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Abstract

This thesis consists of three papers on di↵erent topics on international financial
markets. The first paper provides insights into the dynamics of decreasing asset prices. I
show how preferences in line with cumulative prospect theory can explain the temporary
reversal of the downward trend also know as dead cat bounce or bear market rally. The
second paper in this thesis focuses on the dynamics of multi-venue trading. Departing
from a new theoretical framework, I develop a novel measure of price discovery. I show
the properties of the Toxic Arbitrage Information Share using simulations and a set
of foreign exchange futures. The third paper analyzes the connection between foreign
ownership and currency risk. I find that investors use stocks’ FX exposure in order to
implicitly hedge currency risk. Furthermore, there is no evidence that domestic investors
and foreign investor should hold identical portfolios.

x



Chapter 1

Introduction

This thesis explores di↵erent aspects of international financial markets. The three main

chapters, though very distinct in their focus, are aimed at analyzing how international

financial markets work. Throughout the thesis, the methodology shifts from a purely

theoretical contribution towards a mostly empirical analysis based on theoretical hy-

potheses. While Chapter 2 looks at the dynamics of asset prices during financial bub-

bles, Chapter 3 focuses on the interaction of di↵erent trading venues both theoretically

and, in one example, empirically. In Chapter 4, I provide a new perspective on the

link between exchange rates and portfolio diversification by international investors. The

purpose of each chapter is to provide new insights into the dynamics and mechanisms

which drive international financial markets. The chapters are presented in the form of

papers. All three are single-authored.

Chapter 2

Financial bubbles are a common feature in asset prices and of special interest to investors

and regulators alike. While the build-up of financial bubbles receives a lot of attention in

the academic literature, their unraveling has been less studied. Chapter 2 provides the

first paper to theoretically analyze the dynamics of decreasing asset prices. A common

1



feature in unraveling financial bubbles is the temporary reversal of the downward trend,

also known as dead cat bounce or bear market rally. I show that preferences according to

cumulative prospect theory can lead an investor to take excessive risk and unprofitable

positions in order to recover an initial loss in a declining market. The loss driven be-

havior results in premature re-entering into the market. Heterogeneous investors enter

at the same time despite di↵erences in their reference points, wealth, and initial loss.

The resulting shift in aggregate demand can explain the sudden but temporary reversal

common in declining asset prices.

Chapter 3

When an asset is traded across multiple venues, discrepancies between prices can lead

to short lived arbitrage opportunities Foucault et al. (2016) di↵erentiate between non-

toxic arbitrage opportunities caused by liquidity trades and toxic arbitrage opportunities

caused by information arrival. This paper shows that the direction of the latter pro-

vides valuable insights into price discovery and markets’ information shares. Starting

from a new theoretical framework of multi-venue trading, I derive a measure of infor-

mation shares based on the relative frequency of toxic arbitrage opportunities. The

resulting Toxic Arbitrage Information Share provides not only a point estimate but also

approximate error bands. Additionally, this measure avoids common drawbacks such as

arbitrary choice of observation frequency and does not rely on constant movements in

asset prices as is the case for Vector Error Correction Model based measures. It therefore

provides a valuable addition for the analysis of price dynamics, especially in low liquidity

environments. I illustrate these advantages with a set of simulations and a unique data

set of internationally traded foreign exchange futures.
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Chapter 4

Currency risk is a central feature in international asset pricing and a major concern

for international investors. A broad literature investigates why investors show a strong

preference for domestic assets, but currency risk is found to be only a minor factor.

The only source for currency risk considered in such studies is the risk resulting from

exchanging foreign currency returns into domestic currency at the end of the holding

period. Such risk can be fully hedged with currency futures. However, as asset returns

in local currency are usually correlated with the exchange rate, the actual exchange rate

risk investors face is more complex. This paper is the first to investigate the role of

exchange rate risk for international investors by looking at stocks’ exchange rate (FX)

exposure and its connection with within country di↵erences in foreign ownership. I show

both theoretically and empirically that international investors use stocks’ FX exposure to

implicitly hedge currency risk. The results stand in contrast to the common assumption

that foreign investors would find it optimal to invest into the same portfolio as domestic

investors. The latter even holds if explicit hedging is free. While the results for developed

markets are stable over time, there has been a change after the crisis in how currency

risk is handled when holding emerging market stocks.

3



Chapter 2

Dead Cat Bounce
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2.1 Motivation

During bear markets, in particular after the burst of a bubble, asset prices often experi-

ence a temporary reversal of the downward trend followed by a further decline. Investors

commonly describe this phenomenon as dead cat bounce while authors such as Maheu

et al. (2012) refer to it as bear market rally. Despite its importance for investors, the

dead cat bounce has widely been ignored by the theoretical literature.

This paper provides a theoretical explanation for the dead cat bounce using in-

sights from behavioral finance namely cumulative prospect theory. As a financial bubble

bursts investors sell their holdings leading to large perceived losses. In the hope to re-

cover these losses, such investors are willing to make excessively risky investments by

re-entering the market after a further fall in prices. This re-entering leads to a temporary

reversal in the sell-o↵. Thereby, the occurrence of a reversal does not rely on the arrival

of fundamental information or coincided closing of short positions which are commonly

given explanations.

Temporary reversals in falling prices are a common feature in capital, commodity,

and currency markets as shown in Figure 2.1. In March 2000 the NASDAQ composite

index saw the peak of a bubble which had been years in the making. Within a bit more

than two months the index lost over a third of its value. In the subsequent 8 weeks the

index rose by 33% narrowing the gap to its previous high to 15%. After this short lived

recovery, the stock index plummeted once again, reaching its low point over two years

later ending up with a total loss of nearly 80% compared to its peak.

The need for a better understanding of such events for investors is clearly given.

Additionally, central banks and government bodies repeatedly intervene in currency

crises and stock market bubbles. The coordinated intervention by China’s “national

team” of state financial institutions investing at least $ 140 billion1 in the equity market

1This is the estimate in the beginning of August 2015 according to the financial time: ”Goldman
estimates China’s ‘national team’ stock rescue at $144bn”.
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to curb the fall in stock prices has been a recent example. A failure to understand the

downward dynamics of asset prices can easily lead to a misinterpretation of the success

of such measures. If the intervention occurs towards the beginning of a dead cat bounce,

the upward movement is likely to provide a false sense of success and an early end to

supporting measures. The results even indicate that the timing of the temporary reversal

may be triggered by intervention.

Similarly, there is a plethora of examples of central bank intervention in the FX

market attempting to smooth or even reverse the unraveling of currency bubbles. These

attempts are hazardous given the lack in understanding of downward dynamics. The

temporary reversal of the downward trend is a natural starting point for a more in depth

analysis.

This paper shows that (1) the demand can be split into a loss recovery compo-

nent as well as an investment component. The loss recovery component is the amount

the investor needs to invest in order to have a chance of recovering his losses. The in-

vestment component is what he is willing to invest beyond this point. (2) The demand

is “objectively irrational” meaning that the investor will buy the asset despite negative

expected return. Further, if he had not su↵ered an initial loss, he would not enter the

market at this point. (3) There is a jump in demand from zero to the desired level once

the price falls under a threshold, i.e. demand does not follow a continuous function.

(4) This jump is likely to coincide among a large group of investors leading to a large

and sudden shift in aggregate demand. The resulting jump in overall demand explains

the strong, sudden reversal in the downward trend. Furthermore, the reversal can be

triggered by trivial events and the end of the reversal does not need new fundamental

information.

The remainder of the paper is structured as follows. The next section gives a brief

overview of the di↵erent branches of literature related to this paper. Section 2.3 lays

out the assumptions and set-up of the model. Sections 2.4 and 2.5 provide the investor’s

6



maximization problem as well as an analysis of his decision to re-enter. In Section 2.6, I

analyze the timing when the investor reconsiders his demand and go into details of the

reversal. Section 2.7 provides a brief summary of the results.

2.2 Literature

This paper combines several branches of literature on e.g. bear markets, currency crises,

asset pricing, and behavioral finance. Yet, the largest contribution is to the literature on

financial bubbles. Kaizoji and Sornette (2008) as well as Scherbina and Schlusche (2014)

provide concise reviews of prominent approaches on the latter. From their summaries

it becomes clear that the existing literature has focused on the build-up and burst of

bubbles, ignoring its unraveling.

The wide interest in financial bubbles is not least found in the cost that bubbles

can have for the economy as a whole. Jordà et al. (2015) analyze these costs, especially in

connection with leverage. Similarly, Brunnermeier and Schnabel (2015) provide insights

into the history of bubbles by collecting evidence from the main financial bubbles of the

last 400 years. The costs also explain the large literature on central bank intervention.

Roubini (2006), Posen (2006), and Conlon (2015) are only some examples of a long

discussion on whether central banks should burst bubbles. This discussion shows the

interest in central bank intervention and the need for a better understanding of its

e↵ects. Given the prominence of this question, it is surprising to see no contribution on

the dynamics of bursting bubbles.

Over the last years, the research focus on bubbles has shifted from rational in-

vestors’ behavior towards modeling the actions of noise traders using insights from be-

havioral research. Scherbina and Schlusche (2014) provide an overview of the recent

literature on why financial bubbles occur highlighting di↵erent rational and behavioral

approaches. The latter often emphasize the role of herd behavior as in Kaizoji (2010a,b).

7



Brunnermeier (2008) summarizes the di↵erent approaches by identifying four types of

theoretical models for explaining bubbles. These four strands of models are: 1) all

investors have rational expectations and identical information, 2) investors are asym-

metrically informed and the existence of a bubble need not be common knowledge, 3)

rational traders interact with behavioral traders and limits to arbitrage prevent rational

investors from limiting the price impact of behavioral traders, 4) investors hold hetero-

geneous beliefs and agree to disagree about the fundamental value. This paper can be

seen as the aftermath of his third category. In this class of models, limited arbitrage is

caused by rational, well-informed and sophisticated investors’ interaction with behavioral

traders where the latter are subject to psychological biases. Abreu and Brunnermeier

(2003) give an example of such a model. They show why rational arbitrageurs may fail

to correct excessive price developments driven by noise traders. Building upon their

findings, this paper shows that reversals can happen despite rational arbitrageurs and in

absence of fundamental news. Further, I find that the interaction between the inhibited

arbitrage in Abreu and Brunnermeier (2003) and the analyzed reversal here is likely to

matter for a better understanding of unraveling bubbles.

The existing behavioral approaches for explaining financial bubbles are quite dif-

ferent from those used in behavioral asset pricing models. Instead of using psychological

biases to explain noise trader behavior, the latter focus on optimizing behavioral traders

using cumulative prospect theory (CPT) as highlighted by Giorgi and Hens (2006).

Introduced by Kahneman and Tversky (1979) and further developed by Tversky and

Kahneman (1992), the potential of CPT to explain puzzles in asset pricing has been

widely recognized. Barberis (2013) emphasizes this by providing an overview of the

contribution of CPT to the asset pricing literature. He also describes the four elements

of prospect theory: 1) reference dependence, 2) loss aversion, 3) diminishing sensitivity

and 4) probability weighting. Having analyzed the existing literature, he concludes that

diminishing sensitivity, i.e. the curvature of the utility function for gains and losses,

8



matters less in financial research. This is the case as the existing literature focuses on

returns close to the reference value. This paper is the first attempt to apply prospect

theory to bubbles. In contrast to Barberis (2013), the results in this paper are pri-

marily driven by diminishing sensitivity, highlighting its importance in extreme market

situations.

Most earlier work in behavioral asset pricing, such as by Barberis et al. (2001),

assume loss averse investors to be homogeneous. Berkelaar and Kouwenberg (2009) find

that the heterogeneity of investors in wealth and reference point matters. This is to

some extent in contrast to the results here that a di↵erence in wealth or reference value

has no e↵ect on the re-entering decision but only on the amount demanded.

Apart from the literature on financial bubbles, there is a small literature on bear

market rallies. While this is the first theoretical paper on this topic, there has been

some empirical work. A central problem in the empirical analysis of bear market rallies

is the necessity for a clear definition and a clear separation between bull markets and

bear market rallies. Maheu et al. (2012) analyze weekly S&P500 returns between 1885

and 2008 using a four state Markov switching model. The probability of a bear market

being turned into a bear market rally is 96%, while the probability for it to turn into a

bull market is 4%. This is partly due to the authors definition of a bear market rally

which can turn into a bull or bear market. If we define a bear market rally as a period

embedded in bear markets, the probability of a bear market to lead to a bear market rally

is still 42%.2 Maheu et al. (2012) hence emphasize the importance of the phenomenon.

Furthermore, the average cumulative return in the bear market state is -12% while bear

market rallies counteract this steep decline by yielding a cumulative return of 7% on

average. The authors also conclude that bear market rallies are significantly larger than

bull market corrections. Over the 123 years, the S&P500 spent around 16% of the time in

2In the authors’ estimation, the probability of a bear market turning into a bull market is 4%, while
the probability of turning into a bear market rally and subsequently into a bull market is 54%. The 42%
given here form the remainder.
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bear market rallies. These results quantify the importance of understanding downward

dynamics and specifically bear market rallies. For future empirical work, my results

indicate that it may be worth di↵erentiating between bear market rallies close to the

equilibrium level and those closer to the peak.

Overall, theoretical work on downward dynamics such as bear market rallies is

scarce. An exception is the literature on fire sales such as by Miller and Stiglitz (2010).

The idea that balance sheet e↵ects matter seems to be largely accepted at least in times

of crisis. However, fire sales merely exacerbate the downward pressure. It follows, that in

presence of fire sales, the mechanism explaining temporary reversals will have to be even

stronger. The next section introduces the model set-up and the investor’s preferences.

2.3 Model set-up

This model focuses on an investor’s portfolio reevaluation during the unraveling of a

bubble after su↵ering an initial loss.

Consider an investor with preferences according to cumulative prospect theory

(CPT) as introduced by Kahneman and Tversky (1979). The investor’s utility function

is split into a concave part for gains with respect to a reference value and a convex part

for losses. This implies risk seeking behavior once losses have occurred and risk averse

behavior after gains. Figure 2.2 illustrates the CPT utility function.

Using experimental data, Tversky and Kahneman (1992) find that the utility

function is best described as

u(x) =

8
><

>:

u+(x) if x � 0

u�(�x) if x < 0
(2.1)

u+(x) = x↵ for x � 0 and u�(�x) = ��(�x)� for x < 0.
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In line with the experimental evidence by Tversky and Kahneman (1992), I as-

sume 0.5 < ↵ = � < 1. It is worth mentioning that while Bernard and Ghossoub (2010)

depend on ↵ < � for an interior solution in a model similar to this one, this assumption

is not necessary here. Tversky and Kahneman (1992) find a loss aversion parameter of

� ⇡ 2.25. A higher loss aversion parameter � leads to a stronger punishment for losses.

For simplicity and without change in the results,3 let � be set to unity.

Assumption 1 The investor’s utility function is given by

u(x) =

8
><

>:

x� if x � 0

�(�x)� if x < 0.

with 0.5 < � < 1.

Following Kahneman and Tversky, x is given by the change of wealth relative

to a reference value Y0. In this model, I refrain from a fix definition of the reference

value. Generally, it can be thought of as the expectation or aspiration the investor has

for the asset. Given that the focus here is on financial bubbles, the reference value is

likely to be inflated and overly optimistic. The change in wealth is dependent on the

investor’s demand for a single risky asset. Without loss of generality, assume that the

risk-less alternative yields zero interest. The risky asset has two possible outcomes. With

probability ⇡ the asset yields a high final value Yg and with probability (1�⇡) the asset

realizes a final value Yb < Yg. Given a bubble setting, the good state can be considered

less likely:

Assumption 2 The probability of the positive outcome is given by

⇡ < 0.5.

3The implications of this simplification are analyzed in Appendix 2.8.10.
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Due to their nature, bubble assets are likely to be perceived as having quasi binary

outcomes. As an example, consider Internet stocks in the late 1990s. Investors hoped to

“find the next Amazon” leading to large gains. At the same time, there was a large risk

of bankruptcy for firms which did not become profitable. This makes the assumption of

binary outcomes more sensible than in other settings.

In line with Kahneman and Tversky (1979), the probability ⇡ is subjective.

Agents perceive probabilities in a distorted way where low probabilities are seen as

larger, while larger probabilities are undervalued. In this setting, there is no need to

specify what the objective probabilities are.

Figure 2.3 illustrates the chronological setting of the model. While the bubble

grows, the investor enters the market buying one unit of the asset. For simplicity, assume

that this is all his disposable wealth.4

Assumption 3 The investor invests all his disposable wealth into the risky asset when

first entering.

The investor now forms his reference value Y0. In contrast to the existing literature, I

refrain from imposing a functional form on the reference value.5 One can think of Y0 as

the price that the investor is convinced the asset will reach.

The burst of the bubble is assumed to be caused by a change in market expecta-

tion, leading to the subjective expected value

E(vs) := ⇡Yg + (1� ⇡)Yb. (2.2)

After the bubble bursts, the investor sells all his assets to price Yr < Y0. Conse-

4Assumption 3 is not a necessary assumption for the results in this paper to hold. Section 2.8.11
provides more details on the e↵ect of retained wealth. Overall, the behavior of the investor does not
change, however additional savings relax the budget constraint and make the condition to observe loss
driven behavior more restrictive.

5Most authors like Barberis et al. (2001), Gomes (2005), and Bernard and Ghossoub (2009) use the
risk free rate as the growth rate for the reference value, which makes it easier to solve the models. One
advantage of this paper is that this assumption is not necessary.
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quently, he realizes a loss with respect to his reference value of (Y0�Yr). By assumption,

the CPT investor is not able to engage in short selling. This is a reasonable assumption

when seeing the CPT investor as less sophisticated.

Assumption 4 No short selling by the CPT investor.

From this point onward, the CPT investor is loss-driven. He is willing to take large risks

hoping to recover his losses. After a further fall in the price to p, the investor decides on

his new portfolio ⇣. The timing of the decision is hence exogenous6 while the amount

invested is endogenous. A larger ⇣ implies a larger exposure to the risky asset. Due

to the short selling constraint, ⇣ � 0 must hold. Further, given that the investor sold

his holdings at price Yr the investor faces a budget constraint7 of ⇣p  Yr. Hence, the

bounds of the new portfolio holdings are given by

0  ⇣  Yr
p
. (2.3)

p < Yr implies that the upper bound is larger or equal to one and increasing with

a lower price p. As the price falls further, an investor is able to buy a larger amount of

the asset. Finally, the investor realizes either Yg or Yb. Without loss of generality, I set

Yb > 0. This allows us to interpret Yg, Y0, Yb, Yr, and p as price levels.

Assumption 5 The hierarchy of price levels as explained above is summarized as

Yg > p > Yb and Y0 > Yr > p.

6In this model, the timing when the investor reconsiders his portfolio is exogenous. This is a strong
simplification as it implies the absence of intertemporal optimization. However, the setting is su�cient
to show how the willingness of the investor depends on the price of the asset and to demonstrate the
discontinuous reaction in demand resulting from CPT preferences.

7This budget constraint results from Assumption 3 that the investor is fully invested at the height
of the bubble. Without this assumption and given the utility function, he is more likely to invest an
amount smaller than unity. In that case the budget constraint is relaxed. Consequently, this budget
constraint is the minimum budget constraint.
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This paper can be limited to cases where the investment yields a negative sub-

jective expected value. The limitation is justified as I am considering reversals at the

height of the unraveling. If the asset yielded a positive return, the investment would

be attractive for risk neutral investors as well. In this case, there would be no further

downward pressure in the price and the reversal would not be temporary. Put di↵erently,

without selling pressure the asset would be close to its equilibrium price. This implies

that the reconsideration would occur towards the end of the unrevealing rather than at

its height.

Assumption 6 The risky asset has a negative expected return

⇡(Yg � p)� (1� ⇡)(p� Yb) < 0.

Assumption 6 provides a lower bound for the price when considering to re-enter,

given by:

p > ⇡Yg + (1� ⇡)Yb. (2.4)

Given Assumptions 1 and 2 that � < 1 and ⇡ < 0.5, Assumption 6 also implies

that an investor with CPT preferences who has not su↵ered an initial loss would not

invest into the risky asset, as

⇡(Yg � p)� � (1� ⇡)(p� Yb)
� < 0. (2.5)

The implications of Assumption 6 for the reversal are discussed in more detail

in Section 2.6. The next section provides the investor’s maximization problem and the

optimal portfolio holdings upon re-entering.
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2.4 The investor’s maximization

This section focuses on the investor’s maximization problem when choosing the optimal

portfolio ⇣. There are two cases which need to be considered.

I) The investor is able to recover his initial losses with respect to his reference value in

the good state.

II) Even with the good outcome, the investor cannot recover his initial loss with respect

to his reference value.

In the latter case, this implies that the whole maximization takes place in the

convex part of the utility function. It is crucial to keep in mind that the utility in the

good state depends on the endogenous variable ⇣. This implies that it depends on the

size of ⇣ whether the agent can recover his losses and hence which case needs to be

considered.

2.4.1 Case I: Complete recovery of losses possible

For now, let us assume that the investor makes an overall gain if the outcome is positive,

i.e. Case I. It follows that given the utility function in Assumption 1, the investor’s

subjective expected utility when creating his optimal portfolio is given by

E(U) = ⇡u+ (xg) + (1� ⇡)u� (xb)

= ⇡ (xg)
� � (1� ⇡) (�xb)

� . (2.6)

Following the setting above, xg and xb are given by initial loss Y0 � Yr and the

gain and loss from the reinvestment, respectively:

xg = ⇣(Yg � p)� (Y0 � Yr) > 0 and xb = ⇣(Yb � p)� (Y0 � Yr) < 0.

15



It follows that

E(U) = ⇡[⇣(Yg � p)� (Y0 � Yr)]
� � (1� ⇡)[�(⇣(Yb � p)� (Y0 � Yr))]

�

= ⇡[⇣(Yg � p)� (Y0 � Yr)]
� � (1� ⇡)[⇣(p� Yb) + (Y0 � Yr)]

� . (2.7)

Loss recovery in the good state implies therefore that ⇣(Yg � p)� (Y0 � Yr) � 0.

For Case I to be true, the optimal investment needs to be at least

⇣Min =
Y0 � Yr
Yg � p

. (2.8)

The minimum investment is needed to have a chance to recover the initial loss. It

represents the ratio of the initial loss with respect to the reference value and the potential

gain by investing into the risky asset. Together with the upper bound, the minimum ⇣

for Case I leads to

Y0 � Yr
Yg � p

 ⇣  Yr
p

p  Yg
Yr
Y0

. (2.9)

This is the condition for Case I, i.e. for total loss recovery to be possible. It

is important to note that this is independent of the bad outcome. Hence, the case

di↵erentiation is not connected to the expected value but only to the size of the positive

outcome.

The investor’s maximization problem is given by

max
⇣

E(U), (2.10)

leading to the following proposition:

Lemma 1 Given Assumptions 1, 3, 5, and 6: For all parameters within Case I, the
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investor invests a positive amount given by ⇣⇤ up to his budget constraint, where

⇣⇤ =
(Y0 � Yr)

(p� Yb)

1 + ⌦���

⌦� ⌦���
(2.11)

with ⌦ = Yg�p

p�Yb
> 0, � = ⇡

1�⇡
> 0 and � = 1

1��
> 2. He does so despite negative expected

returns.

Proof. See Appendix 2.8.1.

⌦ is the ratio of the outcome in the good state and the absolute of the outcome

in the bad state. ⌦ > 1 implies that the gains in the good state exceed the losses in the

bad state. � is given by the ratio of the subjective probability for the good state and the

subjective probability of the bad state. � < 1 implies that the good state is perceived as

less likely. Given that ⇡ < 0.5, I find � < 1. Following the definitions above, ⌦� is the

probability weighted outcome ratio. A ⌦� < 1 implies a negative subjective expected

value, which is equivalent to Assumption 6.

� provides the elasticity of intertemporal substitution. A larger � implies a

higher elasticity of intertemporal substitution and, hence, lower cost for a suboptimal

distribution of consumption across periods. In this setting, this is equivalent to lower

cost for an uneven distribution across the states of nature.

Lemma 1 shows the importance of loss recovery. When incentivized by even a

remote chance to recover losses, the investor will invest a positive amount even if he

expects negative returns.

Corollary 1 The optimal investment can be decomposed into a loss recovery component

⇣Min and an investment component IC:

⇣⇤ = ⇣Min + IC, (2.12)
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where

⇣Min =
Y0 � Yr
Yg � p

> 0 and IC =
⌦��2��(1 + ⌦)(Y0 � Yr)

(1� ⌦��1��)(p� Yb)
> 0. (2.13)

The recovery component is the amount necessary in order for the investor to have a

chance to recover his initial losses. The investment component is given by the remainder.

Proof. See Appendix 2.8.2.

The loss recovery component ⇣Min results from risk seeking behavior i.e. the

convex part of the utility function. The investment component, in contrast, results from

the concave part which corresponds to risk aversion.

As mentioned before, the optimization problem is only correctly specified if the

optimal ⇣⇤ in Equation (2.11) fulfills the minimum ⇣ condition in Equation (2.8). Equa-

tion (2.12) shows that this condition is fulfilled for all ⇣⇤ as IC > 0. Let us now take

a closer look on the e↵ect of price p. Given that I am analyzing the unraveling of a

bubble, it makes sense to look at what happens when the price falls further. It can be

shown that:

Corollary 2 A lower price leads to a larger investment component and a lower loss

recovery component of ⇣⇤.

Proof. See Appendix 2.8.3.

The risky asset becomes more profitable, due to the lower price. Hence, less in-

vestment is needed to recover prior losses. At the same time, a more lucrative investment

is more attractive and the investment component rises. The overall e↵ect on the optimal

demand is of primary interest which results from the interplay of the two e↵ects as illus-

trated in Figure 2.4. The solid black line is the minimum ⇣Min as in Equation (2.8). The

dashed black line illustrates the optimum ⇣⇤ as in Equation (2.11) and the dashed gray

line shows the upper bound for ⇣ given by the budget constraint. The decline in the loss
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recovery component dominates for high prices as the investment remains unprofitable.

However, for su�ciently low prices, the investment component takes over and rapidly

increases with falling prices driving the overall demand up.

Figure 2.5 illustrates the e↵ect of a change in the parameter values of ⇡, Yg,

Y0, and Yr, respectively. In the upper two cases, an increase in ⇡ and Yg, respectively,

leads the risky asset to be more lucrative. Hence, for this specification the investment

component drives the demand even for higher values of p. In the bottom left case, an

increase in the reference value leads to an upward shift of both minimum and optimal

demand. This is the case as the investor is loss driven and a larger loss leads to a higher

willingness to invest. Similarly, a larger loss due to a lower Yr shifts both minimum and

optimal demand up. Additionally, the budget constraint is more restricting due to the

lower recovery.

2.4.2 Case II: Only partial recovery of losses possible

Now consider the case, where it is impossible for the investor to recover his losses fully.

The expected utility function is consequently given by

E(U) = ⇡u� (xg) + (1� ⇡)u� (xb)

= �⇡[�⇣(Yg � p) + (Y0 � Yr)]
� � (1� ⇡)[⇣(p� Yb) + (Y0 � Yr)]

� . (2.14)

The investor’s optimization in Case II leads to the following lemma:

Lemma 2 Given Assumptions 1, 2, 3, 4, 5, and 6: Whenever the investor has no

chance to regain his losses he either invests all he can or nothing.

Proof. See Appendix 2.8.4.

The intuition for this result is straightforward. The investor is risk seeking in his

optimization in Case II. If the terms of the investment are unacceptable, the investor
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will not invest anything. This is e.g. the case when the investment implies a certain

loss. If the terms are acceptable, the investor will invest all his disposable wealth into

the asset in order to have a chance to get as close as possible to recovering his prior

losses. He perceives the riskiness of the asset positively, as an increase in the spread of

good and bad states gets him, ceteris paribus, closer to recovering his losses.

Combining the two cases and by that Lemmas 1 and 2 leads to the following: If

the investor chooses to re-enter the market, he will invest ⇣⇤ up to his budget constraint.

⇣⇤ =

8
><

>:

(Y0�Yr)
(p�Yb)

1+⌦���

⌦�⌦��� if (Y0�Yr)
(p�Yb)

1+⌦���

⌦�⌦���  Yr
p

Yr
p

if (Y0�Yr)
(p�Yb)

1+⌦���

⌦�⌦��� > Yr
p
.

(2.15)

In a final step, it is necessary to evaluate when the investor will re-enter, i.e. when

the utility from investing is larger than the utility from abstaining from the market.

2.5 The decision to re-enter

The focus of the analysis is the investor’s willingness to re-enter the market given that he

reconsiders his absence from the market at a specific point in time. In order to determine

this, I compare the investor’s utility from remaining outside the market and re-entering.8

An investor compares re-entering and investing ⇣⇤ to the certain loss when ab-

staining the market. For re-entering to be optimal, the following condition needs to be

fulfilled

E(U(⇣⇤)) � E(U(⇣ = 0)).

Lemma 3 Given Assumptions 1 and 6: The condition for re-entering and hence for

8In the following sections, I am focusing on interior solutions for the optimal investment, i.e. cases
not bound by the budget constraint. Bound cases are considered in Appendix 2.8.9.
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positive demand is given by

⇡

✓
IC

⇣Min

◆� ✓ 1

⌦��

◆�

� 1

�
� 1  0. (2.16)

Proof. See Appendix 2.8.5.

Lemma 3 describes the moment when an investor is willing to re-enter the market.

Any investor, for whom this condition is not fulfilled, will not re-enter the market upon

reconsidering his portfolio. It is important to keep in mind that this model focuses on

a bear market. Consequently, this paper aims at answering the question what happens

when the price falls and whether this leads to a sudden increase in demand. Lemma 1

and Lemma 3 lead to the following conclusion:

Proposition 1 When p falls, the “potential” demand, i.e. the desired amount invested

upon reconsideration, jumps from zero to the optimal level.

Proof. See Appendix 2.8.6.

The implication here is that this sudden jump can be responsible for the tempo-

rary reversal of the downward trend. The size of the jump in demand is given by the

optimal demand in Equation (2.11) as the investor has no holding prior to re-entering.

⇣⇤ =
(Y0 � Yr)

(p� Yb)

1 + ⌦���

⌦� ⌦���

Figure 2.6 depicts Proposition 1 for di↵erent parameter values. The solid line is

given by the investor’s demand. The jump in “potential” demand occurs once Equation

(2.16) holds. Given a high price, the investor’s optimal demand is zero. As the price falls

over time, it reaches the point when demand jumps to over 56% of what the investor held

at the height of the bubble. From this point onwards, the demand increases continuously

with a falling price. The discontinuity in the demand function already hints the potential

for an upward jump in the price. If the investor faces falling prices, from one moment to
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the other, he is willing to invest large amounts into an asset which he sold o↵ previously.

At this point, the expected return of the asset is still negative.

The four graphs in Figure 2.7 highlight the ceteris paribus e↵ect of an increase

in the probability of the good state ⇡, a better outcome in the good state Yg, a higher

reference value Y0, and a decrease in the recovery price Yr, respectively, compared to

Figure 2.6. Doubling the probability ⇡ leads to a similar size in the jump, yet the jump

occurs earlier, i.e. for higher p. This is intuitive as a higher ⇡ implies a more profitable

investment. The same is true for an increase in the good outcome. In the latter case,

however, the investment reaches only around 34% of the prior holdings.

The two bottom graphs show an increase in the reference value and a decrease in

the recovery rate, respectively. Both are equivalent to a higher loss with respect to the

reference value and hence have the same e↵ect. The only di↵erence is that a change in Yr

lowers the budget constraint, restricting the slope of the demand for low p. The reaction

to a change in the initial loss leads to the main result of the paper. Using Lemmas 1

and 3 it follows that:

Proposition 2 The decision to re-enter is independent of the initial loss; however, the

size of the potential investment positively depends on it.

Proof. See Appendix 2.8.7.

A group of investors with similar expectations about the asset’s true value are

willing to re-enter the market at a similar time, independently of their prior losses and

reference value. However, the size of each investor’s investment will di↵er. The above

implies that the timing of the reinvestment is also independent of the disposable wealth.9

The results agree with Berkelaar and Kouwenberg (2009) on that the hetero-

geneity of investors with regard to wealth and reference value matters. In this setting,

however, the implications are quite di↵erent. While the heterogeneity is important to

9This is true, as long as the disposable wealth is su�cient to allow for the optimal investment. If this
is not given, the re-entering will be delayed.
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explain the size of individual demand, the timing is not a↵ected. This implies that from a

macro perspective, the heterogeneity matters much less as the individual demand jumps

at the same time leading to a jump in aggregate demand. Given the importance of the

timing in this setting, the next section goes into it in more detail.

2.6 Equilibrium price

The above analysis has so far considered the CPT investor in isolation. This section takes

the previous results further by looking at the interaction of multiple CPT and risk-averse

(RA) investors. The model proposed here is not a standard general equilibrium model,

but describes how the market reaches its equilibrium.

The layout of the model is summarized as follows. In period 0, the CPT investors

update their rational expectations about the pay-o↵s of the asset and trade with the RA

investors before the latter update their own expectations. The RA investors do not know

the exact demand function of the CPT investors. Therefore, in period 1 the RA investors

submit sell orders anticipating the maximum possible demand of the CPT investors to a

given price. The anticipated maximum demand, however, assumes the demand function

of the CPT investors to be continuous.10 This creates a disparity between the anticipated

demand and the actual demand due to the jump in the latter. Consequently, there are

two possible cases. If the actual demand falls short of the anticipated maximum demand,

the RA investors submit further sell orders in the next periods until the market is in

equilibrium.11 If the actual demand exceeds the anticipated demand, this implies that

the orders submitted by the RA investors imply too low a price. It follows that the

price will rise in the following period in order to bring the market into equilibrium. This

reversal in the price is what is described as a dead cat bounce. This set-up is formalized

10One option is that the RA investors simply ignore the influence of the perceived loss by the CPT
investors. I keep the function general in order not to pose strong restrictions.

11One can think of this as the RA investors submitting orders with a fix price and quantity.
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below.

Assumption 7 The total amount of investors and assets is normalized to unity. n

investors are risk-averse (RA), while 1�n are CPT investors, following the optimization

behavior described above. At the start of the bear market, a total amount x of the asset

is held by RA investors and (1� x) is held by CPT investors.

The number and holdings of RA versus CPT investors allows to di↵erentiate

between di↵erent asset classes. While traditional currency or commodity markets may

be dominated by sophisticated RA investors, cryptocurrencies may be thought of as

CPT dominated. This idea is in line with Bianchi and Dickerson (2018) who argue that

cryptocurrency markets see higher trading volume by retail investors while the number

of institutional investors and hedge funds is lower than in other markets. For brevity, I

normalize the updated pay-o↵ of the asset to

Assumption 8 The pay-o↵ of the asset in the good state is normalized to 1, while the

bad state’s pay-o↵ is set to 0 such that

Yg = 1 and Yb = 0. (2.17)

Assumption 9 Assume that all CPT investors receive information that the asset is

overvalued before the RA investors do. The CPT investors are hence able to sell all their

holdings to price p0 to the RA investors, where p0 is determined by the RA investors

expectations before receiving the update.

The results do not necessarily depend on the strict form of this assumption.

Similar to the assumption that the CPT investor liquidates all holdings at price Yr, this

assumption simplifies the model in order to focus on the motivation of the CPT investor.

A more gradual sell-o↵ is also possible and would likely lead to very similar results.12

12An alternative set-up for this would be that the CPT investor does not sell-o↵ his holdings but has
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After learning about the updated pay-o↵ structure of the asset, the RA investors’ demand

for the asset is determined by the maximization of their utility function.

Assumption 10 Each RA investor maximizes a CRRA utility function given by

URA = ⇡(Xg)
↵ + (1� ⇡)(Xb)

↵, (2.18)

where 1 � ↵ is the degree of risk aversion of the RA investor, Xg is the wealth in the

good state, and Xb is the wealth in the bad state.

In contrast to the CPT, the CRRA utility function is taking into account the

total wealth, rather than the change in wealth.

Assumption 11 The total wealth of the RA investor in the good state is given by

Xg =
x

n
Yg +�(Yg � p) +W + (Y g � p0)

1� x

n

=
x

n
+�(1� p) +W + (1� p0)

1� x

n

=
1

n
+�(1� p) +W � p0

1� x

n
. (2.19)

In the bad state, this is equivalent to

Xb =
x

n
Yb +�(Yb � p) +W + (Yb � p0)

1� x

n

= ��p+W � p0
1� x

n
. (2.20)

The total wealth in the good state decomposes as follows: x

n
Yg is the final pay-o↵

of the initial holdings of the individual RA investor. It is given by the total amount of

savings that can be used for loss driven investment. In this case, the assumption of CPT investors to be
fast, would not be necessary. As the loss driven behavior is the key driver of this model, such a set-up is
likely to lead to very similar results, however with di↵erent budget constraints. An additional feature of
this set-up would be that the observed dynamics resemble more closely the disposition e↵ect described
by e.g. Shefrin and Statman (1985). However, the main result that (perceived) loss drives the bear
market rally remains in place.
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the asset held by RA investors x, divided by the number of RA investors n. The amount

purchased by an individual RA investor is given by �. p corresponds to the price he

is paying. W is given by the exogenous, independent wealth of the RA investor and

(Y g� p0)
1�x

n
is the profit from buying all of the CPTs’ asset holdings. In the bad state,

the total wealth is derived equivalently.

The maximization of the RA investors’ utility results in an optimal change in

demand �⇤. For this analysis, it makes sense to consider the total supply.

Lemma 4 The total supply is given by the total amount of assets to be sold by the n

RA investors

S(p) = �n�⇤ = �n
(W � p0

1�x

n
)(⌦✏�✏ � 1)� 1

n

p(⌦+ ⌦✏�✏)

=
1� (Wn� p0(1� x))(⌦✏�✏ � 1)

p(⌦+ ⌦✏�✏)
, (2.21)

where ✏ = 1
(1�↵) is one over the risk aversion parameter. The supply function S(p) is a

concave function increasing in price p.

This paper does not restrict short selling for RA investors, as they are likely to be

more sophisticated. However, such a restriction would not significantly alter the results.

When choosing how much to supply, the RA investors anticipate the total maximum

demand for a given price and supply the anticipated (maximum) equilibrium amount.

The logic is as follows. In a given period, the suppliers observe the demand at the

current price. The highest demand they deem possible in the next period would follow

a function which is zero at the current price but increases as the price falls in the next

period. Why would the RA investors go for the maximum demand? Assume that the

RA investors collectively under-anticipated the total demand. In this case, each of the

suppliers would have had an incentive to supply more. In contrast, if the RA investors

assumed the total demand to be too high, none of the suppliers would have profited

26



from supplying less. The RA investors, therefore supply in order to meet the maximum

demand they deem possible. Thereby, the RA investors are more careful than in standard

equilibrium models.13

Assumption 12 Given a price pt in the current period and a price pt+1 in the next

period, the anticipated maximum demand is given by ⌥pt(pt+1), with ⌥pt(pt) = 0,

@⌥pt (pt+1)
@pt+1

< 0 and
@
2⌥pt (pt+1)
@pt+1@pt+1

> 0. Once the suppliers observe a positive demand, they

can anticipate the actual demand.

The definition of ⌥pt(pt+1) is kept fairly independent on purpose in order to keep

the results general but interpretable. If the actual demand is equal to the anticipated

maximum demand, the market will be in equilibrium. This is the standard case consid-

ered in general equilibrium models. If the demand remains non-positive, the suppliers

will repeat the step above, using the anticipated maximum demand function ⌥pt+1(pt+2).

If the demand is positive but below the supply, it is optimal for the suppliers to lower

the price further. They will lower it more cautiously however taking into account the

current level of demand.

Figure 2.8 illustrates the procedure described above. The x-axis shows the price

and a move from right to left implies a devaluation. As the price falls, the anticipated

maximum demand is increasing until it reaches the supply function at price p1. This is

the maximum price, which the suppliers expect to lead to an equilibrium. They hence

choose to supply the amount S(p1) in this period. As there is no demand, the suppliers

use the anticipated maximum demand function once more in the next period, leading to

the supply of S(p2).

This describes the development of the supply by the RA investors. In the next

step, let us consider the equilibrium in the market given by the (actual) aggregated

13In order to not make it optimal to submit sell orders for the whole supply, we could assume that there
are marginal costs to submitting orders. This would lead the suppliers to again go for the anticipated
maximum demand, given that they are confident enough about this being the maximum.
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demand and the total supply. The total demand of the CPT investors given Assumptions

7, 8, and 9 is given by

D(p) = (1� n)⇣⇤(p) = (1� n)

✓
1� x

1� n

◆✓
Y0 � p0

p

◆
(1 + ⌦���)

(⌦� ⌦���)

= (1� x)

✓
Y0 � p0

p

◆
(1 + ⌦���)

(⌦� ⌦���)
. (2.22)

The e�cient price p⇤ is hence given by D(p⇤) = S(p⇤). Figure 2.9 illustrates the

equilibrium. Let us denote the price at the re-entry of the CPT investors by pR. As

highlighted in Proposition 2, this point is independent of the initial loss and will hence

be the same for heterogeneous investors.

The next part combines the anticipated maximum demand and the actual demand

function. Figure 2.10 illustrates an example where the model exhibits a dead cat bounce.

At the first intersection of the anticipated maximum demand and the supply function, at

price p1, the actual demand is zero. At the second intersection at p2, the actual demand

exceeds the anticipated demand, due to the jump at pR. It follows that in period 1, there

is no trade and the price is set to p1. In period 2, the price falls to price p2 and ⌥p1(p2)

units are traded. As demand exceeds supply at this point, the price will increase over

the next periods until it reaches the equilibrium level p⇤. Consequently, after falling to

p2, the price experiences a reversal rising by p⇤ � p2. This is the size of the dead cat

bounce.

Similarly, Figure 2.11 shows an example, which does not lead to a reversal. In

period 1, the price reaches p1. The actual demand given by the black line is not equal to

the supply, however, it is positive. Consequently, D(p1) of the asset is traded. Having

now observed the actual demand, the suppliers will supply only as much in the next

period as is necessary to meet the actual demand at price p⇤. There is no overshooting

in the price and no reversal.

When generalizing this, a clear condition for the dead cat bounce appears. Whether
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there is a dead cat bounce, depends on the relative size of the equilibrium price p⇤, the

re-entry price pR, the point where the supply function is zero S�1(0) and the intersection

of the anticipated maximum demand with the supply function (pt). This is illustrated

in figure 2.12.

Lemma 5 There exists a dead cat bounce, i↵ the intersection of the anticipated maxi-

mum demand with the supply function falls between the price for zero demand and the

equilibrium price:

S�1(0) < pt < p⇤ (2.23)

In contrast, there is no dead cat bounce, if the intersection of the anticipated maximum

demand with the supply function falls between the equilibrium price and the re-entry

price:

p⇤  pt  pR (2.24)

The size of the dead cat bounce is determined by the distance between the equilibrium

price and the intersection: p⇤ � pt.

The first implication to be drawn from this is that the size of the dead cat bounce

cannot exceed p⇤�S�1(0). Apart from this, the results are very sensitive to the starting

value when the RA investors begin to anticipate the CPT investors’ demand as well as

the functional form of the anticipated demand. For this reason, it is more meaningful

to state the results in terms of probabilities and expectations dependent on the starting

value. The model extension in this section leads to a series of testable predictions.

Proposition 3 Given the interaction of multiple CPT and RA investors:

(a) The higher the reference value Y0 of the CPT investors, the higher is the probability

of a dead cat bounce and the larger its expected size.
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(b) The larger the share of RA investors n, the smaller is the possible dead cat bounce.

(c) A lower share of RA investors n or a lower share of initial holdings held by RA

investors x can increase the probability that the dead cat bounce happens in a later

period.

Proof. See Appendix 2.8.8.

Proposition 3a) states, a higher reference value of the CPT investors, e.g. due

to more optimism at the build up of the bubble, increases the probability of a dead

cat bounce as well as its expected size. This is due to the same e↵ect observed in

Proposition 2. A higher reference value leads to a higher perceived loss and thereby to a

larger demand upon re-entering. The larger jump in demand means, that the di↵erence

between the anticipated maximum demand and the actual demand is larger. This leads

to a larger reversal and also increases its probability.

According to Proposition 3b), a larger share of RA investors reduces the size of

a possible dead cat bounce. The reason for this is that the amount of the asset held by

each RA investor x

n
is smaller compared to his wealth w. Due to this, the RA investors

are overall willing to take more risk. This increases the supply for the asset by RA

investors when the asset has negative expected returns in which case the RA investors

engage in short selling. This makes the aggregate supply more price sensitive in this

area. Consequently, the di↵erence between the prices for which the supply meets the

anticipated maximum demand and the actual demand shrinks and the possible dead cat

bounce shrinks as well.

Similarly, Proposition 3c) states a lower share of RA investors decreases the

supply of the asset and increases the price where the supply meets the anticipated

maximum demand for a given period. This in turn increases the probability that the

CPT investors do not yet re-enter the market as the price is too high. Consequently,

given there is going to be a dead cat bounce, the probability that we see a reversal in
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a later period increases. If the RA investors held a lower share before the beginning of

the bear market (a lower x), this decreases each RA investors total wealth equally in the

good and in the bad state as can be seen in Assumption 11. Due to their risk aversion,

this implies that a lower initial share x leads to a larger punishment for the di↵erence

in outcomes. This decreases the amount a RA investor is willing to sell in excess of

his holdings (short selling). This in turn increases the price for which the supply curve

and the anticipated maximum demand intersect. As above, this is equivalent to saying

the probability that there is a dead cat bounce in a later period increases conditional on

there being a dead cat bounce at all.

2.7 Conclusion

Unraveling bubbles in capital, currency, and commodity markets often experience tem-

porary reversals of the downward trend, also known as dead cat bounce or bear market

rally. This is the first paper to o↵er a theoretical explanation for a phenomenon which

is largely recognized in financial markets.

According to investopedia, a dead cat bounce “can be a result of traders or in-

vestors closing out short positions or buying on the assumption that the security has

reached a bottom”. In contrast, this paper shows how preferences according to cumula-

tive prospect theory (CPT) can explain the temporary reversal of the downward trend

in unraveling bubbles. CPT preferences lead an investor to take high risk and make un-

profitable investments in hope to recover losses experienced after the burst of the bubble.

This leads to a jump in demand for the individual investor. The decision to re-enter is

independent of investors’ reference value and prior loss. Due to this, a group of investors

with the same expectations with regard to the asset will re-enter the market at the same

time, leading to a large aggregate jump in demand. In addition, this implies that even

under heterogeneous expectations, the release of minor information can have a major
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impact on the price. Due to the discontinuous demand functions, a minor adjustment

in the expected return can lead a group of investors to re-enter the market at the same

time. Thereby, seemingly unimportant information can trigger a bear market rally even

under heterogeneous expectations.

The model proposed here leads to several testable results. A lower share of

unsophisticated investors (CPT investors) is associated with a smaller dead cat bounce. A

higher share of unsophisticated investors or a higher share of holdings by unsophisticated

investors during the peak of the bubble increase the probability that a price reversal

happens at a later point in time, i.e. that there is a longer period between the peak of

the bubble and the dead cat bounce. Finally, the larger the optimism during the build-up

of the bubble, the higher the probability of a dead cat bounce and the larger its expected

size.

This paper provides a new mechanism explaining the temporary reversal of the

downward trend in unraveling bubbles. There are several other papers that have shown

mechanisms which are likely to interact with the one above. Some, such as fire sales

described by Miller and Stiglitz (2010) work against the reversal and hence highlight

the size of the demand necessary to match the downward pressure. Others, such as

herd behavior and limited arbitrage are likely to support the reversal once it started.

Kaizoji and Sornette (2008) and Kaizoji (2010a,b) analyze the e↵ect of herd behavior in

financial markets. On the one hand, herding puts additional pressure on the price once

it starts falling, on the other hand, it is also likely to amplify the reversal. Abreu and

Brunnermeier (2003) show that arbitrageurs may forgo betting against a bubble when

uncertain about the timing of the burst. This bubble riding behavior is likely to appear

during the reversal as well, prolonging its existence further.

Further research is clearly necessary in order to better understand the downward

dynamics in financial markets. More specifically, the results in this paper provide several

areas for further research. Firstly, a more dynamic setting is necessary to see how the
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mechanism shown in this paper interacts with the intertemporal optimization as well as

investors herding and fire sales. A further analysis in a multi-asset setting is also likely

to provide valuable insights. Additionally, it is crucial that we gain better insights into

the empirical side of the reversal, dead cat bounce, or bear market rally in the aftermath

of financial bubbles. The existing research on bear market rallies is limited to the stock

market. The commonness of the phenomenon in FX as well as commodity markets raises

the question to what extent the reversals di↵er from one another. Further, the analysis

indicates that reversals may di↵er depending on whether they occur in the middle of the

fall in prices or mark the end of the unraveling.

This paper is a first step in the theoretical analysis of unraveling bubbles. Further

analysis of downward dynamics deserve more attention in research and promise valuable

insights for policymakers, researchers, and investors.
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2.8 Appendix

2.8.1 Proof of Lemma 1

The maximization problem in Case I is given by

max
⇣

E(U), (2.25)

which leads to the first order condition

@E(U)

@⇣
=⇡�[⇣(Yg � p)� (Y0 � Yr)]

��1(Yg � p)

� (1� ⇡)�[⇣(p� Yb) + (Y0 � Yr)]
��1(p� Yb) = 0 (2.26)

) ⌦�[⇣(Yg � p)� (Y0 � Yr)]
��1 = [⇣(p� Yb) + (Y0 � Yr)]

��1

⌦�[⇣(p� Yb) + (Y0 � Yr)]
1�� = [⇣(Yg � p)� (Y0 � Yr)]

1��

⌦��� [⇣(p� Yb) + (Y0 � Yr)] = [⇣(Yg � p)� (Y0 � Yr)]

⇣((Yg � p)� (p� Yb)⌦
���) = (Y0 � Yr)(1 + ⌦

���)

⇣⇤ =
(Y0 � Yr)

(p� Yb)

1 + ⌦���

⌦� ⌦���

with ⌦ = Yg�p

p�Yb
> 0, � = ⇡

1�⇡
> 0 and � = 1

1��
> 2.

The second order condition is given by

@2E(U)

@⇣@⇣
=⇡�(� � 1)[⇣(Yg � p)� (Y0 � Yr)]

��2(Yg � p)2

� (1� ⇡)�(� � 1)[⇣(p� Yb) + (Y0 � Yr)]
��2(p� Yb)

2 < 0
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) ⌦
2

2���
1

2�� [⇣(p� Yb) + (Y0 � Yr)] > [⇣(Yg � p)� (Y0 � Yr)]

⇣(⌦� ⌦
2

2���
1

2�� )(p� Yb) < (Y0 � Yr)(1 + ⌦
2

2���
1

2�� ).

Using ⇣⇤ from the first order condition leads to

Y0 � Yr
p� Yb

1 + ⌦���

⌦� ⌦���
(⌦� ⌦

2
2���

1
2�� )(p� Yb) < (Y0 � Yr)(1 + ⌦

2
2���

1
2�� )

1 + ⌦���

⌦� ⌦���
(⌦� ⌦

2
2���

1
2�� ) < (1 + ⌦

2
2���

1
2�� )

�⌦
2

2���
1

2�� + ⌦�+1�� < ⌦(1+ 2
2�� )�

1
2�� � ⌦���

⌦��� < ⌦.

It is straightforward to show, that this second order condition is equivalent to

Inequality (2.5) which follows from Assumption 6:

⌦��� < ⌦

�⌦� < 1

⇡

1� ⇡

✓
Yg � p

p� Yb

◆�

< 1

⇡(Yg � p)� � (1� ⇡)(p� Yb)
� < 0.

It follows that ⇣⇤ is the optimal demand under Case I.

Finally, let us consider the upper bound. Given the single extreme value shown by

the first order condition, the optimal value must be given by the upper bound, whenever

⇣⇤ exceeds the upper bound given by the budget constraint Yr
p
.

It follows for Case I, that the optimal demand is either given by ⇣⇤ or full invest-

ment. ⌅
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2.8.2 Proof of Corollary 1

Corollary 1 follows from a simple transformation of Equation (2.11):

⇣⇤ =
(Y0 � Yr)

(p� Yb)

1 + ⌦���

⌦� ⌦���

=
(Y0 � Yr)

(Yg � p)
⌦
1 + ⌦���

⌦� ⌦���

=
(Y0 � Yr)

(Yg � p)

1 + ⌦��� � ⌦��1�� + ⌦��1��

1� ⌦��1��

=
(Y0 � Yr)

(Yg � p)

✓
1 +

⌦��1��(1 + ⌦)

1� ⌦��1��

◆

=
(Y0 � Yr)

(Yg � p)
+

(Y0 � Yr)

(Yg � p)

⌦��1��(1 + ⌦)

1� ⌦��1��

= ⇣Min +
(Yg � p)⌦��2��(1 + ⌦)(Y0 � Yr)

(p� Yb)(1� ⌦��1��)(Yg � p)

= ⇣Min +
⌦��2��(1 + ⌦)(Y0 � Yr)

(1� ⌦��1��)(p� Yb)

= ⇣Min + IC.

Further, given Inequality (2.5), it can be shown that

⇡(Yg � p)� � (1� ⇡)(p� Yb)
� < 0

�⌦� < 1

⌦��1�� < 1.

This implies that IC > 0 must hold. ⌅

2.8.3 Proof of Corollary 2

The loss recovery component ⇣Min = (Y0�Yr)
(Yg�p) is given by Equation (2.8). It follows

�@⇣Min

@p
< 0.
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Hence, as the price p falls, the loss recovery component declines as well.

From the proof in Appendix 2.8.2 it is clear that IC can be written as

IC =
(Y0 � Yr)

(Yg � p)

⌦��1��(1 + ⌦)

1� ⌦��1��
.

For simplicity, let us denote

 =
⌦��1��(1 + ⌦)

1� ⌦��1��
.

It follows that IC = ⇣Min . This allows us to analyze the components separately

�@ 

@p
= �@⌦

@p
��

 �
�⌦��1 + (� � 1)⌦��2

� �
1� ⌦��1��

�
+
�
⌦� + ⌦��1

�
(� � 1)⌦��2��

(1� ⌦��1��)2

!

= �@⌦

@p

��

(1� ⌦��1��)2
�
(� � 1)⌦��2 + ⌦��1

�
� � ⌦��1��

��

= �@⌦

@p

��⌦��2

(1� ⌦��1��)2
(� � 1 + �⌦� ⌦���) . (2.27)

As @⌦
@p

=
@

Yg�p
p�Yb
@p

< 0, � > 2, and Inequality (2.5) holds, it follows that

�@ 

@p
> 0. (2.28)

Hence, a fall in the price leads to an increase in  . As �@⇣Min
@p

< 0, this implies
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two contrary forces within the investment component. It can be shown that

�@IC

@p
= �@⇣Min

@p
 � ⇣Min

@ 

@p
(2.29)

= � Y0 � Yr

(Yg � p)2
��

�
�2(� � 1)⌦� � (� � 2)⌦��1 � ⌦2��2�� � ⌦�+1

�
� � ⌦��1��

��

(1� ⌦��1��)2

(2.30)

> 0. (2.31)

A lower price leads to a larger investment as the e↵ect on  dominates the e↵ect

on ⇣Min. ⌅

2.8.4 Proof of Lemma 2

The first order condition for the investor’s maximization problem in Case II is given by

@E(U)

@⇣
=⇡�[�⇣(Yg � p) + (Y0 � Yr)]

��1(Yg � p)

� (1� ⇡)�[⇣(p� Yb) + (Y0 � Yr)]
��1(p� Yb) = 0

) �⌦[⇣(p� Yb) + Y0 � Yr]
1�� = [�⇣(Yg � p) + Y0 � Yr]

1��

(�⌦)� [⇣(p� Yb) + Y0 � Yr] = [�⇣(Yg � p) + Y0 � Yr]

⇣[(Yg � p) + (p� Yb) (�⌦)
� ] = (Y0 � Yr)[1� (�⌦)� ]

⇣̂⇤ =
Y0 � Yr
p� Yb

1� (�⌦)�

⌦+ (�⌦)�
. (2.32)

The second order condition is given by

@2E(U)

@⇣@⇣
=� ⇡�(� � 1)[�⇣(Yg � p) + (Y0 � Yr)]

��2(Yg � p)2

� (1� ⇡)�(� � 1)[⇣(p� Yb) + (Y0 � Yr)]
��2(p� Yb)

2 < 0.
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Taking into account the result for the first order condition in Equation (3.1) we

get

��⌦2
h
�⇣̂⇤(Yg � p) + (Y0 � Yr)

i��2
>
h
⇣̂⇤(p� Yb) + (Y0 � Yr)

i��2

��⌦2


�Y0 � Yr

p� Yb

1� (�⌦)�

⌦+ (�⌦)�
(Yg � p) + (Y0 � Yr)

���2

>


Y0 � Yr
p� Yb

1� (�⌦)�

⌦+ (�⌦)�
(p� Yb) + (Y0 � Yr)

���2

��⌦2


1� (�⌦)� + ⌦+ (�⌦)�

⌦+ (�⌦)�

�2��

>


�⌦+ (�⌦)� ⌦+ ⌦+ (�⌦)�

⌦+ (�⌦)�

�2��

��⌦2 [1 + ⌦]2�� > [(�⌦)� (1 + ⌦)]2��

�1 > (�⌦)� ⌦�1. (2.33)

From Equation (2.33) it becomes clear that the second order condition for a local

maximum cannot be fulfilled as the right-hand-side cannot be negative. Hence, there is

no local maximum for the expected utility in Case II.

It is straightforward to see that the second order condition for a local minimum

must be fulfilled as �1 < (�⌦)� ⌦�1. Hence Equation (3.1) always describes the mini-

mum of the subjective expected utility. Consequently, the optimal demand is given by

the corner solutions.

Following Assumption 6, the investment has a negative subjective expected re-

turn, i.e. �⌦ < 1. It follows that the minimum ⇣̂⇤ is given by a positive investment.

Consequently, there are feasible ⇣ to both sides of the minimum. This and the fact

that Equation (3.1) describes the only extreme point imply that the investor needs to

decide between investing the minimal amount ⇣ = 0, i.e. abstaining from the market,

and investing the maximum amount ⇣ = Yr
p
.

The intuition here is as follows. On the one hand, a higher investment leads to

higher expected losses, which makes investments less attractive. On the other hand, a
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larger investment implies more risk which together with the risk seeking preferences of

the investor lead the asset to be more attractive. Depending on which of the e↵ects is

stronger, the investment is either zero or equal to the budget constraint. ⌅

2.8.5 Proof of Lemma 3

For the investor, the crucial question is whether to abstain or to invest. Consequently,

it comes down to whether the utility of buying ⇣⇤ is larger or equal than the utility of

not investing.

Re-entering with ⇣⇤ implies full recovery of the initial loss as in Equation (2.6)

while abstaining from the market implies a certain loss. In order for re-entering to be
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optimal, it must thus hold that:

E(U(⇣⇤)) � E(U(⇣ = 0))

⇡ [⇣⇤(Yg � p)� (Y0 � Yr)]
� � (1� ⇡) [⇣⇤(p� Yb) + (Y0 � Yr)]

� � �(Y0 � Yr)
�

⇡


⌦
1 + ⌦���

⌦� ⌦���
� 1

��
� (1� ⇡)


1 + ⌦���

⌦� ⌦���
+ 1

��
� �1

⇡


⌦+ ⌦�+1�� � ⌦+ ⌦���
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1
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◆��
� �1
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✓
IC

⇣Min

◆� ✓ 1

⌦��
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� 1

�
� 1  0.

This condition must be fulfilled for a positive demand in case of an interior

solution. ⌅

2.8.6 Proof of Proposition 1

Proposition 1 consists of two components. First, a lower price leads to a positive demand

by the investor. Additionally, Proposition 1 states that there is a jump in the demand.

According to Lemma 3, positive demand for an investor within Case I is depen-

41



dent on Condition (2.16) being fulfilled

⇡

✓
IC

⇣Min

◆� ✓ 1

⌦��

◆�

� 1

�
� 1  0.

As in Appendix 2.8.3, I denote  = IC

⇣Min
leading to

⇡ �

✓
1

⌦��

◆�

� 1

�
� 1  0.

To see how a lower p influences this condition, consider the negative derivative

of the left-hand-side with respect to p.

�@LHS

@p
= ⇡�

�
⌦������ � 1

�

 1��

@ 

@p
� ⇡ ���

(⌦����1���)

@⌦

@p
.

The first derivative of  is given by Equation (2.27)

@ 

@p
=

@⌦

@p

��⌦��2

(1� ⌦��1��)2
(� � 1 + �⌦� ⌦���) .

It follows that
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.

42



Given that @⌦
@p

< 0,  = IC

⇣Min
> 0, and ⌦ > ⌦��� , it follows that

�@LHS

@p
< 0.

A decline in the price p lowers the left-hand-side of Condition (2.16) and hence,

makes it more likely to be fulfilled. Lemma 3 states, that whenever this condition is

fulfilled, the investor demands a positive amount.

Let us now consider the second component. Lemma 1 implies ⇣⇤ > 0. Given that

an abstention from the market leads to zero demand, there must be a jump in demand

once Condition (2.16) is fulfilled. ⌅

2.8.7 Proof of Proposition 2

Following Lemma 1, the optimal demand by the investor is given by

⇣⇤ =
(Y0 � Yr)

(p� Yb)

1 + ⌦���

⌦� ⌦���
.

The demand is consequently positively dependent on the prior loss with respect

to the reference value (Y0 � Yr).

Lemma 3 provides the condition for re-entering

⇡

✓
IC

⇣Min

◆� ✓ 1

⌦��

◆�

� 1

�
� 1  0.

Keeping in mind that IC

⇣Min
= ⌦��1��(1+⌦)

1�⌦��1�� , this condition is independent of the

prior loss Y0 � Yr.

It follows that the decision whether to re-enter is independent of the prior loss

and the reference value, while the amount demanded increases linearly. ⌅

43



2.8.8 Proof of Proposition 3

a) The higher the reference value of the CPT investors, the higher is the probability of

a dead cat bounce and the larger its expected size:

It is straightforward to show that

@D(p)

@Y0
=

(1� x)

p

(1 + ⌦���)

⌦� ⌦���
> 0 (2.34)

@pR
@Y0

= 0 (2.35)

@S(p)

@Y0
= 0. (2.36)

The demand function becomes steeper, while the price of the jump pR and the sup-

ply function (S(p)) remain unchanged. Given this, the equilibrium price p⇤ for which

D(p⇤) = S(p⇤) increases while the rest remains the same, leading to a larger dead cat

bounce as @(p⇤�pt)
@Y0

= @p
⇤

@Y0
> 0. Furthermore, as p⇤ increases, S�1(0) and pR remains the

same. As illustrated in figure 2.12, the area which leads to a DCB hence increases and

the area for no DCB shrinks. ⌅

b) The larger the share of RA investors n, the smaller is the possible dead cat bounce:

An increase in the share of RA investors has no e↵ect on the actual demand function

@D(p)

@n
= 0

it is therefore reasonable to assume that the curvature of the anticipated demand function

⌥ does also not react. As

@S(p)

@n
=

w(1� ⌦✏�✏)

p(⌦+ ⌦✏�✏)
and

@2S(p)

@n@p
> 0, (2.37)
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the supply curve increases with n for high prices (1 > ⌦�) and decreases for low prices

(1 < ⌦�). Let us consider the case where there exists a DCB, i.e. p⇤ > pt. We know from

above that @D(p)
@n

=
@⌥pt (pt+1)

@n
= 0, consequently, the change in the intersection of S(p)

with D(p) and ⌥pt(pt+1), respectively, given a higher n depends purely on the change in

the supply function. Given that @
2
S(p)

@n@p
> 0, it must be true that @(p⇤�pt)

@n
< 0 for a given

pt. It follows that the size of the DCB p⇤�pt decreases as n increases, if there is a DCB. ⌅

c) A lower share of RA investors n or a lower share of initial holdings held by RA

investors x increases the probability that the dead cat bounce happens in a later period:

As illustrated in Figure 2.12, if pR � pt � p⇤, there is no DCB. A pt > pR would imply

that there is no trade in this period and the suppliers adjust their o↵ers according to

pt+1. This pt+1 can then either fall in the DCB or no DCB area. Let us consider the

e↵ect of a change in pt on the possibility of a DCB occurring in a later period. A DCB

can only occur in a later period (t+ 1,...) if pt > pR. Hence, an increase of pt over this

threshold would make it possible for a DCB to occur in the next period. A decrease in

pt would not a↵ect the probability of a DCB in the next period as long as pt < pR. As

mentioned before,

@S(p)

@n
=

w(1� ⌦✏�✏)

p(⌦+ ⌦✏�✏)
. (2.38)

As @S(p)
@n

> 0 for negative expected return (1 > ⌦�), the supply function in this region

shifts upwards. This implies, that the anticipated maximum demand and the supply

function intersect for a small pt if they intersect in this region. It must hence be true

that @pt
@n

< 0 for negative expected return. If it holds that ⇡(1�pR)� (1�⇡)pR < 0, i.e.

if the CPT investors are willing to re-enter the market with negative expected returns,

then @S(pR)
@n

> 0. Further this implies that a lower n could push pt over the threshold pR

and thereby delay a potential DCB. Consequently, a lower n can increase the probability
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that the DCB occurs in a later period.

The same logic also applies to a change in the initial share x of the asset held by

RA investors.

@S(p)

@x
=

p0(1� ⌦✏�✏)

p(⌦+ ⌦✏�✏)
(2.39)

As @S(p)
@x

> 0 for negative expected return (1 > ⌦�), it must be true that @pt
@x

> 0 in

this case. Hence, a higher x could push pt over the threshold pR and thereby delay a

potential DCB. ⌅

2.8.9 Corner solutions in the optimization

The following analysis focuses on cases where the budget constraint is binding i.e. the

investor cannot invest his optimal amount.

By definition, in Case I the investor is still able to recover his initial loss despite

the budget constraint. In Case II, he is unable to recover the loss fully. In either of

the two, he has a lower utility compared to the unbound case. Ceteris paribus, he will

therefore not re-enter at the marginal point where an unbound investor would.

The investor will re-enter if and only if the utility of re-entering exceeds the utility

of not investing. For Case I this implies the following condition:

E
�
u+ (⇣ = Yr/p)

�
� E

�
u� (⇣ = 0)

�

⇡


Yr
p
(Yg � p)� (Y0 � Yr)

��
� (1� ⇡)


Yr
p
(p� Yb) + (Y0 � Yr)

��
� � [Y0 � Yr]

�

�⇡


YrYg
p

� Y0

��
+ (1� ⇡)


Y0 �

YrYb
p

��
 [Y0 � Yr]

� . (2.40)

To see the reaction of the condition to a further fall in the price, consider the
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negative first derivative of the left-hand-side.

�@LHS

@p
= �⇡�


YrYg
p

� Y0

���1✓
�YrYg

p2

◆
+ (1� ⇡)�


Y0 �

YrYb
p

���1 YrYb
p2

> 0. (2.41)

A lower price increases the left-hand-side of Condition (2.40). Hence a lower p

can lead the condition to be fulfilled.

The same can be shown for Case II:

E
�
u� (⇣ = Yr/p)

�
� E

�
u� (⇣ = 0)

�

�⇡


�Yr

p
(Yg � p) + (Y0 � Yr)

��
� (1� ⇡)


Yr
p
(p� Yb) + (Y0 � Yr)

��
� � [Y0 � Yr]

�

⇡


1� Yr

p

Yg � p

Y0 � Yr

��
+ (1� ⇡)


1 +

Yr
p

p� Yb
Y0 � Yr

��
 1, (2.42)

�@LHS

@p
=⇡�


1� Yr

p

Yg � p

Y0 � Yr

���1✓ Yr
(Y0 � Yr)

Yg
p2

◆

+ (1� ⇡)�


1 +

Yr
p

p� Yb
Y0 � Yr

���1✓ Yr
(Y0 � Yr)

Yb
p2

◆

>0. (2.43)

A fall in the price may be su�cient for an unbound investor to re-enter the

market, while an investor bound by his budget constraint would not invest. When the

price falls further, the investor’s budget constraint relaxes and the investment becomes

more profitable. Hence, the investor will enter the market for lower p, i.e. at a later

point in time.

It is straightforward to see, that both Conditions (2.40) and (2.42) depend on

the initial loss and hence, the reference value and the disposable wealth. This has to
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be the case, as the budget constraint is given by the disposable wealth and the case

di↵erentiation depends on the initial loss.

Whenever Conditions (2.40) and (2.42), respectively, are fulfilled, the investor re-

enters the market. In the cases I consider here, the investor dedicates all his disposable

wealth to the investment whenever he re-enters. This implies that the demand jumps

from zero to the budget constraint Yr/p. Hence, there is still a sudden increase in

demand.

Figure 2.13 illustrates the case where the investor has no chance to fully recover

his initial losses. This case is identical to the one depicted in Figure 2.6, only that there

is a larger initial loss due to a higher reference value Y0 and a lower recovery price Yr.

Again, the solid line is given by the demand while the dashed line illustrates

Assumption 6. Additionally, the dotted line illustrates Condition (2.9). For a price p to

the left of this line, the initial loss can be recovered and hence it follows Case I. At this

point, the investor continues investing all his disposable wealth.

Due to the higher loss, the investor is willing to invest a much larger amount.

At the marginal point, the highest price he is willing to invest, he is demanding nearly

120% of what he possessed before the burst.

2.8.10 Change in results if � 6= 1

This section outlines the implications of a loss aversion parameter � di↵erent from unity.

As mentioned in Section 2.3, the experimental evidence indicates � ⇡ 2.25, however, this

does not change the central results.

The investor’s expected utility, equivalent to Equation (2.7), is now given by

E(U) = ⇡[⇣(Yg � p)� (Y0 � Yr)]
� � (1� ⇡)�[⇣(p� Yb) + (Y0 � Yr)]

�
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leading to

⇣⇤ =
(Y0 � Yr)

(p� Yb)

1 + ⌦��̂�

⌦� ⌦��̂�

with ⌦ = Yg�p

p�Yb
> 0, �̂ = ⇡

1�⇡

1
�
> 0 and � = 1

1��
> 0.

Note that the results is the same as in Equation (2.11) apart from �̂. �̂ is the

ratio of the subjective probability for the good state and the subjective probability of

the bad state (�) weighted by the inverse of the loss aversion parameter. The higher

the loss aversion parameter, the lower the optimal demand.

The second order condition is accordingly given by

⌦��1�̂� < 1

or

⇡(Yg � p)� � (1� ⇡)�(p� Yb)
� < 0

and must be fulfilled as Inequality (2.5) is given.

It follows, that the decomposition in Corollary 1 remains valid only that

⇣⇤ = ⇣Min + ˆIC

with ˆIC = ⇣Min ̂ and  ̂ = ⌦��1�̂�(1+⌦)

1�⌦��1�̂�
> 0.
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Corollary 2 remains valid as

�@ ˆIC

@p
= �@⇣Min

@p
 ̂� ⇣Min

@ ̂

@p

= � Y0 � Yr

(Yg � p)2
�̂�

⇣
�2(� � 1)⌦� � (� � 2)⌦��1 � ⌦2��2�̂� � ⌦�+1

⇣
� � ⌦��1�̂�

⌘⌘

⇣
1� ⌦��1�̂�

⌘2

> 0.

In case I, the loss aversion parameter appears in both states of the expected

utility as both states lead to a loss with respect to the reference value. It follows that

E(U) = ⇡u� (xg) + (1� ⇡)u� (xb)

= �⇡�[�⇣(Yg � p) + (Y0 � Yr)]
� � (1� ⇡)�[⇣(p� Yb) + (Y0 � Yr)]

� .

The optimization leads to the minimum

⇣̂⇤ =
Y0 � Yr
p� Yb

1� (��⌦)�

⌦+ (��⌦)�
,

which is equivalent as the one in Equation (3.1). Similarly the second order

condition is the same as well. Hence, the results for Case II do not change.
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The decision to re-enter given by Lemma 3 is now defined by

E(U(⇣⇤)) � E(U(⇣ = 0))

⇡ [⇣⇤(Yg � p)� (Y0 � Yr)]
� � (1� ⇡)� [⇣⇤(p� Yb) + (Y0 � Yr)]

� � ��(Y0 � Yr)
�

 ̂�

"
⇡

�
� (1� ⇡)

✓
1
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#
� �1

(1� ⇡)�̂ ̂�

"
1� 1

�̂

✓
1

⌦��̂�

◆�
#
� �1

(1� ⇡)�̂ ̂�

✓
1

⌦��̂

◆�

� 1

�
� 1  0.

While the expression in Lemma 3 changes, it is straightforward to see that the

conclusions from it given by Propositions 1 and 2 remain valid.

Hence, I conclude that the results are not a↵ected by the simplification of setting

the loss aversion parameter � = 1.

2.8.11 On assumption 3

Assumption 3 is not necessary for the results in this paper to hold. However, the assump-

tion allows for one parameter to be omitted and requires one less case di↵erentiation.

Denoting by X0 the initial holdings, it follows that

E(U) =⇡ [⇣(Yg � p)� (Y0 � Yr)X0 + (1�X0)]
�

� (1� ⇡) [⇣(p� Yb) + (Y0 � Yr)X0 � (1�X0)]
�

⇣⇤ =
(Y0 � Yr)X0 � (1�X0)

(p� Yb)

1 + ⌦���

⌦� ⌦���
.

This is the case as long as ⇣(Yb�p)� (Y0�Yr)X0+(1�X0) < 0. If this is not given, the

investor is not loss driven and therefore will not invest when facing negative expected

returns. A lower initial investment X0 makes this assumption less likely to be fulfilled.
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2.8.12 Partial liquidation

If the investor does not fully liquidate his position at the height of the bubble, the

optimization problem is as follows

E(U) =⇡ [�Y0 + ⇣Yg � (⇣ � (1� S))p+ YrS]
�

� (1� ⇡) [� (�Y0 + ⇣Yb � (⇣ � (1� S))p+ YrS)]
�

=⇡ [⇣(Yg � p) + (p� Y0)(1� S) + (Yr � Y0)S]
�

� (1� ⇡) [⇣(p� Yb)� (p� Y0)(1� S)� (Yr � Y0)S]
� ,

where S is the portion of the portfolio which the investor sells at the height of the

bubble. ⇣ is given by the total amount upon re-entering including the retained portion

of the initial holdings (1 � S). All of the initial holdings lead to a perceived loss of Y0.

The final holdings lead to a payo↵ of either Yg or Yb. For the sold portion the investor

receives Yr, while the non-sold portion (1�S) leads to savings in purchasing cost p. The

optimization leads to

⇣⇤ =
(Y0 � p)� (Yr � p)S

(p� Yb)

1 + ⌦���

⌦� ⌦���
.

When setting the sold portion S to unity, this entails the previous case of

⇣⇤ =
(Y0 � Yr)

(p� Yb)

1 + ⌦���

⌦� ⌦���
.

Given that Yr > p, the total optimal demand ⇣⇤ decreases with a higher sold portion S.
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Figure 2.1: Bursting bubbles followed by bear market rallies
This figure illustrates nine financial bubbles with one or multiple bear market rallies in
stock indices, commodities, and currencies: NASDAQ, Shanghai stock index (SHASHR),
Uranium, Polish Zloty (PLN), Brazilian Real (BRL), Norwegian Crown (NOK), Chilean
Peso (CLP), and South African Rand (ZAR)
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u(x)

x

Figure 2.2: Cumulative prospect theory (CPT) utility function
The figure provides an illustration of a utility function according to cumulative prospect
theory.

Bubble forms

Buys stocks;
Forms Y0

Bubble bursts

Sells portfolio
at price Yr

Create optimal
Portfolio ⇣⇤

at price p

Realization of
final value
Yg or Yb

Figure 2.3: Time line
The box surrounds the area explicitly incorporated into the model. The investor’s actions
are shown below the line, while the market development is above.
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Figure 2.4: Minimum, maximum, and optimal ⇣ I
The solid black line is the minimum ⇣Min as in Equation (2.8). The dashed black line
illustrates the optimum ⇣⇤ as in Equation (2.11). The dashed gray line shows the upper
bound for ⇣ given by the budget constraint. The parameter values are given by: Yg = 60,
Yr = 15, Y0 = 40, Yb = 1, ⇡ = 0.05 and � = 0.8. As in the analysis, I set � = 1.
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Change: ⇡ = 0.1 Change: Yg = 100

Change: Y0 = 50 Change: Yr = 5

Figure 2.5: Minimum, maximum, and optimal ⇣ II
The images illustrate ⇣ as in Figure 2.4 for di↵erent parameter values. The solid black
line is the minimum ⇣Min as in Equation (2.8). The dashed black line illustrates the
optimum ⇣⇤ as in Equation (2.11). The dashed gray line shows the upper bound for ⇣
given by the budget constraint. The 4 graphs illustrate the e↵ect of a change in ⇡, Yg,
Y0 and Yr, respectively, compared to the benchmark case in Figure 2.4.
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Figure 2.6: Proposition 1: Jump in demand
The images illustrate the optimal investment. The black line illustrates the optimum
⇣⇤ as in Equation (2.15) bound by the budget constraint The graph is based on the
parameters Yg = 60, Y0 = 40, Yr = 15, Yb = 1, � = 0.8, and ⇡ = 0.05. As in the analysis
� is set to unity.
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Change: ⇡ = 0.1 Change: Yg = 100

Change: Y0 = 50 Change: Yr = 5

Figure 2.7: Jump in demand with varying parameters
The images illustrate the optimal investment for di↵erent parameters. The black line
illustrates the optimum ⇣⇤ as in Equation (2.15) bound by the budget constraint The
images result from a change in pi, Yg, Y0, and Yr, respectively, compared to the image
in Figure 2.6.
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Figure 2.8: Anticipated maximum demand
The red line illustrates the supply function S(p). The black line illustrates the develop-
ment of the anticipated maximum demand in two steps.

Figure 2.9: Equilibrium price
The red line illustrates the supply function S(p). The black line illustrates the aggregated
optimal demand by the CPT investors.
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Figure 2.10: Example with dead cat bounce
The red line illustrates the supply function S(p). The black line illustrates the aggregated
optimal demand by the CPT investors. The grey line illustrates the development of the
anticipated maximum demand in two steps.

Figure 2.11: Example without dead cat bounce
The red line illustrates the supply function S(p). The black line illustrates the aggregated
optimal demand by the CPT investors. The grey line illustrates the development of the
anticipated maximum demand in two steps.
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Figure 2.12: Condition for a dead cat bounce
The red line illustrates the supply function S(p). The black line illustrates the aggregated
optimal demand by the CPT investors. If the price pt falls in the area marked DCB,
this will lead to a dead cat bounce. Similarly, if pt lies in the no DCB area, there will be
no reversal.

Figure 2.13: Jump in demand in Case II
The solid line shows the demand. The dashed line illustrates Assumption 6 which is
only fulfilled to the right of the line. For p to the left of the dotted line, the investor
can recover his initial loss, i.e. Case I. The parameters are chosen as follows: Yg = 60,
Y0 = 100, Yr = 5, Yb = 1, � = 0.8 and ⇡ = 0.05. As in the analysis, I set � = 1.

61



Chapter 3

Price Discovery and Toxic

Arbitrage
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3.1 Introduction

In recent years, large parts of the financial system have experienced increased fragmen-

tation.1 As assets are traded in multiple venues, this raises the question where price

discovery takes place and how liquidity and information spreads through the market as

a whole.2 Standard techniques for measuring price discovery are designed for high liq-

uidity environments and as fragmentation continues, they will face an increased number

of markets for which this is not always given.

In this paper, I use a new theoretical framework to derive a measure of informa-

tion shares which is more robust when applied to markets subject to low liquidity. It

therefore provides a useful addition to the analysis of multi-venue trading. The measure

builds upon earlier work on toxic arbitrage by Foucault et al. (2016). Toxic arbitrage

opportunities are caused by price deviations between markets due to information arrival

in one market and asynchronous price adjustment in the other. Such arbitrage opportu-

nities therefore provide useful insights into the information dynamics of markets. This

is the first paper to take advantage of the direction of toxic arbitrage opportunities, to

relate this to price discovery, or to use the concept of toxic arbitrage in order to analyze

such dynamics.

The contribution to the literature is twofold. Firstly, I introduce a model which

highlights the importance of the direction of toxic arbitrage opportunities. This al-

lows me to explore the connection between the informational structure of markets, their

spreads and the frequency of toxic arbitrage opportunities. High spreads in one market

serve as a protection not only against informed traders in this market but also against ar-

bitrageurs incentivized by informed traders in the other market. Thereby, higher spreads

in one market lead to fewer toxic arbitrage opportunities initiated by information arriv-

ing in the other market. This connection needs to be taken into account when using the

1see e.g. Gomber et al. (2016).
2see e.g. Tse et al. (2006), Brogaard et al. (2014), and Hendershott and Menkveld (2014).
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informational content of the frequency of toxic arbitrage opportunities. Similarly, higher

transaction fees in either market reduce incentives for informed traders to create toxic

arbitrage opportunities. Lastly, the distribution of the impact of information arriving

in one market will also need to be taken into account. These connections are important

for any future work using toxic arbitrage opportunities.

My second contribution and the main contribution of this paper is the introduc-

tion of a model based Toxic Arbitrage Information Share which corrects for the spreads,

transaction fees, and informational structures of both markets. This measure is fully

theoretically derived and does not share computational similarities with the standard

price discovery shares by Hasbrouck (1995), Gonzalo and Granger (1995), or their exten-

sions. Due to this, the Toxic Arbitrage Information Share avoids the criticism brought

forward e.g. by Gomber et al. (2016). Additionally, the Toxic Arbitrage Information

Share provides approximate confidence intervals which allow to evaluate the precision

of the measure on a given day. In comparison, Hasbrouck (1995) provides approximate

bounds without a proper point estimate. Gonzalo and Granger (1995) does not allow

for confidence intervals.

To emphasize these contributions, I first compare the Toxic Arbitrage Informa-

tion Share to standard procedures using simulated data. The performance of the Toxic

Arbitrage Information Share speaks for its theoretical backing and the simulations show

that it performs comparably or better than standard procedures. In a second step, I

apply the Toxic Arbitrage Information Share to a unique data set combining US dol-

lar/Brazilian real futures traded at the Chicago Mercantile Exchange (CME) and the

Bolsa de Valores, Mercadorias e Futuros de São Paulo (BMF). The interaction of these

two markets is an interesting case to apply the Toxic Arbitrage Information Share. The

products traded are almost perfect substitutes with a su�cient overlap in trading hours.

At the same time, trading is clearly segmented due to high market entry costs and reg-

ulation. Furthermore, one would expect relevant information for the exchange rate to
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originate in both markets and, as Anand et al. (2011) highlight, geographical proximity

matters for price discovery. Finally, the futures market is known to be the driver of price

discovery for Brazilian real (Ventura and Garcia (2012)). Comparing the results from

the Toxic Arbitrage Information Share with the results using the Hasbrouck information

share and the Gonzalo Granger component share, I find that the three information shares

find similar median values. This makes this paper the first to provide empirical evidence

that there is indeed a close relationship between toxic arbitrage and information arrival.

In contrast to other procedures, the Toxic Arbitrage Information Share provides

a less volatile and more persistent estimate. In line with the assessment by market

participants, the Toxic Arbitrage Information Share finds not a single day where CME

is dominating price discovery.3

While this set-up is an interesting application of the new measure, it is clearly

not the only possible application. For an appropriate usage, two markets need to have

overlapping trading hours and the products must represent equivalent assets for arbitrage

to be possible. The measure is hence applicable to a range of cross-listed stocks and assets

traded in multiple venues including currencies, commodities, and derivatives. While low

liquidity environments highlight the benefits of the new measure compared to standard

approaches, higher liquidity can be expected to lead to more arbitrage opportunities and

hence more precise estimates.

The remainder of this paper is structured as follows. The next section provides a

brief overview of the related literature. In Section 3.3, I derive a theoretical model and

develop the toxic arbitrage based information share. Section 3.4 introduces a procedure

of estimating the measure including approximate confidence intervals. In Section 3.5, I

run several simulations in order to evaluate the performance of the procedure. Sections

3.6 and 3.7 provide a description of the data set used and the empirical application of

3According to discussions with stakeholders of the USD/BRL futures market such as market makers,
brokers, traders, and specialists from BMF and CME, market participants consider CME to be irrelevant
for price discovery in the USD/BRL futures market.
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the Toxic Arbitrage Information Share. Section 3.8 concludes the paper.

3.2 Literature

This paper forms part of the wide literature of multi-venue trading and connects the

concept of toxic arbitrage introduced by Foucault et al. (2016) with the literature on

price discovery crucially shaped by Hasbrouck (1995) and Gonzalo and Granger (1995).

Research on multi-venue trading has profited greatly by the the improved availability of

high quality high frequency data and, at the same time, has become more relevant due

to an increased fragmentation across trading venues. With the continuing trend towards

more market segmentation, future research on multi-venue trading is likely to face the

challenge of a higher relevance of potentially low liquidity markets.

There is a substantial literature around arbitrage opportunities as a feature of

market ine�ciency and market frictions. Gromb and Vayanos (2012) provide a broad

overview of the theoretical literature. The presence of arbitrageurs can be beneficial or

harmful to market participants (see e.g. Copeland and Galai (1983) and Gromb and

Vayanos (2002)). Foucault et al. (2016) put this ambiguity at the core of their paper,

di↵erentiating between toxic arbitrage and non-toxic arbitrage. While toxic arbitrage is

information driven and leads to welfare loss as the arbitrageur takes advantage of the

market makers’ latency, non-toxic arbitrage serves as a channel to balance excess liquidity

across markets and is therefore welfare enhancing. In this paper, I use this distinction,

but rather than focusing on welfare e↵ects, I take advantage of the informational content

of toxic arbitrage opportunities in order to analyze price discovery.

O’Hara (2003) highlights that price discovery is one of the principle purposes

of markets. Given that similar or related assets are often traded in multiple venues, a

large part of the literature has therefore focused on the analysis of price discovery in

order to attribute information shares to di↵erent venues. The standard approaches for
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determining price discovery are the information share going back to Hasbrouck (1995)

and the permanent component share by Gonzalo and Granger (1995). Both approaches

are based on the Vector Error Correction Model proposed by Engle and Granger (1987).4

These approaches are the clear benchmark for any analysis of price discovery, but as

papers such as Narayan and Smyth (2015) highlight, there are limitations due to their

underlying assumptions. Some of these limitations are addressed by adaptations in

papers such as Yan and Zivot (2010) and Dias et al. (2016). However, extensions to

the standard approaches still rely on complete limit order books and high frequency in

trades which are not necessarily given in low liquidity markets. In this paper, I therefore

depart from the VECM based price discovery analysis and propose a measure which is

based on the frequency of toxic arbitrage opportunities.

By using individual events to infer price discovery, this paper is closely related to

Muravyev et al. (2013). The authors study disagreement events between the equity and

options market and find that the options market generally adjusts in order to eliminate

disagreements. They take this as evidence that options market quotes do not drive price

discovery. In this paper, I take this idea further and generalize it by creating an event

based price discovery measure.

Most of the multi-venue literature focuses on equity markets. However, there is

also a substantial literature looking at arbitrage and price discovery in foreign exchange

markets (see e.g. Tse et al. (2006), Akram et al. (2008), Ranaldo (2009), and Poskitt

(2010)). Due to its application to foreign exchange futures, this paper is also contributing

to this part of the literature. Ventura and Garcia (2012) find that the futures market in

São Paulo accounts for most of the price discovery compared to the spot market. This

paper is the first to look at the futures market in Chicago and its relevance for price

discovery for the Brazilian real. That the Toxic Arbitrage Information Share does not

need high liquidity may be especially beneficial for the analysis of central versus local

4For a further description of how the procedures are related, see e.g. Baillie et al. (2002)
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trading of currencies, a topic of high political interest.

The next section develops the theoretical model which provides a framework for

the following analysis and the construction of the Toxic Arbitrage Information Share.

3.3 Model

This section provides the theoretical foundation for analyzing the connection between

toxic arbitrage and price discovery. The model is inspired by Foucault et al. (2016).

Similar to their paper, I am di↵erentiating between the arrival of liquidity traders which

potentially leads to non-toxic arbitrage opportunities and informed traders potentially

leading to toxic arbitrage opportunities. While Foucault et al. (2016) focus on the con-

nection between latency and toxic arbitrage, my focus is on the direction and informa-

tional impact of toxic arbitrage opportunities. The direction is determined by where the

information which leads to the toxic arbitrage opportunity arrives first. In order to focus

on price discovery, the model presented here is a simplification of a general equilibrium

model including liquidity traders in both markets. The only e↵ect liquidity traders have

is to make the market makers existence profitable and allow to endogenize the spreads.

The results in this paper and the definition of the Toxic Arbitrage Information Share are

not a↵ected by this simplification. A reason for this is that all results are conditional on

the observed spreads. Consequently, endogenizing the spreads and the market makers’

behavior does not a↵ect the results of the model and has no benefits here.

There are two markets B and C trading the same asset, three dates (t 2 {0, 1, 2}),

two market makers, one in each market, an informed trader in each market, and an

arbitrageur between markets. In total, there are five agents. The central point of this

set-up is that the arbitrageur is the only market participant able and willing to trade

in both markets due to market entry costs. Furthermore, her orders move faster than

information on the prices in each market. Figure 3.1 provides the time line of the model.
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The description below is in reverse order.

At t = 2 the final value ✓ = µ+ ✏ of the asset is realized, where ✏ is the variation

in the fundamental value of the asset following a symmetric distribution around zero.

The expected value of the asset is hence E(✓) = µ+E(✏) = µ. Market maker j 2 {B,C}

is specialized in market j and is only active in this market. Due to the physical distance

between the market places, the information is not instantaneously available in both

markets potentially leading to short lived arbitrage opportunities.

At t = 1, market makers simultaneously post ask price aj and bid price bj for

j 2 {B,C} such that:

aj = µ+
Sj

2
, and bj = µ� Sj

2
, (3.1)

where Sj is market maker j’s bid-ask spread. In this simplification of the model, the

spreads are taken as exogenous, however, all results also hold in the general equilibrium

case. Quotes are for a fixed quantity, normalized to 1.

There are two possible events in this model. With probability �b, an informed

trader arrives in market B and with probability (1 � �b) an informed trader arrives in

market C. Each of these events has the potential of causing a toxic arbitrage oppor-

tunity. The informed trader observes ✏, the change in the fundamental value at time

t = 1. Hence, he uses this information to trade before the information becomes public

knowledge at time t = 2. This news arrival via the informed trader can lead to what

Foucault et al. (2016) describe as toxic arbitrage.5 Toxic arbitrage opportunities are not

considered welfare improving. The arbitrageur uses his lower latency in order to trade

against stale trades by the other market maker.

The price impact of the informed trader’s information is given by ✏. I do not

assume that the distribution of ✏ is independent of where the informed trader arrives.

5It is a central di↵erence between the model used by the authors and the one used in this paper, that
not all information arrival leads to toxic arbitrage opportunities.
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Hence, informed traders in market B may have higher or lower price impact information

than informed traders arriving in market C. Let us denote by nj the price impact of the

information which the informed trader j holds and by n+
B

the absolute size of the price

impact.

Say, an informed trader arrives in market B with information that the asset is

overpriced (nB < 0). It follows, that the true value of the asset which is only observed by

the informed trader is given by ✓ = µ�n+
B
. The informed trader has two ways to taking

advantage of his information. He can execute a sell market order and trade directly

against market maker B’s best bid. This is the traditional way of informed trading as in

e.g. Kyle (1985). Additionally, the informed trader also has the option of posting a sell

limit order to be picked up by the arbitrageur. The informed trader will take advantage

of both options as long as it is profitable to do so. In the next step, let us look at the

profitability condition in more detail.

When using a market order, the informed trader trades at price bB = µ � SB
2

leading to the following profits for the informed trader and market maker B, respectively,

ProfitInfM = bB �
�
µ� n+

B

�
� c =

✓
µ� SB

2

◆
�
�
µ� n+

B

�
� c (3.2)

= n+
B
� SB

2
� c, (3.3)

ProfitMMB =
�
µ� n+

B

�
� bB = µ� n+

B
�
✓
µ� SB

2

◆
(3.4)

= �
✓
n+
B
� SB

2

◆
, (3.5)

where c is given by transaction fees per transaction. The fees are assumed to be equal

across venues. The informed trader arriving in market B will only use a market order

if this results in a profit.6 Let us denote by nB, the price impact of information which

6The results for positive information with price impact n+
B are equivalent.
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leads to a zero profit. It follows that

nB � SB

2
� c = 0

nB =
SB

2
+ c. (3.6)

For all information where n+
B
< nB, the informed trader arriving in market B will not

execute a market order. More generally, if the price impact in absolute terms (n+
B
)

does not exceed the threshold, the informed trader will not execute a market order.

This shows that both transaction fee c as well as the spread SB make it harder for the

informed trader to use his private information. Both c and SB serve as a protection for

market maker B.

Additionally, the informed trader has the option of using a sell limit order. He

does so in order to incentivize the arbitrageur to trade against him. This means that the

informed trader posts a limit order at the highest price which still makes it profitable

for the arbitrageur to trade. This price denoted by aT
B

needs to be lower than the best

ask aB by market maker B so that the informed trader’s limit order is now the best ask

in market B.

The price aT
B

is hence given by

aTB = aB � �

= µ+
SB

2
� �, (3.7)

where � > 0. The informed trader chooses � in order to incentivize the arbitrageur to

trade against her limit order. Consequently, � is the price improvement the informed

trader needs to o↵er compared to the market maker’s best price in order to make it

profitable for the arbitrageur to trade. The arbitrageur will buy at this price if he can

make a profit by simultaneously selling the asset in market C. Due to the trades in both
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markets, the arbitrageur incurs a total cost of 2c. The profit of the arbitrageur is then

given by

ProfitArb = aTB � bC � 2c

=

✓
µ� SC

2

◆
�
✓
µ+

SB

2
� �

◆
� 2c

= � � SC + SB

2
� 2c. (3.8)

The informed trader will choose the smallest � which still leads the arbitrageur to engage

in arbitrage, i.e.

� =
SC + SB

2
+ 2c, (3.9)

leading to ProfitArb = 0. In this case, the informed trader uses the arbitrageur as a

channel to trade against market maker C. � can also be thought of as the price of the

arbitrageurs’ service of providing a channel for indirectly trading against the market

maker in the other market. Using a limit order results in the following profits

ProfitArb = bC � aTB � 2c =

✓
µ� SC

2

◆
�
✓
µ+

SB

2
� �

◆
� 2c

= �SC + SB

2
+ � � 2c = 0, (3.10)

ProfitInfL = aTB �
�
µ� n+

B

�
� c

=

✓
µ+

SB

2
� �

◆
�
�
µ� n+

B

�
� c

= n+
B
� SC

2
� 3c, (3.11)

ProfitMMC =
�
µ� n+

B

�
� bC =

�
µ� n+

B

�
�
✓
µ� SC

2

◆

= �
✓
n+
B
� SC

2

◆
. (3.12)

Given a su�ciently large price impact of the information, each market maker
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j consequently incurs a loss of �
⇣
n+
B
� Sj

2

⌘
. The informed trader is trading directly

against market maker B and uses the arbitrageur to trade indirectly against market

maker C. Combining the two sub-profits of the informed trader in Equations (3.3) and

(3.11) leads to a total profit of

ProfitInf =ProfitInfM + ProfitInfL

=

✓
n+
B
� SB

2
� c

◆
+

✓
n+
B
� SC

2
� 3c

◆

=2n+
B
� SB + SC

2
� 4c. (3.13)

However, following the same logic as above, the informed trader arriving in market

B will only use a limit order if it is profitable to do so. The profit for the informed trader

of using a limit order is given in Equation (3.11) by

ProfitInfL = n+
B
� SC

2
� 3c.

Following the same logic as before, the informed trader will only use a limit order if his

profit is positive. Hence, I define the informational impact which leads to a zero profit

from a limit order as n⇤
B
. For all information where n+

B
< |n⇤

B
|, the informed trader will

not post a limit order in market B. It follows that

n⇤
B � SC

2
� 3c = 0

n⇤
B =

SC

2
+ 3c. (3.14)

Figure 3.2 illustrates the optimal decision making of the informed trader. A high spread

in both markets relative to the information impact n+
B
implies that the informed trader

takes no action as shown in the upper right corner. A high spread in market B and a

low spread in market C leads to the informed trader only choosing a limit order. The
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reverse implies that the optimal choice is only to use a market order. If both spreads

are su�ciently narrow compared to the price impact of the information, the informed

trader will use both order types.

Let us now consider the case where an informed trader arrives in market C.

The probability of this happening is given by (1 � �b). The solutions for this case are

symmetric to the case where the informed trader arrives in market B. It follows that

nB =
SB

2
+ c nC =

SC

2
+ c (3.15)

n⇤
B =

SC

2
+ 3c n⇤

C =
SB

2
+ 3c. (3.16)

The lowest profitable impact of news for a market order in market j is given

by nj . n⇤
j
is the lowest profitable impact of news for a limit order. Hence, nj is the

threshold for informed traders arriving in market j to trade profitably against market

maker j. n⇤
j
is the threshold for informed traders arriving in market j to use a limit

order to be picked up by the arbitrageur. Consequently, n⇤
j
will determine the number of

toxic arbitrage opportunities. Say the price impact of an informed trader’s information

arriving in market B is between nB and n⇤
B
. In this case, the informed trader will only

execute a market order but not submit a limit order. The market order will take up

liquidity and potentially widen the spread by emptying the best price in market B. This

will not lead to an arbitrage opportunity. Arbitrage opportunities can only be caused

by the submission of limit orders as a limit order narrows the spread in a market. If the

spread becomes su�ciently narrow, this opens an arbitrage opportunity. Market orders

can only widen the spread and therefore cannot lead to arbitrage opportunities.

These thresholds hold given that both limit and market orders incur the same

transaction fees. Under make-take fees, where liquidity providers receive a fee rather than

paying one, the trade-o↵ naturally changes. Rather than having to take into account

three times the fee, the informed investor would calculate with a mix of make and take
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fees. Overall, this is likely to make limit orders more attractive and, ceteris paribus,

lead to more arbitrage opportunities. While this is not the focus of this paper, the

theoretical model presented here provides a valuable foundation for such analysis of the

link between fee structure and information dynamics across venues. Compared to the

spreads in each venue, the fees are generally very small. Due to this, the overall impact

of the fee structure on the Toxic Arbitrage Information Share will be small as well.

Comparing nj and n⇤
j
as displayed in Equations (3.15) and (3.16), I find

nj =
Sj

2
+ c < n⇤

k =
Sj

2
+ 3c. (3.17)

nj is smaller than n⇤
k
for j 6= k and j, k 2 {B,C}. This implies that it is easier for

market maker j to deter an informed trader arriving in market k from using a limit

order than to deter an informed trader arriving in (his) market j from using a market

order. It is easier for a market maker to defend himself against informed traders in

other markets than against informed traders in the same market. The reason for this

is that an informed trader using a limit order to incentivize the arbitrageur needs to

compensate the arbitrageur for his transaction costs. In presence of make-take fees, this

does not necessarily hold. The fee structure across venues hence has a direct impact on

the informational dynamics between them. In the next step, I use my model in order to

find the information share using the relative share of toxic arbitrage opportunities.

3.3.1 Toxic Arbitrage Information Share

The probability for seeing a toxic arbitrage opportunity initiated in market B and C,

respectively, is given by

ProbB/C = �b ⇤ Prob
�
n+
B
> n⇤

B

�
(3.18)

ProbC/B = (1� �b) ⇤ Prob
�
n+
C
> n⇤

C

�
. (3.19)
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This is the probability that the informed trader arrives in the initiating market multiplied

by the probability that the price impact of the information is su�ciently large for the

informed trader to use a limit order.

It follows that the relative frequency of toxic arbitrage opportunities is given by

Tox =
ProbB/C

ProbB/C + ProbC/B

=
1

1 +
⇣
(1��b)

�b

⌘✓
Prob(n+

C>n⇤
C)

Prob(n+
B>n⇤

B)

◆ . (3.20)

This is the percentage of toxic arbitrage opportunities which is initiated by informed

traders arriving in market B. The ratio Tox clearly di↵ers from the true information

share which can be thought of as the cumulative price impact of information arriving in

this market relative to the overall information arriving. The latter is given by

IS⇤ =
�bE

�
n+
B

�

�bE
�
n+
B

�
+ (1� �b)E

�
n+
C

�

=
1

1 +
⇣
(1��b)

�b

⌘✓
E(n+

C)
E(n+

B)

◆ . (3.21)

For brevity, let us introduce the following notation

�b =

✓
(1� �b)

�b

◆
,  =

 
Prob

�
n+
C
> n⇤

C

�

Prob
�
n+
B
> n⇤

B

�
!
, � =

 
E
�
n+
C

�

E
�
n+
B

�
!
, (3.22)

where �b indicates how likely it is for news to arrive in market C compared to marked B.

 is the probability that news arriving in market C lead to a toxic arbitrage opportunity,

relative to the probability of news arriving in market B to do so. A  larger than unity

implies that it is more likely for an informed trader arriving in market C to cause a toxic

arbitrage opportunity than for an informed trader arriving in market B. � is given by

the expected impact of news arriving in market C relative to the expected price impact
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of news arriving in market B. A � larger than unity implies that information from

informed traders arriving in market C have a higher expected absolute price impact

than information from traders arriving in market B. Using this notation, I solve Tox in

Equation (3.20) for the unobservable �b

Tox =
1

1 +�b 
(3.23)

) �b =
(1� Tox)

 Tox
(3.24)

and substitute this in Equation (3.21) for the true information share

IS⇤ =
1

1 +�b�

=
1

1 + (1�Tox)
 Tox

�
. (3.25)

Equation (3.25) provides a way to correct the di↵erence between the relative toxic ar-

bitrage share and the true information share. In line with the idea that toxic arbitrage

opportunities are caused by information arrival, more information arriving in market B

leads to a higher Tox. A higher Tox in turn is associated with a higher information share

IS⇤. Following Equation (3.17), a lower spread in market B leads to a lower threshold

n⇤
C
for information arriving in market C to cause a toxic arbitrage opportunity. A lower

n⇤
C
increases Prob

�
n+
C
> n⇤

C

�
and thereby  . Consequently, a lower spread in market B

is associated with a higher IS⇤ given Tox. More intuitively, a higher spread in market

B makes it harder for informed traders in market C to take advantage of their informa-

tion using limit orders. Therefore, the information is less likely to cause an arbitrage

opportunity and Tox will underestimate the true information share IS⇤.

This specification of IS⇤ in Equation (3.25) provides us with a toxic arbitrage

based information share which only depends on three parameters: Tox, and �. All of

these parameters can be approximated by observable information and consequently it is
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possible to calculate this Toxic Arbitrage Information Share. It is worth noting that the

identity in Equation (3.25) holds, independently of the distribution of information price

impacts. The only underlying assumptions are that the expected average price impact

is zero and that the distribution is symmetric.

In the next section, I propose a procedure for estimating the Toxic Arbitrage

Information Share.

3.4 Estimation procedure

In order to estimate the Toxic Arbitrage Information Share, I need estimates for the

three parameters Tox,  and �. The first step of the following procedure regards the

identification of toxic arbitrage opportunities. The second step addresses the estimation

of  and �.

3.4.1 Classification of toxic arbitrage opportunities

An arbitrage opportunity is given when the spread between the best bid in one market

and the best ask in the other exceeds the costs of taking advantage of the arbitrage

opportunity. Hence, it must be given that

bk � aj > 2ck + 2cj where k, j 2 {C,B}, k 6= j, (3.26)

where ck and cj are the transaction fees per one asset traded in market k and j, respec-

tively. We need to take into account two transactions in each market as the arbitrageur

also incurs costs when closing his position in each market after the arbitrage opportunity

ceased.

Building on the description of asynchronous price adjustment by Schultz and

Shive (2010), Foucault et al. (2016) introduce the concept of toxic arbitrage as arbitrage

opportunities due to information arriving in one of the markets. As shown in the model
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above, such arbitrage opportunities are expected to be initiated by a price movement

in the market where the information arrives as the informed trader posts a limit order.

Toxic arbitrage opportunities end with a price movement in the market which did not

initiate it, as the price in that market adjusts due to arbitrage. Arbitrage due to infor-

mation implies that the resulting price movement is permanent. Foucault et al. (2016)

focus on this fact by classifying toxic arbitrage opportunities as arbitrage opportunities

resulting in price movements in both markets in the same direction, i.e.

(bC;post � bC;pre) (aB;post � aB;pre) > 0 and (3.27)

(aC;post � aC;pre) (bB;post � bB;pre) > 0, (3.28)

where bj;post and aj;post are the bid and ask prices in market j 2 {C,B} after the

arbitrage opportunity ends and bj;pre and aj;pre are the bid and ask prices just before

the arbitrage opportunity begins. I am slightly deviating from this definition for two

reasons. Firstly, there is a significant amount of arbitrage opportunities where one of

these prices does not exist, i.e. where the arbitrage opportunity starts with the first

limit order on one side of the limit order book or where the arbitrage opportunity ends

with the emptying of one side of the limit order book, especially in CME. In such cases,

I am unable to compute the price impact of the arbitrage opportunity. Secondly, when

focusing on the price on one side of the limit order book, i.e. bid or ask prices, for

a given arbitrage opportunity, the identification of the arbitrage opportunities may be

falsified by a change in the spreads in one or both markets during the existence of the

arbitrage opportunity. This could be taken care of by taking into account the mid-

price which, however, brings us back to the problem with partially empty limit order

books. In order to avoid these problems, I focus on the chronology of price changes. As

mentioned before, a toxic arbitrage opportunity ends due to a price movement in the

market which did not cause the deviation in price. For each arbitrage opportunity, I
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hence record which market’s price movement opens the arbitrage opportunity and which

market’s price movement closes it. In line with the logic by Foucault et al. (2016), if

these two markets are not identical, this arbitrage opportunity is classified as toxic. This

means that the price deviation was caused by information arriving in one market and

closed by the asynchronous price adjustment in the other market. If these two markets

are identical, I classify this arbitrage opportunity as non-toxic, i.e. as liquidity driven.

For the remainder of this paper, I am using the chronology of price movements for the

identification of toxic arbitrage opportunities.

3.4.2 Estimation of the Toxic Arbitrage Information Share

Tox is given by the ratio of toxic arbitrage opportunities

Tox =
#ToxicBMF/CME

#ToxicBMF/CME +#ToxicCME/BMF

. (3.29)

In order to get an approximation for the relative probability of seeing a toxic arbitrage

opportunity in market C relative to market B ( ) and the average price impact of

information arriving in market C relative to market B (�), I need to make an assump-

tion about the distribution of the price impacts in each market. Similar to standard

econometric techniques, I assume a normal distribution of price impacts in each market

nB ⇠ N (0, �2
B) and nC ⇠ N (0, �2

C), (3.30)

where �j is the standard deviation of the price impact of information arriving in market

j. The mean price impact is zero. In order to calculate �B, I am using the observed

permanent price impacts of information arriving in market B given by the change in

the mid-price. Let us define n+
j
as the absolute price impact of information arriving in
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market j given by

n+
j
= |pB;1min � pB;pre|, (3.31)

where pB;1min is the mid-price in market B one minute after the arbitrage opportunity

closed and pB;pre is the mid-price in market B just before the arbitrage opportunity

opened. For each toxic arbitrage opportunity, I can estimate this price impact if both

mid-prices exist. I am using the mid-prices in market B due to its higher liquidity.

Given the assumption of normality, the distribution of positive observed price

impacts is essentially a truncated normal distribution. The threshold of the truncation

is given by the spread SC and the transaction fees for all relevant transactions. There

are five relevant transactions in every case.7 The expected value of the truncated normal

distribution subject to this threshold is illustrated in Figure 3.3.

Formally, the expected value of the truncated normal distribution is given by

E(n+
B
|nB > n⇤

B) =
�B�

⇣
n
⇤
B

�B

⌘

⇣
1� �

⇣
n⇤
B

�B

⌘⌘ , (3.32)

where �(·) is the probability density function of the standard normal distribution and

�(·) is its cumulative distribution function

�(x) =
1p
2⇡

exp

✓
�1

2
x2
◆
, �(x) =

1

2

⇣
1 + erf(x/

p
2)
⌘
. (3.33)

The average value of the observed positive price impacts should be asymptotically equal

to the expected value of the truncated normal distribution subject to this threshold. By

7As in the calculation of the arbitrage opportunities, I need to take into account all transaction fees
which the arbitrageur is facing. The arbitrageur needs to sell the asset after correction of the arbitrage
opportunity and hence needs to take into account the costs for these trades as well. Additionally, it is
necessary to include the costs for the submission of a limit order by the informed trader. This makes
five transactions in total. As transaction fees are usually low compared with the spread, the transaction
fees play only a negligible role.
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setting E(n+
B
|nB > n⇤

B
) equal to the mean of all positive price impacts of B/C arbitrage

opportunities, I am hence able to derive �B.8 In order to do so, I numerically solve for

�B which solves the equation

mean(n+
B
) =

�B�
⇣
n
⇤
B

�B

⌘

⇣
1� �

⇣
n⇤
B

�B

⌘⌘ . (3.34)

This provides us with an estimate of �B, the standard deviation of price impacts of

information arriving in market B. Given the assumption of a normal distribution with

zero mean, the distribution of price impacts is fully identified. I can now use this

distribution to estimate the denominators of  and � as shown in Equation (3.22). The

denominator of  is the probability for seeing a B/C arbitrage opportunity conditional

on that an informed trader arrives in marketB. This is equal to one minus the cumulative

distribution function of a normal distribution given �B

Prob
�
n+
B
> n⇤

B

�
= 1� Prob

�
n+
B
< n⇤

B

�

= 1� �
✓
n⇤
B

�B

◆
. (3.35)

The denominator of � is the expected positive price impact of information arriving in

market B, which is equivalent to the expected value of a normal distribution truncated

at zero

E
�
n+
B

�
= E (nB|nB > 0)

=
�B� (0)

(1� � (0))

=
2�Bp
2⇡

. (3.36)

8I am using the absolute price impact of all B/C arbitrage opportunities here. Given the assumption
that the underlying distribution of price impacts is symmetric around zero, this does not influence the
results but provides us with more observed price impacts.
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This is illustrated in Figure 3.4.

Following the same steps as above, I can also derive the numerators of  and �

by determining the standard deviation of the distribution of price impacts of information

arriving in market C. This leads to

Prob
�
n+
C
> n⇤

C

�
= 1� �

✓
n⇤
C

�C

◆
and E

�
n+
C

�
=

2�Cp
2⇡

. (3.37)

From here, I am able to identify  and � as

 =
1� �

⇣
n
⇤
C

�C

⌘

1� �
⇣
n⇤
B

�B

⌘ and � =
�C
�B

. (3.38)

When combining this with Tox as in Equation (3.29), I am able to fully identify IS⇤

using Equation (3.25). I denote the resulting measure as Toxic Arbitrage Information

Share (TAIS)

TAIS = IS⇤

=
1

1 + (1�Tox)
 Tox

�

=

✓
1 +

(1� Tox)

Tox
 �1�

◆�1

=

0

@1 +
(1� Tox)

Tox

1� �
⇣
n
⇤
B

�B

⌘

1� �
⇣
n⇤
C

�C

⌘ �C
�B

1

A
�1

, (3.39)

where the thresholds are given by n⇤
B
= SC/2+5c and n⇤

C
= SB/2+5c.9 It is worth not-

ing here that the transaction costs are generally negligible compared with half-spreads.

Hence, half-spreads are the drivers of the adjustment.

In order to calculate the Toxic Arbitrage Information Share, I need to take into

9As mentioned before, the thresholds are the sum of the half-spread and the total transaction fees
involved in the creation and resolution of an arbitrage opportunity.
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account that the spreads are not constant over time. Following the same logic as above,

the detailed approach is presented in Appendix 3.9.1.

3.4.3 Confidence intervals

Equation (3.39) shows the point estimate of the Toxic Arbitrage Information Share. The

measure is based on the ratio Tox and the precision of the measure crucially depends on

the total number of observed toxic arbitrage opportunities. As a next step, I am deriving

a ”density” estimate from this point estimate. We can think of the occurrence of a toxic

arbitrage opportunity initiated in market B given that a toxic arbitrage opportunity

occurs as a success in a Bernoulli trial. The probability of k successes in n trials is hence

given by

P (k) =

✓
n

k

◆
pk(1� p)n�k, (3.40)

where p is the probability of success. In my set-up, I observe the number of ”successes”

k i.e. the number of toxic arbitrage opportunity initiated in market B, as well as the

total number of toxic arbitrage opportunities n. Rather than finding the probability of

k successes given the probability p, it is necessary to derive the probability of success p

given the number of observed successes k. Put di↵erently, I am looking for the density

function of P (p|k). Following Bayes’ rule, I find that

P (p|k) / P (k|p)P (p). (3.41)

Using the non-informative Je↵reys prior for the binomial proportion p given by a Beta(0.5,

0.5) distribution10, I am able to derive the posterior distribution of p given n and k. This

allows me to estimate values of p which bound the 95% confidence interval: p.025 and

10A detailed description of the non-informative Je↵reys prior and its application is given by Gelman
et al. (1995)
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p.975. Using these values in Equation (3.39), rather than the ratio of toxic arbitrage

opportunities Tox, I can estimate a realistic 95% confidence interval between TAIS.025

and TAIS.975 for the Toxic Arbitrage Information Share.

TAIS.025 =

0

@1 +
(1� p.025)

p.025

1� �
⇣
n
⇤
B

�B

⌘

1� �
⇣
n⇤
C

�C

⌘ �C
�B

1

A
�1

(3.42)

TAIS.975 =

0

@1 +
(1� p.975)

p.975

1� �
⇣
n
⇤
B

�B

⌘

1� �
⇣
n⇤
C

�C

⌘ �C
�B

1

A
�1

. (3.43)

These bounds fully capture the uncertainty around the probability of observing a toxic

arbitrage opportunity initiated in market B rather than C given the set of arbitrage

opportunities we observe. However, there is still a degree of uncertainty around the

measures of �j and n⇤
j
for j 2 {B,C}. This uncertainty is not directly captured here

and hence may lead to a moderate underestimation of these bands. When using these

confidence intervals for the TAIS, it makes sense to also use the median of this interval

as the point measure. In this case, it implies a posterior mean of k+0.5
n+1 . While very close

to the measure in Equation (3.39) given by Tox = k

n
, the median measure provides more

conservative estimates as the information share never reaches zero or one.

In the next section, I use this estimation procedure in order to compare the

performance of standard procedures with the Toxic Arbitrage Information Share.

3.5 Simulations

The Toxic Arbitrage Information Share provides a model based measure of information

arriving in each market. It is reasonable to expect this to be similar in size as other

measures of price discovery. The standard procedures for price discovery are given by the

information share (IS) introduced by Hasbrouck (1995) and the permanent component

share (CS) by Gonzalo and Granger (1995).
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As highlighted by Baillie et al. (2002), the computation of the Gonzalo Granger

and Hasbrouck procedures are closely related as both are based on Vector Autoregres-

sion (VAR). Yan and Zivot (2010) and Baillie et al. (2002) highlight the importance of

choosing the frequency when using these procedures. A lower frequency is expected to

lead to wider bands of the Hasbrouck information share, while higher frequency data

may be a↵ected more by microstructure noise. It is one of the central advantages of

the Toxic Arbitrage Information Share that the frequency of the data does not mat-

ter. It is worth noting that the Toxic Arbitrage Information Share purely focuses on

the arrival of information in each market and works in expectation. The information

shares introduced by Gonzalo and Granger (1995) and Hasbrouck (1995) as well as their

numerous extensions have a less narrow definition. The Gonzalo Granger permanent

component share measures the relative influence of the underlying equilibrium price on

each market. It is not straightforward, however, how a market would be able to ad-

just a price towards the long-run equilibrium without some sort of information arrival.

When looking at illiquid markets, there are some problems with data availability. Of

course, all procedures are unable to take into account periods where one of the limit

order books is empty. However, the Toxic Arbitrage Information Share is more flexible

in this regard as it can handle limit order books which are partially empty. Narayan and

Smyth (2015) provide an overview of the assumptions and limitations of the standard

procedures resulting from a simple implementation of the VAR approach. For example,

the VAR system depends on the correct identification of the lag structure and that the

structure does not change over the estimation period. The VAR is also more prone to

errors due to missing observations during the day which interrupt the time series. In

these regards, the Toxic Arbitrage Information Share proposed here is more flexible and

robust. For a detailed description and implementation of the standard procedures see

e.g. Tse et al. (2006), Chen and Gau (2010), and Yan and Zivot (2010).

In the remainder of this section, I am running several simulations in order to
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compare the performance of the Toxic Arbitrage Information Share with the Hasbrouck

information share as well as the Gonzalo Granger permanent component share. The

first simulations are based on the theoretical framework introduced in Section 3.3. The

purpose of these simulations is to see if the estimation procedure outlined above does in

fact lead to e�cient results under the assumptions of the model. In order to evaluate

the robustness of the Toxic Arbitrage Information Share to other price dynamics, I am

additionally using a more neutral structure in the spirit of Hasbrouck (2002) adapted to

reflect lower liquidity.

3.5.1 Model-based simulation

The following simulations incorporate the idea of the arbitrageur as a channel to trade

in other markets. The exact simulation model is provided in Appendix 3.9.2.

It follows a four period sequence. In the first period, the informed trader acts

according to the innovation to the e�cient price. As in the model in Section 3.3, the

informed trader chooses limit orders and market orders optimally. In the second period,

the arbitrageur acts if there is an arbitrage opportunity. In periods three, the market

makers learn about the innovation and react if the informed trader arrived in that

market. In the last period, the other market maker learns about the innovation in the

e�cient price, adjusts his prices, and brings the market back to equilibrium. After this,

the sequence begins again. The data is simulated with market C as the less liquid

market having a spread twice as wide as market B. The Toxic Arbitrage Information

Share is estimated following the steps outlined in Section 3.4 using the resulting best

bid and o↵er11. The Hasbrouck and Gonzalo Granger procedure are estimated using the

resulting mid-price.

Figure 3.5 illustrates the results for di↵erent underlying information shares each

using 100 simulations. The x-axis shows the underlying information share of market

11In these simulations, there is no di↵erence between the two point measures discussed in the previous
section.
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B while the y-axis is given by the measured information shares. The dashed black 45

degree line hence marks an unbiased estimate.

The red line shows the median Toxic Arbitrage Information Share (TAIS) re-

sulting from the simulations. The red shaded error bands show the area engulfing 90%

of the estimates. The results for the permanent component share (CS) are given in

blue. When using the procedure introduced by Hasbrouck (1995), the information share

depends on the ordering of the variables and can di↵er substantially. In the two vari-

able case, the two possible orderings provide what is generally considered an upper and

a lower bound. Hasbrouck (2002) shows that all permutations need to be taken into

account. The two green shaded areas illustrate the error bands around the upper and

lower bound of the Hasbrouck information share (IS), respectively. The green lines are

given by their median values.

The Toxic Arbitrage Information Share provides an unbiased estimate for all un-

derlying information shares. The error bands have a maximum spread of five percentage

points. That the TAIS performs well in these simulations speaks in favor of the estima-

tion procedure to provide an appropriate empirical representation of the theoretically

derived measure. The permanent component share performs similarly well, though with

a tendency to overestimate the importance of the more liquid market for low information

shares. As the Hasbrouck information share (green) does not provide a single value, it

can only be evaluated using two metrics. Are the bounds unbiased in that the true

value does not exceed the bounds? Are the bounds narrow enough to provide useful

information? In these simulations, the Hasbrouck information share shows a tendency

to overestimate the importance of the more important market. The bounds only hold

for values between 40 and 60%. The lower bound fails to provide an orientation for high

values and the upper bounds fails for low values of the underlying information share.

Given that the simulations are based on the theoretical model, it is not surprising to see

the Toxic Arbitrage Information Share to perform better than other measures. However,
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the exercise provides two main insights. Firstly, the proposed procedure provides a valid

approach to estimating the TAIS. Secondly, the precision of the standard procedures

can be negatively a↵ected by di↵ering error correction dynamics.

The precision of the Toxic Arbitrage Information Share crucially depends on the

number of toxic arbitrage opportunities in the sample. By restricting the number of

arbitrage opportunities we observe, we can get an idea of the precision of the measure.

Figure 3.6 shows the results for this exercise using 100 simulations with the number of

arbitrage opportunities on the x-axis and the estimated TAIS on the y-axis. The red line

depicts the median TAIS for a given number of toxic arbitrage opportunities. 95% of

the estimated TAIS lie within the red shaded area. The black dotted line shows the true

information share. When using less than ten toxic arbitrage opportunities, it becomes

clear that the measure can hardly provide a useful estimate. This is especially true when

only using one arbitrage opportunity where the measure consistently underestimates the

result when the true information share is .9. However, when using at least ten toxic

arbitrage opportunities the measure quickly converges.

While Figure 3.6 shows the precision of the TAIS measure, Figure 3.7 illustrates

the precision of the bounds. The red lines show the median bounds of the 95% confidence

interval. The shaded area illustrates where 95% of the bound estimates lie. The result

is similar to Figure 3.6 as it shows that the bands are very wide for less than ten

observations. However, I find that the bounds appropriately capture the uncertainty of

the measure. Given an information share of .9 as illustrated in Figure 3.7a, the true

information share is within the bounds in 89% of simulations. Figure 3.7b shows the

results for an information share of .8. Here, the true information share lies within the

bounds 91% of simulations. As explained in Section 3.4.3, the measure of the bounds

takes into account only one e↵ect of the low number of observations. Consequently, it

is not surprising that the confidence intervals are not perfectly reliable. However, they

provide an important indication for the precision of the measure.
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After concluding that the estimation procedure accurately represents the theoret-

ical measure, it is important to evaluate how the measure performs when moving away

from the mechanism outlined in the model. Therefore, the next step is to see how the

measure performs given di↵erent price dynamics.

3.5.2 Simulation II

The following simulations display a structure in the spirit of Hasbrouck (2002). Rather

than modeling the adjustment to price changes by providing a theoretical error correction

mechanism, these simulations are based on a simple lagged adjustment. Simulations

more in line with the idea of informed traders using the arbitrageur as a channel are

likely to improve the performance of the Toxic Arbitrage Information Share.

The e�cient price mt is given by a modified random walk

mt = mt�1 + ût (3.44)

ût = t,put, (3.45)

where ut are price innovations following a discretized normal distribution ut ⇠ N (0, �2
u).

12

In order to take into account periods with no price innovation, I introduce a binomially

distributed dummy t,p which is one with probability p and zero otherwise. If p = 0.4,

this implies that there is a change in the e�cient price 40% of the time and 60% of the

time there is not. Similarly, the e�cient price in market j 2 {B,C} is given by

mj,t = mt�1 + ûj,t. (3.46)

The set of price innovations in market B (ûB,t) is a subset of the overall price innovations

12In order to take into account that prices can only change in multiples of the tick-size, I am discretizing
all random variables in the simulation by rounding them to 2 digits. This is equivalent to saying that
the tick-size is 0.01. The discretization is important for this exercise in order to ensure that there is
a limited number of spread sizes, which in turn is necessary for the calculation of the Toxic Arbitrage
Information Share.
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ût. This subset a↵ects market B immediately, while the remaining set of ût only a↵ects

the mid-price in market B with a lag via mt�1. Formally, this can be described as

ûB,t = t,pB ût, (3.47)

where t,pB is a binomially distributed dummy which is 1 with probability pB. Whenever

an innovation is not immediately a↵ecting the mid-price in market B, it is immediately

a↵ecting the mid-price in market C. Hence, ûC,t is given by

ûC,t = (1� t,pB )ût. (3.48)

This implies that pB is the information share of market B. Finally, the observed best

prices in market j are given by

aj,t =mj,t +
Sj,t

2
(3.49)

bj,t =mj,t �
Sj,t

2
. (3.50)

The following simulations are based on 10,000 observations with p = 0.5 and

�u = 1. In order to evaluate the precision of the di↵erent price discovery measures, I

estimate them for varying pB. The Hasbrouck information share and the permanent

component share are based on the observed mid-price

obsj = mj,t (3.51)

= bj,t +
aj,t � bj,t

2
. (3.52)

The Toxic Arbitrage Information Share is estimated using the observed best bid and

o↵er aj,t and bj,t.

Figure 3.8 illustrates the results for the TAIS (red), the CS (blue), and the
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IS (green) when simulating the above price series 100 times for di↵erent values of pB.

Again, the simulations are based on SB,t = 1 and SC,t = 2.

For intermediate values, the upper and lower estimates of the Hasbrouck informa-

tion share correctly encompass the 45 degree line with a spread of around 20 percentage

points. However, for information shares below 30% and above 70%, the bounds fail

increasingly to provide actual limits. For shares lower than 20% and in excess of 80%,

the true information share is out of bounds around 85% of the time. This is in line

with the results from the previous simulation though to a lesser extent. The permanent

component share (blue) appears unable to di↵erentiate information shares between 15%

and 85%. For more extreme values, it still significantly overestimates the share of the

less important market. This is in line with the conclusion by Hasbrouck (2002) that

the permanent component share can provide misleading results. In this simulation, the

permanent component share is strongly a↵ected by the inertia of the price series due

to p = .5. This is similar to the e↵ect of using observations on a high frequency and

again highlights the importance of the choice of the frequency especially in low liquidity

environments.

The TAIS (red) performs better than the permanent component share in that

its estimates are closer to the true value given by the 45 degree line. However, it shows a

bias towards an information share of around 55%. The reason for this is that the TAIS

corrects for the size of the spreads in accordance with the theoretical model. According

to the model dynamics in section 3.3, a higher spread in one market leads to an decrease

in toxic arbitrage opportunities initiated in the other market. As the spread in market

C is larger, we expect a smaller fraction of informed traders in market B to use limit

orders. This leads to the ratio of toxic arbitrage opportunities (Tox) to be lower than

the true information share.

In order to balance this, the TAIS corrects the Tox upwards. Equation (3.53)

shows the definition of TAIS as given in Equation (3.39) under the additional assump-
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tions of �B = �C = 1 and c = 0 as given in the simulated data,

TAIS =

✓
1 +

(1� Tox)

Tox

1� � (SC)

1� � (SB)

◆�1

(3.53)

=

✓
1 + 0.14

(1� Tox)

Tox

◆�1

. (3.54)

Without this correction, the TAIS would be equal to the Tox, symmetric and intersect

the diagonal at the 50%. The larger the role of the mechanism described in Section 3.3

is, the smaller would we expect the bias of the TAIS to be. It speaks for the TAIS, that

it performs better than the permanent component share even though the simulations are

designed to its disadvantage. The results in Figure 3.8 show that none of the methods

provides an unbiased measure but that they provide complementary insights.

3.5.3 Simulation III

The final price generating process follows the process in Simulation II while introducing

missing observations in the bid and ask prices of market C

aj,t =

8
><

>:

mj,t +
Sj,t

2 with probability 1� pa,j

{} with probability pa,j
(3.55)

bj,t =

8
><

>:

mj,t � Sj,t

2 with probability 1� pb,j

{} with probability pb,j
, (3.56)

where pb,j and pa,j is the probability for a missing value in the best bid and ask of market

j, respectively.

The simulations are based on 10,000 observations with p = 0.5, �u = 1, SB,t = 1,

SC,t = 2, pa,B = pb,B = 0, and pa,C = pb,C = 0.1. Hence, ten percent of the bid and ask

prices, respectively, of market C are missing.

Figure 3.9 illustrates how the change a↵ects the Hasbrouck information share.
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The spread between the upper and lower bound is in excess of 50 percentage points for

most of the simulations and 40 percentage points at its minimum. It thereby does not

allow for any meaningful conclusion about the information dynamics. The permanent

component share appears to perform better under these circumstances. Paradoxically,

by introducing missing values in the mid-price series, the share is less a↵ected by the

inertia of the price series as missing observations are dropped. A similar e↵ect would

also be achieved when reducing the observation frequency. Despite this, the measure

continues to show a bias towards a more balanced information share. The TAIS is

largely una↵ected by the missing observations. If we take out the correction of the TAIS

highlighted in Equation (3.53), the TAIS and the permanent component share would

be identical in this set-up. The reason for this is, that the necessity for the correction,

which is a central feature of the TAIS, is not given if the price adjustment follows

the naive mechanism in this simulation. It again speaks for the estimation procedure

behind the TAIS, that this correction is the only source for its worse performance in

this simulation. The more important the mechanism outlined in the model above, the

better is the TAIS expected to perform.

In summary, I find that the estimation procedure outlined in Section 3.4 provides

an estimate consistent with its underlying measure. The closer the price dynamics in

the data are to the mechanism outlined in Section 3.3, the better the Toxic Arbitrage

Information Share performs. However, even in absence of this mechanism, the TAIS

provides valuable insights compared to the standard procedures especially in low liquidity

markets.

Neither of the three procedures provides a perfect measure under low liquidity

conditions and in absence of the mechanism highlighted in the theoretical deviation. In

the simulations above, the usefulness of the Hasbrouck information share su↵ers either

under incorrect bounds (Simulation II) or excessively wide spreads (Simulation III). The

permanent component share is biased towards a more balanced result and is greatly
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a↵ected by inertia in the price series. The TAIS provides the best estimate for informa-

tion shares where the more liquid market is dominating price discovery (pB > 55%), but

overestimates the importance of the more liquid market for lower values. This suggests

that the three measures are complementary for analyzing price discovery dynamics. The

bounds of the Hasbrouck procedure provide a good orientation as long as the spread

do not explode but should not be taken literally. The results suggest that one needs to

take into account the permanent component share’s bias towards balanced results. If

it shows that one market dominates the price discovery, the numeric value should be

seen as lower estimate. In absence of strategic use of limit orders, the Toxic Arbitrage

Information Share su↵ers from a bias towards more balanced results as well. The more

important the strategic use of limit orders is, the smaller this bias will be. This implies

that the TAIS also needs to be interpreted with caution but balances out some of the

shortcomings of the other two measures. With regard to the precision of the TAIS, I

find that an increase in the number of toxic arbitrage opportunities quickly improves the

performance of the Toxic Arbitrage Information Share. It appears reasonable to focus

on samples with at least ten toxic arbitrage opportunities.

In the remainder of this paper, I apply this new measure to a unique high fre-

quency data set of foreign exchange futures. Section 3.6 provides a description of the

data while Section 3.7 shows the empirical application.

3.6 Description of market set-up and data

For the application of the Toxic Arbitrage Information Share, I am using a unique

data set combining high frequency data from Chicago Mercantile Exchange (CME) and

Bolsa de Valores, Mercadorias e Futuros de São Paulo (BMF). BMF is the largest stock

exchange in Latin America (IMF (2016)) and was the sixth largest derivative market

worldwide in 2015 (Statista). The most traded derivatives on BMF are US dollar futures
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denominated in Brazilian real (BRL). Due to the heavy regulation on the spot exchange

market, Ventura and Garcia (2012) find that US dollar futures are responsible for most

of the price discovery in Brazilian real, the most traded South American currency (BIS

(2016)). CME is the world’s largest marketplace for derivatives and o↵ers a Brazilian

real futures contract with almost identical conditions to the contract traded in BMF. The

BRL futures in CME are denominated in US-dollar and consequently, a long position in

CME’s BRL futures is equivalent to a short position in BMF’s USD futures. Table 3.1

provides a short overview of the contracts.

For both contracts, the last business day of each month is the last trading day

for the contract expiring in the consecutive month. The contract expiring in the next

month is generally the most traded contract in both markets and, hence, the contract I

am focusing on at each point in time.

The trading volume of this contract in BMF is several times higher than in CME.

Figure 3.10 shows the daily trading volume in USD 1 billion in BMF (blue line) and

CME (black line) from November 2011 to February 2014. The data set used in this paper

does not provide quote data for the months between October 2012 and October 2013 and

hence these months are excluded in the subsequent analysis. This is the area between

the two dashed vertical lines. I am including this period in this graph for comparison

purposes. Only days with trades in both markets are included and the last active day

of each month is excluded. I find that the volume in CME in terms of contracts is on

average 6.2% of the BMF volume. In March 2012, CME reaches an average of 25.6%

relative to BMF and around 12% in April and May 2012. This period is discussed further

in Section 3.7. As shown in Figure 3.10, this increase is mostly due to spikes in CME

activity. Over these 28 months, the exchange rate was on average USD/BRL 2.06 and

saw its minimum and maximum at 1.70 and 2.45, respectively. This implies that the

contract size in BMF (USD 50,000) over this period was on average roughly equal to the

CME contract in USD terms (BRL 100,000). The depreciation of the Brazilian real over
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this period implies, however, that the size of the CME contract in USD terms decreases

over time. At the end of the period, a single CME contract covers an amount equivalent

to only USD 42,808.22.

Figure 3.11 shows the share of average trading volume per hour in BMF (blue

line) and CME (green line), respectively. The x-axis is given by the time of day in São

Paulo. There is almost no trade in CME outside the BMF trading hours. CME is most

active upon the opening of BMF, while BMF sees its peak in traded contracts at 11am.

Both markets’ activity decreases over the course of the day with a local peak at 3pm.

The last trading hour in BMF appear to see a stronger decline in BMF than CME.

An important property of the market for USD/BRL futures is that there are

high costs for foreign firms to gain access to BMF. During the time considered in this

paper, Brazilian law required non-resident investors to have a legal and fiscal represen-

tative present in Brazil.13 According to market participants in Brazil, CME’s market

entry costs make it unattractive for most Brazilian investors to trade in CME directly.

Additionally, over the horizon of our sample, the Brazilian government levies a tax on

international transactions and financial products. This Imposto sobre operaçẽs finan-

ceiras can serve as an additional deterrent for investors to be active in both markets.

Together, this implies that the markets, while trading close to equivalent products, serve

di↵erent sets of traders.14 Again, based on the information from market participants,

some traders serve as arbitrageurs connecting both markets while market makers, es-

pecially in CME, closely track movements in BMF in order to limit their exposure to

arbitrageurs.

BMF data is directly provided by the exchange with millisecond precision. The

data set includes all trades and quotes. CME data is provided by Thomson Reuters and

includes all trades as well as changes in the best bid and ask prices with millisecond

13Source: www.bmfbovespa.com.br
14It may also explain, why CME is able to provide a market in this product despite the far lower

trading volume.
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time stamps. The analysis focuses on the dynamics of the best bid and ask prices in

both markets. Due to the inverse denomination of the contracts, a purchase of a CME

contract is equivalent to the selling of a BMF contract. For the remainder of this paper, I

invert the prices in CME in order to create time series with the same price denomination,

meaning

bC =
1

âC
and aC =

1

b̂C
, (3.57)

where b̂C and âC are the best bid and ask prices denominated in USD for one BRL as

reported by CME. The prices I use from here onward are bC and aC , the implied best bid

and ask prices in BRL for one USD. I also adjusted the BMF prices in order to reflect

the price for one USD instead of the contract quotation for USD 1,000.

The data horizon in this paper is from November 2011 to September 2012 and

from November 2013 to February 2014 resulting in 248 trading days where both markets

are open. As mentioned above, the gap in the data horizon is due to data availability.

The data contains observations for 9,817,200 seconds. 8,662,015.50 (88.2%) of these show

positive spreads in both markets.15 99.82% of the observations with positive spreads have

a higher spread in CME than in BMF. However, this does not necessarily imply that it

is not sensible for liquidity or informed traders to open arbitrage opportunities in BMF

as Section 3.7 shows.

3.7 Empirical analysis

The empirical Section of this paper consists of two parts. Firstly, I use the model in

Section 3.3 in order to determine the e↵ective transaction fees in the markets. I am using

these transaction fees to locate the arbitrage opportunities and classify them into toxic

15Negative spreads are a common problem when using high frequency data and observations with
negative spreads are generally excluded from the analysis.
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and non-toxic arbitrage opportunities. In a second step, I calculate the Toxic Arbitrage

Information Share and compare it to the Hasbrouck information share as well as the

Gonzalo Granger permanent component share.

3.7.1 Transaction fees

In order to identify the set of arbitrage opportunities, it is crucial to have a realistic

estimate of the e↵ective costs which an arbitrageur faces. While the trading venues

CME and BMF provide information about transaction fees, these greatly depend on

the type of investor and investment behavior. Further, it is necessary to allow for the

possibility that traders will not engage in arbitrage without a minimum profit or without

covering additional costs. The fees in BMF range between USD 0.11 and USD 0.44 per

contract for high frequency traders depending on the total number of contracts traded.

In CME, I find fees between USD 0.10 and USD 0.56. In what follows, I am using an

implication of the model in order to obtain an estimate of the e↵ective transaction costs

excluding the spreads. According to the model, toxic arbitrage opportunities are created

by strategically placed limit orders by informed traders. He chooses the smallest price

improvement � which still leads the arbitrageur to engage in arbitrage, leading to the �

as solved for in Equation (3.9)

� =
SC + SB

2
+ 2c. (3.58)

This implies a size of the arbitrage opportunity of 2c, the total transaction costs of

the arbitrageur to take advantage of the arbitrage opportunity. Liquidity traders are

omitted in the reduced form of the model presented here, for brevity. However, following

the same logic as for the informed trader, a liquidity trader can use a limit order to

incentivize the arbitrageur. By doing so, the liquidity trader creates a non-toxic arbitrage

opportunities and the same logic with regard to the size of the arbitrage opportunity
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applies. Generalizing this idea, implies that there is no reason for a size di↵erence across

types of arbitrage. The reason for this is that limit orders are used to incentivize the

arbitrageur to trade and the arbitrageurs incentivization does not di↵er for informed

or liquidity trades. Toxic arbitrage opportunities and non-toxic arbitrage opportunities

are hence expected to have the same size. By size, I denote the di↵erence between best

bid and ask price across markets enabling arbitrage. For an arbitrageur to break even,

he has to cover the transaction fees in both markets. Further, the profit also needs to

cover the transaction fees when liquidating his position in both markets. Hence, his total

costs involve four individual transactions.16 The size of the arbitrage opportunity must

exceed these costs

bk � aj > 2ck + 2cj where k, j 2 {C,B}, k 6= j, (3.59)

where ck and cj are the transaction fees per Brazilian real traded in market k and j,

respectively. I now take the implication from the model as a condition which has to hold

given the correct transaction fees: Toxic and non-toxic arbitrage opportunities must on

average be equal in size. I am choosing the lowest transaction fees for which this holds

true. The estimation is under the assumption that the relevant costs for the arbitrageur

have not changed over the time horizon. According to conversations with CME and

BMF, this is true at least for the nominal transaction fees in both markets.

While the transaction fees do not change over time, the relative size of the con-

tracts in both markets changes with the exchange rate as they are denominated in BRL

and USD, respectively. I am correcting for this change in contract size as it also af-

fects the e↵ective transaction fees per USD in each market as nominal transaction fees

are charged per contract traded. A depreciation in the exchange rate implies that the

16Say an arbitrageur buys in both markets at time t = 1. For these two trades, he needs to pay
transaction fees. However, these traders also lead to a long position in each market. In order to close
these positions when the price has returned to equilibrium at t = 2, he sells in both markets which again
leads to transaction fees. There are four transactions in total, each incurring fees.
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contract in CME which covers BRL 100,000 is worth less in USD terms and therefore

covers a di↵erent value compared to BMF which has its contract size fixed in USD. The

condition for an arbitrage opportunity hence becomes

bi � aj > 2cB + 2cC

✓
Et

2

◆
where i, j 2 {C,B}, i 6= j, (3.60)

where Et is the exchange rate USD/BRL and
�
Et
2

�
balances out the change in relative

size of the contracts.

I find, that given transaction fees of on average USD 0.275 per contract in each

market, there is no significant di↵erence in size between toxic and non-toxic arbitrage

opportunities. This number is well in range of transaction fees which are given by the

trading venues. It is sensible to expect the e↵ective transaction costs of an arbitrageur in

excess of the half spreads to be larger than the minimal nominal fees of around USD 0.11.

In case of BMF, this implies e↵ective transaction fees of USD 5.50 per USD 1 million

traded. Consequently, I use this estimate of the transaction fees to identify the set of

arbitrage opportunities. It is worth noting that while an estimate for the transaction fees

matters for the identification of arbitrage opportunities, their size is generally negligible

compared to the spreads.

3.7.2 Arbitrage opportunities

Table 3.3 shows the number of arbitrage opportunities and their total length. Using

the transaction fees above, I find a total of 14,268 arbitrage opportunities with a total

duration of 105,495.65 seconds. This is equivalent to 1.22% of the sample. Of these

14,268 arbitrage opportunities, 98 are not used for the subsequent analysis as they

either start or end with a negative spread or end with the end of the trading day. Two

thirds of these arbitrage opportunities would be taken advantage of by executing sell

orders in each market. I denote these opportunities as Type 1. The rest can be taken
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advantage of by executing buy orders in both markets, which I call Type 2 arbitrage.

It is interesting to note that Type 1 arbitrage opportunities are not only more common

but also appear to have a longer average duration as they make for 71% of the total

duration of identifiable arbitrage opportunities.

Figure 3.12 shows the total number of arbitrage opportunities per week. 44% of

these are found in March 2012. Five days (13th, 14th, 15th, 19th and 21st of March) have

over 500 arbitrage opportunities each. These five days account for 38% of all arbitrage

opportunities in our sample. It is worth noting that this is the same time where Figure

3.10 shows spikes in CME trading activity. This period is most likely to be explained by

a change in the Imposto sobre operações financeiras (IOF) on March 15, 2012. The IOF

is a federal transaction tax in Brazil levied on credit, foreign exchange, insurance, and

securities transactions. While it is important to note that these days are extraordinary,

they do not a↵ect the estimation of the information shares on other days as the measure

for each day is estimated separately.

Table 3.4 shows the classification of the identified arbitrage opportunities using

the chronology of price changes. CME/CME and BMF/BMF denote non-toxic arbitrage

opportunities initiated in CME and BMF, respectively. Such arbitrage opportunities are

expected to be caused by liquidity shocks. CME/BMF and BMF/CME are toxic arbi-

trage opportunities caused by price relevant information in CME and BMF, respectively.

As shown in Table 3.4, 1,011 (7.1%) of the arbitrage opportunities are toxic

and initiated in CME. 5976 (42.2%) are toxic arbitrage opportunities initiated in BMF.

This implies that half of all arbitrage opportunities are toxic and most are caused by

information arriving in BMF. The non-toxic arbitrage opportunities make 23.3% and

27.4%, respectively. There are 247 days in my sample which have at least one arbitrage

opportunity. Table 3.5 provides summary statistics for these days.

There are five days which see a full limit order book for less than 8 hours (28,800

seconds), two of these are due to CME and three are due to BMF. The median time
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without a full limit order book in CME is 3.5 minutes per day. In BMF the median

time is less than a minute. As indicated before, the mean spread in CME is consistently

higher than in BMF. The minimum number of trades in CME is none compared to

13,520 traded contracts in BMF. The total duration of arbitrage opportunities in one

day varies between 0.01 seconds and 20,010 seconds (5 hours and 33 minutes). The total

number of arbitrage opportunities for days with at least one arbitrage opportunity varies

between 1 and 1,457. 229 out of 247 days see at least one toxic arbitrage opportunity.

On 228 out of 247 days, there is at least one non-toxic arbitrage opportunity.

3.7.3 Toxic Arbitrage Information Share

The summary statistics of the arbitrage opportunities in Table 3.4 show that most of

the toxic arbitrage opportunities (5,976 compared to 1,011) are caused by information

arriving in BMF rather than in CME. However, as highlighted in Section 3.3, the fre-

quency of toxic arbitrage opportunities alone does not provide an appropriate measure

of information arrival. In order to calculate the information share, I require measures

for the right-hand-side parameters of Equation (3.39): Tox, and �.

When using the distribution of price impacts for both B/C and C/B arbitrage

opportunities, I use the permanent price impact of the information events on BMF mid-

prices here, due to BMF’s higher liquidity. For the transaction fees, I use the same

estimate as in the determination of the arbitrage opportunities, i.e. USD 5.50 per USD

1 million. It is worth noting that in this application the e↵ect of the transaction fees on

TAIS is marginal compared to the spreads and does not a↵ect the results.

In what follows, I am focusing on days with at least ten toxic arbitrage opportuni-

ties in order to keep the error around the Toxic Arbitrage Information Share su�ciently

small. This leads to 106 days or over 42% of the total number of days with at least on

arbitrage opportunity.17 The results do not change when including all observations.18

17This is equivalent to 35% of the total sample.
18In the subsequent analysis, 8 of these days will drop out as it is not possible to generate the day spe-
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The spreads in both markets, SC and SB, are observable as long as open bid and open

ask orders exist. As before, I follow the procedure as introduced in Section 3.4.

The first row in Table 3.6 provides the summary statistics for the ratio of toxic

arbitrage opportunities. The mean value of close to 90% already suggests a much higher

share of information arriving in BMF. However, as highlighted before, this measure is

biased due to the di↵erent price impact of information in both markets and the di↵erent

spreads.

Following the numerical approximation in Equation (3.34) for both BMF and

CME and solving for the standard deviations of the price impacts of arriving information

leads to a median �B and �C of 0.0011 and 0.00086, respectively. Hence information

arriving in BMF has on average a larger price impact than information arriving in CME.

The correlation of the two market’s standard deviations over time is 0.5. Together with

the lower spreads in BMF, this suggests that the percentage of BMF initiated toxic

arbitrage opportunities Tox is underestimating the information share of BMF. Using

the approximated �B and �C per day, I can now estimate the daily  .

Using Tox, daily  as well as �B and �C , I am able to determine the bias given

by the di↵erence between the toxic arbitrage ratio and the unbiased information share.

The bias is presented in the second row. As suspected, the Toxic Arbitrage Information

Share is almost always higher than Tox. The mean bias of -.047 implies that the ratio

of toxic arbitrage opportunities underestimates the percentage of information entering

BMF by 4.7 percentage points on average. The bias ranges from an underestimation by

61.2 percentage points to an overestimation by 13.9 percentage points. Rows three to

five provide the lower band (Toxic0.025), mean measure (TAIS), and the upper band

(Toxic0.975) of the Toxic Arbitrage Information Share. I find that the TAIS for BMF is

between 42.2% and 99.8%. This means, that between 42.2% and 99.8% of price relevant

information arrives first in BMF. The median Toxic Arbitrage Information Share is 97.3%

cific standard deviation of the information arriving in CME. An alternative to dropping the observation
would be to use standard deviations from the day before or after.
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while the mean is 94.1%. This is very much in line with the information I received from

conversations with market participants in Brazil who expect no gain in information from

observing the prices in CME. The lower bound of the confidence interval (TAIS.025) has

an absolute minimum of 19%, yet most of the values are above 80% leading to a mean

value of 87%. The upper bound has a minimum of 63% with most values close to 100%.

The sixth row provides the spread of the 95% confidence interval serving as a good

indication for the precision of the measure. The median spread is 7 percentage points.

The information share based on toxic arbitrage opportunities provides a model

based measure of information arriving in each market. As in the simulations, it is

reasonable to expect this to be similar in size as other measures of price discovery. The

standard procedures for price discovery are again given by the information share (IS)

introduced by Hasbrouck (1995) and the permanent component share (CS) by Gonzalo

and Granger (1995). In the remainder of this section, I first look at the summary

statistics of the information shares in order to compare their overall properties. In a

second step, I compare the behavior of these measures over time in order to get a better

idea of their stability.

The first row of Table 3.7 again provides the summary statistics for the Toxic

Arbitrage Information Share (TAIS). Rows two to four provide the summary of the

permanent component share (CS) and the bounds of the Hasbrouck information share

(IS), respectively. Following Hasbrouck (1995, 2003), I use secondly frequency of the

quoted mid-price in order to estimate the daily component and information shares.

While Hasbrouck (1995) uses best quotes as in the application here, some studies use

average transaction price in given intervals, generally between 1 second and 5 minutes.

Even when using 5 minute intervals, there will not be a single trade in around 50% of

the observations for CME. Following this procedure leads to IS and CS price discovery

shares with even more unrealistically high information shares for CME.

The Toxic Arbitrage Information Share is close to the Gonzalo Granger compo-
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nent share. The di↵erence between the two measures in median and mean is .3 and 2.5

percentage points, respectively. The median and mean of the lower bound for the Has-

brouck information share is 92.8% and 77.7%, respectively, and hence lower than either

CS other TAIS. This is what we would expect if all measures work su�ciently well.

Similarly, the median and mean upper bound are close to but above the median and

mean TAIS. The spread of the Hasbrouck measure has a low median value of 5.8 per-

centage points. However, for individual days, the range extents to up to 70 percentage

points. The fact that the three procedures yield similar results serves as a confirmation

of the logic put forward in Foucault et al. (2016) that toxic arbitrage opportunities are

in fact information driven. The di↵erence in the summary statistics are mostly driven

by individual days where the standard procedures find most of the price discovery to

take place in CME.

The summary statistics in Tables 3.6 and 3.7 show that the values for the di↵erent

price discovery measures generally point in the same direction. However, it is not only

of interest which market dominates price discovery but also how the shares change over

time and whether individual days see a higher importance of a less important market.

Figures 3.13a and 3.13b illustrate the development of these shares over time. As in

Table 3.6, I am only looking at days with at least ten toxic arbitrage opportunities.

Figure 3.13a illustrates the evolution of TAIS (red line) and the permanent component

share (blue line). The black vertical line marks the data gap between October 2012

and October 2013. I find that both measures are close to 100% most of the time. The

component share is more volatile and shows several instances where CME has a larger

price discovery share than BMF. There is only one instance where the Toxic Arbitrage

Information Share is below 50%. At this time, the permanent component share also

shows a strong drop, though significantly more extreme. For the other drops in the

permanent component share, there is no equivalent reaction. Instead there are two

further instances where the TAIS drops below 75% without a drop in CS. The red
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shaded area shows the 95% confidence interval of the TAIS. As mentioned above, the

confidence intervals need to be interpreted with caution but provide a good indication

for the precision of the measure. The drops in CS where TAIS remains high cannot

be attributed to an increase in the imprecision of the TAIS. The lower band drops on

around ten days below 75%, only three of which coincide with a drop of the CS below

that level.

The red line in Figure 3.13b again illustrates the toxic arbitrage based information

share for days. The green line shows the mid-point of the bounds of the Hasbrouck

information share (IS). The green area illustrates the range between the upper and the

lower estimate from the Hasbrouck procedure. The upper bound remains close to 100%

most of the time. For the first 70 observations there is only one day where it drops

below 75%. On this day, the TAIS also drops. On the other days, where the TAIS

drops, we also see a drop in the lower bound of the IS and hence of its midpoint. The

lower bound drops more often resulting in large spreads for the Hasbrouck information

share. Similarly to what we observe with the CS, drops in the upper bound of the IS

where TAIS remains high, cannot be explained by the imprecision of the latter. Figure

3.13a and b illustrate that di↵erent measures lead to di↵erent results on individual days.

Overall, only the downward spikes of the TAIS in the beginning of the sample fail to

find similar evidence in either of the other measures. Several times we observe spikes

in the standard measures, without a similar reaction in the TAIS. However, in these

instances the spread in the Hasbrouck information share is usually wide, indicating less

precision in the measure. On those days, we generally observe some overlap between

the TAIS confidence interval and the IS interval. There are five days where we see a

downward spike in the IS with narrow spread without an equivalent reaction of TAIS.

While these days see downward spikes in CS as well, the di↵erence between the two

measures is substantial.

The five days in March 2012 which see a larger number of arbitrage opportunities
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and unusual volume in CME are untypical in that three of them pose some of the few

instances when the TAIS is significantly below the other two measures. When excluding

these days given by the third, fourth, fifth, seventh, and ninth observation in Figure 3.13,

the impression that the standard measures have a tendency to see price discovery as more

balanced is even stronger.

While both standard measures broadly rely on the same assumptions, they can

di↵er substantially. The correlation coe�cient between the permanent component share

and Hasbrouck’s midpoint is 85%. Yet, the CS lies outside the latter’s bounds 20% of

the time. While Hasbrouck always shows a drop when Gonzalo Granger does, there are

several more outliers for Hasbrouck. Figure 3.14 shows how these observations relate to

the di↵erence between TAIS and Hasbrouck. The x-axis is given by the distance between

the bounds of the Toxic Arbitrage Information Share and the Hasbrouck information

share bounds where zero implies that the bounds overlap The y-axis shows to what

extent the permanent component share lies outside Hasbrouck’s bounds.

There is a clear positive correlation between the two measures’ disagreement with

the Hasbrouck information share. The days where we see the largest di↵erence between

Hasbrouck’s bounds and the permanent component share, the TAIS also shows its

largest di↵erence. This suggests that these days remain di�cult to evaluate.

In summary, all three measures clearly show that BMF dominates price discovery

on almost all days. The Hasbrouck procedure shows large spreads between its bound on

a quarter of the days with most of the volatility coming from movements in the lower

bound. The upper bound remains close to 100% for most of the time which is in line with

the results for the Toxic Arbitrage Information Share. The permanent component share

is highly correlated with the bounds of the Hasbrouck information share, however, in a

fifth of the cases the measures disagree with the CS being outside the latter’s bounds.

These are also the cases where I find the largest disagreement between the TAIS and

the Hasbrouck procedure.
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When comparing these results with the simulations in Section 3.5, we find the

following. The permanent component share has a tendency to show that the price

discovery is more balanced than it actually is when involving low liquidity markets. At

the same time, Hasbrouck only provides an upper and a lower bound which can provide a

general idea of the dynamics. However, under low liquidity conditions, the bounds have

a tendency to widen extremely. Additionally, in the case of one market dominating price

discovery, we find that the bounds are not always reliable even though the resulting error

is usually not extreme. Under such circumstances, the TAIS is a useful complement in

the analysis of price discovery dynamics.

Apart from the biases and imprecisions illustrated in the simulations, part of

the disagreement of the measures may be due to their focus. The Toxic Arbitrage

Information Share is based on extreme events while the standard procedures are designed

to accommodate the whole range of shocks. If the distribution of shocks is not well

approximated by a normal distribution, the results are likely to di↵er. In that sense, the

TAIS may provide a more relevant measurement for traders and regulators focusing on

large price movements. However, this would not help explain the discrepancy between

the two VECM based measures.

3.8 Conclusion

This paper introduces a model to analyze the relationship of information arrival and toxic

arbitrage opportunities in a two market setting. Using this model, I derive a measure of

information share which is based on the occurrence of toxic arbitrage opportunities and

corrects for distortions due to di↵erences in the informational structure, the spreads, and

transaction fees in both markets. In order to test the properties of the toxic arbitrage

based information share, I run a set of simulations as well as using a unique data set

of US dollar/Brazilian real futures traded in Chicago and São Paulo. Both allow me to
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evaluate the performance of the Toxic Arbitrage Information Share in a market setting

with low liquidity in one of the markets, namely CME.

As the fragmentation of financial markets continues, low liquidity markets are

likely to play a more important role in price discovery. The widely used price discovery

procedures by Hasbrouck (1995) and Gonzalo and Granger (1995) are not designed for

such market environments potentially leading to biased results and spurious conclusions.

By not relying on the standard assumptions of VECM based approaches, the Toxic Ar-

bitrage Information Share (TAIS) is less a↵ected by price inertia and partially empty

limit order books. The simulations as well as application show that the TAIS is a valu-

able complement to the standard procedures for the analysis of price discovery involving

low liquidity markets.

The median estimate for the Toxic Arbitrage Information Share is close to the

standard price discovery shares. The di↵erence is mostly driven by downward spikes in

the latter. Generally, the conclusion from the information shares are in line with the

opinions of market participants in BMF and CME.

In summary, my results suggest that the Toxic Arbitrage Information Share is

a good addition to the analysis of information shares and price discovery especially

when involving low liquidity markets. Being derived in complete separation of standard

approaches, the Toxic Arbitrage Information Share avoids most of the problems of VAR

based information shares.
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3.9 Appendix

3.9.1 Approximation of the standard deviation

In order to correctly approximate the standard deviation of the price information in

market j, I need to take into account that the spreads are not constant over time. This

makes it necessary to be more explicit about the nature of Sj .

I denote by Sj,pre the spread in market j just before an arbitrage opportunity

is initiated in the other market. Hence, SB,pre is the spread in market B just before

information arrives in market C. This spread in market j together with the transaction

fees determine the threshold whether information arrival in the other market leads to a

toxic arbitrage opportunity. In order to determine the underlying distribution of price

impacts from the observed toxic arbitrage opportunities, the di↵erent thresholds need

to be taken into account. For each Si,B 2 SB,pre, I am numerically approximating19 the

value of �i,C , the standard deviation of the price impacts from information arriving in

market C, following

mean(n+
C
|SB,pre = Si,B) =

�i,C�
⇣
n
⇤
i,C

�i,C

⌘

⇣
1� �

⇣
n⇤
i,C

�i,C

⌘⌘ , (3.61)

where n⇤
i,C

is the threshold for information arriving in market C to cause a toxic arbitrage

opportunity given a spread of Si,B in market B. All of the resulting estimates �i,C are

approximations of the same �C of the underlying distribution. In order to take all of

these into account, I calculate the weighted average of the standard deviations

�C =
X wiP

wi

�i,C . (3.62)

The weights wi are given by the number of C/B toxic arbitrage opportunities at each

19I am following the procedure by Soetaert and Herman (2009).
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Si,B. Following the same procedure, I am estimating �B. Using these estimates for the

standard deviations, it is possible to estimate � as

� =
�C
�B

. (3.63)

� is constant as long as the informational structure of the markets (�C and �B)

does not change. Given the standard deviations of the price impact of information, the

next step is to calculate  given by

 =

 
Prob

�
n+
C
> n⇤

C

�

Prob
�
n+
B
> n⇤

B

�
!
. (3.64)

 depends on the thresholds n⇤
C
and n⇤

B
and therefore changes with the spreads in both

markets. Let us denote by  t the value of  at a specific point in time t. The spreads

at this time are given by �t,C and �t,B. For each t, I can calculate  t as given by

 t =
1� �

⇣
n
⇤
t,C

�C

⌘

1� �
⇣
n⇤
t,B

�B

⌘ , (3.65)

where n⇤
t,C

and n⇤
t,B

are the thresholds given spreads St,C and St,B, respectively.20 I then

use the average of the  t as an estimate for the  

 =
1

T

TX

t=1

 t. (3.66)

20Alternatively, one can take the average of Prob
�
n+
C > n⇤

t,C

�
and Prob

�
n+
B > n⇤

t,B

�
separately, before

dividing one by the other. The results di↵er due to Jensen’s inequality, however, the di↵erence is
negligible.
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3.9.2 Theory based simulations

The following simulations incorporate the idea of the arbitrageur as a channel to trade

in other markets. The data is generated in a four period sequence with

t 2 {..., 1, 11
4
, 1

2

4
, 1

3

4
, 2, 2

1

4
, ...}. (3.67)

Whenever t 2 Z, where Z is the set of integers, the markets are in equilibrium.

In what follows, I denote Ts as s periods after the equilibrium period. Hence

T0 = Z and Ts = Z+ s

4 for s 2 {1, 2, 3}.

In the first period after an equilibrium, i.e. t 2 T1, the informed trader acts

according to the innovation to the e�cient price ût. In periods t 2 T2, the arbitrageur

acts if there is an arbitrage opportunity. In periods t 2 T3 the market makers learn

about ût if the informed trader arrived in that market. In periods T0, the other market

maker learns about ût and adjust their prices. At this point both markets are back to

equilibrium.

The e�cient price mt evolves according to

mt = mt�1 + ût (3.68)

ût = t2T1ut. (3.69)

where ut are price innovations following a discretised normal distribution ut ⇠ N (0, �2
u).

In order to take into account that prices can only change in multiples of the ticksize,

I am discretising all random variables in the simulation by rounding them to 2 digits.

This is equivalent to saying that the ticksize is 0.01. 21 The dummy t2T1 adjusts for

21The discretisation is important for this exercise in order to ensure that there is a limited number of
spread sizes, which in turn is necessary for the calculation of the Toxic Arbitrage Information Share.
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the fact that there is only a change in the e�cient price in period t if t 2 T1. Hence,

t2T1 =

8
><

>:

1 for t 2 T1

0 for t /2 T1

. (3.70)

The best bid and ask in market j in equilibrium is given by

aj,t =mt�1 +
Sj

2
(3.71)

bj,t =mt�1 �
Sj

2
(3.72)

where Sj is the spread in market j. The true information share is given pB, which is

the probability that the informed trader in market B observes the price innovation ût at

time t. Whenever the informed trader in market B does not observe the innovation, the

informed trader in C does. Given that he observes the innovation, following the logic of

the model in Section 3.3, the informed trader j submits a market order i↵ ût >
Sj

2 . I↵

ût >
Sk
2 where k 6= j, the informed trader will use a limit order. As in the model, the

informed trader can use both orders if both conditions are fulfilled. In the following, I

describe the price dynamics for a negative price innovation, i.e. ût < 0, observed by the

informed trader in market B. The dynamics for a positive innovation are analogous.

To illustrate the sequence of events, let t = 0 denote the equlibrium state, i.e.

t 2 T0. Consequently, the e�cient price change arrives at t = 1/4. The baseline scenario

is that the price innovation is too small to be profitable for the informed trader i.e. that

û1/4  min
⇣
SB
2 , SC

2

⌘
. In this case, the best bid and o↵er (BBO) remain unchanged for

two periods until at t = 3/4 the market maker in B observes the new e�cient price and
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adjusts his BBO to the new equilibrium level

aB,3/4 =m1/4 +
SB

2
(3.73)

bB,3/4 =m1/4 �
SB

2
. (3.74)

Market maker C adjusts her prices in the new equilibrium period i.e. t = 1

aC,1 =m1/4 +
SC

2
(3.75)

bC,1 =m1/4 �
SC

2
. (3.76)

Letting market maker in B observe the price innovation a period before market maker

C makes it easier for the standard procedures to measure pb. If both adjust their prices

together in the baseline scenario, the result for the TAIS will not change.

If û1/4 > SB
2 , the informed trader submits a sell market order, bringing the best

bid in market B to the new equilibrium

bB,1/4 =m1/4 �
SB

2
. (3.77)

Apart from this change, the dynamics are the same as in the baseline scenario.

In line with the model, the informed trader submits a sell limit order, if û1/4 >
SC
2 .

In order to create a profitable arbitrage opportunity, the limit order needs to be at a

price aB,1 < bC,0. Given the assumed tick size of 0.01 in both exchanges, the new best

o↵er in market B is hence

aB,1 = bC,0 � 0.01. (3.78)

As this opens a profitable arbitrage opportunity, the arbitrageur will trade in both
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markets leading to an adjustment in market C

bC,2 = aB,1. (3.79)

The price in market B does not adjust as the informed trader has no incentive to post

a limit order with only a limited quantity.

If the informed trader uses both limit and market orders, the dynamics outlined

above a complementary. The simulations are run for di↵erent true information shares pb

each with 2,500 price innovation events resulting in 10,000 observations (t 2 [1 : 2, 500]).

The spread for market C is twice the spread for market B (SB = 1,SB = 2) and �u = 1
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t = 0

Arrival of one of the
informed traders

t = 1

Posting of prices
and trades

t = 2

Realization of the
final value ✓

Figure 3.1: Time line

SB
2 + c

n+
B

SC
2 + 3c

n+
B

Limit and
market order

Only market
order

Only limit
order

No action

Figure 3.2: Choice of informed trader B
The figure illustrates the choice of the informed trader to use market and limit orders
conditional on the size of transaction fees c and spreads in both markets.
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j
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�(nj)

Figure 3.3: Truncated normal distribution
The graph shows the expected value E(n+

j
|nj > n⇤

j
) of a truncated normal distribution

with a truncation at n⇤
j
.

0 E(n+
j
)

nj

�(nj)

Figure 3.4: Normal distribution truncated at zero
The graph shows the expected value E(n+

j
) of a truncated normal distribution with a

truncation at zero.
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Figure 3.5: Model-based simulation
The red line is given by the estimate of the TAIS while the blue line is given by the
mid-price based estimates of the permanent component share. The green lines are given
by the upper and lower bounds of the Hasbrouck information share. The respective
shaded area engulfing 90% of the estimates.
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(a) Information Share: 0.9
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(b) Information Share: 0.8

Figure 3.6: Precision of model-based simulation
The figures provide the estimates of the TAIS for di↵erent numbers of toxic arbitrage
opportunities. 95% of the estimated TAIS lie within the red shaded area. The left image
is based on a information share of 0.9, while the right image is based on an information
share of 0.8.
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(a) Information Share: 0.9
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Figure 3.7: Model-based simulation: TAIS bounds
The figures provide the estimates of the upper and lower bounds of the TAIS for di↵erent
numbers of toxic arbitrage opportunities. 95% of the estimated TAIS lie within the red
shaded area. The left image is based on a information share of 0.9, while the right image
is based on an information share of 0.8.
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Figure 3.8: Simulation II
The red line is given by the estimate of the TAIS while the blue line is given by the
mid-price based estimates of the permanent component share. The green lines are given
by the upper and lower bounds of the Hasbrouck information share. The respective
shaded area engulfing 90% of the estimates.
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Figure 3.9: Simulation III
The red line is given by the estimate of the TAIS while the blue line is given by the
mid-price based estimates of the permanent component share. The green lines are given
by the upper and lower bounds of the Hasbrouck information share. The respective
shaded area engulfing 90% of the estimates.

CME BMF

Location Chicago (USA) São Paulo (Brazil)
End of trading last business day of month last business day of month
Contract size 100,000 BRL 50,000 USD
Quotation USD per BRL BRL per USD1,000.00
Tick size USD 0.05 per BRL1,000.00 BRL 0.5 per USD1,000.00
Transaction fees in USD in USD
Trading hours 5pm-4pm CT 9am-6pm BRT

Table 3.1: Summary statistics of BRL-USD futures market
CT describes Chicagos time zone while BRT is the Brazilian time zone. The di↵erence
between the two is between two and four hours as both are a↵ected by daylight savings
time.
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Figure 3.10: Daily traded volume in BMF and CME
Average trading volume per day in CME and BMF in USD 1 billion. The daily volume
for CME includes trades outside of BMF trading hours. Only days with trades in both
markets are included. The last active day of each month is excluded. The figure is based
on the contract expiring in the following month.
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Figure 3.11: Hourly traded volume in BMF and CME in percent
The graph is based on the contract expiring in the following month. The blue (green)
bars illustrates the share of trading volume per hour in BMF (CME). Only days with
trades in both markets are included. The last active day of each month is excluded.
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Seconds Percent

Total 9,817,200.00
Positive spread 8,662,015.50 88.23%
SC > SB 8,646,173.87 99.82%
SC < SB 15,841.63 0.18%

Table 3.2: Spreads
The table shows the total time both markets are open in the sample as well as the time
with positive spreads in both markets. The third (fourth) row shows the share of time
when CME has a wider (narrower) spread than BMF.

Total Identifiable Type 1 (Sell) Type 2 (Buy)

Number 14,268 14,170 9,250 4,920
Total time (sec) 105,495.65 104,690.27 74,188.97 30,501.30
Total time 29:18:15.65 29:04:50.27 20:36:28.97 8:28:21.30
% of pos. spread 1.22% 1.21% 0.86% 0.35%

Table 3.3: Total arbitrage opportunities
The table shows the number of arbitrage opportunities, the total time arbitrage oppor-
tunities exist, and the percentage of time arbitrage opportunities exist relative to the
total time with positive spread. 98 arbitrage opportunities are not identifiable. Type
1 (2) arbitrage opportunities would be taken advantage of by selling (buying) in both
markets.

Number Percentage

CME/CME 3,304 23.3%
CME/BMF 1,011 7.1%
BMF/CME 5,976 42.2%
BMF/BMF 3,879 27.4%

Table 3.4: Arbitrage classification
The table shows the number and share of arbitrage opportunities by type. CME/CME
are non-toxic arbitrage opportunities which are initiated and closed by price moves in
CME.
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Figure 3.12: Weekly number of arbitrage opportunities
The figure shows the total number of arbitrage opportunities on a weekly bases. The
black vertical line marks the data gap between October 2012 and October 2013.
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Min. 1st Qu. Median Mean 3rd Qu. Max.

Full LOB CME 0 31,640 32,190 30,880 32,380 32,400
Full LOB BMF 7.66 32,350 32,350 31,340 32,360 32,400
Mean Spread CME 0.0012 0.0019 0.0027 0.0055 0.0040 0.2002
Mean Spread BMF 0.0005 0.0005 0.0005 0.0006 0.0006 0.0021
Contr. Traded CME 0 4,966 9,876 26,110 23,690 372,200
Contr. Traded BMF 13,520 195,200 254,900 250,200 301,800 496,000
Arb. Duration 0.01 11.32 112.60 423.80 303.50 20,010.00
Number of Arbs. 1 5 20 57.37 44.50 1,457.00
CME/BMF 0.00 0.00 0.00 4.09 1.00 297.00
BMF/CME 0.00 2.00 5.00 24.19 15.00 728.00
CME/CME 0.00 0.00 1.00 13.38 4.50 644.00
BMF/BMF 0.00 2.00 8.00 15.70 19.00 206.00

Table 3.5: Daily summary statistics
The table displays summary statistics for days with at least one arbitrage opportunity.
Full LOB CME and Full LOB BMF is the number of seconds in a day with a full limit
order book in CME and BMF, respectively. A full limit order book means, that there are
both best bid and ask prices available. Mean Spread is the mean value of the spread in
each market. The CME spread is the implicit spread given the transformation of CME
prices. Contr. Traded is the number of traded contracts in each market. Arb. Duration
is the total duration of arbitrage opportunities in a day in seconds.

Min. 1st Qu. Median Mean 3rd Qu. Max.

Tox 0.1600 0.8648 0.9444 0.8944 1.0000 1.0000
Bias -0.6118 -0.0631 -0.0186 -0.0469 0.0058 0.1389
TAIS.025 0.1926 0.8172 0.9149 0.8709 0.9610 0.9921
TAIS 0.4217 0.9292 0.9728 0.9413 0.9889 0.9975
TAIS.975 0.6290 0.9847 0.9971 0.9785 1.0000 1.0000
Spread 0.0071 0.0361 0.0688 0.1076 0.1509 0.5068

Table 3.6: Unbiased information share based on toxic arbitrage (#tox� 10)
The table shows the summary statistics for several variables. Tox is given by the per-
centage of toxic arbitrage opportunities initiated in BMF, Bias describes the di↵erence
between Tox and the TAIS measure given by the mean value of the confidence interval.
Rows three to five provide the lower bound, mean, and upper bound of the TAIS 95%
confidence interval. The sixth row shows the summary statistics of the spread between
TAIS.975 and TAIS.025.
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Min. 1st Qu. Median Mean 3rd Qu. Max.

TAIS 0.4217 0.9292 0.9728 0.9413 0.9889 0.9975
CS 0.2736 0.8996 0.9698 0.9168 0.9945 1.0000
ISmid 0.0192 0.7858 0.9607 0.8612 0.9876 1.0000
ISlow 0.0057 0.5919 0.9278 0.7773 0.9772 1.0000
ISup 0.0328 0.9815 0.9985 0.9485 1.0000 1.0000
ISspread 0.0000 0.0187 0.0581 0.1713 0.3038 0.6984

Table 3.7: Comparison of information shares (#tox� 10)
The table shows the summary statistics of the Toxic Arbitrage Information Share
(TAIS), permanent component share (CS), and Hasbrouck information share (IS) for
days with at least 10 toxic arbitrage opportunities. For the Hasbrouck procedure, the
table provides the upper and lower bound as well as the spread between these. CS and
IS are based on secondly frequency.
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(b) Hasbrouck information share

Figure 3.13: Price discovery over time
The red and blue lines provides the TAIS and permanent component share estimate,
respectively, per day with at least ten toxic arbitrage opportunities. The red shaded
area shows the 95% confidence bands for the TAIS. The green line is given by the mid
point of the Hasbrouck information share bounds with the shaded area being the area
between the bounds. The black vertical line marks the data gap between October 2012
and October 2013.
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Figure 3.14: Out of bound observations
The x-axis is given by the distance between the bounds of the Toxic Arbitrage Infor-
mation Share and the Hasbrouck information share bounds where zero implies that the
bounds overlap The y-axis shows to what extent the permanent component share lies
outside Hasbrouck’s bounds.
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Chapter 4

FX Exposure and Foreign

Ownership
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4.1 Introduction

Exchange rates are a central feature in international finance, not only as currencies are

an asset in their own right but also due to their interaction with all other asset classes.

While reasons for the importance of exchange rates are abound, the empirical literature

finds, more often than not, that exchange rate risk plays a minor role in financial markets.

Regardless of whether firms import or export, their returns are generally expected to be

linked to exchange rates. However, individual stocks’ exchange rate exposure is found to

be surprisingly low.1 Similarly, currency risk seems to play a minor role in explaining the

equity home bias. This is the first paper to illustrate the importance of exchange rate

risk and indirect currency hedging for within country di↵erences in investment decisions.

The resulting di↵erences in foreign and domestic portfolios can help explain some of the

conflicting results on the importance of exchange rate risk especially in the home bias

literature.

Domestic investors are exposed to changes in the exchange rate via the returns

from domestic stocks. If a stock is positively correlated with the exchange rate, as one

would expect from an importing firm, the investor benefits from an appreciation in the

exchange rate.2 In addition to this indirect exposure, foreign investors are subject to

currency risk, as they have to convert realized returns into their reference currency. This

is the classical currency risk. The combination of both exposures leads to a quadratic

e↵ect which, even under frictionless hedging, leads to di↵erences in the optimal portfolios

of domestic and foreign investors.

Using a simple theoretical framework, I illustrate how domestic and foreign in-

vestors are di↵erently a↵ected by stocks’ FX exposure. While the e↵ect can be reduced

using simple exchange rate hedging, it never fully disappears. Given optimal hedging,

foreign investors invest more into stocks with positive FX exposure compared to domes-

1See e.g. Bartram and Bodnar (2007).
2The exchange rate is defined as units of foreign currency per domestic currency.

129



tic investors. In contrast, if hedging is limited due to frictions, foreign investors prefer

negative FX exposure to implicitly hedge currency risk. Furthermore, when there are

costs or frictions to hedging, the e↵ect of FX exposure on the optimal portfolio can

be substantial. In a second step, I use a set of simulations to test if foreign investors

would want to adjust their portfolio weights with regard to stocks’ FX exposure when

facing strong frictions to hedging. Foreign investors overweight stocks with negative FX

correlation compared to domestic investors.3 In line with the theory, this is optimal as

such stocks provide an implicit hedge against exchange rate risk. In a final step, I test

the hypotheses derived from the model and simulations with a data set of 21 developing

and developed countries. I find that within country di↵erences in foreign ownership are

partly explained by stocks’ FX exposure and that the relationship is in line with the

predictions.

Foreign ownership is generally associated with negative FX correlation, in line

with the idea of implicit hedging. This e↵ect holds true for developed countries through-

out the sample period. In case of emerging markets, the negative link can be observed for

the pre-crisis period, however, it is not present after the financial crisis. This indicates

additional frictions in the post-crisis environment. In the overall sample, the dynamics

are not only driven by implicit hedging, but also by a desire by foreign investors to limit

FX correlation in either direction. The results help explain why currency risk is found to

be more important for explaining the bond than the equity home bias. In addition, the

results in this paper cast doubt on the usefulness of the standard home bias measure as

used in the literature. The FX correlation further promises better results in international

capital asset pricing models.

The results in this paper are based on the cross section of foreign ownership in

stocks within a country by controlling for both time and country fixed e↵ects. Any

alternative explanation would have to explain why foreign ownership within a country

3Such stocks are more likely to be exporting than importing firms.
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di↵ers at a specific point in time. The results are hence unlikely to be driven by shifts

in international capital flows or di↵erences in how countries restrict foreign investors. In

the presence of such restrictions, the results presented here are expected to be a lower

bound for the e↵ect. All regressions include a series of firm level controls to make sure

that the reported e↵ects are indeed due to firms’ exchange rate exposure rather than

other firm characteristics.

Home bias has received a lot of attention over past decades. In most studies home

and foreign bias are used synonymously, as over-investment in domestic assets implies

aggregate under-investment in foreign assets.4 Most of the literature focuses on equity

home bias, beginning with a range of studies of individual countries and later shifting

to comparisons across countries and investment flows. The latter was substantially

facilitated by the Coordinated Portfolio Investment Survey (CPIS) conducted by the

IMF. A smaller, more recent literature extends the analysis to the bond home bias (e.g.

Maggiori et al. (2018), Fidora et al. (2007)). The macro finance literature has looked at

foreign investments for di↵erent countries and has identified several drivers of aggregate

home bias. The majority sought to find rational and behavioral drivers ranging from

transaction costs (Glassman and Riddick (2001)) to corporate governance (Dahlquist

et al. (2003)) to information barriers and lack of familiarity (Ahearne et al. (2004),

Portes and Rey (2005)).5 More recent studies, such as Levy and Levy (2014), question

the benefits of international diversification and conclude that the home bias is the result

of optimal behavior. Given the increasing integration of international financial markets

and the reduction in informational frictions, one would expect the home bias to fade

over time. However, Levy and Levy (2014) do not find any indication that the home

bias is decreasing, arguing that the increasing correlation of asset returns over time is a

crucial factor limiting the benefits from international diversification.

4A notable exception is Bekaert and Wang (2009), which focuses on the degree of foreign bias by a
given country to di↵erent countries.

5While having a macro perspective, Dahlquist et al. (2003) is a notable exception in the use of firm
data on a wide panel of countries.
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An additional factor regularly investigated as a driver of the home bias is ex-

change rate risk. The compelling reasoning is that exchange rate risk is a key di↵erence

between the positions of foreign and domestic investors and hence provides a potential

explanation. Thapa and Poshakwale (2012) analyze the role of country-specific equity

market characteristics in explaining foreign investment across countries. They find that

exchange rate volatility has no significant e↵ect. In the bond market, Maggiori et al.

(2018) find that the currency in which a bond is denominated almost fully explains the

bond home bias in their data. Similarly, Fidora et al. (2007) find that real exchange rate

volatility helps explain home bias and that the e↵ect is substantially larger for bonds

than equity.

Due to the availability of the Coordinated Portfolio Investment Survey, most

studies focus on country-level aggregate measures of home bias. In line with this, the

theoretical literature often considers national indices (e.g. Glassman and Riddick (1996))

when determining potential drivers. They implicitly assume that it is optimal for foreign

and domestic investors to hold the same portfolio of assets within a country and that

they only di↵er in the overall weight of each country’s portfolio. This is based on results

such as Sercu (1980) who assumes that currency risk can be perfectly hedged. More

recently, Boermans and Vermeulen (2016) find empirically that currency denomination

matters for explaining home bias by di↵erent groups of investors for both equities and

bonds.

On the asset level, there is a large literature investigating the connection between

asset returns and exchange rate movements. Apart from a range of international asset

pricing models using exchange rates or exchange rate volatility, a strand of the literature

starting with Adler and Dumas (1984) investigates the co-movement of each asset’s

returns with currency returns. The resulting exchange rate exposure puzzle describes

the surprising observation that a much lower number of firms see significant FX exposure

than previously expected. Bartram and Bodnar (2007) provide an extensive survey of
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the literature, showing that di↵erent approaches help to reduce the discrepancy between

expectations and observations. However, a substantial gap still remains. Rather than

to explain this puzzle, this paper uses the concept of FX exposure introduced by this

literature to shed light on how the home bias in stocks within a country is a↵ected

by exchange rate movements. Starting with Jorion (1990), the FX exposure literature

measures FX exposure in excess of market returns. As this paper focuses on the investors’

rather than the firms’ perspective, a broader definition is more appropriate. Therefore,

I depart from the FX exposure literature by using the FX correlation of a stocks’ return

as the total FX exposure.

Hau and Rey (2006) argue that while the exchange rate may influence asset

prices, the reverse should also be true. Gains in a country’s equity market relative to

another country lead to a higher exposure to the country’s risk for investors, incentivizing

international investors to rebalance their portfolio away from it. Uncovered equity parity

(UEP) hence states that excess capital gains in a country are followed by a devaluation

of the country’s currency. Both Hau and Rey (2006) and Curcuru et al. (2014) find

evidence in line with the resulting negative correlation of index returns and currency

value, however the latter argue that this is not due to risk management but rather due

to investors rebalancing toward more lucrative investments. In addition, Cenedese et al.

(2016) look at the cross section of international equity returns and document systematic

violations of the uncovered equity parity. This paper is related to this literature as the

focus is once more on the co-movement of asset and currency returns. While focusing

on the cross section of individual assets rather than the index level, this paper does

not depend on any assumptions on the validity of UEP. The results presented describe

di↵erences between stocks in the same country and hence a rebalancing away from the

country specific risk does not a↵ect their validity. However, insights from this analysis

may help explain why the literature struggles to come to a conclusion on the validity of

UEP as foreign and domestic investors hold di↵erent portfolios and hence have di↵erent
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risk loadings.

This paper contributes to the existing literature in two ways. First, this is the

first paper to investigate the e↵ect of a macroeconomic driver, namely the exchange rate,

on within country di↵erences in foreign ownership. I show that FX exposure matters in

determining foreign ownership between firms in a given country. Second, as FX exposure

di↵ers across firms, the (optimal) portfolio of a foreign investor di↵ers from a domestic

investor’s portfolio. This is a violation of the assumption of equal optimal portfolios

which is the basis for current measures of home and foreign bias. The departure from

the global portfolio assumption has far reaching consequences for asset pricing, financial

stability, and the use of foreign currency denominated debt.

The rest of this paper is structured as follows. Section 4.2 introduces the theo-

retical model highlighting the key dynamics to consider. In Section 4.3, I use a set of

simulations to look at the dynamics in a more complex setting and derive the testable

implications described in Section 4.4. Section 4.5 provides information on the data used

and its properties while Section 4.6 shows the empirical results. Section 4.7 concludes

the paper.

4.2 Theory

In this model, there are a domestic (d) and a foreign (f) investor who make a portfolio

choice at time t = 0 and optimize their returns at t = 1. The exchange rate at time

t = 0 is 1 and S ⇠ N(1,�2
s) at t = 2, implying that (S � 1) is the relative change in

the exchange rate. It is defined as foreign currency per unit of domestic currency. In

both the domestic and the foreign market, there exists a risk free asset with return rd

and rf , respectively. Furthermore, there are two risky assets in the domestic market.

The return of asset 1 is r1 ⇠ N(µ1,�2
1) and uncorrelated with the exchange rate. The

return of asset 2 is given by r2 = r̂2 + a(S � 1), where r̂2 ⇠ N(µ2, �̂2
2) is uncorrelated
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with either r1 or S. It follows for asset 2 that r2 ⇠ N(µ2,�2
2) with �2

2 = �̂2
2 + a2�2

S
. The

expected return of each asset is assumed to be positive. The parameter a determines

the correlation coe�cient ⇢ of the return of asset 2 with the exchange rate as

⇢ =
cov[r2, S]

sd[S]sd[r2]

=
a�Sq

(�̂2
2 + a2�2

S
)
. (4.1)

A positive (negative) ⇢ is associated with a firm profiting from an appreciation (depre-

ciation) in the domestic currency as would be expected from an importing (exporting)

firm. As discussed by Bodnar et al. (2002) as well as Bartram et al. (2010), many

firms reduce their FX exposure by hedging, using foreign currency debt, or pass-though

of FX exposure to costumers. Hence, the interpretation with regard to importing and

exporting firms is not absolute.

It follows that we can express the volatility of asset 2 as

�2
2 = �̂2

2
1

1� ⇢2
. (4.2)

In summary, the two risky assets are uncorrelated with each other and only asset 2 is

correlated with the exchange rate with correlation coe�cient ⇢ 2 (�1, 1).

Both the domestic and the foreign investor choose their portfolio in order to

maximize their utility following a basic mean-variance optimization with regard to the

excess portfolio return Rj in local currency with j 2 [d, f ]

Uj [wj,1, wj,2, wj,S ] = E [Rj(wj,1, wj,2, wj,S)]�
1

2
�V ar [Rj(wj,1, wj,2, wj,S)] , (4.3)

where wj,1 and wj,2 are the weights of investor j on assets 1 and 2, respectively. The

hedging demand wj,S denotes investment by investor j in the non-local risk-free asset
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with return rk where k 2 [d, f ] and k 6= j. The risk aversion parameter is given by � > 0

and is assumed to be equal for both investors. The optimization with regard to local

currency returns and the correlation of an asset with the exchange rate are the crucial

di↵erences to standard asset pricing models6.

First, let us consider the return for the domestic investor. The details of the

optimization are provided in the appendix. The domestic investor’s local currency return

is given by

Rd = w1(1 + r1) + w2(1 + r2) + w3
1

S
(1 + rf ) + (1� w1 � w2 � w3)(1 + rd)� 1. (4.4)

As I am focusing on the e↵ect of asset-currency correlation, I assume the risk-free rate

in both markets to be zero. This eliminates carry trade strategies from the models and

leaves investments into the risk-free asset to be purely for hedging purposes. It follows

Rd = w1r1 + w2r2 + w3

✓
1

S
� 1

◆
. (4.5)

At this point, I face the common problem that 1
S
does not follow a normal distribution.

However, as standard deviations of exchange rates are generally small, the di↵erence

between 1
S
� 1 and (1� S) is su�ciently small to be ignored7. Taking into account the

definition of r2, it follows

Rd = w1(r1) + w2(r̂2) + (w2a� w3)(S � 1). (4.6)

6One argument for using local currency returns is that wealth and fund managers generally provide
information about nominal returns to their clients. They are hence incentivized to optimize with regard
to local currency returns.

7Put di↵erently, w3 can be seen as a derivative of the exchange rate S rather than the weight on
buying the foreign risk free asset.
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The definition of the random variables r1, r̂2, and S lead to

E [Rd] =w1µ1 + w2µ2 (4.7)

V ar [Rd] =w2
1�

2
1 + w2

2(�̂
2
2 + a2�2

S) + w2
3�

2
S � 2w2w3a�

2
S . (4.8)

Setting the first derivative of the domestic investor’s return with regard to w3 to zero

leads to

w3 = w2a. (4.9)

The domestic investor uses the currency hedge in order to eliminate the risk resulting

from the correlation between asset 2 and the exchange rate. The weights of asset 1 and

2 follow as

w1 =
1

�

µ1

�2
1

(4.10)

w2 =
1

�

µ2

�̂2
2

=
1

�

µ2

�2
2(1� ⇢2)

. (4.11)

The domestic investor’s weights are not a↵ected by ⇢ as he is able to hedge the correlation

between asset 2 and the exchange rate completely. This results the weights for both

assets to only depend on idiosyncratic risk despite the additional volatility of asset 2 for

|⇢| > 0. As one would expect, the weight increases with the expected return of the asset

and decreases in with the risk aversion parameter � as well as the non-hedgeable risk of

the asset.
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In case of the foreign investor, the return is given by

Rf = w1S(1 + r1) + w2S(1 + r2) + w3S(1 + rd) + (1� w1 � w2 � w3)(1 + rf )� 1.

(4.12)

Setting the risk-free rates equal to zero results in

Rf = (w1 + w2 + w3)(S � 1) + w1Sr1 + w2S(r̂2 + a(S � 1)). (4.13)

The exchange rate a↵ects the return of the foreign investor twice. As for the domestic

investor, there is the currency risk due to the FX correlation of asset 2. Additionally,

she faces currency risk when transferring the returns made in the domestic currency into

her own currency. Details on the optimization are provided in the appendix. For the

expected return and its variance, it follows

E[Rf ] = w1µ1 + w2(µ2 + a�2
S) (4.14)

and

V ar[Rf ] = V ar[(w1 + w2(1� a) + w3)S + w1Sr1 + w2Sr̂2 + w2aS
2]. (4.15)

The optimization leads to

w3 = �w1(1 + µ1)� w2(1 + µ2 + a). (4.16)

As shown in Equation (4.16), if a = 0, the foreign investor hedges the expected amount

she needs to convert at t = 2. For a 6= 0 the additional hedged amount is equal to

the total hedging amount by the domestic investor, i.e. the hedging of asset 2’s FX

correlation. Thereby, the foreign investor also chooses w3 in order to eliminate the
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correlation between the portfolio and the exchange rate as

Cov[Rf , S] = (w1(1 + µ1) + w2(1 + µ2 + a) + w3)�
2
S (4.17)

= 0. (4.18)

Furthermore, the optimization leads to

w1 =
1

�

µ1

�2
1 + �2

1�
2
S

(4.19)

w2 =
1

�

µ2 + ⇢�2�S
�2
2

�
1 + �2

S
� ⇢2(1� �2

S
)
� . (4.20)

The weight of asset 1 decreases not only with the volatility �1 but also the volatility

of the exchange rate �S . Interestingly, ⇢ does not a↵ect the weight invested in asset 1.

The dynamics in the weight on asset 2 is more complex. Everything else equal, given a

fix absolute correlation coe�cient |⇢|, the foreign investor prefers a positively correlated

asset to a negative correlation.

Now, let us look at the share of foreign ownership in the two assets. I define

eFO2 as the excess foreign ownership share of asset 2 over asset 1 or

eFO2 = FO2 � FO1

=
wf,2

wf,2 + wd,2
�

wf,1

wf,1 + wd,1

=
⇢�S

�
(1� ⇢2)(1 + �2

2)�2 � 2⇢�Sµ2
�

�
2 + �2

S

� �
(1� ⇢)⇢2�S�2 + 2(1� ⇢2)µ2 + (1 + ⇢2)µ2�2

S

� , (4.21)

where FOj is asset j’s foreign ownership share.

The relationship between the correlation coe�cient ⇢ and excess foreign owner-

ship in that asset is non-linear. Figure 4.1a) illustrates this relationship. As indicated

above, if ⇢ = 0 the excess foreign return is zero as both investors have the same rela-

tive weights. A negative correlation between the asset and the exchange rate implies a
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negative eFO2, i.e. asset 2 has a lower foreign ownership share than asset 1. In case

of a positive ⇢, the excess foreign ownership can be either positive or, in very extreme

cases, negative. Interestingly, the excess foreign ownership of asset 2 does not depend

on the characteristics of asset 1. It is also worth noting that the magnitude of the ef-

fect is small. A change from ⇢ = �.5 to ⇢ = .5 implies 1% di↵erence in excess foreign

ownership. The driving force for the upward slope is the quadratic term w2a(S2 � S)

resulting from asset 2’s correlation with the exchange rate. Due to this, the investor is

not able to fully hedge the currency risk as it is non-linear. Given ⇢ > 0 the investors

profits more from appreciation in the exchange rate than she su↵ers from depreciation.

For ⇢ < 0, appreciations lead to a higher loss than the gains during depreciations. This

is in contrast to e.g. Sercu (1980) where all currency risk is fully hedged as assets are

not correlated with the exchange rate.

4.2.1 Portfolio diversification without hedging

The model above illustrates the e↵ect of foreign exchange exposure on di↵erences in

domestic and foreign portfolio weights. It allows for the use of foreign exchange positions

in order to hedge the FX exposure. However, Levich et al. (1999) show that most

institutional investors do not fully hedge their FX positions. In their survey, the authors

find that over a third of institutional investors do not explicitly manage FX exposure at

all. There are multiple reason why investors may not (fully) hedge their currency risk the

most notable being transaction costs, capital requirements, and other market frictions.

In order to take this into account, this extension of the model assumes that neither

investor hedges their position, i.e. w3 = 0. A more general solution for optimization

with hedging costs is given in the appendix. The two cases presented here are the

extremes nested in this general solution.

Without hedging, the optimal weights for the domestic investor are given by the
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discount factor multiplied by the asset’s return over the variance of the asset, i.e.

w1 =
1

�

µ1

�2
1

and w2 =
1

�

µ2

�2
2

. (4.22)

While the result for the weight on asset 1 is the same as in Equation (4.10) in

the previous set-up, the weight on asset 2 is lower compared to Equation (4.11) as the

investor is not able to hedge the correlation of the asset with the exchange rate.

The closed form solution for the foreign investor’s weights without currency hedg-

ing is fairly complex. They solve the following equation system resulting from the opti-

mization:

w1 =
1
�
µ1 � w2�2

S
(1 + a+ µ2 + µ1(1 + a+ µ2))

�2
1 + �2

S
(�2

1 + (1 + µ1)2)
(4.23)

w2 =
1
�
(µ2 + a�2

S
)� w1�2

S
(1 + µ1 + a(1 + µ1) + µ2(1 + µ1))

2a2�4
S
+ �2

2 + �2
S
(1 + a2 + �2

2 + 2µ2 + µ2
2 + 2a(1 + µ2))

. (4.24)

The excess foreign ownership in this case is illustrated in Figure 4.1b). Sur-

prisingly, the relationship between the correlation coe�cient ⇢ and the excess foreign

ownership eFO2 is almost fully inverted compared to the case of full hedging in Figure

4.1a). It is worth noting, that the scale in the non-hedged case is a magnitude higher.

This implies that even in a mixed scenario, this relationship is likely to dominate. The

negative slope for intermediate ⇢ is due to the fact that it is optimal for the foreign in-

vestor to use an asset’s FX correlation to implicitly hedge currency risk. As ⇢ gets closer

to unity, a increases infinitely and drives up the volatility of the asset. Consequently,

neither investor is willing to hold asset 2 and the excess foreign ownership converges

to zero for extreme ⇢. This leads to the convex shape for extremely positive and the

concave shape for extremely negative ⇢.

The model above focuses on nominal returns ignoring benefits from the diversifi-

cation from country specific shocks. A foreign investor may prefer to invest into import-
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ing firms as the help diversify away from shocks to the foreign country by exposing her

to shocks in the domestic country. Similarly, a domestic investor may prefer exposure

to an exporting firm following the same reasoning. This would emphasize the slope in

Figure 4.1a).8 Eun et al. (2017) argue that the benefits from international diversification

are higher than generally thought if investors hold stocks with a more “local” exposure.

This implies that rather than focusing on either importers or exporters, investors benefit

more from holding stocks which are uncorrelated with the exchange rate. This behavior

is equivalent to having a bell shape in Figures 4.1a) and b).

The next section looks at a set of simulations in order to see to what extent these

dynamics remain in a more complex setting of a large number of correlated assets.

4.3 Simulation

It is needless to say that the model above is a stark simplification of the problem investors

face. The central reason for this basic set-up and the di↵erence to common models

on international diversification is the correlation between the exchange rate and asset

returns. As an investor diversifies risk over a range of assets, the covariance matrix of the

assets is crucial in determining the weights. As a consequence, a higher weight of a single

asset due to FX correlation will not only a↵ect the weight of this asset relative to the rest

of the portfolio but all weights relative to each other. This creates complex knock-on

a↵ects in determining the di↵erences in weights between domestic and foreign investors.

A central question addressed in this section is whether this degree of complexity makes

it impossible to determine the e↵ect of FX exposure on individual asset weights. In

order to see how the basic intuition of the results hold up in a more realistic set-up, this

section provides a set of simulations. The main purpose of the simulations is twofold.

First, the simulations illustrate the complexity of the problem which foreign investors

8As shown in the empirical results, there is little evidence for this to be the case.
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face when considering even low exchange rate exposure of a set of assets. Secondly, the

results provide a more sophisticated basis for testable hypotheses.

The simulations provide several insights into the dynamics of international diver-

sification. First, for foreign investors using the optimal domestic portfolio can lead to

a close to optimal Sharpe ratio with an optimal hedging position, however the hedging

necessary to achieve this can be substantial. In the simulations, the hedging position

makes up on average around 30% of the portfolio. Second, if currency risk is not hedged

as is indicated in the empirical literature, adjusting the optimal domestic weights with

regard to the FX exposure leads to an increase in the Sharpe ratio.

As basis for the simulations, I am using a set of 30 stocks. The local currency

return of stock i in a month is given by

ri = �m,irm + �s,irs + ✏i, (4.25)

where rm is the market return and rs is the exchange rate return. The returns are

defined as

2
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and

2

64
�m,i

�s,i

3

75 ⇠ N

0

B@

2

64
1

0

3

75 ,

2

64
0.2 0

0 0.0025

3

75

1

CA . (4.28)
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Following historic data for the German stock index DAX, I choose the remaining pa-

rameters to be r̄m = .005, �2
m = .004, and �2

s = .014. The exchange rate is based on the

euro/US dollar rate. I denote this set of parameters as set A. Additionally, I use three

further sets of parameters as shown in Table 4.1.

Let us consider the German example and think of the domestic investor as Eu-

ropean and the foreign investor as American. The euro zone investor chooses weights

for the euro returns while the US investor chooses weights to maximize the return in

US dollar. The risk free rate is set to zero as all returns are excess returns. In a first

step, I am comparing the optimal sharp ratios of a foreign and domestic mean-variance

investor given the ability to hedge exchange rate risk freely. As in the previous section,

the central di↵erence for the two investors is the fact that exchange rate fluctuations

a↵ect the US investor both via the FX exposure of individual stocks and the exposure

due to the conversion into US dollar.

Generally, the weights for US investors wUS are highly correlated with the weights

for euro zone investors wEU with a correlation coe�cient consistently above .99, as one

would expect. However, the absolute magnitude of the weights varies widely. Depending

on the correlation of the market return with the exchange rate ⇢m, the weights di↵er on

average by between 1.0 and 4.4 percentage points.9 In comparison, the mean absolute

weight of a US investor varies between 4.6 and 2.8 percent. This implies, that it is not

optimal for US investors to invest into the same portfolio as domestic investors.

Perfect hedging by the US investor while using the euro zone investor’s weights

leads to the best expected results only inferior to the true optimal weights for the US

investor with optimal hedging. Given the magnitude of the di↵erences when investors

do not hedge their positions as shown in the previous section and the empirical evidence

on hedging behavior, it is reasonable to expect that a lack of hedging determines the

dynamics. Let us assume that the US investor does not use his optimal weights but

9The estimates are based on ⇢m 2 [�.5, .5].
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the euro zone investor’s weights. I compare this with a set of strategies which change

individual weights in the portfolio depending on each stock’s FX correlation. The idea

here is to see if changing the domestic portfolio taking into account the FX correlation

can lead to a better Sharpe ratio for the US investor.

The adjustment in the weight is denoted by ✓, such that the international in-

vestor’s weights are given by

wUS,j = wEU,j + ✓(⇢j � ⇢̄), (4.29)

where ⇢j is the FX correlation of asset j. The normalization using the mean FX corre-

lation ⇢̄ is necessary to ensure the sum of all weights to be unity. For each simulation,

the possible adjustment parameters are rank by their Sharpe ratio and the ✓ with the

highest mean rank is considered the optimal ✓⇤.

The following results are based on a set of 200 simulations each with 10,000

observations. Figure 4.2 illustrates the results for the simulations. The x-axis shows the

FX correlation of the market returns ⇢m while the y-axis shows the optimal adjustment

coe�cient ✓⇤. The dots show the results for the four sets of parameters A to D connected

by smoothed lines. For almost all settings, the coe�cient ✓⇤ is negative. Hence, for a US

investor investing more into negatively correlated stocks and less in positively correlated

stocks leads to better results than using the euro zone investor’s portfolio weights. This

is in line with the results in the previous section of using assets’ FX correlation for

implicit hedging. The coe�cient is only marginally positive for low negative market FX

correlation (⇢m 2 [�.3,�.15]) when both market and exchange rate volatility is low.

Whenever the exchange rate is more volatile, as in examples C and D, the coe�cient is

strongly negative. Hence, we would expect that international investors would take the

FX correlation more into account for emerging market stocks, overweighting those with

negative FX correlation. In order to illustrate the magnitude of this e↵ect, consider a
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market with a zero FX correlation and a stock with an FX correlation of -.2. Compared

to a domestic investor, an international investor would invest 1.6 percentage points more

into this stock given the parameters of set A resembling the German stock market. Given

sets C (D), the adjustment is around 11.6 (10.5) percentage points. Table 4.2 shows

the results for multiple sets of simulations finding them to be stable. The next section

provides a set of testable hypotheses based on the simulations as well as the theoretical

model.

4.4 Hypotheses

The rest of the paper focuses on the testing of the following set of hypotheses. The first

hypothesis follows the literature in assuming that domestic and foreign investors should

hold the same portfolios. If investors do not take into account stocks’ FX correlation, the

portfolio weight would be una↵ected by FX correlation as well. If individual investors

do not di↵erentiate stocks based on their FX correlation, the share of foreign ownership

of the stocks would in turn also not be a↵ected.

Hypothesis 1 The FX correlation of stocks has no influence on the relative share of

foreign ownership within a country.

In contrast, the second hypothesis follows the logic outlined in the previous sections and

the reasoning that a lack of hedging would dominate the dynamics. If investors take the

FX correlation into account, a higher FX correlation is associated with a lower weight

in foreign investors’ portfolio compared to domestic investors’ weights.

Hypothesis 2 A higher FX correlation coincides with a lower share in stocks’ foreign

ownership.

The simulation results illustrated in Figure 4.2 show that more volatile markets are

predicted to see a stronger (negative) relationship between assets’ FX exposure and
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their foreign ownership. Given that emerging markets are generally expected to be more

volatile, this leads to the following hypothesis.

Hypothesis 3 The link between FX correlation and foreign ownership is stronger in

emerging compared to developed markets.

In the model above, a crucial assumption is that each investor optimizes returns in their

local currency. Given the volatility of purchasing power of many, especially developing

countries’ currencies, it is reasonable to expect that investors may rather optimize their

position in terms of more stable currencies. Hence, the relationship between foreign

ownership and FX correlation would be stronger when using a basket of reserve currencies

rather than a GDP weighted basket.

Hypothesis 4 A firm’s foreign ownership share is more strongly linked to correlation of

the firm’s returns with a basket of reserve currencies than with a more general currency

basket.

Alternatively to the logic outlined above, foreign investors may simply avoid firms

with high absolute FX correlation in order to avoid this exposure. This would also be

in line with the logic proposed by Eun et al. (2017) that investors should prefer stocks

with “local” rather than “global” exposure.

Hypothesis 5 A firm’s foreign ownership decreases with absolute FX correlation.

The next section introduces the data set used to test these hypotheses.

4.5 Data

In order to test the hypotheses above, I use firm level data compiled from Datastream.

The data set consists of 21 countries with observations from Jan 2001 to Dec 2014.

Table 4.3 provides the descriptive statistics for each country. Financial firms and those
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with a stock price below the equivalent of USD 2 are excluded. The measure for foreign

ownership used here is “NOSHFR” in Datastream, which is the percentage of total

shares in issue held by institutions domiciled in countries other than that of the firm.

While several firms have no foreign ownership, the dataset also includes a large number

of firms with no information of foreign ownership. These are consequently also excluded

in the analysis. The observations of the three most represented countries, USA, Japan,

and Korea, make up 38.3%, 22.4%, and 9.8%, respectively, of the sample. In terms of

market capitalization in the sample, the shares are 54.7%, 7.4%, and 2.7%, respectively.

In comparison and according to WorldBank data for 2014, the shares of global market

capitalization are 41.6%, 6.9%, and 1.9%. The most underrepresented country is China

with only 1.29% market capitalization in the sample compared to a 9.5% share in the

global market. The statistics are based on the observations for the firms from each

country for the period between Jan 2006 and Dec 2014 as this period is ultimately

used for the analysis. MV is the market valuation in US dollar and Turn is the monthly

turnover in billion of local currency. The share of free floating shares in foreign ownership

(FO) is shown as the average and standard deviation for the firms which have at least

some foreign ownership. Finally, share DO provides the average share of firms in a given

country which were held solely by domestic investors. From the descriptive statistics

it is clear that the assumption of foreign investors holding the market portfolio does

not hold. Apart from Hong Kong, for over half of the observations from each country,

domestic investors hold all floating shares. For USA, Japan, China, and Turkey the

share is over 90%. Even when looking at the firms with some foreign ownership, there is

a large di↵erence between firms in each country. The average foreign ownership in this

sample is 4.5%. 79.3% of the firms have no foreign ownership. When excluding these

firms, the average foreign ownership is 21.8%.

In this paper, I am using the term FX exposure in order to describe the con-

temporaneous correlation between the monthly returns of an exchange rate index and
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the returns of a firm in local currency. This definition comes from the theoretical

model introduced above where this FX exposure is given by the correlation coe�cient

⇢ = cor [r2, (S � 1)]. As e.g. Bartram and Bodnar (2007) show, the literature on the FX

exposure puzzle focuses on a firm’s exposure to exchange rate movements after taking

into account the exposure to market risk. The classical exchange rate exposure �i,S is

hence given by

ri,t = ↵i + �i,MrM,t + �i,SrST ,t + ✏i,t, (4.30)

where ri,t is the stock return of firm i at time t, rM,t is the market return, and rST ,t is the

return of a trade-weighted exchange rate basket. The trade-weighted basket is generally

used as an approximation for the extent to which a firm is exposed to each currency.

I depart from this in three important ways. First, I use a GDP weighted basket of

26 major currencies to approximate the wealth that can be invested by investors from

each currency area. Even if country A does not trade much with country B, country

B’s investors still have the potential to invest in companies in country A. The second

di↵erence is that I am not correcting for market risk. In line with the theory, an investor

cares about the total FX exposure of a stock rather than the FX exposure of a stock in

excess of the market’s FX exposure. Hence, a correction for market risk in this context

is not only unnecessary but undesirable. Jorion (1990) considered both approaches but

found that the ranked correlation of both measures is close to unity. The di↵erence is

consequently a matter of absolute size, rather than relative ranking. However, as I use

the measure in a second step regression, the absolute size matters here. Finally, rather

than running a linear regression of the local currency returns on the exchange rate basket
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return, I use the correlation coe�cient as in the theoretical model. Given that

� =
cov [ri,t, rS,t]

�2
S

= ⇢
�r
�S

, (4.31)

it is straightforward to see that the regression coe�cient � of a simple linear regression

is increasing with the volatility of the stock �r. The correlation coe�cient ⇢ in contrast

is bound between (�1, 1). The regression coe�cient � provides the nominal explanatory

power of the exchange rate, i.e. by how much does the return of the asset change per unit

of exchange rate return. In contrast, the correlation coe�cient ⇢ provides the relative

explanatory power given by how much of the total return is explained by exchange rate

movements. It is more closely related to the R2 of a regression. Consequently, the size

of the correlation coe�cient ⇢ is more informative when looking at the cross section

of stocks as a higher correlation coe�cient implies a stronger connection between the

exchange rate and the asset’s return.

Table 4.4 provides the summary statistics for firms’ FX correlation per country.

The FX correlation is calculated with annualized monthly returns for five year rolling

windows10. For most countries, the mean and median FX exposure is positive. USA

and Hong Kong are the notable exceptions. South Africa sees the largest absolute mean

exposure with .35. The spread between the 25 and 75 percentile is between .08 and .28

for each country with an average of .18. Hence, there is a wide variation in correlations

for the observations in each country.

10Additional results with two year rolling windows lead to similar results.
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4.6 Empirical analysis

The empirical part of the analysis focuses on the share of foreign ownership as dependent

variable. Naturally, the share of foreign ownership FOt,i of firm i at time t is given by a

bounded interval FOt,i 2 [0, 1]. In order to correct for this in the regression set-up and

to avoid biases in the estimation, I am using the logistic transformation of this variable

lFOt,i = log

 
FOt,i(n�1)+0.5

n

1� FOt,i(n�1)+0.5
n

!
, (4.32)

where n is given by the total number of observations. Hypothesis 1 states that the FX

exposure of a stock has no impact on the share of foreign ownership. I test this using

the regression

lFOt,i = ↵0 + ✓⇢t,i + ↵XXt,i + ✏t,i, (4.33)

where ⇢t,i is the correlation coe�cient between firm i’s monthly stock return and returns

in the exchange rate basket over the five years leading up to time t. The exchange

rate basket is a GDP weighted basket of 26 mayor currencies. Xi is a set of control

variables on the firm level. The control variables are given by log market valuation

(MV), volatility of annualized monthly returns over the past five years (Vol), book-

to-market ratio (BM), and log turnover in the current month (Turn). Column (1) of

Table 4.9 shows the regression results for Equation (4.33) using the full sample. All

regressions include time and country fixed e↵ects as well as firm and time clustered

standard errors. The reason for using country and time fixed e↵ects is to eliminate

country-wide fluctuations of FX ownership shares in a given market. These are likely to

occur due to changes in the monetary policy of this or other countries. Because the focus

of the analysis is on the e↵ect of FX correlation on the di↵erences between firms within

a country at a given time, firm fixed e↵ects are not used. Di↵erences between firms are

151



however used when clustering the standard error. For the overall regression, Hypothesis

1 that FX correlation has no impact on foreign ownership is strongly rejected. In line

with Hypothesis 2, the coe�cient for ⇢ is significantly negative.

Column (2) and (3) shows the regression results for developed and emerging

markets, separately. Following the Columbia University EMGP definition of emerging

markets, the latter are given by China, Taiwan, Korea, Hong Kong, Thailand, India,

Poland, Turkey, South Africa, and Singapore. The developed markets are USA, Japan,

Canada, Germany, UK, France, Italy, Belgium, Australia, Switzerland, and Denmark.

The results for developed markets in Column (2) is in line with the results for Column (1).

In contrast, the results for emerging markets show no significant relationship between

FX correlation and foreign ownership. This is in contrast with Hypothesis 2 and the

model’s predictions. Hypothesis 3 states that emerging markets are expected to see a

stronger negative coe�cient than developed markets. Following the results in Table 4.9,

this Hypothesis is strongly rejected.

Table 4.7 shows the results for each individual country. Despite the lower number

of observations, the coe�cient for FX correlation is significantly di↵erent from zero for

ten out of 21 countries. 80% of the significant coe�cients are negative in line with

Hypothesis 2. Of the eleven developed markets, not a single country rejects Hypothesis

2. In summary, there is consistent evidence that FX correlation is associated with

di↵erences in foreign ownership within a country at least for developed markets. This

evidence is contrary to the common assumption that foreign investors strive to hold the

same portfolio as domestic investors.

Due to the logistic transformation, the coe�cients of the regression are not

straightforward to interpret. To provide an idea of the magnitude, consider the case

of the mean US firm in this data set with mean log market valuation, volatility, book-to-

market ratio, and log turnover. Due to the large number of zero foreign ownership firms

and the large weight put on observations close to the bounds in a logistic transformation,
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the measured e↵ect of a change in ⇢ for the mean firm is close to zero. In order to correct

for that, it makes sense to focus on firms with at least some foreign ownership. Table

4.8 shows the results when only including observations with non-zero foreign ownership.

In the case of the mean US firm in this subset, a change in ⇢ by -.18 from .08 to -.10

increases foreign ownership from 12.5% to 13.0%. The change from .08 to -.10 is the

di↵erence between the third and first quartile of FX correlation among these firms. In

case of the mean Japanese firm, a change from .23 to .04 implies a change in foreign

ownership from 8.9% to 9.3%. Put di↵erently, a decrease in the FX correlation by .18

leads to a 3.7% higher investment position by foreign investors in case of the mean US

firm and 4.5% in the mean Japanese firm. When looking at the median US and Japanese

firm, the results are almost identical.

Departing from the assumption that each investor maximizes with regard to their

local currency returns, it is possible that foreign investors especially in emerging markets

maximize with regard to a basket of reserve currencies. Following this logic, Hypothesis

4 states that using FX correlation with regard to reserve currencies sees a stronger e↵ect

than when using a general currency basket. I am using the definition of the IMF’s

special drawing rights (SDR) valid from January 2006 to December 2010 as basket of

reserve currencies. For the whole sample, SDR are pegged to US dollar, euro, British

pound, and Japanese yen.11 For consistency, I am using the same weights throughout

the period fixed at 44%, 34%, 11%, and 11%, respectively. Columns (4)-(5) in Table 4.9

show the results. Similar to the previous regressions, the coe�cient for FX correlation

is significantly negative for the whole sample and the sub-sample of developed markets

but insignificant for emerging markets. In line with Hypothesis 4, the coe�cients in all

three samples are more negative compared to Columns (1)-(3), however the di↵erence

is not significant. Similarly, the explanatory power of the regressions using the reserve

11In November 2015, the IMF decided to add the Chinese yuan to the currency basket coming into
e↵ect in October 2016. The weights for SDR between 2006 and 2011 are constant. The change in weights
prior 2006 and after 2010 are small and do not a↵ect the results.
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currency basket is only marginally higher.

Contrary to the logic outlined in Section 4.2, foreign investors may avoid firms

with high absolute FX correlation and prefer firms which either hedge their own exposure

or are generally not exposed to FX movements. In order to test this explanation denoted

as Hypothesis 5, Table 4.10 provides the results when including absolute FX correlation

|⇢|. For the full sample in column (1), both the coe�cient for the absolute term and the

linear term are highly significant at -.408 and -.485, respectively, supporting a mix of both

Hypothesis 2 and 5. For firms with negative FX correlation, the two coe�cients cancel

out and there is no significant relationship. For positively correlated firms, a higher FX

correlation is associated with a lower foreign ownership share. The results for developed

markets in column (2) are in line with the overall results. Column (3) shows the results

for emerging markets with insignificant coe�cients for ⇢ and |⇢|. Hence, there is some

evidence to suggest that foreign investors both have a tendency to prefer stocks with

negative FX correlation and at the same time limit exposure to FX correlation altogether.

While the prior is in line with Hypothesis 2, the latter is in line with Hypothesis 5.

Regulators have reacted to the financial crisis by changing how international

investors deal with risk including currency risk. While law makers in di↵erent countries

acted di↵erently, it raises the question if the collective of international investors have

changed their behavior significantly. In order to assess this, the next set of regressions

includes only observations before June 2007 and after December 2009 with the prior being

pre- and the latter being post-crisis. Columns (4)-(6) show the results when including

⇢post, the FX correlation of a given firm in the post-crisis period. Hence, ⇢ captures

the e↵ect of pre-crisis FX correlation while ⇢post is given by the change between pre-

and post-crisis. For all three, the overall sample as well as the subsets of developed and

emerging markets, the pre-crisis coe�cient is significantly negative, implying a preference

by foreign investors for stocks with negative FX correlation in line with Hypothesis 2.

The coe�cient for ⇢post is insignificant for the overall sample and developed markets. In
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case of emerging markets, the negative coe�cient for ⇢ is canceled out by a positive ⇢post

for the post-crisis period. Hence, the overall coe�cient for ⇢ in the post-crisis period is

insignificant. The result for the pre-crisis period is not only in line with Hypothesis 2 for

a positive ⇢ coe�cient but also in line with Hypothesis 3, that the e↵ect for emerging

markets is significantly stronger. Hence, while the results for the pre-crisis period are

very much in line with the idea that foreign investors prefer stocks with negative FX

correlation, the behavior for emerging markets in the post-crisis period does not.

Consequently, it appears that either post-crisis regulation or the changed market

environment has changed investors preference for negative FX correlation in emerging

markets. There are at least two possible explanations for this. As post-crisis regulations

made hedging more expensive, foreign investors may treat FX correlation di↵erently

compared to the pre-crisis period, however higher hedging costs would be expected to

make implicit hedging more important. Alternatively, other factors may have become

more important to foreign investors leading to FX correlation to become secondary and

ultimately insignificant. Given that FX correlation is a natural component to be taken

into account as it directly a↵ects the return distribution, the decrease in its importance

is an indication for frictions in international capital markets.

Due to the estimation of the correlation coe�cient between the stock return and

the exchange rate basket, each firm’s FX correlation is fairly persistent over time. This is

the case as they are calculated over a five-year rolling window. In order to show that the

persistence in the correlation coe�cients is not driving the results, Figure 4.3 illustrates

the coe�cient for the FX correlation when running cross sectional regressions per month

using country fixed e↵ects and firm level control variables. The grey band represents the

5% significance interval. The coe�cient is negative and significantly di↵erent from zero

for 59 of the 109 months. For the remaining months, the coe�cient is not significantly

di↵erent from zero. 98% of these months are between May 2006 and May 2010. To some

extent this coincides with the financial crisis. Similarly, when only looking at developed
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markets as in Figure 4.4, 73 months see significantly negative coe�cients, while for

one month it is significantly positive. Hence, despite the persistence in the calculated

correlation coe�cients, the results do not appear to be driven by this. Figures 4.3 and

4.4 show that the relationship generally holds in the cross section, which is in line with

Hypothesis 2.

As a final step, I further assess how the relationship between FX correlation and

foreign ownership develops over time for a subset of countries. Figure 4.5 illustrates the

development of the coe�cients calculated over one year periods with monthly fixed e↵ect

for the three largest markets: USA, Japan, and China. A dashed line indicates that the

coe�cient is not significantly di↵erent from zero using a 10% significance level. The

same control variables are used as before. As in the regressions above, the coe�cients

are overall negative. The US coe�cient shows some significantly positive observations

around the financial crisis. From 2010 onward, it is consistently significantly negative.

The positive coe�cient during the financial crisis implies that foreign investors had a

preference for firms with positive FX correlation such as importers. There is a similar

pattern for Japan, with a period of positive coe�cients during the financial crisis fol-

lowed by negative coe�cients between 2011 and 2013, before turning positive in 2014. A

possible explanation for this is that exposure to reserve currencies such as US dollar and

Japanese yen was seen as more desirable during the financial crisis. Additionally, expo-

sure to importing firms implies a stronger exposure to country specific shocks. Hence,

foreign investors chose a higher exposure to US and Japan specific shocks after the be-

ginning of the financial crisis. In case of China, the coe�cient is initially highly negative

before reaching a similar negative level as Japan and the US in 2011. The path that the

coe�cient for China depicts appears to track the establishment of the Chinese yuan as

a major currency.

The analysis shows broad consistency in the negative results for the three coun-

tries at least after the crisis. The absolute size and change of the coe�cients needs to
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be interpreted with caution, however, due to the logistic transformation.

4.6.1 Home bias measures

Under the assumption that domestic and foreign investors hold the same portfolio in

each country, their overall optimal portfolio is generally considered identical. This is

expressed in standard home bias measures as e.g. by Sercu and Vanpée (2007) given by

HomeBias = DomesticHoldings� HomeCapitalization

WorldCapitalization
. (4.34)

Domestic and foreign investors are expected to invest the same fraction of their portfolio,

given by the size of the domestic market relative to world capitalization, into the domestic

market.

However, as shown in the descriptive statistics, foreign investors avoid many firms

altogether or are barred from investing in these firms. As highlighted in the empirical

analysis, FX exposure is one driver for the di↵erences in foreign ownership between firms

in a given country. Therefore, home bias cannot merely be measured by di↵erences in

aggregated domestic and foreign holdings. A true measure needs to take into account

the risk profile of foreign investors’ holdings. This reasoning goes beyond the exposure

to currency risk.

To illustrate this, consider the following example. As foreign investors put a

higher weight on firms with negative FX correlation, they are more exposed to shocks to

exporting firms than importing firms. Given that exporting firms do not provide much

diversification away from shocks to the global economy, the benefit of investing in the

domestic market is lower. Similar to Levy and Levy (2014), this raises questions about

the benefits of international diversification for investors. However, in contrast to Levy

and Levy (2014), the FX exposure of firms is a central driver of the dynamics and the

results indicate that a more appropriate measure of home bias is needed. Such a measure
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needs to take into account the portfolio of foreign investors rather than the aggregate

holdings. This is especially true when considering currency risk as a driver of home bias.

The measure of currency risk also needs to be revisited. The home bias literature

finds conflicting results for the importance of currency risk. Thapa and Poshakwale

(2012) find that currency risk plays only a minor role in explaining the home bias in

equity markets. In contrast, Maggiori et al. (2018) conclude that currency di↵erences

are the main driver of the bond home bias going so far as to refer to it as home currency

bias. The measurement of currency risk is likely to be a key reason for this result.

Thapa and Poshakwale (2012) use real exchange rate volatility as their currency risk

measure. Thereby, they only capture the general conversion risk and do not take into

account the e↵ect of indirect currency hedging via the FX correlation. This would lead

to an overestimation (underestimation) of currency risk for assets which are negatively

(positively) correlated with the exchange rate. Maggiori et al. (2018) profit from the

fact that the bond market provides a more complete measure of currency risk as they

use di↵erences in currency denomination. By comparing the investment into local versus

foreign currency denominated debt, all aspects of currency risk are captured. Hence, the

dramatic di↵erence in their conclusions may partly be due to an unprecise measurement

of currency risk in equity markets rather than a di↵erence in investor preferences.

4.7 Conclusion

This paper investigates the influence of individual stocks’ exchange rate exposure on the

di↵erence in portfolio allocation by domestic and international investors measured by

foreign ownership. It is the first paper to look at the e↵ect of exchange rates on within

country di↵erences in foreign ownership. Thereby, the paper contributes among other

to the macro finance literature on home bias by showing how foreign currency exposure

can help explain the within country di↵erences in foreign bias.
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Using a basic theoretical framework, I find that the general assumption of foreign

and domestic investors to hold each country’s market portfolio is inappropriate when

considering an assets’ exchange rate exposure and a desire to optimize with respect to

nominal returns. While marginal when allowing for perfect hedging, the e↵ect becomes

substantial when considering frictions such as transaction costs, capital requirements, or

capital controls. The basic model provides intuition for the dynamics. In order to capture

the full complexity of choosing optimal portfolio weights, I use a set of simulations for

more realistic predictions. Under restricted hedging, foreign investors generally prefer

higher weights on stocks with negative FX correlation compared to domestic investors’

optimal weights.

I test these predictions using data for 21 countries and find that firm level FX

exposure helps to explain within country foreign ownership di↵erences in line with the

simulations. Foreign investors generally prefer firms with negative FX correlation which

helps to implicitly hedge currency risk. Hence, foreign investors prefer to hold shares

of exporting firms rather than importing firms. In the pre-crisis period, this e↵ect was

significantly larger for emerging markets as one would expect. In the post-crisis period,

however, there is no significant link between foreign ownership and FX correlation in

emerging markets. For developed markets, I do not observe a reduction in the e↵ect.

Additionally, there is evidence that foreign investors prefer absolute FX correlation to

be limited.

This paper provides the first evidence for the importance of exchange rate ex-

posure in order to explain di↵erences in foreign ownership within a country. Thereby,

it opens the path for further analysis on the targets of international investment flows

both within and between countries as well as the interaction of exchange rates and as-

set prices. The importance of FX exposure for international portfolio allocation raises

doubts on current measures of home bias in international finance and may help explain

the persistence of the home bias puzzle.
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While the focus of this paper is on the connection between currency risk and

within country di↵erences in foreign ownership, it provides relevant insights for interna-

tional asset pricing as well. It proposes the FX correlation as the driver of cross sectional

di↵erences in demand and hence prices rather than the use of currency beta. In addition,

I argue for the use of FX correlation without controlling for market risk as the market

return will be correlated with the exchange rate as well. While the market risk needs to

be accounted for in asset pricing, the calculation of the currency factor should not be in

excess of the market’s FX correlation but rather include it.
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4.8 Appendix

4.8.1 Parameters a and ⇢

The parameters a and the correlation coe�cient ⇢ are closely related

⇢ =
cov[r2, S]

sd[S]sd[r2]

=
a�2

S

�S
q
(�̂2

2 + a2�2
S
)

=
a�Sq

(�̂2
2 + a2�2

S
)

) a =
⇢�̂2

�S
p
(1� ⇢2)

. (4.35)

It follows that we can express the volatility of asset 2 as

�2
2 = �̂2

2
1

1� ⇢2
. (4.36)

4.8.2 Domestic investor with hedging

The return of the domestic investor is given by

Rd = w1(1 + r1) + w2(1 + r2) + w3
1

S
(1 + rf ) + (1� w1 � w2 � w3)(1 + rd)� 1

= rd + w1(r1 � rd) + w2(r2 � rd) + w3

✓
1

S
� 1

◆
+ w3

✓
1

S
rf � rd

◆
(4.37)

As I am focusing on the e↵ect of asset-currency correlation, I assume the risk-free rate

in both markets to be zero. This eliminates carry trade strategies from the models and

leaves investments into the risk-free asset to be purely for hedging purposes.

Rd = w1r1 + w2r2 + w3

✓
1

S
� 1

◆
(4.38)
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At this point, I face the common problem that 1
S
does not follow a normal distribution.

However, as standard deviations of exchange rates are generally small, the di↵erence

between 1
S
� 1 and (1� S) is su�ciently small to be ignored. Put di↵erently, w3 can be

seen as a derivative of the exchange rate S rather than the weight on buying the foreign

risk free asset.

Rd = w1(r1) + w2(r2) + w3 (1� S)

= w1(r1) + w2 (r̂2 + a(S � 1)) + w3 (1� S)

= w1(r1) + w2(r̂2) + (w2a� w3)(S � 1) (4.39)

The definition of the random variables r1, r2, and S lead to

E [Rd] =w1µ1 + w2µ2 (4.40)
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For the first derivative of the domestic investor’s optimization problem with respect to

w3 it follows that

@U

@w3
= 0

��
�
w3�

2
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2
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�
= 0

w3 = w2a. (4.42)
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The domestic investor uses the currency hedge in order to eliminate the risk resulting

from the correlation between asset 2 and the exchange rate. Further, it follows that

@U
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= 0

µ1 � �
�
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�
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(4.43)

and
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4.8.3 Foreign investor with hedging

In case of the foreign investor, the return Rf is as follows. Again, I omit the index f of

the weights for brevity:

Rf = w1S(1 + r1) + w2S(1 + r2) + w3S(1 + rd) + (1� w1 � w2 � w3)(1 + rf )� 1

= rf + (w1 + w2 + w3)(S � 1) + w1Sr1 + w2Sr2 + w3Srd � (w1 + w2 + w3)rf

= rf + (w1 + w2 + w3)(S � 1)(1 + rf ) + w1S(r1 � rf ) + w2S(r2 � rf ) + w3S(rd � rf ).

(4.45)
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Setting the risk-free rates equal to zero results in

Rf = (w1 + w2 + w3)(S � 1) + w1Sr1 + w2Sr2

= (w1 + w2 + w3)(S � 1) + w1Sr1 + w2S(r̂2 + a(S � 1)). (4.46)

The exchange rate a↵ects the return of the foreign investor twice. As for the domestic

investor, there is the exchange rate risk due to the FX correlation of asset 2. Additionally,

she faces currency risk when transferring the returns made in the domestic currency into

her own currency. For the expected return and its variance follows

E[Rf ] = w1E[Sr1] + w2E[Sr̂2] + w2(aE[S2]� aE[S])

= w1E[S]E[r1] + w2E[S]E[r̂2] + w2(aE[S2]� aE[S])

= w1µ1 + w2µ2 + w2(a(1 + �2
S)� a)

= w1µ1 + w2(µ2 + a�2
S) (4.47)

and

V ar[Rf ] = V ar[(w1 + w2 + w3)S + w1Sr1 + w2Sr̂2 + w2aS
2 � w2aS]

= V ar[(w1 + w2(1� a) + w3)S + w1Sr1 + w2Sr̂2 + w2aS
2]. (4.48)
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For brevity, denote � = (w1 + w2(1� a) + w3)

V ar[Rf ] =�2�2
S + w2

1V ar[Sr1] + w2
2V ar[Sr̂2] + w2

2a
2V ar[S2]

+ 2�w1Cov[S, Sr1] + 2�w2Cov[S, Sr̂2] + 2�w2aCov[S, S2]

+ 2w1w2Cov[Sr1, Sr̂2] + 2w1w2aCov[Sr1, S
2] + 2w2

2aCov[Sr̂2, S
2]

=�2�2
S + w2

1(E[S2r21]� E[S]2E[r1]
2) + w2

2(E[S2r̂22]� E[S]2E[r̂2]
2)

+ w2
2a

2(E[S4]� E[S2]2) + 2�w1(E[S2r1]� E[S]E[Sr1])

+ 2�w2(E[S2r̂2]� E[S]E[Sr̂2]) + 2�w2a(E[S3]� E[S2]E[S])

+ 2w1w2(E[S2r1r̂2]� E[Sr1]E[Sr̂2]) + 2w1w2a(E[S3r1]� E[Sr1]E[S2])

+ 2w2
2a(E[S3r̂2]� E[Sr̂2]E[S2]). (4.49)

Given the definitions of the variables and their independence, we find that

E[S2] = (1 + �2
S) E[S2rjrk] = E[S2]µjµk

E[S3] = (1 + 3�2
S) E[S2rj ] = E[S2]µj

E[S4] = (1 + 6�2
S + 3�4

S) E[S3rj ] = E[S3]µj

E[r2j ] = (µ2
j + �2

j ) E[S2r2j ] = E[S2]E[r2j ]

E[Srj ] = µj .

For the optimization it follows that

@U

@w3
= 0

0 = ��
�
w3�

2
S + w1(�

2
S + µ�2

S) + w2(�
2
S + µ�2

S + a�2
S)
�

w3 = �w1(1 + µ1)� w2(1 + µ2 + a) (4.50)
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Using the definition of a, it follows that
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When formulating the weight on asset 2 in terms of its overall risk �2 as in Equation

(4.36), it further follows that

w2 =
1

�

µ2 + ⇢�2�S
�2
2

�
1 + �2

S
� ⇢2(1� �2

S
)
� . (4.54)

4.8.4 Investor with hedging costs

Investors are likely to not fully hedge their positions due to several market frictions and

regulatory requirements. In order to capture this, the following model imposes a cost of

c

2 for buying the risk free asset from the country where the investor is not located. The

cost increases quadratically in order to capture both the fact that put and call positions

are both a↵ected as well as that regulatory requirements are likely to matter more as
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positions get larger.

Rd = w1(r1) + w2(r̂2) + (w2a� w3)(S � 1)� w2
3
c

2
(4.55)

The definition of the random variables r1, r2, and S lead to

E [Rd] =w1µ1 + w2µ2 � w2
3
c

2
(4.56)

V ar [Rd] =w2
1�

2
1 + w2

2�̂
2
2 + (w2a� w3)

2�2
S + 2w1w2Cov[r1, r̂2]

+ 2w1(w2a� w3)Cov[r1, S] + 2w2(w2a� w3)Cov[r̂2, S]

=w2
1�

2
1 + w2

2�̂
2
2 + (w2a� w3)

2�2
S

=w2
1�

2
1 + w2

2(�̂
2
2 + a2�2

S) + w2
3�

2
S � 2w2w3a�

2
S . (4.57)

The expected return is reduced by the hedging costs, while the variance is not a↵ected.

For the first derivative of the domestic investor’s optimization problem with respect to

w3 it follows that

@U

@w3
= 0

�w3c� �(w3�
2
S � w2a�

2
S) = 0

w3 = w2
a

c

��2
S
+ 1

. (4.58)

When hedging is free, the domestic investor uses the currency hedge in order to eliminate

the risk resulting from the correlation between asset 2 and the exchange rate. As the

costs c increase, the hedging position linearly decreases. The weight on asset 1 remains
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unchanged compared to the case of no hedging costs with
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. (4.59)

It also follows that
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With no hedging costs, the domestic investor only takes into account the idiosyncratic

risk of asset 2 in order to determine its weight. As the cost of hedging increases, the

domestic investor increasingly takes into account the hedgeable risk as well.

For the foreign investor, the optimization problem is equivalent. The expected

return is reduced by w2
3
c

2 while the variance does not change. For the first derivative of

the foreign investor’s optimization problem with respect to w3 it follows that

@U

@w3
= 0

w3 = �w1(1 + µ1) + w2(1 + a+ µ2)

( c

��2
S
+ 1)

. (4.61)

When hedging is free, the foreign investor uses the currency hedge in order to eliminate

the correlation between her return and the exchange rate. As the costs c increase, the
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hedging position linearly decreases. Further, it follows that
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and
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(4.63)

It becomes clear that the resulting terms, for each weight are highly complex.
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Set A B C D

�2
m .004 .004 .016 .016
�2
s .014 .056 .014 .056

Table 4.1: Parameters
Four sets of simulation parameters. �m is the standard deviation of market return and
�s is the standard deviation of the exchange rate. The parameters of set A are based on
the German stock market.
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Figure 4.1: Theory results
The x-axis is given by asset 2’s FX correlation ⇢. The y-axis shows excess foreign
ownership eFO2 as given in Equation (4.21) and as it would result from Equations
(4.23) and (4.24).
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⇢m ✓⇤1 ✓⇤2 ✓⇤3 ✓⇤4 ✓⇤5

.3 -.205 -.20 -.20 -.195 -.185
0 -.07 -.055 -.075 -.075 -.065

-.3 .00 .00 .00 .00 -.01

Table 4.2: Four simulation results for parameter set A
The results are based on five sets of 200 simulations each, each in turn with 10,000
observations.

Country # Firms MV Turn FO share DO
avg sd avg sd avg sd

USA 2,293 5,295 21,116 0.95 3.9 1.58 7.2 0.91
Japan 1,484 1,220 6,466 0.001 0.006 1.21 4.5 0.90
France 301 3,495 12,022 0.37 1.5 5.79 15.4 0.74

UK 289 4,037 14,468 56.0 220 8.84 13.6 0.51
Germany 231 4,610 14,545 0.008 0.033 9.63 21.9 0.69
Australia 70 7,705 16,256 0.46 1.1 4.84 11.0 0.72

Switzerland 134 7,577 26,729 0.42 1.5 6.82 15.9 0.67
Italy 69 4,188 14,357 0.77 3.5 4.54 13.4 0.79

Denmark 74 2,516 7,595 0.025 0.073 4.82 12.0 0.76
Canada 5 90 63 0.15 0.28 7.19 9.4 0.51
Belgium 60 2,710 13.548 0.14 0.54 16.61 25.3 0.55
China 544 2,334 3,115 0.081 0.096 0.77 5.3 0.97
Korea 739 1,041 6,319 0.0001 0.0004 2.25 7.3 0.86

Taiwan 105 5,881 12,238 0.013 0.019 1.62 4.5 0.84
Hong Kong 56 18,518 44,138 0.076 0.18 26.19 27.2 0.37

Thailand 42 5,037 6,224 0.006 0.010 9.94 18.6 0.74
India 177 3,984 8,235 0.004 0.008 10.00 20.2 0.70

Turkey 34 963 1,585 0.044 0.084 2.60 12.9 0.95
South Africa 79 4,096 6,907 0.03 0.06 3.31 11.0 0.81

Poland 66 620 1,739 0.011 0.044 15.80 27.2 0.66
Singapore 17 6,699 9,951 0.17 0.26 12.62 22.9 0.57

Table 4.3: Descriptive statistics
This table provides the descriptive statistics of the firms in each country in this data set
# Firms provides the number of firms, MV is given by the market valuation in USD,
and Turn provides turnover in bn LCY. FO provides the percentage of foreign ownership
in a firm given that foreign ownership is not zero. Share DO is the share of firms fully
in domestic ownership.
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Country 25 perc. Mean Median 75 perc. Mean abs.

USA -0.099 -0.001 -0.005 0.095 0.118
Japan 0.049 0.146 0.153 0.245 0.176
France 0.055 0.116 0.151 0.211 0.161

UK 0.110 0.209 0.198 0.279 0.210
Germany 0.035 0.107 0.135 0.207 0.156
Australia 0.163 0.241 0.252 0.325 0.255

Switzerland 0.102 0.198 0.228 0.336 0.234
Italy 0.075 0.128 0.170 0.238 0.177

Denmark 0.050 0.109 0.135 0.186 0.148
Canada 0.048 0.191 0.194 0.325 0.206
Belgium 0.067 0.152 0.188 0.288 0.200
China -0.081 0.003 -0.001 0.076 0.098
Korea 0.014 0.098 0.111 0.195 0.142

Taiwan -0.029 0.076 0.065 0.174 0.130
Hong Kong -0.133 -0.046 -0.054 0.031 0.109

Thailand 0.017 0.101 0.121 0.204 0.140
India -0.023 0.056 0.060 0.143 0.106

Turkey 0.021 0.058 0.035 0.098 0.098
South Africa 0.271 0.366 0.344 0.438 0.349

Poland 0.039 0.096 0.104 0.157 0.126
Singapore -0.010 0.078 0.104 0.198 0.128

Table 4.4: Summary of FX exposure
This table provides the quantiles of the correlation between the monthly return on a GDP
weighted exchange rate basket of 26 mayor currencies and firms’ returns. Additionally,
the table provides the mean as well as the mean absolute value of the correlation. The
correlations are calculated over six month windows.
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(1) (2) (3) (4) (5) (6)

All DM EM All DM EM

MV 0.098⇤⇤ -0.070 0.680⇤⇤⇤ 0.101⇤⇤ -0.068 0.686⇤⇤⇤

(0.044) (0.048) (0.099) (0.044) (0.048) (0.099)
Vol -0.037⇤⇤⇤ 27.4⇤⇤⇤ -0.016⇤⇤⇤ -0.039⇤⇤⇤ 27.4⇤⇤⇤ -0.017⇤⇤⇤

(0.005) (0.435) (0.004) (0.005) (0.433) (0.004)
⇢ -0.604⇤⇤⇤ -0.753⇤⇤⇤ 0.101 -0.734⇤⇤⇤ -0.879⇤⇤⇤ -0.112

(0.171) (0.187) (0.502) (0.168) (0.186) (0.488)
BM -0.017 -0.004 -0.254⇤⇤⇤ -0.017 -0.004 -0.252⇤⇤⇤

(0.018) (0.019) (0.090) (0.018) (0.019) (0.090)
Turn 0.020 0.121⇤⇤⇤ -0.304⇤⇤⇤ 0.018 0.120⇤⇤⇤ -0.308⇤⇤⇤

(0.029) (0.031) (0.072) (0.029) (0.031) (0.072)

Obs. 613,411 500,199 113,212 613,411 500,199 113,212
R2 0.1176 0.1151 0.1440 0.1178 0.1154 0.1441

Table 4.5: Regression: FX correlation and foreign ownership
The table shows the regression results with foreign ownership subject to logistic transfor-
mation as dependent variable. Time and country fixed e↵ects are used and the standard
errors are double clustered over time and firm. The coe�cient for Vol is given in 10�12.
In Columns (4)-(6), the FX correlation is calculated using the SDR weighted basket of
reserve currencies.
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Figure 4.2: Simulation results
Optimal adjustment parameter ✓⇤ plotted against index FX correlations. The four sets
of simulations are based on the parameters in Table 4.1. Set A is based on the German
stock market. The parameters are given in Table 4.1.
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(1) (2) (3) (4) (5) (6)

All DM EM All DM EM

MV 0.102⇤⇤ -0.066 0.683⇤⇤⇤ 0.117⇤⇤ -0.045 0.651⇤⇤⇤

(0.044) (0.048) (0.099) (0.045) (0.050) (0.101)
Vol -0.037⇤⇤⇤ 27.3⇤⇤⇤ -0.015⇤⇤⇤ -0.037⇤⇤⇤ -2110⇤⇤⇤ -0.025⇤⇤⇤

(0.005) (0.438) (0.005) (0.005) (426) (0.005)
⇢ -0.408⇤⇤ -0.531⇤⇤⇤ 0.302 -1.054⇤⇤⇤ -0.922⇤⇤⇤ -2.234⇤⇤⇤

(0.177) (0.191) (0.486) (0.242) (0.254) (0.824)
|⇢| -0.485⇤⇤ -0.570⇤⇤ -0.434

(0.220) (0.237) (0.608)
⇢post 0.359 -0.016 2.485⇤⇤⇤

(0.301) (0.326) (0.926)
BM -0.017 -0.004 -0.254⇤⇤⇤ -0.018 0.001 -0.309⇤⇤⇤

(0.018) (0.019) (0.090) (0.023) (0.019) (0.096)
Turn 0.018 0.118⇤⇤⇤ -0.305⇤⇤⇤ -0.004 0.096⇤⇤⇤ -0.321⇤⇤⇤

(0.029) (0.032) (0.071) (0.030) (0.033) (0.074)

Obs. 613,411 500,199 113,212 446,877 362,402 84,475
R2 0.1177 0.1153 0.1441 0.1378 0.1372 0.1566

Table 4.6: Regression: Absolute FX correlation and post-crisis
The table shows the regression results with foreign ownership subject to logistic transfor-
mation as dependent variable. Time and country fixed e↵ects are used and the standard
errors are double clustered over time and firm. Columns (1) and (4) use all countries.
Columns (2) and (5) include the eleven developed markets as defined by Columbia Uni-
versity EMGP. Columns (3) and (6) include the ten emerging markets. The coe�cient
for Vol is given in 10�12. In columns (4)-(6), only observations before June 2007 and
after December 2009 are used, with the latter being considered post crisis.
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MV Vol ⇢ BM Turn Obs. R2

USA -0.291⇤⇤⇤ 0.000 -0.437⇤ 0.134⇤⇤⇤ 0.192⇤⇤⇤ 235,096 0.0076
Japan 0.245⇤⇤⇤ 0.000⇤⇤⇤ -0.816⇤⇤ -0.210⇤⇤ 0.024 137,688 0.0268
France 0.044 -0.000 -0.700 -0.022 0.295⇤⇤ 31,163 0.0397

UK 0.148 -0.000 -2.800⇤⇤ 0.182 -0.050 31,242 0.1944
Germany 0.131 0.000 -1.777⇤ -0.050 -0.208 23,968 0.0126
Australia -1.318⇤⇤⇤ 0.025 0.504 -1.414 1.117⇤⇤⇤ 6,794 0.0824

Switzerland -0.138 0.000⇤⇤⇤ -3.996⇤⇤⇤ -0.007 0.348 13,310 0.0406
Italy 0.390 -0.000 -0.803 -0.347 -0.077 7,184 0.0300

Denmark 0.053 0.001⇤⇤⇤ -2.915 -0.414 0.306 7,271 0.0814
Canada -1.425 -0.045 12.75 1.734 -0.332 443 0.2777
Belgium 0.315 0.000⇤ 0.729 1.038 -0.021 6,040 0.0177
China 0.020 -0.000 -1.076 0.581 -0.007 12,541 0.0132
Korea 0.664⇤⇤⇤ -0.000⇤⇤⇤ 1.160⇤ -0.032 -0.199⇤⇤⇤ 59,829 0.0474

Taiwan 0.371 -0.000⇤⇤⇤ 0.837 -2.090⇤⇤⇤ -0.412 3,552 0.0567
Hong Kong -2.214⇤ 0.000⇤⇤⇤ 2.737 -0.939 1.607⇤⇤⇤ 4,119 0.1144

Thailand -0.674 0.001 -8.592⇤⇤ 2.074 0.308 2,068 0.2779
India -0.208 -0.000⇤⇤⇤ 2.750 -2.904⇤⇤⇤ -0.382 13,487 0.2131

Turkey 0.795⇤ -0.000 -0.641 -0.489 -0.360 3,079 0.1229
South Africa 0.332 -0.015 -7.666⇤⇤⇤ -0.152 0.386 6,937 0.1269

Poland 2.348⇤⇤⇤ -0.000⇤⇤⇤ -8.102⇤⇤⇤ -0.519 -0.893⇤⇤⇤ 6,164 0.2551
Singapore -0.329 0.005 7.610⇤ 1.593 -0.184 1,436 0.0746

Table 4.7: Regression per country
The table shows the regression results with foreign ownership subject to logistic trans-
formation as dependent variable. Time fixed e↵ects are used and the standard errors
are double clustered over time and firm.
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(1) (2) (3) (4)

USA Japan UK Korea

MV 0.262⇤⇤⇤ -0.002 0.234⇤⇤⇤ -0.045
(0.087) (0.055) (0.065) (0.057)

Vol 773 -0.012⇤⇤⇤ 350⇤⇤⇤ -0.710⇤⇤⇤

(652) (0.003) (74.8) (0.076)
⇢ -0.231 -0.265⇤ -1.04⇤⇤⇤ -0.323

(0.249) (0.142) (0.266) (0.246)
BM 0.009 -0.149⇤⇤ 0.039 -0.134

(0.008) (0.023) (0.035) (0.084)
Turn -0.257⇤⇤⇤ -0.041⇤ -0.203⇤⇤⇤ -0.072⇤

(0.056) (0.023) (0.042) (0.043)
Obs. 20,950 14,371 15,165 8.582
R2 0.0905 0.0330 0.0994 0.0658

Table 4.8: Regression per country with some foreign ownership
The table shows the regression results with foreign ownership subject to logistic trans-
formation as dependent variable. Time fixed e↵ects are used and the standard errors
are double clustered over time and firm. Only observations with at least some foreign
ownership are used.

176



(1) (2) (3) (4) (5) (6)

All DM EM All DM EM

MV 0.223⇤⇤⇤ 0.080 0.736⇤⇤⇤ 0.171⇤⇤⇤ -0.006 0.645⇤⇤⇤

(0.045) (0.050) (0.089) (0.039) (0.045) (0.073)
Vol 10.5⇤⇤⇤ 17.9⇤⇤⇤ -12.3⇤ -0.030⇤⇤⇤ 4.18⇤⇤⇤ -0.032⇤⇤⇤

(0.873) (0.243) (7.18) (0.004) (0.219) (0.002)
⇢ -0.387⇤⇤⇤ -0.471⇤⇤⇤ -0.135 -0.160⇤ -0.130 -0.089

(0.082) (0.093) (0.186) (0.084) (0.114) (0.135)
BM -0.006 0.012 -0.182⇤⇤⇤ -0.007 0.002 -0.138⇤⇤

(0.016) (0.018) (0.063) (0.016) (0.018) (0.056)
Turn 0.061⇤⇤ 0.154⇤⇤⇤ -0.275⇤⇤⇤ 0.034⇤⇤ 0.137⇤⇤⇤ -0.203⇤⇤⇤

(0.027) (0.029) (0.065) (0.026) (0.030) (0.052)
Obs. 797,980 663,329 134,651 821,050 615,973 205,077
R2 0.1201 0.1206 0.1370 0.1325 0.1282 0.1628

Table 4.9: Regression: FX correlation and foreign ownership II
The table shows the regression results with foreign ownership subject to logistic transfor-
mation as dependent variable. Time and country fixed e↵ects are used and the standard
errors are double clustered over time and firm. The coe�cient for Vol is given in 10�12.
In Columns (1)-(3), Vol and ⇢ are calculated using 24-month windows. Columns (4)-(6)
are based on relaxed restrictions for non-US countries with a the minimum stock price
of USD 1.
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(1) (2) (3) (4) (5) (6)

All DM EM All DM EM

MV 0.224⇤⇤⇤ 0.082 0.739⇤⇤⇤ 0.254⇤⇤⇤ 0.118⇤⇤ 0.728⇤⇤⇤

(0.044) (0.050) (0.089) (0.046) (0.051) (0.090)
Vol 10.4⇤⇤⇤ 17.9⇤⇤⇤ -12.8⇤⇤⇤ -18.9⇤⇤⇤ -7250 -11.6⇤⇤⇤

(0.871) (0.246) (4.33) (7.09) (277) (4.31)
⇢ -0.388⇤⇤⇤ -0.432⇤⇤⇤ 0.009 -0.789⇤⇤⇤ -0.868⇤⇤⇤ -0.362

(0.083) (0.092) (0.184) (0.159) (0.172) (0.361)
|⇢| -0.139 -0.150 -0.379⇤

(0.098) (0.111) (0.222)
⇢post 0.726⇤⇤⇤ 0.807⇤⇤⇤ 0.083

(0.187) (0.206) (0.452)
BM -0.006 0.012 -0.183⇤⇤⇤ -0.003 0.020 -0.192⇤⇤⇤

(0.016) (0.018) (0.063) (0.018) (0.017) (0.064)
Turn 0.060⇤⇤ 0.153⇤⇤⇤ -0.277⇤⇤⇤ 0.066⇤⇤ 0.160⇤⇤⇤ -0.278⇤⇤⇤

(0.027) (0.029) (0.065) (0.028) (0.030) (0.065)
Obs. 797,980 663,329 134,651 631,429 525,532 105,897
R2 0.1201 0.1206 0.1370 0.1350 0.1377 0.1425

Table 4.10: Regression: Absolute FX correlation and post-crisis II
The table shows the regression results with foreign ownership subject to logistic transfor-
mation as dependent variable. Time and country fixed e↵ects are used and the standard
errors are double clustered over time and firm. Columns (1) and (4) use all countries.
Columns (2) and (5) include the eleven developed markets as defined by Columbia Uni-
versity EMGP. Columns (3) and (6) include the ten emerging markets. The coe�cient
for Vol is given in 10�12. In columns (4)-(6), only observations before June 2007 and
after December 2009 are used, with the latter being considered post crisis. Vol and ⇢
are calculated using 24-month windows.
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Figure 4.3: Coe�cient ✓̂ for per month regression
The figure shows the coe�cient ✓̂ for monthly regressions using the same control variables
as in the main regressions including country fix e↵ects. The grey band marks the 5%
significance interval.
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Figure 4.4: Coe�cient ✓̂ for per month regression in developed markets
The figure shows the coe�cient ✓̂ for monthly regressions using the same control variables
as in the main regressions including country fix e↵ects. Only developed markets are used
in the regression. The grey band marks the 5% significance interval.
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Figure 4.5: Rolling window coe�cient ✓̂ for major markets
The figure shows the coe�cient ✓̂ for one year rolling window regressions for USA,
Japan, and China. The control variables and specifications are the same as in the main
regressions. The dashed lines mark insignificant coe�cients.
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o cachorro. Revista Brasileira de Economia, 66 (1).

Yan, B., and E. Zivot, 2010: A structural analysis of price discovery measures. Journal of

Financial Markets, 13 (1), 1 – 19.

188


