Study outcomes

The primary outcome for the START:REACTS study is the Constant-Murley (C-M)

shoulder score at 12 months (12m) [18, 19], which is widely used in trials, accepted

by surgeons and has good reliability and responsiveness [20–23]; early outcomes will

also be collected at 3m and 6m post-operation. Based on a recent meta-analysis, it

is expected that the C-M score reaches a plateau by 12m after intervention for a

rotator cuff tear [24]. The scoring system consists of four subscales (pain, activities

of daily living, strength and range of motion) that are combined to give a score out

of 100 (perfect function).

Sample size

A minimum clinically important difference (MCID) for the Constant-Murley (C-M)

score of 10 units has been widely used for other trials [12, 25, 26]. For the purposes

of analysis, the C-M score is considered to be approximately normally distributed

with a standard deviation of 20 giving a moderate standardised mean difference

of 0.5 [12, 27]. A recent meta-analysis [24] reported that standard deviations did

not differ much between 3m, 6m and 12m, which is consistent with our own more

detailed analysis of data available from another study reporting C-M scores [26].

For a costly invasive procedure of this nature an effect size smaller than 10 units is

unlikely to be considered worthwhile. For a power of 90% to detect an effect of this

size and two-sided type I error rate of 5% a study without early stopping would re-

quire 170 participants (85 in each intervention group). The START:REACTS study

was initially powered on this basis, with a 20% allowance for some loss to follow-up,

giving a maximum sample size of 212.

Recruitment is planned to take 24 months at 15 centres; recruitment will begin

with a single centre at month 1, increasing to 2 centres at 2 months, 3 centres at 3

months, 6 centres at 4 months, 9 centres at 5 months, 12 centres at 6 months and 15

centres at 7 to 24 months. A total of 303 months of recruitment, which, assuming

a constant recruitment rate at each centre, for a target of 170 participants means a
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rate of (approximately) 0.56 participants per centre per month.

Pilot work from a survey of shoulder surgeons, undertaken immediately prior to the

start of the study, indicated that a treatment difference in the range 7.5 to 10 points

on the C-M scale provided moderate to strong evidence in favour of the balloon

intervention. Therefore when considering options for stopping boundaries for the

adaptive design, we would want to set these such that we had a low probability

of stopping for futility for effects sizes of this magnitude, whilst at the same time

stopping with high probability (for futility) for treatment differences in the range

0 to 2.5 points on the C-M scale.

Correlations between early and long-term outcomes

The best available evidence for correlations between early endpoints and the vari-

ance of the C-M shoulder score at 3m, 6m and 12m comes from a study under-

taken in an analogous setting but in a different population to that planned for the

START:REACTS study [26]. These data give estimates for the correlation between

C-M shoulder scores at 3m and 6m as ρ3m,6m = 0.51, between 6m and 12m scores

as ρ6m,12m = 0.59 and between 3m and 12m scores as ρ3m,12m = 0.46. Therefore for

the purposes of the simulations exploring the characteristics of the adaptive designs

we will assume a uniform correlation model (i.e. correlations between 3m, 6m and

12m data are equal) with a value of 0.5.

Stopping window

The likely pattern of recruitment suggests that the window of opportunity for early

stopping for the START:REACTS study will be relatively short. Presuming collec-

tion of primary 12m outcome data commences promptly and proceeds to plan, and

as we will not want to take an interim look before some 12m data are available, then

it is likely that only after 18m of recruitment could early looks at the data begin.

Early looks at the data will need to complete by the end of recruitment at 24m.

Therefore, in practice, there will likely be a period of approximately 6 months when

early looks at the data are possible. If this is the case, then the feasible number of

early looks at the data will be small. Therefore for the simulations exploring the

characteristics of the adaptive designs we will assume that there are either one, two

or three early looks at the data.

Statistical model

In the START:REACTS study the early endpoints at 3m and 6m are monitored

in addition to the primary 12m endpoint. At the time of an interim analysis, be-

fore recruitment is complete, many more participants will have early endpoint data

than 12m (primary) endpoint data. Although the 3m and 6m early endpoint data

are useful for monitoring purposes, participant retention and safety issues, from a

clinical perspective a treatment effect observed at 3m or 6m will not necessarily

translate to a treatment effect at the definitive 12m endpoint; i.e. early benefit for

the active intervention may not be sustained to the primary (clinically relevant)
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12m endpoint. Therefore, at the early looks we wish to gain information on the final

12m endpoint from the early endpoints based on their expected within-participant

correlations, irrespective of any early treatment effects. Stallard [9] shows that us-

ing early endpoint data, in a treatment selection (phase II/III) setting, leads to

increases in power when these data are correlated with the primary endpoint, even

if treatment effects on endpoints are unrelated. In the following sections we briefly

outline the methods developed by Stallard [9] to control the familywise error rate in

this setting and provide explicit expressions to estimate tests statistics when there

are two early endpoints.

Distribution of outcomes

Suppose participants in a study are followed-up and data are collected on the same

endpoint at a number of occasions, then let XijK be the final long-term outcome

and Xij1 . . . Xij(K−1) be K − 1 early (short-term) outcomes, for participant i in

intervention arm j. We assume outcomes are independent for different participants

and that the distribution of outcomes (Xij1, · · · , XijK) is multivariate normal, with

mean (µ1j , · · · , µKj) and variance




σ2
1 σ1σ2ρ12 · · · σ1σKρ1K

σ2σ1ρ21 σ2
2 · · · σ2σKρ2K

...
...

. . .
...

σKσ1ρK1 σKσ2ρK2 · · · σ2
K



,

where σ2
k is the variance of the outcome Xk and ρkk′ is the correlation between

endpoints Xk and Xk′ .

Test statistic

For a two-arm study, participants are randomized to either the control (j = 0)

or active intervention (j = 1) arms, and at an interim analysis long-term (final)

outcomes are available from NK subjects and early (short-term) outcomes from

N1 . . . NK−1 subjects in each arm of the study. For the settings we are interested

in, we assume that at any time during follow-up N1 ≥ N2 ≥ · · · ≥ NK ; i.e. there

are always more or equal numbers of subjects providing data for the earlier out-

come Xk−1 than the later outcome Xk. The parameter of primary interest is the

effect of the test intervention on the long-term (primary) outcome XK . Following

Galbraith and Marschner [11], the treatment effect B, which uses all the available

early endpoint data for two short-term outcomes (X1 and X2), for instance at 3m

and 6m such as in our chosen setting, and a single long-term outcome X3 (at 12m)

is given by
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B =
1

N3

[
N3∑

i=1

(Xi13 −Xi03)+

ρ13
σ3
σ1

N1∑

i=N3+1

(
Xi11 −Xi01 −

1

N1

N1∑

m=1

(Xm11 −Xm01)
)

+

ρ23
σ3
σ2

N2∑

i=N3+1

(
Xi12 −Xi02 −

1

N2

N2∑

m=1

(Xm12 −Xm02)
)]
,

(1)

with variance

var(B) =
2σ2

3

N3

[
1− ρ213

N1 −N3

N1
− ρ223

N2 −N3

N2
+

2ρ13ρ23ρ12

(
1− N3

N2

)]
.

(2)

Estimates B̂ and var(B̂) follow from estimates of the correlations ρ13, ρ23 and

ρ12 and standard deviations, σ1, σ2 and σ3, obtained from the appropriate regres-

sion models, using all available data. Expressions (1) and (2) are presented for the

special case of equal numbers of subjects in each arm of the study. However, they

can be modified easily for the case of unequal numbers in the study arms. These

and more general expressions for B and var(B), for K − 1 early outcome are pro-

vided in the supplementary material. From expressions (1) and (2) it is clear that

if long-term outcome X3 is uncorrelated with short-term outcomes X1 and X2 (i.e.

if ρ13 = ρ23 = 0), then B and var(B) simplify to conventional expressions we would

use to estimate the mean treatment effect (and variance) for X3 alone, without ref-

erence to the early endpoints. As correlations between X3 and X1 and X2 increase

in magnitude then var(B) decreases, provided that the two early putcomes X1 and

X2 are not themselves strongly correlated. In general, var(B) is minimized as both

ρ13 → 1 and ρ23 → 1, and ρ12 → 0; i.e. X1 and X2 are strongly correlated with X3,

but are themselves uncorrelated.

Implementation for a two-arm trial

For a two-arm study, with two short-term outcomes, study participants are random-

ized to either the control or active intervention arms, and data collection proceeds

until the first interim analysis when N31 long-term data and N11 and N21 short-term

data are available per arm; N3w, N2w and N1w are the number of study participants

with long and short-term data available at early look w. Expressions (1) and (2)

are used to obtain the test statistic S1 = B̂1/sd(B̂1), and observed information

Î1 = 1/var(B̂1), using estimates σ̂2
3 , ρ̂12, ρ̂13 and ρ̂23 obtained from the observed

data. The observed test statistic is then compared to pre-defined lower and upper

stopping boundaries l1 and u1, which are determined by the expected information
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I1 at the first look, and either the trial is stopped, for futility or efficacy, or it con-

tinues to the next interim analysis. At each subsequent interim analysis, the test

statistic Sw = B̂w/sd(B̂w) is calculated in the same way as at the first analysis,

using all available data on short-term and long-term outcomes, and compared to

stopping boundaries uw and lw that determine whether the study is stopped early.

If the trial is stopped early at an interim analysis, then long-term data will continue

to be collected on all those recruited up to that point and these data will be used

for final (definitive) inferences in an overrunning analysis [28].

The timing of the first and subsequent looks is typically specified at the commence-

ment of the study via the selected values for N3w, N2w and N1w at each early look

w. These values are used, together with expected values of σ2
3 , ρ12, ρ13 and ρ23, to

give the expected information Iw, at each planned early look w, using expression

(2). The observed information Î = 1/var(B̂) is monitored during data accrual, and

interim analysis w occurs when the observed information equals the expected in-

formation at look w (see later worked example).

Sequential stopping boundaries

We are interested in a sequential trial with two short-term endpoints where a se-

ries of W interim analyses (looks) are undertaken to compare the two groups. The

number of study participants increases in the two groups, and thus the long-term

and short-term data available for analysis also increases through the course of the

trial. Tests are performed at each of a series of interim analyses in order to make

inferences about the superiority of the active intervention group (over the control)

in terms of the long-term endpoint. The tests are undertaken at interim analysis w,

using test statistic Sw, and must control the type I error rate across the W interim

analyses. For a one-sided alternative at overall level α, with possible stopping for

futility, the type I error rate spent is such that α∗
U (1) < · · · < α∗

U (W ) = α and

α∗
L(1) < · · · < α∗

L(W ) = 1 − α, where α∗
U (w) is the probability of stopping and

rejecting H0 in favour of B > 0 at look w (efficacy) and α∗
L(w) is the probability

of stopping without rejecting H0 at look w (futility). The type I error rates spent

is determined by α∗
U (w) and α∗

L(w), which are specified in advance of the study

begining. Stallard [9] proposes a method for construction of stopping boundaries

in this scenario for the more general setting of T intervention arms, and a single

control arm. For a two-arm study, standard group sequential methods and widely

available software allow one to calculate the lower and upper stopping boundaries

(lw and uw) at each look w [29].

Simulations

The statistical methodology described here provides a framework for how decisions

about early stopping will be made. In order to understand how our assumptions

about the likely size of the treatment effect, settings for nuisance parameters and

the number of planned interim analysis affects design characteristics (e.g. how often

we stop early for futility), we simulate data from the full multivariate distribution

of outcomes (Xij1, · · · , XijK) for each of the i study participants and undertake
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interim and final analyses many times. A Poisson model [30] is used to simulate

the likely pattern of participant recruitment into the study. A constant monthly

recruitment rate at each centre is assumed, with a smooth increase up to the target

number of centres during the first 6 months of the planned 24 months of recruit-

ment. The pattern of follow-up data collection at 3m, 6m and 12m is assumed to

mirror that for recruitment. The timing of the interim looks are set at the start of

a study using selected (feasible) values for N3 and, based on the expected patterns

of early data accrual, N2 and N1. These together with the expected values of ρ12,

ρ13, ρ23 and σ3 determine the expected information content of the data at each look

Iw = 1/var(Bw), using expression (2). The pre-specified stopping boundaries follow

directly from Iw, α∗
L and α∗

U . The temporal pattern of participant recruitment,

data collection and ultimately information are simulated for a single realisation of

the study. For each simulation, a series of estimates for ρ12, ρ13, ρ23 and σ3 are

calculated using progressively increasing amounts of data as each new participant

is recruited into the study. The pattern of (simulated) information accrual follows

from these estimates, and the temporal pattern of data collection, using expression

(2). Interim looks at the data occur when the simulated information is equal to the

information content at the pre-specified stopping boundaries. The estimated test

statistics are compared to stopping boundaries, with decisions on stopping follow-

ing directly from these. Thus, the simulations emulate how the study would have

evolved, and how decisions about stopping would have been made in a manner as

close to a real life setting as we can feasibly create. Undertaking these simulated

analyses many times allows us to estimate expected stopping probabilities and over-

all power (to reject the null hypothesis) that inform our decisions about the overall

study design.

Results
Recruitment and data accrual

Simulating data from the recruitment model suggested that within the window

of opportunity for early stopping (between 18 and 24 months from commence-

ment of recruitment), 12m data will be available from between 15 and 40 par-

ticipants per intervention arm (N3). Figure 1 shows the expected patterns of re-

cruitment, data and information acrrual during follow-up for our chosen correla-

tion model ρ12 = ρ13 = ρ23 = 0.5, obtained from the simulations. The figure

also shows information accrual (i.e. 1/var(B)) for two extreme scenarios where (i)

ρ12 = ρ13 = ρ23 = 0 and (ii) where ρ12 = ρ13 = 0 and ρ23 = 1, that represent the

patterns of accrual when the early outcomes (3m and 6m) provide no information

on the final 12m outcome and when the 6m outcome is exactly the same as the 12m

outcome. In these two scenarios the pattern of information accrual are for scenario

(i) exactly as would be observed if 12m outcome only provided all the relevant infor-

mation, and in scenario (ii) exactly as would be observed if all the information was

provided by the 6m data alone. For the purposes of motivating the simulations, it

is useful to divide the likely recruitment numbers available in the window of oppor-

tunity for early stopping interval (a period of 6 months) equally. Figure 1 indicates

that the likely pattern of data accrual at six potential interim looks for 12m, 6m and
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3m data to be approximately as follows; at the first possible look N3 = 15, N2 = 35

and N1 = 50, at the second look N3 = 20, N2 = 40 and N1 = 55, at the third look

N3 = 25, N2 = 45 and N1 = 60, at the fourth look N3 = 30, N2 = 50 and N1 = 65,

at the fifth look N3 = 35, N2 = 55 and N1 = 70 and at the sixth look N3 = 40,

N2 = 60 and N1 = 75. Under the expected correlation model ρ12 = ρ13 = ρ23 = 0.5

and expected standard deviation of the 12m outcome (σ1 = 20), the information

at each of these possible looks at the data is 21.4%, 28.0%, 34.4%, 40.8%, 47.1%

and 53.3% , expressed as a percentage of the expected information at the study

endpoint given by N/2σ2
3 = 85/800 = 0.106. If ρ12 = ρ13 = ρ23 = 0, then this

reduces to 17.6%, 23.5%, 29.4%, 35.3%, 41.2% and 47.1%; a correlation of 0 im-

plies there is no information, on 12m outcomes, from the early 3m and 6m outcomes.

Type I error rate

As a prelude to simulations exploring overall study power and as a check of the

software implementation, a number of simulations were undertaken to explore study

characteristics under the null hypothesis (no treatment effect). The results of these

simulations, for a selection of three likely data accrual patterns, are shown in Ta-

ble 1. It is apparent from Table 1 that the estimated type I error rates for the

three selected settings (i) one early look N1 = 60, N2 = 45, N3 = 25, (ii) two

early looks N1 = (55, 70), N2 = (40, 55), N3 = (20, 35) and (iii) three early looks

N1 = (50, 65, 75), N2 = (35, 50, 60), N3 = (15, 30, 40) are well controlled at the

2.5% level. Also, the estimated cumulative probabilities of stopping for futility at

early looks pw,F are equal (within simulation error) to the pre-specified lower error

spending values, α∗
L.

Power

Overall study power and stopping probabilities were estimated for a range of plau-

sible 12m treatment differences for the C-M score scale (0, 2.5, 5, 7.5 and 10); these

corresponded to standardized effect sizes, for the selected value of σY = 20, of 0,

0.125, 0.25, 0.375 and 0.5. A range of values for the lower bounds α∗
L were tested for

one, two and three early looks at the data, using the same values for N , N3, N1 and

N2 as described above for type I error rate estimation, using the uniform correlation

model (ρ = ρ13 = ρ23 = ρ12) with a value of ρ = 0.5. Efficacy stopping boundaries

were set to α∗
U = (0.001, 0.025), α∗

U = (0, 0.001, 0.025) and α∗
U = (0, 0, 0.001, 0.025),

at one, two and three early looks respectively. The main initial clinical focus of

our design is to determine whether the balloon procedure is ineffective or harmful.

Therefore, the emphasis in the simulations, and the planned designs, will be on

early stopping for futility, which is determined by α∗
L. The chosen settings for the

upper (efficacy) boundaries α∗
U favour collecting as much information as possible

if there is emerging evidence of efficacy. Early stopping for efficacy will only be

considered at the last interim look, with boundaries set such that only if there is

very strong evidence that the balloon procedure is superior to standard care will

early stopping be considered. Figure 2 shows results for one early look at the data,

Figure 3 for two early looks at the data and Figure 4 for three early looks at the
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data.

There are strong trends for increasing power as the treatment difference increases

from 0 to 10 points on the C-M score scale and corresponding decreases in the

futility stopping probabilities. Estimates for early stopping for efficacy from the

simulations, which were planned for the last of the interim looks only, increased

from approximately 10% for one early look to 20% for two early looks and 25%

for three early looks, for a treatment difference of 10 points. This was due to more

data being available at the look when stopping for efficacy can occur (n = 15 for

one look, n = 35 for two looks and n = 40 for three looks).

Four options for futility stopping were investigated for α∗
L that represented a se-

quence of increasingly agressive options, from a low probability of stopping, la-

belled as (a), to a high probability, labelled as (d), with (b) and (c) intermediate

to these. For one early look at the data α∗
L was set to either (a) (0.24, 0.975),

(b) (0.48, 0.975), (c) (0.72, 0.975) or (d) (0.96, 0.975), for two early looks to

either (a) (0.08, 0.24, 0.975), (b) (0.16, 0.48, 0.975), (c) (0.24, 0.72, 0.975) or (d)

(0.32, 0.96, 0.975) and for three early looks to either (a) (0.08, 0.16, 0.24, 0.975), (b)

(0.16, 0.32, 0.48, 0.975), (c) (0.24, 0.48, 0.72, 0.975) or (d) (0.32, 0.64, 0.96, 0.975).

Under the null hypothesis (C-M treatment difference equal to 0), α∗
L represented the

expected stopping probabilities (for futility) at each look. For the largest treatment

differences (10 on C-M score scale) and the most agressive stopping options, the

futility stopping rates were 44.4% for one early look (Figure 2(d)), 31.9% for two

early looks (Figure 3(d)) and 27.1% for three early looks (Figure 4(d))). For this

most agressive futility stopping setting, study power was lowered significantly due

to (incorrect) early stopping. Power was reduced to only 55.5%, 68.0% and 72.7%,

in these three settings, rather than the 90% we would expect for a non-adaptive

design. The least agressive futility stopping option (Figures 2(a), 3(a) and 4(a))

showed good power (89.5%, 89.7% and 89.7%), but poor early stopping under the

null hypothesis (24.3%, 25.1% and 26.7%). The two extreme futility stopping op-

tions (Figures 2(a,d) 3(a,d) and 4(a,d)), therefore, do not have the characteristics

we are seeking in the design.

The intermediate options (Figures 2(b,c) 3(b,c) and 4(b,c)), however, have more

desirable characteristics as they have reasonable power for a strong treatment ef-

fect (C-M treatment difference of 10) whilst retaining the ability to stop early for

futility, with high probability, under the null hypothesis. For example, for two early

looks when α∗
L = (0.24, 0.72, 0.975) (Figure 3(c)), overall power was 87.6% for a

treatment difference of 10, with a stopping rate of 24.5% at the first look and 72.9%

at the first or second look combined.

The expected sample size (ESS), calculated from the expected stopping probabili-

ties and expected pattern of patient and data accrual, provides a useful summary

of the design characteristics that complements study power. The right hand y-axes

of Figures 2, 3 and 4 are annotated to provide a useful informal comparator to the

fixed study design with a sample size of 170; this provides 90% power to detect a

C-M score treatment difference of 10 points between intervention arms, at the 5%

level. The ESS decreases, for all numbers of early looks, from the least (a) to the

most aggressive (d) futility stopping options; increasing the probability of stopping

early, for either futility and efficacy, lowers the overall study sample size from that
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we would need for the non-adaptive (fixed) study design (sample size; 2N = 170).

The pattern of variation for ESS, across treatment differences, reflects the dom-

inance of either futility stopping (for zero and small differences) or efficacy (for

large differences). In selecting a good design, we aim to find settings of the stopping

boundaries that maintain overall power at or as close as possible to the nominal

(non-adaptive) 90% level, whilst at the same time lowering the expected sample

size across the range of treatment effects we might expect to see in the study.

The number of study participants required to reach the required information levels

at the early looks was also assessed in the simulations. The expected (mean) num-

bers were very close to the sample sizes used to motivate the simulations, as we

would expect; i.e. N3 = 25 for one early look, N3 = (20, 35) for two early looks and

N3 = (15, 30, 40) for three early looks. The simulations were set-up such that early

looks at the data took place, even if recruitment had been completed; whereas in re-

ality, the early looks would have been abandoned. Recruitment had been completed

at the final early look at the data for (approximately), 0%, 3% and 12% of the

simulations for one, two and three early looks. The high value for three early looks

reflects the fact that the final early look at the data occurs when approximately 40

participants in each arm of the study have 12m outcome data, which is quite close

to 50, the point when the recruitment model expects that recruitment will have

completed.

Worked example

In order to illustrate how the design will work in practice we briefly work through

the necessary calculations, using purely synthetic data, for a much smaller and

simpler example than those used in the simulations. The data and R code [31] for

implementation are provided in the supplementary material.

A study is planned with α∗
L = (0.200, 0.600, 0.975) and α∗

U = (0.000, 0.001, 0.025)

for two early looks, with group sample sizes of N3 = (10, 15), N2 = (15, 20),

N1 = (20, 25) and N = 30; we assume equal group sizes, and two early outcomes and

a final outcome as previously, for ease of exposition. Let us suppose that data avail-

able from a pilot study suggest correlations between outcomes of ρ13 = ρ23 = 0.5

and ρ12 = 0, with σ3 = 18. Using these values in expression (2), indicates that

the expected information at the early looks will be I1 = 0.019 and I1 = 0.028, and

at the final analysis IFinal = N/2σ2
Y = 30/648 = 0.046 (for σY = 18); expressed

as a percentage of the information available at the final analysis, this corresponds

to 42% and 60%, for the two early looks. The boundaries can be calculated using

widely available software, for instance the gsDesign [32] package in R. For our se-

lected values for α∗
L and α∗

U , and the expected information at our planned looks, the

function gsBound provides the following boundaries for decision making; at look 1,

l1 = −0.842 (lower boundary) and u1 =∞ (upper boundary), at look 2 l2 = 0.247

and u2 = 3.09, and at the final analysis lFinal = uFinal = 1.96.

Data collection proceeded as planned, with information monitored during follow-

up. After the twentieth participant had provided final outcome data the estimated

information (0.02) reached the pre-set value for the first look (0.019). Figure 5

shows the distributions of outcome data at the first look. The estimate of the mean



Parsons et al. Page 13 of 26

treatment difference (in favour of the test group) for the final outcome (X3) was

-10.2; i.e. the outcome score for the test intervention was considerably lower than

the control intervention. Estimates of the correlations between outcomes and the

standard deviation of the final outcome were as follows; ρ̂13 = 0.45, ρ̂23 = 0.20,

ρ̂12 = 0.04 and σ̂3 = 16.8. Calculating B and var(B) (using equations 1 and 2),

provides estimates of the mean treatment difference for the outcome of -9.77, with

variance 50.18 (see Supplementary material). Therefore, the test statistic at look

1, S1 = −1.38, is less than the lower boundary (-0.842) indicating that the study

should be stopped for futility.

Continuing to follow-up all those in the study, after the desicison to stop at look 1,

in an overrunning analysis [28] provides estimates of B = −3.70 and var(B) = 20.5

(p = 0.419). Confirming that the decision made to stop at look 1 appears to have

been correct, and leads us to conclude that there is no evidence that the test group

performs better than the control group.

If different settings for α∗
L had been selected then the study may have proceeded in

a different manner. For instance, if a less agressive lower stopping criterion had been

used at the first look (e.g. α∗
L = (0.080, 0.600, 0.975)), then the lower boundary at

the first look would be l1 = −1.41, and the study would not have stopped for futility.

Discussion
This manuscript describes work to develop an adaptive clinical trial design moti-

vated by a trial for testing a novel surgical approach for repair of rotator cuff tendon

tears. The design, that builds and expands on previously published methodology

[9, 11], uses early observations of the primary outcome at 3m and 6m to augment

12m outcome data to inform decision making on early stopping. The main focus in

the development of the design is on futility stopping, rather than efficacy stopping;

i.e. stopping for efficacy in the simulations is limited to the last interim look at

the data and is such that very strong evidence is required to stop. This reflects the

clinical perspective, that if a new intervention shows promise then it is prudent,

within reason, to continue to collect data to the planned study sample size, rather

than stop early, in order to provide more precise effect estimates and increase the

chances of detecting any adverse events.

The simulations showed that with more looks at the data the chance of recruitment

completing before the final look increased; recruitment completed before the final

look in 3% and 12% of simulations for two and three early looks. More looks offer

more possibilities for early decision making, but at a greater risk of not complet-

ing the planned early looks before the end of recruitment. The estimated rates of

recruitment completing before the last early look, are clearly in part at least de-

pendent on the veracity of the recruitment model. If recruitment was much higher

or faster than expected at times during recruitment, then this could be problem-

atic for the design. For instance, a rapid unexpected rise in the recruitment rate

could cause recruitment to be completed before the early looks at the data had

happened. We do not think this will happen in our setting, as there are structural

(study-based) limitations in the number of centres, clinicians and timings of clinics

which make this highly unlikely. However, recruitment will be monitored closely. In
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the START:REACTS study it is likely that early looks will be dropped if recruit-

ment completes much more rapidly than expected. However, it may be desirable

in other settings to close centres or temporarily suspend recruitment if this were

feasible.

As with conventional sample size calculations, the results of the simulations are

dependent on assumptions made about the variance of the primary outcome (12m

C-M score) and the correlations between the early 3m and 6m and 12m scores. We

have good evidence on these nuisance parameters from a recently published sys-

tematic review [24] and relevant data [26]. A larger than expected value has been

deliberately selected for the 12m C-M score standard deviation (σ3 = 20); close

inspection of the data from [24] suggest that the standard deviation is likely to be

nearer to 15, than 20. Conservatively, a value of 20 was chosen for the simlations. If

σ3 is lower than 20, then we will reach the planned study information points, that

determine the timings of the early looks at the data, sooner than the simulations

indicate.

The simulations assume a relatively moderate correlation model for the study out-

comes; ρ13 = ρ23 = ρ12 = 0.5. If the correlation model was stronger than expected

(e.g. ρ13 = ρ23 = ρ12 = 0.9), and all other things were unchanged, we would reach

the information thresholds for the early looks sooner than planned (i.e. with fewer

participants) and potentially gain more from the adaptive design than we estimate

from the simulations. Conversely, if the correlations are such that the early out-

comes tell us nothing about the definitive outcome (i.e. ρ13 = ρ23 = ρ12 = 0), then

we would acculmulate information more slowly than the simulations suggest and

recruitment is likely to have completed before the information required for the first

look at the data is reached. In such a setting the design would proceed to the fixed

recruitment target, in the conventional manner. The loss in such a setting would be

the increase in sample size, relative to the fixed design, that we would need for the

adaptive design, For example, for the START:REACTS study described previously,

the sample size would need to increase from 170 participants to between 180 and

188, dependent on the choice of boundaries and early looks. A relatively modest

increase in sample size, given the potential gains from early stopping, for this study,

but in other application areas this may be an unacceptable increase in sample size

if there is little evidence for even moderate associations between the early and final

study outcomes.

The simulations show that the error rate is controlled at the specified rate, pro-

vided that the stopping rules are binding [33]. Where by binding, we mean that

stopping for futility at the early look is essential whenever the futility boundaries

are crossed; irrespective, for instance, of reasons external to the study, such as new

or emerging evidence on the interventions. The simulations show study power based

on a sample size of 170 (85 in each group). This provided 90% power for the non-

adaptive design. For the adaptive designs with appealing operating characteristics

discussed here the power is somewhat lower than 90%. For the definitive adaptive

study design the overall sample size will be increased to provide 90% power. The

final selection of overall sample size, stopping boundaries and number of looks will

be made by the START:REACTS data monitoring and safety committee (DSMC)

and confirmed by the trial steering committee (TSC). The boundaries, timings of
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the interim looks and agreement on binding will be incorporated into the DSMC

charter and will be kept confidential within the study team.

The work described here is focussed primarily on the design of the START:REACTS

study, and this is reflected in the set-up of the simulations and data generating

model. For instance, we have assumed that the correlations between the outcomes

are the same within the intervention arms. This need not be the case in other

applications, and it would be relatively straightforward to modify the set-up of

the simulations to allow different correlations in the intervention arms or different

variances for each of the early outcomes. We believe that the designs discussed will

have much wider application in many analogous settings particular where trials

are undertaken to assess new surgical and other interventions where outcomes are

assessed over a long period of time. Typically in studies of this type designs are

non-adaptive, and early outcomes, usually available as part of routine monitoring

of patients, are simply reported as secondary outcomes. This is both inefficient and

wasteful. With increased methodological understanding and availability and ease

of use of software tools for implementing adaptive designs, we believe that this

situation will change in the future.

Conclusion
In this manuscript we present a methodology for the design of an adaptive clinical

trial motivated by testing a novel surgical approach for repair of rotator cuff tendon

tears. The design uses early observations of the 12m primary outcome at 3m and

6m to augment 12m outcome data to inform decision making on early stopping. We

derive estimators for the treatment effect and test statistics based on the setting

of two early outcomes, and present methods for estimation of sequential stopping

boundaries. Simulations are undertaken for one, two and three early looks with a

range of options for stopping boundaries. We show that a design with two early

looks is feasible and, with appropriately chosen futility stopping boundaries, has

appealing design characteristics. A number of possible design options are described

that have good power, and have high probability of stopping for futility if there

is no evidence of a treatment effect at early looks. A worked example provides a

practical demonstration of how the design might work in a real study. In summary,

the work shows that an adaptive design is feasible and could work in practice, and

provides some guidelines for appropriate values for the stopping boundaries for the

START:REACTS study.
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Tables

Table 1 Estimated type I error rates, where pw,F is the cumulative probability of stopping for
futility at look w or earlier, pE is the probability of stopping early for efficacy and p12m is the
probability of stopping for efficacy at the end of the study; N = 85, for (a) one look
N1 = 60, N2 = 45, N3 = 25, (b) two looks N1 = (55, 70), N2 = (40, 55), N3 = (20, 35)
and (c) three looks , N1 = (50, 65, 75), N2 = (35, 50, 60), N3 = (15, 30, 40),
ρ = ρ13 = ρ23 = ρ12 and σ2

1 = σ2
2 = σ2

3 = 20 (10,000 simulations).

Futility bound (α∗
L) ρ pE p1,F p2,F p3,F p12m

(a) One look; α∗
U = (0.001, 0.025)

(0.0, 0.975) 0.0 0.002 0.000 - - 0.025
(0.5, 0.975) 0.0 0.002 0.504 - - 0.023
(0.0, 0.975) 0.5 0.002 0.000 - - 0.026
(0.5, 0.975) 0.5 0.002 0.504 - - 0.026
(b) Two looks; α∗

U = (0, 0.001, 0.025)
(0.0, 0.0, 0.975) 0.0 0.001 0.000 0.000 - 0.025
(0.2, 0.5, 0.975) 0.0 0.001 0.202 0.499 - 0.025
(0.0, 0.0, 0.975) 0.5 0.001 0.000 0.000 - 0.024
(0.2, 0.5, 0.975) 0.5 0.002 0.199 0.505 - 0.025
(c) Three looks; α∗

U = (0, 0, 0.001, 0.025)
(0.0, 0.0, 0.0, 0.975) 0.0 0.001 0.000 0.000 0.000 0.024
(0.1, 0.3, 0.5, 0.975) 0.0 0.002 0.110 0.306 0.503 0.025
(0.0, 0.0, 0.0, 0.975) 0.5 0.001 0.000 0.000 0.000 0.025
(0.1, 0.3, 0.5, 0.975) 0.5 0.001 0.108 0.307 0.506 0.025
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Figures

Figure 1 Recruitment, data and information accrual during follow-up. Expected recruitment,
data and information accrual during 24 months, estimated from simulations. Information accrual
is plotted for three possible correlation models; ρ12 = ρ13 = ρ23 = 0.5, ρ12 = ρ13 = ρ23 = 0 and,
ρ12 = ρ13 = 0 and ρ23 = 1.
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Figure 2 Design characteristics for one early look. Estimated probabilities of stopping for futility
and efficacy at the first look, expected sample size (ESS) and overall study power, for effect sizes
in range 0 to 10 for (a) α∗

L = (0.24, 0.975), (b) α∗
L = (0.48, 0.975), (c) α∗

L = (0.72, 0.975) and
(d) α∗

L = (0.96, 0.975). Where α∗
U (1) = 0.001, ρ = 0.5 and other settings are as Table 1.
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Figure 3 Design characteristics for two early looks. Estimated probabilities of stopping for
futility and efficacy at the first and second looks, expected sample size (ESS) and overall study
power, for effect sizes in range 0 to 10 for (a) α∗

L = (0.08, 0.24, 0.975), (b)
α∗
L = (0.16, 0.48, 0.975), (c) α∗

L = (0.24, 0.72, 0.975) and (d) α∗
L = (0.32, 0.96, 0.975). Where

α∗
U (1) = 0 and α∗

U (2) = 0.001, ρ = 0.5 and other settings are as Table 1.
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Figure 4 Design characteristics for three early looks. Estimated probabilities of stopping for
futility and efficacy at the first, second and third looks, expected sample size (ESS) and overall
study power, for effect sizes in range 0 to 10 for (a) α∗

L = (0.08, 0.16, 0.24, 0.975), (b)
α∗
L = (0.16, 0.32, 0.48, 0.975), (c) α∗

L = (0.24, 0.48, 0.72, 0.975) and (d)
α∗
L = (0.32, 0.64, 0.96, 0.975). Where α∗

U (1) = 0, α∗
U (2) = 0 and α∗

U (3) = 0.001, ρ = 0.5 and
other settings are as Table 1.
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Figure 5 Outcome score data at the first look. Boxplots and means with 95% confidence
intervals of early (X1 and X2) and final (X3) outcome data by intervention group at the first
interim analysis.
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B and var(B) for K − 1 early outcomes
For a two-arm study, participants are randomized to either the control (j = 0)

or active intervention (j = 1) arms, and at an interim analysis long-term (final)

outcomes are available from NK subjects and early (short-term) outcomes from

N1 . . . NK−1 subjects in each arm of the study. Assuming equal numbers of subjects

providing data for the earlier outcome Xk−1 than the later outcome XK , the effect

of the test intervention on the long-term (primary) outcome XK [1] is given by

B =
1

NK

[
NK∑

i=1

(Xi1K −Xi0K) +
K−1∑

k=1

[
ρkK

σK
σk

Nk∑

i=NK+1

(
Xi1k −Xi0k − 1

Nk

Nk∑

m=1

(Xm1k −Xm0k)
)]]

,

(1)

with variance

var(B) =
2σ2

K

NK

[
1 −

K−1∑

k=1

(
ρ2kK

Nk −NK

Nk

)
+

K−2∑

k=1

K−1∑

k′=k+1

2ρkKρk′Kρkk′

(
min(Nk, Nk′)

NK

NkNk′
+ 1 − NK

Nk
− NK

Nk′

)]
.

(2)

Estimates B̂ and var(B̂) follow from estimates of the correlations ρkk′ , and stan-

dard deviations σk and σK , obtained from the appropriate regression models, using

all available data.

B and var(B) for two early outcomes
For a two-arm study, participants are randomized to either the control (j = 0)

or active intervention (j = 1) arms, and at an interim analysis long-term (final)

outcomes are available from Nj3 subjects and early (short-term) outcomes from

Nj1 and Nj2 subjects in each arm of the study. Denoting the final outcome data for

study participant i by Xij3, and early outcomes by Xij1 and Xij2, then following

Galbraith and Marschner [1], the treatment effect B, which uses all the available

early endpoint data, is given by

B = η3 + γ13η1 + γ23η2,

where
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η3 =
1

N13

N13∑

i=1

Xi13 −
1

N03

N03∑

i=1

Xi03,

η2 =
1

N13

N12∑

i=N13+1

Xi12 −
1

N03

N02∑

i=N03+1

Xi02 −
N12 −N13

N13

{
1

N12

N12∑

i=1

Xi12

}
+

N02 −N03

N03

{
1

N02

N02∑

i=1

Xi02

}
,

η1 =
1

N13

N12∑

i=N13+1

Xi11 −
1

N03

N02∑

i=N03+1

Xi01 −
N11 −N13

N13

{
1

N11

N11∑

i=1

Xi11

}
+

N01 −N03

N03

{
1

N01

N01∑

i=1

Xi01

}
,

and γ13 and γ23 are the regressions of X3 on X1 and X2 respectively, adjusted for

the intervention effect. The variance of B is given by

var(B) =
σ2
3(N03 +N13)

N03N13

[
1 − ρ213

N01 +N11 −N03 −N13

N01 +N11
− ρ223

N02 +N12 −N03 −N13

N02 +N12
+

2ρ13ρ23ρ12

(
1 − N03 +N13

N02 +N12

)]
.

Estimates B̂ and var(B̂) follow from estimates of the correlations ρ13, ρ23 and ρ12,

regression coefficients γ13 and γ23 and standard deviations, σ1, σ2 and σ3, obtained

from the appropriate regression models, using all available data.

R code for worked example
The below code implements the worked example in the main text. Before running

the gsDesign [2] package should be installed in R [3].

# planned early looks
N <- 30; N.1 <- c(20, 25); N.2 <- c(15, 20); N.3 <- c(10, 15)
# expected information
information <- function(N1, N2, N3, sigma.3 = 18, rho.1.2 = 0,
rho.1.3 = 0.5, rho.2.3 = 0.5){
var <- (2 * (sigma.3 ˆ 2) / N3) * (1 - (rho.1.3 ˆ 2) * ((N1 - N3)/N1) -
(rho.2.3 ˆ 2) * ((N2 - N3)/N2) +
2 * rho.1.2 * rho.1.3 * rho.2.3 * (1 - N3/N2))
return(1/var)
}
# at look 1
i.look.1 <- information(N1 = N.1[1], N2 = N.2[1], N3 = N.3[1])
# at look 2
i.look.2 <- information(N1 = N.1[2], N2 = N.2[2], N3 = N.3[2])
# at end
i.end <- information(N1 = N, N2 = N, N3 = N)
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v.info <- c(i.look.1, i.look.2, i.end) / i.end
v.info

# calculate boundaries
library(gsDesign)
# set alphas
alpha.star.u <- c(0.000, 0.001, 0.025)
alpha.star.l <- c(0.020, 0.600, 0.975)
# modify for entry into gsDesign
gs.alpha.star.u <- diff(c(0, alpha.star.u))
gs.alpha.star.l <- diff(c(0, alpha.star.l))
gs.bound <- gsBound(I = v.info, trueneg = gs.alpha.star.l,
falsepos = gs.alpha.star.u)
bounds <- rbind(lower = gs.bound$a, upper = gs.bound$b)
bounds

# data
study.data <- data.frame(X.1 = c(56,65,59,40,43,88,34,40,49,62,42,
49,54,76,54,30,52,57,52,70,50,57,39,41,19,82,82,71,37,68,64,47,53,
51,69,37,48,57,88,60,89,53,56,60,71,32,63,84,25,32,69,26,64,59,58,
46,28,37,71,64), X.2 = c(71,70,16,80,78,78,78,55,44,95,53,48,68,62,
70,28,57,52,91,52,67,50,73,55,59,62,67,63,34,82,60,53,58,46,64,73,
69,72,63,74,72,61,93,62,43,68,66,65,62,40,47,60,54,63,74,42,24,60,
100,62), X.3 = c(64,93,86,91,83,100,82,59,65,91,70,76,86,90,80,56,
88,81,64,48,80,80,100,86,78,84,82,91,73,72,78,41,59,84,100,49,82,
74,66,79,92,83,88,76,77,67,86,72,66,60,77,52,66,86,75,65,29,48,85,
97), treat = rep(c(0, 1), each = 30))

# calculate test statistic
# change look to 2 to get calculation at second look
look <- 1
# sample sizes at look
N1 <- N.1[look]; N2 <- N.2[look]; N3 <- N.3[look]

# effect estimates
eff.X <- function(x, xn, xvar, N3){
s.X <- c(x[x$treat == 0, xvar][1:xn], x[x$treat == 1, xvar][1:xn])
treat.X <- rep(seq(0, 1), rep(xn, 2))
reg.X <- lm(s.X ˜ factor(treat.X))
sigma.X <- summary(reg.X)$sigma
if(xvar == "X.1" | xvar == "X.2"){
eff.X <- sum(x[x$treat == 1, xvar][(N3 + 1):xn] -
x[x$treat == 0, xvar][(N3 + 1):xn]
- rep(reg.X$coef[2], (xn - N3)))} else {
eff.X <- as.numeric(reg.X$coef[2])
}
return(list(eff.X = eff.X, sigma.X = sigma.X))
}
eff.2 <- eff.X(x = study.data, xn = N2, xvar = "X.2", N3 = N3)
eff.1 <- eff.X(x = study.data, xn = N1, xvar = "X.1", N3 = N3)
eff.3 <- eff.X(x = study.data, xn = N3, xvar = "X.3", N3 = N3)

# regressions
reg.XY <- function(x, xvar = "X.1", yvar = "X.3", yn = N3){
X <- c(x[x$treat == 0, xvar][1:yn], x[x$treat == 1, xvar][1:yn])
Y <- c(x[x$treat == 0, yvar][1:yn], x[x$treat == 1, yvar][1:yn])
treat.Y <- rep(seq(0, 1), rep(yn, 2))
reg.X.Y <- lm(Y ˜ factor(treat.Y) + X)
gamma.X.Y <- coef(reg.X.Y)[3]
return(as.numeric(gamma.X.Y))
}
gamma.1.3 <- reg.XY(x = study.data, xvar = "X.1", yvar = "X.3", yn = N3)
gamma.2.3 <- reg.XY(x = study.data, xvar = "X.2", yvar = "X.3", yn = N3)
gamma.1.2 <- reg.XY(x = study.data, xvar = "X.1", yvar = "X.2", yn = N2)
# full model
get.subdata <- function(x, yn){
sdata <- rbind(x[x$treat == 0,][1:yn,], x[x$treat == 1,][1:yn,])
return(sdata)
}
reg.1.2.3 <- lm(X.3 ˜ factor(treat) + X.1 + X.2,
data = get.subdata(x = study.data, yn = N3))
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# estimate B
B.hat <- eff.3$eff.X + (1 / N3) * eff.1$eff.X * gamma.1.3 +
(1 / N3) * eff.2$eff.X * gamma.2.3

# estimate correlations
C <- matrix(c(gamma.1.3 * (eff.1$sigma ˆ 2),
gamma.2.3 * (eff.2$sigma ˆ 2)), ncol = 2)
D <- matrix(c((eff.1$sigma ˆ 2), gamma.1.2 * (eff.1$sigma ˆ 2),
gamma.1.2 * (eff.1$sigma ˆ 2), (eff.2$sigma ˆ 2)), ncol = 2)
sigma.3 <- sqrt(as.numeric(summary(reg.1.2.3)$sigma ˆ 2 +
C %*% solve(D) %*% t(C)))
rho.1.3 <- as.numeric(gamma.1.3 * eff.1$sigma / sigma.3)
rho.2.3 <- as.numeric(gamma.2.3 * eff.2$sigma / sigma.3)
rho.1.2 <- gamma.1.2 * eff.1$sigma / eff.2$sigma

# estimate variance
info.look <- information(N1 = N1, N2 = N2 , N3 = N3, sigma.3 = sigma.3,
rho.1.2 = rho.1.2, rho.1.3 = rho.1.3, rho.2.3 = rho.2.3)
vB.hat <- 1/info.look

# test statistic
z <- B.hat/sqrt(vB.hat)
z

# decision making
if(z < bounds["lower", look]){decision <- "STOP: Futility"}
if(z > bounds["upper", look]){decision <- "STOP: Efficacy"}
if(z > bounds["lower", look] &
z < bounds["upper", look]){decision <- "CONTINUE"}
decision
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