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Uncertainty Representation and Risk Management for                              

Direct Segmented Marketing 

 

Abstract: Mining for truly responsive customers has become an integral part of customer 

portfolio management, and, combined with operational tactics to reach these customers, 

requires an integrated approach to meeting customer needs that often involves the 

application of concepts from traditionally distinct fields: marketing, statistics, and 

operations research. This article brings such concepts together to address customer value 

and revenue maximization as well as risk minimization for direct marketing decision 

making problems under uncertainty. We focus on customer lift optimization given the 

uncertainty associated with lift estimation models, and develop risk management and 

operational tools for the multiple treatment (recommendation) problem using stochastic 

and robust optimization techniques. Results from numerical experiments are presented to 

illustrate the effect of incorporating uncertainty on the performance of recommendation 

models.  

Summary Statement of Contribution: This paper discusses the concept of lift in the 

context of revenue management for marketing campaigns, and introduces a risk 

management framework based on methods from the predictive analytics, stochastic 

programming, and robust optimization fields. The framework can be used to mitigate errors 

in the customer engagement process and to reduce volatility in the revenues realized from 

marketing efforts. 

Keywords: Uplift modeling, lift, risk management, marketing revenue management, 

targeted offers, estimation uncertainty, stochastic programming, robust optimization  
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1. Introduction 

The dynamic nature of customer needs, driven by rapid technological innovations and 

competition, has created new market risks and increased the need to enhance the delivery of 

customer value through integration of marketing with other company activities such as revenue 

management (Lummus et al. 2003, Juttner et al. 2007). Marketers are held accountable for how 

marketing investments perform (Bick 2009, Stewart 2009, Ryals et al. 2007, McDonald 2006), 

and today marketing activities aim not only for rigorous understanding of customer needs, 

choices and behavior towards to certain products and services, but also for combining that 

understanding with operational excellence in fulfilling these needs. 

Solving the marketing campaign problem (MCP) is one aspect of this phenomenon. (For 

examples of different variations of the MCP formulation, see Asllani and Halstead (2011), 

Beltran-Royo et al. (2016), and Deza et al. (2015).) Given N potential customers and M 

campaigns (also referred to as treatments or service recommendations), the goal in the MCP is to 

determine the optimal assignment of treatments to customers so as to maximize the value 

realized from the company’s customer portfolio, maximizing sales in the process, and typically 

with a limited marketing budget. The goal of maximizing customer value translates into the goal 

of maximizing shareholder value (Ryals et al. 2007), which is different from the goal of 

maximizing market share or customer satisfaction (Lukas et al. 2005). However, it can be argued 

that maximizing customer value is the goal that best maximizes the value of a firm’s 

stakeholders (Doyle 2000, Ryals et al. 2007).  

To justify marketing spend, treatments should be assigned to customers based on a 

customer score that evaluates the likelihood that a customer n will respond positively to a 

treatment m. This score is referred also as the lift and is estimated using statistical procedures. 

The MCP can be stated as an optimization problem in which the objective is to maximize the 

total lift, subject to budget constraints. Such a problem formulation results in a recommendation 

for the optimal assignment and falls into the category of prescriptive analytics models. (See, for 

example, LaValle et al. 2011 for an overview of how companies employ predictive and 

prescriptive analytics technique to realize value.) Note that the objective of maximizing lift is 

different from the objective of targeting customers who have a high likelihood of purchasing the 



Page 5 of 42 
  

 
 

product, as some customers may purchase the product without receiving a treatment, thus 

wasting marketing efforts and spend. Some customers may also be likely to buy the product but 

change their mind if contacted. A strong case for the importance of estimating the lift as opposed 

to simply using the likelihood of response has been made both in the literature and in practice 

(see, for example, Lo (2002), Lo (2008), Kane et al. (2014), Siegel 2011 and Chapter 7 in Siegel 

2013).  

Although assigning the optimal campaigns to individual customers is the goal, in many 

important practical applications, marketing campaign optimization is done in stages. In the first 

stage, customer segments are determined based on the available data and the specific application. 

(We will use “segments” and “clusters” interchangeably in this article because segments are 

often estimated using cluster analysis.) Common customer segmentation models utilize recency, 

frequency, and monetary value (RFM) variables, contact and response histories, or demographic 

attributes. In the second stage, marketing campaigns are designed for the different segments, and 

the same treatment is assigned to all customers in a customer segment, implicitly assuming that 

customers behave statistically homogeneously within a segment (Bitran and Mondschein 1996, 

Storey and Cohen 2002, Bertsimas and Mersereau 2006, Simester et al. 2006, Ryals et al. 2007). 

Examples of natural applications of customer segmentation are situations in which the 

information about individual customers is limited, such as organic search in the context of 

Internet marketing (that is, customers coming from a search engine such as Google or Bing). 

Even in situations in which detailed information about individual customers is available, the 

marketing campaigns are often designed to target customer segments. This is because it may be 

too expensive to reach individual customers, or because the mode of communication with 

customers (e.g., a mass mailing or a TV ad) may require it. In this paper, we consider a 

segmentation-based version of the MCP and address practical issues that arise in the application 

of the optimization methodology for assignment of treatments to segments. (We note that in the 

limit, a segment could be an individual customer, so our discussion extends to the individual 

case.) 

The relationship between marketing spend and the returns from a company’s customer 

portfolio is volatile, and “…[c]ompanies can be profitable in an accounting sense and yet still 

destroy shareholder value, because risk has not been adequately taken into account.” (Ryals et al. 
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2007). Some researchers have explored the issue of risk in realized customer cash flows (e.g., 

Tarisi et al. 2011); some have considered risk attitudes of an individual marketing manager 

(Brockhaus 1980); and some have looked at organizational risk attitudes (Pennings and Wansink 

2004). However, the issue of incorporating risk in marketing spend decisions should be receiving 

more attention (Ryals et al. 2007).  

This article looks at the issue of risk management in the context of the MCP, but from a 

statistical perspective. Statistical risk measures can be translated to risk preferences (Artzner  et 

al. 1999, Szegö 2002). Specifically, we address the problem of the uncertainty in estimated lift 

values, which can lead to dramatically different optimal treatment assignment strategies. The 

uncertainty in lift values has multiple sources: random errors arising from estimating lifts using 

statistical procedures and limited cluster sizes; errors due to changes in the populations of the 

different clusters; and errors due to systematic changes in the economy or customer behavior (Lo 

and Pachamanova 2015). We focus on errors arising from statistical procedures and propose a 

comprehensive framework for incorporating estimation risk in prescriptive models for treatment 

assignments, mapping models of uncertainty to risk measures and evaluating the characteristics 

of the resulting assignments. We bring together methodologies for incorporating uncertainty in 

prescriptive models from the fields of stochastic programming and robust optimization and show 

how they apply in the context of a practical solution to the MCP under uncertainty.  

Although this paper focuses on the MCP in terms of maximizing lift, the insights from 

our work carry over to the problem of optimal revenue management for marketing campaigns; 

see, for example, Gubela et al. (2017). Specifically, expected revenue can be expressed as a 

multiple of lift, and the analysis of frameworks for including lift uncertainty is directly 

applicable to the analysis of revenue uncertainty for marketing campaigns. As we will show, 

minimizing estimation uncertainty maps into risk minimization for customer revenues under 

different risk measures, placing our work in the realm of revenue maximization and risk 

minimization for marketing spend. Perhaps the closest previous work on this topic is Ryals et al. 

(2007), who introduce a framework for marketing spend revenue maximization and risk 

minimization based on Modern Portfolio Theory from the finance literature. Our approach, 

however, is philosophically different, and has roots in the control, statistical, and operations 

research literature rather than the financial literature. The problem of revenue maximization for 
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marketing campaigns itself is part of the larger problem of revenue management for 

organizations, and goes hand-in-hand with issues in operations and supply chain management 

(Rhee and Mehra 2006, Hildebrandt and Wagner 2000, Shah et al. 2013, Curcuru 2011). 

The paper is organized as follows. In Section 2, we discuss the idea behind and the 

estimation of lift. In Section 3, we describe the segmentation-based MCP. Section 4 reviews 

approaches from stochastic programming and robust optimization that can be used to incorporate 

uncertainty in the marketing campaign problem. Section 5 introduces models for the uncertainty 

in lifts. Section 6 presents the results of computational experiments that study the characteristics 

of the optimal assignments of offers to customers using the different approaches and evaluate 

their performance statistically. Section 7 summarizes our framework, explains how it can be 

implemented in practice, and interprets the results from the computational experiments in that 

context. Section 8 concludes with managerial implications.  

2. Lift Estimation 

Predictive modeling is often applied at the individual customer level to understand the 

characteristics of customers who are likely to respond to a marketing campaign. Traditional 

response models are designed to identify likely responders regardless of whether these customers 

are targeted. Such models are based on statistical estimation and machine learning algorithms, 

such as logistic regression and decision trees. They typically assign a score, or a probability of 

response, to a customer, with high scores indicating high likelihood of response. (See, for 

example, Shmueli et al. 2016.) The problem with traditional response models is that they do not 

measure the incremental impact of a marketing campaign on customer response, and it is 

ultimately the incremental impact on customer response that should enter the calculation of the 

effect of marketing spend on revenue. 

Finding customers whose decisions will be positively influenced by a marketing 

campaign has been referred to as uplift modeling (Radcliffe and Surry 1999), true lift (Lo 2002) 

and net lift (Lund 2012, Kubiak 2012). The idea is to differentiate between four different types of 

customers, thus making the most efficient use of marketing budgets. The four types of customers 

are (Figure 1): 
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• Sure things: Those customers would purchase regardless of whether they are targeted; 

• Lost causes: Those customers would not purchase regardless of whether they are targeted; 

• Do-not-disturbs: Those customers have a negative reaction to the marketing contact and will 

not purchase if targeted, although they would have purchased had they not been targeted; 

• Persuadables: Those customers purchase only if contacted. They are the only efficient target. 

 

Figure 1. Four types of customer groups. (Based on Siegel 2011 and Radcliffe 2007.) 

 To estimate lift, customers are split into two groups: treatment (T) and control (C). A 

common approach is then to fit separate response models to each group, and determine lift for a 

customer as the difference between the response score obtained from the two separate models. A 

response model could be, for example, a logistic regression model with customer response as the 

target (output) variable. If 𝑝 𝑅 𝑇  is the estimated probability of response (R) among the treated 

population, and 𝑝 𝑅 𝐶  is the estimated probability of response among the control group, then 

the lift 𝜋! for a specific customer i is estimated as 

𝜋! =  𝑝! 𝑅 𝑇 − 𝑝! 𝑅 𝐶  

This model is referred to as the Two Model Approach. When there are multiple 

treatments, a separate response model is required for each treatment group, and the lift for each 

treatment and each customer is estimated as the difference between the corresponding treatment 

score and the control group score. 
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An alternative approach, the Treatment Dummy Approach, is to fit a single response 

model but introduce dummy variables and capture lift through terms that interact with the 

treatment dummy variables. The lift is then estimated by calculating the model score assuming 

the treatment dummy variable equals 1, and subtracting from it the model score calculated after 

assuming the treatment dummy variable equals 0. Specifically, if the probability of response 

𝑝!(𝑅) for customer i, calculated from a logistic regression model, is a function of the treatment 

dummy variable, Ti, and a vector of independent variables or predictors Xi,  

𝑝!(𝑅) =
𝑒!!𝜷!𝑿!!!!!!𝜹!𝑿!!!

1+ 𝑒!!𝜷!𝑿!!!!!!𝜹!𝑿!!!
 

then the lift is estimated by subtracting the score estimated when the treatment variable Ti is set 

to 0 from the score estimated when the treatment variable Ti is set to 1: 

𝜋! =  𝑝! 𝑅 𝑇 = 1 − 𝑝! 𝑅 𝑇 = 0  

= !!!𝜷
!𝑿!!!!!!𝜹!𝑿!!!

!!!!!𝜷!𝑿!!!!!!𝜹!𝑿!!!
− !!!𝜷

!𝑿!

!!!!!𝜷!𝑿!
 

Here 𝛼 is a scalar, 𝜷 and 𝜹 are vectors of coefficients of the appropriate dimensions, and 

𝛾 is a scalar. 

There are several other methods for estimating lift in practice. Interested readers are 

referred to Zhao et al. (2017) for a comprehensive review. 

Compared to estimating a response score based on a single model, estimating the lift may 

introduce a higher degree of variability, because the variance of the lift estimate is the sum of the 

variances of the treatment response and the control response (since the treatment and control 

random samples are independent), approximately doubling the variance of the estimate relative 

to the traditional single response estimate; see comments from Athey and Imbens (2015) and 

Medvedev (2016). Specifically, the coefficient of variation (CV) of the lift estimate, defined as 

the standard deviation divided by the mean, could be much larger than the CV of the treatment or 

control response rate. This is because the mean difference between treatment and control 

response rates (the denominator of the CV for the lift estimate) tends to be much smaller than the 
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treatment or control response rate itself, which, together with the higher standard deviation (the 

numerator of the CV for the lift estimate), results in a higher CV for the lift estimate. It is 

important to recognize the presence of increased estimate variability when using the lift estimate 

for decision making, and hence imperative to incorporate considerations for uncertainty in the 

treatment allocation models. 

3. The Segmentation-Based MCP: Problem Formulation 

Consider M different campaigns (treatments, service recommendations) that are designed to 

target K customer segments, or clusters. Let 𝑁! represent the number of individuals within each 

cluster k, k = 1,…,K. Each campaign m has a cost cm and campaign budget 𝐵!. Let  𝜂!"  denote 

the number of individuals in cluster k to receive treatment m, and 𝑐!" be the cost of treatment m 

for each individual in cluster k. For simplicity and as is often the case in practice, we assume that 

the cost is not individual but segment-specific.   

As we explained in Section 2, lifts are typically estimated on the individual customer 

level. Let 𝜋!" denote the lift from targeting customer n with campaign m. We use the tilde 

symbol to represent the uncertainty associated with estimating the lift using statistical 

procedures. Assume that representative cluster-level lift scores (𝜙!!,… ,𝜙!") are calculated for 

each cluster 𝑘 = 1,… ,𝐾, e.g., by averaging the individual customer lifts in that cluster. Given 

the uncertainty in the individual lift scores, the cluster-level lift scores (𝜙!!,… ,𝜙!") are 

uncertain as well. 

To formulate the cluster-based MCP (CMCP) mathematically, we take into consideration 

various operational constraints, business constraints, and customer contact policy restrictions that 

need to be satisfied by a feasible assignment. The aggregate business constraints determine 

campaign and communication budgets, channel capacity limits, and minimum or maximum cell 

size.  

• The campaign budget 𝐵! limits the cost incurred for each campaign m :  
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                      𝑐!"𝜂!" ≤ 𝐵!,        𝑚 = 1,… ,𝑀
!

!!!

 

• Sometimes, there is a restriction that the total cost over all campaigns cannot exceed a global 

budget B:  

 𝑐!"𝜂!" ≤ 𝐵
! 

!!!

!

!!!

 

• Often, there is a constraint on the number of customers who could be offered a treatment: 

𝜂!" ≤ 𝐶!,        𝑚 = 1,… ,𝑀
!

!!!

 

 In summary, the cluster-based MCP model maximizes the sum of the aggregate cluster 

lifts subject to various business constraints. It can be formulated as a single stage stochastic 

linear program, which we will refer to as the cluster marketing campaign problem (CMCP):  

(CMCP) 

max
𝜼

   𝜙!"  𝜂!"

!

!!!

!

!!!

      

            s.t.	

                       𝑐!"𝜂!" ≤ 𝐵
! 

!!!

!

!!!

                         Budget Constraint  

                      𝜂!" ≤ 𝑁! ,        𝑘 = 1,… ,𝐾  
!

!!!

 (Number of individuals within each cluster) 

                      𝜂!" ≤ 𝐶! ,        𝑚 = 1,… ,𝑀     (Number of individuals receiving each treatment)
!

!!!

 

                      𝜂!" ≥ 0,                𝑘 = 1,… ,𝐾,       𝑚 = 1,… ,𝑀. 
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The decision variables 𝜂!"  here will be treated as non-negative real numbers that can be 

rounded up to approximate integer values. Thus, this model can be solved using linear 

programming software. Let us denote by ℶ the set to which the values of 𝜂!"  that satisfy the 

constraints in the formulation above belong. In the next section, we suggest approaches for 

accounting for the uncertainty in the cluster-level lift estimates 𝜙!". 

  As mentioned earlier, the problem of maximizing expected total lift is directly related to 

the problem of expected marketing campaign revenue maximization. Specifically, if the expected 

lift for cluster k and treatment m is 𝜙!", the expected revenue for that cluster is 𝑟!"𝜙!"𝜂!", 

where 𝑟!" is the expected revenue for treatment m per customer in cluster k. 

4. Incorporating Parameter Uncertainty into the MCP 

The quality of the optimal solution in an optimization problem is highly dependent on the quality 

of the inputs to the optimization problem. In the particular applications we are discussing in this 

article, we are using model estimates of the lifts 𝜋!" to calculate cluster-level lifts 𝜙!", which are 

a product of statistical estimation and are not necessarily accurate. Solving optimization 

problems with parameter uncertainty has long been a subject of research in engineering (Du and 

Chen 2000, Ben-Tal and Nemirovski 2001, Fang and Li 2009) and financial (Garlappi et al. 

2006, Cont et al. 2010, Fabozzi et al. 2007, 2010, Ibragimov et al. 2015) applications; however, 

it has not received the same level of attention in the marketing literature. In this section, we 

outline two main approaches for dealing with parameter uncertainty. 

When different scenarios can be generated for the inputs to the problem, one can employ 

stochastic programming techniques. Stochastic programming has been around for decades 

(Dantzig 1955, Wallace and Ziemba 2005, Shapiro et al. 2009, Birge and Louveaux 2011, King 

and Wallace 2012). It solves the optimization problem by optimizing an objective function that is 

a statistic calculated over the scenarios (such as an average or a given quantile) and may contain 

other terms and constraints, such as a probabilistic constraint that requires that the optimal 

solution satisfies a given condition in a particular percentage of the scenarios. 

  Instead of only scenarios, one can consider more general uncertainty sets for the input 
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parameters. A branch of optimization under uncertainty that solves for the optimal solution 

assuming that the uncertain parameters can take any value within the prespecified uncertainty 

sets is robust optimization. There are multiple ways to formulate the problem and different 

choices of uncertainty sets (Ben-Tal and Nemirovski 1998, Tutuncu and Koenig 2004, Ben-Tal 

et al. 2009, Bertsimas et al. 2011, Wiesemann et al. 2014, Bertsimas et al. 2018). Robust 

optimization for certain types of problems and uncertainty sets reduces to solving a new version 

of the original problem, called the robust counterpart, in which the values of the uncertain 

parameters are replaced with parameters from the uncertainty set formulation. Robust 

optimization has some overlap with stochastic programming but has historically evolved 

separately as a field. 

  Let us consider a nominal formulation of the (CMCP), which we will refer to as (CMCP-

N), with the following objective: 

(CMCP-N)  

max
!∈ℶ

   𝜙!"  𝜂!"

!

!!!

!

!!!

      

where 𝜙!"  are some expected (nominal) values of the cluster-level lifts. (We will explain how 

such estimates can be calculated in Section 5.) The (CMCP-N) formulation will serve as a 

benchmark for the performance comparison of the other formulations under uncertainty.  

  Next, we illustrate the application of stochastic programming and robust optimization 

approaches to problem formulation (CMCP) in more detail. Specifically, we show examples of 

how uncertainty can be represented, and discuss mapping the different methodologies for 

optimization under uncertainty to risk measures for the targeted offers problem. 

4.1. Stochastic Programming 

The conventional approach to decision making under uncertainty is based on expected value 

optimization. This requires a representation of uncertainty that is expressed in terms of a 

multivariate continuous distribution. The underlying decision model can then be generated with 

internal sampling or a discrete approximation of the distribution. For instance, the expected value 
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of the lift scores using a probability distribution for the lift scores, 𝐸[𝜙!"], needs to be 

estimated. For a discrete number of future realizations of uncertain parameters with known 

probabilities, the decision-making problem is described as a scenario-based stochastic 

programming problem. 

Given a set S of discrete scenarios 𝑠 ∈ 𝑆 with corresponding probabilities of occurring qs, 

the stochastic campaign optimization model maximizing the expected value of total response 

rates subject to various business constraints and customer contact policy restrictions can be 

formulated as:  

(SCMCP-EV): 

      max
!∈ℶ

   𝑞! 𝜙!"! 𝜂!"!

!,!!∈!

     	

  If we calculate the nominal estimates 𝜙!" as expected values, the expected value 

stochastic programming formulation (SCMCP-EV) is equivalent to the nominal formulation 

(CMCP-N). A variety of modifications can be implemented to control the effect of uncertainty in 

the lift score estimates. Such modifications include chance constraint formulations in which a 

percentile of the possible distribution (rather than the expected value) for the uncertain 

expression 𝜙!"  𝜂!"!
!!!

!
!!!  is maximized; maximum regret formulations in which the 

maximum regret (the worst-case regret) is minimized, and worst-case scenario formulations in 

which the worst case realization of the uncertain expression over the set of scenarios is explicitly 

taken into consideration (Shapiro et al. 2009).  

  As an example, let us consider a maximum regret formulation. A maximum regret 

optimization approach finds a feasible solution minimizing (over all scenarios) the maximum 

deviation of the value of the solution from the optimal value of the corresponding scenario.    

  Let  𝑧!  be the optimal value of objective function for each scenario 𝑠 ∈ 𝑆. The maximum 

lift for a specific scenario 𝑠 ∈ 𝑆 would be computed as  
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     𝑧! = max
!∈ℶ

   𝜙!"! 𝜂!"!

!,!

     	

The regret of a global solution 𝜂!" over a specific scenario 𝑠 ∈ 𝑆 is defined as the difference 

between 𝑧!   and 𝜙!"! 𝜂!"!,! , or   𝑧! − 𝜙!"! 𝜂!"!,! .  

  The maximum regret 𝑅!"#(𝜂) of a solution 𝜂!" can be formulated as the following 

optimization problem over all possible scenarios 𝑠 ∈ 𝑆: 

𝑅!"# 𝜂 = max 
!∈!

𝑧! − 𝜙!"! 𝜂!"
!,!

 

  The min-max regret optimization problem minimizes the maximum regret 𝑅!"# 𝜂 . In 

other words, for the robust deviation decision, we can formulate the min-max regret problem as 

follows:   

(SCMCP-MR): 

min
𝜼∈ℶ

  𝑅!"# 𝜂 = min
𝜼∈ℶ

 max 
!∈!

𝑧! − 𝜙!"! 𝜂!"
!,!

 

which can be rewritten as 

min
𝜼∈ℶ,!

   𝑣                             

s. t. 

 𝑣 ≥ 𝑧! − 𝜙!"! 𝜂!"
!,!

,       𝑠 ∈ 𝑆 
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4.2. Robust Optimization 

Robust optimization deals with data uncertainty but does not require a known distribution of the 

underlying uncertain parameters. It takes a worst-case approach to the decision-making problem 

formulations. The robust optimization approach solves an optimization problem assuming that 

the uncertain input data belong to an uncertainty set, and finds the optimal solution if the 

uncertainties take their worst-case values within that uncertainty set. The shape and the size of 

the uncertainty set can be used to vary the degree of conservativeness of the solution and to 

represent an investor’s risk preferences.  

Robust optimization tries to find the optimal solution when the parameters in an 

optimization problem are not fixed, but are allowed to vary in pre-specified uncertainty sets. In 

practice, the robust optimization approach often reduces to solving the optimization problem 

when the uncertainties take on “worst-case values”. In a maximization problem, the robust 

optimization approach would involve maximizing the objective function under some kind of 

worst-case scenario for the coefficients in the problem. In financial decision making, the use of 

robust optimization has been justified by the empirically observed tendency for people to make 

choices that minimize the effect of the worst-case outcome (Schmeidler and Gilboa 2004).  

  Let 𝑈 denote an uncertainty set where uncertain parameters such as the cluster lift scores 

belong. Then the robust optimization formulation of the objective in the targeted offers direct 

marketing problem can be stated as follows:   

(RCMCP): 

        max
𝜼∈ℶ

   min
!!"∈!

   𝜙!"𝜂!"

!

!!!

!

!!!

         

Uncertainty sets could be any sets, including collections of scenarios. When they are 

collections of scenarios, the robust optimization formulation has a structure similar to the 

problems considered in Section 4.1. One can also use characteristics or summary measures of the 

distribution of uncertainties 𝜙!", such as means, standard deviations, covariances, support, etc. 
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The simplest example is when the input parameters in the optimization problem are 

allowed to take values within interval uncertainty sets, i.e., when we specify an upper and lower 

bound for each uncertain parameter (lift value in this case). If we can establish a lower bound for 

each uncertain parameter, we can then simply replace the lift values by their associated lower 

bounds (“worst case values”) while keeping everything else the same, resulting in a standard 

deterministic linear programming model.  

Many uncertainty sets used in the robust optimization literature are based on limiting the 

normed distances of the uncertain parameters from some nominal values, such as the point 

estimates obtained from statistical procedures. As we will show in Section 4.3, the choice of 

norm can be related to a risk measure used by the modeler to protect against uncertainty. 

Depending on the choice of norm, one can end up with more or less tractable robust counterparts. 

The robust counterparts can be derived and preserve the complexity of the original problem only 

for some uncertainty sets. 

In the rest of this section, we introduce robust optimization formulations for the MCP 

with two uncertainty sets that are most commonly used in applications of robust optimization: 

the interval and the ellipsoidal (Euclidean norm) uncertainty sets. Because CMCP is a linear 

problem, the robust counterpart of CMCP can be derived in closed form for these uncertainty 

sets.  

4.2.1. Interval Uncertainty 

As we mentioned in the introduction to this section, interval uncertainty sets are the simplest 

uncertainty sets. Suppose 𝜙!" ∈ 𝜙!" ,𝜙!" , 𝑘 = 1,… ,𝐾,𝑚 = 1,… ,𝑀. Such an interval can 

be obtained, for example, if we know the support of the distribution of the nominal cluster lift 

values, or if we calculate 95% confidence intervals for the values of the nominal lifts calculated 

from data. Formally, the interval uncertainty set can be defined as 

𝑈!"#$%&'( = 𝜙!" | 𝜙!" ∈ 𝜙!",𝜙!" , 𝑘 = 1,… ,𝐾,𝑚 = 1,… ,𝑀  

Then, the problem (RCMCP) can be rewritten as 
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(RCMCP-IN) 

max
𝜼∈ℶ,!

   𝑣                                         

s.t.	 	 	 	 	 	

min
!!"! !!"!!!",   !!!,…,!,!!!,…,!

    𝜙!"𝜂!"

!

!!!

!

!!!

≥ 𝑣	

Because 𝜂!" are nonnegative, the minimum in the constraint above is attained when all 𝜙!" are 

at their minimum values 𝜙!". So, the robust counterpart of the original problem under interval 

uncertainty sets can be calculated in closed form: 

(RCMCP-IN): 

max
𝜼∈ℶ

  𝜙!"𝜂!"

!

!!!

!

!!!

	

The interval uncertainty sets is often too conservative in practice, and it is rare that all uncertain 

coefficients take their worst-case values at the same time. A popular variation of this uncertainty 

set used in practice is the Bertimas and Sim (2004) uncertainty set, which specifies that only up 

to Γ of the uncertain coefficients in the optimization problem can take their worst-case values 

within the given intervals. It turns out that the Bertsimas and Sim (2004) uncertainty set is a 

special case of a normed uncertainty set,  

𝑈!!!"#$ = 𝝓  || 𝐀 𝑣𝑒𝑐 𝝓 − 𝑣𝑒𝑐 𝝓 ||! ≤ 𝜃  

where 𝑣𝑒𝑐 𝝓  is a vector obtained by stacking the entries 𝜙!", 𝑣𝑒𝑐 𝝓  is a vector obtained by 

stacking the nominal (expected) values 𝜙!", A is a matrix of appropriate dimensions, and | . |! 

denotes the D-norm, which for an integer d is the sum of the absolute values of the largest d 

entries of a vector s (see, for example Gotoh and Uryasev 2016). The Bertsimas and Sim (2004) 

uncertainty set is a special case of the normed uncertainty set above when A = I, where I is the 
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identity matrix. Often, the matrix A that is used is the inverse of the square root of the covariance 

matrix of the uncertain estimates 𝝓 , 𝚺!!/! .  

4.2.2. Ellipsoidal Uncertainty Set  

The ellipsoidal uncertainty set is also a special case of the normed uncertainty set introduced in 

the previous section when the norm used in the definition of an uncertainty set is the Euclidean 

norm. (The Euclidean norm is the square root of the sum of the squares of the entries of a vector 

s). Usually, the matrix A is set to the inverse of the square root of the covariance matrix of 

uncertain coefficients, which we will denote by 𝚺!!/! . The ellipsoidal uncertainty set is perhaps 

the most widely used uncertainty set in the robust optimization literature, and its use has roots in 

the robust control literature (Ben-Tal et al. 2009). The reason for its popularity is that, as we 

mentioned in the previous subsections, the interval uncertainty sets in Section 4.2.1 can be too 

conservative for most practical purposes, and the mean and the covariance structure of the 

underlying data are often available. A correlation structure for the uncertain nominal lifts can be 

generated from data, for example, by using bootstrapping (see Lo and Pachamanova 2015), and 

the uncertainty set can instead be specified as  

𝑈!"" = 𝝓  ||𝚺!!/! 𝑣𝑒𝑐 𝝓 − 𝑣𝑒𝑐 𝝓 ||! ≤ 𝜃,𝝓 ∈ ℝ!×!  

Here 𝝓 is the stacked vector of cluster-level lift estimates 𝜙!"  for 𝑘 = 1,… ,𝐾,𝑚 = 1,… ,𝑀. 

The robust counterpart of a linear constraint when the uncertain coefficients are assumed to vary 

in an uncertainty set defined by a norm is a sum of a term involving the nominal values of the 

uncertain coefficients and a term involving a penalty (𝜃) and the dual norm of the norm in the 

uncertainty set definition. Because the Euclidean norm is self-dual, the robust counterpart of a 

linear constraint with uncertain coefficients restricted to lie in the ellipsoidal uncertainty set has a 

penalty term involving an Euclidean norm.  

In other words, given the ellipsoidal uncertainty set for the coefficients 𝝓, the robust 

counterpart of the objective function constraint 
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min
 𝝓∈!!""

    𝜙!"𝜂!"

!

!!!

!

!!!

≥ 𝑣 

becomes a deterministic nonlinear inequality. Because the Euclidean norm is self-dual, the robust 

counterpart of the above constraint is   

 𝜙!"𝜂!"

!

!!!

!

!!!

−𝜃| 𝚺!/! 𝜼 |! ≥ 𝑣 

The original problem under ellipsoidal set uncertainty can be stated as follows: 

(RCMCP-EL) 

 max
𝜼∈ℶ

    𝑣                        	

    s.t.  

 𝜙!"𝜂!"

!

!!!

!

!!!

−𝜃| 𝚺!/! 𝜼 |! ≥ 𝑣 

There is a variety of other uncertainty sets that can be used to represent the uncertainty in 

the inputs to the CMCP. For example, Chen, Sim and Sun (2007) suggested an uncertainty set 

that becomes equivalent to the ellipsoidal uncertainty set if the underlying distributions are 

symmetric, but can otherwise take into consideration asymmetry in the probability distributions 

of the uncertain coefficients by taking advantage of so-called forward and backward deviations. 

Each of these uncertainty sets can be mapped to financial risk measures. 

4.3. Risk Representation for the Marketing Campaign Problem under Uncertainty 

Ryals et al. (2007) explored risk management of marketing revenues under a particular risk 

measure – the variance, which is a deviation-based risk measure, standard in finance. Other risk 

measures such as the quantile-based Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) 
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are concerned with the probability or magnitude of losses instead of deviation from the expected 

value (see, for example, Jorion 2000 and Rockafellar and Uryasev 2002).  

Defining uncertainty sets about the uncertain parameters in the CMCP translates into 

imposing financial risk measures on the total lift and revenues realized through the marketing 

campaigns. In the literature, uncertainty sets in robust optimization have been mapped to 

financial risk measures in order to reflect decision makers’ preferences (Natarajan et al. 2009, 

2010), to extend traditional financial risk measures (El Ghaoui et al. 2003, Natarajan et al. 2008, 

Bertsimas and Brown 2009), to incorporate features of underlying data for the uncertain 

coefficients (Goldfarb and Iyengar 2003, Ben-Tal et al. 2013), and to improve computational 

tractability (Bertsimas et al. 2018). The stochastic and robust optimization framework introduced 

in this paper therefore allows for much flexibility in the definition of objectives for risk 

management in the targeted marketing context. 

Specifically, assuming that the uncertain coefficients lie in the ellipsoidal uncertainty set 

of a particular size described in Section 4.2.2 translates into imposing a penalty for the standard 

deviation of the “portfolio” of uncertain lift estimates. This problem is related to the revenue 

variance minimization problem analyzed in Ryals et al. (2007). When the uncertainty set is 

specified as scenarios, one obtains a stochastic programming formulation (Section 4.1), which 

can be written as an exact Value-at-Risk optimization formulation over representative scenarios 

from the distribution of possible lifts (Shapiro et al. 2009). When the uncertainty set is specified 

as the asymmetric uncertainty set of Chen, Sim and Sun (2007), mentioned in Section 4.2.2, it 

corresponds to a new, improved tail measure that approximates the Value-at-Risk risk measure 

and can be used to approximate the CVaR of the distribution of the underlying uncertainties as 

well. A framework for linking these uncertainty sets to data that may be available for the 

uncertainties in the problem is provided in Bertsimas et al. (2018), and some suggestions in the 

context of uplift modeling are provided in the following section. 
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5. Modeling Lift Estimate Uncertainty 

How does one generate the input values to the stochastic and robust formulations? One could, for 

example, use the average lift for treatment m within a cluster k as the nominal estimate for the 

cluster lift for that treatment. Specifically, 

𝜙!" = 𝜋!"

!!

!!!

 

where 𝑁! are the number of customers in cluster k and 𝜋!" is the individual lift for customer i 

and treatment m. 

  If one can assume that general laws, such as the Central Limit Theorem, apply, one could 

calculate, for example, the standard deviation of each estimate 𝜙!" as the standard deviation of 

the individual lifts for that treatment (m) in that cluster (k) divided by the square root of the 

number of observations in the cluster. However, it may not be possible to argue that the lifts of 

customers within a segment, no matter how carefully the segment is defined, can be considered 

observations from the same distribution and that the Central Limit Theorem would apply. 

Instead, we suggest using bootstrapping to generate scenarios. The scenarios generated from 

bootstrapping can then be used in the stochastic problem formulations, to estimate moments of 

the cluster level lift score for each treatment 𝐸(𝜙!") = 𝜙!" and covariances 𝐶𝑜𝑣 𝜙!",𝜙!!!! , 

to determine the worst-case value of the cluster-level lifts, etc. 

  Generating scenarios has the additional advantage that it allows us to capture potential 

correlation structures behind treatments within each cluster and between clusters. As an example, 

recall that the worst-case interval formulation in Section 4.2.1 involves the worst-case values of 

the cluster-level lifts for each treatment. If those are estimated based on joint scenarios generated 

for treatments within clusters, the worst-case estimates will not be as conservative as the worst-

case values for individual estimates. This is because it is possible that within a cluster, the worst-

case value for one treatment is not attained at the same time as the worst-case value for another 

treatment, and assuming that all worst-case values occur at the same time would be unnecessarily 

conservative. Taking into consideration how the values actually occur leads to better robust 
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formulations performance in practice. 

6. Computational Experiments 

We use a real data set from an online retailer to illustrate the effect of incorporating uncertainty 

in the cluster lift estimates with the different optimization-under-uncertainty techniques 

described in Section 4. There are two treatments, men’s and women’s merchandise. Individual 

customer lift estimates are calculated using the Two Model Approach described in Section 2 for 

a no-mail control group and the two treatment groups from an email marketing campaign. 

Cluster analysis in SAS is then performed on the customers in the data set using the individual 

lift scores for men’s merchandise and the lift score for women’s merchandise as inputs to a k-

means clustering algorithm. Originally, 10 clusters are obtained. Two clusters (the original 

clusters 1 and 3) are merged because of similarity and small sizes, and the clusters are 

renumbered from 1 to 9. The cluster sizes for which treatments need to be determined are shown 

in Table 1. 

 

Table 1. Cluster sizes. 

The individual lift estimates are aggregated to obtain cluster-level lift estimates for each 

treatment. The bubble chart in Figure 2 shows the average lift per cluster for each treatment. It 

can be observed that Cluster 8 has high average lift for both men’s and women’s merchandise, 

whereas Cluster 2 actually has negative lift for the two treatments. If the nominal lift estimates 

were accurate, as much of the marketing efforts as possible should be directed towards Cluster 8, 

and none should be allocated to Clusters 2 or 1. 

Cluster	 Number	of	Observations
1 4,180																																		
2 5,650																																		
3 60,220																																
4 12,370																																
5 8,940																																		
6 29,240																																
7 28,070																																
8 4,100																																		
9 37,080																																

Total 189,850																													
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Figure 2. Bubble chart for average observed lift by cluster. Bubble size corresponds to the 

number of observations in the cluster. 

 We conduct the following experiments to study the effect of different ways of 

incorporating uncertainty on the realized lift. We use Python to aggregate and process the data, 

and AMPL with solvers IBM CPLEX and BARON to solve the optimization problems. 

 Training data is generated by drawing randomly 100 scenarios per cluster based from the 

online retailer dataset 50 times. These 50 datasets are used to calculate 50 means for the 

treatment lifts of the clusters. The average of these 50 means is used as the nominal estimate for 

the lifts in the optimization formulations, and the 50 scenarios for the means are used as possible 

scenarios in the various optimization formulations that require scenario data. The 50 scenarios 

are also used to generate the covariance matrix of the nominal lift estimates and determine the 

worst-case values for the lift estimates. 

We assume that the cost per treatment is $1 and that the available budget is $60,000. The 

stochastic approaches described in Sections 4.1 and 4.2 are implemented, and we report results 

for the following models: 
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• The Nominal formulation (CMCP-N) from the introduction to Section 4, which will serve as 

a benchmark because it does not incorporate considerations for uncertainty; 

• The Maximum Regret approach (SCMCP-MR), Section 4.1; 

• The Interval uncertainty robust optimization formulation (RCMCP-IN), Section 4.2.1; 

• The Ellipsoidal uncertainty robust optimization formulation (RCMCP-EL), Section 4.2.2. 

6.1. Characteristics of Optimal Cluster Allocation 

We first discuss the cluster allocations resulting from the different models. Figure 3 shows the 

cluster allocations for (a) (CMCP-N), (b) (SCMCP-MR), (c) (RCMCP-IN), (d) (RCMCP-EL) 

with value for the robustness budget theta of 20, (e) (RCMCP-EL) with theta equal to 150, and 

(f) (RCMCP-EL) with theta equal to 300. 

 

  
(a) 

 

(b) 

  
(c) (d) 



Page 26 of 42 
 

 
 

 

  
(e) (f) 

Figure 3. Cluster allocations for (a) (CMCP-N), (b) (SCMCP-MR), (c) (RCMCP-IN), (d) 

(RCMCP-EL) with 𝜃 = 20, (e) (RCMCP-EL) with 𝜃 = 150, and (f) (RCMCP-EL) with 

𝜃 = 300. 

 Some interesting observations can be made based on the results in Figure 3.   

• The optimal cluster allocation for the Nominal problem (a) agrees with our observations 

from Figure 2. Because the costs of marketing to the different clusters are assumed to be 

the same, the algorithm logically selects to market the treatment (in most cases, Men’s 

Merchandise) to the clusters with the highest lift until the budget is exhausted. It allocates 

12370, 29240, and 4100 to men in Clusters 4, 6, and 8, respectively, which are the 

corresponding clusters’ limits. Only after exhausting these possibilities does the 

algorithm allocate the remaining 14,290 to women in Cluster 3. 

• The stochastic and robust approaches result in more diversification than the Nominal 

approach. With the exception of the Maximum Regret approach, all other stochastic 

approaches allocate to more clusters than the Nominal approach, and even the Maximum 

Regret approach, which allocates to the same number of clusters as the Nominal approach 

(4 clusters), chooses to diversify within the clusters and allocates to both men and women 

in Cluster 3. 

• The degree of diversification for the Ellipsoidal approach can be controlled by the 

“robustness budget” parameter theta. The higher the value of theta, the more penalty 

there is for uncertain estimates deviating from their nominal values, and the more 
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different the Ellipsoidal and the Nominal allocations look. Specifically, when theta is 

relatively small (20), the cluster allocation (d) looks similar to the Nominal allocation 

with the addition of Cluster 7. When theta is 150 (e), the allocation is of smaller amounts 

to multiple clusters and treatments, spreading the risk. When theta is 300 (f), the penalty 

for uncertainty is so high, that it is optimal not to allocate the entire budget and to spread 

the allocation more evenly among the clusters.  

6.2. Performance Evaluation 

Do the different cluster allocations for the stochastic formulations actually result in risk 

reduction compared to the Nominal approach? To answer this question, a test data set of 200 

scenarios is generated from the original data. Using the optimal allocations resulting from the 

various approaches in Section 6.1, we calculate the realized lift in each of the test scenarios. The 

summary statistics for the realized lifts for the different approaches are shown in Table 2. 

 

Table 2. Summary statistics for the realized lifts of the optimal strategies resulting from the 

different approaches based on the test set scenarios: mean, minimum, 5th percentile, 25th 

percentile (first quartile), median, 75th percentile (third quartile), 95th percentile, maximum, 

standard deviation, interquartile range (IQR), range (maximum – minimum), and coefficient of 

variation (standard deviation divided by mean and reported as a percentage).  

Nominal Interval Max	Regret Ellipsoidal20 Ellipsoidal150 Ellipsoidal300
Mean 5876.7065 5780.9885 5871.6872 5827.2433 5217.3279 1603.3474
Min 5037.6129 4998.5835 5022.7839 4971.9561 4423.2438 1408.0376
5th	Per 5233.4083 5188.0957 5239.4815 5224.3975 4813.1027 1508.5897
25th	Per 5575.3214 5439.5284 5576.4901 5537.0804 5017.5484 1558.0839
Median 5871.5743 5771.7755 5865.5381 5819.8640 5215.7888 1602.8412
75th	Per 6154.0621 6047.4792 6143.4234 6093.9303 5398.0646 1652.8411
95th	Per 6498.1474 6423.8280 6502.5265 6506.6897 5620.9669 1698.6911
Max 6897.7758 6779.3620 6920.7589 6770.4810 5851.9300 1751.7663
StDev 410.3164 393.8975 408.2891 400.2428 260.5810 62.1641
IQR 578.7408 607.9508 566.9333 556.8499 380.5162 94.7573
Range 1860.1629 1780.7786 1897.9750 1798.5249 1428.6863 343.7287
Coeff	of	Var 6.9821 6.8137 6.9535 6.8685 4.9945 3.8771
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It can be observed from Table 2 that the stochastic approaches reduce the realized 

average lift: all realized average lifts in the first row of the table are less than the realized average 

lift of the Nominal strategy. With the exception of Maximum Regret, all stochastic approaches 

also perform more poorly than the Nominal approach when it comes to minimum realized lift or 

5th percentile. However, the stochastic approaches are successful at reducing the spread of the 

distribution of realized lifts. The standard deviations realized from the stochastic strategies are 

lower than the standard deviation realized from the Nominal approach. The coefficient of 

variation, which is the standard deviation scaled by the realized mean, is also lower for the 

stochastic approaches than for the Nominal approach. This means that the risk per realized unit 

of reward is lower when uncertainty it taken into consideration during the optimization process. 

Two visualizations – in Figure 4 and in Figure 5 – help to illustrate the effect of taking 

into consideration uncertainty in lift optimization. It can be observed that the methods for 

optimization under uncertainty tend to reduce the spread of possible outcomes; however, they do 

so at the expense of reduced average performance. 

  

 

Figure 4. Overlapping density plots of the simulated outcomes from applying the nominal and 

other strategies on the test set. 
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Figure 5. Boxplots for the distributions of the realized lifts with the different strategies on the 

scenarios from the test set. 

  It is helpful to analyze also the extent to which the stochastic optimization approaches 

account for the worst-case loss (WCL). This is important because, as explained in Section 3, 

expected lift optimization is directly related to expected revenue optimization. Specifically, if the 

expected lift for cluster k and treatment m is 𝜙!", the expected revenue for that cluster is 

𝑟!"𝜙!"𝜂!", where 𝑟!" is the expected revenue for treatment m per customer in cluster k. 

Underperforming in terms of expected revenue should be a source of concern. 

We use the following metric for WCL: for each optimization model, we calculate the 

difference between the average realized total lift and the worst realized total lift as a percentage 

of the average realized lift based on the simulated observations in the test set. This measures how 

far the expected outcome is from the worst-case outcome under the optimal strategy for that 

approach – a similar concept to the concept of drawdown in investments (see 

http://www.investopedia.com/terms/d/drawdown.asp). Table 3 summarizes the results from the 

test set. It can be observed that the Interval uncertainty set approach as well as a calibrated 

Ellipsoidal approach (in this case, the Ellipsoidal approach with theta of 150) perform best under 

this metric. Specifically, if a marketing manager uses the Ellipsoidal approach with theta of 150, 
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the maximum loss in revenues he can expect is 12.20% from the predicted expected revenue 

based on the model. 

 

Table 3. Worst-case realized loss calculation. 

7. Discussion 

In this section, we discuss in more detail the current state of uplift modeling in organizations, list 

our contributions in context, and explain how our framework can be implemented in practice. 

7.1. Uplift versus traditional customer response modeling in organizations 

Many organizations collect large amounts of customer data in order to understand their needs, 

predict their future behavior, and optimize future contacts. Early usage of analytics was to apply 

predictive modeling (also called supervised learning) to target customers who are likely to take a 

desirable action regardless of whether or not they receive an intervention or treatment, as 

documented in marketing analytics textbooks such as Jackson and Wang (1994) and Roberts and 

Berger (1999). Such practice almost guarantees that the model targets are better than random 

targets in terms of response rate by design. 

Marketing measurement teams (typically separated from data science teams in 

corporations) are more focused on measuring campaign success. They apply A/B testing or 

randomized experiments to measure whether the campaign (treatment) generates incremental 

value for the targets over not receiving the campaign. For example, in a customer cross-sell 

campaign, a traditional predictive modeling approach would consist of developing a model to 

differentiate between those who responded from those who did not respond to a previous 

campaign, and then applying such model to a future campaign. A randomized experiment, on the 

other hand, would have two target groups: model targets (say, using the top 3 deciles in terms of 

model score) and random targets (for comparison and potential model fine-tuning). In each of the 

two target groups, customers would be split randomly into treatment (receiving the marketing 

Nominal Interval Max	Regret Ellipsoidal20 Ellipsoidal150 Ellipsoidal300
WCL	(%) 14.3305 13.5748 14.7212 15.2410 12.2000 14.5038
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campaign) and control (not receiving the campaign) groups, so any difference in measurement 

result can be attributable to the treatment (campaign).  

A traditional predictive model is designed to focus on customers who are likely to take 

the desirable action, so one usually sees success over random targets. However, those customers 

who are likely to take the desirable action (as found by the top 3 model deciles in this example) 

may respond naturally, regardless of whether they receive the marketing campaign, resulting in 

no actual lift over control. Table 4 shows an illustrative example. Here there is a difference 

between the model group and the random group – the top 3 deciles of the model targets have a 

higher likelihood of purchase than the random targets. However, there is no difference in 

purchases between the treatment and the control groups within each target group; hence, the 

campaign does not make a difference and there is no lift. This happens because optimizing lift is 

not the objective of the traditional predictive model, i.e., what is modeled does not match what is 

measured. 

 

Table 4. Example of Campaign Measurement Result from Traditional Predictive Modeling. 

Since the idea of changing the objective was brought up by Radcliffe and Surry (1999) 

and Lo (2002), the data science marketing practice in industry has started to change its focus 

from traditional predictive modeling to uplift modeling in order to maximize impact over control. 

Uplift modeling has since spread from marketing and sales to political campaigns, e.g., targeting 

of swing voters in the 2012 Obama re-election campaign, as documented in Stedman (2013) and 

Siegel (2013). Independently, the healthcare industry has also been researching a similar set of 

methodologies to target patients who are likely to be impacted by a medical treatment (see, for 

example, Yong 2015). 

  

Model	Targets	
(Top	3	Deciles)

Random	
Targets

Treatment 6.70% 2.50%
Control 6.70% 2.50%
Lift 0.00% 0.00%
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7.2. Incorporating Model Uncertainty  

Although predictive models (traditional or uplift) are routinely employed in marketing, most 

academic literature and industry practices ignore the model estimation risk caused by uncertainty 

of model estimates. Such risk tends to be more significant in uplift modeling because of its 

requirement to estimate the difference between treatment and control response rates, which is 

often relatively small and has high variability. Failure to address model estimation risk when 

using output from such models as inputs for treatment optimization or human decision making 

can result in highly uncertain outcomes and loss of valuable opportunities. This article brings 

awareness of this issue to managers and practitioners as well as researchers. 

7.3. Our contribution 

We outlined a framework for taking into consideration the uncertainty in assessing customer 

segment responsiveness when managing marketing campaigns, and studied the effect of various 

assumptions on the allocation of marketing spend. We emphasized the importance of measuring 

responsiveness through lift, which measures the differential effect of a campaign, and considered 

an optimization problem that maximizes the total lift (equivalently, the total marketing revenue) 

in order to decide on the optimal allocation of marketing spend to customer segments. We 

showed how to use the robust optimization and stochastic programming methodologies to take 

lift estimation errors into consideration in the allocation. The main idea was to consider either 

alternative scenarios for the possible values of lift, or “uncertainty sets” around the estimated 

values of lift that could be linked to the amount of variability in the estimate and are consistent 

with the financial risk measure framework suggested in Ryals et al. (2007). Imposing this 

protection against uncertainty required rewriting the optimization problem but did not make it 

substantially more difficult to solve with today’s advanced optimization software. Rewriting the 

optimization problem to make marketing spend allocation more robust to uncertainty also 

required user specification of the desired level of protection against such uncertainty, expressed 

through a parameter specified in the optimization. This parameter, referred to as a “robustness 

budget”, reflects different levels of aversion to uncertainty that could be expressed by a 

marketing manager, and its function is similar to the function of the coefficient of risk aversion 

of the marketing manager discussed in Ryals et al. (2007).  
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Our computational experiments showed the effect of varying the assumptions of 

uncertainty and the value of the robustness budget on the optimal allocation. A “nominal” 

allocation using only point estimates of a customer segment’s responsiveness (or expected 

revenues) would take a greedy approach and allocate as much as possible to the segments with 

the highest expected return. This is a procedure often used in practice – a simple ranking of the 

estimated response or revenue for different segments. A “robustified” allocation would be more 

cautious, and would distribute the marketing spend in such a way as to diversify between 

segments in case the inputs provided to the algorithm predicting the amount of responsiveness 

were incorrect. The higher the value of the robustness budget, the more diversified the allocation 

is among segments, reducing overall risk as measured by the spread of possible outcomes and the 

worst-case loss. 

The summary statistics and metrics presented in the computational experiments are 

important for the assessment of the financial viability of the application of techniques from 

stochastic and robust optimization in uplift modeling and risk management. Because expected 

revenues and drawdown in revenues are proportional to the expected lift and drawdown in lift, 

respectively, substantial savings can be realized from testing and calibrating robust models to 

improve the risk characteristics of marketing campaigns. 

7.4. Implementation of the robust framework in practice  

Given the importance of the MCP, specialized commercial marketing optimization software 

packages are available to handle the MCP optimization problem. Examples include 

MarketSwitch1 and SAS Marketing Optimization.2 Such customized software typically integrates 

directly with campaign management tools and uses proprietary mathematical algorithms. 

Alternatively, the MCP can be solved using popular open source (free) modeling languages such 

                                                
1 See http://www.experian.com/decision-analytics/marketswitch-optimization.html. 

2 See https://www.sas.com/en_us/software/marketing-optimization.html.  
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as R,3 Python4 and Julia.5 The statistical estimation and optimization in our proposed robust 

framework are not implemented in commercial packages; however, a modeler using the open 

source modeling languages could easily add on the robust modeling capability to existing code. 

R, Python, Julia and similar modeling environments have a range of useful statistical and 

optimization libraries that can be used as building blocks for implementing the nominal and the 

robust versions of the lift estimation algorithm and the optimization formulations suggested in 

this article. 

8. Implications for Managers 

The focus on customer-centric marketing over the last two decades has created an imperative to 

understand customer characteristics and needs, and better data collection and analytics are 

important factors that have made that possible (Shah et al. 2006, Kumar et al. 2006, Pop 2017). 

At the same time, two critical principles for using data and analytics effectively in decision 

making are not always applied in practice: (1) training models and decision makers to optimize 

metrics that actually matter, and (2) incorporating considerations for the expected degree of 

model error given the data quality or statistical procedure used. This article showed how these 

two principles can be integrated with marketing campaign management.  

Once an organization has adopted models that optimize the right metrics, accountability 

for model measurement error can be incorporated within organizational processes so that 

marketing managers can be alerted to the level of uncertainty when ranking opportunities. The 

tolerance towards model estimation error can be calibrated. In the context of marketing spend 

allocation that balances risk and return between various segments, Ryals et al. (2007) warn about 

the danger of individual managers’ risk preferences not aligning with organizational risk 

preferences. In the context of marketing spend allocation that balances considerations for 

uncertainty in the statistical estimates of a segment’s responsiveness, the risk preference 

                                                
3 See http://r-project.com/. 

4 See https://www.python.org/.  

5 See https://www.juliaopt.org/. 
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(robustness) level can be set based on characteristics of the data, and can be managed 

consistently across the organization. 

In recent years, calls for facilitating strategic integration of marketing with other 

functional areas of an organization have increased (Piercy and Rick 2014, Kumar et al. 2006, 

Woodburn 2004, Hulbert et al. 2003). Marketing can increase its influence within organizations 

by understanding and adopting concepts that are traditionally used by other areas such as 

operations management and finance. The marketing campaign management framework outlined 

in this article brings together such concepts: predictive models, appropriate metrics, model 

accuracy, revenue management, and risk management. 
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