A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/130517

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@ warwick.ac.uk

Diffusion Morlels in Strongly Chantic Hamiltomian
 Svisterins

A.N. Yanlimeroparalem

Ibriartillant of Phymicm
Univaraity of Warwirk

Thin themis in mubmitterl tor the Inivernity of Warwirk in fartial fulfil|ment of the requirements for miminnion

Sorptemiser 21, 190:3

Ahatract

The main nuthect of thin thomin in the lang time behaviour of ntrondy chantir Hamiltunian ayntems and whether their hehaviour can he tuccielled with diffumiun prosensex. The problem of diffusion rauned by rhaso in a partirular area prexarving map on the torun, the weh map il atudied. The furmalinm in then geveralised for the study of diffuitun in higher dimenaional sympleatir maps un the cylinder and general peaulta are nhtained. A numerioal method for the calculation of diffunien romfitienten for rhastic mapa ie dearribed. Finaly, the urubletil of diffumbun in phase mpare in the rane where chacon cuexintn with atrurturen nurh as stable inlande la atudiend.

Being undecided:
Chapter 1 is for Nicos
Chapter 2 is for Jenny
Chapter 3 is for Helen
Chapter 4 is for Helen (2)
Chapter 5 is for Electra
and
Chapter 6 is for ME! (Hpaкдеเтоத, апо́のп. 54)

Contents

1 Statiatiral Dearription Of Dynamiral Syatemn. 1
1.1 Intradiaction 1
1.2 Statintical dencription of dynamical nyatema using the fotker Planctik fquation 6
1.3 Derivation of the Fink ker- Ilanrk equation for dymamiral syatrina *
1.4 Alternative derivation of the Fokker Planck equation 11
1.5 The coprelation function method 15
I.f Chararterintir function method in
1.7 The path integral method fur the entimation of the diffusion co- effirient 22
1.a Markin mastela for tranapurt in phase apare 14
1.9 Motivation fur thim Work. 32
2 Diffusion in the Web Map. 35
2.1 Intrombartion 3.5
2.2 Sipider welon. 17
2.3 The well turp). 40
2.4 study of biffinsion in the webl hap. 43
2.4.1 Hrxaginal symmatry (4×3) 40
2.4.2 Birintence of arrelerator moden and their effect on diffusion. 47
2.4.3 Square nymmetry $(q=4)$ 4 4
2.4.4 Silx- Fold nyminetry ($4=8$) : 10
2.4.5 Two. folld nymmetry ($4=2$) $\$ 10$
2.4.6 Quaniryantal mymampltien 50
2.5 Conclumionns 50
』 IJiffuninn Corfliciente For Higher Dimmnaional Symplectic Mapa on the Cylinder. S 2
3.] Intradution. 8
S.2 Extenxion of the ('orrelation Finnetion Methorl to Mapa on the f ylinder. $3: 1$
\$.t One Dianensidanal ('ylinder Mapn 55
:3.4 Highar Ilitmpmaional Symplertir Mapn 59
is.5 Numreirel Experimenta (iat
:3.6 C'unclumions. 64
4 Cimeulation of Diffusion Coefifienta for Chantic Mapa 67
4.1 Introxluction 67
4.2 Dearription of the method 1 㷌
4.3 Standatd Map 69
4.4 Weh map 70
4.5 WKH wolution of the diffusian mynation with mowly varying dif- funian complicient 74
4.6 The Fiersil map 79
4.7 (onclunjons NI
5 A Mordel for the Cioptintence of Diffurion and Accelerator Modeain A C'haotic Area-Prenerving Map85
5.1 Intrindurtion. nil
1.2 Firmindation of the Problem. M4
5.2.I A Diarrele Mindel. $\pi 6$
5.2.2 ('antinuaus mondel 91
S.i ('alrulation of the IIffumisin ('oneffiriput. 44
5.4 henultm 9.5
3.5 ('oncluatoma. 99
B Concluaion. 101
6.1 P'omelusiusan 101
H. 2 Further Work 104
7 Appendicen 106
7.1 APIPRONDX 2.1 106
7.2 APPENDIX 3.1 10x
7.3 APPENDIX 3.2 110
7.4 APPE.NDIX 3.3 112
7.s ArPFNDDX s.l 115
7.6 AbrENDIX S.\% 116
7.7 APIENHIX 5.3 119
7. K A Ar'ENJIX 5.4. 125

FIGURE CAPTIONS.

Figure 1.1. (innmiturtion of a Pioincare nurfare of sertion. Fallawing page 2.

Figure 1.2. ['hase plane of the pendulum. Foilowing page A.

Figure 1.s. Tranapurt thruugh a broken separatrix. Following page 30

Figure 2.2. Thane plane fur the npider wob map for variaum aymetrien after

 Frallowing pax 42.

Figure 2.4. The diffusion rewfitiont dividad by K^{2} an a function of the pa. ranmert K for the cam of hexagonal symmetry. Fullowing page 47.

Figure 2.5. The dilfumion renefirient divided hy K^{2} an function of the pa rameter \mathfrak{K} for the rame of the mquare aymmetry. Following page 49.

Figure s.1. Hhat of the ration of the numerically calrulated diflusion romeficient to the thenetically ralculeted quanilition value for the generalimed Ftumathle inap with $a^{(1)}\left(p_{1}, p_{2}\right)=p_{1}+e p^{2}$ and $a^{(2)}=p_{2}$ for varioun valumen

 pate fis.

Figure 3.2. Plot of the ration uf the nuturirally calrulated valum for the diffintinn cometticimt to the thmeretically ralrulated qumallinemer value for the
 (*) und for the meneralined Frumathle ump with linear force functions (.). Fillowing pagn 84

Figure s.3. I'lut of the ratici uf the numprirally ralrulated value fir the dif fusion cimpfirient to the thempetically calrulated quanilinear value for the

(*) and for the eneneralined Fromehlo usap with linear force functiona (.). Fulluwink page 84.

Figure 3.4. Plot of the ration of the mumerieally calculated value fur the diffumion renefticient th the theuretically rairulated quasilinear value fur the
 (*) and fur the genernlinad Framenth map with linear force fubrtions (.). Fullowing page 64.

Figure 4.1. J'mblability that particlea retilain in the slah as a function of time fert the standard map for different values of the parameter \mathbb{k}. The aotid line repronents the values oblained by iteratine the map whllat the hroken lige is the anelytired reault miven by formula (4.6). Following page 6m.

Pigure 4.2. Frohability that partirlem remain in the mah an a function of time. The numerical renulte (adid line) are for the ntandard map with $\mathrm{K}=20$ and the madytiral reaulta (broken limen) for two different difusion comfirievts I) = 100 and $\mathbf{1}=120$ are nham n for rotupariann. Fullowing page 70.

Figure 4.s. Prohahility that tha particlas remain in the diac an a furtion of sillm for the woh mep (four fold symmesty) for verioun velues of the paramater K. The malid line is the nuturrical aimulation and the broken line in the samptical reault ohtained unisgequation (4.1:) with the value of I) chawen togive the bent fit. The figures on the riaht hand wife of the
 parameter (I). Finllowing page 71.

Pigure 4.4. Diffuminn raseftirient far the weh map far $k=4$ and for valuen of q araund $q=4$. Fiblawing parafe 72.

Finture 4.8. Approxithatian of the anayytical quanilinear diffugion romefirient uf equation (4.14) by the expromential law of equation (4.4.5). Follerwing j日馬 7 .

Finure 4.6. I'rulanhility that partirlen remain in the diar an a function of time
for the wab map. ('maparimon of the numericm (uelid line) and the WKH molution (benken line). Following pagen 7R.

Figure 4.7. Phase plang plotm for the Farmi unap fur $\mathrm{M}=10000$. The exiatence of KAM nurfaren and urderml motion fur large pmough valura of the artion fa nhown. Following page 79

Figure 4.A. P'robability that particlea remain in the alab as a function of time for the Firmi wap with $\mathrm{M}=10000$. Cumparimon hetwern the numarical nimulation (wolid lina) and the analytiral renult given by equation (4.6) (broken line) is nhown. The thicknenn of the wab rhanges in the different figuren and an doen the renulting diffusion ropficipat. Following page mo.
 of the thirknesm of the slab fo. Finlowing page mo.

Figure 4.10. The renulth for the diffunish romflicient a a function of the mosmentum (artion) after Murray. Lipherman and Lishienbere [MLLa.3]. Fol lowink page wo.

Figure 8.1. A typiral numerical radrulation of the diffunion comflirient as an function of time for a map containing acrelerator moden. Following page NH .
 the rane of arrelephtor moulen and a delta function trapping prohability distribution. Following page !ef.

Figure s.a. biffuninil comflicient ralculated from the renult of our motel in the rane of trapm unly, with a delta function trapping prohability. The danhed line in the diffilision romefticient in the ram of notrapn. The bump in due to the relonse of particien froint the trap alter a tillue ling Following page 96.

Figure 8.4. A typleal aingle urbit of the web map. The iwo atial contimunan lexips show the eximence of multiple trapping in the eremerator modes
that ran be momeled hy a multiple delea fuaction trapping diatribution
Followiti pege of
Figure B.8. (a) Sierond moment and (b) Diffusion remefficient for the rase of arreleratur modes, ransidering a slintribution function for the trapping tition with a prower lnw deray. Fillowing page 97.

Acknowledgmentm

Firal of al I wonld like to thank Prof. Ii Kowlands for hia excellont nuper vinion and Euidenre. His halp has been invalmable heth in phynica and in real life, I willaldan like tet thank IIr. R.S.Markay atid IJr. (i.King for helpful diar ungionn and mugaratiana

Thanks are tur to I'rof. (:Ibolymilin of the Univeraity of Athenn fir introduring tue to the werld of nomlinenr phymire, and for helpful dimenationn and muppart thromethent the arcomplinhment of thin worls, F'rof. K.Hidjanidim, Irof. (i.P.Triberis, I)r. II.Firantmeskakin and P'ruf. (i.Kontopoulom almo for helpful dise umionn, meminarn and a great deal of efrourangettont.
 fonce tuade life hetter and ranier in Warwirk (and not conly!). I want tot thatuk Elertra, for wharine reverything with me, and for heing there whenever I nereleal
 alambakin, Xanthi Zianni. Iakovem Danielidin. Genré Leftheriotis, Vasilia Karnvolma, IDej Jarmonnustanineo and Mike Allen.

Of romrme. I am indebted to my parmenta denny and Nirom for all their mural and Hnancial mupport, and their interent throughont thim periend. Without themt thin thenia woulal not have been here.
 nrahip Foundation (SisF) for a threw year nitudenahip. I would alwo like to thank I'fof. Hewlandm. the Ihynirn Ihepartiment of the Inivernity of Warwirk and 1)r. (: King and Inr. A. P'rovenzele for arrangint financial mopport for attending mump ronferpnrem and werkhopm,

Declaration

Finrept whare utherwime indirnterl, this thanis contains en gernunt uf ny nwn independent renenpeh undertaken in the IDendetampht of Hhyaicm, Ifniveraity of Warwirk between Ortaher I9N9 and May 199.1 . under themuperviminif of I'rof. 4. Huwlands. Konne of thin work has dupaspal in the sripntifir literature its the following jaint puhliretionn:

Publicationn

I)A.N. Yannaropoulom and (i. Kowlanda:'Diffunion ('inflicienta for the Wrb Map' Fhysicn Lettern A. Volume 155 (1901) 1:3:-1:6
 IIIFnitullal Symplectic Mapk of the ('ylinder' Phywira |) 57 (1992) :355-374
 (hmustir Марм' Phyкira II 65 (1093) 71-м.5
4)A.N. Yannarripoulam and C. Kowlandw: "A Model for the C'mexintence of Diffugion and Acrelerator Modes in Arra P'renerving Mapn' To appear ill J.Phyn, A

Prementationm at Conferencem.

I)A.N. Yannaronmulam and (i.howlands:'IDiflusion ('opeffirienta for the Web Map'.

 A)
 ('hantic Mapn'. F'romer premented in C'hantic Dymanica. Theory and Prartire NATO ASI, July 11-20. 1901, Patrar Cireme.
 cemen. Shart inlt prenented in C'hertic Alvertiong. Trarer Ilyamirn and Tur Ibulent Hinperaion NATO ARW: Mny -24-2m, In日is. Ifaly.

Chapter 1

Statistical Description Of Dynamical Systems.

1.1 Introduction

The main nuhjert of thin theais ie the lung time hehaviour of Hamiltonian dy. namiral aystems, whethar under ceftain ronditionn thin hahavisur can be approximatad by a diffusion procena and if wo what is the appropriate value of the trankport rumfirientm (diffumian cumficient). In thim aertion afew important idean ahout Hamiltonimn nymtenn, mymplertir mapm and chantir hehavitur are given.

A Inamitutuinu dynamical gyntem ran he defined an enet of 2l) differential rulintionk

$$
\begin{equation*}
\frac{d x}{d t}=i \frac{i d H}{i x} \tag{1.1}
\end{equation*}
$$

where J la the $2 f \times 2 f$ dimenaisinal matrix defined by

$$
J=\left(\begin{array}{cc}
0 & 1 \tag{1.2}\\
-1 & 0
\end{array}\right)
$$

 Reneralined motrientum ronedibaten and the q'a are generalined pontion rowr. dinaten and $H(p, q)$ in a mal valued function. A Hanilunian syatem han the
property that it prewerven the Lebengur measure in the (p,q) inpace, calleal the
 ran ho thought of as a How in the phane mpare.

The continuoun cime Hautilunian slynamired ayntemi of equation (1.1) ib uften replared hy a diacrete time dynamiral nyatetn whirh is ralled the Poincaré IIAp. The l'oivrark map ran enenerally he whtajed by the folluwing procedure We cut the 213-dimenainal phase apare by (21)-1) dimenmianal manifold Σ rhomen in surh a way that the flow defined by the Hanitomian dynamical ayntem
 and fulluw is until its firse refurn to Σ with the watur arientation with which it ntarted uff. The initial paint is then mapped to the point of the firat return and so sim. This procedure them definem a thap $P: \Sigma \rightarrow \Sigma$. Thin is a diarrete time dynamical nyatem which is ralled the Poincerd map. The proresa of parsine from the rontinuoun time Hamiltonian syatem to the dierrete time foidrare map is shawa in lis.I.I. Anuther mituatian where Porincape map in derivahla If the rase where we have a Hamiltumian ayntan with a periudic deprodence on time with a perind say T. Then a I'uiscme map ia defined by atrohosenpirally ulanerving the finw at timen which are unultuien of the proriod. It in the map that takem $x(0)$ to $x(T)$ and then to $\times(2 T)$ atid mom.

The fart that the reduced dincrete tinue dynamical nywtem orininally cumen fruma Hamiltunian mystem le reflerted in the fact that the Poincare map preaina Itan mamplectic property. That la. annution that we heve the Poimerard niap P froun mune unanifodel E' to itmelf, then the dawhian matrix P of thia map antinfion the comalition

$$
p \mathbf{j p}{ }^{\dagger}=\boldsymbol{J}
$$

Where P^{\prime} denuten the tranmponed Jercibian matrix of the Poincand map and J Is the nietrix defined in equation (1.2),
 The pariadir orhtte. I'eriondir arhitn ape urbitn that rlame an themelven after mume tifue which le ralled the periand uf the periadir urbit. The periodir urhtem of the contimunan Hamiltamian nyatetun cortenpond to frad pointa of some pe-

Figure 1.1. Construction of a Poincaré surface of section.
rias (nut neremarily ihw periad of the rontinuen orbit) for the foincare inap of the ayntem. The periadic arhituran either be atahle (elliptic) nr unatable (hypertolic). The elliptic ofbith act an rentern in phase apace around which the unation in ondereal (quasiperiodic), wherean the hyparboslic orbits art an acatterPFs in phase npare, and nearby orbitn will divarge from then at an exponential rate in rettain directionn. Fur hyperholic orbita we can define the notion of atable end ungtable inanifolds. Thrae are componed of all the points in phame apare which for infinite time approsarh ar diverge from the hyperbolie orbit eenpertively. An we will ane in the next parameaph the hyperbolir orbita and their ntable and unatable manifold are reaponsible for the ammegence of very rotuplicated. quasi-randann, behavicur in Hanilsanian symtems which in ralled chatir hehaviour.

A hanic concept uafful in the atudy uf motion in Hamilunian aystetua in that ul a arparatrix. ()np rould generally any that a meparatrix fa a aperial orbit(a) of the nyatem which connerta the hyperbolir perioslir orbita. In order to be able tos
 of thesimple pendulum. This ronsiats of a rigid and masmenter with a wright attarheal tos the end. The upper part of the bar lafixed at mome point and the wyntem in milowed tu mave under the influence of the gravitational forem. The Handilunian of the ayntell is given by

$$
\begin{equation*}
H=\frac{1}{2} F^{4}-A \cos \theta \tag{1.4}
\end{equation*}
$$

where p in the mompatum of the weinht and in the angle uf deviation from the yeptiral parition and A in a cunctant fapendian on the mann of the weight and the gravitational arcelefation. It in pany lus mer that the produluna bas threp fixed prointa (equilibriutu ntatent. One in at $p=0$ and $\theta=0$ which rorrespanda to ito protulum hanting down with no initial velority. Thin is entable frem pint ninee any atuall perturbation of the fendulum from that atate would be counterhalanced by the effect of the gravitutioned furce and would brith the gendulum bark to the neshle cyuililirium atate. The other twu foed pointa are
 Theme two are unmable requilibrintu points alace a anall ferturbation would
drive thin syntett away fron thim initial atate and the ayatell would not be ghle to get bart therf. We can innagine twas urhitn connecting these twos unatable (hyperbestir) fixed painta, Onm is the urbit starting from the upright equilibrium (a) bettep. mphitrarily clowe so it) at $y=-$ man then falling dowit, pansing frout the 0 (0 point hut with a large velacity, and continuing to go upwardn
 since it ofarted wich a momentum rquad to zero an it approserhes the paint W = it is gaing to derrelerate gradually and in ronmequence it in gaitig to npproach thin point at $t \rightarrow 0$. Hy the namp reamoning it takes infinite tinte
 ume hyperbetic fixed penint at $t \rightarrow-x$ and the other at $t \rightarrow \infty$. The other orhit of the natue lind in one with the amme behaviour, only that it gomen from left to right rather than from right to left. Thene two orbita are ralled the wperatrix arhita. In figure. 1.2 they are whown in a phame plane dingratn. An in Intierntandahle, orhita having lean enmery than themeparatrix orhit are goine to enreapand to morillationm of differmit ampliturlom and oribite with greater energy than the neparalrix orhita corrempend to potitiana of the pendulum. Therefore the maparatrix orhitn maparate quallatively different motiona.

In the rase of the penduluri. the meparatrix ia formed by the namath joining up off the nable and unatable tumifoldix of tha hyperbohic fixped pointer and la srimplimem ralled hsanorlinir ur heterorlinir arhit. Thim is generally the came in intograble nysteman, that is Hatuiltonian ayateme where the number of intengaln of mation (conatame of turitom) in equal to the dimenaion of the tubinentum verter.
 duluin. destroying interalk of untion and makine the gyatem noninterable.
 "f the ntable and unntable manifoldn that form it) and a rhavic layer lif ere. nted around the ald meparatrix malution (figure 1:2). Inwide the rhastir layer
 by a randotu proxemm. The ramon why nuch beheviciut accurn near the nepara

Figure 1.2. Phase plane of the pendulum.
trix in that noar the meparatrix and mperially neme the hyperhalir fixed paint, the force experienerd hy eperticle frisit the unperturbed wytert ie very kinal! and wo the time dependert perturbation heromen dominant. So the orbit can awitch from librations to rutations under the inflopace of the perturbing forre and bark again. Since the perionla of the motionn mear the meparatrix are he ratuing infinite (thim can be whtained situply by etudying mose carpfully the example of the pendulum) the nwitrhen from ane type of unotion to amather will he uncorrelated and ma it will be very irrenular [ANM].

This kind of behaviour, deacribed for the simple pendulutu, ran arime losally in every nonlinear Hamiltonian nystem. This ran be nketrhed in a hand wavine way hy the following reanaling. The exaniole of the pendulun in the protatype fop eny monlinear remonamer and it th neon that meparatriren ercur often in dynamical nyntema. Supume that wo have a monlinear nymem which is integrahle and im perturhed hy mame arbitrary perturbation whirh comervea the Hamilto. nian property of the nystem. It ran he proved that a new set of cosordinaten (I - () for the myatemexinta in whirh the Hamiltamian of the perturbed systemtan he written in the furm (ERe for example [Ara9])

$$
\begin{equation*}
H(I . \phi)=H_{0}(\mathbf{I})+i \sum_{\mu} A_{m} \operatorname{rcta}(\mathbf{n} \cdot \phi) \tag{1.3}
\end{equation*}
$$

where o ls a mual periurbation paramefar and the perturbation ia expanded in a Fintier merien. Thim new net of roordinatmianuch that in the unperturtoal cone the I's arp romntantm of the moticin and $\phi=\omega t+c$ wherr $-=\frac{\mathrm{H}^{3}}{t^{3}}$ and c In a robntant vertor. This new met of conifdinaten is ralled artion-angle variablem
 Amagh then the anow important terum in the perturbatian la the mosab alowly varying sine [ArMA). Thim terin la the ane matinfyine the conditian w.n $=0$. We then may that thin in memmant trphand the frumeated Heniltomian (retaining in the perturlation merien anly the alawly varyine terin) IE enid to dewr ribe a
 whth the appropriate cansonical tranaformation 'the Hamiltonian for the non-

[^0]linear reangance ran be brought in the furan of the Hamilunien deacribing the

 reat of phane upare (whirh curpexpande to untrepperd urbite). So in analogey with the rane of the pendulum (bow the rate of the time alependene perturhation in played by the nomecteal quirkly varying terims in the perturhation meriea), a chantir layer where very compliented and quani-pandem behaviour oreurs, ia ireateal around the neparatrix of any monlinear remonance, since in a nonlinear nynteil a large number of reminancen ran urcur, the ioterection of thome (remotnance. "prlap, ane for axailiple [t'79]) can lemel to wideapreat chantic behaviour of the eysteil.

A huge manumi of analytiral and theuretical went han been doue on the innuen uf ntahility and how and when this in kant we are led to chastir hehaviour. Nowdayn we have explicit ramulte on when the constante of motion for laral cometants of motion) are dentruyed and why (for example the meveral veraione of the KAM theary tus be montionarl in C'hepter 2 ur the manarmalimation apprumeh tu the breakdown of turi im pheme apare bearing regular orblta, corrmpunding in the nurvival of rertain leral intagrala of motian under the forturhation (Mx.id).

1.2 Statintical dencription of dynamical symtems uming the Fokkor-Planck equation

It in well known that very nimple low climennicinal dyamiral turodefa may ahnw very ratuplicated dymamicn and thin han limen rallad chantir dynamirn, Hiven thu"sh the underlying dyazairal myatom la determiniatir, the rhantir dynam. irm, due to ita complexity and tu propertien like the enponential inntability of meighlouring aphits, ran be ausaled hy atatistiral methadm and in particular hy kimetir ryuationne. The iden foto emat a aimpler alearription of the rhantir

a aiapler roaprequined dencription of the rhantir ayotom which ran then give un information shout meanurable quantition of the uystrin

The kinetir equationa uned are unually uf the Fokker. Platark type. The Fukker- Planck equation is the simplent type inf tinetir equation and rorrenpondm
 antumat of memory. that in, it foquivalent to a Markovien prorese. Of comper It in readily underatand that murh a deacription fon foxart hut in many ramea It In m very acond approximation.

Methodn nimilar in nature ta the anmen uneal by Jrigogine and the Hrusmels
 dymamirn of infimite symtemn have heren devied tn nhow rigurnumly thet under

 mosleied in the frat approximation hy a kiamte fquation of the Fokker-Platik Bype fror the evolation of a dintributian function in momentum apare [PMS], Surth rigomua metheids romiplenient the "hruriatic" derivatian of the FokkerHanch approxitnation ten the dyemmicy is mamentum apere for Hemiltonian nyntemn [ILN: I]. It nhould be mentioned here that for Hamilanian aynema it in punaible to have an even minpler kinetio demeription. As fo hes ben nhown by

Oner we arrept the ldea of approxituating the rhantic dymamicn with a kincle equation of the Fohker- Planek type the next sbbulens prohlent is the ralrulation of the tranmpurt ruefiriptia that nater the kimplic muation. Varioun malytical uathodn have heen devieed fur the ralculatinn. An acterupt ia made
 fumrilon method, rharerterintir function method the path integral method, and the Finurier path methond.

$$
\begin{equation*}
\frac{\partial I^{\prime}(p, 1)}{\partial h}=\frac{\left(m H f^{\prime}\right)}{\theta \rho}+\frac{1 h^{d}\left(I \rho^{2}\right)}{A^{2} \theta^{2}} \tag{1.6}
\end{equation*}
$$

Whepe I' In a djatithution function in manimentuan epare. pin a vertar of momanta.
I) in the diffision tenmer and it the fricticin tenner

Fier a Hamiltosian nyntem, the Fokker-8lanck equation ren hererlured to the diffuxion aquation

$$
\begin{equation*}
\left.\frac{\partial P^{\prime}(\mathbf{p} \cdot i)}{\partial t}=\frac{1}{2 \partial \mathrm{p}} m \mathbf{p}\right) \frac{\partial \boldsymbol{P}^{\prime}(\mathbf{p} \cdot t)}{\partial \mathbf{p}} \tag{1.7}
\end{equation*}
$$

In the case where the momentum or artion spare in ane dimensional, the diffusion confticient is defillayl by

$$
\begin{equation*}
l \left\lvert\,=4 m_{1}-\frac{\left\langle\left(p_{1}-p_{0}\right)^{2}\right\rangle}{2 t}\right. \tag{1.N}
\end{equation*}
$$

Where p_{1} in the momentunat time 1 and the angle bracket denoten an enmemble nvernge nef a number of orbitn in a part of phane apare of phynical interent. It is alkn a gomel approximation for Hamiltonian systemus with two degrepa of firmorlom or minivalently for area prenerving mape where now p in the action variable.

In the rase of hisher dimensiunal ayntemn, a diffunion tenacor nhould be in eroduced inatrad of the diffinsion comefticient. The diffunion tenmor would be of the furm

$$
\begin{equation*}
11=11 n_{1}=\frac{\left.\left\langle p_{t}-P_{t} M P_{t}-p_{t}\right)\right\rangle}{2 t} \tag{1.9}
\end{equation*}
$$

and it givan the correlation betwen the different detreen of fredon. Howewer
 haing. The rave of higher dimennianal syntems will he cunsidered later.

It the next iwo mertionn we proment the impivation of the Fibkey Planck mpation an mafan of iferrihing the evolution of a rhantir dynamical nyatem.

1.3 Derivation of the Fokker-Planck equation for dynamical nystems

 tion of detmpmisiatic syntema. The fignt in a defivation of the fusker flanck

[Hfid] in irrevernible atasialical merhanirn. The serond method is formulated for

We will firat present the approarh of "'ohen and Ruwlande for the derivation of the Fokker- Ilanck oquation.

A мatume n mapping of the fortu

$$
\begin{align*}
& \rho_{n+1}=\rho_{n}+f^{\prime}\left(\theta_{n}, \rho_{n}\right) \tag{1.10}\\
& \theta_{n+1}=\theta_{n}+f_{i}\left(\theta_{n}, p_{n}\right) \tag{1.11}
\end{align*}
$$

 obbein a kinetir rquation demeription for the evolation of the artion variable p. Fullowing C'shen and Rowlandm [['RXI] we define a dintrihution function $f(p, 9.1)$ nuch that $f^{\prime}(p, y, t) d p d \theta$ is the number of partirlen in the volume element dipd of the phane plane. In the uriginal derivation a nolen terin was alded Les the suap to holp randotnisation of motion hut here we omit it and anunge that randomiastion of the motion and decay of rofrelations ia dup only to rheme. We nre gning tol lank at the evolutionti of

$$
\begin{equation*}
N(p, 1)=\int \sin N(p, \theta, 1) \tag{1.12}
\end{equation*}
$$

whirh is the number of partirlen per unit of p.
In a timm If currenponding to n iterations of the map, the particlem whirh
 nined by the map. Then

$$
\begin{equation*}
P^{\prime}\left(p^{\prime}, \theta^{\prime}, i+\Delta \ell\right)=P^{\prime}\left(p^{\prime}-\Delta p \cdot \theta^{\prime}-\Delta \bar{\theta}, r\right) d r f\left(\frac{(\beta, \theta)}{\left(p_{1}, \theta^{\prime}\right)}\right) \tag{1.13}
\end{equation*}
$$

The merond fartor of the ritht hand aide of the ahove equation in the Jarabian of the map whirh man the contrection of the Inltial volume of phene apere due to the dynanien of the inap. However, wince we are dealing here with nymplertio mapen (aren promervine) thim dmoshian in alwayn rqual tul. Thin equation ran Ine written, uning the map, In the furim

$$
\begin{equation*}
P^{\prime}\left(p^{\prime} \cdot \bar{p}^{\prime} \cdot f+\Delta t\right)=\int d u d H^{\prime} H^{\prime}\left(p^{\prime}-v, \psi^{\prime}-\theta, f\right) A\left(p^{\prime}-p-\otimes\right) \delta\left(\nabla^{\prime}-\theta-v\right)(\tag{1.14}
\end{equation*}
$$

 In the above ralation $p^{\prime}-p+e$ and $v^{\prime}=\theta+p$ after n iterationn of the maps. Ansuming that the changen in thw artian rourdinate p are amall we may Taylort axpand the intrerand of the previosun equation in p and ohtain
$P\left(p^{\prime}, \theta^{\prime}, t+\Delta t\right)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \frac{\partial^{k}}{\partial p^{k}} \int d u d v u^{k} P\left(p^{\prime}, \theta^{\prime}-v, t\right) \delta\left(p^{\prime}-p\right) \delta\left(\theta^{\prime}-v-\theta\right)$

Performing integration over v and θ^{\prime} we obtain
$N\left(p^{\prime}, t+\Delta t\right)=\int I^{\prime}\left(p^{\prime}, \theta^{\prime}, t+\Delta t\right) d \theta^{\prime}-\sum \frac{(-1)^{h}}{b!} \frac{i \gamma^{k}}{\partial p^{\prime \prime}} \int d u d \theta^{\prime} a^{*} P^{\prime}\left(p^{\prime}, \theta^{\prime}, t\right) d\left(p^{\prime}-p\right)$

Since the Jarnbian for the tranalormation defined by the map ia une, we can
 Fimally we inte日rate nuer p to ohtain

Wherf $\Delta_{p}=p^{\prime}-p$ ia defined an a function of the initial p ande.
Taking $I f$ nemall maughen that therhange in the action during this interval
 defined in the abolver equation to nerond arder in Δp and replace $N(p, t+\Delta t)$ with $N(p, t)+\Delta r \frac{d N}{\beta i f}$ tit obtein

$$
\begin{equation*}
\frac{\partial N}{\partial t}=\int d \theta \frac{\partial}{\partial p}\left(\eta P+k \cdot \frac{\partial P}{\partial p}\right) \tag{1.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{\psi}=\frac{1}{w p}\left(-\Delta_{p}+\frac{1}{2} \frac{\partial}{\partial p}\left(\Delta_{p}\right)^{2}\right) \tag{1.19}
\end{equation*}
$$

nml

$$
\begin{equation*}
k=\frac{(\Delta p)^{2}}{\Delta H r_{4}} \tag{1,20}
\end{equation*}
$$

 proarman rmulta in a randounation of the valum of θ an a function of tinme, the dintribution functions in phamenpare will nut depond on the mogle variahlen and
 tranmpoti rimpticionts.

A sitsilar npproarh has hewn adupted by Lieberilian and Lichtenhere [LLNB]] in their derivation of the Fiblerr-lighrk equation for rhantir mapa.

Thin approarh depende heavily on the convergence of the Taylor aeries in equation (I, 17) and the randenmisation of the angle ciendinate. Theseronditions are experted tos he trur fir a fully chattic reegion.

1.4 Alternative derivation of the Fokker-Planck equation

An alternative derivation of the Folker. Planck equation for nonlinear chentir
 explirit renulan for the remion of validity of the Fulker-flenck equation and ita connartion with rhasia. In hin twes piaperm he uned a firanal pertuphation the. ory af the Liouville equation on atudy the anymptotir evolution of a diatribution furtion near a perturhed mparatrix it phagenpare. He pruved that the aymptotir evalution of aurh a distributian function le siven by a kimetir muation of

 or [L.Mg]) for the derivation of kinetio mantiona for the reme of nun equilibrium ntatiatiral merhanirs in an infinite syatem.

Here we ntetrh hrimfly the method and the rewulte of Petruaky [PN4],[PMS],

 tively. The nynteius in mulinear, an theme periods depend un the artiona.
 ritucheatir remian. The evosution of thin dintribution function under the dynatuics in given by Liatuville's rauation (are for example [P62]) whirh in wf she forill

$$
\begin{equation*}
i \frac{d f^{\prime}(p \cdot \theta \cdot t)}{p t}=L f^{\prime \prime}(p, \theta) \tag{1.21}
\end{equation*}
$$

whern L - IH. | In tha Lhuville operator. The nquare hrarkets denote the

region of phane npare.
If the Hamiltonimin in writen in the form $H=H_{0}+\boldsymbol{K} \boldsymbol{1}$ where \mathbb{K} is a nmall perturhation parameter then the Liouville oppratur ran he written in the form $L=L_{0}+\kappa A L$ where

$$
\begin{equation*}
L_{0}=-i \omega \cdot \frac{\partial}{\partial \theta} \tag{1.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta \dot{L}=i \frac{\partial V}{\partial \phi} \cdot \frac{\partial}{\partial \mathbf{p}}-\frac{\partial \psi}{\partial \mathbf{p}} \cdot \frac{\partial}{\partial 川} \tag{1.25}
\end{equation*}
$$

where $\alpha=\frac{4}{4}$ ere the unperturheal freyumacim of the aysten. The narmadimel eisenfunclinus uf the unperturhed lisuville aperatar are tiven by

$$
\begin{equation*}
\phi_{i_{1}} \Delta_{1}(\theta)=\frac{\left(\Delta k_{1} \Delta k_{2}\right)^{\frac{1}{2}}}{2 \pi} \exp \left(i\left(k_{1} \omega_{1}+k_{1} \theta_{2}\right)\right. \tag{1.84}
\end{equation*}
$$

 wark of I'rigegine [P'b2], enaumen a diatrihution function of the partirular form

It is mepa that thin dimeribution fumetion ham a A - ingularity in k_{1} in the Fiourier peprmentetion. The exintere of this ningulerity in manmial for the derivetion of the himetir equation ['AMS]. Not all panaible dintribution functionn have thin property. For exaniple a dintribution function comeaponding to a minge trajer
 tus the exintence of hounurlinir peintn in the enwemhle rhumen. In [PNs] it wen conjectureal and rharkeal with nperifir examplen that a probahility dintribution
 prprementation. (I) routhe, an is well known, hormorlinir points are the nkeleforn
 ntaton that a kinatir equation ran be abteinal unly in the ragion of phome mpare where homomelinir puinta exinh, that it where rhaotir limhavious orrufn. Furtheriunte, lie wan able tis whiw that the condilion for the exintence uf nunzern Kipete operatorn (the uperatopn that affine the Minetic equation) is mulvalent

In the randition that the ntable and unutahle manifolda of the hyperbolir point internert tramaversmy, that id. the Mrinikov furction (which deffines the dintence liel woen the ntahle and the unntahle unanifolda of a hyperholic fixed point) ban a number of num defenetate zepous.

Whare intarastal in the evolution of the monmentun (actian) rompanpmen of the sifiribution functinn bersume umally alifusion in rhantir nyatetme arcurn in the artions. Fior thix reancin we define the projertion operator

$$
\begin{equation*}
i=\iint d \omega_{1} d \theta_{k} \tag{1.2x}
\end{equation*}
$$

which perfortion an avaraging over the angle wariables. We nuw find the rquatiann piving the maynpentic hehavieyp of fif'

The formal malution of the Liouville's muation la given by the resalvent "perator of the Liovillian, $(a-i)^{-1}$ in a Laplare trannfurin mprementation, and ran he written as

$$
f(p, \theta, t)=\exp \left(-i L_{t}\right) P(p, 0.0)=\frac{1}{6=1} \int_{1} d \operatorname{sexp}(-i x t) \frac{1}{z-L} P(p, 0.0) \quad(1.27)
$$

where the rontour Γ lim shove the real axim of a and geren frotu $-\infty$ to \propto for 1>0. After mome algabrair mavipulationn woran ntain aperturhation merion fur the evolution of fif
where we define the uperaturs

$$
\begin{gather*}
Q=1-P \tag{1.29}\\
H=1=P / Q \frac{1}{z-Q L Q} U L P \tag{1:10}
\end{gather*}
$$

abal

$$
\begin{equation*}
P(i)=P L Q \frac{1}{z-Q L Q} \tag{1.31}
\end{equation*}
$$

The anymptotir rantrihution in equation (1.2w) for $t \rightarrow x$ is obtained by rvaluating the aingularitien rif the integrand at $z=0$. Annunine that the singen-

 fient, the ayyuptotir malution for $t \rightarrow x$ ean be abtainmel by finding the ramidu af the integranal in equation (1,2H). The anymptotic molution then sales the foris
 uperatarm frum the upper half plane af z. Thim equation iequivalent to

$$
\begin{equation*}
\frac{\partial}{\partial t} f^{\prime}(p, \theta, t)=\int_{11}^{n} d t^{t} v^{\prime}\left(1^{\prime}\right] P^{\prime}\left(p, \theta, t-t^{\prime}\right) \tag{1.43}
\end{equation*}
$$

where *(t) is the laplace trannforin of the collinion operator the relation

$$
\begin{equation*}
\phi(x)=i \int^{x} d t \operatorname{sg}(12 t) \sqrt{2}(t) . \tag{1.14}
\end{equation*}
$$

The integral in the right hame side of equation (1.id3) ran be expanded in a perturhation meries in K, the lawest urder of which gives the result

$$
\begin{equation*}
\frac{\partial}{\partial t} F^{2}(p, \theta, t)=\pi k^{2} \sum_{k}^{j} \frac{d}{\partial p} \cdot k \Delta k_{1}\left|V_{k}\right|^{2} d(k, w) k \cdot \frac{\partial}{\partial p} \leq k_{1} P^{\prime}(p, \theta, t) \tag{1.35}
\end{equation*}
$$

whare Vig arm the Fourier compunante of the perturbation V in a Fouripe seriey In the anglen 8.
 say A_{1} beromea infinite in which case $X_{1} \rightarrow 0$ and the mummetion over k_{1} may be roplaced with an intetral nver k_{1} that is $\Delta k_{1} \sum_{\psi_{1}} \rightarrow \int d k_{1}$. Then, making the enamion romardinate tranaformation $\left(p_{1}, P_{2}\right) \rightarrow\left(p_{1}, H_{3}\right)$ the kinetic equation uhtaitied rati be tranmiorineal to the Fukker-l'Inick equation
 In the diffimith ruefficient. The difimion romettrient in wall deffred near thenep-
 quer k, to an intenerationg.
 a braken meparatrix and honourlinic pointa, mid une expertn the Fakker. Manck
 for the kimatir equationt. The kinmir eafution for a wider part of phame spere ran be uhtainad hy a properly rhumen nveragiag methud uver different patchen uf phane apare for which the method deacrihed above ran be properly uned.
 he uned to dencribe nystemn where rhastic matian donimaten. Wie now conuider mitue unethoun that ran be umed tes calrulate the trannport rometicienta that mier the Finkfer Planck equation.

1.5 The correlation function method

We are interented in the calculatian of the diffision comeficient for rhantic area premerving mapm of the form

$$
\begin{align*}
& p_{n+1}=p_{n}+f\left(\theta_{n}, p_{n}\right) \tag{137}\\
& \theta_{n+1}=\theta_{n}+g\left(\theta_{n}, p_{n}\right) \tag{1.3ल}
\end{align*}
$$

wherefien are functionn periodic is buth the variablen e.p ur linear in the variahle p.
 method was uriginally propomed for doubly periodic area premerving mapm with netime. The nuine wan intrudured tuensure frgiodicity. Therear we ere interested in are chantir mapk without mase terman. that ia fully determiniatir mapm, en the uethoul in grmented in furm alighty different from tariginal vpraion. The rule of nume here in plaved by the axtended ntarhantirity raquired ior the meahus to wark.

The diffusion romeflicient given by mpration (1.N] ran be rearranged an follown IDefine

$$
\begin{equation*}
a_{n}=P_{n+1}-P_{n} \tag{1.39}
\end{equation*}
$$

Thes

$$
\begin{equation*}
\mu_{n}-m_{j}=\sum_{j=0}^{n-1} a, \tag{1.40}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(p_{n}-m_{0}\right)^{2}=\sum_{j=0}^{n-1} e_{j}^{d}+2 \sum_{l=0}^{n-2} \sum_{1=1+1}^{n-2} a_{1} \omega_{p} \tag{1.41}
\end{equation*}
$$

Thking the enmemble average we get

$$
\begin{equation*}
\left.\left\langle\left(\mu_{n}-\mu_{0}\right)^{d}\right\rangle \sum_{j=0}^{m-1}<a_{j}^{j}\right\rangle+2 \sum_{l=0}^{n-2} \sum_{p=1+1}^{m-1}\left\langle a_{i} a_{p}\right\rangle . \tag{1.42}
\end{equation*}
$$

Sizer the average is taken over a invariant phapt of phane apare and the meanrea
 $\left\langle a_{y} a_{l}\right\rangle=\left\langle a_{p-l} a_{n}\right\rangle$. We can rewrite the necond term in the right hand aide of the num ke follawn

$$
\begin{equation*}
\left.\sum_{i=1}^{m-j} \sum_{n=i=1}^{n-1}\left\langle a_{i} a_{n}\right\rangle=\sum_{j=1}^{n-1} \sum_{n=0}^{n-1}(n-j)<a, a_{0}\right\rangle \tag{1.4:2}
\end{equation*}
$$

where $j=p-1$. The diflumint romfitiont la then given by

$$
\begin{equation*}
J=\operatorname{lom}_{m \rightarrow-n,(}\left(\frac{1}{2 n} \sum_{j=0}^{e-1}<a_{1}^{d}>+\sum_{j=1}^{n} \frac{(n-\lambda)}{n}<a, \omega_{0}>\right. \tag{1.44}
\end{equation*}
$$

In the limit $n \rightarrow x$ the ffrm part of the num ran be taken in good approximation tul be

$$
\begin{equation*}
\frac{1}{n} \sum_{j=1}^{\infty}<\varepsilon_{j}^{d}>=<e^{d}> \tag{1.48}
\end{equation*}
$$

where a^{d} in the time avernge of $a^{d}=(\Delta p)^{2}=f^{d}(0, p)$. The mecond part beromen

$$
\begin{equation*}
\lim m_{N-} \sum_{j=1}^{\infty}\left(1-\frac{t}{m}\right)\left\langle a_{j} a_{0}\right\rangle \tag{1+6}
\end{equation*}
$$

nus if $\left\langle a, a_{\mathrm{a}}>\right.$ derayn fat anough in」

$$
\begin{equation*}
\sum_{j=1}^{\infty}<\varepsilon_{j} H_{s}> \tag{1.47}
\end{equation*}
$$

The time nveragen thrciugh which the difilumion rucfilient has been deflumd are difticult to batile analytically. In arder to bo able to use the expenemon
 the manumption of efincidicity in whirh cane time averanes ungy be replared by phane apare muprages. Theme are eavier in handle analytirally. In thim rame

The stapa we are interonted in arp perisulir In both ramordinaton fdatuly prrioulle mapal and sen they ran he thoumht of an nispa of the tares, Thr
 quefforined can he taken to he the ubit torum, thun providine ranveremence af the phame npmare sveragen, Arcisrding to the ahave sasumptidna the difumian

$$
\begin{equation*}
D=\frac{1}{2} C_{0}+\sum_{r=1}^{\infty} C_{T} \tag{1.4H}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{+}=\frac{1}{(2 \pi)^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} d \theta_{0} d p_{0} a_{r} a_{0} \tag{1.49}
\end{equation*}
$$

 lur a rhantir mep in juet the infinite sum of all the mounentum antoroprelatinn fuprtionn.

Siomererearkn are in ordar now. To ohtain the above expreasion, which rant be eanily uned for the analytiral endrulation of the diffusion confficiont of rhantir mapn, the ansumption that the dynamion In phane apace if ergodir has heall used. Such an anallugtion han nut hean proven exrept for a vary limited mumber of nperially chomen idpal nyntemu. In mont rasen it is nothing alse hut an approximatiun. The ahove methosl propomed relien heavily on the faet that the ergulir approximatiou is gunal ennugh and thin in heat arhieved if the dynamicn are nt runaly rimatir. T'bin is why, for mapm whirh are perturhationa of interatahle mapn. the methoul workn unly fur large valuen of the perturhation parameter, unlemk analke terim in introilured to help enaure the ergodic propertime.

A serond drawlinerk to the ralrulation of it in the artual runvergence of the inlinite nerien of rurselation functionn defining the diffusian romeffient. The conivergence of thin netion requiran lant mnoubb (exponeatia) deray of the cor relation functonn ('. with f. This la equivalent to a fant enough memery leann fur the nynten under connideration. In the arigival paper where this method

paxural by the int ruduction of a nuine terith. Hawever if a syatem is aufficiently chactir, surb a fant deray may be obtaimed from the forel exponential inntahil. ity without the neal for the int rodursion of a noime tefin. Thin is nol af romeme alwayw the rase and wave algebraic decay of the rurrelation functionn, due for
 Iral and analytiral calrulation of the diffunian romefticient for chantic aymema [MONG]. Such diftirultimen are diarumed in detail in C'hapter \bar{s} of thin themin.

Ilur to the drawhark of thin method, dincusand aboive, the approxima tionn of the sliffumion rupfliciente shtained uning rafpelation functionn, thumt be therked hy entuputations.

1.6 Characteristic function methad

A methon similar in nature tathe one propumeal by Karney et al [KNWN2] is the
 the calulating of the diffusint romifient fur area pregerving mapn of the form

$$
\begin{gather*}
m_{n+1}=\rho_{n}+\boldsymbol{R} f\left(\theta_{n}\right) \tag{1:50}\\
\theta_{n+1}=\theta_{n}+p_{n+1} \tag{1.51}
\end{gather*}
$$

whern f in a periondic function. 'Thene mapa are alans deubly periodir mapa and chn be thought uf an mapm uf the unit torum. The enmeral riasm of rharartepintir functionn wete definarl

 mparf. H it aupponal to bre an invarimitut under the dynation of the map chantir reginto of phamenparn and heraume of the dumble pariodirity of the daga of tuapa

particio at y_{y} at time $\mathfrak{j}(\mathrm{j}=0,1, \ldots, k)$ given that it wan initially in the rexion H of phome upare. It is then rleer that the rharecteriztir fumrtions can giva a complete Etatinciral desrription of the dynamirn of the map. Hare howeves we are only interented in thre diffusion romefirient. Ar wan show it the previoun wertion the diffunime rofficient ren be weitten an the inftite num of rorrelation functions

$$
\begin{equation*}
B=\frac{1}{2} c_{0}+\sum_{i=1}^{i n} C_{0} \tag{1.53}
\end{equation*}
$$

Whete f : $0<f\left(\theta_{0}\right) f\left(\theta_{F}\right)>4$ for the aperial clana of mapn runnidered by ('ary and Meire.

Tating the Finurier derompronition of $f(9)$ ten be

$$
\begin{equation*}
f(\theta)=\sum_{i=-\infty}^{i n} f_{i}+\Delta \mid(i \theta) \tag{1.54}
\end{equation*}
$$

the currelation fumrtioun ran be expremaed in tarma of thergararteriatir fagrlieinn an fellown

$$
\begin{equation*}
c_{r}=\sum f=f,(m, 0, \ldots, 0, n) \tag{1.5.5}
\end{equation*}
$$

where the chararterintic functions ran beralculated from the gerurion relation

athd where

$$
\begin{equation*}
\theta(N)=\frac{1}{2 \pi} \int_{0}^{d \pi} \operatorname{rrg}(1 \theta-\theta \kappa f(\theta)) d \theta \tag{1.87}
\end{equation*}
$$

 termu in the diffusion rumpient, shat in resum all the tertns in (1.8s) to a rertain urifer in the perturbation parameter k.

Wif will review thin methnd hriefly mince It enn unly be uned for mape whirh are of a rather wituple fortit murh an the itanderd mep.

The sliffuaion comefirient la wristen an a wutn of all the correlation functions
 tov functionn rinn be exprenmed ouly in terime of one particular clan of the rharerteriatic fuartionem $\mathrm{ir}(\mathrm{m}, \mathrm{O}, \ldots, 0, \mathrm{~m})$. Itepating thia recuraion relation for

The sharacterintir functions fur thin particular clama of chararteristic functione Mrime at al [MC' (, N: 3] forind the fullowing ralatian

$$
\begin{aligned}
& \text { where } d_{-1}=0 \text { and } \nu_{j}=i_{-1}-2 i_{j}+i_{p+1}
\end{aligned}
$$

The mapx uncler cunxideration afe nuppomed th he of aurh farm that for
 of the series defining the characterintir functions. For the atandard map for example the g'n are jumt Hanuel functions of the firat order and thia rondition in natiafled.

An mpproximate expremsion for the characterintic functione han hern obtniurd (for the partirular cane of the nlandard map) by performing a nummatinn of the principal termin [Mi'fisil]. The principal termen are thome with the maximum mumher af farturn gur (k) equal to unity. For the case of the ntandard map, where theme factiof are Hennel fuactions ibia requiren $l_{1}=\nu_{1}=\mathbf{0}$ for earth Nurh fartor. Since l_{0} is fixed wret $t_{1}=\omega_{1}=0$ and obtain $\left(l_{1}, m_{1}\right)$ by the recuraine relation for the l'e and the $\boldsymbol{y}^{\prime} \mathrm{s}$. Then we aet all the remaining odd I's and $\boldsymbol{L}^{\prime} \mathrm{s}$ equal to 0 and calculate the even unea arrording to the reruraiun relation. All the even l'e and \boldsymbol{p} 's are given in terms of the fixest value of to Thin srajectory in (J.l) npare. which shoulal nut be cunfuxed with the Fouriar xpare trajertorien unpal hy Herhester at al [HWWM]. sprmimaten at J=k-2 with $I_{4-2}=I_{4}$. A nontrivial rexult ran the ohtaineal if $I_{4} \geqslant 0$ and thia rondition miven un that t must he even and $t_{k}=(-1)^{\frac{\pi}{1}} t_{0}$. Thia principal term rontributen tut the rhararterintir function in queation the term

$$
\begin{equation*}
\left.t\left(I_{6}, 0, \ldots, L_{0}\right)=\left(g_{-2 L_{0}}\left(I_{0} A\right)\right)^{t} \Delta_{6 i-1}\right)^{\left(a-21 / I_{4}\right.} \tag{1.59}
\end{equation*}
$$

Where the nuppeneript I^{\prime} gefere ta the principial part. The principal cuntribution in the cane wher th in odd can the obtained nimilarly. However fur the rane of thentandard map it turnen unt that in the can of k odd, not all odd order I and ν 's must he zero. If wo sanume that thim is i_{10} for j_{j} odd, then it is many
 principal pathen ean then be writern down [Mc;ixid.

Huving absained the principal terin contributionm to the rhararterintic functiomn : we can ralculate the principal cuntribution to the force correlation functionn C's through whish the diffusion roneflifient can he slefinest It is found that

$$
\begin{equation*}
C_{4} \equiv<f\left(\theta_{k}\right) f\left(\theta_{0}\right)>_{k}=\frac{1}{2}\left(\chi_{k}(1.0 \ldots ., 0,-1)-\chi_{*}(1,0, \ldots, 0,1 \eta)\right. \tag{1.60}
\end{equation*}
$$

for the aperial cane of thentandard map and then the principal teqn contribution (e) threr ere

$$
\begin{equation*}
r^{\prime \prime}=\frac{1}{2} t-J_{2}(N) r^{1 / 4} \quad \& \quad \text { rosem } \tag{1.61}
\end{equation*}
$$

antl

$$
\begin{equation*}
-\frac{1-1}{i+1} \frac{1}{\hbar} \frac{d}{d h}\left(-J_{2}(\kappa)\right)^{(k+1) / 2} \quad k \text { add } \tag{1.62}
\end{equation*}
$$

The difinuon rofficient rag then he found by mumming up the r'm for $\mathrm{t}=0$ in c. Thim is ohtained as a fenmetrir merien and gives the final result

$$
D^{\prime}=\frac{K^{2}}{4}\left[\frac{1-J_{1}^{2}(K)-J_{2}^{2}(K)+2 J_{3}^{2}(K)}{\left(1+J_{2}(K)\right)^{2}}\right]
$$

Thin reault in more acrurate than other resultef for the wtandard map for ex.
 infinite number of ternin that add up to give a rontribution of the order of ($\left(\frac{1}{h^{\prime}}\right)$, which were nut taken into meconnt uning the previoun methodm. As la

 expanmion given by Hetchestor ef al [KHWHI].
 rewumming an infinite number of cofrelationg whome total effert in af a givell order, can nut he unal in mapn which are nut doubly periodic (d.e tuapn of the (orum), at leat in ita uriginal form, and berromen almebrireilly rompliented if the masy la put of a nimple form nuch os the ntandard map. Hownyer, it hea racently hean umed in higher dimenmiunal mymplertir mapm of the corum [KM90] with metme nucremn.

1.7 The path integral method for the estimation of the diffusion coefficient

Anather interenting mathed for the ralculation of the diffunion roetlirient for chastic dynamiral nysiemu exprennal an area premerving mapo is the path in1agral methoxl ur Fourier npace path methend formulated by Recheater, Rowenbluth and White [HWMa|.[RHWN]], Cohen and Rowlanda [t'RNI] and othern. The method wak formulated initially for the miandard map with a noine component. Later a method nimilat in apifit to the fourier upare path istethnd han hown formulated for motre general arma prenarving tiapa aurh an the radial twist mapa by Haturi et al [HKIm.]. In the latter approthe a moine romponent was not introduced into the map. Here wo briefly kketrh thewe two approarhes without introduring the noike term. The noine tarm wan uned to ennure the ergodir propertion of the map ao that a kinetir dearsiption would he appropriate. Huwever here we analle that the mole of the naime in playel by the
 the deterministir dynamiral aymemin in question.

Wr will stapt by introduring the approther of Hatori of a [HKIMs]. A mimilar
 of the etandard map.

I-t un annume an arpa premerving map of the form

$$
\begin{align*}
& p_{n+1}=p_{n}+K f\left(\theta_{n}\right) \tag{1.64}\\
& \theta_{n+1}=\theta_{n}+\alpha\left(p_{n+1}\right) \tag{1.6.5}
\end{align*}
$$

where $f(\theta)$ in a periodir function of perioul 2π and $a(p)$ is any function. The above arean prenerving map in ralled the radial twint map (RTM). For arneral chuicen of the function a(p) the map itu queation la a map of the cylinder, that is, a mapl with periotirity unly In the angle variahle *. Hotwever fur nperial choiren of the function a(p), fior example if a in a linant functian of p, of a periadir furction of p, the map ean be thunght of as a map of the torua, that in a map with periciderity in luth the artion and the angle variahlen. The well known nenndard map lan example of the latter rane with $f(d)=a \ln (\rho)$ and $a(p)=p$.

Following Hatori et al [HKImi] wr iffine the diffunion ropficient for the map nan

$$
\begin{equation*}
t=\left(t_{m N} \rightarrow \frac{\left.s(p v-m)^{2}\right\rangle}{H N}\right. \tag{1.66}
\end{equation*}
$$

where the hrarkets denute all average nver the initial angle Ao Iterating the แมр) N timpa we grt that

$$
f_{N}=<\left(p_{N}-p_{1}\right)^{d}>=\int_{11}^{3 N} \cdots \int^{d} d \theta_{11} f_{1} \|_{j=1}^{N-1} \Delta\left(\theta_{1}-\theta_{1}-1-a\left(f_{j}\right)\right) d \theta_{j} \quad(1.67)
$$

 tions of the of functions the above nquation ran be written in the form

where the m, 's take integer valume.
We can unw evaluate perturhatively the interpal I_{N}. Siture the expmential term in the intogral can be written as a proulurt of N. I exponentialn, which are alwaya lean or equal to one and contain one n, the main contribution to I_{N} connow froun the part eshteined by puttine all the m, equel to gepo. This choice for the II^{\prime} 'd then given

$$
\begin{equation*}
I_{N}=\int_{0}^{2 *} \ldots \int_{N=1}^{2} d \theta_{1,} \cdot d \theta_{N=1} I_{N} \tag{1.69}
\end{equation*}
$$

1r peqiaivalently

$$
\begin{equation*}
I_{N}=\int_{0}^{d \pi} \cdots \int_{0}^{d \pi} d \theta_{0} \ldots d \theta_{N-1} A^{\prime}\left(\sum_{i=n}^{N-1} f\left(\theta_{i}\right)\right)^{d} \tag{1.70}
\end{equation*}
$$

Thim tarin given the nes called ragdull phane approximation, in which the tra are
 in pasily men aince taking all the 4 'a tu be zero is equivalent to replarine all I he delan functions in the integral expresaion for \mathbf{I}_{N}. equation (1.67) by unity.
 are not related to earh ather by the mapping equatime, that la, then nytem

to the diffusion cometirient $\mathrm{O}_{42}=\mathrm{F}$. Here the index QL. meann the quatilinear approximation diacuased ahonve.

Tho bigher appruximetions may be ohtainml by first takine min 0 for A $\neq j$ and $m_{j} \neq 0$ for $J=1, \ldots, N-1$ then $m_{j} \neq 0, m_{j+1} \neq 0$ and $m_{n}=0$ for
 Of a independent after asme iteration of the map. I wo itorationa of the map and wet ong. In order tor ralrulate the romtributions frum thear himher approximetionm the following Fourier decomponitionn will have so he unad

$$
\begin{equation*}
\operatorname{xp}(i q a(p))=\int_{-m k}^{+} d k \pi(k, q) \cdot x p(i k p) \tag{1,71}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{cH}(i \varphi f(\theta))=\sum_{i=-}^{\infty} F_{m}(\varphi) \operatorname{sp}(\mathrm{im} \theta) \tag{1.72}
\end{equation*}
$$

The derivation of the cuntributions of the higher appruxinationa is cumber-
 and $\mathrm{F}_{\mathrm{m}}(\mathrm{q})$. For example, for thentandard inap whepe $(\mathrm{p})=\mathrm{p}$ and $f(\theta)=$ ann θ and conarquently $\boldsymbol{\sigma}(k, q)=\theta(k-q)$ and $f_{m}^{\prime}(\varphi)=d_{m}(q)$ (where J_{m} is the Hensel furction of order m) the firnt throe corroctionn have heen ralculated explicitly and were ahown in give the followink reuth for the diffusion coeflicient ['RaI], [HKims]. [HHM6]

$$
\begin{equation*}
\|=\frac{\hbar^{2}}{2}\left(\frac{1}{2}-J_{2}\left(h^{\prime}\right)+J_{i}^{2}\left(N^{\prime}\right)\right) \tag{1.7:8}
\end{equation*}
$$

Fiof thore general mapm Hatori el al [IGKIMS] proved that the rorpertionn
 ruprections to the quanilinear renult far the sliffuaion rompliciment. The rundition

In the appraserh of Kerheater. Himenbinth mad White [RHWHI], ('rohm and
 Intion af a prohability dintrihution $\mathcal{P}(p, \mathbb{E}, \boldsymbol{t})$ af urbitn in the phane apare of the
 the ranmervation af the numbet of partirlen utiler the lieration of the map Thls property ran he exprenaed an

$$
\begin{equation*}
\frac{d P}{d t}=0 \tag{1.74}
\end{equation*}
$$

uf equivalently

$$
\begin{equation*}
\frac{d f}{\partial H}+\frac{i d}{\partial H} \frac{\partial J^{\prime}}{\partial j}+\frac{i p \partial I^{\prime}}{i \eta}=0 \tag{1.75}
\end{equation*}
$$

where in the intexer time n in the map ham hen muhatituted by a continumur timmi and the verimber p end enan be found an functlons of the time thy the iteration of the rolial twist map.

The npurespriale initial rondition for the probability diatribution in

$$
\begin{equation*}
\left.f^{\prime}(p, v, 0)=\frac{1}{1+}+1 p-p_{0}\right) \tag{1.76}
\end{equation*}
$$

Thr molution tir equatinn (1.76) in siven by

$$
\begin{equation*}
f^{\prime}(p, \theta, f)=\int_{0}^{2 \theta}\left(\theta^{\prime}\left(\theta-\theta^{\prime}\right) I^{\prime}\left(\theta^{\prime}, p-h \sin \theta, t-1\right) d \theta\right. \tag{1.77}
\end{equation*}
$$

Where $C^{\prime}\left(\theta-\theta^{\prime}, P\right)$ is the (iferen function given in the form

$$
\begin{equation*}
f_{i}\left(\theta-\theta^{\prime}, p\right)=\frac{1}{6 \pi} \sum_{m=\pi} \operatorname{sp}\left(i v n(\theta=\theta-a(p))=\phi\left(\theta-\theta^{\prime}-a(p)\right)\right. \tag{1.7x}
\end{equation*}
$$

Subatitution of this ryuntion given the following result for the probsbility dis. tributiant

$$
\begin{equation*}
P(\theta, p, t)=\int_{i}^{A r} d F^{\prime}(\theta-\theta-a(p)) P^{\prime}\left(\theta^{\prime}, p-K \operatorname{A\theta } \theta^{\prime}, t-1\right) \tag{1.79}
\end{equation*}
$$

The ahove equaticin juat ateten that the particle heing in puaition p, of μ hame mpare at time in jumt the partirle that wan in ponition p^{\prime}. at arh that $p=$

Let un int rudure the Fisurier tranaform of the probability furrtion

$$
\begin{equation*}
f^{\prime}(p, 0.1)=\frac{1}{(2 \pi)^{2}} \sum_{=-\infty}^{\sum} d k a_{m}^{1}(k) \operatorname{sp}(i(1 m \theta+k p) \tag{1.80}
\end{equation*}
$$

Vinine thim Fusrier dercimpunition, fyuation (1.77) givpa

If $\mathbf{a}(p)=p$, then we have the rage of the mandapt inap and the analyain ta trartable. In the mure getieral rane the analysia fo diftirult becaune of the cumplirated form of the Integral oyer p. However for intermediate timen nurh
that the arkion p han not rhanged murh we may linparime a(p) around the initimal value of the Bammatum phal write

$$
\begin{equation*}
a(p)=a\left(p_{0}\right)+\left.\left(p-p_{0}\right) \frac{d a}{d p}\right|_{p a n} \tag{1.N2}
\end{equation*}
$$

 tho idemtity

$$
\begin{equation*}
A S P\left(\pm i A_{\sin } \theta\right)=\sum_{i n}(i) \operatorname{crp}(\pm i m \theta), H>0 \tag{1.n:1}
\end{equation*}
$$

we ran ubtain frum equation (1.79) the requrnion furmula for the Fourier allt

$$
\begin{equation*}
a_{m}^{\prime}(k)-\sum^{2} f_{1}\left(\alpha^{\prime} K\right) a_{n}^{\prime} \cdot 1\left(A^{\prime}\right) \tag{1,44}
\end{equation*}
$$

Where the following relations have io be fulfilled

$$
\begin{equation*}
N^{\prime}-k+m \quad \text { and } \quad m^{\prime}=m-\operatorname{lngn} k^{\prime} \tag{1.85}
\end{equation*}
$$

With the help of thin recursian farmula ure can in principle radrulate the lang
 we are interemed in can be calrulated direstly from the quantitian a_{m}^{\prime} in the followint why. The diffumion coefficient is defined by

$$
\begin{equation*}
\theta=\lim N-=\frac{\left[P N-A_{i}\right]^{t} \leq}{2 N} \tag{1,N6}
\end{equation*}
$$

The wh moment af the prohahility dintrihution I' p, θ, t) can he given hy

$$
\begin{equation*}
\left\langle p^{\nu}\right\rangle \equiv \int P^{\prime}(p, \theta, t) p^{\prime} d / m \| \theta=\lim m_{k a i n}\left(i \frac{\theta}{\partial k}\right)^{v} e_{0}^{N}(k) \tag{1.87}
\end{equation*}
$$

m) that

$$
\begin{equation*}
t=\| \operatorname{tin} t-0-\frac{1}{N} \frac{\partial^{2}}{\partial k} y_{0}^{N}(k) \tag{1.MH}
\end{equation*}
$$

[$\mathrm{C} \cdot \mathrm{H} \times 1$].
Thun we nee that in orter to ralculate the diffunion romefirient wr anumt irdiulate a_{11}^{N} in the limit $N \rightarrow x$. Thim can be dane in a perturbative way.

Lat us lemate that the rerurainn relation (I.M4) \mathbf{N} tilum, mtarting with the intind randition
currexpending to the prohahility dintribution

$$
\begin{equation*}
P(p, \theta, 0)=\frac{1}{2 \pi} A\left(p-\beta_{0}\right) \tag{1.90}
\end{equation*}
$$

Every iteration ren be thought of an a path in the (m, \&) apare. The iterationn will be perfurmal barkwardn in time and nince we are interented in the limit $\therefore=0^{+}$and $1 u=0$, all the pathes we are interented in khould end at the paint (1 II. K) $=(0.0$). There is a large nutuber of much pathw, earh one of thome fiving m rondrihution to w 10^{+}). The simplent path is the one that never lesven the arimin, that in all the k's and in'w ate equal to zero. This path contributen the (arill

$$
\begin{equation*}
a_{0}^{N}(k)=\left(\delta_{u}(k h)\right)^{N} a_{0}^{N}(\theta) \tag{1.91}
\end{equation*}
$$

and thin given the contribution tos the alffusith rometirient

$$
D=\frac{K^{2}}{4}
$$

whirh in nuthing but the quavilinear approxituation.
The rourmetions ta this main contribution are obtained uning pathe in the Fourify spare that leave the arimin. Firom the feruraion relation (I.K4) we nep
 are interpated in the limit $k \rightarrow 0^{+}$we unly have a contribution to the diffusian comelticien! frem wurh gartm uf a path if and only if $I= \pm 1$. Thim in herames the
 Fup larter \mathbb{R}. heranme of the Hexael function routribution at marh gtep, we ean tonstruct a nerien in ausendine powern of Hexmel functians by ronmidefing pathe with an increasing ntumber of atrpm mpent mway fronn the origin. Thim is in ramplete analosy with the approserh uned by Hignd and Howlanda [HHMti] and Halcori et al [Hhing] where the approximation wan haved nin the number of iterationm of the man beforf fandonnination of the nonde variablen. The number of iterations allawel bafore randounimation of the nnglen fir equal to the number of ntepn mprat nway frails the ririgin. Huwever in the way presented by Hlatud
 npproxisamation uned im imore npparent.

The cunalruction and the enummentian of the mppropriate mapha reanaina to be done. Whe will nat neal to eng through thin in det ail nimee the rometrurtion af graphe depende on the partirular map considered. We junt give the simplent cour rectionn. The path with the fewef number of ateps npent atiside ithe origin is the path

$$
\begin{equation*}
(0.01 \rightarrow(0.1) \rightarrow|1 .-1| \rightarrow(0.0) \tag{1.9:1}
\end{equation*}
$$

 patho to of ${ }_{0}^{N}(k)$ in
 Nite that thin renult in thename mithat of Hetori of al [IIN|min].

All the mosieln far tranapurt in phem apare ronsislered ap to now were more or Iom in the entme npirit and were baned un the ralculation of the varioua trannpurt propertion, wirh an the diffusion romefliaient, in tertun of reirrelation functionn which arp obtained by woraging uver partm off phane mpace. It in evident that nuch mavelein ran nut give a very delailed dencription of the iranapart procemenes Iftriutherut phame mpare.
 In rizticn of the dymaniral syotem in qumation are the Martor modeln fur trame proft in phame npare. Theme ram aive store laralined information on Ifanmport through phanemparm, at the expenne of havind tus whain detailed inforsuation on the rharartarimiea of the gartirular dymamiral nyatemin quantion, wuch an pamition uf hyparlualir unatable urbita, atahle nad unatable magifolda ete, Musielm of

 Itrinandeph (Wis2]).

The atrat ma of nurh modals ran be numanminad an following. Suppome that the transport betwewn twu diejoint partn of phare apare $H_{\text {I }}$ and H_{d} is to the neudiad. Two disjoint regionn ran only connmunirate if a partial berripr exjats heatween theiti. A partial barrier permitn manme fur of p hame mpe othruugh it ant ran be pither a ranturun (a canturum in juat an invariant rarve of the map that han an infinite number af hosen in it and han the ntructure of a ('antor met) oir anet of atable and unatahle manifoldg of a hyperberif periodic orbit that intermert permiting a part of phane apare to be tranmperted by the action of the map.

Heforp introduring mordeln of thin form we munt give the banir merhaniwn of tranmpart. Asumme that a hyperhoulir fixed paint for a map M exints in phase npare and let uhrall it S. Then for thim point there exinta a atable and an unatahle ananifold which are the net of puint which if mapped t, $t \rightarrow$ mppruarh S and if mapped by the inverne mappian to $f \rightarrow-\infty$ spprosech S reapectively. Theme t we timanifulds, which we shall redl $\mathbb{M}^{\prime \prime}\left(S^{\prime}\right)$ and $\mathbb{N}^{\prime \prime}(S)$ (the aupermeript a denoten the ntahle one and the superacript udenoten the unateble one), nutat interaert at an infinity of pointw fach one of which in the image of the other under M) which me calleal honorlinir puinta. The interaertion of thme manifoldn in reqivalent to the noninterability of the nymtenn beraum it han hern proved that in the come of an integrable myntan the alable and the unatahle manifoldm of the hyperholir fixed point of the map will have tel be smosthly connerted. Sinppome for mimplicity that $W^{\prime}(S)$ and $W^{\prime}\left(\right.$ N $\left.^{\prime}\right)$ intermert in nuch a wey that there le unly one humurlinis point 4 with the properiy that the repronent of
 (a puint with murh ptopheptim is called a primery intermertion puint hy Fienten [H:Whi]. It in may to prove that if M in a dilfoumorphian then the inamen and Irrimagan of prituary intermertion pointn (piph) are nemain pipn (amerg [WG2]). We ran met that helwen the pip 4 and $M^{-1}(q)$ we have an m-nhaped reaticin of finite area (which le defined by the ntable and unetable manifolde of S) that Wha rallefl on turnatile by Markny it al (MM|'M4). If we rall L_{12} the pert of the turnatle hatwern $M^{-1}(q)$ and t (exe flatife 1.1) and L_{3} the part of the tirmetile
hetwern 1 and y (where t is a homucorlinir point but mot apip) than werem thet
 manifoldn lying 'oulxide' the area encloned by [Sq|" and [qS]" which we will cal]
 Sand 4). The same thing applion for the area in \boldsymbol{L}_{31} which atarta 'outnide' the area \mathcal{H}_{1} (that in in \mathcal{H}_{2}) and under the artion of the map M in inapped inside it (wee figure I. is). Sn were that through the turnstiles, that are forined by the benken meparatrix, we ran have ronmbuniration between two distimet arean uf phanf xpare. This is the hesir merhanixm of trannpert hetwent two regigins of phame npare which are dintinct but are connertel by partial harriers. It In panily Newn that the afore inentioned tuerhanimu in prement in the came of hyperbolic urbita of parind Ereater than one. We can then define the fun of phase apere nut of raxion \boldsymbol{H}_{1} and intoregion $\boldsymbol{H}_{\boldsymbol{d}}$ which ia nothine elae but the area of \boldsymbol{L}_{12}. This area ran ly uhtained for area premerving mapn using the action formalimin [MMIN4] or unine the Melnikov functian [W92].

We are now able tio formuiate the tranmpirt problem. In order to at udy the Itanmpurt through the phase wpare of an arem premarving map we have to brent the phase spare intu dinjoint arpan that rover the whole of phame apare, that in we have to generate a Markov papticien for the thap. Thme disjoint reaions ran connimunirate through partial bartifen like turnatilen or overiap of turnatilen farmed by stable and unatable manifokla of different hyperbalic periodic arbits. Sinppone that earh of the diajoint mreen forming the Markoy partition hamarma A, which ran lue ralculated. If the flux between twin murh regiann in $\mathbf{D} \boldsymbol{W}_{\text {i, }}$, whirh la given by the common area of the mppropriate turantilen, then a Markov tuatel ran lif whtatal for the transport prorean thatigh phame spare with transition Urobabilitien $p_{1}=\frac{A W}{A}$ from region i of the partition tor retion \rfloor. Thia Markav model ran then loe malved miving information shout how differemt parta of fhame whare ren rotionnnirate. (II rouren the problean of chowsing the right partition
 apara in terma of remonanrem. A rentinance la a region of phase apare bounded by pieren of ntable nad unatable ilnaifuida uf a hypepbolls ordered periendir

Figure 1.3. Transport through a broken separatrix.
wrhit (MMPK7). Then the Iurnatiles of the remonance is the total area (flux) wximangal by thin remonance and the reat of phane apare. It ran be proved that with the right choire of belundarien for earh renonance. two remonanten will not averlap while for a given region bounded by two KAM rurvea the total arpa of the renomances in mual to the arpa. That meann that the remonancen form a complete partition of phamp npare and all rhastic nebits except a ant of mearinre 0 tuant lie in thin partition. Twor remonancea can only communicata through overlaps of their turnatilen. In rhsoming nuch a partition the arnan uf the different regions ran be ohtained quite eanily (though with conviderable numerical effort) through the artion furmaliam of arme preariving mapa and nalle guen for the turnatilen area.

Markiv mudela are very interertine anal ran give detaifed resulta for trataport in partn of phane apace where the formalimul prenented in the previoun eactiuns is not appropriate. They ran be unel in cesen when we have weak rhaus. nuch an when we are chme tu the rritical value of the perturbation parametern for the onget of trannport, that to when a KAM rurve la junt heginning to break up. On the uther hand the methosln deneritiod up to nuw neel the existeuce of ntrong rhas and are valid for large valura of the perturbation parametera.

Markuv musiols have beon unal nurrensfully hy meveral authurn for nimple mapk nurb an the atandard map and the anwlonsth map and for the latter ex-
 [W:2]). The alouve prenentation of nuch modela is rertainly incumplete but a more comaplete presentation in heyond the nconpe of thin theain nimere our work In hased un the clans of medela haned on roprelation function methorls. We think that wurh modein nhould he unal tu get all overall islean of the trannport through phane npare and then the Markuv modeln which require a great deal of numeriend work ahumld he uned for the partn of phane npare or rexiona is parameter npare that the renteintion function modeln are mept to be inadequate Furthermose nince the Marknv motein age not yet aufficiently well formulated for nymtrin of dimennion grater than 2 (exrept ferhapa for some partial reaulta liy Wingina (WQ2]) wa have tos une the terchiquen of the previoun mertiona whirh
have alraady beeti nhow in work mucrenafully.
In the presemt thenis, an mentioned shove, wo forun an the inverstigation of forpelation function modeln for the netudy of diffusion in atrongly rhavir amapa. fin worh cases rurralatian function methoids are appropriate aince for atrongly chantie mentionn the effort of ortered atructuren surh an inlanda in anall and more detailed or refined demeriptiuns are not urgently necenaary at lean in the stage of metting acme havic information on thr aynten. An a final refinark here we ran mee that reimbinations of the twas mouloin ran be unale. For example Markos innela that ape appropriate in rerisin parth of phase apare ran he uard to ahtain the proper haundary conditionn to be uned in the deacriptinn of the aynem in apuextion by a difumian rquation.

1.3 Motivation for this Work.

An infationeal parlier, the unin whejert of thin thenin la the lang time behaviour uf chantic Hatuiltonian dynamiral symtetnn. In thim mertion I want to promant the tuain mativations for undertaking aurh atudy, by mentioning mome af the applirationte of nurb a prohienir.

Hy suw it in well underntoud shat a great numther of the dynamiral nymetna that appear in nature ran becnmer chantio, an heing able to yuantity ahameablen for a rhastir ayatem in of areal importance for applirationn.
 rumfinement. If wr rommider charged particlen in an axiaymurtric mantiotir
 syntems of two degrem of fremdont, and the details of the particle irajertorien give information ahout the ronfinement af particlen by tha fimedn. Inapendina un the geanmety and atrength if the applifd fielda, there ran be tranoletun from regular motian to ghinal ninchanticity. The premence af atochantic metian |pala to an enhaterinent of particle lomaen either out wf the mirrer marhine or to the pulen in the ram uf the earth'm magnetic firld. The lung time bebaviour of this dynamiral ayntem will give un infurination an the leaknere rate of pertirlem frasu the Meld, information of parmousunt importance for the deaigh of thagrefir
mirmurs and the entry of rhareal partirlem intu the earth'a ionosphere.
Another impurtemt cleen of prohlemm where this atmoly in of relevance, is The protion uf rhaped partirlo heating. The motion of charged particlen in npecially nelerterl elertentiagnetic fleld ranfigupations ran hernme chantir. Thia chantic mution, whirh ronmman from the modifiration or deatrurtian of invariantm uf nution due in the interaction of remonanern may lead to a note effartive
 effertive heating of the chareed papticles One af the must rommon arhelumer
 wave. An example of wuch a heating sehpine in the weh tuap, propumed by
 with an elertreiatatir wave parket propageting perpendieularly to the mageotir lield. The long time evolution of a prohability dintribution in the moniente for Artona) given impurtint inforiuation an the evalution of the kinetir enepgy of An initial नnsemble of particlea and the mifertiveneme of this arheme an a hating Iterhanimat. Thum the runatruction of kinetic cyustiana fur the evolutinn af auch frasability dintrihution in the rame whare noution heromem chacotic will be of grabi prartiral ithportanre.

Lant, hut mut leant, is thim nusall indirative lint of problemen ralated to the mindy of the lang tisur propepties of rhastic Hamiltonian systema, is the problem uf rhastir advertion. It wan found recently. that the unciono of trarer partirlem, peen is a twa dimemsianal, incounprensible laninar flaw, can beroure chantic if the Inminar flow is thup dependent [ONS]. The equations of motion far the fracer particlen ran be writien in Hamiltonian fortu. The long time hehaviour for nuch a nymton will glve infurmation on the dimpernion of panave trarern in the flow and un hetw effertive mixing due tu rhasan la. There it a wide range of problemas
 The orpana, of effersive mixing of rearsing muharances in the chemiral induntry.

 enmerlated with rharme particle heatime the wab map, is premented. The reat
uf it ia devited ta the whalv of mume gemeral problenas that appear when the problam uf tranmport canseal by chan in Hamilomian dynamical syatemm is ronmialerfid.

Chapter 2

Diffusion in the Web Map.

2.1 Introduction

Wr have ment in (hapter I that a determiniatic dynamiral nyatem ran give rine to rontulirated, irregular montion whirh lewikn very mimilar to noime. This kind of motion In calleal chactic mution. Importantly, unlike noime rhantir motion in perferty determinintir. Thin irrenular motion is extrenmely mennitive to initial runditiosns ampliod to the determiniatic symtem. In a mape formal lanctage. thin currenpuinde tonan expunential divergenre uf nearby orbita, a property which
 lufionn of a dymamiral nystem have (maximal) lyapunow expurnentw whirh are pmitive. while reaular ar periorlir molutions have nemative maximad Lyapunus exponentin. Amother puint which ghould he made, is that unually the rioreIation functionn fur chantir mution are turfe strurtured than thume fur unime. partirularly white muine.

The rhantic behavinar firmt ariam near the meparatrix molutiun. An men-
 whirh pamen frum the hyparbalic periondic urbitm. In the intagrable rase (where

 aralrix neparate qualitatively different strbita. For example in the rame of the
nnpurturbail pensluluth whome phake portrait is shown in figure 1.2 the geparat rix molution in the senntion mepmeteting umillatory from rutating orbitn that joins up the hyperbalic fixed paints reatreaponding tos the unstahle equilibrium ponnta of the pendulnm. The example of the pendulum the the prototype for any nonlinear remomence and it in mem that mapmatricen orrur aften in dymamiral wystetum. In the camp of a nomlinpar rpmomance a weparatrix in the curve aeparat. ing indands (whirli rorrempend to tpappeal orbite in the remenance) fronit the rest uf phose epare (which corrmponds to untrapped orbits).

Whell a sinall, time dependent periodic perturbation ia added to the pen. dulati, the nhometh meparatrix orbit is dinfupted (beanume of the tranaverme intefmertion of the miable and unstable manifolde thet form it) and a chantir layer is romated eround the old meparatrix molution (figure 2.1). Inside the chaotic layer the dyatemin dynamicn are very complirated and limak an if they are men. eqatal by a randini procema. The reman why nuch behaviuur ocrurs near the xeparatrix ia that near the aeparatrix and experially mear the hyperbelic fixed wint, the force experienced by a particle from the unperturbed ayatem in very nimall and on the time depandemt perturbetion heromen dominent. So the of hit ran awith fratu librations to fotations and bark atain under the influence of the perturbing force. Siince the periode of the thotion near the neparatrix approuch infinity (thin ean be obtained simply by wtudyine more carefully the example of the jretudulusil) the wwitrhen frutu une type uf inotion ton anothet will lise mactortalated and and it will be very irregular [Amm].

A nturhantir weh appeara when many atarhmatic layern intermert in phame apere. The exinemere of stuchastic welon in Hamiltonian systems of metre that

 periosic perturlation) in the phymiral context of rharged particlen rotnting in a mondy and hothogenmun magnmif field interacting with elertroatatir waven [$\left.7 . S^{\prime} 1^{\circ} M 9\right]$.

Figure 2.1. Chaotic region around the separatrix area.

2.2 Spider webs.

The ntandard syatem frif nurb wellas in that of a linear amrillatur perturtied by a tillir pariadir perturbation an in dimerumed in detail in the next aectinns. The aimplest mondel for antorhatir wrib in a linear ancillator with a ainuanidal wave. Such a myatelil le naid to proclure a apider wab andil dencribed by the Hamil tunian [CSZMm]

$$
\begin{equation*}
H=\frac{p^{j}}{2}+\frac{\operatorname{top} p^{2}}{t}+\operatorname{k} \cos (k s-\omega t) \tag{2.1}
\end{equation*}
$$

A phynical situation dencribet hy aurba Hamilunian in that of the motion uf a rharged particle in a homogenmaun atatir enagnetir field (this ie aquivalent tu a harmunir uncillatur of frequenry wh, the Larmone frequenry) perturbed by an electrontatir wave propigating perpendicularly to the magnatir Hield. We ran manily gato action angle variablen (i, ©) fur the harmonic amcillator. Then the nomlinear perturhation when. expmatesl in a fourier nerien, intrudurex into the motion a arrien of remozanres hetween the unperturbed motion and the perturhations. The remananer candition in

$$
\begin{equation*}
\text { mean }=\pi \tag{2.2}
\end{equation*}
$$

When we have a remomance a xtochantic weh appents in phan mpare that han a rotational nyumetry (see figure 2.2). It in rlear frum the figuren that the phane apare ronsinta of 2 ll e cuncentric rayn along which the chantic layern are aligsuml and in hetwern the rays we have elliptir inlandn curtemponding in atable tuatian. Mure detaila about how the atrurture of the spider weble obtained arw given later

The width of the rhantir layer of the wah depende exponemtially on the

$$
\begin{equation*}
د H=\frac{\text { penat }}{K^{\prime}} t \operatorname{sp}\left(-\frac{\operatorname{romat}}{K^{\prime}}\right) \tag{2.3}
\end{equation*}
$$

The countant is independent of k but depends on the part of phane plane we ape is. The exart expremaion for Δ / H nhown that the width of the nturfanar layer heromen numalier an we move sut in the phane plame. Hearing in mind that

Figure 2.2. Phase plane for the spider web map for various symetries after [CNP87].
of fhane spare is jumsible. une readily mew that the redurtisin in the width of the ntuchantir layer an we tzove uut in the phave plame correnponde ta the fart that high aliergy patirlem have lean prohability todiffume to high kinetir energiex than low muersy partirles. This in not true fur all kinds of atorhmale wobs. It

Ton atudy the mtructure of the spialer who in mare detail wr firat take an apprupriate ranuniral Iranafurmation, namely

$$
\begin{align*}
& s=\left(\frac{2 n_{0} I}{\omega_{0}}-1\right) \operatorname{ran}\left(\frac{\pi}{m_{0}}-\omega f\right) \tag{2.4}
\end{align*}
$$

 reducen ter

$$
\begin{align*}
& H=H_{1}+\boldsymbol{q} \tag{2.6}
\end{align*}
$$

where f_{n} is the Hexsel function of opder n.
 whien for the harmonir marilator and changed to a maving comrdinate frante rutating with the frequency uf the omrillators. In thin way we may meparate alaw
 theary.

The part H_{n} uf the Hatniltonian in the integrahle part |unperturhed hannil(runinay). I'maler cartaln ronditionn, namely that the jertuhation in on a murh fanter time arale than the unperturhed mothom. the Hamiltunian H_{a} providen a gand approximation the the full motion. Thim part of II meneraten in tha pham filutie meparalrix network that la extenalod all river the phane planf. InfurHation runcerning the furm of the neparatrix uetwork generated hy $\mathrm{H}_{\mathbf{\prime}}$ ratn be geimel from the hyperimalio minesuler painta of $H_{\text {a }}$. Arcordine tu (hernikur at
al [['SZNK] the neparatrix network ronaiatn of conrentric circlen that are cronmed

The timerieprendent part uf the Hamilanian, V', plays the rule of the per turbation that dimpupte the neparatrix network reated by H_{u} and in reaponaihle for the furmation of atomentic leyers (ehentic lavepe) about linex defined by the mpparatricen of the unperturbed nyatem. Thin in the way a atorhatio weh is rre. ated and thrse fometures ape illuntrated in figure 2.2. The witsh of the atorhentir wah ran the futind by approximating the particle motina name a meparal rix by a Imapping (naparatrix mapping) and taking the lncal phane inntahility condition fur the orcurence of ntrichanticity an propamal hy Zanlavmeii and ('hirikov [2('7\%] and in siven by equation (2,it).

The existance of an infinite ronnerted ntorhatic web at firat singht looks incompatible with the KAM theorem (named after Kolnogarny Arnold and
 invariant sari uf the unperturhed aynten (thume not rarying ramonant or equivalently parionif orbita) shoulal nurvive under the pertuphation for manall enough viluen af the perturbation (aer for axanuple [L.LA:B]) These turi mhatid then be barriern for the rounumiration of the chatic layern anong the reaonancen thum ruling out the posibility for the exintenen of an infinite connmerted atorhmatio weh. An inumitant condition for the KAM themrens to huld lo that the unper turbes nyatem in not demenerate, that in the determinant of the Heaxien matrix of the umperturbed Hamiltonian (written in the artion angle varimblem ahould nut he zerot. Thin cundition ntaten that fur the KAM thearem to hold, a renonagre condition whould be localined in phane apace. Arcording tos ('hernikeve et al [C'SZMK] onf of the impartant rematnm that the infinite storhestic web exiata fir the linear amrillatir, when perturbed by the reanoment perturhation, fat that the unperturhen ayatem In alenporate, thum unking the KAM themrem Inapplirable in mone parta of pham apace. The degenefacy arimen frotn the fart that the unperiurionl ayntemin linmar.

Thim degenefary of the umperturbed nyntern in immediately renouved by ronnidering a munliment narillator fin whirh rane the frequenry uf meillationa de.
pendw on the emergy is tmonentum of the omerilatost in the plare of the harmonit tinw. Then, the KAM theuren in applieable and thim traken the exintence of a alochantir weh infinilely extenderl in phame space impamaible. The thectrentillıplien that for nentie finite k therp will he an invariant rurve in the phane ware that impedem ntorhantir diffusian arromen it. In this rase wharhantic layern are meparated by KAM surfares \{diu to the liw dimennionality of the nymem) and ronnequently rannot internect. It is however pormihle that cortain liniter wes. Ilimente of thentoichantir weh may remain in rartain partm of phane npare. Thin in mure prohable in the partm of phane epare whete uarillationa menenall and the menlinear uncillator can well be aproximated by a linear uscillator. Thin idea is supported hy nutueriral radrulationn [[$\mathrm{N}^{[} \mathrm{I}^{\prime} \mathrm{N}_{7}$].

2.3 The webl map.

Acrording to chernituv of al [$4 \mathbf{S Z N A}$] there ia the pomaihility of the mintemece afl an infinite sturbantir wrly with aniform wielth es dimetinct to the rese of the apicter welb. where the width of the atorhatio wels derremmex exponentially an we illuve away from the urigin in the phage plane. An apprupriate moulel of thin kital in a linear ancillatur prerturhed hy a furce E which connintm of an infinitm unniber uf winumuidal furcen with a harmanically related frequencien, namely

$$
H^{\prime}(x, t)=A \sum_{i n(k x-n w i)} \sin (k)
$$

Impartantly thim ran be re.expremed in the farm

$$
\begin{equation*}
f(x, t)=\operatorname{Aan}(k ;) \sum_{i=n}^{t+} d(t-n T) \tag{2,10}
\end{equation*}
$$

where ' $\boldsymbol{\prime}=$
The correaporndime Ilabiltonian tahem the form

$$
\begin{equation*}
H=\frac{p^{2}}{2}+\frac{-1 x^{2}}{2}+A \cos (k s) \sum_{i=2}^{t} d(t-m T) \tag{2.11}
\end{equation*}
$$

This Hamiltuninn dearrihen the moation of a rharged partiole in a hamanenemus
 ine perpenelirularly to the manenetir field

The equations of mution of the partirle belween twa mion of the wfurctinns at time $t=n T^{-}$and $t=(n+1) T^{-}$(where the minum dim dencuten juyt hefore thin time inntant) are linear and hence admit a full analvic malulion. The artion of the perturbation le to itnpome an impulne at time $t=\mathrm{m} T$ that rhanges the stosimentum of the partirle hy a known fertor that dapendn un the pemition of the partirle at the time it experience the impulame. Hence. the motion of the particle dencriberl by thin Hamiltonian ran he dearrihed by a differmmen muntion relatime the noumentum and the pasition of the gapticle before and after thenth tick by the delta function that in at time $t=n 7^{-}$and $f \equiv(m+1) T^{-}$rempartively. The reurreapondinf mapping is exart and in [2ZSix6]
 hepvity we are guing to call thix map. the weh map $M_{i r}$.

In the case of exart matanare where 4 a intenes, thin sap hen nome remarkable propertiex (the canp of remonance means that during one perieid of the harmunir uncillator exartly q delta pulsen art un it). It is the menerator af a tiling of the whule phane finile with antorhantir weh which han unifurm thirk mogn. It alan ham mume intarenting wymmetry propertips. For certain remanancen the aturhastic wrh exhihitn a novel kind of mymmetry, the en ralled quanirrym. tal aymmetry. Thin is the nymmetry oherved rerently ia anme naterian like Mn. Al for exainple that are rryutaln with five-fodd or aeveu-fond rutational and

Along the ntochantir layern of the wels the particle wotion rearintion a rand. dinit walk and at leant arrording tas Zandevilit at al [ZZSN6] particlen ran difilime
 the particlen inside the tilen la regular. The propertiea of the weh have been mtudied hoth numerically and mnalytically. Hern lte unamt important propertien nre raviewad hriafly.

The Hamiltomian of themystem ronminte uftwopartn. The flrat part le a linear

The arund part of the Hamilunian dearrithem the interartion uf partirlem with the weve parket. This pert of the Hamiltunian hes a tramalatiunal nymmeity
 rompete. Nurmally the interaction of the two ayminetrien mhald feat to a dentruction of hoth. Howeyme when the linear oncillater in in remanamre with the perturhation it is posaibie that the temenepate rotational aymmetry hreakn
 tuexintence of rutational nymurtry and iramalational avmmetry in anly pumible if $q=1.2 .3,4.6$. The ranen where $q=1,2$ are trivial, q=1 currenpunding to the so rallol cyrlotron reminanem and $4=2$ correapenting ta the half integep cyclut ron ronamamere and lead ln uniform arceleration without diffumon an readily mepn frum the insp. The camen $y=i .4 .6$ renfenpend u the formation of a atorhastir weh exhihiting the well trown rryntal nymuntries. In the rase of $\mathrm{y}=\mathrm{A}$ the

 is neplonser pomsible. In thim rean exert nymuretry given plare to quesiaymmetry (at least for nimal valurn of K) and the ntorhatio weh exhibitn quasieryntal
 $4=7$ currenponds tu a neven fulal quaninyumetry. In figure 2.3 monime pirturen of

Quanicryntal avinmetrien arp murh more romplicated than urdinary aymume. trien. One way of ntudying their propertime in by uning the inspping M_{4} and In the tule tis lie uned it the fallowing. Alternative wayn have heren uned in the

 ntructure of a worhantio weh can be uhtained quantitatively :

Hy writing the mapr in the form

$$
\begin{equation*}
M_{n}=K_{n}\left(1+N_{n}\right) \tag{2.14}
\end{equation*}
$$

Figure 2.3. Phase plane of the web map for various symmetries after [ZSU89].
rundition an aly if the peint oin the phave apare la a fixerl point of M_{o}, then
 remult ln true to an arruracy of ()$\left(K^{2}\right)$. Thia in not the cane when we do not have an exart remonaure. Intuitively we can underntand that the neracture of the woh may be approsimated for stmell valuen of k by the amperatrix netwert createl in the unperturbeal ayntemi. It in then esy tos mee that becausp the untahle fixed paint of the mapping $M_{\text {a }}$ have rotational aymulitry, with anple
 the nturhantir whe, must grasean the name nymmetry

Hy taking appropriate canoniral trannformationn aisular to thone uaed in the reare of the upidet weh (|c'szme], [ZSt'mg]) we ren write the Hamiltonian (2.11) in the form

$$
\begin{equation*}
H=H_{4}+v_{8} \tag{2.15}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{v}=-\frac{K}{q} \sum_{i=1}^{y} \operatorname{ran} E_{1} \tag{2.16}
\end{equation*}
$$

with

$$
\begin{equation*}
\frac{k}{2}=\sin \left(\frac{2 \pi y}{4}\right)+\operatorname{sain}\left(\frac{2 \pi}{4}\right) \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{1}=-\frac{2 h}{v} \sum_{m=-n} \sum_{j=1}^{i} \operatorname{ran} k, \operatorname{ron}\left(\frac{2 \pi m(r-j)}{q}\right) \tag{2.18}
\end{equation*}
$$

 unit vertit whirh definen a vertex of a regulat polygon. H_{q}, play the rule of the hauiltunimn of the averaged mentian of the particle over the Larimour period and is an integrable hatniltomian. It fortum a meparatrix net in the phane plane that gives the besir ntrurture of the ntorhentic woh. Fisp exarnple in the rese $q=4$,
 $H_{1}=H_{H}$ given a Iriangalar and hoxaganal maparatrix netwark. The apparatrix

The reile of the perturlation $V_{\text {g }}$ in in diaruptithe neparatrlx network and fortu naprow stachatic layern mang the separatricem. The Inatability of morthon near the meparatrix netwopt of the anpeptuphed gyatem thet is rauned by

The perturhalion leadn to the urcurener of the sturhantir layer. This may be illuntratal in the following way. for the particular rage of four-fold symmetry The full equationm uf mution arm linearimesl about the meparat rix melution corrembonding to the Haruiltenian H_{4}. Asa reault in the king time limit a Mathimu equation if chtained for the deviation frum the noperturbed separatrix mertion whum malution ia found to he unatahle for the parameter valuen eppropriate fos the prohietII (aletaila ere eiven in Appentix 2.1).
 kepping only twa tering la the perturhation. Arrording to their entinate the width uf the atuchantic layer ia propurticunal tocx in independent of the pomition in phene plame. The wtorhastir web then hen a unifurm width civer all the plane plane. The thirtaen of the weh increanom an K la itorreaned and for $\boldsymbol{k}>1$ the width of the chamela of the weh becolles ramparable tos the aize of the relle of the web.

An iruportant met of propertien of the hausiltonian H_{i} ie related to the aingular pasiatn of the hamiltunian. In the cane where $q=3,4,6$ l.e when the weh han a crystal nymmetry, the hyperbulie ningular pointr uf the fanuiltouian are larated an murfarew of conntent atoray E. Thum if we plat the dintribution $p(E)$ of the hypertholic ningular points of H_{y} vernin $E\left(p\left(E_{i}\right)\right.$ la the averaged number of hyperbotic nimgular pointa with energy E, over e port of phame spere) worm
 F.. Thin fart in rexpenticile fur the exintaqre of a ronnected meparatrix network faep the unperturhed probleth in the rese of the full reyntal nymmetry. In the rame of qualeryntal xymumetry the met of hyparbolir puinta of the hamiltonian $H_{\text {g }}$ in mie longer loreted un a constant amargy nurface but they are diatributad
 pointin demity on a function of the mergy falurred with cortain maximin at rertain marty valuen, This indiraten an matient of dinurdep amenciated wish quaniryntal atmmetry. Similar renulta hadd fur the elliptic mingular pointa.
 Hove ningulafiten In the denalty of intaten $\boldsymbol{p}(\mathbb{E})$. Thene are ningularition mand-
nted with the singular puint uf $\boldsymbol{H}_{\mathbf{4}}$. In the rase of rystal nymmetrime thepe exint mharp mingularitien in the density of ataten. Theme mharp nineularitien ape manoriated with the delta functionn in the distribution of the ningular puintm. In the rase of the quaniryntal nymumetrien nurh ningularitien are renniderahly
 the ponition of the maxima for the diatributoin of the ningular paints of $H_{\text {a }}$. The kinmathing of the ningularitien in the rase of quasirryntal aymmetry is diatimetive property of this kind of mymmetry and is an indication of a mure
 denxity uf nt atem fur $\mathrm{q}=\{1,4,4$ ran he ubt mined analytically wherpan for $q=5,8, \mathrm{~m}, \ldots$ the ralrulation in pussible unly nuturerirally [ZSithe],

2.4 Study of Diffusinn in the web map.

An was umentioned in the previnum nertion for a larger range of values of the parturhation parampter K m ronnerted weh of eturhestle layera of a certain nyinluetry exiata in phase mpare through which tranapurt of orhita to emute
 rhantic aver mawt of the phame plane and thetion on the phene plane le dencribable hy a diflumian proreme. In thin mertion the method of Kiarney. Herhenter and White (KHW) [KHWN2], meady tencrihed in sietal in the introdurtion of the thewin, ia used ta uhtain the analytical form for this diffumion cunutant [YR91] an a function of K for $\mathrm{y}=3, \mathrm{ti} \mathrm{h}$ where the cryatal mymmetry ran be invelked.a nerpanary conslition fur the application of the KKW method. Arcurding to thim
 functionn aurh that:

$$
\begin{equation*}
t=\operatorname{lom}_{m-\infty} \frac{\left\langle n^{2}\right\rangle}{n}=1_{0}^{1}+2 \sum_{==1}^{\infty} t_{-}^{\prime} \tag{2.19}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{m}=\frac{1}{(2 \pi)^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} a_{m} a_{0} d t_{0} d u_{0} \tag{2.20}
\end{equation*}
$$

And

$$
\begin{equation*}
\varepsilon_{8 \mathrm{ar}}=\pi_{-a 1}-v_{\mathrm{ma}} \tag{221}
\end{equation*}
$$

mand the interration is nver all initial voluem $u_{i n}$ and va. The inflmite merien rast-

 iterationn of the map. Thin meihend nf ralrulation of the dilfugion romfirient ran be andy umed fror 11spm whirh are doubly perindir, period 2t m that the averaging

 the highly rurpalatal ratation af the partirlem around the tilan thet rovelitute the phane piame. Thin ln done hy fromoving the twint unt nf the map which Im mrounplimbed by iternting the nazp q 1 inswas. This new map in then umed far the ralrulation nf the alifunian carftrient.

We prenent heluw the ralrulation of the diffusion reneficient for rach of the ranen of the hexagolial aymmetry $(q=i)$ and the nquare nymmetry ($q=4$).

2.4.1 Hexagonal ammetry $(q=3)$

Iterating the map it timp to remove the twint we ohtain exarty

$$
\begin{gather*}
H_{n+3}=H_{n}+K \sin N_{n}-\frac{K}{2}\left(\sin A_{n}+\sin B_{n}\right) \tag{2.22}\\
\pi_{n}+1 m N_{n}+K \text { nsma }\left(\operatorname{mon} A_{n}-\sin H_{m}\right) \tag{2.2i3}
\end{gather*}
$$

where:

In terina of y and A thin tump foduran ti

$$
\begin{align*}
& A_{n+1}=A_{n}-K \min \left(n_{n}+A_{n}+N \text { nim } A_{n}\right)-A_{\text {aimen }}+1 \tag{2.17}
\end{align*}
$$

where \hat{H} minimen and $n+3$ is replaced hy $n+1$. Thin map is doubly periadie in $|0.2 \pi| \times(0.2 \% \mid$

The methorl of KHW [KRW'2] nuay nuw he appliect directly to the above tuap and we find tot firat urder

$$
\begin{equation*}
t=\left(f_{i}+2 i_{i}\right) \frac{1}{3} \tag{2.2N}
\end{equation*}
$$

(The 1/if fartor in the appropriate nraling fartur to allow for the fart that the

$$
\begin{equation*}
\mathrm{K}_{0}=K^{d} \tag{2.29}
\end{equation*}
$$

$$
\begin{align*}
& \ell_{i}=\frac{K^{2}}{2} J_{-1}(K)+K^{3} J^{d}(N)-K^{d} J_{\lambda}\left(K^{\prime}\right)+ \\
& \frac{K^{2}}{2} \sum_{i}(K) H_{i=a f(1)+w) K H}(K)= \\
& \frac{\Lambda^{\prime}}{2} \sum_{n} J_{n}(\Lambda) J_{-1-n}\left((n+1) \Lambda^{\prime}\right) J_{d+n}\left(-\mathcal{K}^{\prime}\right) \tag{2.30}
\end{align*}
$$

$$
\begin{equation*}
\left.\left.\|=\frac{N^{*}}{4}-\frac{\kappa^{*}}{4} J_{1} \right\rvert\, \kappa\right)+\frac{\hbar^{*}}{2} J(\hbar)-\frac{N^{*}}{4} J\left((\kappa)-\frac{\kappa^{*}}{2} J(\hbar)\right. \tag{2.41}
\end{equation*}
$$

 whaw are nummerical valum olutameal hy iterating the mapping for 10^{5} tituen and taking an manemble nverage aver 10^{-1} different initial ronditisuna, Wr observe that

2.4.2 Eximente of mreplerntor moden mad their pfiert on difiuaion.

The dincrepancy betwen the nutieriral and the analytical reaulta ran be attributed to the gramence uf arreteratur madem (ame for example [LLadi]), Firf

Figure 2.4. The diffunion roefficient divided by k^{2} an a function of the parameter \mathfrak{K} for the cane of hexagonal symmetry.
rlame to themp painta. experipare an arceleration for a number of iteraten. This given rine in an ruhantwinent in thr effertive diffunitm heure the maxima an calrulated analytirally. Sime the partirle is underguing an arceleration its mos tiun is himhly crurrelated. Thin aiven rime tu the diarrepancen hetwen the analytir and numerical remulta an the prement method fur the ralrulation of the difimion comeftrient depamdn un the nuttirlently rapid dermy of the rompelation functionn Finflhernurf an particlen move in and ant of the arceleration rmion in phase mpare they ive rime to aracillations in the value of t) as a function af time (ar the mumber of iterates). Thim hehaviour hae bern observed in the toumer.
 nuturioal reaulta for IJ arannal the nimple rarve uhtained from the analytiral resulta, appareat in figure 2.4 for \mathbf{K} valien abuut 21 ar.
 are replared hy periad- 2 fixed pusints. Therefore we expert a dergeme in the diffunion croflirient mear this value of h mad inderd this is what we obearvm. Firthermore the agremment beqwern the numerical and the andytical renultu for thene valuen of K is amrprixingly gand. Thin fin experted aince near theme valuma of k, mont of the informiotion on the dynamien in rontained in ewn tierationn of the illap whercan the analytir valif of II ohtainel here wan found by laking intomerount exartly the first twe correlation functionn, thes imparentially taking
 method usad in rairulating the tiffusion comelirient fur thene particular valuma

2.4.s Siquare mimmetry $(q=4)$

 $\mathrm{n}+1$ to rhtain the douhly preriaulle map:
where:
 the enene $\varphi=\$$ nimes it in alrendy doubly perioudie in $[0.2 \pi\} \times\{0.2 \pi]$ in the orizinal variablen u and v

The diffusion rematant in wtill of the form of (2.2N) (ondy that the nending fartor of 3 tulat now he replareal by a acaling fartor of 4 allowing fur the fart that four iteratex of the original map correnpend to one iterate of the map (2.32), (2.3:3)) with

$$
\begin{equation*}
\gamma_{0}=\kappa^{-2}+\kappa^{2} J_{0}\left(\kappa^{\prime}\right) \tag{2.35}
\end{equation*}
$$

nind

 $\left.\left.\frac{K^{2}}{2} \sum_{i} \sum_{=} \sum J_{n}(K) J_{n} \right\rvert\,+N\right) M_{i}(1-m|\hbar| *$ $J_{1-m}\left((n+1 \mid k) d_{\text {nai }}(K)\right.$

Neglertine terme of order $O\left(K^{-\frac{1}{2}}\right)$ we finstly oheain:

$$
\begin{equation*}
l)=\frac{\kappa^{2}}{4}+\frac{\kappa^{2}}{2} J_{0}[\hbar]+\frac{K^{\prime}}{2} J_{0}^{\prime}(K) \tag{2.37}
\end{equation*}
$$

Thim nalur analyticm expremsion fur (1) hav been whiained unigg a different methed by Afeneniey ot in [Ac'SZ90].

The nanalytic nut numprically ubtnined valum of [lan function of \boldsymbol{k} arm shuwn in Fig.2.5. Hy analogry with the diarumaion of the $4=3$ rase we ancoriate the general hehavitur of I) with k an due to the prenetice of acrelerator moden and periomlic urbitn.

Furthermure one rat observe that the ngremement helwoen the numeriral and analytical rewnitn in the case of the equare nymuetry is inuch better than in the rane of the liexagonal aymmetry. Thin may lon due to the fert that in the rase of haxamomal nymumetry the fixed puinta nod meparatrix net have a much mure rompliented atrurture than for the nquare nymmetry.

Fisure 2.s. The diffusion roefficient divided by \mathcal{K}^{2} as a function of the pa rameter \mathbb{K} for the cane of the square symmetry.

2.4.4 Six-fold syummetry $(q=6)$

Fir thim rame the malytir form for the diffuxion ronetant in

The variation of $\mathrm{J} / \mathrm{K}^{2}$ with K nhown the rharacteriatir awcillatory behaviour as found in the ramen of $4=$ it ar 4 .

2.4.8 Two-fald syinnietry ($q=2$)

In the rane where $4=2$ the map in en arceleratur musele fover the whale phanm xpace) and a ditfumion approximation tou the motion le nolenger applicable. The Inap in that rane ran lie rearlily molved every twen iteraten to give $u_{n}=u_{0}+n v_{0}$ and $v_{m}=v_{0}$ where in is an even interer. Thin in pradily neen mince the merien definimg II for the u varimbe diverfen for wll k.

2.4.6 Qunsicryntal mynnmetries

The rane uf the quanicryntal nyummetriex of the weh ($q=5,7$, N...) prementa fundamental difirultien siore it in not pamilsle to manipulate the imep into e dou-
 heve tu be develuparl niace ennemble avepatinn aver initial romeditiona ulunt nuw include the whole of phame npare and cam no leinger be reduced by involing perionlicity to averasing enver the remion $[0,2 \mathrm{~T}] \times[0.2 \mathrm{f}]$.
 and 4 .

2.5 Conclusions

In thin rhapter a n hurl introdurtion tol the preipertien of the weh nimp has lueen
 gromenta thany interentind slymanleal propprtion whirh are inhepent in limear dymamical myntenm whirh arm momandly driven cot dynamical mynteme which ran he clamely appriximaterl by aurh a model. The difiusion rapficienter for the
wels tuap in the rase of the crymal nyminelrien have hen uhamed analytirally and whuwn tu rutupare wril with numerical peulta. Tha symurity of the weh is frund ta play a niguilirant fale in the vilue of the diffunion romatant dearribing the motion of particlon through phame spare.

Chapter 3

Diffusion Coefficients For Higher Dimensional

Symplectic Maps on the Cylinder.

3.1 Introdurtion.

One of thr important tuethods fur the raleulation of the diffunion coneflicient uf aran premerving mapk is the correlation function method [KRWN2]. The rurrelation functiun methul has hern meed nureenafully for the ralrulation of the diffuniun comefliciont of chatic map* which ware doubly periodic i.e for mapn of the torum, Fur surh mapm the corrmation functionn which are ensemble averagen uver the whule phane nimeren lie wrillen an an enmemble average aver the unit
 furin are the atandartl map or the worb hap far which the roprelation function tilethoul han hawil umed miereanfully fur the calrulation of the diffunion comefirient

The atudy uf diffuniom in himer dimanniumal nymplectic mapn in a relatively nem anbiert. However the rurreantion function methocl ban hemen uned in higher
 alimed Fromethe uan [F7X] to yiold valum for the diffusion temary

Sivinplertic mapa on the unit topun, that in dowhly periodir aymplertir mapn are junt partirular cmam of nymplectir mepa whirh arime in phyairn problemm. In general a nymplectir mapy mining frum a phynirel situation aturh an a wave partirle intermetian ur a planina confinement froblem will not be perioulir in the
 imation to the full map, whirh in a map of the generalizerl rylinder. For nueb mapan the reurrelation function method an farmulated hy Karney ot al [KHWN2] ratl no longer he ued. The double perisulicity of the buap is heciben and the ennelable averagen over the whenle phane npere whirh is supponedly cheatic cen no Ionger be redured tu fanemble mveragen over the unit surus. The lateraveragen heint runvergent are relatively pany to ralrulate.

In this chapter the correlation function methem ia extended to the calculatian of the diffision temmar for ayuplectir mapn on the meneraliand cylinder. In the next aertion the tuethal an aplied tos symplectir maps of arhitrary dimensian un the rylinder is intrudurad. In nertionn 1.3 and 3.4 this method is applied to ny muplertir IImpn of twu (day) and highet dimenmions rmpertively to ohtain alialytic forma for the npformximate diffusion comefticientm and in particular their variation with parameters that defile the nymplertic mapa. Theme entimaton

3.2 Extensian of the Correlation Function Method to Maps on the Cylinder.

Asnume a acimplectic map of the fartu:

$$
\begin{align*}
& P_{\mathrm{u}+1}=F\left(P_{\mathbf{1}}, \theta_{\mathbf{1}}, K\right) \tag{3.1}\\
& \theta_{\mathrm{u}+1}=G\left(P_{\mathbf{k}}, \theta_{\mathbf{a}}, K\right) \tag{3.2}
\end{align*}
$$

ansimeal that the map beconmen rhantic. Furthermore the chastic regians rover a kuhstantial part of the phame npare whilnt KAM nurfacen mem well nepereterl and ixlandm of reiherent thution are nut larep. The simple ntandard map with

$$
\begin{equation*}
F(\beta, F)=\beta+N s, n \tag{8.3}
\end{equation*}
$$

and

$$
\begin{equation*}
C(\rho, \theta)=\theta+f(p, \theta) \tag{3.4}
\end{equation*}
$$

matiofies theme randitionn fur $\boldsymbol{K}>\boldsymbol{f}$.
Fior moth ramem a matintiral doweription of the motion ia more appropriate. The dynamirk in often nppraximated by a tiffusion procens and deurribed by a Finker- Flanck equation af the form (seo ('hepter 1)

$$
\begin{equation*}
\frac{a I^{\prime}(\mathrm{p}, \mathrm{H})}{\partial n}=\frac{\partial}{\partial \mathrm{p}} f(\mathrm{~K}) \frac{\partial \mathrm{P}^{2}(\mathrm{p}, \dot{\prime})}{\partial \mathrm{p}} \tag{3.5}
\end{equation*}
$$

where I' In a prohability diatribution in the monmenta in phame epace. Surh a demeriptian is ratuplete unce the diffuman romfitient ar the diffumion tenmor (HK) |a known. The diffusion epamer is defined to be the samptotir rete of mpread uf themerond inoturit of the mumentusin dintribution:

$$
\begin{equation*}
\text { 1) }=\lim _{n \rightarrow-} \frac{\text { c } \Delta p_{\mathrm{m}} \Delta p_{\mathrm{n}}}{2 n} \mathrm{H} \tag{:3.6}
\end{equation*}
$$

where Δp_{u} is the mumentuta rhange after in iteratiana of the map. The ponaibility of the existence of a monzero diffunion tensur for general inapa la dincumed
 un an area of phane spare H whirh la invariant under the dymamien of the muap. I) in taken to he indrpenclent of thin initial met. If \boldsymbol{H} is taken to be e ronnerted Prgodic tagion of phane mpace, that in a region of phame npace whete thime aver-

 ef al [KHWM2], Kinal and Maisa [KMgo]

$$
\begin{equation*}
D=\frac{C_{0}}{2}+\sum_{r=1}^{\infty} C_{n} \tag{3.7}
\end{equation*}
$$

where

$$
\begin{equation*}
f^{\prime}=\left\langle\left(p_{1}-p_{0} \mid\left(p_{r+1}-p_{r}\right)>_{n}\right.\right. \tag{3.n}
\end{equation*}
$$

This nethud wan uned by Kente and Meins [KM90] fur mapa of the higher dimennianal torus $s^{n} x s^{4}$. where the averagem on H were pedured, due to prericulivity in buth the magle and the mumentum wasiahien to averngen on the
 anmatible averagem in anmureal.

The maps we are interented in can nut he written an mapn of the tor un ainere they are net daubily periondir that is periondir in bust the umomentum and the nogle variahlex ast fir example the miandard map in the rane where diw 1 ur the
 tennour for wurh mapm the rourelation function mothod ham to be extemded to Inapm whirh are anly ningly periendir.

The invariant runterten ergulir region K is talen to be the whole rylinder $H^{n} \times N^{4}$. This approxination in true for maps where the chacitir dynamicn extend aver the whale of phane mpare. Then to ennure canvergence we define the nveraging uver fhane epare in the following tuanner:

$$
<A(p . \theta)>_{H}=\lim _{4 \rightarrow \infty} \frac{f_{0} \int_{0}^{\operatorname{lo}} A(p, \theta) d p d \theta}{(2 \pi t)^{d}}
$$

If the tuap ia periuslic with perind T in the Rih dirmetion one ran break the intarval fran 0 to e fater unite of width T. Then heraune of the periodicity urie ran write

$$
\begin{equation*}
\frac{1}{1} \int_{0}^{T} A\left(p_{R}\right) d p \rightarrow \lim _{m \rightarrow \infty} \frac{1}{m T}\left(m \int_{0}^{T} A\left(p_{R}\right) d p_{R}\right)=\frac{1}{T} \int_{0}^{T} A\left(p_{R}\right) d p n \tag{3.10}
\end{equation*}
$$

(wheme the explirit dapendence of the abmervable function on the ather rimer-
 avernge uned hy Karney ef mi [KHWin2].

Te illuntrate thim enetaliantion we firat comaider the rane of one dimpandonal chlinder mapm.

3.3 One Dimennional Cylinder Mapm.

Anmine a nyoupleatic map of the ryliader of the form:

$$
\begin{equation*}
p_{n+1}=m_{n}+f\left(p_{n}, \theta_{n}\right) \tag{3.11}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{n+1}=A_{n}+\rho\left(p_{n}, \theta_{n}\right) \tag{3.12}
\end{equation*}
$$

(Fior thix inal: to be aymplertir ine muat have $f_{p}+g_{\theta}+f_{p} g_{\theta}-g_{p} f_{0}=0$, where the aubacript denotem partial derivative with respert to that variahla.) The
 that the unstion la rhantio uver the whale pheme apece.

It in comvenient to intrudure the fillowing fisurier dercompositions:

$$
\begin{align*}
& f(p, \theta)=\sum \int_{-\infty}^{+-4} a_{m}(k) \in x p(i m \theta+i k p) d k \tag{3.1:1}
\end{align*}
$$

The qumilinemt approximatien to the alifusion copefirient of mapm is given by (' 0 . and we may write

$$
\begin{equation*}
\left(0=<\left(p_{1}-p_{1}\right)^{d}>P_{N} \equiv<f^{d}\left(p_{0}, \theta_{0}\right)>H\right. \tag{土.16}
\end{equation*}
$$

where it is the whole rylinder $\mathrm{K} \times \mathbf{S}$. Intraducing the Fourier derompomitionn we have

$$
\begin{align*}
& =\operatorname{dim}=\frac{1}{i} \int_{a} \sum_{-\infty}^{+\infty} \Delta_{m}(\hbar) a_{-m}\left(\hbar^{\prime}\right) v \leq M i\left(\hbar+\hbar^{\prime}\right) p h d k d k^{\prime} d p \tag{3.17}
\end{align*}
$$

Firf fo to be non-zerci it in memanary that the intererad

$$
\begin{equation*}
\sum \int_{0} \int_{m}^{+\infty} a_{m}(k) a_{-m}\left(k^{\prime}\right) \operatorname{spg}\left(i\left(k+k^{\prime}\right) p d k^{\prime} d k^{\prime} d p=0(1)\right. \tag{3.19}
\end{equation*}
$$

which implien that

$$
\begin{equation*}
\sum \int_{-=-m}^{\infty} \omega_{n n}(k) a_{-m}\left(k^{\prime}\right) \operatorname{sn}\left(i\left(k+k^{\prime}\right) p\right) d k d k^{\prime} \tag{1.20}
\end{equation*}
$$

Is independent of por equivalently that the fisurier eninplituden am(k) are af ningular nature auch that

$$
\begin{equation*}
\sum a_{m}(k) a_{-m}\left(k^{\prime}\right) \propto A\left(k+k^{\prime}\right) \tag{3.21}
\end{equation*}
$$

The milution to thin functional mquation in $\boldsymbol{a}_{m}(k)=\varepsilon_{m} A(k)$ in which cane the quaxilinear diffumion cuaftirient in

$$
\begin{equation*}
D_{n i}=\frac{1}{2} c_{0}=\frac{1}{2} \sum_{n} a_{n} e^{2} \tag{3.22}
\end{equation*}
$$

A кimple example of wuch a nuap in the woll wiudied standard map.
To comsider comemtionn te, the quanilinmar remult is la nemerary to loonk at the higher rovrelation functionn: The rih correlation function in defined by:

$$
\begin{equation*}
f,=\left\langle f\left(\rho_{r}, \theta_{r}\right) f\left(\rho_{0}, \theta_{0}\right)\right\rangle_{H} \tag{3.2.3}
\end{equation*}
$$

I'sille the finurier decompromitiona for fow have:

$$
\begin{equation*}
f\left(p_{+}, \theta_{r}\right)=\sum_{m a} \int_{-\infty}^{n+\infty} \omega_{m o}\left(k_{0}\right) r+m\left(i n_{n} v_{r}+i k_{n} p,\right) d k_{n} \tag{3.24}
\end{equation*}
$$

and then uxing the map

$$
\begin{align*}
& \text { - } \left.\int p_{\left(i k_{0}\right.}\left[p_{r-1}+f\left(p_{r-1} \cdot \theta_{r-1}\right)\right]\right) d i_{0}= \\
& \sum_{m_{0}, m_{1}, n_{1}} \int_{-=0}^{+\infty} m_{m 0}\left(k_{0}\right) b_{n_{1}}\left(k_{1}, m_{0}\right) m_{m_{1}}\left(k_{1}, k_{0}\right) \exp \left(i\left(m_{11}+m_{1}+n_{1}\right) d_{r-1}\right) x \\
& \text {-.rp(i) } \left.\left.k_{11}+k_{1}+k_{1}\right) p_{r-1}\right) d k_{0} d k_{1} d k_{1} \tag{}
\end{align*}
$$

Iterating thim reintion r timen we find that

$$
\begin{align*}
& a_{m_{1}}\left(k_{1}, k_{n 1}\right) \ldots b_{n_{+}}\left(k_{r}, m_{n}+\sum_{i=1}^{-1}\left(n_{n}+n_{n}\right)\right) n_{n_{n}}\left(k_{p}, k_{0}+\sum^{-1}\left(k_{n}+k_{a}\right)\right) \\
& f P M\left(i\left(1 n_{0}+\sum_{n=1}\left(n_{n}+n_{n}\right)\right) \omega_{0}\right) \tag{3.27}
\end{align*}
$$

The meneral currelation function C $^{\prime}$, in then of the furm

$$
\begin{align*}
& a_{m_{1}}\left(k_{1}, k_{n}\right) \ldots b_{m},\left(k_{+}, m_{u}+\sum_{m=1}^{n-1}\left(n_{n}+n_{n}\right)\right) a_{n_{n}}\left(k_{m_{n}}, k_{n}+\sum_{i=1}^{p-1}\left(k_{n}+k_{n}\right)\right) \tag{3.2N}
\end{align*}
$$

The milin in taken over all the integrem matisfying the relation

$$
\begin{equation*}
n_{11}+m_{u}+\sum_{k=1}^{\dot{~}}\left(n_{0}+n_{n}\right)=0 \tag{3.29}
\end{equation*}
$$

The only rane whetre (; is nonvaniahing la when the intment over all the k'n is indrimendent of in, that is when

$$
\begin{align*}
& \sum_{m=n, m_{1} \ldots \ldots, a_{0}} a_{m_{4}}(k) a_{m_{0}}\left(k_{0}\right) d_{m_{1}}\left(k_{1}, m_{0}\right) \\
& a_{m+1}\left(k_{1}, k_{n}\right) \ldots b_{n}\left(k_{r,} m_{n}+\sum_{n=1}^{p-1}\left(n_{m}+n_{n}\right)\right) \\
& a_{m,}\left(k_{0}, k_{n}+\sum_{n=1}^{r-1}\left(k_{n}+k_{0}\right)\right) \\
& x a\left(k+k_{u}+\sum_{a=1}^{\left.\dot{\dot{n}}\left(k_{a}+k_{u}\right)\right)}\right. \tag{3:50}
\end{align*}
$$

where the nym in men taken over all the integers satinfyint the rondition ($3: 29$). An ohvieun selution on thin functional rguntion in where the Finurier
 plausibie that thin is the only pumaible molution.

Importantly we may runclude that the unly area premerving mapm of the rylinder that show rofrertionn to the tumailinear reault for the diffusion roeffirient are thuer mapm far which the Fisuriar dectompositionn of exp(ik'f) ant
 four reaniple thome that have fand of which are periodir in p or are linear in p. in which rane they ran he written an maps of the torun. Thia remult extende the
 furtil of area ןpenervitig mape of the rylinter natirly the tadial twint mapn

$$
\begin{align*}
& \beta_{n+1}=p_{n}+\mu f\left(\theta_{n}\right) \tag{:3.al}\\
& a_{n+1}=\theta_{n}+a\left(p_{n+1}\right) \tag{3.32}
\end{align*}
$$

I'hey ferind that the unly inap of thin form that given currectiune to the quani linfar reanle in the niandard map. that in the map where a in linenr in p.

3.4 Higher Dimensional Symplectic Maps

In this mertion we une the mathad miven in mertian 2 to ntudy diffusion in hienher

$$
\begin{align*}
& p_{u+1}=p_{u}+k f\left(\theta_{n}\right) \\
& \theta_{n+1}=\theta_{n}+\mathbf{n}\left(p_{n+1}\right) \tag{1.134}
\end{align*}
$$

where (p, θ) $\mathrm{H}^{\mathrm{d}} \times \mathrm{S}^{\mathrm{d}}$
A nimple example of whrh maps is the Firoenchld map [F72] whirh due tos a
 mafy is the following

$$
\begin{gather*}
\mu_{1, n+1}=p_{1, n}+\theta_{1 A 1 m}\left(\theta_{1, n+1}\right)+\theta_{\sin 1}\left(\theta_{1,+1}+\theta_{2, n+1}\right) \\
\theta_{1, n+1}=\theta_{1, n}+p_{1, n} \tag{4.36}\\
\left.P_{2, n+1}=P_{l, n}+\theta_{1, n i m(} \theta_{2,+1}\right)+b_{n, n}\left(\theta_{1, n+1}+\theta_{2, n+1}\right) \tag{3.:37}\\
\theta_{2, n+1}=\theta_{2, n}+P_{1, n} \tag{3.14}
\end{gather*}
$$

L.e1 un annunim the follawina Fourier derampeasitiona

$$
\begin{align*}
& f^{\prime}(\theta)=\sum_{m} \theta_{m}^{\prime} \times y p(i m-\theta) \tag{4.49}
\end{align*}
$$

where f'and a' are the ith components of the vertar functionn fall a reaper lively.

The quamilinear approximation to the diffusion tenaur, manmy Kis may then lie writurn in the forin:

$$
\begin{align*}
& -K^{d}<\sum_{n=1} a_{n} a_{n} r s p\left(1(m+n) \cdot \theta_{0}\right)>_{n} \tag{3.41}
\end{align*}
$$

Fur radial twint mapa of any diarmaiun the quanilinerar renult in mon zern.

Leat un mow law at the higher order corpalation functionn:

$$
\begin{equation*}
\left\langle\because=K^{\prime} \subset \Gamma^{\prime \prime}(\theta,)^{\prime}\left(\theta_{a}\right)>_{\mathrm{N}}\right. \tag{.3.44}
\end{equation*}
$$

An before the region K in which the averaging in ferformed in annumad to he the whene cylineler.

I'ming the Fisurier derounpomitans introducest above and defining film,m) hy the following relation:

$$
\begin{equation*}
r x p(i k \cdot f(\theta))=\sum_{\omega t} F\{(k, m \sin (\mathrm{im} \cdot \theta) \tag{1.45}
\end{equation*}
$$

we hind

$$
\begin{align*}
& f^{\prime}\left(\theta_{r}\right)=\sum_{\mu_{0}}^{n_{0}^{\prime}}{ }_{n_{0}} \exp \left(i m_{0} \cdot \theta_{r}\right) \tag{3.47}
\end{align*}
$$

whern $m_{n}=\left(\operatorname{mil}_{\mathrm{w}}, \ldots, \mathrm{m}_{\mathrm{n}}^{\mathrm{i}}\right)$. The ahove equation ran be writeren an

Itrpating thin relation r tinien wr grt:

Then the th enfrelation function ran he written in the form
where ifie sum in taken nver all the interger vectorn andiafying the relation

$$
\begin{equation*}
n+m_{0}+m_{1}+\ldots+m_{r}=0 \tag{3.53}
\end{equation*}
$$

The nveraging nver P_{n} would give a nosvaniahing ranult only in the reame where the a"n are of a form surh thet:

$$
\begin{align*}
& \times \delta\left(\sum_{s=1}^{d} \sum_{l=0}^{r-1} k_{j}^{i}\right) \tag{3,54}
\end{align*}
$$

where the mumamation in again taken over all the interer verlogm watiafying the relation (3.53).

That meana that for a finite rontribution to the correlation functionm all the functionm at have to be offanineular frostr that fa of the form

$$
\begin{equation*}
a^{1}\left(k_{1}, m^{\prime}\right) \propto A\left(k_{i}-m m^{1}\right) \tag{3.5.5}
\end{equation*}
$$

where k_{i} in a madar function af the compuncula of ohe vector \mathbf{k}_{i}. If the a'a are surh that thix condition duen not heid then the quanilinear reaule for the dilfunion comfirient will be valid for all valten of \mathfrak{k} where the mention in chantie over larger retinna af the whole phane apare.
l.at un now aee what thim condition mipans for the allawed faptu of the func-
 finctlonn of the moneme. Somie nxamplen will make thin pemark more clear.

Example1 Firnt lat unannume that the a'm arm linear functionn of the monnenta:

$$
\begin{equation*}
a^{1}(p)=\sum_{i=1}^{+} \mathrm{r}_{\mathrm{N}} \mathrm{p}_{a} \tag{3.56}
\end{equation*}
$$

TheII

$$
\begin{align*}
& \operatorname{APp}\left(i \pi \theta^{j}(p)\right)=\left[1_{i=1}^{\prime \prime} \exp \left(1 r_{i} \mathrm{p}_{i}\right)\right. \\
& =(2 \pi)^{-i} \mathrm{I}_{i=1}^{d} \int_{-\infty}^{+\infty} \delta\left(k_{i}-\pi c_{i}\right) e x p(i k \cdot p) d \mathrm{k} \tag{3.57}
\end{align*}
$$

where t_{i} and y_{1} are the ith remponentinaf k and p rempertively. Thum

$$
\begin{equation*}
\omega^{\prime}(k, n)=\| I_{1=1}^{d} N\left(k_{1}-\pi r_{i}^{\prime}\right) \tag{3.5~N}
\end{equation*}
$$

und is of a sinumar nature, and if the force functione are chomen approprintely no that

$$
\begin{equation*}
\mathbf{k}_{1}+\mathbf{k}_{2}+\ldots+\mathbf{k}_{1}=\mathbf{0} \tag{:2.59}
\end{equation*}
$$

then for nuch a map there are finite corrertions to the the quanilinear valur fur the diffumion tencerf, Simee all the force functions ere lineer there in eproper

 whirh is properly defined and convepgent. Thim il the came linp the fromemple tiap where corrertions to the quanilineer realt for the dilfasion tensor, of an unrillatary furm wepe found beth numerirally and analytirally [KM90].
Pixample 2. Ifet un now anplome that there in anominamrity in one of the forre functionn $\boldsymbol{a}^{1}(\mathrm{p})$. Take for exatuple

$$
\begin{equation*}
a^{\prime}(p)=\left.\right|_{1}+p_{2}^{\prime} \tag{3.60}
\end{equation*}
$$

Its fiourier derumprasition weruld then be

where k^{\prime}, lin the ith compoment of k^{\prime} end A a nom singular function of k_{d}^{\prime}. Fiuriar amplituden of aurh form will mat have a rontribution $\mathbf{k}_{\mathbf{1}}+\ldots+\mathbf{k}_{\mathrm{p}} \mathbf{p}=\mathbf{0}$ and ao the correcticom to the quanilinemr menulta for the diffunion rofflirient will he zeris.

 in the ram where a (p) fa a periondir function uf p, or a aum of periodir and linemr functiona. Thim in rlemriy nhown in the fallowing matriples.
Fxample s.Supprine $a^{\prime}(p)=\operatorname{cin}\left(p_{1}+p_{j}\right)$. Tham

$$
\begin{align*}
& =\sum_{m}(a n) A\left(k_{1}^{\prime}+n\right) A_{1}\left(k_{3}^{\prime}+n\right)
\end{align*}
$$

The fourier deramponition is then of a ningular form nes that cuprertions to the quarilinear renull for the diffusion tensor of nurh a map are pounible
Example A.Suppuas $a^{\prime}(p)=\operatorname{san} p_{1}+p_{d}$. Them

$$
\begin{align*}
& =\sum J_{m}(\operatorname{ac}) A\left(k_{1}-\cos \left(k_{1}-m-a\right)\right. \tag{:1.6:1}
\end{align*}
$$

The Fiusier deromponition ia ntill uf a ningular form and correctionn to the quanilinear renulen are nazail ponsible.

Example s.sinppame $a^{\prime}(p)=$ anilи $p_{1}+p_{1}^{\prime}$. Thm

$$
\begin{aligned}
& a^{i}\left(\mathbf{k}^{i}, \sigma\right)=\int_{-\infty}^{\infty} \operatorname{xxp}\left(i \sigma\left(a \sin p_{1}+p_{2}^{2}\right) e x p\left(-i k_{1}^{i} p_{1}-i k_{2}^{i} p_{2}\right) d p_{1} d p_{2}\right.
\end{aligned}
$$

$$
\begin{align*}
& =\sum J_{n}(\omega \sigma) \theta\left(k_{i}^{\prime}-m\right) A\left(k_{d}^{\prime}, n\right) \tag{i.6.64}
\end{align*}
$$

whem

$$
\begin{equation*}
A\left(k_{2}^{4}, \sigma\right)=\int_{-\infty}^{\infty} \operatorname{cxp}\left(i p_{2}^{2} \sigma\right) c x p\left(i k_{2}^{\prime} p_{2}\right) d p_{2} \tag{1.65}
\end{equation*}
$$

in a nom singular function of $\boldsymbol{t r j}_{j}^{\prime}$.
Simere the function a(p) demen hat have a aingular Frourier dacumpomition in all the $\mathbf{k}^{\mathbf{1}}$ romordinaten thern will her not corrertiona to the quanilinear reault for the diffunion tennor. Thum it ran he nemi that a small nonlinearity in one of the fince functionk maken the diffusion tanmur for the map equal to the quasilignar penilt.

3.5 Numerical Experiments.

To rherk the pesulte stbtained in the previoun arestionn wr have obtained numer. irally the diagernal ternas of the diffurion tonmer of a generalined Firnenchle map whirh in a four dimensional nymplertir map ($\mathrm{d}=2$). The map in of the followitg form

$$
\begin{gather*}
p_{1, n+1}=p_{1, n}+r_{1} \operatorname{nin} \theta_{1, n}+c_{2 n i n}\left(\theta_{1, n}+\theta_{1, n}\right) \tag{3.66}\\
\theta_{1, n+1}=\theta_{1, n}+\varepsilon^{(1)}\left(p_{1, n+1}, p_{1, n+1}\right) \tag{.3.67}
\end{gather*}
$$

$$
\begin{align*}
& \rho_{2, n+1}=P_{d, n}+r_{d A N N\left(\theta_{1, n}+\theta_{2, n}\right)} \tag{1.64}\\
& \theta_{2, n+1}=\theta_{L, n}+ब^{(2)}\left(p_{1, n+1}, p_{d, n+1}\right) \tag{3.69}
\end{align*}
$$

If the a's are lineaf fumrtions ansl nherifirally $a^{\prime \prime \prime}\left(P_{1, n+1}, P_{n, n+1}\right)=P_{1, n+1}$ and $a^{(2)}\left(p_{1, n+1}, p_{1, n+1}\right)=p_{1, n+1}$ the abave man in junt the Fromenche map atud
 tenmor in athatimed numerirally by dirert iteration of $10^{2} \times 10^{2}$ orbite of the unap
 yuantity is the diagomal term of the siffuminn tranery asmoriated with the merand
 moting which in the linest cese whare the renults of Korot end Meinm [KM10] nre repirodured. (Wher cheiren were a ${ }^{(1)}\left(p_{1} \cdot p_{d}\right)=p_{1}+c p_{1} \cdot d^{(z)}\left(p_{1} \cdot p_{2}\right)=p_{d}$ for
 $a^{(1)}\left(p_{1}, p_{1}\right)=p_{1}, a^{(2)}\left(p_{1}, p_{2}\right)=p_{2}$ ain p_{1} and $a^{(1)}\left(p_{1}, p_{1}\right)=0.1 p_{1}^{3}, a^{(21)}\left(p_{1}, p_{d}\right)=$ ρ

 ralculated quanilinear value an furition of the parameter ra. The peaulan in lienre 3.1 show that an the nonlinear parameter e increanen the diffusion

 valum arm noglieghlo.

3.6 Comelusionn.

The correlation functian melhul fur the ralculation of the diffunion cumilicient uf
 I'wing thim methond wr have mhown that fur a |l alimmaional mymplertir map there exiat rourertianc to the quanilinemr pemult only if all the force fumrtionm
 the courilimaten rerifurural tit the pe variahlem. Hy purely alngalar we menn that

Figure 3.1. Plot of the ratio of the numerically calculated diffusion coefficient to the theoretically caiculated quasilinear value for the generalised Froeschlé map with $a^{(1)}\left(p_{1}, p_{2}\right)=p_{1}+\epsilon p_{1}^{2}$ and $a^{(2)}=p_{2}$ for various values of the parameter \subset (a) $\in=0.0001$. (b) $\in=0.01$. (c) $\in=0.1$. (d) $\varepsilon=1$ (*) and for the generalised Froeschlé map with linear term $\mathrm{c}=0$.

Figure 3.2. Plot of the ratio of the numerically calculated value for the diffuiton copltirient to the theoretirally ralculated quasilinear value fop the generalierd Froeachle map with $a^{(3)}\left(p_{1}, p_{1}\right)=p_{1}$ aimp p_{2} and a ${ }^{(3)}\left(p_{1}, p_{1}\right)=p_{1}$ (") and for the gencralined Fromethe map with linear force fugctiona (.).

Figure 3.3. Plot of the rate of the numerically salculated value for the diffuston coefficient to the thenretically calculated quasilinear value for the generalised Fooswite map with $a^{\prime \prime}\left(p_{,}, p_{i}\right)=p_{\text {, }}$ and a $\quad\left(p_{,}, p_{1}\right)=p_{1} \sin p_{i}(*)$ and for the generaliwed Frowhie map with linear force functions (-)

Figure 3.4. Plot of the ratio of the numerically valculated value for the diffusion coetficient to the theorencally calculated quasilinear value for the generatised Froeschle map with $a^{\prime \prime}\left(p_{1}-p_{3}\right)=0.1 p_{1}^{\prime}$ and $a^{\prime \prime}\left(p_{1}+p_{2}\right)=p_{1}(*)$ and for the generalised Froeschte map whit linear force functions (:)
uf the vertur k. Thix itmana that the finctions a will either have tos lue limear functionn of the momente of perigalic functions of the menmente ur a mixturm of the two. Any munlisearity in any of the functionn a (whirh ia not prerioulic)
 quanilinear rexult fur the diffinsion temmer in exert.
'Theme rexulte are in agrement with thame oblained by Hatori et al [HK|mg] for the I wer dinenaiomal radial twint map. Our renules allpiy to more getretal mapm and further give furmax for the force functiatm a(p) that give rorrectionn In the quanilingar value.

An interenting prohlem that remains is what is the ensential differencer that maken a map satimfying the conditionm af linearity or periodicity of the furre functions (that in a mapinthe torus) have corrertionn to the quasilinear value wherean fur a ung un the rylinder (acot perinatic in the motuenta) the quasilinent value fot the diffusion tenser in exact. Since the correctiona in the quanilinear value arime froul correlation fiferts (memory) an a dartirle moven thenugh phame nperc. a ponsible reamon wauld be that in the ceare of mapn of the torus the
 threinghout jitame nquere whereas for the grneral map of the rylindep nuch struein rem are lornlised in parin uf jhane npace. (Thone ntructuren rould be reininantn

 elfert on the motion through phase space than the rage where nurh ntructuren
 qumilinear value in the rase of tumble periodirity, that le when regular latticen
 siven im nppentix $\mathbf{t} .1$.
 limit wo nhaw in Aprandix 33 that rhantir arhitn fasmally exist far motie clana of radial twial unger for pepturhation paratiotern sualler than in the rane of the mandard map. While thin in nost e prouf it gerven en an indiration that in
radial twist unap wer ran have fully rhantir irajertorien for minaller valuea of The perturbation paraneter and thum the correlation function methonf for the ralculation of the diffusion roffiriente ronverfen fanter for radial twiat mapa and hafire given rmanitin rlener to the quanilinnar reanlt.

Chapter 4

Calculation of Diffusion Coefficients for Chaotic Maps

4.1 Intraduction

 in that it providen an eary to hundle dearription of the romplisated dynamiral procenn and ran he uneal theive matimaten for menaurable quantition nuch an the kinctic emerrgy of a dimitritution of partirlea or lomen ratea from partirular piarts of phane npme. Thum, an important problem in the nutureiral or analyi iral ralrulation uf the tratnjurt rorfficientn that rmter intut the Fokker. Plank dewcription. In the prement cuntext the Finker Planck equatiun is equivalent to The time defiensient diffusion manation and the unly tranaport combitient in the diffuxion cumelicimu.

In the pant, weveral mathoads fur the ralculation uf the diffuniun rumilicient fur

 Irm, \rightarrow Sh where I in an artion warinhie whome time nvelution to mualerond by the diflumith prucean, <> denuter a nuitable nureage and tithr time (mer for

remaining in a riamed dinnain an a finctian of tione in ralrulated uning tha map aud in compermil with that calrulated analytirally uxine the diffuian muation. The rumparimon is umed to ublain the bent metituato uf the diflusion romelficiont that nipreate in the diffusiun mpuation. The metherd premente advantapen uver
 tuap* fot which the rhantic region in hounded. Alan where the unul methods give valuen uf I) whirh are narillatury in time [YM!I]. Furthermura, it can be uneal in the ralculation of diffumion rewifirienta fur egupa whape theme romellicients ape finctionn of position in phame npare. In the examplen atudied helow, the present metheri umen an order of magnituale lean romputer time than previoum methode.

4.2 Description of the metherd

The hamir ides of the infihat of calculation of a diffunian rafllirient la an follown:
 for a map whirh la already writien in artion.angle form, aurh an the standard map, the mitahle germetry in that of an inlinite mah. the infinite dirertion girfenganding to the periodic variable and the other direction correapandiug ta the artian variable.) A unifurm diatribution of initial pointa in then takm in the rhamen wolusue and hy iteration using the man the evolution uf theme pointm in followat until they leave the donuain. Then ntuber of pointathat reminin in the vilume an a function of the mumber of iterathons. which in equivalent tatime, is ralrulated. Typical menulin arw whow in figure 4.1
 alytically and the trital density that romains inalde the aiven valume shatained as function of time. This fumelional dependenere in paraneiriaed by the value of the diffurion candficient.

The valum of the difinion rnellirient appropriate to the map in then frumed hy llting the mutureiral remulta for the problability of pointn remaining the the dotuain as a function of time to the denmity ohtainal hy solving analytirally the diffusion nquation. The valur of the diffusion rumatant unad la the analyiral

Figure 4.1. Probability that particlen rmain in the ulab an a function of time for the standard map for different values of the parameter k. The solid line represente the valuen obtained by iterating the map whilat the broken line is the analytical reanit given by formula (t.6).
mendidion is treated an the fitting parameter. The 'hent' valur of I) is ohtained hy making a lemat mefiatr fit.

Ilir method is appliml hriow tuthre wrll knawn rhmotir mapn, naturly the atandard map [['79], the woll map [ZSI'MS] and the Fiermi map [MI.LMS]. The resulta abtained are comparable to thone obtained in earlier treatumente of the bariaiun prohifitin.

4.3 Standard Map

The niandard unap in of the furin

$$
\begin{align*}
B_{n+1} & =\theta_{n}+\Lambda \sin \theta_{n} \tag{-1.1}\\
\theta_{n+1} & =\theta_{n}+\beta_{n+1} \tag{4.2}
\end{align*}
$$

Fir lapge roungh valure of the parameter K the dynamica of the stanalard tuap in chantic and ran be moseleled by a dilfunion proceme (ame for axample [f'79] ir
 map is that of the infinite miah of width L. The diffumion mpution taken the form

$$
\begin{equation*}
\frac{a P^{\prime}(p, i)}{d n}=n \frac{d^{2} \mu(p, t)}{\left(\theta p^{2}\right.} \tag{4.3}
\end{equation*}
$$

where I' (p, t) in the prohability dennity of points in the nlah and it in ansumed that the diffunion romeficient II in conmant. The molution of the diffinat equa
 wf the mab is [(3.59)]

$$
\begin{equation*}
P(p, t)=\sum_{n} a_{n}+x p\left(-\frac{D n^{2} \pi^{2} t}{L^{2}}\right) \sin \left(\frac{n \pi}{L} p\right) \tag{4,4}
\end{equation*}
$$

 dintribution hectumpa

$$
\begin{equation*}
M(p, r)=\frac{4}{\pi} \sum \frac{1}{20+1}+\operatorname{mp}\left(-\frac{m(2 n+1)^{2} n^{1}}{(1}\right) \text { ann }\left(\frac{(2 n+1) \pi}{l} p\right) \tag{45}
\end{equation*}
$$

The probability that particles remomin in the alabls an function of time in then Eiven by the expremaion:

$$
\begin{equation*}
f_{i n}(t)=\frac{1}{L} \int_{0}^{t} f^{\prime}(p, 1) d p=\frac{N}{n^{2}} \sum_{i=1}^{\infty} \frac{1}{(21+1)^{2}}+x p-\frac{n(2 l+1)^{2} r^{2}}{L^{2}} \tag{4.6}
\end{equation*}
$$

In linure i. I thin probability is whowill as a function of time an ralrulated from a numeriral nimulation naing the map and alan from unine the anatyticel formula

The hewt value of It far particular value of K is emily whtained and it in - lear that the analytir solution then fitn the numerical data very rlowely une
 within a fow per cent with that uhtmined in [HW'ra]. Such a diffremer in withit I he unnal computational er rurs anmeintal with mutnerical ximulations.

4.4 Weblinap

An diatuned in delail in ('hapter 2, the weh mapl ln the Poinrart map for a harmonic umrillatur whirh in periondically kirked by a ninusuidal furre [7:S'm?]. It in exprenned in teriun of the $x_{4} p$ eomordinaten, whirh are the pomition and the Inotifatum of the omrillatur rmpertively. The mapran be written in the forill

$$
\begin{align*}
& u_{n+1}=\left(u_{n}+K \sin r_{n}\right) \text { ranen }+r_{n} \text { ainot } \tag{4.7}\\
& v_{n+1}=-\left(u_{n}+h \sin v_{n}\right) \text { anno }+v_{n} \text { cosat } \tag{4.N}
\end{align*}
$$

Where $n=2 \mathrm{x} / 4$ and K is propurtional to the ntrength of the fores. The variabien
 k and wu are the wavelongth and frequency, rempertively of the central mode of
 wine diffumion arriuts in the netion romardinate whirh is froportional to $\mathrm{m}^{\boldsymbol{d}}+\mathrm{m}^{\boldsymbol{d}}$. The diffilsion mepliation laken the furm

$$
\begin{equation*}
\frac{d f^{\prime}(r .1)}{\theta t}=\frac{1}{r d r} \frac{d}{d r}\left(r D \frac{a P(n, 1)}{i r}\right) \tag{4.9}
\end{equation*}
$$

and in to be malved for a diar of radiun r_{0} with the houndary condition that
 The mellitions of thin diffunion muatient in of the form

$$
\begin{equation*}
f(r, t)=\sum_{N} A_{14} f_{u}\left(a_{N} r\right) d^{-\left(l_{0} \frac{1}{n} r\right.} \tag{4.10}
\end{equation*}
$$

Figure 4.2. Prohability that particlen remain in the alab a a function of time. The numarical reaules (solid line) are for thatandard map with $k=20$ and the analytical resuits (broken linea) for two different diffusion coefficienta $\mathrm{D}=100$ and $\mathrm{D}=120$ are ahown for comparinon.
whore the nen natimfy the muntion

$$
\begin{equation*}
f_{10}\left(a r_{0}\right)=0 \tag{4.11}
\end{equation*}
$$

If we ntart with a uniform dennity of pointe in the dinc the appropriate form af the probinhility density la

The density of paintr remainime in the dime an a function of time in diven by

$$
P_{i n}(t)=\frac{2}{r_{0}^{2}} \int_{0}^{r_{0}} r P^{P}(r, t) d r=\frac{4}{r^{2}} \sum_{n=1}^{\infty} \frac{1}{a_{n}^{2}} \exp \left(-D a_{n}^{2} t\right)
$$

A romparimin liet ween the numerien and themalytic value given hy equation (4.1 it) in shown in figure 4.3 . The numarical simulations were deme uning the
 that the dyfanion of the wrh map are well apprasimeted by a diffunian prorens in arlioun npare. The trapho on the right of figure 4.3 tive an entimate of the erport \mathbb{E}, an a functicin diffumion rimelliciemt I), where F: is dellnet surh that
 in iterationu at the map. The valum of I) far which thix epror in minimum in the chemen anf.

 uf the 1 hirkneas of the niflo rhomen. This dependency on ro pefterty the fart that the dynaticm fur the weh map is met well approximated by a ronntant diffusiun rueflicient an in the rame of the wiandard map. Thin dependency an ro ran be interpireted andue the the diffision ramilicient baing a function of the artion
 whes, uning the quaniliment nufroximation nhoweal that I) wan acticin dependent and of the forin

$$
\begin{equation*}
D(r)=D_{0}\left(1-\frac{J_{1}(a r)}{2 a r}\right) \tag{4.14}
\end{equation*}
$$

whete a la momw commant. It iv worth nosting that the quanilinear diffumian camelition for the atandard map in mital to a rommant [1.], mid].

$r 0=2000 . K=20 . t h .268$

Figure 4.3. Probability that the particles remain in the disc as a function of time for the web map (four-fold symmetry) for various values of the parameter \mathbf{K}. The solid line is the numerical simulation and the broken line is the analytical result obtained using equation (4.13) with the value of D chosen to give the best fit. The figures on the right hand side of the page show the error E defined in section 4.3, as a function of the fitting parameter D.

The mathosl in found tu work anficently well fur a range of valuew of the perturliation parameter K. Huwewer oine minst be rapeful tos rhomen K large anough wat that the trannpurt through phane npare diren not resemble an anomalous diffusion beraune of the preaphare of impands and acceleratorn moden. In that crane
 [1 PO 2$]$.

The methoul an dexeritied ahove has alnos beati applied to the cane of the quani-rtyatal nymmetrien of the wals trap, which appexhibited when q=5.7.e....
It han hoon foulnd that in theme rasen an well. the dynamion in phase npare ran well he approximated by a diffusion prorent with diffusion crefficient very rlous tut the quasilinear value even for minderate valuen of the perturhation parnueter cunfirming the analymis given in ('hapter :1 and (Y'R9'),

An intereating point which ariame from thin inveatigation in the followitg: Fur the xpecial valuex of $q=1,4,6$ the weh map ran he writen in doubly perioclir form and ran lie renkidered an a map on (a properly defined) unit torun. Now comaider knaping the perturbation parampter K fixed but allowing of to take real valuen. Then wr find for $q=3: 4,8$ a pariodir areangellent of this uturhantir layern which allow dilfusian in phane npere. Wherpan if a rhangen to non-intrger real valuen, the rhantic reginno locrinne wider and have not clear periodirity, thua
 the valuen of the diffusion curfitient. Our numeriral methed haw hern applied tu limentudy of the diffusion romelfirifut for conatant k but allowing 4 to vary in the neighbuarinuid of the valuen of q where reyatal symmetry in prexent. The
 will he neen that there in a quirk tranaltion from the diffunion comefficient value

 with the value for II (ramely $\kappa^{-3} / 2$ fur the farticular case af the weh map) an

Diftusion coefficient ws q for $K=4$

Figure 4.4. Diffuaion coefficient for the web map for $k=4$ and for valuet of q around q=4

Iherry is valid.
The walue of the eliffusion romeftirient at $q=3,4,6 \mathrm{ram}$ bre higher anr lower then 1ho quasilimear valum alepenting on the valur af K . This phenomenou in due fors rxample to the promenre of acrelerator mender and is diaruned in ("hapore 2 and [Y'K! !1].

Finally. the houndary condition urederl in the analytira molution of the diffirion equalion in mot the only one which could have bern uned. Thim rondition depende rencially on the numeriral procelure uncul. For example in the mumerical pencedure dimeusmed in the paper, an mamemble of particles wan inilially marted in Elarte dine and thene partirlen were fallowed under iteratiunn If the map until they left the dine and then they were taken out of the efimein. ho. Thin proredurn corremuunde tos an aboorhine bandary roindition on the henundary of the alime. In the ease of the weh map with $q=3,4,6$. where the map in perioselio. the porblem renuld lom formulated in a differnt but reuivalent way. An ennemblale of particlen ran mow he initialed in a xinaller dine hut ome rominined in the funslamental unit torus. The difinaion erpuliun muat now be walved analytirally uning perindir houndary ronditienn on the unit torum, Nuw the whole initial maninlile will have tol he trared for all tillen mien we are not
 disr. (hince woran mon langer impone the nhworhine houndary contition a parti rle that leaven the tinc can now re.enter.) (hanging unt algorithot in thim way
 iut houndary rondition ur Iaking inta arrount the periondir humadary rondition

 macrind mothosi th that the nummerical part of the methad will now take langer
 frum mur imitimi mamemblom, and we now have to trare the full ennemile f whith in unually a larem one tuminimine the atatintiral erropn anariated with ther ramalout dintrihation of initial comstitiona, of the urder of (onono partirlen) for the

We have a illure gatiferml turthom valid for a wider clasn of innpm, which arime in

4.5 WKB solution of the diffusion equation with slowly varying diffusion coofficiont.

Cur numeriral rewiltm mad whbmequent paramper filling and the ymani-linear

 I) with fo. found inmerically, that the varintion of is with wion whental the rematively alow. In thin mection we extend tur methonl for tho endrulation uf
 with apare.

Thun, we write our mulel dilfumiotit mumation in rylindriral romplimatem in the following fortu

$$
\begin{equation*}
\frac{\partial f^{\prime}(n, t)}{d t}=\frac{1}{t b_{f}}\left(+m(t+) \frac{d f^{\prime}(r, t)}{d r}\right) \tag{4.15}
\end{equation*}
$$

Where it a nimall parammer alluwing II to huve en slaw variatian with npare. A

$$
\begin{equation*}
\left.I^{\prime \prime}(r, 1]=\sum+1-0.1 r\right) x^{-191} \tag{4.16}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{r} \frac{d}{d r}\left(r D(\epsilon r) \frac{d \phi_{n}}{d r}\right)=-\lambda_{n}^{2} \phi_{n} \tag{4.17}
\end{equation*}
$$

 apmation and hence it Im mermanery to introdure atn approximate promealura, In

Ifrobability dintribution remains finite at the origin. the milution is aiven in
 In the rane of a slowly varving diffusion remffirient wer anoume a molution In then eigernsalue problem of the farm

$$
\begin{equation*}
\phi(r)=A(\circ r) J_{01}\left(\frac{1}{r} f(\circ r)\right) \tag{4.14}
\end{equation*}
$$

Whare fur couvenience we have droppeal the nuhurriptn n labeling the rigenvaluen allal the miagnfunctirinn.

Sinhatituting this form intus the eigenvalue equation we tet

$$
\begin{align*}
& +f\left(A(+r) A^{\prime}(a r) J_{0}^{\prime}(a) f^{\prime}(a r)=f(a r) A(+r) J_{0}(a) K f^{\prime}(\text { er })\right)^{2} \\
& \left.+\frac{1}{f(e r)} \text { M(er)A(er) } f^{\prime}(e r)\right)^{2} f_{1}(a) \tag{4.19}
\end{align*}
$$

where danhen rencite dilferentiation with rexpert to the arguirnt of the fumerion
 and lhell if in the ahover myuntion we meparale terme of dilferent artime to get

$$
\begin{gather*}
O(1): f^{\prime}(e r)=\frac{A}{D^{\frac{1}{3}(e r)}} \tag{4.20}\\
\left(J_{(\varepsilon)} i \frac{1}{2 e r}+\frac{1 n^{\prime}(\leqslant r)}{2 f(e r)}-\frac{f^{\prime}(e r)}{2 f(e r)}+\frac{f^{\prime \prime}(e r)}{2 f^{\prime}(e r)}\right) A(e r)=-i^{\prime}(e r) \tag{4.21}
\end{gather*}
$$

$$
\begin{equation*}
f(c r)=\int_{0}^{\epsilon} \frac{\lambda}{D i\left(c r_{1}\right)} d\left(c r_{1}\right) \tag{4.22}
\end{equation*}
$$

We use this result to integrate the $O(6)$ equation (4.21) to get the form of the function $A(\epsilon r)$. Substituting $f($ (er) into equation (4.21) gives

$$
\begin{equation*}
-\left(\frac{1}{2 y}+\frac{1}{4} \frac{D^{\prime}(y)}{D(y)}-\frac{f^{\prime}(y)}{2 f(y)}\right)=\frac{A^{\prime}(y)}{A(y)} \tag{4.23}
\end{equation*}
$$

(where $y=e f$) whirh in peadily integrated in five

$$
\begin{equation*}
A(\epsilon r)=\frac{\bar{i}}{(* r)^{\frac{1}{3}}} \frac{\overline{1}}{D \cdot(\epsilon r)} f^{\frac{1}{j}}(+r) \tag{4.24}
\end{equation*}
$$

Where f(4 r) ial given by mpation (4.22).
 (1) the exart lifanel functionim mulution.

 $\phi\left(r_{0}\right)=0$ on the eimenfunctions (whirh is the boundary rondition uned in the numerical evaluation uf the diffuricin ramfficient) we ant andincrete xpertrum uf rientivalume λ, slefinel hy the relation

$$
\begin{equation*}
\frac{\lambda_{n}}{\epsilon} f\left(\epsilon F_{0}\right)=a_{n} \tag{4:25}
\end{equation*}
$$

 Are

$$
\begin{equation*}
\phi_{n}(r)=\frac{1}{(\epsilon r)^{12}} \frac{\lambda_{n}^{\frac{1}{2}}}{D^{\frac{1}{6}}(\epsilon r)} f^{\frac{1}{3}}(\epsilon r) J_{0}\left(\frac{\lambda_{n}}{\epsilon} f(\epsilon r)\right) \tag{4.26}
\end{equation*}
$$

I.ml un nuw rherk arthugunality with resprect tel the inner product

$$
\begin{equation*}
<f, g\rangle=\int_{0}^{r_{m}} r f g d r \tag{4.27}
\end{equation*}
$$

The inner presturl uf two eimenfunctions ia given by

Hat

$$
\frac{d(\ell r)}{D!(\epsilon r)}=d f(\epsilon r)
$$

and the inner prominct rati then lie wriften in the furin

$$
\begin{equation*}
I_{\operatorname{mm}}=\frac{1}{i^{2}} \int_{0}^{1}\left(\lambda_{1} \lambda_{-1}\right)^{\frac{1}{2}} f(y) J_{0}\left(\frac{\lambda_{2}}{t} f(y) \left\lvert\, J_{0}\left(\frac{\lambda_{2}}{t} f(y)|d| f(y| |\right.\right.\right. \tag{4:10}
\end{equation*}
$$

 11 wr fingl thet

$$
\begin{equation*}
I_{n m}=\frac{a_{n} f\left(\epsilon r_{0}\right)}{2 \epsilon} l_{i}^{2}\left(\frac{\lambda_{n}}{\epsilon} f\left(\epsilon r_{0}\right)\right) \delta_{n m} \tag{4.31}
\end{equation*}
$$

thowing that the eigenfunctions enenerated by the mpproximate methad ant incal Hlowe are urt hatgemal.

The full malution of the diffixion muation in then a limear conhination of wll the eigenfunctiatia and ran he written in the farm
whare the $A_{\text {ne }}$ is are determisted by the initial condition $P(r, 0)=(r)$ in the fallowint way

$$
\begin{equation*}
A_{n}=\frac{1}{I_{i n}} \int_{0}^{e} r d n(r) g(r) d r \tag{4.:3:}
\end{equation*}
$$

I.af un mantue that wrenart with n homagenmoun partirle dimi ribution on the diner

$$
\begin{equation*}
f^{\prime}(r, 0)=P_{0} \tag{4.31}
\end{equation*}
$$

The number uf partirlew in the dime an a function of time ie then wiven hy

$$
\begin{align*}
& H_{n}=\frac{2}{r_{0}^{2}} \int_{0}^{r_{0}} r f(4) d r \\
& -\sum_{=} \frac{1}{r} \int_{0}^{\infty} A_{n} r \phi_{m}(r) r^{-\lambda_{n}} d r \\
& =\sum \frac{2}{2} \frac{1}{f}\left(\int_{m}^{m}+i+1 d+i^{4}+-141\right. \tag{4.38}
\end{align*}
$$

I'sing the proplertion of Ifensel functions we abtain

Then the probliahility that partirlen retuait in the dine an a function of time, for the rane of a uniform initial diatribution function, in
1437)
where we have umed ther fart that

$$
\begin{equation*}
f^{\prime}(o r)=f^{-\frac{1}{y}}(o r) \tag{4.3N}
\end{equation*}
$$

In the reage where I) in ranatant

$$
\begin{equation*}
f(r r)=(r l)^{-\frac{1}{2}} \tag{4.a9}
\end{equation*}
$$

and all the formulan cibteinesl by the Wh'H methead for the probability dineri bution I' (r, t) and the probubility that partiolon remain in the dime f it realure to 1 he formulas ohtainest in the rean uf ronstant It.

The probability that particlen are in the dine at $t=0$ if eynal in fu for 1 if appropriate unita arm chonen). The approximate Wh'H malution givem

$$
\begin{equation*}
\sum_{n} \frac{4 c}{r_{0} f\left(c r_{0}\right)} \frac{1}{\lambda_{n}^{2}} D t\left(c r_{0}\right)=1 \tag{4.10}
\end{equation*}
$$

or equivalenily

$$
\begin{equation*}
\frac{\left.f\left(F_{0}\right) D\right)_{\left(r F_{0}\right)}^{r_{0}}}{r_{0}}=1 \tag{4.41}
\end{equation*}
$$

where we have uxed the identity

$$
\begin{equation*}
\sum_{n} \frac{1}{a_{n}^{2}}=\frac{1}{4} \tag{4.42}
\end{equation*}
$$

 It ran be neen that munation (4.4|) Ie not truefor every function (fer) given by furtuala (4.22), except for the cone ohtained in the cane of a ronatant dififurion rueflicient. Figuaton (4.41) should then he gepn an an approxituate relation, with the meartioxs of the valum of the left hand mide to unity giving ant lurdicatient of the arcurary of out nolution of equation (4.15).

Wir now uag the approximater molution ubtainad abuye to get inforanation um huw the diffusion ruefliciant verien with netiden.

Mralivatod by the enemal functirnal furtil of the qumailinear diffumion compli cient given mhove we asumer that the diffingion ciwflicient ran be writion in the furin

$$
\begin{equation*}
f=v_{1}+D_{10} \cdot= \tag{4.4:3}
\end{equation*}
$$

with $J_{\mathbf{a}}$ and a negulive. Thim dilfumint romitiont mprasimaten wall the erteral fenturen of the theurplically prealirted dillumion ramilicient an mivan by (4.14)(mem life. 4.5). The advantage of a diffusion romefirient of this fortir ie that it in rany tu ralculate malytically the function fotiven

(4.44)

Figure 4.8. ipproximation of the analytical quailinear diffusion coefficient of equation (4.14) by the exponential law of equation (4.43).

Figure 4.6. Probability that particies remain in the disc as a function of time for the web map. Comparison of the numerics (solid line) and the WKB solution (broken line). (a) $r_{0}=500, K=20$; (b) $r_{4}=1000, K=20 ;$ (c) $r_{0}=2000, K=20$; (d) $r_{0}=1000, K=20$; (e) $r_{0}=5000, K=20, D=268$.

The rimenvalumen and the eigenfunctiann for the partirular form of the dillisiasu
 "f thim nperilic furm fur the functian f.

Then frotis a romparimon of the analytir form and simulatign penulte fur Ito prubability that particles remain in the dier an a function of timm wr fert
 maps. Thin han bren done in the rase of the weblinap exhibiting frome fold
 the dilfuminn cobetirient far large moungh padii, cath be found from ramparimon

 the radiux Fogning town tor $\mathrm{T}_{\mathrm{n}}=$ SiNO wa lint that the evolution uf the weh map in well murnamimet hy a diffunian prurewn with a diffumion rumfiriput of then farmit

$$
\begin{equation*}
f(r)=2 t i l i-20 . \quad-604 r \tag{4.45}
\end{equation*}
$$

 the ieprendence of it an eren he fitiol aming the proment incthod.

4.6 The Fermi map

 Nith a man in the fermi map whirh ta uf the furm

$$
\begin{align*}
& \mu_{n+1}=\rho_{n}+N n \theta_{n} \tag{4.16}\\
& \theta_{n+1}=\theta_{n}+\frac{2 \Gamma M}{\rho_{n+1}} \tag{4.47}
\end{align*}
$$

Whafe of in the melion variahle and \mathbf{M} in a parnimetor.
 thin rritiral ertion mi. the phamenpare la folialnd hy KAM tori (lig 4.7). An

Figure 4.7. Phase plane plots for the Fermi map for $M=10000$. The existence of KAM surfaces and ordered motion for large enough values of the action is shown.
in evident, partirlen atarting in fiatts off phane npare with $p<A_{0}$ are confined (1) ntay in this remion loy the exintence of the hatitari. In this rane the mean spunre dinplarement of thome particios ran net arow linearly an a function of time heraume af the trapping by the first KAM curve encountered. Int thin rame the unual anymptutir methend for the ralculation of the diffuniom rimefficient
 approprinte. This is loeranme the dynamion in rontrolled by the ham wirfare and not hy the rhantic mostion.

However the methas propomell in this japier given finite valure for the dilfusion conffirient. The apprepriate getmetry for the Fieflit map in the mentienpy of the slab as in the rane of the rtandard map. The expression for $\mathrm{P}_{\text {in }}$ tu the uxed fur the Fertini map in the ramer as fur the standard map and is given by (4.6).

The variation of l^{\prime} (1) with I for the fiersui map raleulateal diferty asing the mappand uning the diffusioll equatian (4.3) are nhown in figure 4.s. The fit in very gemel, hut it is found that the value of II depends on po. This depenilenry is nhown in ligure f.M. The diffunion ropflirient ohtained in more ur lema constant if the thirknewn of the nlab is mimaller than motue critical value $\mathrm{r}_{\text {, }}$ (which itaplf depends wh the parametnr M) and then wearta tid derteane abruptly an the thicknem of the Nath in increaned to include the flant KAM curve and tho. inland atrurture around it. It xhould he neterl hape that aince the variation af the diffusion cumeticient for the fiermi map in aleep, beranne of tha KAM nurfara. the Will mesh hul prophased in the previour section in not appropriate hut the approximation of a cometant D) for $p<p_{0}$ in Runel.

The valuem of the dilfusion comeflicient fur the Firfini mapt obtnined here are
 [MI.I.A.t] maine a morere romplieated methral nall shown in their figure 4.10 The compliented curcillationne shawn in thin ligure and due tu the prenence of
 our methoal in deximiad ter give an average value for the diffusion rueficient in aurh canen. Note alan that the valuea fur the diffusion ctreficient oblained hy

Figure 4.8. Probability that particles remain in the slab as a function of time for the Fermi map with $M=10000$. Comparison between the numerical smulation (solid line) and the anaiytical resuit given by eq. (6) (broken line) is shown The thickness of the slab changes in the different figures and so does the resulting diffusion coefficient. (a) $r_{3}=150, D=0.18 ;(\mathrm{b}) r_{8}=180, D=0.125$; (s) $r_{4}=200 . D=0.09$; (d) $r_{4}=256, D=0.07$; (c) $r_{e}=280, D=0.065$.

Figure 4.9. The calculated diffusion coefficient for the Ferm map a a function of the thicknens of the slab to.

Figure 4.10. The realta for the diffition copficient an a function of the momentum (action) after Murfay, Lieberman and Licheenbere (MLLa5].
 we alstain but thim in sue tot the fert thet they write their diffunint ryution in

The kone tail on the variation of 13 with roan shown in ligure 4.9 is due to the fact that the miraisht litie houndarime we take in aur analytir calculations

4.7 Conclusions

The mivantagen of the tuethul demrribed aheve and uned for the determination of fliffuaion rimfticiant arm:
I) It workn for aymerna where the rhantir part of phame npare is busuled S'urh mynteme uften orrur in a number of phynical prohinum (e. ©. Fermi map) [ML.Lens]. Fur auch nyntemin the ralenlation of the diffumion refeficient using the
 in bummded by KAM curven.
2) The ralculatisin of the dififuiati comefticient uning the proment methen if easiep hecaume une muide the prohben of elealing with the ameillationn of the diffuminn rometirient an function of time which are due to the fine werurture
 thean effecta and reveala the gromes variation of the diffumion crieflicient in phase
 fine intefmediatn timem which ran he used tos ealeulato lous raten and other wuch quantition.

1) Any variation of the difunion rumflicient with pamition is phase npere in reveneal as a variasion of the calculated aliffinioticomeficient an a function of the raliun of the alab thicksomm unad in the calculation.

Surh elepenctrice thangh ervealed hy time amrillationn In I), cannot he pasily collained uning uther methodn ainere it would involye ralrulationn initialed in alitferetif regitinn of phasm npace.
 hut nut for the minndard map. Thin is conaintent with tenulte cihtained analyti.
cilly.
4) It in fant and pllicient. Howulta ohlained for tho miandard mapp whow that tha methoul in minut all urder of mangituder fanter than nther methode umend previourly.
5) Finally the main errur in the jrmant methosl arisen froter the fact that the fumerical nimulation unew a random number fenerator to creato tho initial unifuth probahility dintributiun of particlen in the hunnded domain umed. An a reamit the initial probahility dintrihution in diffrent for differpat realimation of the numprical mimulation and thin introdurea a miatintiral epror in the ura-

 I he wh map in the axpreasion for II m given hy (4.45) the conefant form wan fintind tos he 2eifitw. It is found that the erpur la romparahle tot the errorm in the
 that the dilfumien ramfirient nacillatan with time.

Chapter 5

A Model for the Coexistence of Diffusion and Accelerator Modes in a Chaotic Area-Preserving Map

5.1 Introduction.

- innsider nu area premervillg rhantic map in x, y whirli ran he hrought intu a daubly prosiselic form. Shat in, ran be written as a map of the unit torus $\boldsymbol{f}=\left[\begin{array}{ll}{[1,2 \pi}\end{array}\right] \times[0,2 \pi]$. Fore nowh mapix there exint parta of phase njatre called

 the woll map [ZST'm0], [YR!日I].

Our aim in th Inventighte the efifert of the exinterner of nuch acrealoratiof
 dimennianal aympletir map). The motivation for inventigating nuch a nituntintor
 valte of the ration uf the equare of the dinplacement, P, divided by twire the number of iteralen (time) of the map namely $\left\langle p^{2} \geqslant\right.$. Vxually the anymptotio value for large n of thim ratios is a romatant and in ifentified with the diffumion comstant. Hewnemer for many thapse and in partirular the imaps comnidareal in thik paper the ratios shown oncillatory hehaviour and/or variation proportional
 f) $=\frac{\left\langle p^{2}\right\rangle}{d^{2}}$ but wr unw alluw it in he a function of n. A sypieal example of the variation of It with n, fenr the wrls map [ZSI'n9].[YHSI] in whown in Fig.s. 1 Of rourne the timea uf interemt are langer than the time needeal for the effect af initial conditions to be dampesl away.

5.2 Formulation of the Problem.

The variation of the diffusion romflicient (1) with in for ayntenta under romadarmeton whow very complicand behmviour. Thin behaviour we amociate with the premence of arcelerator inosem and with regions of mon chacitir hehaviour in the phane apmer. The exart atrurture of phase npare in extremely rimipiliuncel. In order for an analytical treatment in lie feasible, nemme nimplifirationn are nermanary.

The phane aprace in modelled an fullown. It in annumed to the infimite amd two ditmenminal. In the mpare there exiets a perimelic array uf points whirh correxponiln to arcrierntor mosien. Fior nimplicity wo annutie that the arreperator
 jurticle reartion wuch a point it ran make a finite jump to mouther proint of the Iattire (that is tu anosher arrelepntar moule) rather than dilluap to neighhuring fuinla in the apare.

Homidon the arrelerator moden we alma inke intor arconmt the affectm of the
 appirisachen a nithle fixed puint of the map we maname that it neay there for a rertain number of iterationn hefore continulag to diffune. Thum the atable

Figure 5.1. Atypical numerical calcuiation of the diffusion coethcient a a function of time for a map containing accelerator modes.
the nake uf ximplicity, we alact anmme that thentable pericotir pointe form an

 It.

In cur umalel we allow partirlen to difluma throngh phane npare until they pearh the virinity of an acreleralan mose or atable islame (trap). There they ran be trapped with reptaill irappuine prohobilition and ntert performine finite

 ponath curcur for a finite number uf iteratinns of the man m, with a probahil. ity dime ribution $v(m)$, Then detrmpping nerupa and the partirlon are ablowed In difuse again until they are brought by difiumion ta the vicinity effanother mremeratar tunden nintand.

The trapping in the arrelerator morien in mpivalent in a dififumion promeas intermitneled with the partirle havint fong jutmpen at reptein imen. This tr vimilar tos the mituatican dencrihed by a Lavy randonn walk, a concept which may

 and the ather half rourpapanal to urhitn for whirh $p \rightarrow-x$ men $\rightarrow x$. Ta

 watuple in the wel, ingot.

 betwen the arreleratur moulme in ber unly in one direction, nay them dirertion.

5.2.1 A Disrrete Madel.

A suitable siarting posint tomet a mathruatical dencription of the randam walk nituation ourlinel above, in a dinerete time - dinerete spere rendotr walk medtal.

 there in emberdad a menoud lattire whirh in the lattire of arcelerator moden (retardur minden of tpapa), Whml particle Rrnt rearhem nurh a point it in reinjerted in the normal lattice with probahility (I-n) or nayn trapped there Herforming correialed jumpn with prohahility w. The number of correlated jumps, m, performed by the partirle at surh a masto in dintsibuted with a prohinhility alimerihution wi(m).
l,at um anausur that the actelerator umiten (or trapm) are nituated at an dim-
 unimal lat tire the unand randent walt myation

$$
\begin{equation*}
p(n, 1)=\frac{1}{2} p(n-1,1-1)+\frac{1}{2} p(n+1, t-1) \tag{5.1}
\end{equation*}
$$

in valid where $p(n, i)$ in the prothability that a partirle in at lattire nite n at time

 for martiolan at $n+1$ ar $n-1$ tor hap ton n.

Thin mpuntinn is not valid on the arreletalor moden and their nearent neigh.

Any partirle that Junt ant intu the arcelerntur tunde $(N-n) /$ hy difluminn

 from other areminntur monien ile

Where nev(a) in the prohability that a partirle atayn in an arcelerator mocile far
 f_{i} which arta on the probability function in the following way:

$$
\begin{equation*}
T_{1} M(n, 1)=\frac{1}{2}(M(N+1,1-1)+M(n-1.1-1)) \tag{5,3}
\end{equation*}
$$

Whepe by I wr dmoute the unit length of the mouplual latire. The quantity Tipa $(N-m) N, t-m)$ in the number of particlen which junt diffined in to the

 are guing to be irmpual there for in iteratex, where $m>f$, can contribute in N/ at t .

The tutal rate of particlen intu the pesint N t at 4 , froull the inther acrelerator manden la then

$$
\begin{equation*}
\sum_{i=1}^{y} \frac{\Delta(s)}{n} f, m N-s, t-s 1 \tag{N,i}
\end{equation*}
$$

 Ithi wes in the merceleratur move will have to leave in une iferation feither fis

From the previnum argilmentn we nem that the prohability that a particle fa

Where $(\wedge)=\nabla^{\prime \prime}(a) / a$.
Now let an leak at the partirlon that roarlh the nemarmi neighhourn of the arcelerator inuslon.

Fíral af all it la important to realime that not wht the particlem whirh wrem at Wif at lime til ran rontribute to $\mathrm{Ni}+\mathrm{I}$ and N / I I at timen, Only thome which have lininhed thair majurn in the arrelerntor moden lattice arr allowed tor get back intis the natinal lattire. The rate of partirlen inten the norsual latire from
the nite $\mathrm{V} /$ at time I in in given hy

$$
\begin{equation*}
m(N 1 . t-1)-n \sum_{=1}^{t}+\left(+1 h_{1} N(N \mid-(=-(1) 1.1-n) .\right. \tag{5.6}
\end{equation*}
$$

Nutier that the trem giving the 'Inan' uf partirlen from the nemerel neightours uf the arrelerntor muolex in the namp an the one giving the 'rein' of partirlen to the aerelerator motele itnelf ondy tranalated to the right by I. To nee this, tater. for example. the $\mathrm{frm} \frac{4(m)}{m-1} \dot{T}_{1} p(N 1-(m-1) 1,1-m)$, which in comeained in the sult which appearn in the previnun equation. Thin term rurreapunda to the partielen which gnt into $(N-(m-I))$ at time $1-\mathrm{tu}$ and will he at $\mathrm{N} /$ at time 1. but will still be in an arceleratop moude nince they have to get to $N 1+I$ at $i+1$. Surh partirlex are connidered an a lown for the neaseet neighboupn of the lattice nite NI, and thum are attrihuted a minum mign in the ahove eyuation. Of courne they are not a rral lonn heraume they are rexained at the next merelerator
 of all nurh terme fur varisum trapping limen in the asilip mpirit an wan done for the xite NI.

Ilalf of the partirien miven by pquation (5.6) will go to nite $N(+1$ and half In nite Ni-I. The rontribution to itn nearent neightumes from the arreleratur monere NI will then he

$$
\begin{equation*}
{ }_{-1}^{1} m N / .8-11-n \frac{1}{2} \sum_{n=1}^{1} \Phi(-) f_{1} m(N I-i+-1)(.8-a) \tag{5.7}
\end{equation*}
$$

 by norimal random walk fruen sitem $\mathrm{N} /+2$ (N $1-2$) rexpertively.

Acropding to thr above reawning. the probability of heing in miten $\mathrm{N} \mid+1$ (NI-1) at tille t in eivan hy the equation
$m(N 1+1,1)=\frac{1}{2} m(N 1+2,1-1)+\frac{1}{2} p(N 1,1-1)-n \frac{1}{2} \sum_{N=5}^{1} \geqslant(n) T_{1} p(N 1-(n-1) N .1-N)$.
(8.ल)

The name equation mpplimen for $p(N f-1.1)$ anly that $N(+2$ in then replared by .N $1-2$.

The randullin walk altuation we nie interanted in, can nuw he dearsibed hy the unual randinu wall equationn gilun an effective nouref tariul loralined on the

Iatticr of merelepalat muden and their nament neighthenra, that in

$$
\begin{equation*}
M(n, 1)=\frac{1}{2} P\left(n+1,1-11+\frac{1}{2} P(n-1, t-1)+s_{1}\right. \tag{5.9}
\end{equation*}
$$

Where

$$
\begin{align*}
& -\frac{9}{8} \sum_{N} d(n-N I-1) \sum_{\|=1}^{\prime} \cup(n) \dot{T}_{1} M(n-(n-1) Y-1, t-a) \tag{5.10}\\
& -\frac{1}{2} \sum_{N^{\prime}} A(n-N 1+1) \sum_{=1}^{n} \Psi(a) T_{1} P(n-(n-1) d+1,1-n) .
\end{align*}
$$

This randonit walk mosel ronserven the number of particlen an in temanded hy the phymion of the problem. Thim ren he easily ahown an follenw, Adding the equationn (5.9-5, 10) over all the lattice niten in we get

$$
\begin{equation*}
\sum_{n} n\left(e_{1} i\right)-\sum_{n} n\left(n_{-} i-1\right)=\sum_{n} s_{A} \tag{5.11}
\end{equation*}
$$

Hinwert.
$\sum_{n} s_{i}=a \sum_{i} \sum_{i=1}^{i} \mid(n) T_{1} p(N i-d, 1-1)-a \sum_{i} \sum_{i=1}^{i}(n) T_{1} p(N i-(n-1) f, p-1)=0$
 $\sum_{ \pm} \beta(n, 1-1)$ for avery 1 and the total nurnber of particlen is ronmerved.

The aumere 1erit ansoriated to the retardor umolen. If is nimilar to the

 exnetially streatu in the ipponite dirertiath than partirlen in the arreleratur intemem. It ie man st raightforward to new that particle ere cunnerved if we include

 then it han to spend a finite fime in the irap before it ia released liank into the
 ramalan walk, will may in thin nite fin in time unitn, with prohability arf(am) and then leave the trag in get liact to the ranclorit walk. The parampler of dimen not
have to be the name for the traju and the arcelepator noulen, eventhangh here it in runvidered to he the natur. Note that the relevant frombability distribution here |n the lirat exit prolnghilisy dintrihution (a) which in relaled tos the murvival
 is atill in the trap at $t=\mathrm{m})$ by the simple relatian $\mathrm{r}(\mathrm{a})=$. dey (d). The probahility dint rihution that a particle mpenuls mure than tiume in the trap (or arrelerator mote) is mimply the integral of $\sqrt{1}+\mathrm{H}$.

The rate intu the trap at time t, in winnly what fetm intes the trap via
 cut af a trap nite. If a frartion or of all the partiolen thet landed ia the trap are detmined there for an infinite amount of time, then the ente out at time 1 would junt he a fraction $(1-n)$ of what was in the trap al time 1.1 . that in
 Irapped at time 1 -III, to be releamel frum the irap. liank to murmal diffumiots. at minur later time 1. Surh partirlem will enhance the rate uf particlex out uf
 be teleamed frum the trap with prohability or(n), and ent limek into the nusumb diflingion. The contribution tos the rate out of the trap wt time t froun wurh
 trap in guine la be

$$
(1-n) p(n T, i-1)+n \sum_{i=1}^{\infty} r(n) T_{1} p\left(n_{T}, t-n\right)
$$

Fir partirlon that are forever trapied into the trapa, the firat exit probahility in junt dolem fanction at infinity, and theman in the freviones relatern is islentirally zerus,

The rale intor the noarest neighbours to the trall nite my $+1(\mathrm{my}-$ I) will

Fillawing the mame rematinig an in the rane of the arrelepalor mosdew, wem
nere that the menirre tretm S_{T} will he of the furitu

$$
\begin{gather*}
S_{T}=0 \sum_{N} \delta\left(n-N I-n_{T}\right)\left(p(n, t-1)-\sum_{n=1}^{t} r(s) \dot{T}_{1} p(n, t-s)\right) \\
-\frac{1}{2} \sum_{N} \lambda\left(n-N t-n_{T}-1\right)\left(p(n-1, t-1)-\sum_{s=1}^{t} r(s) \dot{T}_{1} p(n-1, t-s)\right) \\
-\frac{1}{2} \sum_{N} \delta\left(n-N t-n_{T}+1\right)\left(p(n+1, t-1)-\sum_{n=1}^{t} r(s) \dot{T}_{1} p(n+1, t-s)\right. \tag{5.14}
\end{gather*}
$$

Because of the double periodicity of the map, the traps are assumed to be situated on the periodic lattice $N t+n_{T}$ where $N_{t} Z$. Note that in the above source term, all the probability functions are calculated on the same point, because the particle is static for a certain time when it is trapped. It is also straightforward to check that the source term Sr conserves probability. This is consistent with the fact that a particle is counted when it is temporarily immobilised in a trap and it is not considered as lost from the system.

5.2.2 Continuous model

The discrete model proposed in the previous subsection can be written in a continuous form, which is more useful for analytical and tumerical approximation.

Assume that the distance of two ordinary lattice points, 1 , is taken to be infinitesimal, compared with the length scales involved in the model, but that the distance betwen two accelerator modes is kept finite. The time step taken for the hop between two normal sites is taken to be small, so that time can be thought of as a continuous variable. In order to avoid the introduction into the model of regions of space with infinite velocities, we assume that the jump from accelerator mode to accelerator mode takes a finite, hut small, time.

Then expanding the random walk equations in small parameters which are the length scale of the normal lattice and the time unit for the hop from a normal lattice site to another lattice site we get to first order in α

$$
\begin{equation*}
\frac{\partial p}{\partial t}-D \nabla^{2} p=a S_{A} \tag{5.15}
\end{equation*}
$$

where

$$
\begin{gather*}
S_{A}=\sum_{N} \delta\left(x-N_{r_{A}}\right) \delta\left(y-N_{y_{A}}\right) \times \\
\sum_{s=1}^{\infty \infty} \Psi(s) H(s-t)\left(p\left(x-s r_{A}, \eta, t-s\right)-p\left(x-(s-1) x_{A}, y, t-s\right)\right) \tag{5.16}
\end{gather*}
$$

where hy H(a t) we denote the Heavinide function and is taken to be an integer. In the ahove derivation we taritly manumed that the normal rantom wate. or dilfumion, taken plare uth a two dimennional lattice but the acrelerator modes

The form of the muation is that of a diffuminn eypation in npare with a larelimed neture term ith the areforetor morle latire. Note that the dincrete
 neareat neighbuita but harm hacaune thone latticeniter are thought af an one. the
 the conlinuous maure terin in whtaineal by Taylar expanding the diarrete atirre terin in a apuall parameter which in the lattire length moale.

It is many trone that the continumit mendel alno conmerven porohability. Inte. gratilig ther all nface wr got

$$
\frac{A Y_{i n d r}}{\partial h}=\int s_{\Delta} d n d y
$$

Hı1

 ated wer rath whift \mathbf{N} hy $=$ in the firnt mum of the right hinut nide of meguation (0.1 m) and by $(\mathrm{n}+1$) in the mecond. ementially griting the name reault. Hence
 mundel in crimmetyed.
 whainal in angaighforwarl way fronn the diaremte ane, and for found to ber wuch that prethentility In vammerved.
 dilforent fortin

$$
\begin{gather*}
s_{T}=-\mid \sum_{N, L} \Gamma^{d}\left[A\left(r-N I_{T}-s_{0}\right) A\left(y-L_{y T}-y_{n}\right](p(s, y, 1)\right. \tag{517}\\
\left.-\sum_{i=1}^{t} r(s) p(s, y, 1-a)\right) \mid
\end{gather*}
$$

Sinmmarizing, we mee that, hath in the diarrete and in the rontinuoun rase, unf hanir mudel in th ronnidep thet over the whene of phase npare a diffusity eynation with a roustant diffusion romfirient is applirable to rapture the dy
 the trankfor of particlen from ume accelerator mesto bo another and the effert of the irmpping of partictes in the stable indanda we add effortive maturrem tos the

 due to finite aize r-miont ren remonsmbly be abourbed Into the definition of the *(m)
(tur rquationn are in the forin of a delay equation becaume uf the terma $p(x, y, t-1 I t)$ that apmear in the mource termas. The exintence of aurh termin is experted on quite geleral grounda due to the fart that a partirle taken a finite time to make a juinp froin une acrelerator under tos another and spende a finite time in the vicinity of a atable inlamel.

Thengh rquations (5.15), ($\$.16$) and (5.19) or their dimerete analogumen ran he molved rxartly the mulntion in extremely romulirated. A foll molution im termim uf a formal aerien in n in given in Appendix S.i. Helaw we give an iterative wheme baned rin the atuallmewn of n, which in a reaminable procecture for the rane where mant of the phane plane in chacitic. Thin ie parlicularly uneful when rentubinet with the fart that we mre amly imereated in the law tumentm of the climetibution functian, which are all that in nermangy for the calrulation of the affartive difluman corflicient. The pertuphation arhente miven belaw, is rumally valial for the cuntinuoun and the diarrete cone. For brevity it fa miven here for Iherontinumen rame lait it in the mame for the dinerete ane. anly that the diarerete firmen function will have to the uned. Morse detniln ran be found la Aprotidiz §. 2.

Wre wite our mpuation in the mopr complaet operator form

$$
\begin{equation*}
f l(x, y, t)=1, \mu(x, y, t)+\phi\left(x-x_{0}\right) M\left(y-y_{0}\right) \tag{.1.20}
\end{equation*}
$$

where we have inlmadured a meal mource of partirlen at the point so. Ma . Here

cinteal with n. For $1=0$ the mollution of (5.20) whirh in the molution for the diffusian equation with the preitul monree is junt the (irmen'm functinn and In given by
[Main:] where II(t-it) in the Heavyside funclion. Then by writing $p=p^{\prime \prime}+$ e $p^{\prime}+$

$$
\begin{equation*}
f_{p^{(1)}}(x, y, t)=\mathbf{R}(x, y, t) \tag{8.22}
\end{equation*}
$$

where $\mathbb{R}(x, y, t)=L \mu^{(0)}(x, y, t)$ is n known function of $x, y . t$. The malution to thim equation in miven ly

$$
\begin{equation*}
p^{(1)}=\int\left(i^{\prime}\left(x, y, f \mid s^{\prime}, y^{\prime}, f^{\prime}\right) M\left(s^{\prime}, y^{\prime}, f^{\prime}\right) d s^{\prime} d y^{\prime} d f^{\prime}\right. \tag{5.2:1}
\end{equation*}
$$

where fi($\left.x, y, f \mid x^{\prime}, y^{\prime}, f^{\prime}\right)$ in the (irmenis function for the operator f) and is miven
 and y^{\prime} are newer the whole mparen and the integration with respert to f^{\prime} in fromm 0 10:. Then lof fitst order, the rorfertion to the distrihution function is aiven by $p^{(1)}(x, y, d)=\int r^{\prime}\left(x^{\prime}, y^{\prime}, f^{\prime} \mid r, v, f\right)\left(S_{A}, A\left(p^{(0)}\left(x^{\prime}, y^{\prime}, f^{\prime}\right)\right)+S_{r}\left(p^{(0)}\left(x^{\prime}, y^{\prime}, f^{\prime}\right)\right)\right) d r^{\prime} d y^{\prime} d f^{\prime}$
 arcelorator mumben and the retardir mustem

5.3 Calculation of the Diffusion Coefficient.

The quantitien we are primarily intereated in are the monienta of the probability
 hy

$$
\begin{equation*}
H_{r}(f)=\frac{H_{2}-(f)}{1 M_{0}} \quad \text { and } \quad H_{v}(f)=\frac{M_{2, y}(f)}{1 M_{11}} \tag{5.28}
\end{equation*}
$$

whore

$$
\begin{align*}
& M_{A, i l} \mid=\int x^{2} P\left(x, y, f \mid d s d y=<s^{2}>\right. \tag{5.26}\\
& M_{d, y}(1)=\int y^{2} P(s, y, f) d x d y=<y^{2}> \tag{8.27}
\end{align*}
$$

$$
\begin{equation*}
M_{n}(x)=\int M(s, y, f) d y d y \tag{5.2N}
\end{equation*}
$$

hnd the intrgentiona arm uver all mpare. Thean diffinion rumfliciente chararter. ize the rution enver the whale of phame spere which thay now he tatren in he uniform. Importanty $\|_{f}(t)$ and $H_{v}(t)$ are the difiumint remelficientn whirh are
 ill mumarical experimenta. In particular we mpe interented in the hehaviour of $)_{r}(f)$ and $J_{y}(t)$ an functiona of time for our simpir ntorhantir mualel.

Afler monte cumbermome algebth we ran exparman the momente in the form

$$
\begin{gather*}
M_{2-}(f)=H+A_{1}+A_{1}+A_{T} \tag{5.29}\\
M_{d, w}(d)=H \tag{5..20}
\end{gather*}
$$

where the futictions A_{1}, A_{2}, A_{T} which are functions of t, are given explicitly in Appendix 5.1. The zeroth mament M_{11} in alwaym munal to 1 , bereume of the fart that aur moself premerven the number of partirlea. In Appendix 8.2 thin perturhation mathod ia hripfy aketrhed for the dierrete masel, mal is whaw to Eive nmantially the naile reaulta.

5.4 Results.

 juresented beluw the trapping time dintrihution in taken to be a delta function law of the form

$$
\begin{equation*}
r(m)=\sum_{1} A_{1} A\left(m-M_{1}\right) \tag{5.31}
\end{equation*}
$$

Fur the male of nimplirity wemmuma that the irnpuine probability In man merel
 iraps. The value of the parameier a ls taken to ber will emongh, withat the foriurbalive appronch fur the mulution af the muidel juremented here In valid. In the numerical ranulta prememied here it in takem tos he of the ordet 10^{-1}. Wher

the forill of hig humps which forreapond to the fffert of trmping in the arrel.
 to the mumber of peakm in the dintrihution function bimi After nurli jumpa
 II. ast that the effect of the partirle heing traprimal in an arcelermeter mode for n finite number af itarationm leadm to the enthancenemt of the effertive diffumion conflirient mpanured at infinite times. Thim la explainad uning an anymptetir antelymin of the momel, in Apprendix B, t

If the riffert of the arrelerator mondem in nwitrhed rulf ($\mathrm{f}=\mathbf{0}=0$) then what we find is a dip in the diffusion craflicient. This is entirely due to the premener off Erafn (that in thentanie inlandn in the particle dymamien). Thim in illumtrated in figura . ا. A .
 found in the ralrulatal diffaion rosefirienta nhtained frotn munuriral nitula tionm of tuapm (nep ligure S.I where murh diffunion romflicients are plotied an functionn of time fur the ntandard and the wroh map). The multiple Irapping in

 arcmerator moule far mumber of itermen then it is detpapped and diffumen fas
 her of iterates. Therefore the multiple delia function Iype trapping dial rihution

 in experted since we utily milloswed the arcalaratur unoden to be remnerted in the

 trienl to get on entimmer of the lenge timm hethavisur of the diffunian compliciont

Figure B.2. Diffuran coeffient calcalated from the reanta of our model in the cate of acceleratar moden and a delte function trappia probability dietribution

Figure s.3. Diffusion coeffeient ralculated from the resulte of our model in the cane of traps only, with a delta function trapping probability. The dashed line is the diffusion coefficient in the care of no trapt. The bump it due to the release of particien from the trap after a time lag

Figure 5.4. A typical single orbit of the web map. The two small continuous loops show the existence of multiple trapping in the accelerator modes that can be modeled by a muitiple delta function trapping distribution.

Ammuing that the prolinhility for an orbit onatirls in an arcelerator mode lonmer
 the dilfuainm rovflirient calrulated for urbith that may atirk to the acovierator
 sliffuxe without getling Irapuresl at all. the diffumion comeficient whatd the of the furm $J(n)=\| \|_{1}+I_{1} N^{H-3}$ where $2>i>1$.

Win will nhow that our model ran crover thin rese as well, givine the name
 furcion of a delia function form ma in (5, 5), we take a power law forsu, that

 note on the $y^{2}+$ and y^{\prime} s umed in of relevanee herm. An mentioned ahove in the furmulation of the unoriel, $\mathrm{r}(\mathrm{m})$ in the probloblility dint rihution that a partirle
 In releaued on the $m+1$ time unit. The probability that a particle whirh wan in an arcelarator muder at time $t=0$ is atill in the merceleratur minde at time
 that a particle ntayn in an norelerator mosie for time greates than m la jut f $5=1 \mathrm{~m}^{\prime} \mathrm{la} / \mathrm{m}^{\prime}$,

The unjor diffrrence lial wam our telta fanction like dintributian functicun and thin puwer faw in that in our mudel the deirapling in ennured wherena uming Lla power law dintribution function the pasaibility of irappine for an inlinite tumbiet of itprations in nut excluded.

The maymptotic hehavitur of aur moxiel in ntualieal in Appendix E.t. I'sing
 1 - x whirh is idention to the reqult obsained by Inhizati at al [HKM!日]. The nerond mament and the dilfuxian rapeflirient an ralculatad by mur morimel. Intinge inte areonit the morelerator inosion, in therane of a power law itapping
 will the remults uf lahizaki at al [IIKMOI] wheained by dirert itepation of the alandard map.

Figure A.f. (a) Second moment and (b) Diffution coefficient for the caen of accalapatar modan, conaidering a diatribation function for the trapping times with a power law decay.

In the rane where anly the trap terime are prement, the anymptotit time

 the reffert of the ferm of the trapping diatribution in the arcelepatar mulem on the asyintatir time liehasjour of the randonn walk. Thin in a renult giving a
 artumly an appraximation of motian in the ronnerted rhantir regionn af the

 timm behaviour of the difusion coplicient. Saumly an expunentially deraying
 diffumiou rumfirient independent of time. That in the acrelepator moden whow net athrervahle effecte ten the enymptotio time depmendener of the affertive diffumion romeliariont. The detaila of the ralculation, which in in the same apirit an that for ther rane of the power law dintrihutisin function, are purmenterl in Appendix 5.A. This in of courne in rontrant tu the cane of a prower law 1 rapping dintrihution im

 anymplatic hehavisur of the random walk

In a recent paper Zaudavakil and Tiplet [ZTSI] metulied the ntatiatiral be. havious of a dymamical myatom that ran proxent lount flightm in cestain parta

 mtathaticn follow an mapunentid law, the diffumion runfleime for the dymamiral
 the rane where parmmeter valuen were rhemen murh that the l'uincafa fecurtence

lime alsun folluwing a juwry law.
Wheran identify the interent of the foincare recurrence proshability dimtributian function it the purta of phase spare ancoriated with the existenre of long \#inhts with the trapping time dintributiant tith in the acrelerntor muden uned in the proment morlel. Hencr, the rexulta that Zandevnkii and Tippet [ZT91] oh. taineal by extenalve uumerical ralrulations ran herexplained analytirally by the

 When the loincard recurrencentatinticn follow an exponential law then W(in) sulmi follawion an expmationtial law but If in now conatant.

5.5 Conclumions.

Whe have ronatructed a simple ntorhantir mitalel demerihing the romeximence of arcolerator moalen mal diffusion for mere preamervime rhautir ungh, The analytitally predicted furma for the effertive diffunion rompficient of this nimple mendel shaw the qualitative hehaviour ulotained by direct numeriral intefration. The different anymptutic time behaviour fonind in verienen nutuerical eimulatienterent he calrolated in terman of the trapping probahility function (m).
 the writh of Ishizaki et al [IHKMSI], that atudimit the asymptotir hehevioup uf the diffusion remelliriont in the premenere of acemermater manden. However, mur
 tinm remulta wherpu the trmanment in [IIIKM91] in puraly mymptotic.

 whmitir flow with surcurance of jets, in whirh it was ohown that there ie a link

Fitally, eventhoush citur musiel han hern formulaled for mery minfile reet. nugalar lattire havien agriadir inlinita meray of ntrurturea (arrelerator muten or Irapa), which in the mituation that corrmanindm to an aren premervine map

 hat the maymptotic remulta are expertmit to be different since for rendom walkn of dimenniong higher thati twa, the prubability that a diffusion pas erle rearhem

Chapter 6

Conclusion.

6. 1 Conclunionn.

In thix thenin the pamibility of atudying the atatintical propertien of atrongly chantic Hamiltrinan nyatemm using wall known rewnlem frem the thenty of riffer sioh procemen han hern inventigated

In ('hapter 2. the anymptostic atatintiral propreptien of a certain dynamiral
 the menimentum courdinatmof the welb nap wan raleulated an a function of the periurlbation parametar, uning an analytical approarh hamed on the manumption of argalicity for the rhantir mestion and the quirk fall of velority athencortela tion functionn. The general form of the renulte ohtainet wan that the diffumion romfirient depmendeal in an omeillatory mannme an fumctian of the pertwobation parameter and relaxel to a monctontic valur for large valum of thin paramm lar. The analytical remulta shtained atermel very well with thome alsanined by direct iterntion of the mape except al nemie finticular valum of the perturhation parameter. Theme dincrmpanima were whown to be due to the eximence of nepur. turex in the phaxe npare of the map: Thementrurlurew were either acceleratur
 which remulted in a alecresur. It in wath mentiming, that the nnalytiral remultr show an increane ar decremen for theme viluen of the perturhation parameter. whthough thim light be willaller than the ane numerically abmervad. This affort
is shown in thm analytiral rewulta since short tinge cortelations are incorporated in the analytient methord．

The wels map in a map having a nperial aymurtry．In partirular it is a map nymmetric in lwath action nud angle variablen and an it can be wristen an a map
 Fromarhbe map．Ilowever，spneral mapa employed in phymiral motris may mut have thin nperial mytumelty，which in called double pericodicity．Gisul exauplen uf murh mapm are the Firmi map and（＇hirigas＇a mepapmtrix map．Theme mapm are unly periodic in the angle comordinate nad ran be thumght of an anapm unt the rylinder．

It（＇hapter it．the diffusion comflicient in the action（11世木及aentum）of murh rIapen wan atudimi，in order to nee whether the salle furtuations obmerverl in the diffumioti comficient of mapw of the torum，an a function of the perturhation parameter due tu courrelationn，would be nharved in wuch mapm．The mapm thet wren studied were mymplertic mapm of dimenniun $n>2$ for which the rhautie ragion was sulpromed to be infinite．

An anmytical methend wan formulated for the calculation of the sliffaniun cumffirient of maps of the rylinder in the natue npirit on the thethod umed by Karney，Herhexter nucl White for inapm of the turun．Importantly it wan proved． for maps which are net dambly fariondir that the quinalimear value of the dilfusion conflicient，that in the urne oblained if all tho currelations are nealected，in the rorrect une．This in in comtrant in what hapjomes in the cane of unap with n double periestirity where aur methent preadicter flurtuations of the diffusion cundficint an function of the periurhation parametar around the quamilimar
 of the rylinder．Which are alitainal by a perturbmion of dombly periontir mapa． linve homil ured．

 ronfticipnt definal by the reletion limet

In（＇hapien it the evalution uf

a rhantir man wan aludifed and rompaped to the evalution of the mane initial diatribution utnder a diffunith prorman. It wan nhown that phymiry quantitims mith as the averater number of furliclew in the bounded donnain an a furtion of time. olbainel fram the evolution of the rhantir aystem can he very well

Thin rewemblane wan umed an a momio of ralrulating the appropiate difis mion comficient for rhantir avatemm. A numerical inethod for the axteartion of
 the previnum paragraph, was fispinlated and cherked for threw different mapm. the stallalard map, the weh mans and the fermi map. The renulis wepe very matinfactory, and lt was nhown that
I) The thatheul in fanter and nure acrurate than the uatal way of ralrulating the diffunion rosflirifnt es limt \rightarrow
 wheh as the firflii maps.
4) It ean predirt rhangex of the diffumion resefirient with panition in phase spare. In partirulag, thin han heen temted in the wah map where the diffurian cueffirient ls known to be mpare dependent. A W'Kit procedure beand on the mownenm of the variation of the diffuring romefirient with pomitian in phame mpace was and
 the wath map.
4) Finally, using thim methoul further nummeriral remulta, in faveur of the theory

 I he ningly juriusilic ram.

It C'hapter 2. where the weh map wan otudied, the importance of ntructuren in the dilfurion throurh phesp npare in a chentir nyntom wen noted. Siome

 untian la wall approximatent by a random walk (whirh is the diarerte npare atid lime vervion of the diffusion procesa). The particlen are driven by the
 urbit imanda and arrelerator monlen. In wurh partm of phane apare long tille currelationa axist and the nimple ranclan winls madel is nor lenger mulficient. The mention thepp will have to be approsimeted differemtly. For axample the partiofe will have tonatop fur a time interval if it landa on a mable inaland or it will malam rauralated jumpa in one direction if it landa on an arrelerator mode. The fult motion tif the perticle then motellet anmmimn a mormal randum wals with mine proparly chomen mentra functionn on the pointn where the atructures Frint.

Thin randorn walk masiel has ben uned to ralrulate the quantition that
 dimplarfinent of the purtirle. The remulte nbtminced were mean to be in arrordance
 mondel in that it has incurpurated the currelation mferis that are ohmerverl in real

 hemp prealictal, an wril en the counerliam betwent the furm uf thr juincare
 nyatetio in intma of mimionta

6.2 Further Work.

A numher of prohleann meriting further inventigation arome during the preparatirin uf thin themin.
 at udien of the iranmpurt grupertien of mapa on the eylinder for mose general

The Iransport propertiox of nynuplectic mapn on the rylinder and un the toafua,
 thet analy from the themetiral peint of virw but almo frotrs the paint of view of applicatician.
 s'uexinta with regular atructuren wurh ialandm or accelerater modea can be mate. Mure elaburate kimetic equatiang in the njirit of thame given in Chapter s may loe writsem, providing a mope complete demeription of a chacotic syntent with a divided phane apare. To thin end. Markuv undeln rat he uned lorally, near the ntructures, fur the determination of the proper boundary conditions and the maturce tepmes thet beve to be inaerted in the kinetir muationn

Finally it would he of interest to apply our reatie or patead thean, conariderille mperific physiral nyatping, whepe tranmpert dur tu Haniltonien rhane ucrurs, xuch an the selvection of pansive nealern or pasaive vertors in laminar fow, The ntudy of кuch nyatemin rould be uf use to a great number of applications ranging frim the atudy uf uixing of trarern in laminar fown (rhaotir advertion) to Jy/fmat thenry.

Chapter 7

Appendices

7.1 APPENDIX 2.1

$$
\begin{equation*}
H_{4}=-H_{4}(\text { rean }+ \text { ronn }) \tag{7.1}
\end{equation*}
$$

where $I_{4}=\frac{A}{X}$. Kemping unly two terma in the time dependent perturbation rurrexponding to the two clomer tol remanane with the amerllatur harmonich of the wave parket the titue dependent perturhation in written in the form

$$
\begin{equation*}
I=-11_{4} \operatorname{rosuros}\left(\frac{-r}{1}\right) \tag{7.2}
\end{equation*}
$$

Fitr atmall valum of the perturiontion farameter k it in volid to take the molutien of the net of ryumtions menerated hy the Hamittonian $\boldsymbol{I}=H_{4}+1$ as writlan in the frum

$$
\begin{align*}
& u=u_{u}+A u \tag{7.3}\\
& c=\omega u+\phi u \tag{7.4}
\end{align*}
$$

 the tliperturlied m:'ntiomes. Subntituting mustiona (7.a) and (7.4) into the full
 "nfuationm for the muentution of the elevietionn

$$
\begin{equation*}
h_{w}=1 \|_{4} \text { rona } H_{n} h \tag{7.5}
\end{equation*}
$$

In the above aet of लymationa wandina are functions of time whirh ran be computed. So the above syetem in a lineer equetion for the deviatioms frutu the unperturhed walutions with time varying rompficients.

It ia ituportant to mow how on and or hehave when mand mon themeratrix malution for the Hamiltunian H_{4}. Fur the meparatrix mulution where $H_{4}=0$ we huve

$$
\begin{align*}
& \tan \left(\frac{\operatorname{sit}}{2}\right)=\csc \left(\mp t_{4} t\right) \tag{7.7}\\
& \tan \left(\frac{\operatorname{si}}{2}\right)=\sin \left(\pm \mathrm{I}_{4} t\right) \tag{7.N}
\end{align*}
$$

Sindatitutian thome expremsinga in the equation for the evolution af ay and an we ohtain the followint net of equations

$$
\begin{equation*}
\phi \dot{\text { ù }}=\mp 1 \Lambda_{4} t a n h\left(1 l_{4} f\right) t y \tag{7.9}
\end{equation*}
$$

$$
\begin{equation*}
\text { Ar }=\mp H_{4} \tanh \left(\Omega_{4} t\right)\left(1+2 \cos \left(\frac{-1}{4}\right)\right) A_{u}-2 \Lambda_{4} \frac{1}{\cosh \left(t_{4} t\right)} \operatorname{ras}\left(\frac{n t}{4}\right) \tag{7.10}
\end{equation*}
$$

In the limit $1-$ ac the above ant of equatiana berounch

$$
\begin{equation*}
A i n-\left[1_{4}^{x}\left(1+2 \cos \left(\frac{\pi t}{4}\right)\right) A=0\right. \tag{7.11}
\end{equation*}
$$

nal

$$
\begin{equation*}
A \dot{i r}=\mp L_{4} A n \tag{7.12}
\end{equation*}
$$

The firnt of the ahove iwo mquation in a Mathien equation [McLits] which rat lie hrought in the rationical form

$$
\begin{equation*}
\frac{d^{2} A d}{d r^{3}}+(e-2 q \cos 2 r) d a=3 \tag{7.13}
\end{equation*}
$$

by the tranmfortiation r - Then for the valuas of a and q obtained the Mathien muation (formianl! K) han aiway aunatable molutiane (unhounded) and thim in a manifentation of the inatahility leading to chanomer the unperturhed sepataltix molution.

7.2 APPENDIX 3.1.

In thin apponctix we show that a regular latiore of cuherent structuren han a greatur effert on the diffixion through phase npare than a dimordered one. It du thin we une a nimple randonn walk model which nimulaten the chautic motion and intrudure the effert of ialandy of ruhermat mation on the difitunion through phase npare hy runkilering a latiire of perfect trapa (abourhing painta). The
 -parel in quantilied by calculating the prolishility that a partirle is mot trapped ar a function of time. Wer consider the rane of a regular lattice of trapn and alms a alightly dimurdered lattice of trapn. The firnt rame corremponding to diffuxion through phane npare far dauthly periudic mapn, the nerond rarrespoasding to diffuxisu fur mapm un the rylinder rlame to the douhly periadir rane. Fior nimplirity We grement here the rame of the one timennienal randum walk hut our tenulen hoold in any dimenaion.
 diffurenti phyairal rontext. They malvad the diffunion equation in one dimennion in a lattice of trapm nituated at the pointr x_{1} and found that the uruliability a particle in not trapped to he of the furm:

$$
\begin{equation*}
\left.I^{\prime}(1)=\sum \sum \sum \frac{1}{2}+x p 1-\frac{\left(1(2 n+1)^{d} d\right.}{2 n!} \right\rvert\, \frac{1}{(7 n+1)^{n}+4} \tag{7.14}
\end{equation*}
$$

 nulineegurnt trapx, and I, is the length of the chain.

Wr une thin renult to atudy the dilferpate lietween the rase of a regular lat. sire of trapa anid a dimordered lattire of trapm.
A. Krgular lathice.
 $I_{1}=L_{11}$ for every I and

$$
\begin{equation*}
P_{M}(\theta)=H \sum_{i=0}^{n} \frac{1}{L}\left(I M-\frac{D(2 m+1)^{2} \mathrm{l}}{L!}\right) \frac{L_{0}}{(2 m+1)^{2} \pi^{2}} \tag{7.15}
\end{equation*}
$$

where N hathe total inimber af trapn in the Intion.
H. Ihinurdered lattirn

Finf the cane of a dimuralered lattice uf trapn, with the probahility dintributian fire tha dintance hetween t wot trapu equal tof $f(t)$

$$
P_{n}(t)=N \sum_{N=0}^{\infty} \frac{4}{L} \int_{0}^{\infty} f(t) \operatorname{cxp}\left(-\frac{D(2 n+1)^{2} t}{l^{2}}\right) \frac{t}{(2 n+1)^{2} \pi^{2}} d l
$$

An appropriate dintribution function for the dimance between two erape fur the
 $f_{11}-a<1<L_{11}+a$ mind zern elsewhete. Thum a is a mimanre uf the diacirder of the lattice of trapu. Thim probability diatribution goen to the delta function dintrihutinu $f(f)=d\left(t-L_{Q}\right)$, which correapands to a paricidir latile of ipaps in the lituit $a-0$. I'aing the top hat dintrihution. the prohability that a partirle in nut Irapped hercillies

$$
\begin{equation*}
P_{n}(t)=\frac{N}{2 a} \sum_{n=0}^{\infty} \frac{4}{L} \int_{L_{0}=a}^{L_{0}+a} \exp \left(-\frac{D(2 n+1)^{2} l}{1^{2}}\right) \frac{1}{(2 n+1)^{2} \pi^{2}} d t \tag{7.17}
\end{equation*}
$$

It la may to prove thal

$$
\int_{x_{0}=1}^{x_{0}+t} f(x) d x>2 \epsilon f\left(x_{0}\right)
$$

for functions auch that $f(x)>0$ and $f^{m}\left(x_{0}\right)>0$. If we take $f_{n}(z)$ tos be

$$
\begin{equation*}
f_{n}(s)=\operatorname{cor} m\left(-\frac{n(2 n+1) \frac{1}{2} \cdot \frac{1}{2 q^{1}}}{\frac{2}{2 n+1)^{2}}} \frac{2}{(2 n}\right. \tag{7.19}
\end{equation*}
$$

wr find that every termin the num delining frit la greater than the ropre--photine tern in the num defining P^{\prime} (t) if the ramalitien

$$
\begin{equation*}
P(2 n+1)^{2} x^{d}>L_{0}^{8} \tag{7.20}
\end{equation*}
$$

hodela. Fur large maugh timm, whirh ie the ream we ere interented in, thia in miwnyn true. Moreover thin huldn four noluall timen an lann an the menn freop path uf the partirle I Ermator than the average dintance betwory the trapa. Thin If a very rearonshle rundition siture in thin rame the particle can dintinguinh
 Amsitaing thin romiltion in rativitad we have that fitt $>P_{\text {m }}(t)$ for every 1. Thun correlation efferta are mure promounced for a regular array of tragn mat hence cortectlone to the quablinmar valum for the difiniun cumficiant are maperted to he larger than for a dimordered array.

7.3 APPENDIX 3.2.

Another impartant perint that arisen in whether the diffusiun romelficient an de.
 u! the rylinder. Tu antwer this problem it in necennary firm to be able to prover that the maper ran have chastic urbits which are unhosunded in the momenta. Ti, der thin we ume the renulta wheained hy Anhey and Ahramovirri [AAM0] in the anti-integrable lituit. Accordine to a themrent prowed by theme authnrm, a barticular nyanpleqtic map in one dimenciun defined hy a Frenkel-Konturuwn mesdel which hou uth enargy functional of the form

$$
\begin{equation*}
W^{\prime}(s)=\sum_{k}^{-}, 1\left(s_{i}, s_{i+1}\right)+1\left(s_{i}\right) \tag{2.21}
\end{equation*}
$$

where $I(x, y)$ ta the interaction terin hetwen the dilferent atonem in the rhain and
 that inake it rlage ponsugh to the putential $\mathrm{V}(\mathrm{x})=1$-roa (x), chantir trajertorien with umbunideal motienta exint for large pmouth values of the perturhationt patewneter if

$$
\begin{equation*}
\frac{F^{\prime \prime} \dot{x}(x, y)}{\psi_{x} d_{y}} \tag{7.22}
\end{equation*}
$$

in bunnded for every valuw of x und y. Wre will ure thig thenpem to khow that thim in the reane for exanipie in the une dituphaional radiel twint map of the fortur

$$
\begin{align*}
& p_{n+1}=P_{n}+A_{1} n_{\theta_{t}} \tag{7.2.1}\\
& \theta_{n+1}=\theta_{n_{1}}+a\left(P_{n+1}\right) \tag{7.24}
\end{align*}
$$

This map is exiven by na merrey functional of the furn given in equation (7.21)
 the inverse function of $a(\mu)$ and $K=1$. Fine nurh a map, after a litele momehra we nibtain.

$$
\begin{equation*}
\frac{\|^{d} L(x, y)}{d r \| y}=\frac{i e^{-1}(y-x)}{d y} \tag{7.2.5}
\end{equation*}
$$

which in equint tos

$$
\begin{equation*}
\frac{\|^{d} L(s, v)}{\|_{s} d^{\prime} y}=\frac{1}{d(p) / d p} \tag{7.26i}
\end{equation*}
$$

and p is definesl by the relation

$$
\begin{equation*}
v=r+a(p) \tag{7.27}
\end{equation*}
$$

 $\beta+\lambda \beta^{\prime}$. for proper viluf uf the parailieter λ, or $a(\beta)=\beta+\lambda \beta^{1}$ an we cuncontrate un urbite with pomitive ρ, then we get that

$$
\begin{equation*}
\frac{y^{2}+(x, y)}{d i d y} \tag{7.2K}
\end{equation*}
$$

In a bunnaled function fur all and y. So for cretain radial twint mape there exiat rhmotir urbits with undsumded momenta and the diffumion copffieiont defined en in eyuation (3.6) ia nou veninhing. Similar reaulen are fxperted to hould for the
 mymplertir anapm un the rylinder la defineal an in equation (3.8) and ie nenzeres.

7.4 APPENDIX 3.3

In thin appendix we une the renulta uhtained by Markey and Meisn [MM92] int the minimuIn perturbation parameter for which oner can formally prove the eximbence of chantic urbite ruming fretm the anti-interarable linut fur the rame of the ntandard maplatid a mandard like map with mone nonlinear perturhation in the forer functiun a(p). Vising a Frenkel-Kinturowa model like the one slefined in Appendix 3.2 the arbite of the nymplertic map that roprespondals to this -nergey functional are given by mequences e_{1} that make thin anergy functional ntationary. let un chome a stationary aequence in the anti-integrable limut w_{1} and define

$$
\begin{equation*}
\left.b(u)=\pi u p_{1,} N \mid D_{2} L\left(w_{1}\right), w_{1}\right)+D_{1} L\left(w_{1}, w_{0+1}\right) \mid \tag{7.29}
\end{equation*}
$$

Let un denute hy S_{H} all the nempencex $x_{\text {a }}$ far which $b(x) \leq H$. Acrurding tui a thearmen prived by Markay and Mping [MM92] given $H>0$ there exisha
 nonidegreneyate.

The unual perturbation paratreter \mathfrak{k} we une in the ilefinition of the wympler tir mapn in the text is invernely properiptianal to the a mentioned in the theurem.
 pters it the ahowe frirmula are defined by $\left|w_{1}-m_{1}^{A t}\right| \leq A_{d}\left|I^{2}\right|\left(w_{i}\right)^{-1} \mid<\Omega^{-1}$, $\|B C\| \leq H$ and $\|f i(0)\|<H$ where $\mathbb{C} \|$ is the uperator defined by $f i\left(u_{1}\right)=$ $-D_{2} L\left(m_{1} \lambda_{1} m_{i}\right)-D_{1} L\left(w_{1}, w_{1+1}\right)$. In the previoun relation $\|_{1}$ and $/ J_{1}$ dencote differentiation with rmpert to the lirnt and the merond argurament of the function renpertively.

We take twas maps with the natse patential furction V nat that the atatismary menlifencen far both aiapm in the anti-integrable limit are the amme and we rhaner I. in Nuch a way that in the firat rave we have thm miandard map and in the maconal rase we have a perturliation to the atandard map with a nunlinear force functioth. In thin rane the valume of a and a fur the two mapa are the nallum hut H and if are differemt.

The maxilnum matimate for ou will he given if in the illegumblity that given
the upper hasind for e"we muthetitute the mininumin eatinaten for It and is. Thim wruld then sive the tuinimum entimate for $\boldsymbol{k}, \boldsymbol{h}_{\text {man }}$ wurh that if $\boldsymbol{h}>\boldsymbol{\boldsymbol { h } _ { \text { mas } }}$
 degenmente. That is fur $\boldsymbol{K}>\boldsymbol{K}_{\text {min }}$ we have wril defined chactic urbita d-cleme ti) the sines we had it the anti-interermble limit,

We ntudy imape uf the furin

$$
\begin{align*}
& \mu_{n+1}=p_{n}+K f\left(\theta_{n}\right) \tag{7.10}\\
& \theta_{n+1}=\theta_{n}+a\left(\beta_{n+1}\right) \tag{7.81}
\end{align*}
$$

which are given by an artion af the form

$$
\begin{equation*}
h(\theta, \theta)=\sum \mid+L \cdot(\theta, \theta)+V(\theta) \tag{7.12}
\end{equation*}
$$

with

$$
\begin{equation*}
L\left(\theta . \theta^{\prime}\right)=L\left(\theta-\theta^{\prime}\right)=\int^{+-\theta^{\prime}} \theta^{-1}\left(\theta-\theta^{\prime}\right) d\left(\theta=\theta^{\prime}\right) \tag{7.3;s}
\end{equation*}
$$

atad $h_{\text {mim }} \sim \frac{1}{n}$. Fir aurh maps H dependa on the value of $a^{-1}\left(0-e^{0}\right)$ an the
 mequence chomen. The invermefunction of a im nothing alme than pasa function uf \boldsymbol{a}_{n+1} and θ_{n}, that $\ln ^{-1}\left(\Theta_{n+1}-\theta_{n}\right)=\mu_{n+1}\left(\theta_{n+1}-\theta_{n}\right)$.

Vie will nuw comparn the valuem uf il and fore fomp of thin lorm with a(p) limpar in p and a mare genefal map un the rylinder.
A. $n(p)=p$ (Stanalaril map)

H. $u(p)=p+\lambda f(p)$
 previaun equatioult for $\boldsymbol{t}_{n+1}-O_{n}$ we get that

$$
\begin{equation*}
\frac{i a_{a^{-1}}}{1+H_{c}}-\frac{1}{1+\lambda \frac{\%}{\phi}} \tag{7.14}
\end{equation*}
$$

where of in now a function of $\theta_{\mathrm{w}+1}-\boldsymbol{A}_{\mathrm{m}}$. If we rhamemapm for whirh $\lambda / y>0$
 "xnilipla of that is the rane where of $p)=p+\lambda p$ ".

If deprends an the value of $a^{-1}\left(\theta_{n+1}-\theta_{n}\right)-a^{-1}\left(\theta_{4}-\theta_{n-1}=p_{n+1}-p_{m}\right.$ for a
 tanap forre function if $\boldsymbol{\lambda} \boldsymbol{0}$. Fur the minndard map the minimum matimate for the valup uf H ran he kiven an the maximum of $\mid \theta_{m+1}+\theta_{m-1}-2 \omega_{m}$ | for a siven anti-integrahle neyuence. Fir a general NJM map the valum of H can be given on the maximum of $\mid \mathrm{m}_{\mathrm{n}}+1-\mathrm{g}_{\mathrm{n}}$ | whepe the p'n are related to the anti-integrable A Nequence hy the relation

$$
\begin{equation*}
a_{5+1}-a_{0}-a\left(p_{n+1}\right) \tag{7.3.5}
\end{equation*}
$$

It in eary to mep that $\left|P_{n+1}-\beta_{n}\right| \leq\left|\theta_{n+1}+\theta_{m-1}-2 \theta_{n}\right|$ in the above equation

 function which la alt increasing furtion of p, auch as for example ex p) $=p+\lambda p^{\prime \prime}$ fur λ pomitive the follewing inequality in true $H^{\text {बM }}>H^{K T M}$.
 Thim meanx that the eximence uf chantic urbita conuing frolll the anti-interrable
 values uf the perturbation parameter \mathfrak{k} than for the ntandard uap. This in at indiration that a H'M berumew rhantir more pasily than the atandard ump
 IIA, he une mare reamon why the currelation function methad cunver, fem fanter (1) the quasilinmar remult for mapa tha the rylinder than for mapa of the wrma.
()f cnurge unf might argum that the l.mhantur meanure of the chantic urbitn The eximence of whirh ran berigaroumly jrenved is zerob an conjerturmi hy Auhry and Ahramovirri [AAAO]. Wiven if thlm ronjerture in irue, thman chatic orbits uriginative from the anti-intenrable limit form a skeleton (a wob) nuppurting the full aet of rhantir arbita an their mximetere in bevir to tha rhantir bobaviaur in the phese spare.

7.5 APPENDIX 3.1

In thix apprentix we Eive explicilly the dempaic furma of the functions invalved

 where x_{0} and wi are the miarting puintx of the particle. If we annume that $\left(s_{1}, w_{n}\right) \neq(0,0)$ then the almue expresaitun can lye sinuplified tos

$$
\begin{align*}
& +\int_{a}^{1} \sum_{m=1}^{\left[l^{n}\right]} \frac{d x-1}{r^{\prime \prime}-m}\left(\frac{A}{M}-1\right) \tag{8.137}
\end{align*}
$$

where k ia the romplete elliptic intemeral and the following pelaton hasd

$$
\left.q=+2 m-\frac{t}{r-m}\right)=\left(d p\left(-\frac{\pi h}{h}\right) .\right.
$$

The term A_{a} for the retardor inoden in similar.

7.6 APPENDIX 5.2.

IIt this mppendix the firat urder perturbativen molution is abtainat for the dierrete randutn walk model prememted in mertion is.d.I. and ia nhown to agere wrill with the renulta abtained from the firat order perturhative nalution of the continumen mendel.

The prolonbility alintrihution for the dixereme madel to firmt order in of in miven by

$$
\begin{equation*}
p^{(1)}=\sum_{r=0}^{\infty} \sum\left(i\left(w-m^{\prime}, t-p^{\prime}\right) X_{N}\left(p^{(0)}\left(n^{\prime}, r^{\prime}\right)\right)+S_{T}\left(p^{(0)}\left(n^{\prime}, r^{\prime}\right)\right)\right) \tag{7.19}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(d\left(m-m^{\prime} t t-r^{\prime}\right)=\int_{-\infty}^{\infty} \operatorname{xp}\left(t A\left(m-m^{\prime}\right)\right)(\operatorname{con}(k))^{\left(t-r^{\prime}\right)} d i\right. \tag{7.40}
\end{equation*}
$$

is the Cirenu function for the mimple randonn walk on a latsire and

The coprection to the probahility dintribution of the normal random walk, dine to than arreleratior mulem, in firnt order in os is then

$$
\begin{aligned}
& \text { (7.42) }
\end{aligned}
$$

Frum this equation it in obvinus that the finurief trannform of this currection Ifrin in
mind nincre we are interested it firnt urder is a we will nubatitute the accurce terme npprarine in thim exprension hy

$$
\begin{equation*}
T_{1} P(x, i)=\int_{-=}^{n} d k(\operatorname{con} k)^{\prime} r x p(i k z) \tag{7.44}
\end{equation*}
$$

The curreation to the zeroth mutuent whish is the total number of partirlen due to the exintenre of the acrelelatur unoden la givern by

$$
\begin{equation*}
\Delta M_{11}=f(0)=0 \tag{7.45}
\end{equation*}
$$

an experted ly particle cummervation. The renrection tos the mecund nument. dime tu the exintence of the meguree term related to the accelerater mulos is given by

$$
\begin{equation*}
د M_{d}=-f^{N}(0) \tag{7.16}
\end{equation*}
$$

where the double dawhen denote differentiation with reapert to q. Performing the differentiatians we wat thet

$$
\Delta M_{1}=\sum_{i}^{1}\left(t-t^{\prime}\right)\left(A_{1}\left(t^{\prime}\right)-A_{2}\left(r^{\prime}\right)\right)+\sum^{1} N^{2} f^{2}\left(A_{1}\left(t^{\prime}\right)-A_{2}\left(t^{\prime}\right)\right)-\sum_{i=1}\left(A_{a}\left(f^{\prime}\right)(7.47)\right.
$$

where

$$
\begin{equation*}
A_{1}\left(f^{\prime}\right)-A_{d}\left(f^{\prime}\right)=\sum_{i=1}^{n}(A) \int_{i=1}^{n} d\left(\operatorname{rosin} i^{\left.i r^{\prime}-n\right)} \operatorname{cin}(i N(N I-a d))(1-\cos (i k l))\right. \tag{7.4x}
\end{equation*}
$$

I'ming the itleatity

$$
\begin{equation*}
\sum_{N=-\infty}^{\infty} r \sin +N N i \left\lvert\,=\sum_{N=-\infty}^{\infty}\left(k-\frac{2 \pi N}{1}\right)\right. \tag{7.49}
\end{equation*}
$$

$$
\begin{equation*}
-\sum_{t^{\prime}}^{i} E=1 f^{\prime} \forall(n) \sum_{N=-1 / 3}^{i / 2} \operatorname{ram}\left(\frac{14}{t} N\right)\left(t^{\prime}-n\right) . \tag{7.60}
\end{equation*}
$$

Wir finally get for the real part of $\perp M_{d}$

$$
\begin{equation*}
\Delta M_{2}=\left(i \sum_{i}^{i} \sum_{i=1}^{n} A(A) A\left(t^{\prime}-s\right)+r\right) \sum \sum_{i=1}^{r} \psi(n) A\left(t^{\prime}-n\right) \tag{7.51}
\end{equation*}
$$

wlones

$$
\begin{equation*}
A\left(r^{\prime}-a\right)=\sum_{\Delta x=d / 2} \operatorname{ran}\left(\frac{2 \pi i v}{t}\right)^{\left(n^{\prime}-3\right\}} \tag{7=52}
\end{equation*}
$$

ninl

$$
\begin{gather*}
r_{1}=2 l^{2} \tag{7.53}\\
r_{i}=r^{2}+1
\end{gather*}
$$

The function $A\left(f^{\prime}-a\right)$ i. linutuded

$$
\begin{equation*}
\left|A y^{2}-+1\right| 5 \mid \tag{7.34}
\end{equation*}
$$

[rir all valuen of $t^{\prime}-a$. A raleulatian of $A\left(t^{\prime}-A\right)$ whown that it can take hath
 if alwayn a powitive yuantity. Firthermore for 1 - 0

$$
\begin{equation*}
\Delta M_{2} \geq r ; \sum_{r}^{1} \sum_{i=1}^{r} A(A)-r ; \sum_{r}^{1} \sum_{k=1}^{r} \psi \mid+1 \tag{7.58.}
\end{equation*}
$$

The hehavitur of the merond mommot ran maw be ralculated, by ume of the
 Nong. that the disurete madel givem the nallo rexulta with the continuaun une an far an anymptotic in time reaulta afe concerned. Thim ran be paily men
 the continuoun rase, which la given in Appentix K. I. ar even better len fourier. laplace tratheftitigiven in Appendix R.A.

The corpertion tathe mapins! randeitn wall, due to the presence of the soutce Ierin currmpanding to trapa in ralrulated in a nimilar way. The final remult it

$$
\begin{equation*}
\Delta M_{2}=-\alpha \sum_{t^{\prime}}^{t} B\left(t^{\prime}-1\right)+\alpha \sum_{t^{\prime}}^{t} \sum_{n=1}^{t^{\prime}} r(s) B\left(t^{\prime}-s\right) \tag{7.56}
\end{equation*}
$$

where

$$
\begin{equation*}
B\left(t^{\prime}-s\right)=\sum_{N=-1 / 2}^{l / 2} \cos \left(\frac{2 \pi N}{l}\right)^{t^{\prime}-s} \cos \left(\frac{2 \pi N n_{T}}{l}\right) \tag{7.37}
\end{equation*}
$$

The functian $H\left(f^{\prime}-a\right)$ has similar propertion we the function $A\left(t^{\prime}-a\right)$ defilled
 teritis in alwayn trgative. thungiving rise to a decrease in the effective diffunian rameltioiont an expmertad. Furthermiore for $t \rightarrow x$

$$
\begin{equation*}
\Delta M_{2}=-n i+n \sum_{p}^{t} \sum_{a=1}^{n} r i+i \tag{7.5M}
\end{equation*}
$$

It ian bee emaly men that thin In junt the dincrete counterpart uf the continutum raletion for the rame uf irepn, $\begin{gathered}\text { iven in Appendix 5.t. }\end{gathered}$

7.7 APPENDIX 5.3.

In thik nppendix we give the completa molution of the runtinucoun diffusion mosel given in section 5.2 .2 in Finurier- Laplarespare. Even though this wiluticut is not eanily tranxfuriund hack intes real apare and uned to kive renultu for intermmediate times. it ran he illuminating an far an aymptotic renult, for the mecond moment of the probability dintribution are rencerned.

We start by taking intu arrount only the arcelprator moslem terin. If we tale the Finurier trannform of the diffunion equation proponed in aertion 5.2 .2 wr get

Manipulating the num is the right hand wide of the ahove rquation we get

$$
\begin{aligned}
& \frac{9}{i n}(k, i)+I k^{2}(\vec{n}(k)=
\end{aligned}
$$

$$
\begin{align*}
& \sum_{N} \in S M\left(k \cdot N_{A}\right) p\left(N_{x_{A}}, N y_{A}, t-n\right)+d(t) \tag{7.60}
\end{align*}
$$

Where $p(k, t)$ in the Fourier trausform of $p(x, t)$. Since the ahove uadel in for mally two dimennianal, \mathbf{k} in runuidered matwu dimenaional vertor, and hernume the contumuniration of the arreleratar moden is done in the x direction only, it in the x-curerdinate of k that entern the multiplicative fartor in front of the fouriep tpainforill of the murer trem.

Writing

$$
\begin{equation*}
p\left(N_{\left.P_{A}, t-n\right)}=\int d y, r p\left(-i N_{s A}\right)(n(q, t-n)\right. \tag{7.61}
\end{equation*}
$$

and uning the fact that

$$
\begin{equation*}
\sum_{N} \operatorname{sp}\left(i(k-q) x_{A} N\right)=A\left((k-q) x_{A}-2 \pi N\right) \tag{7.42}
\end{equation*}
$$

W. ina rewrite equation (7.60) in the form

We now take the Laplace transforn of thim muation. Thin givew

$$
\begin{gather*}
u \dot{p}(k, u)+1) A^{A} \dot{p}(k, u)= \tag{7.6.4}\\
a\left(1-i \operatorname{sp}\left(-i k_{ \pm} r_{A}\right) \dot{\left(u-i k_{x}, r_{A}\right) \sum_{N} P\left(k+\frac{1 p}{s_{A}} N, u\right)+1}\right.
\end{gather*}
$$

 rquation. (w) in the Laplare trameftrm of the function w. ant pas, w is the Fimirier-Laplare tranmfortiof $p(x, y, t)$, The approximation of the convolutinn sutin hy an integral thex not intrudure new behavisur in the nyitem, mince the full dixpermian relatian af the diarerete madel using the diarrete Fiusier

 similar menvoututia renulta. The derivation of the dimpermion relatian for the

$$
\begin{equation*}
j^{(m)}(k, u)=\left(i^{(1)}(k, u)+\operatorname{rf}(k)\left(i^{D}(k, u)\left(u-i k_{E} x_{A}\right) \sum_{N} j^{(m-1)}\left(k+\frac{2 n}{x_{A}} N, u\right)\right.\right. \tag{7.65}
\end{equation*}
$$

wherr

$$
\begin{equation*}
\left|i_{i}(\mid)\right|, * \left\lvert\,=\frac{1}{\Delta+I) A^{-d}}\right. \tag{7lifi}
\end{equation*}
$$

And

$$
\begin{equation*}
f(k) \equiv\left(-P s B\left(-j H_{y} s_{A}\right)\right. \tag{7.6i7}
\end{equation*}
$$

An the zeroth ariler approxiluation wo une $p^{\prime \prime}(k, y)=$ (en (k, w) which in the
 ($\mathrm{a}=(0)$).

It herfar that thin iterative arheme in junt the Finurime Laplare mare vernion

 urter we like, thun getting eformal merien in it for the completemelution of thm jrishleng. The full malition tos the firubietil in thent

$$
p(k, w)=\left(0^{0}(k, w)+\sum_{i=1}^{n} n^{m} \hat{p}_{n}(k, w)\right.
$$

whore
aftal $1=\frac{1}{4}$
It in eney tan ane that the full molution to the proulaletir givem

$$
\begin{equation*}
M(0 . n)=\frac{1}{u} \tag{7.70}
\end{equation*}
$$

whirh is Pquivalent tu the rommefvation of partirlen

 given hy

$$
\begin{equation*}
M_{2}(u)=\frac{d^{2}+k^{\prime} \cdot \|!}{d k^{2}} \ln =0 \tag{771}
\end{equation*}
$$

whore

$$
\begin{aligned}
& +f(L) K_{0}^{*}(L, \omega) \oplus\left(u-i k_{r^{2}} s_{A}, \omega\right) f_{i}(k, w)
\end{aligned}
$$

$$
\begin{align*}
& +f(k) r_{0}^{0}(k, u) \oplus\left(u-i k_{r} z_{A}, u\right)\left(i_{1}(k, u)\right. \tag{7.73}
\end{align*}
$$

$$
\begin{aligned}
& +f^{\prime}(k)\left(s ^ { \prime \prime } (k , w) \psi (\omega - i k _ { s } F _ { A } , w) \left(i_{3}(k, w)\right.\right. \\
& +f(k) K_{0}^{0}(k, u) \phi\left(m-i h_{z}, A_{A}, *\right)\left(i_{4}(k, u)\right.
\end{aligned}
$$

nand

$$
\begin{aligned}
& F_{1}(k, m)=\sum_{n}, \|_{a=1}^{n-1} f\left(k+A \sum_{i=1}^{B} m_{1} M M_{i} L+A \sum_{i=1}^{i} m_{n}, v\right) \\
& *\left(u-i A_{A} A_{5}-i A \sum_{m=1}^{n} m_{1}\right) N_{0}^{*}\left(k+A \sum_{m=1}^{n} m_{1}, m\right)
\end{aligned}
$$

 on F_{1} but the lant of function Ia differentiated with renpert to k. that is, it is
 zero unly if derivativex with renpert to k_{s} are taken.

The anyuptatic hehaviour of the merund moment, is given in the limit $¥-U$ and $k=0$. The termin diverging am $\rightarrow 0$ are thome which are uf intep-
 arily if $5^{2}=\mathrm{i}, \mathrm{m}, \mathbf{0}$. Hawever, herause of the preactice of terman af the form

 ing at $w \rightarrow 0$ an we like. Ohnerving the ntructure of the aeriem and taking into arcount that $f^{\prime}(0) 0$ and $\mathrm{f}^{0^{\circ}}(0)=0$ we ane that the ouly punaihle diverging t-rilna an a $-U$ arrenth that

$$
\begin{equation*}
M_{2 r}(u)=\frac{1}{u^{2}}+C_{1} \frac{\dot{\Psi}^{\prime}(u)}{u^{2}}+C_{2} \frac{\Psi^{2}(u)}{u^{3}} \tag{7.76}
\end{equation*}
$$

wheruman $M_{\text {an }}(u)$ is junt mulual to + . The firnt terin in the ahove mum in junt the mimal diffusive behaviour $M_{d}=1$. The merond term, in eral apare rorrmupumdn to a hehaviour of the form

$$
\begin{equation*}
\Delta M_{2}(t)=\int_{0}^{t} \int_{0}^{r} s \Psi(s) d s d r \tag{7.77}
\end{equation*}
$$

nend the third torim in a hohaviour of the form

$$
\Delta M_{2}(t)=\int_{0}^{t}(t-u)^{2} \Psi * \Psi(u) d u
$$

Where a denaster the cinvalution proilurt.
Thare the full metution to the diffumion madel for the nerond moment in $x_{\text {a }}$ is giveli by requationg (7.76-7.7M).

In the rage where the trap teriti in introdured into the gatell, the amme procelure nhend be followed. Hy taking the Finutier-Laplare trannforilis of the ratimucuan rquationn wr el

$$
\begin{equation*}
M(k, N)+1 H k^{d} \dot{H}(k, n)=\frac{n^{2}}{2} k^{2}(1-H(*)) \sum_{N} n=N(k+N, k)+1 \tag{7.79}
\end{equation*}
$$

where $K(u)$ in the laplace Irannforin of $r(a)$ and we have anmumen that the trapn ure nituated un a perisulic lattire which without leme of generality ren the tatren of the farm $\boldsymbol{J}_{\mathrm{it}}+2 \boldsymbol{2} \boldsymbol{N}$.

This is mat equation for $p(k, v)$ whirh ran be atolved uaing the following iterative arhente
where

$$
\begin{equation*}
r^{4}(k, u)=\frac{1}{v+1) k^{2}} \tag{7.M1}
\end{equation*}
$$

in the Futuriar-laplare Iranmfurm of the liren function for the diffusion promema whon of 0. In the ahove may he romsidered an a vertar or a mealar wroneding tos the dimenkion of the diffunitu prorem. Nizare the trapping procesen daen not rreate a jurfered direction. as in the rane of the arraleratur mosen whepe the stranining was slefining arefered dirertion, it is not of great importance tes thinte of k en a vertur.

$$
\begin{equation*}
\left.\tilde{F}(k, w)=r_{1}{ }^{\infty}(k, w)+\frac{1}{2} \sum_{k=1}^{n} n^{2} k^{2}(1-H \mid u)\right)^{2} f_{i}^{\prime 0}(k, w) f_{d}^{\prime}(k, u) \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \text { (7. M: } 1 \text {) }
\end{aligned}
$$

The meromel montient we are interented in, is aqual to -p" (0.0) which la

Wh are interented in ternin diverging an $m \rightarrow$ ot hermune theme are the terina which give anymptatic runtributionn in time. It ran be nepm that the amly rene where $F_{s}(0, y)$ rati diverge is when $a_{1}+\ldots+w_{n}=0$ while all the other nutus $\pi+\ldots+n_{s} \nmid 0$ where $m>2$. Thin tiven a divergence af $1 / m$ whirh in due to the $\mathrm{C}^{\mathrm{O}}(0, \mathrm{E})$ term.

Sis, $p(0,8)$ tivergen an

$$
\begin{equation*}
-\frac{1}{w^{2}}+\sum_{n=1}^{n} w^{n} \frac{(1-R(w))^{n}}{s^{n}} \tag{7.4.8}
\end{equation*}
$$

The rurrertion of the neriund mument due to the irap terma in then

$$
\begin{equation*}
د M_{2}=-\sum_{i=1}^{n} 10 \frac{(t-\pi t n t)}{4 t} \tag{7.186}
\end{equation*}
$$

This given a rontribution

$$
\Delta M_{2}=-\frac{n}{1-v} \frac{1}{m^{2}}+\sum_{i=1}^{\mathbb{}} \lambda_{s} \frac{F(w)^{2}}{v^{2}}
$$

where A, are cogutant termat that ran be abtained from the expanaion of (1 $\boldsymbol{H}(ш))^{*}$

Tramafurming hark to time, thin relation beculuren

$$
\begin{equation*}
د M_{d}(t)=-\frac{m}{1-v} t+\sum_{i=1}^{\infty} A_{s} \int^{t} \int^{\prime \prime}(r(r))^{n} d r d t^{\prime} \tag{7.4M}
\end{equation*}
$$

Where fos denntex the canvolution of f, n-timen with it self.

7.8 APPENDIX 5.4.

 of the waiting time probability dintribution w(a).

1. Prower law

Ansume the the trappine prubability dinetribution in the arrelerator manden tha. liaven anvuptotirally in tilue like a prower law

$$
\begin{equation*}
v(t) \sim i^{-1-n}, \quad t-x, \quad 1<, t<2 . \tag{7,49}
\end{equation*}
$$

Then. from the alefinition of $\#(1)$ we ner that

$$
\begin{equation*}
\forall(t) \sim 1^{-\alpha}, \quad 1 \rightarrow \infty \tag{7.90}
\end{equation*}
$$

In the previnum apprendix it was nhuwn that in the preserire uf arreleratur mudew, the serund mument has thr following roureartions $a \mathrm{t} \rightarrow$

$$
\begin{equation*}
\Delta M_{2}^{\prime \prime}(H)+\int_{r}^{t} \int_{r}^{\prime} \Delta v(*) d x d r \tag{7.91}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta M_{2}^{(2)}(t)=\int_{2}^{1}(t-w)^{2} \psi \bullet \oplus(w) d u . \tag{7.92}
\end{equation*}
$$

where r_{i} and 4 , are times for which our anymptotio formm fur ${ }^{(1)}$ are valid. Fiur $(1) \sim f^{-11}$ an $1 \rightarrow x$ it la many to nee that

$$
\begin{equation*}
M_{a}^{(t)}(t) \sim t^{1-r t} . \tag{7.93}
\end{equation*}
$$

$$
\begin{equation*}
\Delta M_{z}^{(1)}(1) \sim f^{(t-1)} \tag{7.94}
\end{equation*}
$$

Fir $1<1<2$ the dominant rantributon an $1 \rightarrow \infty$ is that of $M_{1}^{(1)}$.

In the rane whepe trap termin are intrudured the aymptotir behnviour for the coprertionn iat the eecound moument in

$$
\begin{equation*}
\Delta M^{\prime \prime \prime} / I I=-\frac{n}{1-n}^{n} \tag{7.98}
\end{equation*}
$$

and

$$
M_{2}(t)=\int_{t_{0}}^{t} \int_{r_{0}}^{t^{\prime}}(r(r))^{*} d r d t^{\prime}
$$

Which for $r(t) \sim I^{-1-\lambda}$ an $!-a$ behaven likr

$$
\begin{equation*}
H_{d}(f) \sim t^{1}= \tag{7.97}
\end{equation*}
$$

Which fot every $a \geqslant 1$ derayn $\operatorname{tog} 0 \mathrm{man} 1 \rightarrow \mathbf{x}$.
2.Finpurnential form
 deray an F IM(- $\lambda t)$ an $i \rightarrow x$.

In thet cmer

$$
\begin{equation*}
\Delta M_{2}^{(1)} \sim \int^{t} \int^{t} \operatorname{sexp}(-\lambda A) d s d t \sim \cdot d M(-\lambda t) \tag{7.98}
\end{equation*}
$$

Suthe term $\perp M_{2}^{\mid 1]}$ will not rontribute for $t \rightarrow x$ in the cane uf an expmential trapping diatrihutian. The sellie happenm with the terin $\Delta M_{2}^{(d)}$. If ov(t) ~ $f^{-n}(x \beta(-\lambda t)$ then $\Psi(t)<f(t)=e \operatorname{sp}(-\lambda t)$ fur $t>1$ and $\psi *(t)<f \in f(t)=$ thsp(-At). 'Thril

$$
\begin{equation*}
\Delta M_{d}^{(d)}<\int(t-v)^{2} v e s p(-\lambda u) d u \tag{7.99}
\end{equation*}
$$

and this lat integral derayn exponentially to zepo an $t \rightarrow x$. Sis $\Delta M_{d}^{(d)}$ anain will nut romerihute te, the meraud mantent furf $\rightarrow \boldsymbol{x}$ in thereme of aft expumential Irapuine tiaktribution.

Bibliography

[AS70] Aliramowity M. ned I. A. Stexun (eln) (1970) Hanthent of Mathrial ical Finmetiamm. thover
[ANM] De Almeida A. M. O. . Hatnilthnian tivatemu: ('hamand Quantization: ('ambridene I'nivernity l'rens, 19ям.
[ArNa] Armulal E. I. . Mathmintical Methoulm of C'laniral Merhanicn', Ind edl. - Springer trilag. IOmo.

[AC'SZMO] S. V. Afananiev. A. A. Chernikuv, K. Z. Sagifery and G: M. Za. alavalii. Phynica Jellarn A 144 (1990) p. 224
 1. 14:

[HMMi] Uland A. S. and (i. Howlaudn (IGMB) in Nunlinear Ihemumena and Shawn, ml. S. Sarlusr. Adan Hilger
 C'Imerudun I'rems

[('MNI] ('ary J. H. and J. I). Mrinn (19xI) Jhyn, Hey, A 14. 2titit
|('NPR7| ('hernikew A. A. , M. Y. Natenzun, H. A. Petrovirhev, K. Z. Sagdemy and (i, M. Zaxlavaki (19n7) Phys, Ift. A 122. 19
 (19\%7) Hyys. Iset A 125, 101
 1)ss, 63
 ก2. 218.
[IMM] [Jana I. (IGMO) I'hym, Hrv, Lell g4. 2abs9.
[KMi] Finutun H. W. (I!N(i) Tivans. A. M. S 294, 2.
[F'72] Frimenshle (', (1972), Antrallamy and Antrophysirn 16, 172
[Cimu| Cialdatein II. . 'Iannical Merhanirn'. 2nd ml. Addinun Wiesley, Heading, Mannarhumptes, 19mi.

|IKIMs| Ilatıri T. , T. Kamibura and Y. II. Irhilewa (I9*s) Phynira 14I), I9:I
[IHhM9I] Inhizaki K., T. Harita. T. Kolonyanhl and II. Muri (19191). I'rug.

 p. 12 F

 Sprinemat Varlang 1!am!
 seripticıns". Prentice Hall, Igsa
 My (iraw Hill ingit.
 Hill. Vow II 19ais.
[M•1.64] rtachlan N. W. "Theory and appliration of Mathieu functions", Thiner. 1904
[MC'[is:I] Mpinn J. IJ. , A. R. C'ary, C', Cirehngi. J. I. C'rawford. A. N. Kaufman and II. II. I. Ahathanel (19x:3), Phymica en . 37 ,
 S5.
 Hev. A 32. 241:
[Mmi] Markay M. S. 'Intrudurtion to the I)ynathirx of Area-Prenerving Mapm'.
 19x.i.

[MMI'n7] Machay H. S., J. II. Mrime antl I. ('. Prerival (19M7). Phynica D27. I.
[MM92] Markay H. S. and J. b. Mrine (1992). Nomalinearity s . 149
 14×4

[1'92] l'ikuviky A. S. (1992) d. Whym. A:Math. (irn. 28, L479
[HWM0] Herhmer A. H. and H. K. White (19n0). Ihya, Kpy, Lett. . 44 . Ifmb
[HHWNI] Herbenter A. H. Rumphlıth M. N. and H H. White (|gm|), Fhym. Kev, A, 23. EAtitit
 Hev. Let, Bs. 85 !
[YH91| Yannaropoulim A. N. and (i. Howlandm (1991), Phym. Lett. A 188, I:14
[YK!12] Yannaropunicm A. N. and (i. Howlandm (1942), Phyaira 67 D . A5:/
[W02] Wigginas. , 'Chantir Tramapart in Iyymairal Syatema', springer-Varlag. 1992.
[ZA'2] Zanlavn凶ii (i. M. and ('hirikuv H. V'. (1972) Soviet Phyaira limpmekhi 14. .149
[77.Kmf] (i. M. Zanlavakii, M. Y. Zahharuw, H. Z. Sagdev. IJ. A. Itwikov and A. A. ('heruikev, Soviet I'hymica JFTHG4 (19an) p. 294
[ZSC'ma] Zasinvakil Ii. M. . K. Z. Siagdev. I]. K. ('heikuvalii and A. A.

[ZSI'NO] (i. M. Zaniaymiil. R. Z. Siagderv, II. A. C'aikov and A. A. ('heraikov. Suviel Phymirn l'mpekhi si (19m9) p. WN7 and refepencen therein
[Z: 91] Zanlavaley (i. M. and M. K. Tippett (I901), Phys. Kev. Lettepn 07. ;28!

[^0]:

