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1 Introduction

Following the early writings by Lucas and Prescott (1974) and Bewley (1986), macroeconomists

have made widespread use of a model of an economy with many agents who face individual

random shocks. These shocks are typically modelled as a continuum of random variables that

are conditionally independent given common macro level shocks. Proposition 4 in Hammond

and Sun (2008), however, shows that in this framework, the joint measurability condition

that is usually imposed on a stochastic process can be satisfied only if there is essentially no

idiosyncratic risk at all. The approach of Monte Carlo simulation, initiated in Hammond and

Sun (2003) for the symmetric case and extended in Hammond and Sun (2008) for the general

case, can be used to characterize when, even in the absence of the usual joint measurability

assumption, the standard stochastic framework for many heterogeneous agents facing individual

uncertainty may still be valid. This paper provides a systematic study of the underlying Monte

Carlo sampling processes. We also present an application involving allocations in large exchange

economies with many asymmetrically informed consumers. In particular, we show how Monte

Carlo sampling helps resolve the conflict between incentive compatibility and Pareto efficiency,

which vanishes in the limit as the number of agents tends to infinity.

Let

I × Ω 3 (i, ω) 7→ gi(ω) ∈ X

be a process with a continuum of random variables, indexed by members i of an atomless

probability space (I, I, λ), all defined on the same sample probability space (Ω,F , P ), and

taking values in a Polish space X. Let I∞ and X∞ denote the Cartesian product of infinitely

many copies of the sets I and X respectively, with typical members i∞ = 〈ik〉∞k=1 and x∞ =

〈xk〉∞k=1. Then the Monte Carlo sampling process G based on g is a mapping

I∞ × Ω 3 (i∞, ω) 7→ G(i∞, ω) = 〈g(ik, ω)〉∞k=1 ∈ X∞ (1)

When the process g has a stochastic macro structure, as defined in Section 2.3, Theorem 1

shows that so does the Monte Carlo sampling process G. In this case, the process G also has

the property of admitting a “one-way Fubini extension” that makes G jointly measurable with

respect to an extension of the usual product σ-algebra.

The Monte Carlo simulation approach in Hammond and Sun (2008) uses the almost sure

convergence of the sample averages. For a square-integrable process, we also consider here the

case of norm convergence. Based on the iterative extension of an infinite product measure

introduced in Hammond and Sun (2006b), we formulate a “sharp” law of large numbers, re-

quiring norm convergence of sample averages only for all sequences outside an iteratively null

set, rather than a smaller classical null set. We prove that a process with square-integrable



random variables satisfies this sharp law if and only if it is both Gel ′fand-integrable and norm

integrably bounded in the Hilbert space of square integrable random variables. In other words,

this result characterizes those processes with square-integrable random variables whose av-

erage conditional expectation, given the macro states, can be estimated using Monte Carlo

simulation.

For allocations in a finite-agent asymmetric information economy, it is well known that

there is a conflict between incentive compatibility and Pareto efficiency (see, for example, Ex-

ample 0.1 on p. vi of Glycopantis and Yannelis (2005)). The papers by McLean and Postlewaite

(2002) and Sun and Yannelis (2007) show the (approximate) consistency of incentive compat-

ibility and efficiency by working with, respectively: (i) a large but finite set of agents; (ii) a

continuum of agents.1 In this paper, given a sequence of economies that result from Monte

Carlo sampling, we show that the conflict between incentive compatibility and Pareto efficiency

is resolved asymptotically for almost all infinite sequences of economies. This corresponds to

the asymptotic result for replica economies in McLean and Postlewaite (2002), and the exact

result in Sun and Yannelis (2007) when, as in Sun (2006), private signals are generated by a

process that is jointly measurable in a two-way Fubini extension.

The rest of the paper is organized as follows. Section 2 includes some basic definitions.

Some general properties of the Monte Carlo sampling processes are presented in Section 3. Then

Section 4 provides a necessary and sufficient condition for the classical law of large numbers

to hold in a general Hilbert space. As an illustrative application, the last Section 5 shows

that in a Monte Carlo sampled sequence of economies with asymmetric information, incentive

compatibility and Pareto efficiency are asymptotically consistent. Additional definitions and

all the proofs are given in the Appendix.

2 Basic formulation

2.1 Monte Carlo sampling processes

We model a continuum 〈gi〉i∈I of random variables indexed by i ∈ I as a process g : I×Ω→ X

where:

1. (I, I, λ) is an atomless probability space, often the Lebesgue unit interval, whose typical

member is an index i that identifies one particular economic agent;

2. (Ω,F , P ) is a probability space that represents the overall risk in the process;2

1The compatibility of strategyproofness and efficiency had been investigated in Hammond (1979), though
only in a framework like that in Aumann (1964, 1966) and Hildenbrand (1974) where, given the continuum of
agents, the distribution of their characteristics can be described by a deterministic probabilistic measure.

2We follow the convention that a probability space is assumed to be countably additive, as well as complete
in the sense that the σ-algebra F includes all subsets of every P -null set.
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3. (X,B) is a Polish space with its Borel σ-algebra;

4. each indexed function gi : Ω→ X is measurable, so a random variable;

A (Monte Carlo) sample of the indices i ∈ I is a countable collection i∞ = 〈ik〉∞k=1

drawn from the iteratively completed infinite product probability space (I∞, Ī∞, λ̄∞) defined

in Section 6.1. This space was introduced in Hammond and Sun (2006b) as the usual infinite

product probability space (I∞, I∞, λ∞) extended so that the σ-algebra Ī∞ includes iteratively

null sets.

Corresponding to each (Monte Carlo) sample i∞ = 〈ik〉∞k=1 of indices is a countable

sequence 〈gik〉∞k=1 of random variables. This constitutes a (Monte Carlo) sample from the

continuum of random variables Ω 3 ω 7→ gi(ω) ∈ X as i varies over I. This sample, with

i∞ ∈ I∞ fixed, can be regarded as part of one meta (or Monte Carlo) sampling process G

defined by (1).

2.2 One-way Fubini property

The following definition was introduced in Hammond and Sun (2006a).

Definition 1 A probability space (I × Ω,W, Q) extends the usual product probability space

(I × Ω, I ⊗ F , λ⊗ P ) provided that W ⊇ I ⊗ F , with Q(E) = (λ⊗ P )(E) for all E ∈ I ⊗ F .

The extended space (I×Ω,W, Q) is a one-way Fubini extension of the product probability

space (I × Ω, I ⊗ F , λ ⊗ P ) provided that, given any Q-integrable function I × Ω 3 (i, ω) 7→
f(i, ω) ∈ R:

(i) for λ-almost all i ∈ I, the random variable ω 7→ fi(ω) is integrable on (Ω,F , P );

(ii) the function i 7→
∫

Ω fi dP is integrable on (I, I, λ), with
∫
I×Ω f dQ =

∫
I

(∫
Ω fi dP

)
dλ.

A process g : I × Ω → X is said to satisfy the one-way Fubini property if there is a

one-way Fubini extension (I × Ω,W, Q) such that g is W-measurable.

2.3 Regular conditional independence

A σ-algebra C on Ω is said to be countably generated if there exists a countable family {Cn }∞n=1

of subsets of Ω that generates C. Given a complete probability space (Ω,F , P ), a sub-σ-algebra

C of F is said to be countably generated if it is the strong completion of a countably generated

σ-algebra C′, in the sense that

C = {A ∈ F | ∃A′ ∈ C′ : P (A4A′) = 0 }

Definition 2 Let g be a process from I × Ω to the Polish space X with its Borel σ-algebra B.

Let C be a countably generated sub-σ-algebra of F in the complete probability space (Ω,F , P ).

Let M(X) denote the space of probability measures on the space (X,B).
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1. Two random variables φ and ψ that map (Ω,F , P ) to X are said to be conditionally

independent given C if, for any Borel sets B1, B2 ∈ B, the conditional probabilities satisfy

P (φ−1(B1) ∩ ψ−1(B2)|C) = P (φ−1(B1)|C)P (ψ−1(B2)|C) (2)

2. The process g is said to be essentially pairwise conditionally independent given C if, for

λ-a.e. i1 ∈ I, the random variables gi1 and gi2 are conditionally independent given C for

λ-a.e. i2 ∈ I.

3. An I ⊗ C-measurable mapping µ from I ×Ω to M(X) is said to be an essentially regular

conditional distribution process of g given C if, for λ-a.e. i ∈ I, the C-measurable mapping

ω 7→ µiω is a regular conditional distribution P (g−1
i |C) of the random variable gi.

4. The process g is said to be regularly conditionally independent given C if g is essentially

pairwise conditionally independent given C, and also g admits an essentially regular con-

ditional distribution process µ given C. In this case, we also say that g admits a stochastic

macro structure (C, µ).

3 Properties of Monte Carlo sampling processes

Let g be a process from I×Ω to X and C a countably generated sub-σ-algebra of F in (Ω,F , P ).

Suppose that g admits a stochastic macro structure (C, µ). By Theorem 1 in Hammond and

Sun (2019) (stated as Lemma 1 in Section 6.1 below), there exists a one-way Fubini extension

(I × Ω,W, Q) such that the process g is W-measurable.

The following theorem shows that the Monte Carlo sampling process G defined by (1) has

the one-way Fubini property. It also shows that G satisfies regular conditional independence

given C, and identifies its regular conditional distribution process.

Let M(X∞) denote the set of probability measures on the infinite product measurable

space (X∞,B∞).

Theorem 1 Let G : I∞×Ω→ X∞ be a Monte Carlo sampling process based on g. Then there

exists a one-way Fubini extension (I∞ × Ω, W̃, Q̃) of (I∞ × Ω, Ī∞ ⊗ F , λ̄∞ ⊗ P ) such that G

is W̃-measurable. In addition, G is essentially pairwise conditionally independent given C. It

also admits the essentially regular conditional distribution process µ̄ defined by

I∞ × Ω 3 (i∞ ω) 7→ µ̄i∞ ω := ⊗∞k=1µik ω ∈M(X∞) (3)
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4 Characterizing a sharp law of large numbers

Let g be a process from I×Ω to X as in Section 3, and let h : I×X → R be an I⊗B-measurable

function with
∫
I

[∫
Ω h

2
i (gi(ω)) dP

]
dλ <∞. Then Lemma 11 in Hammond and Sun (2008) says

that for λ̄∞-a.e. i∞ ∈ I∞, one has

1

n

n∑
k=1

h(ik, g(ik, ω))→
∫
I

[∫
X
h(i, x) dµiω

]
dλ for P -almost all ω ∈ Ω

Under the framework of one-way Fubini extension, we have the following corollary.

Corollary 1 Let G : I∞ × Ω → X∞ be a Monte Carlo sampling process based on g. Suppose

that (I∞ × Ω, W̃, Q̃) is a one-way Fubini extension of (I∞ × Ω, Ī∞ ⊗F , λ̄∞ ⊗ P ) such that G

is W̃-measurable. Then for Q̃-almost all (i∞, ω) ∈ I∞ × Ω, one has

1

n

n∑
k=1

h(ik, g(ik, ω))→
∫
I

[∫
X
h(i, x) dµiω

]
dλ

Let L2(P ) be the space of real-valued square integrable functions on (Ω,F , P ), made into

a Hilbert space by defining, for any pair ϕ,ψ ∈ L2(P ), the standard inner product 〈ϕ,ψ〉 :=∫
Ω ϕ(ω)ψ(ω) dP . For each fixed i ∈ I, define the random variable f(i)(·) so that

Ω 3 ω 7→ f(i)(ω) = h (i, g(i, ω)) ∈ R (4)

The assumption that
∫
I

[∫
Ω h

2
i (gi(ω)) dP

]
dλ < ∞ implies that for λ-almost all i ∈ I, the

random variable f(i) is an element in the Hilbert space L2(P ). Corollary 1 indicates that the

sample average 1
n

∑n
k=1 f(ik)(ω) converges Q̃-almost surely to

∫
I

[∫
X h(i, x) dµiω

]
dλ. Since the

function I 3 i 7→ f(i) takes values in the Hilbert space L2(P ), a natural question is whether

one can obtain a similar result for convergence in the norm of L2(P ). This is answered in the

following proposition.

Proposition 1 For λ̄∞-almost all i∞ ∈ I∞, one has∥∥∥∥∥ 1

n

n∑
k=1

f(ik)−
∫
I

[∫
X
h(i, x) dµiω

]
dλ

∥∥∥∥∥→ 0

where the random variable ω 7→
∫
I

[∫
X h(i, x) dµiω

]
dλ is in L2(P ), and ‖·‖ denotes the standard

norm on the Hilbert space L2(P ).

This result can be viewed as the classical law of large numbers for a sequence of random

variables taking values in the Hilbert space L2(P ). One may wonder whether such a result can

be extended to other Hilbert spaces, or to Banach spaces more generally.
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Let B be a Banach space, with norm ‖ ·‖ and norm dual B′. Given any b ∈ B and b′ ∈ B′,
let 〈b, b′〉 denote the real value of the continuous linear mapping b′ evaluated at b. In the case

when B is a Hilbert space, we shall denote it by H. Then, of course, 〈b, b′〉 can be regarded as

the inner product.

Henceforth we use the respective abbreviations LLN and SLLN for the law of large

numbers, and the sharp law of large numbers.

Definition 3 Let f be a function from (I, I, λ) to a Banach space B.

1. The function f is said to satisfy LLN (resp., SLLN) if there exists a ∈ B such that

‖a − 1
n

∑n
k=1 f(ik)‖ → 0 λ∞-a.s. (resp., λ̄∞-a.s.). Let LLN(B) (resp., SLLN(B) denote

the (linear) space of all functions from I to B that satisfy LLN (resp., SLLN).

2. The function f is said to be Gel ′fand integrable if there exists a vector b ∈ B called the

Gel ′fand integral of f such that, for all b′ ∈ B′, the real-valued function i 7→ 〈f(·), b′〉
on I is λ-integrable, with

∫
I〈f(i), b′〉dλ = 〈b, b′〉.3

3. A function f∗ : I → R+ norm dominates f : I → B if ‖f(i)‖ ≤ f∗(i) for λ-a.e. i ∈ I.

The function f is said to be norm integrably bounded if there exists a λ-integrable

function f∗ : I → R+ that norm dominates f .

From now on, let L(λ,B) denote the (linear) space of all functions f from (I, I, λ) to B
that are both Gel ′fand integrable and norm integrably bounded. The following Proposition is

well known in the literature on random variables with values in a Banach space. For Part (1),

see for example Theorem 2.4 of Hoffmann-Jørgensen (1985). Part (2) is taken from Theorem

3.1 of Dobric (1987).

Proposition 2 (1) LLN(B) ⊆ L(λ,B) for any Banach space B.

(2) Suppose that I is a Polish space, that I is its Borel σ-algebra, and that λ is an

atomless probability measure. There is a Hilbert space H such that L(λ,H) is not equal to

LLN(H).

Part (1) of Proposition 2 says that a necessary condition for f to satisfy the usual LLN

is that f must be both Gel ′fand integrable and norm integrably bounded. On the other hand,

Part (2) of Proposition 2 shows that these two conditions are not sufficient for the LLN to

hold, even for the special case of a Hilbert space. It means that LLN(B) is in general a proper

subset of L(λ,B).

3This follows the terminology of Dobric (1987) and Hoffmann-Jørgensen (1985). When the Gel ′fand integral
of 1Sf is defined for every S ∈ I, this is often called the Pettis integral — see, for example, Aliprantis and
Border (1999) as well as Diestel and Uhl (1977, p. 53). Note that 1S is the indicator function of the set S.
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Since a λ∞-null set is automatically λ̄∞-null, any function in LLN(B) must be in SLLN(B).

Given that the set SLLN(B) is bigger than the set LLN(B), two natural questions arise. The

first is whether the inclusion relationship in Part (1) of Proposition 2 still holds. The second

is when such an inclusion can be strengthened to an equality.

The following theorem shows that when the product measure λ∞ is extended to its

iterated completion λ̄∞, not only does the strengthened inclusion SLLN(B) ⊆ L(λ,B) hold for

a general Banach space B, but it becomes an equality in the Hilbert space case. This equality

provides a very general characterization of the functions from (I, I, λ) to a general Hilbert

space H that satisfy our sharp law of large numbers in the iterated completion of the product

probability space. Moreover, an obvious corollary of our results is that LLN(B) is in general a

proper subset of SLLN(B), even when B is a Hilbert space.

Theorem 2 (Sharp law of large numbers) If f is any function mapping (I, I, λ) to a Ba-

nach space B for which SLLN is satisfied, then f ∈ L(λ,B); that is, SLLN(B) ⊆ L(λ,B).

More importantly, if B is a Hilbert space H, then f satisfies SLLN if and only if f is Gel ′fand

integrable and norm integrably bounded. That is, SLLN(H) = L(λ,H).

Consider the function f from (I, I, λ) to the Hilbert space L2(P ) which is defined by (4).

The function f is obviously norm integrably bounded because ‖f(i)‖ =
(∫

Ω h
2
i (gi(ω)) dP

) 1
2 and∫

I

[∫
Ω h

2
i (gi(ω)) dP

]
dλ < ∞. The following claim, which says that such a function f is also

Gel ′fand integrable, indicates why Proposition 1 is a special case of Theorem 2.

Claim 1 Let f be the function from (I, I, λ) to L2(P ) defined as in equation (4) by f(i)(ω) =

h (i, g(i, ω)). Then f is Gel ′fand integrable.

5 Allocations in large economies with asymmetric information

5.1 The information structure

We use the same information structure as that set out in Sun and Yannelis (2007, 2008).

Suppose that the fixed atomless probability space (I, I, λ) represents the space of economic

agents. Let S = {s1, s2, . . . , sK} denote the finite set of true states of nature (with power set

denoted by S). We assume that these are not known by any agent. Let T 0 = {q1, q2, . . . , qL}
denote the space of all possible signals (or types) for each individual agent. We consider the

measurable space (T, T ) of private signal or type profiles for all the agents i ∈ I. Thus, T is

a subset of (T 0)I , the space of all functions from I to T 0.4 For each agent i ∈ I, the function

4The standard literature usually assumes that different agents have different sets of possible signals, all of
which occur with positive probability. For notational simplicity, we choose to work instead with a common set
T 0 of possible signals, but allow some of these to have zero probability for some agents. There is no loss of
generality in this latter approach.
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value t(i) (also denoted by ti) is agent i’s private signal, whereas t−i is the restriction of the

signal profile t to the set I \ {i} of agents different from i; let T−i denote the set of all such

t−i. For simplicity, we assume that (T, T ) has a rich enough product structure so that T is a

product of T−i and T 0, whereas T is the product σ-algebra of the power set T 0 on T 0 with a

σ-algebra T−i on T−i. Given any t ∈ T and t′i ∈ T 0, we shall adopt the usual notation (t−i, t
′
i)

to denote the signal profile whose value is t′i for agent i, but the same as tj for all other agents

j ∈ I \ {i}.
To represent all the uncertainty about the true states as well as the agents’ signals,

we consider the probability space (Ω,F , P ) where (Ω,F) is the product measurable space

(S×T,S⊗T ). Let PS and P T be the marginal probability measures of P on (S,S) and (T, T )

respectively. For each i ∈ I, let s̃ and t̃i denote the projection mappings from Ω to S and to T 0

respectively, with t̃i(s, t) = ti.
5 After excluding any PS-null state, we assume without loss of

generality that each true state s ∈ S is non-null in the sense that πs := PS({s}) > 0; let P Ts be

the conditional probability measure on (T, T ) given that the random variable s̃ takes value s.

Thus, for each B ∈ T , one has P Ts (B) = P ({s} ×B)/πs. It is obvious that P T =
∑

s∈S πsP
T
s .

Note that in the literature the conditional probability measure P Ts is often denoted as P (·|s).
For each fixed t ∈ T , define also the conditional probability measure PS(·|t) on S so that

for each fixed s ∈ S, the mapping T 3 t 7→ PS({s}|t) is T -measurable, with P ({s} × B) =∫
B P

S({s}|t) dP T for each B ∈ T . Let T 3 t 7→ ps(t) ∈ R+ be the density function of P Ts with

respect to P T ; it is easy to see that PS({s}|t) = πs ps(t) for P T -almost all t ∈ T .

For each i ∈ I, let τi denote the marginal signal distribution of agent i on the space T 0;

it is defined so that for all q ∈ T 0, the probability P (t̃i = q) equals τi({q}). Let PS×T−i(·|ti)
denote the conditional probability measure on the product measurable space (S×T−i,S ⊗T−i)
given that agent i’s signal is ti ∈ T 0. For any ti ∈ T 0 with marginal probability τi({ti}) > 0, it

is clear that for any E ∈ S ⊗ T−i, one has PS×T−i(E|ti) = P (E × {ti})/τi({ti}). Denote by C
the completed sub-σ-algebra of F = S ⊗T on Ω = S×T that is generated by the union of the

finite family {{s} × T : s ∈ S} with the set of all P -null subsets of S × T .

Let f denote the private signal process from I ×Ω to the finite type space T 0 defined

so that f(i, ω) = t̃i(ω). Typically, for each ω ∈ Ω the mapping i 7→ f(i, ω) will not be I-

measurable. Assume that f is essentially pairwise conditionally independent given C, and also

admits an essentially regular conditional distribution process µ given C. By definition of the

latter, we know that for λ-almost all i ∈ I, the marginal process Ω ∈ ω 7→ µi(ω) ∈ ∆(T 0) is a

regular conditional distribution of Ω ∈ ω 7→ fi(ω) ∈ T 0 given C.
Let µ̄ :=

∫
I µidλ be the mean conditional signal distribution over all agents. Then the

5Because Ω = S × T , the mapping t̃i can also be viewed as a projection from T to T 0.
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Fubini property implies that µ̄ is a C-measurable mapping from Ω to ∆(T 0). We assume that

the process f is non-trivial in the sense that C is the same as the completed sub-σ-algebra of F
generated by µ̄ together with the P -null subsets of Ω. This means that the mean conditional

signal distribution carries the same information as the true state.

Let {As}s∈S be the C-measurable partition of Ω such that s̃(ω) = s for any ω ∈ As.

Then C is generated by the finite family {As}s∈S . Since µ̄ is C-measurable, there exists a

corresponding finite collection of measures {µs}s∈S in ∆(T 0) such that µ̄(ω) =
∑

s∈S 1As(ω)µs

for P -almost all ω ∈ Ω. It is clear that µs is the agents’ average signal distribution conditional

on the true state being s. The non-triviality assumption above implies that

∀s, s′ ∈ S, s 6= s′ =⇒ µs 6= µs′ . (5)

5.2 A state contingent large economy

First, we define a complete information economy Ec. The common consumption set of each

agent i ∈ I is the positive orthant Rm+ . Suppose that for any given i ∈ I and true state s ∈ S,

the mapping Rm+ 3 x 7→ ui(x; s) is agent i’s utility function when the state is s. For any given

i ∈ I and s ∈ S, assume that Rm+ 3 x 7→ ui(x; s) ∈ R is continuous and strictly monotonic

in x ∈ Rm+ in the sense that

x̃ = x and x̃ 6= x =⇒ ui(x̃; s) > ui(x; s)

Assume too that for any fixed x ∈ Rm+ and s ∈ S, the mapping I 3 i 7→ ui(x; s) is I-measurable

in i ∈ I.6

In this section, let ‖x‖ denote the Euclidean norm of any vector x ∈ Rm. Assume also

that, in addition to continuity of each individual’s utility function Rm+ 3 x 7→ ui(x; s), the

entire family of utility functions Rm+ 3 x 7→ ui(x; s) as (i, s) varies over I × S is uniformly

equicontinuous in the sense that, for any ε > 0, there exists δ > 0 such that ‖x − x̃‖ < δ

implies |u(i, x, s)− u(i, x̃, s)| < ε for all i ∈ I, all x, x̃ ∈ Rm+ , and all s ∈ S.

Let I 3 i 7→ e(i) ∈ Rm+ be the λ-integrable endowment function specifying each agent

i’s initial endowment. Assume that the mean endowment vector ē :=
∫
I e(i) dλ satisfies ē� 0,

meaning that the mean endowment of each good is positive. Let ∆m denote the unit simplex

in Rm+ .

For each s ∈ S, the collection Ecs = {(I, I, λ), uIs, e
I}, consisting of an atomless probability

space of agents with their respective utility functions x 7→ ui(x; s) and endowment vectors ei,

together constitutes a large deterministic exchange economy. A complete information economy

6In the sequel, we shall often use subscripts to denote some argument of a function that is viewed as a
parameter in a particular context.
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is a collection Ec = {Ecs : s ∈ S} specifying the deterministic economy Ecs for each s ∈ S. The

following provides the definition of the basic concept of a Walrasian allocation.

Definition 4 1. An allocation for Ec is a function

I × S 3 (i, s) 7→ xcs(i) ∈ Rm+ (6)

such that for any fixed s ∈ S, the mapping i 7→ xcs(i) is λ-integrable.

2. An allocation (i, s) 7→ xcs(i) is feasible in Ec if, for each s ∈ S, one has
∫
I x

c
s(i) dλ =∫

I e(i) dλ (i.e., xcs is feasible in Ecs).

3. A feasible allocation (i, s) 7→ xcs(i) is a Walrasian (or competitive equilibrium) alloca-

tion in Ec if for each s ∈ S, there is a price system ps ∈ ∆m which, together with the

feasible allocation xcs, makes (xcs, ps) a competitive or Walrasian equilibrium in the large

deterministic economy Ecs , in the sense that for λ-a.e. i ∈ I, given i’s Walrasian budget

set

Bi(ps) := {x ∈ Rm+ : ps · x ≤ ps · e(i)} (7)

one has

xcs(i) ∈ arg max
x
{ui(x; s) : x ∈ Bi(ps)} (8)

5.3 Monte Carlo sampling economies

We shall now apply Monte Carlo sampling to economies with a continuum of agents who

have asymmetric information. Each agent i ∈ I is informed about her private signal ti ∈ T 0,

but not the true state s ∈ S. Fix any i∞ ∈ I∞ drawn from the iteratively completed infinite

product probability space (I∞, Ī∞, λ̄∞). In the asymmetric information Monto Carlo sampling

economy E i∞ , there is a countable set of sampled agents i∞ ∈ I∞.

For any x ∈ Rm+ and t ∈ T , let Ui(x|t) :=
∑

s∈S ui(x; s)PS({s}|t) denote agent i’s

conditional expected utility of consumption bundle x given the type t.

A function z from (T, T ) to Rm+ is said to be a consumption plan in E i∞ if for any pair

t, t′ ∈ T of type profiles that coincide on i∞, one has z(t) = z(t′). That is, a consumption plan

only depends on reported types of agents in the set I(i∞) defined by

I(i∞) := ∪∞k=1{ik} (9)

Let CP (i∞) be the space of consumption plans in E i∞ . For any agent i ∈ I(i∞) and a

consumption plan z ∈ CP (i∞), let

Ui(z) :=

∫
Ω
ui(z(t); s) dP =

∑
s∈S

πs

∫
T
ui(z(t); s) dP

T
s (10)
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be the overall expected utility of agent i for the consumption plan t 7→ z(t).

An allocation in E i∞ is a function I∞ 3 i∞ 7→ xi
∞ ∈ CP (i∞). For any allocation xi

∞
,

any agent i ∈ I(i∞), and any pair of private signals ti, t
′
i ∈ T 0, let

U i
∞
i (xi

∞
i , t′i|ti) :=

∫
S×T−i

u(i, xi
∞
i (t−i, t

′
i), s)dP

S×T−i(·|ti)

denote agent i’s conditional expected utility when she receives the private signal ti but mis-

reports it as t′i.

5.4 Asymptotically feasible and constrained Pareto efficient allocations

To discuss incentive compatibility, we invoke the revelation principle due to Dasgupta et al.

(1979) and Myerson (1982), but extended in an obvious way to a continuum of consumers. That

is, we consider a direct revelation mechanism in which reporting one’s type truthfully is

a Bayesian equilibrium for every agent in the corresponding game of incomplete information.

Specifically, let g denote the agents’ joint reporting process I × T 3 (i, t) 7→ g(i, t) ∈ T 0 with

g(i, t) = t̃(i) for all (i, t) ∈ I × T . Let G : I∞ × T → (T 0)∞ be the Monte Carlo sampling

process based on g. The following claim, which will be proved in Section 6.4, shows that g also

has a stochastic macro structure.

Claim 2 There is a countably generated sub-sigma-algebra C′ of T such that g is regularly

conditionally independent given C′.

By Theorem 1, this implies that the space (I∞ × T, Ī∞ ⊗ T , λ̄∞ ⊗ P T ) has a one-way

Fubini extension (I∞ × T, W̃, Q̃) such that G is W̃-measurable.

Definition 5 1. An allocation mechanism is a mapping

I∞ × I × T 3 (i∞, i, t) 7→ xi
∞

(i, t) ∈ Rm+

2. The allocation mechanism (i∞, i, t) 7→ xi
∞

(i, t) is asymptotically feasible if, for Q̃-almost

all (i∞, t) ∈ I∞ × T , one has∥∥∥∥∥ 1

n

n∑
k=1

xi
∞

(ik, t)−
1

n

n∑
k=1

e(ik)

∥∥∥∥∥→ 0 as n→∞

3. The allocation mechanism (i∞, i, t) 7→ xi
∞

(i, t) is incentive compatible if, for Q̃-almost

all (i∞, t) ∈ I∞ × T , the incentive constraint U i
∞
i

(
xi
∞
i , t|t

)
≥ U i

∞
i

(
xi
∞
i , t′|t

)
holds for

any i ∈ I(i∞) and any t′ ∈ T 0.
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4. The allocation mechanism (i∞, i, t) 7→ xi
∞

(i, t) is ex post individually rational if, for

Q̃-almost all (i∞, t) ∈ I∞ × T , one has U i
∞
i

(
xi
∞
i |t

)
≥ U i∞i (ei|t).

5. The allocation mechanism (i∞, i, t) 7→ xi
∞

(i, t) is asymptotically Pareto efficient if, for

Q̃-almost all (i∞, t) ∈ I∞ × T , the following holds: for any ε > 0, there is no sequence

y : N → Rm+ such that: (i) as n → ∞, so
∥∥ 1
n

∑n
k=1 yk −

1
n

∑n
k=1 e(ik)

∥∥ → 0; (ii) for any

i ∈ I(i∞), one has U i
∞
i (yi|t) ≥ U i

∞
i (xi

∞
i |t) + ε.

Now we are ready to state the following result for economies generated by Monto Carlo

sampling.

Theorem 3 There exists an allocation mechanism (i∞, i, t) 7→ xi
∞

(i, t) which is asymptotically

feasible, incentive compatible, ex post individually rational, and asymptotically Pareto efficient.

Theorems 1 and 2 in Sun and Yannelis (2007) demonstrate the consistency of exact

incentive compatibility and exact efficiency for a continuum of agents, where private signals

are generated by a process that is jointly measurable in a two-way Fubini extension, as in Sun

(2006).7 This paper only works in the framework of a one-way Fubini extension. Approximate

versions of such a consistency result are considered in McLean and Postlewaite (2002), in

Theorem 3 in Sun and Yannelis (2007), and in Theorem 3 above. Exact incentive compatibility

and approximate efficiency for a special sequence of replica economies constructed from a

fixed finite-agent economy with concave utilities are considered in Theorem 2 in McLean and

Postlewaite (2002). Theorem 3 in Sun and Yannelis (2007) considers approximate incentive

compatibility and approximate efficiency for a general sequence of large, but finite economies

with possibly non-concave utilities. In the setting of a sequence of economies that result from

Monte Carlo sampling, this paper shows the consistency of exact incentive compatibility and

approximate efficiency for almost all infinite sequences of economies with utilities that are

allowed to be non-concave.8

6 Appendix

6.1 Some technical background

In this subsection, we first define iteratively complete products as in Hammond and Sun

(2006b). Then, for the convenience of the reader, we state as lemmas two results from Ham-

mond and Sun (2019) that are used in this paper.

7Proposition 5.6 of Sun (2006) shows the existence of rich Fubini extensions; see also Sun and Zhang (2009)
and Podczeck (2010) for other constructions of rich Fubini extensions.

8He and Yannelis (2016) consider large economies with discontinuous preferences. It remains to be seen how
the results presented here as well as in Sun and Yannelis (2007) can be generalized to such a setting.
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Let (Ik, Ik, λk)(k ∈ N) be a sequence of probability spaces. We use the same notation

whether or not the spaces Pk = (Ik, Ik, λk) are identical copies of a fixed space (I, I, λ). Let

Pn :=
n∏
k=1

Pk = (In, In, λn) :=

(
n∏
k=1

Ik,
⊗n

k=1
Ik,

⊗n

k=1
λk

)
denote the respective n-fold product, and let

P∞ :=
∞∏
k=1

Pk = (I∞, I∞, λ∞) :=

( ∞∏
k=1

Ik,
⊗∞

k=1
Ik,

⊗∞

k=1
λk

)
denote the infinite product counterpart.

The following definition is taken from Hammond and Sun (2006b).

Definition 6 A subset E of the n-fold Cartesian product set In is said to be iteratively null

in Pn if for every permutation π on {1, . . . , n}, the n-fold iterated integral∫
iπ(1)∈Iπ(1)

· · ·
∫
iπ(n)∈Iπ(n)

1E(i1, i2, . . . , in) dλπ(n)(iπ(n)) . . . dλπ(1)(iπ(1)) (11)

of the indicator function In 3 in 7→ 1E(in) ∈ {0, 1} for the set E is well-defined and has

value zero; in other words, for λπ(1)-a.e. iπ(1) ∈ Iπ(1), λπ(2)-a.e. iπ(2) ∈ Iπ(2), . . . , λπ(n)-a.e.

iπ(n) ∈ Iπ(n), one has (i1, i2, . . . , in) /∈ E.

The following two propositions from Hammond and Sun (2006b) show that one can

extend both the finite product probability space Pn and the infinite product probability space

P∞ by including all iteratively null sets, then forming the iterated completion.

Proposition 3 Given any n ∈ N, let En denote the family of all iteratively null sets in the

n-fold product (In, In, λn). Then there exists a complete and countably additive probability

space

P̄n := (In, Īn, λ̄n) :=

(
In,

⊗n

k=1
Ik,

⊗n

k=1
λk

)
that satisfies the Fubini property, with:

1. Īn as the σ-algebra σ(In ∪ En), which is equal to the collection

In4En := {D4E : D ∈ In, E ∈ En };

2. λ̄n as the unique measure that satisfies λ̄n(D4E) := λn(D) whenever D ∈ In and E ∈ En.

Proposition 4 There exists a countably additive probability space

P̄∞ := (I∞, Ī∞, λ̄∞) :=

(
I∞,

⊗∞

k=1
Ik,

⊗∞

k=1
λk

)
in which
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1. Ī∞ is the σ-algebra generated by the union G := ∪∞n=1Gn of the families Gn of cylinder

sets taking the form Gn = A×
∏∞
k=n+1 Ik for some A ∈ Īn;

2. λ̄∞ is the unique countably additive extension to Ī∞ of the set function µ : G → [0, 1]

defined so that µ(A×
∏∞
k=n+1 Ik) := λ̄n(A) for all A ∈ Īn.

Moreover, for any D̄ ∈ Ī∞, there exist D ∈ I∞ and E ∈ Ī∞ such that D̄ = D4E and

λ̄∞(E) = 0.

Unlike the finite product P̄n, the infinite product measure space P̄∞ in Proposition 4

may not be complete in the usual sense. One can always complete it by the usual procedure

— see, for example, Dudley (1989, pp. 78–79). We still use the same notation to denote this

completion, which also retains the property stated in the last sentence of Proposition 4.

The completed probability space P̄∞ will be called the iterated completion of P∞, as

well as the iteratively complete product of the spaces Pk (k ∈ N). Let i∞ = (i1, i2, . . . , in, . . .)

denote a general element of I∞.

Next, let C be a countably generated sub-σ-algebra of F in (Ω,F , P ), and g a process from

I ×Ω to X that is regular conditionally independent given C. The following two lemmas state

(part of) the results in Theorem 1 and Proposition 2 of Hammond and Sun (2019) respectively.

Lemma 1 The process g satisfies the one-way Fubini property.

Lemma 2 Let h be any measurable function mapping the product space (I ×Ω, I ⊗ F , λ⊗ P )

to a Polish space Y . Then, for λ-almost all i ∈ I, the two random variables gi and hi are

conditionally independent given C.

6.2 Proof of Theorem 1

First, let

D∞ := {i∞ = (ik)
∞
k=1 ∈ I∞ : (gik)∞k=1 is mutually conditionally independent given C} (12)

denote the set of all infinite sequences i∞ ∈ I∞ such that the associated sequence of random

variables gik (k ∈ N) are mutually conditionally independent given C.
Next, for any n ∈ N, let

Dn := {in = {ik}nk=1 ∈ In : {gik}
n
k=1 is mutually conditionally independent given C} (13)

denote the projection of the set D∞ ⊂ I∞ onto the finite subproduct set In of all sequences

of length n. Since g is essentially pairwise conditionally independent given C, and also admits
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an essentially regular conditional distribution process µ given C, Theorem 1 in Hammond and

Sun (2006b) implies that Dn ∈ Īn and λ̄n(Dn) = 1 for any n ∈ N .

For each n ∈ N, let

En := {(i∞, j∞) ∈ I∞ × I∞ : (i1, . . . , in, j1, . . . , jn) ∈ D2n}

It is easy to see that λ̄∞ ⊗ λ̄∞(En) = λ̄2n(D2n) = 1. Let E = ∩∞n=1E
n. It is clear that

λ̄∞ ⊗ λ̄∞(E) = 1 (14)

Also, for any i∞ ∈ I∞, let G(i∞) := {gik : k ∈ N} denote the associated countable sets of

random variables. Then for any (i∞, j∞) ∈ E we know that the random variables in the set

G(i∞) ∪ G(j∞) are mutually conditionally independent given C. It follows from (14) that,

for λ̄∞-a.e. i∞ ∈ I∞, the random variables in G(i∞) ∪ G(j∞) are mutually conditionally

independent given C for λ̄∞-a.e. j∞ ∈ I∞.

Note that the infinite product σ-algebra B∞ is generated by the family of all infinite

cylinder sets which, for some n ∈ N and some collection B1, . . . Bn ∈ B of n Borel sets, take the

form
∏n
i=1Bi ×X∞. To prove that µ̄ is an essentially regular conditional distribution process

given C, it is enough to consider the π-system consisting of these cylinder sets.

Fix any i∞ = (ik)
∞
k=1 ∈ D∞, where D∞ was defined in (12). For any B1, . . . Bn ∈ B,

mutual conditional independence given C of all the random variables in the sequence (gik)∞k=1

implies that for P -a.e. ω ∈ Ω one has

P
(

(G(i∞))−1 (B1 × · · · ×Bn ×X∞) | C
)

(ω)

= P
(

(gi1 , . . . , gin)−1 (B1 × · · · ×Bn) | C
)

(ω)

= P
(
g−1
i1

(B1) | C
)

(ω) · · ·P
(
g−1
in

(Bn) | C
)

(ω)

= µi1ω(B1) · · ·µinω(Bn)

But definition (3) implies that

µi1ω(B1) · · ·µinω(Bn) = µ̄i∞ω (B1 × · · · ×Bn ×X∞)

So this proves that I∞ × Ω 3 (i∞, ω) 7→ µ̄i∞ω is an essentially regular conditional distribution

process of G given C. Therefore, Lemma 1 implies that there exists a one-way Fubini extension

(I∞ × Ω, W̃, Q̃) of (I∞ × Ω, Ī∞ ⊗F , λ̄∞ ⊗ P ) such that G is W̃-measurable.
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6.3 Proofs of the results in Section 4

Proof of Proposition 1:

Take as given the real-valued functions h and f specified at the start of Section 4, as

well as the regular conditional process I ×Ω 3 (i, ω) 7→ µiω ∈M(X) defined in Section 3. For

any i ∈ I and ω ∈ Ω, let

ϕ(i, ω) :=

∫
X
hi(x) dµiω and ψ(i, ω) := f(i, ω)− ϕ(i, ω) (15)

We first prove that the random variable

Ω 3 ω 7→
∫
I
ϕ(i, ω) dλ =

∫
I

[∫
X
hi(x) dµiω

]
dλ (16)

belongs to L2(P ). The property of essentially regular conditional distribution processes implies

that

for λ-almost all i ∈ I, one has ϕ(i, ω) = E[f(i)|C](ω) P -a.s. (17)

Thus, by the Fubini property and Jensen’s inequality, one has∫
Ω

[∫
I ϕ(i, ω) dλ

]2
dP =

∫
Ω

[∫
I E[f(i)|C](ω) dλ

]2
dP

≤
∫

Ω

[∫
I (E[f(i)|C](ω))2 dλ

]
dP =

∫
I

[∫
Ω (E[f(i)|C](ω))2 dP

]
dλ

≤
∫
I

[∫
Ω E[f2(i)|C](ω)dP

]
dλ =

∫
I

[∫
Ω f

2(i, ω) dP
]
dλ

Because of our assumption that
∫
I

[∫
Ω h

2
i (gi(ω)) dP

]
dλ =

∫
I

[∫
Ω f

2
i (ω) dP

]
dλ is finite, the last

integral is finite. This proves that the function ω 7→
∫
I ϕ(i, ω) dλ also belongs to L2(P ). Also ϕ

can be viewed as essentially a function from (I, I, λ) to L2(C, P ), the space of real-valued,

C-measurable and square integrable functions on (Ω,F , P ).

Since C is countably generated, we know that L2(C, P ) is separable, which implies that ϕ

is λ-essentially separably valued.9 It is easy to see that ϕ is also weakly λ-measurable.10 Then

Theorem 2 in Diestel and Uhl (1977, p. 42) implies that the function i 7→ ϕ(i) is λ-measurable.

Hence, there exists a sequence of simple functions i 7→ ϕk(i) with limk→∞ ‖ϕk − ϕ‖ = 0 for

λ-a.e. i ∈ I. From (17) note that
∫
I ‖ϕ(i)‖2dλ =

∫
I

[∫
Ω (E[f(i)|C](ω))2 dP

]
dλ. Thus, Jensen’s

inequality implies that∫
I
||ϕ(i)||2dλ ≤

∫
I

∫
Ω
E[f2(i)|C] dPdλ =

∫
I

∫
Ω
f(i)2dPdλ <∞

But then the Cauchy–Schwarz inequality implies that∫
I
‖ϕ(i)‖dλ ≤

(∫
I
‖ϕ(i)‖2dλ

)1/2

<∞

9See page 42 in Diestel and Uhl (1977) for formal definitions.
10See page 41 in Diestel and Uhl (1977) for formal definitions.
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By Theorem 2 in Diestel and Uhl (1977, p. 45), we know that ϕ viewed as a function from

(I, I, λ) to L2(P ) is Bochner integrable. Next, the classical law of large numbers for Bochner

integrable functions, as shown in Beck (1963) and Mourier (1953) (see also Dobric (1987) and

Hoffmann-Jørgensen (1985)), says that for λ∞-a.e. i∞ ∈ I∞, one has

lim
n→∞

∥∥∥∥∥ 1

n

n∑
k=1

ϕ(ik)−
∫
I

∫
X
hi(x) dµiωdλ

∥∥∥∥∥ = 0 (18)

The proof of Lemma 11 in Hammond and Sun (2008) shows that there exists D∗ ∈ Ī∞

with λ̄∞(D∗) = 1 such that for any i∞ ∈ D∗, the random variables (ψik)∞k=1 defined by (15)

are mutually orthogonal. This implies that for any i∞ ∈ D∗, we have∥∥∥∥∥ 1

n

n∑
k=1

ψ(ik)

∥∥∥∥∥
2

=
1

n2

n∑
k=1

‖ψ(ik)‖2 (19)

Since
∫
I ‖ψ(i)‖2 dλ <∞, the usual strong law of large numbers implies that for λ∞-a.e.

i∞ ∈ I∞ one has

lim
n→∞

1

n

n∑
k=1

‖ψ(ik)‖2 =

∫
I
‖ψ(i)‖2 dλ (20)

It clearly follows that for λ̄∞-a.e. i∞ ∈ I∞, one has

lim
n→∞

∥∥∥∥∥ 1

n

n∑
k=1

ψ(ik)

∥∥∥∥∥
2

= 0 (21)

Combining Equations (18) and (21), while using definition (15) of the function i 7→ ψ(i) ∈ R,

it follows that for λ̄∞-a.e. i∞ ∈ I∞, one has

lim
n→∞

∥∥∥∥∥ 1

n

n∑
k=1

f(ik)−
∫
I

∫
X
hi(x) dµiω(x) dλ

∥∥∥∥∥
= lim

n→∞

∥∥∥∥∥ 1

n

n∑
k=1

ψ(ik) +
1

n

n∑
k=1

ϕ(ik)−
∫
I

∫
X
hi(x) dµiω(x)dλ

∥∥∥∥∥ = 0

This completes the proof.

The following lemma is a special case of a result in Hammond and Sun (2008), which

generalizes part of Lemma 2.1 in Hoffmann-Jørgensen (1985, p. 304) to the setting of iteratively

complete product spaces.

Lemma 3 For each n ∈ N, let Sn be a subset of I whose λ-outer measure is one. Then the

λ̄∞-outer measure of
∏∞
n=1 Sn is also one.

The next lemma is also taken from Hammond and Sun (2008). It generalizes to iteratively

complete products one part of Theorem 2.4 in Hoffmann-Jørgensen (1985, p. 310), which is due

to Talagrand.
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Lemma 4 Let g be a real-valued function on (I, I, λ). Suppose there is a real constant c such

that

lim
n→∞

g(i1) + · · ·+ g(in)

n
= c for λ̄∞-a.e. i∞ ∈ I∞ (22)

Then g is λ-integrable, with
∫
I g(i) dλ = c.

The proof of the following lemma adapts some of the ideas used in the proofs of Lemma

2.1 and Theorem 2.4 in Hoffmann-Jørgensen (1985), and of Lemma 1.4 in Hoffmann-Jørgensen

(1977).

Lemma 5 If a function f from I to a Banach space B satisfies SLLN, then it is norm integrably

bounded.

Proof: Let f ∈ SLLN(B), with ‖a − 1
n

∑n
k=1 f(ik)‖ → 0 for λ̄∞-a.e. i∞ ∈ I∞. Let D be the

set of all i∞ ∈ I∞ such that ‖ 1
nf(in)‖ → 0 as n→∞. Because of the decomposition

1

n
f(in) = −

[
a− 1

n

n∑
k=1

f(ik)

]
+
n− 1

n

[
a− 1

n− 1

n−1∑
k=1

f(ik)

]
+

1

n
a

it follows that∥∥∥∥ 1

n
f(in)

∥∥∥∥ ≤
∥∥∥∥∥a− 1

n

n∑
k=1

f(ik)

∥∥∥∥∥+
n− 1

n

∥∥∥∥∥a− 1

n− 1

n−1∑
k=1

f(ik)

∥∥∥∥∥+
1

n
‖a‖ (23)

Now each term on the right-hand side of (23) converges λ̄∞-a.s. to 0, so λ̄∞(D) = 1.

Let i 7→ g(i) be an upper λ-envelope of i 7→ ‖f(i)‖, in the sense that g : I → R+∪{∞}
is an I-measurable function satisfying: (i) g(i) ≥ ‖f(i)‖ for all i ∈ I; (ii) for any I-measurable

function h from I to R+ ∪ {∞}, the λ-inner measure of the set { i ∈ I : ‖f(i)‖ ≤ h(i) < g(i) }
is zero (see p. 302 of Hoffmann-Jørgensen (1985)). For each n ∈ N, define

Sn := {i ∈ I : g(i) ≤ 2‖f(i)‖ or ‖f(i)‖ ≥ n}

Define the function hn := min{n, 1
2g} on I, which is evidently I-measurable. Also, it is clear

that ‖f(i)‖ < hn(i) < g(i) for all i ∈ I \ Sn (even when g(i) =∞). By definition of the upper

λ-envelope, therefore, the set I \ Sn must have λ-inner measure zero, implying that its λ-outer

measure of Sn is one. Lemma 3 says that then the set
∏∞
n=1 Sn also has λ̄∞-outer measure one,

and so therefore does D ∩
∏∞
n=1 Sn.

Fix any i∞ ∈ D ∩
∏∞
n=1 Sn. Since ‖ 1

nf(in)‖ → 0 as n→∞, one must have ‖f(in)‖ < n

for sufficiently large n, and then in ∈ Sn implies that 0 ≤ g(in) ≤ 2‖f(in)‖. Hence, 1
ng(in)→ 0.

But g is I-measurable by definition, so 1
ng(in)→ 0 for all i∞ in some I∞-measurable superset

18



E of D∩
∏∞
n=1 Sn. Since the λ̄∞-outer measure of D∩

∏∞
n=1 Sn is one, it follows that λ̄∞(E) =

λ∞(E) = 1.

Given any i∞ ∈ I∞, let φ(i∞) := supn∈N
1
ng(in). Then φ(i∞) is finite for all i∞ ∈ E.

Because g is I-measurable, the function φ : I → R+ ∪ {∞} must be I∞-measurable. So there

exists a positive integer K such that

λ∞ ({ i∞ ∈ I∞ : φ (i∞) < K }) > 1
2 (24)

For each n ∈ N, let αn := λ ({i ∈ I : g(i) ≥ nK}). Because λ∞ is a product measure, it is

evident that

λ∞ ({ i∞ ∈ I∞ : φ (i∞) < K }) =
∞∏
n=1

(1− αn) (25)

Obviously (24) and (25) imply that
∏∞
n=1(1− αn) > 1

2 . But ln(1− αn) ≤ −αn, so

∞∑
n=1

αn ≤ −
∞∑
n=1

ln(1− αn) < − ln(1/2) = ln 2 <∞ (26)

This implies that limn→∞ αn = 0, and so λ ({i ∈ I : g(i) =∞}) = 0.

Given any fixed i ∈ I with g(i) <∞, let m be the smallest integer such that g(i) < mK.

Then g(i) ∈ [nK,∞) for n ∈ { 1, . . . ,m − 1 }, and so
∑∞

n=1 1[nK,∞)(g(i)) = m − 1. It follows

that

g(i) ≤ K +K

∞∑
n=1

1[nK,∞)(g(i)) (27)

for all i ∈ I with g(i) < ∞. Because λ ({i ∈ I : g(i) =∞}) = 0, the definition of αn implies

that
∫
I 1[nK,∞)(g(i)) dλ = αn. It follows from (26) and (27), therefore, that∫

I
g dλ ≤ K +K

∞∑
n=1

αn < K(1 + ln 2) <∞

Finally, let f∗ be the function from I to R+ such that f∗(i) = g(i) when g(i) < ∞ and

f∗(i) = 0 when g(i) =∞. Clearly f∗ is a norm dominant λ-integrable function for ‖f‖, so f is

norm integrably bounded.

Two functions f and f̃ from (I, I, λ) to a Banach space B are said to be scalarly

equivalent if, for any b′ ∈ B′, the corresponding real-valued functions i 7→ 〈f(i), b′〉 and

i 7→ 〈f̃(i), b′〉 are equal for λ-a.e. i ∈ I.

Lemma 6 Let H be a Hilbert space and f a function in L(λ,H) that is scalarly equivalent to

the zero function. Then

lim
n→∞

∥∥∥∥∥ 1

n

n∑
k=1

f(ik)

∥∥∥∥∥ = 0 for λ̄∞-a.e. i∞ ∈ I∞ (28)
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Proof: Given f ∈ L(λ,H), let g : I → R+ be a λ-integrable function that norm dom-

inates f . For each k ∈ N, let Xk be the random variable defined on (I∞, I∞, λ∞) by

Xk (i∞) := [g(ik)]
2. Since EX1/2

1 < ∞ and the variables Xk are i.i.d., the Marcinkiewicz–

Zygmund Theorem on p. 125 of Chow and Teicher (1997) for the case p = 1/2 and c = 0

implies that n−2
∑n

k=1Xk (i∞) → 0 for λ∞-a.e. i∞ ∈ I∞. Because the definition of g implies

that ‖f(i)‖ ≤ g(i) for all i ∈ I, we have ‖f(ik)‖2 ≤ [g(ik)]
2 = Xk (i∞) for all k ∈ N. It follows

that n−2
∑n

k=1 ‖f(ik)‖2 → 0 for λ∞-a.e. i∞ ∈ I∞.

Next, we follow the idea behind some of the computations in the proof of Theorem 1.3

on p. 277 of Dobric (1987). For any i∞ ∈ I∞, we have∥∥∥∥∥ 1

n

n∑
k=1

f(ik)

∥∥∥∥∥
2

=
1

n2

n∑
k=1

‖f(ik)‖2 +
2

n2

∑
1≤j<k≤n

〈f(ij), f(ik)〉 (29)

Because f is scalarly equivalent to zero, for any h ∈ H one has 〈f(i), h〉 = 0 for λ-a.e. i ∈ I.

In particular, for any i′ ∈ I, one has 〈f(i), f(i′)〉 = 0 for λ-a.e. i ∈ I. Hence there exists a

Ī2-measurable set D ⊆ I × I such that λ̄2(D) = 1 and 〈f(i), f(i′)〉 = 0 for all (i, i′) ∈ D. For

each pair j, k ∈ N, let Djk denote the set of all sequences i∞ ∈ I∞ such that (ij , ik) ∈ D,

and define D∗ := ∩∞j=1 ∩∞k=j+1 Djk. Then for all i∞ ∈ D∗ one has 〈f(ij), f(ik)〉 = 0 for all

j, k ∈ N with j < k. Obviously Djk ∈ Ī∞ and λ̄∞(Djk) = 1 for each j, k ∈ N, so D∗ ∈ Ī∞ and

λ̄∞(D∗) = 1 also.

Combining the results in the last two paragraphs shows that (29) implies (28).

Proof of Theorem 2:

Let h be a function from I to the Banach space B such that, for some a ∈ B, one has limn→∞ ‖a−
1
n

∑n
k=1 h(ik)‖ = 0 for λ̄∞-a.e. i∞ ∈ I∞. Take any fixed b′ ∈ B′, and let I 3 i 7→ g(i) ∈ R

be defined so that g(i) := 〈h(i), b′〉 for all i ∈ I. A routine calculation shows that, for λ̄∞-a.e.

i∞ ∈ I∞, one has

lim
n→∞

1

n
[g(i1) + · · ·+ g(in)] = 〈a, b′〉

Then Lemma 4 implies that g is λ-integrable, with
∫
I g(i) dλ = 〈a, b′〉. Hence, h is Gel ′fand

integrable and has a as its Gel ′fand integral. Lemma 5 implies that h is also norm integrably

bounded.

Now suppose that B is a Hilbert space H. Let f be any function in L(λ,H). Since

f is Gel ′fand integrable, it follows from Theorem 11.51 of Aliprantis and Border (1999) or

p. 52 of Diestel and Uhl (1977) that for each S ∈ I, the function i 7→ (1S f)(i) = 1S(i) f(i)

is Gel ′fand integrable, where i 7→ 1S(i) ∈ {0, 1} is the indicator function of the measurable

set S. Let ν(S) denote its Gel ′fand integral over I, which is an element of H. It follows

that ‖ν(S)‖2 = 〈ν(S), ν(S)〉 =
∫
I〈(1Sf)(i), ν(S)〉dλ. By the hypothesis of norm integrable
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boundedness, there exists a λ-integrable function f∗ : I → R+ such that ‖f(i)‖ ≤ f∗(i) for

λ-a.e. i ∈ I, and so 〈(1Sf)(i), ν(S)〉 ≤ (1Sf
∗)(i)‖ν(S)‖. Hence ‖ν(S)‖2 ≤

∫
I(1Sf

∗)(i)‖ν(S)‖dλ.

So even when ν(S) = 0, one has

‖ν(S)‖ ≤
∫
S
f∗(i) dλ (30)

Let S1, S2, . . . ∈ T be any countable collection of pairwise disjoint measurable subsets

of T . Obviously ν (∪nk=1Sk) =
∑n

k=1 ν(Sk) for n = 1, 2, . . .. Furthermore, (30) implies that

n∑
k=1

‖ν(Sk)‖ ≤
n∑
k=1

∫
Sk

f∗(i) dλ ≤
∫
T
f∗(i) dλ < +∞ (31)

It follows that the sequence defined by sn := ν (∪nk=1Sk) =
∑n

k=1 ν(Sk) is a Cauchy sequence,

and so convergent in the complete normed space H. Hence ν (∪∞k=1Sk) =
∑∞

k=1 ν(Sk). It follows

from (31) that ν is an H-valued σ-additive measure of bounded variation. Moreover, (30) also

implies that the vector measure ν is absolutely continuous w.r.t. λ.

Next, we shall show that f is scalarly equivalent to a Bochner integrable function φ from

(I, I, λ) to H. Because the Hilbert space H is a particular kind of reflexive Banach space, it has

the Radon–Nikodym property (see p. 82 of Diestel and Uhl, 1977). So there exists a Bochner

integrable function φ from (I, I, λ) to H such that ν(S) equals the Bochner integral
∫
S φ(i) dλ

for each S ∈ I. Now the Bochner integral, when it exists, must equal the Gel ′fand integral —

see, for example Aliprantis and Border (1999, p. 423). So given any h ∈ H, it follows that

〈ν(S), h〉 =

∫
S
〈φ(i), h〉dλ =

∫
S
〈f(i), h〉dλ

Because the choice of S ∈ I was arbitrary, one has 〈f(i), h〉 = 〈φ(i), h〉 for λ-a.e. i ∈ I. That

is, f is scalarly equivalent to φ.11

Define ψ := f − φ. Because φ is Bochner integrable, it follows from Diestel and Uhl

(1977, p. 45), for example, that ‖φ‖ is integrable. Clearly, then, ψ is norm integrably bounded,

Gel ′fand integrable, and scalarly equivalent to zero. So Lemma 6 implies that ψ ∈ LLN(H).

Then the classical law of large numbers for Bochner integrable functions, as shown in Beck

(1963) and Mourier (1953) (see also Dobric (1987) and Hoffmann-Jørgensen (1985)), says that

φ is in LLN(H), and so in SLLN(H) as well. Therefore f = φ+ ψ ∈ SLLN(H).

Proof of Claim 1: Let ϕ be any square integrable random variable on (Ω,F , P ). By the

property of regular conditional distribution process µ and the Fubini property, one has∫
Ω

[∫
I

∫
X
h(i, x) dµiωdλ

]
ϕ(ω) dP =

∫
I

∫
Ω
E[f(i, ω)|C]ϕ(ω) dPdλ

11The argument used in this paragraph is essentially the same as the simple argument of Diestel and Uhl (1977,
p. 89), where the case of norm bounded functions is considered. See also Khan and Sun (1999) for discussion
and for many additional references concerning this scalar equivalence result.
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Lemma 2 implies that for λ-almost all i ∈ I, the random variables ω 7→ fi(ω) and ω 7→ ϕ(ω)

are conditionally independent given C. Therefore, we have∫
Ω

[∫
I

∫
X
h(i, x) dµiωdλ

]
ϕ(ω) dP =

∫
I

∫
Ω
E[f(i, ω)ϕ(ω)|C] dPdλ

=

∫
I

∫
Ω
f(i, ω)ϕ(ω) dPdλ

This implies that f is Gel ′fand integrable.

6.4 Proof of Theorem 3

By the usual existence result on Walrasian allocations in Aumann (1966) and Hildenbrand

(1974), we know that there exists a Walrasian equilibrium (xc, p) for the economy Ec. Because

we assumed that the utility function Rm+ 3 x 7→ ui(x; s) of each agent i ∈ I is strictly monotonic,

we know that for any s ∈ S, the Walrasian equilibrium price vector ps is strictly positive.

Note that, by assumption, the private signal process I × Ω 3 (i, ω) 7→ f(i, ω) ∈ T 0 that

was introduced in Section 5.1 is essentially pairwise conditionally independent given C and

admits an essentially regular conditional distribution process µ given C. Then Proposition 5 in

Hammond and Sun (2008) implies that for λ̄∞-a.e. i∞ ∈ I∞, there exists F ∈ F with P (F ) = 1

such that for any ω ∈ F and any q ∈ T0, one has

lim
n→∞

1

n

n∑
k=1

1q(f(ik, ω)) = [µ̄(ω)](q) (32)

The usual strong law of large numbers implies that for λ∞-a.e. i∞ ∈ I∞ one has

lim
n→∞

1

n

n∑
k=1

e(ik) =

∫
I
e(i) dλ (33)

and lim
n→∞

1

n

n∑
k=1

xcs(ik) =

∫
I
xcs(i) dλ for all s ∈ S (34)

Let D be the set of i∞ ∈ I∞ such that the three Equations (32), (33) and (34) all hold.

It is clear that λ̄∞(D) = 1.

First, for any i∞ /∈ D and i ∈ I(i∞), construct xi
∞

(i, t) := e(i) for all t ∈ T . Also, for

any i∞ /∈ D and i ∈ I(i∞), the definition of Walrasian equilibrium implies that the inequality

U i
∞
i

(
xi
∞
i , ti|ti

)
≥ U i∞i

(
xi
∞
i , t′i|ti

)
holds for any ti, t

′
i ∈ T 0.

Alternatively, consider any fixed i∞ ∈ D. For any n ∈ N, t ∈ T and q ∈ T0, let

γi
∞
n (t, q) := 1

n

∑∞
k=1 1{q}(tik). This defines a mapping T 3 t 7→ γi

∞
n (t) ∈ ∆(T 0). For any t ∈ T ,

given the counting measure γ̄ on the finite set T 0, let

γi
∞

(t) :=

{
limn→∞ γ

i∞
n (t) if the limit exists

γ̄ otherwise
(35)
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Next, define the sets

Li
∞
s := {t ∈ T : γi

∞
(t) = µs} for all s ∈ S, and Li

∞
0 := T \

⋃
s∈S

Li
∞
s (36)

Because (32) holds P -a.s., it follows that P Ts (Li
∞
s ) = 1.

Also, the non-triviality assumption implies that for any s, s′ ∈ S with s 6= s′, one has

Li
∞
s ∩ Li

∞
s′ = ∅. Thus, the collection {Li∞0 } ∪ {Li

∞
s : s ∈ S} forms a measurable partition of T .

The definition (35) of γi
∞

obviously implies that for any i ∈ I(i∞) one has γi
∞

(t−i, ti) =

γi
∞

(t−i, t
′
i) for all t−i ∈ T−i and all ti, t

′
i ∈ T 0. Hence, for any i ∈ I(i∞), t ∈ T , t′i ∈ T 0, and

s ∈ S, one has

t ∈ Li∞s ⇐⇒ γi
∞

(t) = µs ⇐⇒ γi
∞

(t−i, t
′
i) = µs ⇐⇒ (t−i, t

′
i) ∈ Li

∞
s (37)

Since Li
∞

0 equals T \ ∪s∈SLi
∞
s , we also know that t ∈ Li∞0 ⇐⇒ (t−i, t

′
i) ∈ Li

∞
0 . Hence, for any

i ∈ I(i∞) we have xi
∞

(i, t) = xi
∞

(i, (t−i, t
′
i)) for all t ∈ T and t′i ∈ T 0. This trivially implies

that for any i ∈ I(i∞) and any ti, t
′
i ∈ T 0, the allocation I×T 3 (i, t) 7→ xi

∞
(i, t) ∈ Rm+ satisfies

the corresponding incentive constraint

U i
∞
i

(
xi
∞
i , ti|ti

)
≥ U i∞i

(
xi
∞
i , t′i|ti

)
(38)

For each s ∈ S, let δs denote the Dirac measure on S that gives probability one to the

point s and zero to all the other points of S. Define a function H from T to the space ∆(S) of

all probability measures on the finite set S by letting

H(t) :=

{
δs for the unique s ∈ S such that t ∈ Li∞s
δs1 for t ∈ Li∞0

Then the same proof as in Lemma 3 of Sun and Yannelis (2007) shows that for each t ∈ T , the

measure H(t) is a version of P s(·|t).

Now we are ready to prove Claim 2.

Proof of Claim 2: Fix any i∞ ∈ D. Let C′ be the σ-algebra generated by the finite family

{Li∞s : s ∈ S}. Note that for any s ∈ S, one has

P (t̃ ∈ Li∞s ) =
∑
s′∈S

πs′P
T
s′ (L

i∞
s ) = πsP

T
s (Li

∞
s ) = πs (39)

and

P (s̃ = s|t̃ ∈ Li∞s ) =
P (s̃ = s, t̃ ∈ Li∞s )

P T (Li∞s )
=
πsP (t̃ ∈ Li∞s |s̃ = s)

πsP Ts (Li∞s )
= 1 (40)
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Fix any s ∈ S, any q, q′ ∈ T 0, and any i, j ∈ I such that the random variables fi and fj from

Ω to T 0 are conditionally independent given s. We know that

P T (gi = q, gj = q′|Li∞s ) =
P (fi = q, fj = q′, t̃ ∈ Li∞s )

P T (Li∞s )

=
πsP (fi = q, fj = q′, t̃ ∈ Li∞s |s̃ = s)

πsP Ts (Li∞s )

Because P Ts (Li
∞
s ) = 1, whereas fi and fj are conditionally independent given s, we have

P T (gi = q, gj = q′|Li∞s ) = P (fi = q, fj = q′, t̃ ∈ Li∞s |s̃ = s)

= P (fi = q, fj = q′|s̃ = s)

= P (fi = q|s̃ = s) · P (fj = q′|s̃ = s)

= P T (gi = q|Li∞s ) · P T (gj = q′|Li∞s )

By Equations (39) and (40), we know that

P (fi = q|s̃ = s) · P (fj = q′|s̃ = s)

=
1

π2
s

P (fi = q, s̃ = s) · P (fj = q′, s̃ = s)

=
1

π2
s

P (t̃ ∈ Li∞s )2 · P (fi = q, s̃ = s|t̃ ∈ Li∞s ) · P (fj = q′, s̃ = s|t̃ ∈ Li∞s )

= P (fi = q|t̃ ∈ Li∞s ) · P (fj = q′|t̃ ∈ Li∞s )

= P T (gi = q|Li∞s ) · P T (gj = q′|Li∞s )

This implies that P T (gi = q, gj = q′|Li∞s ) = P T (gi = q|Li∞s ) · P T (gj = q′|Li∞s ). Hence, g is

essentially pairwise conditionally independent given C′.
For any i ∈ I, s ∈ S and t ∈ Li∞s , let νit denote µi(s,t), where µ is the essentially regular

conditional distribution process of f given C. It is clear that ν is an essentially regular con-

ditional distribution process of g given C′. Therefore, g is regularly conditionally independent

given C′. This completes the proof of Claim 2.

We now continue the proof of Theorem 3.

Let Ei
∞
s be the set of all t ∈ Li∞s such that P T (·|t) = δs. Clearly P Ts (Ei

∞
s ) = 1 for any

t ∈ Ei∞s . Let Ei
∞

:= ∪s∈SEi
∞
s . Then

P T (Ei
∞

) =
∑
s′∈S

πs′P
T
s′ (∪s∈SEi

∞
s ) =

∑
s′∈S

πs′P
T
s′ (E

i∞
s′ ) =

∑
s′∈S

πs′ = 1

Given the Walrasian equilibrium allocation (i, s) 7→ xcs(i) for the economy Ec, as specified

by (6), define a mapping xi
∞

from I × T to Rm+ by letting

xi
∞

(i, t) :=

{
xcs(i) if there is a unique s ∈ S such that t ∈ Li∞s
e(i) if t ∈ Li∞0

(41)
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It is clear that xi
∞

only depends on reports from agents i ∈ I(i∞). Hence xi
∞

is an allocation

in the economy E i∞ .

Note that for any s ∈ S the feasibility condition in Part 2 of Definition 4 implies that∫
I x

c
s(i) dλ =

∫
I e(i) dλ, and also

lim
n→∞

1

n

n∑
k=1

xi
∞

(ik, t) = lim
n→∞

1

n

n∑
k=1

e(ik) =

∫
I
e(i) dλ, if t ∈ Li∞0

lim
n→∞

1

n

n∑
k=1

xi
∞

(ik, t) = lim
n→∞

1

n

n∑
k=1

xcs(ik) =

∫
I
xcs(i) dλ, if t ∈ Li∞s

These last equalities imply that, for any t ∈ T , as n → ∞, the allocation defined by (41)

satisfies the asymptotic feasibility condition∥∥∥∥∥ 1

n

n∑
k=1

[xi
∞

(ik, t)− e(ik)]

∥∥∥∥∥→
∫
I
[xcs(i)− e(i)]dλ = 0 (42)

Now fix any s ∈ S and t ∈ Ei∞s . Evidently definition (7) implies that for any i ∈ I one

has e(i) ∈ Bi(ps). Since P T (·|t) = δs, it follows from (8) that for any i ∈ I(i∞), one has

U i
∞
i (xi

∞
(i, t)|t) = ui(x

c
s(i); s) ≥ ui(e(i); s) = U i

∞
i (e(i)|t). (43)

This proves ex post individual rationality.

Finally, fix any ε > 0. By uniform equicontinuity of the family of utility functions

Rm+ 3 x 7→ ui(x; s) (for i ∈ I and s ∈ S), there exists δ > 0 such that whenever x, x′ ∈ Rm+
satisfy ‖x− x′‖ < δ, then |ui(x; s)− ui(x′; s)| < ε for all i ∈ I and s ∈ S.

Let p̄s := minj∈{1,2,...,m} psj and δ′ := 1
2 p̄sδ. For any i ∈ I and s ∈ S, let M i

s := ps · e(i)
denote the value of agent i’s endowment at the equilibrium price vector ps that applies in the

economy Ecs .

Fix any i ∈ I(i∞) and x ∈ B(ps,M
i
s + δ′). Let x′ =

M i
s

M i
s + δ′

x. It is clear that x′ ∈

B(ps,M
i
s). By the definition of p̄s and δ′, we have

‖x− x′‖ =
δ′

M i
s

‖x′‖ ≤ δ′

ps · x′(i)
‖x′‖

≤ δ′

p̄s ·
∑m

j=1 x
′
j(i)
‖x′‖ ≤ δ′

p̄s ·
∑m

j=1 x
′
j(i)

m∑
j=1

x′j(i) =
1

2
δ < δ

This implies that ui(x; s) < ui(x
′; s) + ε. For any i ∈ I(i∞) and any x ∈ B(ps,M

i
s + δ′), it

follows that

U i
∞
i (x|t) < U i

∞
i (xi

∞
i |t) + ε (44)

Let I(i∞) 3 i 7→ yi → Rm+ be any sequence such that U i
∞
i (yi|t) ≥ U i

∞
i (xi

∞
i |t) + ε for

all i ∈ I(i∞). From (44) it follows that ps · yi ≥ M i
s + δ′ for all i ∈ I(i∞), which implies that
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1
n

∑n
k=1 ps · [yik − e(ik)] does not converge to 0. It is clear then that no sequence I(i∞) 3 i 7→

yi → Rm+ with the property that U i
∞
i (yi|t) ≥ U i

∞
i (xi

∞
i |t) + ε for all i ∈ I(i∞) can satisfy the

asymptotic feasibility condition (42).

Finally, note that G : I∞×T → (T 0)∞ is the Monte Carlo sampling process based on g,

and that (I∞×T, W̃, Q̃) is a one-way Fubini extension of (I∞×T, Ī∞⊗T , λ̄∞⊗P T ) such that G

is W̃-measurable. Within the framework of this one-way Fubini extension, the arguments in this

section establish that the allocation mechanism (i∞, i, t) 7→ xi
∞

(i, t) is incentive compatible,

asymptotically feasible, ex post individually rational, and asymptotically Pareto efficient.
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